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ABSTRACT

OPTIMAL STOPPING FOR MARKOV MODULATED ITO-DIFFUSIONS WITH

APPLICATIONS TO FINANCE

Thomas William Seaquist, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Andrzej Korzeniowski

Despite the outstanding success of the Black-Scholes model, it relies on the as-

sumption that drift and volatility of the underlying equity remain constant through-

out time. This inaccuracy has motivated a number of interesting and innovative

refinements, one of the most natural being Markov modulation. In this disser-

tation we analyze a variety of financially motivated optimal stopping problems

under Markov modulated Ito-Diffusions. In Chapter 3, we generalize and refine a

technique developed in [13] pricing an infinite time horizon American put option

and we present a rigorous proof of optimality. In Chapter 4 we use this generalized

technique to discover an optimal selling strategy for an infinite horizon American

style forward contract. In so doing, we extend the work done in [12]. Finally

in Chapter 5 we price the infinite horizon American put using a non-traditional

model of a mean reverting Ornstein-Uhlenbeck process, further illustrating the

broad scope of applicability of the technique developed herein.
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CHAPTER 1

INTRODUCTION

The theory of optimal stopping is fundamental to a variety of time dependent

financial instruments. A key question to answer is this: when is the best time to

buy or sell an underlying option contract in order to maximize potential return?

Similarly, it is equally important in the pricing of contracts which can be bought or

sold at any time. Contracts which can be exercised at a time of the owners choosing

are referred to as “American” contracts and play a central part of our studies in

this dissertation.

The Black-Scholes-Merton formula for pricing European options is a cele-

brated result in economics for which Myron Scholes and Robert Merton won the

Nobel prize in economics in 1997. This formula is based on modeling stock as

a geometric Brownian motion from which a hedging scheme for replicating an

option price results in a partial differential equation that can be solved. Fischer

Black and Myron Scholes first articulated the model in 1973, see [2], and it was

extended up by Robert Merton, see [21]. Certain American type options have

also been successfully priced under the same Black-Scholes geometric Brownian

motion model using a variety of probabilistic and differential equation techniques,

see [4, 7, 15, 20, 26]. Despite the outstanding success of the Black-Scholes model, it

relies on the assumption that the drift and volatility of the stock remain constant

throughout the lifetime of the contract. This is a reasonable assumption for short

time periods but fails to hold true over longer periods of time as evidenced by the

“volatility smile,” (e.g., [22], p. 221). There have been many attempts in refining

1



the model to account for this discrepancy, see [5] for a few examples of established

techniques. The techniques we seek to investigate involve allowing the drift and

volatility of a stock to transition between states by a Markov chain.

There have been numerous studies of option pricing for Markov modulated,

or regime switching models. A few of the more relevant studies to this dissertation

will now be discussed. In [3], a European option is priced in an n state Markov

modulated model and the finite horizon American put is approximated in a n = 2

state model. The technique used relies on some innovative ways of expressing

Markov modulation from Robert Elliot’s “Hidden Markov Models,” [8]. In [11], a

closed form solution for the infinite time horizon American put option is found for

an n = 2 state model. This is extended upon in [13] where a closed form solution is

found for any n state model. In Chapter 3, we seek to improve upon and generalize

the technique presented in [13]. For further work in pricing a variety of options in

a Markov Modulated frame work, we refer the reader to [10, 19, 32–34].

We begin with a general probabilistic framework in Chapter 2, where the key

concepts are defined and relevant fundamental results are stated. In Chapter 3,

we generalize and refine the technique developed in [13] and present a rigorous

proof of optimality. In Chapter 4 we use this generalized technique to discover an

optimal selling strategy for an infinite horizon American style forward contract in

an n state model. In so doing, we extend the work done in [12] where an n = 2 state

model is used. Finally in chapter 5 we price the infinite horizon American put using

a non-traditional model of a mean reverting Ornstein-Uhlenbeck process, further

illustrating the broad scope of applicability of the technique we have developed.
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CHAPTER 2

GENERAL FRAMEWORK

2.1 The Ito-Integral

Let (Ω,F,P) be a fixed probability space. All random objects are measurable

functions from the probability space into the real line R. A random process Xt is

an abbreviation for Xt(ω), ω ∈ Ω, and t ≥ 0, which for fixed ω is called a path,

realization, or trajectory and is a function of time t. We also have an increasing

family of σ - algebras {Ft}t≥0, Ft ⊂ F referred to as a filtration. The filtration {Ft}t≥0

specifies how information is revealed through time. Each random process is {Ft}t≥0

adapted, i.e., Xt is measurable with respect to Ft for all t ≥ 0.

At times we will utilize the so called natural filtration of (or filtration gener-

ated by) a process Xt definedHt = σ(Xu,u ≤ t) the smallest σ - algebra that contains

all sets of the form {X−1
u [B] : B is a Borel set on R} for 0 ≤ u ≤ t.

We start by defining an essential concept of stochastic modeling. The Ito-

integral is motivated by the desire to model a process which experiences some

form of noise
dXt

dt
= b(t,Xt) + σ(t,Xt) · noise.

For many purposes, we assume that the noise is a generalized stochastic process

called the the white noise process, formally dWt
dt where Wt is the Wiener process or

Brownian motion. Interpreting the above in integral form

Xt = X0 +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs.
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Since Wt has unbounded variation almost surely on every time interval, path-wise

integration cannot be carried out. Instead, integration with respect to Brownian

motion is defined as the celebrated Ito-integral. An outline of how this is done is

as follows.

First the integral will be defined on a restrictive class of simple functions

defined

φ(t, ω) =
∑
j≥0

e j(ω)1[ j2−n,( j+1)2−n)(t)

where e j(ω) is measurable with respect the σ - algebra F j2−n . For a simple function,

we define the integral∫ T

S
φ(t, ω)dWt =

∑
j≥0

e j(ω)[Bt j+1 − Bt j](ω)

where

tk =


k2−n i f S ≤ k2−n

≤ T

S i f k2−n
≤ S

T i f k2−n
≥ T

.

From this definition it can be shown that there exists a sequence of simple functions

converging to any function in the Ito integrable class defined:

Definition 2.1.1.

LetV =V(S,T) be the class of functions

f (t, ω) : [0,∞) ×Ω→ R

such that

1. f (t, ω) is B × F - measurable, where B represents the Borel σ - algebra on

[0,∞)

2. f (t, ω) is Ft - adapted

3. E[
∫ T

S
f (t, ω)2dt] < ∞.

4



The convergence of the above is L2 convergence in the product space [0,∞)×Ω,

i.e.,

E[
∫ T

S
( f − φn)2dt]→ 0 as n→∞.

The Ito-isometry plays an essential role in defining the Ito-integral. The Ito-

isometry states

E[
∫ T

S
φ(t, ω)2dt] = E[(

∫ T

S
φ(t, ω)dWt)2].

This allows for the existence of the limit which defines the Ito-integral for f ∈

V(S,T) ∫ T

S
f (t, ω)dWt B lim

n→∞

∫ T

S
φ(t, ω)dWt

in the L2(P) sense.

For further details, we refer the reader to [23].

Remark 2.1.1.

Assumption 2 in Definition 2.1.1 puts an important (yet natural) restriction on the

class of Ito integrands, that are often referred to as predictable or non-anticipating

processes.

Next we provide the key theorem of Ito calculus.

Theorem 2.1.1 (Ito’s Formula).

Let Xt be an Ito process given by

dXt = u(t, ω)dt + v(t, ω)dWt

where Wt is a Wiener process (Brownian motion). Let g(t, x) ∈ C2([0,∞) ×R). Then

dg(t,Xt) = gt(t,Xt)dt + gx(t,Xt)dXt +
1
2

gxx(t,Xt) · (dXt)2,

where (dXt)2 = dXt · dXt is computed according to the following rules

dt · dt = dt · dWt = dWt · dt = 0, dWt · dWt = dt.
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For proof of Ito’s formula, see [23].

Finallay, we end this section with an important definition that will be essential

in generalizing Ito’s Formula.

Definition 2.1.2 (Quadratic Variation [18]).

The quadratic variation [X,X]t of a process Xt is defined

[X,X]t = lim
||P||→0

n∑
k=1

(Xtk − Xtk−1)
2

where P = {0 = t0, t1, . . . , tn = t} is a partition of [0, t] and ||P|| is the norm of the

partition and the limit is in probability.

More generally we have

Definition 2.1.3 (Quadratic Covariation [18]).

The quadratic covariation [X,Y]t of two processes Xt and Yt is defined

[X,Y]t = lim
||P||→0

n∑
k=1

(Xtk − Xtk−1)(Ytk − Ytk−1)

=
1
2

([X + Y,X + Y]t − [X,X]t − [Y,Y]t)

where P = {0 = t0, t1, . . . , tn = t} is a partition of [0, t] and ||P|| is the norm of the

partition and the limit is in probability.

2.2 Martingales and Stopping Times

A martingale is defined as follows:

Definition 2.2.1.

Let {Ft}t≥0 be a filtration on (Ω,F ). The process {Mt}t≥0 is said to be a martingale if

1. Mt is Ft - measurable

2. E[|Mt|] ≤ ∞ for all t ≥ 0

3. E[Mt|Fs] = Ms for all 0 ≤ s ≤ t.
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A process is said to be a submartingale if condition 3 is replaced by

E[Mt|Fs] ≥Ms

and a supermartingale when condition 3 is replaced by

E[Mt|Fs] ≤Ms.

Definition 2.2.2.

Let {Ft}t≥0 be a filtration on (Ω,P). The random variable τ : Ω → [0,∞) is called a

stopping time w.r.t. {Ft}t≥0 if

{ω : τ(ω) ≤ t} ∈ Ft.

A filtration can be thought of as the history of a process. With this in mind, a

stopping time is a strategy for stopping a process which can only see the past and

cannot look into the future.

Definition 2.2.3.

Let Xt be a stochastic process. A property P is said to hold locally if there exists a

sequence of stopping times τn increasing to infinity a.s. such that Xτn∧t1{τn>0} has

property P for each n ≥ 1.

A process is called a local martingale if it satisfies the condition of a martingale

locally.

Definition 2.2.4.

Let St be stochastic process. St is said to be a semimartingale if it can be decomposed

St = At + Mt

where Mt is a martingale and At is a process of finite variation.

An important property of the Ito-integral is that it is a martingale:

7



Theorem 2.2.1.

Let f (t, ω) ∈ V(0,T) for all T. Then

Mt(ω) =

∫ t

0
f (s, ω)dWs

is a martingale w.r.t. the natural filtration Ft generated by Wt. Furthermore,

E[Mt] = 0.

Next a few important theorems dealing with martingales and stopping times

will be given.

Theorem 2.2.2 (Stopped Martingale Theorem [18]).

If Mt is a martingale and τ is a stopping time, the the stopped process Mτ∧t is a martingale

and moreover

E[Mτ∧t] = M0.

Theorem 2.2.3 (Optional Sampling Theorem Version 1 [27]).

Let σ ≤ τ be bounded stopping times and let Mt be a martingale (or supermartingale), then

E[Mτ | Fσ] = (≤)Mσ

and in particular

E[Mτ] = (≤)M0.

Theorem 2.2.4 (Optional Sampling Theorem Version 2 [18]).

Let σ ≤ τ be any stopping times and Mt be a uniformly integrable martingale, then

E[Mτ | Fσ] = Mσ

and in particular

E[Mτ] = M0.

8



2.3 Continuous Time Markov Chains

Definition 2.3.1.

Consider the stochastic process Xt(ω) : [0,∞)×Ω→ Z+. We say Xt is a continuous

time Markov chain if for all s, t ≥ 0

P
(
Xt+s = j | Xt = i, {Xu : 0 ≤ u < t}

)
= P(Xt+s = j | Xt = i).

Here we only consider time homogeneous Markov chains: P(Xt+s = j | Xt = i)

is independent of t. The Markov chain is a process that lacks “memory”. Its future

only depends upon it’s current state. As a result we see that if τi denote the amount

of time that the process spends in state i then

P(τi > t + s | τi > s) = P(τ > t).

Hence τi must be exponentially distributed. To fully characterize a finite state

Markov chain, we need only define

qi j = νiPi j

= lim
t↘0

Pi j(t)
t

where νi is the rate (in the exponential distribution) of exiting state i, Pi j is the

probability that given a transition out of i that the process goes to state j, and Pi j(t)

is the probability of being in state j at time t starting from state i and so qi j is the

transition rate into state j from i. Kolmogorov’s Backward Equation describes how

to relate these transition rates to the probability of being in a given state at a given

time.

Theorem 2.3.1 (Kolmogorov’s Backward Equation [30]).

P′(t) = QP(t)
9



where P(t) is the matrix whose element in the i, j position is Pi j(t). Q is the matrix whose

element in the i, j position is qi j where

qii = −νi = −
∑
j,i

qi j.

Q is referred to as the transition rates matrix or generating matrix.

For further information on Markov chains we reference the reader to [14, 30]

2.4 Strong Markov Property

First we define the shift operator along with some properties and then we

will use this to define the strong Markov property. Without loss of generality we

assume Ω = R[0,∞) so that for each ω ∈ Ω, ω = (ωt)t≥0 and Xt(ω) = ωt. The shift

operator θt : Ω→ Ω is defined

θt(ω) = (ωs+t)s≥0,

and for a random time σ

θσ(ω) = (ωs+σ(ω))s≥0.

Below several properties of the shift operator will be defined that will be useful in

the sequel.

• For any stopping times σ and τ,

Xτ ◦ θσ = Xσ+τ◦θσ .

• If σ ≤ τ where τ is an entry time into a set, then

τ = σ + τ ◦ θσ.

10



Definition 2.4.1 (Strong Markov Property [26]).

Xt is said to have the strong Markov property, or to be a strong Markov process if

for every bounded Borel function φ and any stopping times σ and τ

Ex[φ(Xτ) ◦ θσ | Fσ] = EXσ[φ(Xτ)].

A finite state continuous time Markov chain is a strong Markov process.

Ito-processes also possess this property:

Theorem 2.4.1 (Strong Markov Property for Ito Diffusions [23]).

Define the Ito-process by the SDE

dXt = b(t,Xt)dt + σ(t,Xt)dBt

then Xt has the strong Markov property.

2.5 Infinitesimal Generators

Definition 2.5.1 (Infinitesimal Generator).

The infinitesimal generator LX of a process Xt is defined by

LX[ f ](x) = lim
t↘0

Ex[ f (Xt)] − f (x)
t

the domain of which is the set of functions f : R → R such that the above limit

exists.

A similar operator can be defined

Definition 2.5.2 (Characteristic Operator [23]).

The characteristic operatorAX of a process Xt is defined by

AX[ f ](x) = lim
U↘x

Ex[ f (XτU)] − f (x)
Ex[τU]

where the U′s are open sets Uk decreasing to the point x, in the sense that Uk+1 ⊂ Uk

and ∩
k
Uk = {x} and τU = {t ≥ 0 : Xt < U} is the first exit time from U for Xt. The

domain is the set of functions f : R→ R such that the above limit exists.
11



It is a fact that the infinitesimal generator and the characteristic operator

coincide on the more restrictive domain of the infinitesimal generator, [23].

Theorem 2.5.1 (Infinitesimal Generator of an Ito-Process [23]).

Let Xt be an Ito-process defined

dXt = b(t,Xt)dt + σ(t,Xt)dBt.

The generator LX of this process is given by

LX[ f ](x) = b(t, x) f ′(x) +
1
2
σ2(t, x) f ′′(x).

Next, the infinitesimal generator for a Markov chain will be given.

Theorem 2.5.2 (Infinitesimal Generator of a Markov Chain).

Let ξt be Markov chain with n states defined by its generating matrix Q whose element in

the i, j position is qi j. The generator Lξ of this process is given by

Lξ[ f ](i) =

n∑
j=1

qi j f ( j).

This is equivalent to the i-th row of Qf where f is the vector whose j-th element is f ( j).

For additional reference in stochastic processes, we refer the reader to [16–18,

23, 30].
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CHAPTER 3

THE AMERICAN PUT OPTION IN A MARKOV MODULATED MARKET

3.1 Introduction

In this chapter we will present a nontraditional framework under which to

price an American put option. The traditional approach is limited to a market

with a drift and volatility which are constant throughout time. This in an unreal-

istic assumption which fails over long periods of time. In what follows, we will

develop a model which allows the market to switch between n different states at

exponentially distributed times.

After the stock model is developed, the value of an infinite time horizon

American put option will be posed as optimal stopping problem. This optimal

stopping problem will then be solved by relating the logarithmic stock process to

a system of ordinary differential equations (ODEs) which are readily solved after

imposing a smoothness condition. Finally, the solution to the ODEs is proven to be

the optimal solution with a corresponding optimal stopping strategy.

3.2 A Markov Modulated Ito Diffusion and the American Put Option as an

Optimal Stopping Problem

The standard model for the evolution of a stock is presented as the following

stochastic differential equation (SDE)

dSt = µStdt + σStdWt

13



where St is the stochastic process describing stock price and Wt is a Wiener process

or Brownian motion, where µ and σ are the drift and volatility of the stock respec-

tively. The solution to this SDE can be found using the standard Ito formula and

results in

St = S0e(µ− 1
2σ

2)t+σWt

referred to as a geometric Brownian motion. In our model we introduce a contin-

uous time Markov chain ξt of n states corresponding to the n states we allow the

market to switch between. This Markov chain is assumed to be time homogeneous.

The n state market is modeled by the SDE

(3.1)dSt = µ(ξt)Stdt + σ(ξt)dWt

resulting in the stock process,

St = S0e
∫ t

o (µ(ξs)− 1
2σ

2(ξs))ds+
∫ t

0 σ(ξs)StdWs .

The key issue in option pricing is to derive a price producing no arbitrage

opportunities. An arbitrage opportunity is the situation under which an investor

can make a guaranteed profit while incurring no risk. In order to avoid arbitrage,

we must price the option under the so called “risk neutral” measure or the mar-

tingale measure. It is well established that the pricing of options under the “risk

neutral” measure produces a price eliminating arbitrage opportunities. Under this

“artificial” probability measure, we would like for

e−
∫ t

0 r(ξs)dsSt

to be a martingale. Here r(ξt) is the risk free interest rate. We will call the original

probability measure P under which Wt is a brownian motion. To get the discounted

14



stock process to be a martingale under a new measure , we will define a equivalent

measure Q with the Radon-Nikodym derivative:

dQ
dP

= exp
(
−

∫ t

0

µ(ξs) − r(ξs)
σ(ξs)

ds −
1
2

∫ t

0

(µ(ξs) − r(ξs))2

σ2(ξs)
dWs

)
.

By Girsanov’s change of measure theorem, the process

W̃t =

∫ t

0

µ(ξs) − r(ξs)
σ(ξs)

ds + Wt

is a Q-brownian motion. Expressing this in differential form we get,

dW̃t =
µ(ξt) − r(ξt)

σ(ξt)
dt + dWt.

Combining this with (3.1), we get

dSt = r(ξt)Stdt + σ(ξt)StdW̃t.

From this it is obvious that the discounted stock process,

e−
∫ t

0 r(ξs)dsSt = S0e−
1
2

∫ t
o (σ2(ξs))ds+

∫ t
0 σ(ξs)dW̃s

is a Q-martingale as desired. From this point forward, we will only consider the Q

probability space and will ignore the tilde on Wt.

The value of the infinite horizon American put option is defined probabilis-

tically by the following optimal stopping problem

V(s, i) = sup
τ

E(s,i)
[
e−

∫ τ
0 r(ξs)ds(K − Sτ)+

]
where τ is a stopping time and K is the strike price and the expectation is taken in

Q. This is an elegant definition since it can be interpreted as the expected payoff

of the option discounted for time under the optimal stopping strategy. Of course,

this expectation is taken under the synthetic measure Q, but it is under this risk

free measure only that an arbitrage free price is established.
15



At this point we will take a critical change of perspective. We define the

logarithmic stock process

Xt = ln(St).

With the standard Ito formula we arrive at

dXt =
(
r(ξt) −

1
2
σ2(ξt)

)
dt + σ(ξt)dWt

and the value function as a function of Xt

V(x, i) = sup
τ

E(s,i)
[
e−

∫ τ
0 r(ξs)ds(K − eXτ)+

]
.

This critical change of perspective is what will later allow us to solve this optimal

stopping problem, see Remark 3.5.1.

Notice that in the above, no assumption is made about the finiteness of τ.

Suppose that P(τ = ∞) > 0. In this case see that e−
∫ t

0 r(ξs)ds
→ 0 as t → ∞ since

r( j) > 0 for all j. Also notice that
(
K − eXτ

)+ is bounded. Because of this the value

function is sometimes accurately written

V(x, i) = sup
τ

E(s,i)
[
e−

∫ τ
0 r(ξs)ds(K − eXτ)+1{τ<∞}

]
making any definition for Xτ when τ = ∞ redundant. In the remainder of this

article, 1{τ<∞} will not be written inside the expectation for brevity, however it

should be understood that when τ = ∞ then e−
∫ τ

0 r(ξs)ds(K − eXτ)+ = 0.

To confirm that the above observation is critical, it will be shown that un-

der certain conditions, the optimal stopping time will be infinite with probability

greater than zero. For ease of illustration, the following explanation will be done

with a one state market. It is well demonstrated in ( [26], p. 375) that the optimal

stopping time for a one state market is an entry time of the form

τb = inf{t ≥ 0 : Xt ≤ b}
16



for some threshold b. Here the logarithmic stock process is

Xt =
(
r −

1
2
σ2

)
dt + σ(ξt)dWt

which is simply a Brownian motion with drift η =
(
r − 1

2σ
2
)
. It is important to

notice that we do not know the sign of η. If η < 0 then the drift of the Brownian

motion will be pushing towards the boundary b and Xt will strike the boundary

with probability 1. The same is true with η = 0. However, if η > 0 the drift of the

Brownian motion will be pushing away from the boundary b and there is a positive

probability that the process Xt will never strike b. Thus we have

P(τb = ∞) > 0

mandating that we be very careful with the possibility that the optimal stopping

time for the multistate process might also infinite.

3.3 Generalized Ito’s Formula including a Pure Jump Markov Process

First we develop the mathematical tools necessary for the later needed analy-

sis. In this section a generalized Ito-formula will be presented and used to find the

infinitesimal generator of the two dimensional process (Xt, ξt). These two results

will then be combined to present a very elegant version of Ito’s formula with a

Markov chain.

The general Ito’s formula for an n-tuple of possibly discontinuous semi-

martingales can be found in a monograph of stochastic integration ( [27], p. 74, Th.

33), and is given below.

Theorem 3.3.1 (Generalized Ito’s Formula [27]).

Let X = (X1, . . . ,Xn) be collection of semimartingales and let f : Rn
→ R have continuous

17



second order partial derivatives. Then f (Xt) is a semimartingale and the following formula

holds:

f (Xt) = f (X0) +

n∑
i=1

∫ t

0+

∂ f
∂xi

(Xs−)dXi
s +

1
2

i, j≤n∑
1≤i, j

∫ t

0+

∂2 f
∂xi∂x j

(Xs−)d[Xi,X j]c
s

+
∑
0<s≤t

∆ f (Xs) −
n∑

i=1

∂ f
∂xi

(Xs−)∆Xi
s

,
where, Xt− = limt→0− Xt, ∆Xt = Xt−Xt− and ∆ f (Xt) = f (Xt)− f (Xt−). [X,X]t and [X,Y]t

denote the quadratic variation and the quadratic covariation respectively and [X,Y]c
t denotes

the path by path continuous part of [X,Y]t.

A theory of extending Ito-integrals to a broader class integration with respect

to martingales and semimartingales is well developed and presented thoroughly

in [28, 29]

Now Ito’s Formula will be applied to the function f (Zt) where Zt = (Xt, ξt).

Recall that Xt is the Markov modulated Ito-process defined

dXt =
(
r(ξt) −

1
2
σ2(ξt)

)
dt + σ(ξt)dWt

and ξt is the n state Markov chain.

f (Zt) = f (Z0) +

∫ t

0+

fx(Zs−)dXs +

∫ t

0+

fξ(Zs−)dξs +
1
2

∫ t

0+

fxx(Zs−)d[X,X]c
s

+

∫ t

0+

fxξ(Zs−)d[X, ξ]c
s +

1
2

∫ t

0+

fξξ(Zs−)d[ξ, ξ]c
s

+
∑
s≤t

[
∆ f (Zs) − fx(Zx−)∆Xs − fξ(Zs−)∆ξs

]
.

Since ξs is of bounded variation and Xs is continuous, [X, ξ]c
s = [ξ, ξ]c

s = ∆Xs = 0.

In addition, since ξs is a pure jump process,
∫ t

0+ fξ(Zs−)dξs =
∑

s≤t fξ(Zs−)∆ξs. By

dXs = (r(ξs) − 1
2σ

2(ξs))ds + σ(ξs)dWs and d[X,X]c
s = σ2(ξs)ds one obtains

f (Zt) = f (Z0) +

∫ t

0

[(
r(ξs) −

1
2
σ2(ξs)

)
fx(Zs) +

1
2
σ2(ξs) fxx(Zs)

]
ds

+

∫ t

0+

σ(ξs−) fx(Zs−)dWs +
∑
s≤t

∆ f (Zs).

18



Remark 3.3.1.

The left limit was ignored in the ds integral since Xs , Xs− at only a finite number

of times almost surely. Left limits cannot be ignored in the Ito integral since the

integrand without it would not be a predictable process.

To simplify notation and for clarity, the observation is made that the infinitesimal

operator LX of the process Xt is

LX[ f ](x, i) =
(
r(i) −

1
2
σ2(i)

)
fx(x, i) +

1
2
σ2(i) fxx(x, i),

and yields

(3.2)f (Zt) = f (Z0) +

∫ t

0
LX[ f ](Zs)ds +

∫ t

0+

σ(ξs−) fx(Zs−)dWs +
∑
s≤t

∆ f (Zs).

Proposition 3.3.1.

The infinitesimal generator of the process Zt = (Xt, ξt) for a bounded function f (·, ξ) ∈

C2(R)is given by

L(X,ξ)[ f ](x, i) = LX[ f ](x, i) + Lξ[ f ](x, i)

where

LX[ f ](x, i) =
(
r(i) −

1
2
σ2(i)

)
fx(x, i) +

1
2
σ2(i) fxx(x, i)

Lξ[ f ](x, i) =

n∑
j=1

qi j f (x, j)

and qi j is the infinitesimal transition rate from state i to j.

Proof. The generator is defined by

L(X,ξ)[ f ](x, i) = lim
t↘0

E(x,i)[ f (Xt, ξt)] − f (x, i)
t

.
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We apply Ito’s Formula (3.2) and observe that by standard properties of Ito integrals∫ t

0+ σ(ξs−) fx(Zs−)dWs is a martingale and thus E[
∫ t

0+ σ(ξs−) fx(Zs−)dWs] = 0. Now

L(X,ξ)[ f ](x, i) = lim
t↘0

E(x,i)[
∫ t

0
LX[ f ](Xs, ξs)ds +

∑
s≤t ∆ f (Xs, ξs)]

t

= LX[ f ](x, i) + lim
t↘0

E(x,i)[
∑

s≤t ∆ f (Xs, ξs)]
t

= LX[ f ](x, i) + lim
t↘0

E(x,i)
[
( f (XT, ξt) − f (XT, i))1{N(t)≤1}

]
t

+ lim
t↘0

E(x,i)
[∑

s≤t ∆ f (Xs, ξs)1{N(t)≥2}

]
t

(3.3)

where N(t) counts the number of jumps of ξt and T is the time of the first jump.

Next, it will be shown that limt↘0
1
t E(x,i)[

∑
s≤t ∆ f (Xt, ξt)1{N(t)≥2}] = 0. It was assumed

that f is a bounded function, so let sup(x,i)| f (x, i)|≤M. Let N∗(t) be a Poisson process

with rate λ = maxi(−qii), recalling that −qii is the rate of leaving state i. It is clear to

see that choosing this maximal rate yields the inequality E[N(t)] ≤ E[N∗(t)]. Now

we have that

E(x,i)


∣∣∣∣∣∣∣∑s≤t

∆ f (Xs, ξs)1{N(t)≥2}

∣∣∣∣∣∣∣
 ≤ E[2MN(t)1{N(t)≥2}]

≤ E[2MN∗(t)1{N(t)≥2}]

= 2M
∞∑

k=2

kP(N∗(t) = k)

= 2M
(
E[N∗(t)] − P(N∗(t) = 1)

)
= 2Mλt(1 − e−λt).

Utilizing this result, we see that

lim
t↘0

E(x,i)[|
∑

s≤t ∆ f (Xs, ξs)1{N(t)≥2}|]
t

≤ lim
t↘0

2Mλ(1 − e−λt) = 0

and thus

lim
t↘0

E(x,i)[
∑

s≤t ∆ f (Xs, ξs)1{N(t)≥2}]
t

= 0.
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Implementing this in (3.3) we have

L(X,ξ)[ f ](x, i) = LX[ f ](x, i) + lim
t↘0

E(x,i)
[(

f (XT, ξt) − f (XT, i)
)
1{N(t)≤1}

]
t

= LX[ f ](x, i) + lim
t↘0

E(x,i)
[
E
[(

f (XT, ξt) − f (XT, i)
)
1{N(t)≤1} | Xt

]]
t

= LX[ f ](x, i) + lim
t↘0

E(x,i)


n∑

j=1
j,i

Pi j(t)
t

(
f (XT, j) − f (XT, i)

)
1{N(t)≤1}


= LX[ f ](x, i) + E(x,i)


n∑

j=1
j,i

lim
t↘0

Pi j(t)
t

(
f (XT, j) − f (XT, i)

)
1{N(t)≤1}


= LX[ f ](x, i) +

n∑
j=1
j,i

qi j

(
f (x, j) − f (x, i)

)

= LX[ f ](x, i) +

n∑
j=1
j,i

qi j f (x, j) −
n∑

j=1

qi j f (x, i)

= LX[ f ](x, i) +

n∑
j=1
j,i

qi j f (x, j) + qii f (x, i)

= LX[ f ](x, i) +

n∑
j=1

qi j f (x, j)

= LX[ f ](x, i) + Lξ[ f ](x, i)

where Pi j(t) = P(ξt = j|ξ0 = i), and qi j is defined by limt→0
Pi j(t)

t . The interchange of

limit and expectation is justified since f and
Pi j(t)

t are bounded and thus Lebesgue’s

dominated convergence theorem applies. �

From Proposition 1.7 in ( [9], p. 162), we have

f (Xt, ξt) − f (X0, ξ0) −
∫ t

0
L(X,ξ)[ f ](Xs, ξs)ds
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is a martingale with respect to the natural filtration generated by (Xt, ξt). Combining

Proposition 3.3.1 and Ito’s formula (3.2) we get∫ t

0+

σ(ξs−) fx(Zs−)dWs +
∑
s≤t

∆ f (Xs, ξs) −
∫ t

0
Lξ[ f ](Xs, ξs)ds

is a martingale. On the other hand, by standard properties of Ito-integrals,∫ t

0
σ(ξs) fx(Xs, ξs)dWs is a martingale, thus

M f
t B

∑
s≤t

∆ f (Xs, ξs) −
∫ t

0
Lξ[ f ](Xs, ξs)ds

is a martingale. This produces a nice semimartingale decomposition:∑
s≤t

∆ f (Xs, ξs) =

∫ t

0
Lξ[ f ](Xs, ξs)ds + M f

t .

As a result, a very elegant and useful version of Ito’s formula for the process (Xt, ξt)

is obtained as follows:

f (Xt, ξt) = f (X0, ξ0) +

∫ t

0
L(X,ξ)[ f ](Xs, ξs)ds +

∫ t

0+

σ(ξs−) fx(Zs−)dWs + M f
t (3.4)

= f (X0, ξ0) +

∫ t

0
L(X,ξ)[ f ](Xs, ξs)ds + Martingale.

Another useful result that will be needed later is to apply Ito’s Formula to the

function defined F(e−
∫ t

0 r(ξs)ds,Zt) B e−
∫ t

0 r(ξs)ds f (Zt). Applying Theorem 3.3.1 in the

previous manner, we obtain

e−
∫ t

0 r(ξs)ds f (Zt) = f (Z0) +

∫ t

0
f (Zs)d

(
e−

∫ s
0 r(ξu)du

)
+

∫ t

0
e−

∫ s
0 r(ξu)duL(X,ξ)[ f ](Zs)ds

+

∫ t

0+

e−
∫ s

0 r(ξu)duσ(ξs−) fx(Zs−)dWs + MF
t

= f (Z0) +

∫ t

0
e−

∫ s
0 r(ξu)du

(
L(X,ξ)[ f ](Zs) − r(ξs) f (Zs)

)
ds

+

∫ t

0+

e−
∫ s

0 r(ξu)duσ(ξs−) fx(Zs−)dWs + MF
t (3.5)

= f (Z0) +

∫ t

0
e−

∫ s
0 r(ξu)du

(
L(X,ξ)[ f ](Zs) − r(ξs) f (Zs)

)
ds + Martingale.
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3.4 American Put and the Dirichlet Problem

We start this section with a conjecture about the nature of the optimal stopping

time used in determining the value function of an Amercan put option,

V(x, i) = sup
τ

E(x,i)
[
e−

∫ τ
0 r(ξs)ds(K − eXτ)+

]
.

This in turn will allow us to draw a connection to the Dirichlet problem.

Conjecture 3.4.1.

The optimal stopping time of

V(x, i) = sup
τ

E(x,i)
[
e−

∫ τ
0 r(ξs)ds(K − eXτ)+

]
is of the form

τ = inf{t ≥ 0 : V(Xt, ξt) = (K − eXt)+
}.

Justification. It seems intuitive that the optimal stopping strategy should be

to wait for the first time at which V(x, i) = (K − ex)+, in other words waiting to hit

the price at which there is no expected gain for waiting longer. So the stopping

time τ = inf{t ≥ 0 : V(Xt, ξt) = (K − eXt)+
}would appear to be optimal.

Remark 3.4.1.

This conjecture will be proven to be correct in section 3.6.

Lemma 3.4.1.

Supposing a stopping time of the form given in conjecture 3.4.1 there exists a series of

thresholds, {b(1), . . . , b(n)} forming a region C = {(x, i) : x > b(i)} referred to as the

continuation region and a region D = {(x, i) : x ≤ b(i)} referred to as the stopping region

such that the entry time τD = inf{t ≥ 0 : (Xt, ξt) ∈ D} = inf{t ≥ 0 : Xt ≤ b(ξt)} is the

optimal stopping time:

V(x, i) = E(x,i)
[
e−

∫ τD
0 r(ξs)ds(K − eXτD )+

]
.

Without loss of generality, we will assume b(n) < · · · < b(1).
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Proof. The fact that {b(i)} can be chosen in descending order is a simple consequence

of relabeling (i.e., renaming) the original Markov states {1, 2, . . . ,n} since doing so

does not change the dynamics of state to state transitions. To prove this lemma,

we follow [13] and show that V(x, i) − φ(x), where φ(x) = (K − ex)+, is an increasing

function on (−∞, ln(K)). From this we conclude that there are unique thresholds

depending on the Markov state below which V(x, i) = φ(x) and the lemma is proven.

Let x, x + δ ∈ (−∞, ln(K)) and let τ be the optimal stopping time when X0 = x.

V( j, x + δ) ≥ E(x+δ, j)
[
e−

∫ τ
0 r(ξs)dsφ(Xτ)

]
= E(x, j)

[
e−

∫ τ
0 r(ξs)ds

(
K − eXτ+δ

)+
]

= E(x, j)
[
e−

∫ τ
0 r(ξs)ds

(
K − eXτ − (eδ − 1)eXτ

)+
]

≥ E(x, j)
[
e−

∫ τ
0 r(ξs)ds

(
(K − eXτ)+

− (eδ − 1)eXτ
)]

≥ E(x, j)
[
e−

∫ τ
0 r(ξs)ds(K − eXτ)+

]
− (eδ − 1)E(x, j)

[
e−

∫ τ
0 r(ξs)dseXτ

]
= V(x, j) − (eδ − 1)E(x, j)

[
e−

∫ τ
0 r(ξs)dseXτ

]
≥ V(x, j) − (eδ − 1) lim inf

t→∞
E(x, j)

[
e−

∫ t∧τ
0 r(ξs)dseXt∧τ

]
(3.6)

= V(x, j) − (eδ − 1)ex (3.7)

= V(x, j) + φ(x + δ) − φ(x).

In (3.6) Fatou’s lemma is applied. Finally (3.7) is valid since the discounted

stock process e−
∫ t

0 r(ξs)dseXt is a martingale which implies that the stopped process

e−
∫ t∧τ

0 r(ξs)dseXt∧τ is also a martingale by theorem 2.2.2. Notice that no assumptions

are made about the finiteness of τ. �

Next, the techniques from [26] will be used to show that solving the entry

time problem,

V(x, i) = E(x,i)
[
e−

∫ τD
0 r(ξs)ds

(
K − eXτD

)+
]
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is equivalent to solving the Dirichlet problem

L(X,ξ)[V](x, i) = r(i)V(x, i) in C (3.8)

V(x, i) = (K − ex)+ in D.

C = {(x, i) : V(x, i) > (K − ex)+
} and is referred to as the continuation region and D

is the its complement in R × {1, 2, · · · ,n}, and is referred to as the stopping region.

The entrance time into D is defined by τD = inf{t ≥ 0 : (Xt, ξt) ∈ D}. Here, no

assumptions are made as to the finiteness of τD.

To verify (3.8), we first define a “killed” process X̃t. Let T be a killing time,

with rate of killing defined as follows

r(ξt) = lim
δ↘0

P(t < T ≤ t + δ | {ξu : 0 ≤ u < t},T > t)
δ

=
f (t | {ξu : 0 ≤ u < t})

1 − F(t | {ξu : 0 ≤ u < t})

with F(t | {ξu : 0 ≤ u < t}) = P(T ≤ t | {ξu : 0 ≤ u < t}) and f (t | {ξu : 0 ≤ u < t}) its

derivative. Now if r(ξt) is integrated from 0 to t, we get∫ t

0
r(ξs)ds =

∫ t

0

f (s | {ξu : 0 ≤ u < s})
1 − F(s | {ξu : 0 ≤ u < s})

ds

= − ln
(
1 − F(s | {ξu : 0 ≤ u < s})

)
giving,

P(T ≤ t | {ξu : 0 ≤ u < t}) = 1 − e−
∫ t

0 r(ξs)ds

P(t ≤ T | {ξu : 0 ≤ u < t}) = e−
∫ t

0 r(ξs)ds. (3.9)

Define the killed process

X̃t B

 Xt t < T

∆ t ≥ T
,

25



where ∆ is referred to as the cemetery (hence the terminology of killed process and

killing time T). Define a function φ(∆) = 0 and observe that from (3.9) we have

E[φ(X̃t)] = E[φ(Xt)1t<T]

= E
[
E[φ(Xt)1t<T | Ft]

]
= E

[
φ(Xt)E[1t<T | Ft]

]
= E

[
φ(Xt)e−

∫ t
0 r(ξs)ds

]
.

The above provides a convenient way to write the value function

V(x, i) = E
[
φ(X̃τD)

]
φ(x) = (K − ex)+.

Next, the strong Markov property, theorem 2.4.1, will be used to show that L(X,ξ)[F](x, i) =

r(i)F(x, i). In addition the properties of the shift operator presented in section 2.4

will be used in the following proof.

Choose (x, i) ∈ C and a bounded open set U ⊂ C and define σ = inf{t : (Xt, ξt) <

U}when (Xt, ξt) starts at (x, i). Notice that σ ≤ τD.

E(x,i)[V(X̃σ, ξσ)] = E(x,i)
[
E(X̃σ,ξσ)[φ(X̃τD)]

]
= E(x,i)

[
E(x,i)[φ(X̃τD) ◦ θσ | Fσ]

]
= E(x,i)

[
E(x,i)[φ(X̃σ+τD◦θσ) | Fσ]

]
= E(x,i)

[
E(x,i)[φ(X̃τD) | Fσ]

]
= E(x,i)[φ(X̃τD)]

= V(x, i).

Thus the characteristic operator is identically zero:

lim
U↘(x,i)

E(x,i)[V(X̃σ, ξσ)] − V(x, i)
E[σ]

= 0.
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Since the characteristic and infinitesimal operator coincide on the domain of the

infinitesimal operator, we have

L(X̃,ξ)[V](x, i) = 0 f or (x, i) ∈ C.

The infinitesimal generator of the killed process is given by

L(X̃,ξ)[V](x, i) = L(X,ξ)[V](x, i) − r(i)V(x, i).

This is seen as follows.

L(X̃,ξ)[V](x, i) = lim
t↘0

E(x,i)[V(X̃t, ξt)] − V(x, i)
t

= lim
t↘0

E(x,i)[V(Xt, ξt)] − V(x, i)
t

+
E(x,i)[V(X̃t, ξt)] − E(x,i)[V(Xt, ξt)]

t

= L(X,ξ)[V](x, i) + lim
t↘0

E(x,i)[e−
∫ t

0 r(ξs)dsV(Xt, ξt)] − E(x,i)[V(Xt, ξt)]
t

= L(X,ξ)[V](x, i) + lim
t↘0

E(x,i)

 (e−
∫ t

0 r(ξs)ds
− 1)

t
V(Xt, ξt)


= L(X,ξ) − r(i)V(x, i).

In the last step the interchange of limit and expectation is justified by Lebesgue’s

dominated convergence theorem since V(x, i) is bounded. Lastly the definition of

derivative is applied to e−
∫ t

0 r(ξs)ds.

Thus we have

L(X,ξ)[V](x, i) = r(i)V(x, i) f or (x, i) ∈ C

as claimed.
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3.5 Logarithmic form of the Black-Scholes Equations

The Dirichlet problem (3.8) produces the ODE’s below(
r(i) −

1
2
σ2(i)

)
fx(x, i) +

1
2
σ2(i) fxx(x, i) +

n∑
j=1

qi j f (x, j) = r(i) f (x, i) x > bi (3.10)

f (x, i) = φ(x) x ≤ bi.

Remark 3.5.1.

It is interesting to note that we have obtained in 3.10 a kind of Black-Scholes

equation that is easier for analysis than the traditional Black-Scholes equation.

Namely, by taking the logarithmic stock process Xt = ln(St) our generator lacks

multiplication by x in the drift coefficient and multiplication by x2 in the diffusion

coefficient which are present in the standard Black-Scholes equations. Thus we

have a system of ODEs with constant coefficients which is easier to solve and

analyze. The non-logarithmic form is used in [11], and it is remarked there that a

closed-form solution is possible only in the case of a two state Markov chain. Using

the logarithmic form, the ODEs are greatly simplified and, more importantly, a

solution for n states can be found which will be shown in the sequel.

In solving the above system of ODEs we will start by looking at the system

when x > b1 to have a system with n unknown functions which can be written in

matrix form
(3.11)S fx +

1
2

Σ fxx + (Q − R) f = 0,

where Σ and R are the diagonal matrices whose i-th diagonal elements are σ2(i) and

r(i) respectively and Q is the infinitesimal generating matrix of the Markov chain.

S = R − 1
2Σ and f is the vector whose i-th element is f (x, i). In the standard way,

we seek a solution of the form f (x, i) = g(i)e−λx leading to

(Q − R)g − λSg +
1
2
λ2Σg = 0
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with g being the vector whose i-th element is g(i). This method was presented

in ( [13], p. 2065) for solving the “quadratic eigenvalue” problem. Multiplying

the above equation on the left by 2Σ−1 and reformulating as a system of equations

yields,  λg = h

λh = 2Σ−1
Sh − 2Σ−1(Q − R)g,

which can be written as a the standard linear eigenvalue problem 0 I

−2Σ−1(Q − R) 2Σ−1R − I


g

h

 = λ

g

h

 .
As stated in [13], there are exactly n eigenvalues with a positive real part and n

with a negative real part. For x > b1 we will only consider the n values of λ with

positive real part since we do not want the solution to (3.11), sought in the form

f (x, i) = g(i)e−λx, to grow unbounded. If gi and λi for i = 1, . . . ,n all solve the above

eigenvalue problem, we arrive at part of the solution to (3.10).

f (x, j) =

n∑
i=1

ωigi( j)e−λix f or x > b1 j = 1, . . . ,n.

In particular, we have an entire solution for f (x, 1):

f (x, 1) =


∑n

i=1ωigi(1)e−λix ; x > b1

K − ex ; x ≤ b1.

Now the region b2 < x ≤ b1 will be considered. In this region, f (x, 1) = K − ex, thus

the size of the ODE system reduces by one. Let Q1 denote the matrix Q with the

first row and column removed and let Q̃1 be matrix (vector in this case) composed

of the first column of Q with the first row removed. LetS1, R1, and Σ1 be defined as

the corresponding matrix with the first row and column removed and let g1 be the
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vector g with the first element removed. We arrive at the following matrix form of

the n − 1 dimensional system of ODE’s

(Q1 − R1)g1 − λS1g1 +
1
2
λ2Σg1 + Q̃1(K − ex) = 0 f or b2 < x ≤ b1. (3.12)

A particular solution to the above system of ODEs is of the form B1 + C1ex

where B1 and C1 are n − 1 dimensional vectors. The values of B1 and C1 are com-

pletely determined by the ODEs. Let B1( j) and C1( j) represent the j-th component

of the corresponding vector. The solution to the homogeneous equation,

(Q1 − R1)g1 − λS1g1 +
1
2
λ2Σg1 = 0 f or b2 < x ≤ b1,

is solved precisely like (3.11). Since the region b2 < x ≤ b1 is bounded, we will

consider all 2(n − 1) eigenvalues and eigenvectors of the homogeneous ODE. We

arrive at another part of the solution to (3.10) and a complete solution for f (x, 2).

f (x, j) =

n∑
i=1

ω1
i g1

i ( j)e−λ
1
i x + B1( j − 1) + C1( j − 1)ex f or b2 < x ≤ b1 j = 2, . . . ,n

f (x, 2) =


∑n

i=1ωigi(2)e−λix ; b1 < x∑2(n−1)
i=1 ω1

i g1
i (2)e−λ

1
i x + B1(1) + C1(1)ex ; b2 < x ≤ b1

K − ex ; x ≤ b2

.

Continuing on in the same manner we arrive at the region bk+1 < x ≤ bk.

In this region, f (x, j) = K − ex for j = 1, . . . , k, thus the size of the ODE system

is reduced by k. Let Qk denote the matrix Q with the first k rows and columns

removed and let Q̃k be matrix composed of the first k columns of Q with the first

k rows removed. Let Φk be vector of size k where each component is K − ex. Let

Sk, Rk, and Σk be defined as the corresponding matrix with the first k rows and

columns removed and let gk be the vector g with the first k elements removed. We

arrive at the following matrix form of the n − k dimensional system of ODE’s,

(Qk − Rk)gk − λSkgk +
1
2
λ2Σgk + Q̃kΦk = 0 f or bk+1 < x ≤ bk
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solved the same way as (3.12). We arrive at another part of the solution to (3.10)

and a complete solution for f (x, k + 1).

f (x, j) =

n∑
i=1

ωk
i gk

i ( j)e−λ
k
i x + Bk( j− k) + Ck( j− k)ex f or bk+1 < x ≤ bk j = k + 1, . . . ,n

f (x, k + 1) =



∑n
i=1ωigi(k + 1)e−λix ; b1 < x∑2(n−1)
i=1 ω1

i g1
i (k + 1)e−λ

1
i x + B1(k) + C1(k)ex ; b2 < x ≤ b1

... ;
...∑2(n−k)

i=1 ωk
i gk

i (k + 1)e−λ
k
i x + Bk(1) + Ck(1)ex ; bk+1 < x ≤ bk

K − ex ; x ≤ bk+1.

. (3.13)

This procedure is continued up to the point when k = n − 1. Here, the system of

ODEs becomes one ODE and the last function f (x,n) is found in its entirety.

For the first function f (x, 1) there are n unknown weightsωi. The next function

f (x, 2) has 2(n−1) unknown weights, until the last function f (x,n) contributes only

2 unknown weights. There are also n unknown boundary values bi. Overall there

are 2(1 + · · ·+ n) = n(n + 1) unknown parameters that need to be determined. Here,

we assume that the function is C1 everywhere. At this point, this assumption may

seem restrictive, however, it will later be proven that the solution derived from

this smoothness assumption is indeed the optimal solution. Assuming that f (x, 1)

is continuous and differentiable at b1 will result in 2 conditions for f (x, 1), 4 for

f (x, 2) with its two boundaries, and finally 2n for f (x,n) and its n boundaries. In

total, there are n(n + 1) conditions to be satisfied. We see that the n(n + 1) unknown

parameters, including all weights and the n unknown boundaries, are completely

determined by imposing the smoothness assumption.
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3.6 Optimality of the Solution

Theorem 3.6.1 (Optimality).

Suppose that thresholds bn < · · · < b1 < ln(K) have been found such that the unique

solution to(
r(i) −

1
2
σ2(i)

)
fx(x, i) +

1
2
σ2(i) fxx(x, i) +

n∑
j=1

qi j f (x, j) = r(i) f (x, i) x > bi (3.14)

f (x, i) = φ(x) x ≤ bi

is C1 on its domain and bounded on C. The solution f (x, i) and the stopping time τD = {t :

Xt ≤ b(ξt)} correspond to the value function

V(x, i) = sup
τ

E(x,i)
[
e−

∫ τ
0 r(ξs)ds(K − eXτ)+

]
and its optimal stopping time, i.e.,

V(x, i) = f (x, i) = E(x,i)
[
e−

∫ τD
0 r(ξs)ds(K − eXτD )+

]
.

The proof will be established through several steps.

We will start by looking at the process e−
∫ t

0 r(ξs)ds f (Xt, ξt). Since by definition

f (x, i) is twice differentiable everywhere except when x = bi for i = 1, 2, · · · ,n where

Xt spends zero time, we can apply the generalized Ito-formula (3.5) to get

(3.15)e−
∫ t

0 r(ξs)ds f (Xt, ξt) = f (X0, ξ0) +

∫ t

0
e−

∫ s
0 r(ξu)du

(
L(X,ξ)[ f ](Xs, ξs) − r(ξs) f (Xs, ξs)

)
ds

+ Martingale.

To show optimality we need to prove an auxiliary.
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Proposition 3.6.1.

The inequality for the function defined below is true for all (x, i)

Φ(x, i) B L(X,ξ)[ f ](x, i) − r(i) f (x, i)

=
(
r(i) −

1
2
σ2(i)

)
fx(x, i) +

1
2
σ2(i) fxx(x, i) − r(i) f (x, i) +

n∑
j=1

qi j f (x, j)

≤ 0. (3.16)

Proof. We will start by defining the two regions mentioned in section 3.4,

C = {(x, i) : x > b(i)}

D = {(x, i) : x ≤ b(i)}

and notice that τD = inf{t ≥ 0 : (Xt, ξt) ∈ D} = inf{t ≥ 0 : Xt ≤ b(ξt)}.

In region D we will look at properties of the left continuous process e−
∫ τC∧t−

0 r(ξs)ds f (XτC∧t−, ξτC∧t−)

where τC = inf{t ≥ 0 : (Xt, ξt) ∈ C} and Zτ∧t− B lims↗τ∧t Zs. Now it will be shown

that e−
∫ τC∧t−

0 r(ξs)ds f (XτC∧t−, ξτC∧t−) is a supermartingale. Let s ≤ t and (x, i) ∈ D.

E(x,i)[e−
∫ τC∧t−

0 r(ξs)ds f (XτC∧t−, ξτC∧t−) | FτC∧s] = E(x,i)[e−
∫ τC∧t−

0 r(ξs)dsφ(XτC∧t−) | FτC∧s]

= E(x,i)[e−
∫ τC∧t−

0 r(ξs)ds(K − eXτC∧t) | FτC∧s]

= Ke−
∫ τC∧s−

0 r(ξu)duE(x,i)[e−
∫ τC∧t−
τC∧s− r(ξs)ds

| FτC∧s]

− E(x,i)[e−
∫ τC∧t−

0 r(ξs)dseXτC∧t) | FτC∧s]

≤ Ke−
∫ τC∧s−

0 r(ξu)du
− e−

∫ τC∧s−
0 r(ξu)dueXτC∧s

= e−
∫ τC∧s−

0 r(ξu)duφ(XτC∧s−)

= e−
∫ τC∧s−

0 r(ξu)du f (XτC∧s−, ξτC∧s−).

In the above, the following facts are used: e−
∫ t−

0 r(ξs)dseXt is a martingale which

by (2.2.2) implies that the stopped process e−
∫ τC∧t−

0 r(ξs)dseXτC∧t is a martingale, Xt is

continuous, and XτD ≤ b1 < ln(K) implying that φ(XτD) = K − eXτD .
33



Then, as desired, e−
∫ τC∧t

0 r(ξs)ds f (XτC∧t−, ξτC∧t−) is a supermartingale. From (3.15),

we see that ∫ τC∧t−

0
e−

∫ s
0 r(ξu)du

(
L(X,ξ)[ f ](Xs, ξs) − r(ξs) f (Xs, ξs)

)
ds (3.17)

is also a supermartingale. Next note that by the bounds of this integral, (Xs, ξs) is

not allowed to pass into C and thus f (Xs, ξs) = φ(Xs). Now we look at the function

Φ(x, i) in the region D,

Φ(x, i) = L(X,ξ)[ f ](x, i) − r(i) f (x, i)

=

n∑
j=1

qi j f (x, j) − r(i)K

=

n∑
j=1
j,i

qi j

(
f (x, j) − f (x, i)

)
− r(i)K

=

n∑
j=i+1

qi j

(
f (x, j) − φ(x)

)
− r(i)K. (3.18)

Define the bounded process

As B e−
∫ s

0 r(ξu)du

 n∑
j=i+1

qi j

(
f (Xs, j) − φ(Xs)

)
− r(ξs)K


and observe that by (3.17) and (3.18)

∫ τC∧t−

0
Asds is a supermartingale. Next we will

show that As1s≤τC ≤ 0. Note that in the upper integral limit the left limit is ignored,

since it will not affect the value of the integral.∫ τC∧t

0
Asds ≥ E(x,i)

[∫ τC∧(t+u)

0
Asds | FτC∧t

]
= E(x,i)

[∫ τC∧t

0
Asds +

∫ τC∧(t+u)

τC∧t
Asds | FτC∧t

]
=

∫ τC∧t

0
Asds + E(x,i)

[∫ τC∧(t+u)

τC∧t
Asds | FτC∧t

]
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which upon cancellation and dividing by u gives

0 ≥
1
u

E(x,i)

[∫ τC∧(t+u)

τC∧t
Asds | FτC∧t

]
=

1
u

E(x,i)

[∫ t+u

t
Asds1{t+u≤τC} +

∫ τC∧(t+u)

t
Asds1{t<τC≤t+u} | FτC∧t

]
=

1
u

E(x,i)

[∫ t+u

t
Asds1{t+u≤τC} +

∫ τC∧(t+u)

t
Asds1{t<τC≤t+u} | FτC∧t

]

0 = lim
u↘0

E(x,i)


∫ t+u

t
Asds

u
1{t+u≤τC} +

∫ τC∧(t+u)

t
Asds

u
1{t<τC≤t+u} | FτC∧t

 (3.19)

= E(x,i) [At1{t≤τC} | FτC∧t
]

= At1{t≤τC}.

In (3.19), the limit was interchanged with the expectation since As is bounded and

thus Lebesgue’s dominated convergence theorem applies. Then by elementary

calculus the first term becomes At1{t≤τC} by observing that As is continuous at t a.s.

since ξs transitions precisely at t with probability zero. It remains to show that

lim
u↘0

∫ τC∧(t+u)

t
Asds

u
1{t<τC≤t+u} = 0

for every ω. To see this, notice that t < τC(ω) and thus for all u sufficiently close to

0 we have 1{t<τC≤t+u} = 0 and the proof is finished.

Finally,

As1{s≤τC} = e−
∫ s

0 r(ξu)du

 n∑
j=i+1

qi j

(
f (Xs, j) − φ(Xs)

)
− r(ξs)K

1{s≤τC} ≤ 0

which implies that

Φ(x, i) =

n∑
j=i+1

qi j

(
f (Xs, j) − φ(Xs)

)
− r(ξs)K ≤ 0 f or Xs ∈ D

or Φ(x, i) ≤ 0 for (x, i) ∈ D. Additionally for x ∈ C, we have Φ(x, i) = 0 by

construction, see (3.10) and (3.16). Thus Φ(x, i) ≤ 0 for any (x, i) as desired and the

proof is finished. �
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We will need to prove one more proposition before optimality can be proven.

Proposition 3.6.2.

f (x, i) ≥ φ(x) for all (x, i).

Proof. From (3.14) we see that

fxx(x, i) =
2
σ2(i)

r(i)
(

f (x, i) − fx(x, i)
)
−

n∑
j=1

qi j f (x, j)

 + fx(x, i).

Now, using the C1 property of f at bi and the fact that f (bi, i) = φ(bi), we get

fxx(bi+, i) =
2
σ2(i)

r(i)K −
n∑

j=i+1

qi j

(
f (bi, j) − φ(bi)

) − ebi

=
2
σ2(i)

(−Φ(bi, i)) − ebi .

Since it was shown that Φ(x, i) ≤ 0 for (x, i), we have that fxx(bi+, i) ≥ −ebi . Observe

that

f (bi, i) = φ(bi) = K − ebi

fx(bi, i) = φ′(bi) = −ebi

fxx(bi+, i) ≥ φ′′(bi) = −ebi .

Thus it is apparent that there exists a δi > 0 such that

x ≤ bi + δi =⇒ f (x, i) ≥ φ(x). (3.20)

Next it will be shown that for any two points x, x + δ ∈ (−∞, ln(K)) such

that 0 < δ ≤ min{δi}
n
i=1 then f (x + δ, i) − φ(x + δ) ≥ f (x, i) − φ(x) thus showing that

f (x, i)−φ(x) is an increasing function on (−∞, ln(K)). This will of course imply that

f (x, i) ≥ φ(x) on (−∞, ln(K)).

In the following argument an outline of what is done in [13] will be followed.

Two points x, x + δ ∈ (−∞, ln(K)) are chosen and τD is taken to be the stopping time
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when (Xt, ξt) starts at (x, i). Before proceeding, notice that if Xt is started at x + δ,

then XτD ≤ b(ξτD) + δ which by (3.20) implies that f (XτD , ξτD) ≥ φ(XτD). Using this

we get,

f ( j, x + δ) = E(x+δ, j)[e−
∫ t∧τD

0 r(ξs)ds f (Xt∧τD , ξt∧τD)]

= E(x+δ, j)
[
e−

∫ τD
0 r(ξs)ds f (XτD , ξτD)

]
(3.21)

≥ E(x+δ, j)
[
e−

∫ τD
0 r(ξs)dsφ(XτD)

]
(3.22)

= E(x, j)
[
e−

∫ τD
0 r(ξs)ds

(
K − eXτD +δ

)+
]

= E(x, j)
[
e−

∫ τD
0 r(ξs)ds

(
K − eXτD − (eδ − 1)eXτD

)+
]

≥ E(x, j)
[
e−

∫ τD
0 r(ξs)ds

(
(K − eXτD )+

− (eδ − 1)eXτD

)]
≥ E(x, j)

[
e−

∫ τD
0 r(ξs)ds(K − eXτD )+

]
− (eδ − 1)E(x, j)

[
e−

∫ τD
0 r(ξs)dseXτD

]
≥ E(x, j)

[
e−

∫ τD
0 r(ξs)ds f (XτD)

]
− (eδ − 1)E(x, j)

[
e−

∫ τD
0 r(ξs)dseXτD

]
(3.23)

= f (x, j) − (eδ − 1)E(x, j)
[
e−

∫ τD
0 r(ξs)dseXτD

]
(3.24)

≥ f (x, j) − (eδ − 1) lim inf
t→∞

E(x, j)
[
e−

∫ t∧τD
0 r(ξs)dseXt∧τD

]
(3.25)

= f (x, j) − (eδ − 1)ex (3.26)

= f (x, j) + φ(x + δ) − φ(x).

In (3.21) and (3.24) the optional sampling Theorem 2.2.4 is applied after observing

that the quantity in the expected value is bounded and thus uniformly integrable.

(3.22) is explained in the previous paragraph. (3.23) is valid because (XτD , ξτD) ∈ C

and f (x, j) = φ(x) when (x, j) ∈ D. In (3.25) Fatou’s lemma is applied. Finally

(3.26) is valid since the discounted stock process e−
∫ t

0 r(ξs)dseXt is a martingale which

implies that the stopped process e−
∫ t∧τD

0 r(ξs)dseXt∧τD is also a martingale by Theorem

2.2.2. Notice that no assumptions are made about the finiteness of τD.
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From the above we have that f (x, i) ≥ φ(x) on (−∞, ln(K)). To address the

region (ln(K),∞) we will observe that

e−
∫ t∧τD

0 r(ξs)ds f (Xt∧τD , ξt∧τD)

is a martingale. This is evident from combining (3.16) with the fact that (Xt∧τD , ξt∧τD)

is never allowed to pass into the region D, and thus Φ(Xt∧τD , ξt∧τD) = 0, see (3.10).

Also note that e−
∫ t∧τD

0 r(ξs)ds f (Xt∧τD , ξt∧τD) is bounded and is thus a uniformly inte-

grable martingale. This allows the use of the optional sampling theorem 2.2.4 in

the following,

f (x, i) = E(x,i)
[
e−

∫ t∧τD
0 r(ξs)ds f (Xt∧τD , ξt∧τD)

]
= E(x,i)

[
e−

∫ τD
0 r(ξs)ds f (XτD , ξτD)

]
= E(x,i)

[
e−

∫ τD
0 r(ξs)dsφ(XτD)

]
(3.27)

≥ 0

so we see that f (x, i) ≥ 0 = φ(x) for x ≥ ln(K). Thus we have the desired result that

f (x, i) ≥ φ(x) for all (x, i). �

To finalize the proof of optimality, propositions 3.6.1 and 3.6.2 will be com-

bined with (3.15) to see that

e−
∫ t

0 r(ξs)dsφ(Xt) ≤ e−
∫ t

0 r(ξs)ds f (Xt, ξt) ≤ f (x, i) + Martingale.

Thus for any stopping time (not necessarily finite) τ we have

E(x,i)
[
e−

∫ t∧τ
0 r(ξs)ds

(
K − eXt∧τ

)+
]
≤ f (x, i).

Now let t→∞ and apply Fatou’s Lemma to get

E(x,i)
[
e−

∫ τ
0 r(ξs)ds

(
K − eXτ

)+
]
≤ f (x, i).
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However from (3.27) we have

E(x,i)
[
e−

∫ τD
0 r(ξs)ds f (XτD , ξτD)

]
= f (x, i).

Thus the upper bound is achieved and we have

sup
τ

E(x,i)
[
e
∫ τ

0 r(ξs)ds(K − eXτ)
]

= f (x, i).

Optimality of f (x, i) is proven and the optimal stopping time is τD.
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CHAPTER 4

FORWARD CONTRACTS

4.1 Introduction

In this chapter we will discuss the pricing of one the most typical claims on

a stock, the forward contract, referred to from here on as a forward. A forward is a

contract in which one party agrees to give another a share of stock for a fixed price

at an agreed upon date in the future. The stock is being sold forward. Once this

derivative is priced under a martingale measure, a new infinite horizon American

version of this forward will be discussed. This extends upon the work of [12]

where the same is done with only a two state model. It will be shown that this

new contract cannot be priced under a risk neutral measure. Despite this, we will

discuss the optimal exercise strategy and expected payoff of this contract under

the actual real world probability measure whose expected return and volatility are

usually estimated from historical data.

4.2 Pricing Forwards in a Markov Modulated Market

The pricing of a forward goes as follows: what price K should one party be

obligated to pay for one share of stock {St}t≥0 at a predetermined time T in the future

in order to make the game fair for both parties? Mathematically, we say

E[e−rT(ST − K)] = 0

where S0 is the present value of a share of stock. Again, we price K under the risk

neutral measure to avoid arbitrage. The necessity of the risk neutral measure will
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be illustrated in the sequel, but first we find the proper value of K. As discussed

in section 3.2, the stock process described by dSt = µStdt + σStdWt becomes dSt =

rStdt + σStdWt under the risk neutral (martingale) measure. Thus we have

E[e−rT(ST − K)] = S0 − Ke−rT

and it becomes clear that the proper value is K = S0erT.

This value for K is perhaps not intuitive since it does not depend on drift µ

of the stock. Lets illustrate why we must price under the risk neutral measure.

Suppose that K > S0erT. In this case, an arbitrageur would engage in the

forward contract to sell one share of stock at price K at time T. To buy this share of

stock, he would borrow S0 dollars at a rate r with the obligation to pay back S0erT

at time T. His total earnings at time T would be

K − S0erT > 0.

He could of course buy n shares of the stock to multiply guaranteed profit restricted

only by his credit limit.

Similarly in the case that K < S0erT the arbitrageur would engage in a forward

contract being obligated to buy a share of stock for K at time T. To get the K

dollars required at time T he will short sell one share of stock, i.e., sell a share of

stock without owning it, for S0. He would then invest this money at interest rate r

guaranteeing S0erT at time T. At time T he buys the stock for price K and returns it

as the short sold stock. His profit is given by

S0erT
− K > 0.

From this discussion it is clear that K must be found under a risk neutral measure.

41



Now we will focus on how the issue is complicated by a Markov modulated

market. We start with the stock process

dSt = µ(ξt)Stdt + σ(ξt)StdWt

where ξt is a regular Markov chain representing the n states of the market. After

switching to the risk neutral measure, see 3.2, we get the stock process

dSt = r(ξt)Stdt + σ(ξt)StdWt.

As before, we find K by mandating that the discounted expected payoff be zero.

0 = E[e−
∫ T

0 r(ξs)ds(St − K)]

= S0 − E[e−
∫ T

0 r(ξs)ds]K.

Thus finding

K =
S0

E[e−
∫ T

0 r(ξs)ds]
.

All that remains is to find the value of E[e−
∫ T

0 r(ξs)ds].

Proposition 4.2.1.

Define

M(t, i) = Ei[e−
∫ t

0 r(ξs)ds].

M(t, i) satisfies the following ODE system,

M′ = (Q − R)M M(0, i) = 1

where M is the vector whose i-th element is M(t, i), Q is the generating matrix of ξt, and R

is the diagonal matrix whose i-th diagonal element is r(i).
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Proof. We will derive the ODE for M(t, i) by conditioning on the first transition time

and a time ∆t. Below T1 is the time of the first transition and Pi j is the probability

that ξt transitions from i to j given a transition at t.

M(t, i) = Ei[e−
∫ t

0 r(ξs)ds]

= Ei[e−r(i)∆te−
∫ t
∆t r(ξs)ds1{T1>∆t}] + Ei[e−r(i)T1e−

∫ t
T1

r(ξs)ds
1{T1≤∆t}]

= Ei
[
E[e−r(i)∆te−

∫ t
∆t r(ξs)ds1{T1>∆t} | F∆t]

]
+ Ei

[
E[e−r(i)T1e−

∫ t
T1

r(ξs)ds
1{T1≤∆t} | FT1]

]
= 1{T1>∆t}e−r(i)∆tEi

[
E[e−

∫ t
∆t r(ξs)ds

| F∆t]
]

+ Ei
[
1{T1≤∆t}e−r(i)T1E[e−

∫ t
T1

r(ξs)ds
| FT1]

]
= 1{T1>∆t}e−r(i)∆tEi

[
E[e−

∫ t
∆t r(ξs)ds]

]
+ Ei

[
1{T1≤∆t}e−r(i)T1E[e−

∫ t
T1

r(ξs)ds]
]

= P(T1 > ∆t)e−r(i)∆tM(t − ∆t, i) + Ei
[
1{T1≤∆t}e−r(i)T1

n∑
j=1
j,i

Pi jM(t − T1, j)
]

= eqii∆te−r(i)∆tM(t − ∆t, i) + P(T1 ≤ ∆t)e−r(i)η∆t
n∑

j=1
j,i

Pi jM(t − η∆t, j) (4.1)

= e(−r(i)+qii)∆tM(t − ∆t, i) + (1 − eqii∆t)e−r(i)η∆t
n∑

j=1
j,i

Pi jM(t − η∆t, j)

where η ∈ (0, 1). Now (4.1) will be justified. Define

f (s) B e−r(i)s
n∑

j=1
j,i

Pi jM(t − s, j)

and notice that f (s) is continuous since M(s, j) is continuous. Next see that

Ei[1{T1≤∆t} f (T1)] =

∫ ∆t

0
f (s)dFT1(s)

where FT1 is the distribution of T1 and apply the mean value theorem for integrals

to get

Ei[1{T1≤∆t} f (T1)] = f (η∆t)
(
FT1(∆t) − FT1(0)

)
= f (η∆t)P(T1 ≤ ∆T)
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where η ∈ (0, 1) thus providing justification for the above.

Next we use a Taylor expansion around t − ∆t for M(t, i) to arrive at

M(t − ∆t, i) + M′(t − ∆t, i)∆t + o(∆t)

= e(−r(i)+qii)∆tM(t − ∆t, i) + (1 − eqii∆t)e−r(i)η∆t
n∑

j=1
j,i

Pi jM(t − η∆t, j).

Subtracting M(t, i) from both sides and dividing by −∆t and reorganizing yields

M(t − ∆t, i) −M(t, i)
−∆t

−M′(t − ∆t, i) −
o(∆t)
∆t

=
e(−r(i)+qii)∆tM(t − ∆t, i) −M(t, i)

−∆t
+

(eqii∆t
− 1)

∆t
e−r(i)η∆t

n∑
j=1
j,i

Pi jM(t − η∆t, j)

=
M(t − ∆t, i) −M(t, i)

−∆t
−M(t − ∆t, i)

e(−r(i)+qii)∆t
− 1

∆t

+
(eqii∆t

− 1)
∆t

e−r(i)η∆t
n∑

j=1
j,i

Pi jM(t − η∆t, j).

Taking the limit ∆t→ 0 we get the ODE

0 = M′(t, i) − (−r(i) + qii)M(t, i) +

n∑
j=1
j,i

qiiPi jM(t, j).

Recognizing that qiiPi j = −qi j,

M′(t, i) = −r(i)M(t, i) +


n∑

j=1
j,i

qi jM(t, j)

 + qiiM(t, i)

= −r(i)M(t, i) +

n∑
j=1

qi jM(t, j).

This is written nicely in matrix form,

M′ = (Q − R)M
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where Q is the infinitesimal generator of ξt and R is the diagonal matrix whose i-th

diagonal element is r(i). Since

M(0, i) = Ei[e−
∫ 0

0 r(ξs)ds] = 1,

the proof is complete. �

The solution of the ODE in proposition 4.2.1 is determined by the eigenvalues

and eigenvectors of Q − R:

M(t) =

n∑
i=1

CiVieλit

where Vi and λi are the i-th corresponding eigenvector and eigenvalue and the Ci’s

make up n arbitrary constants completely determined by the initial condition. For

complex eigenvalues, we interpret the solution as the sum of sines and cosines in

the standard way.

Now we can find the value K, dependent upon the initial Markov state and

stock value:

K =
S0

E[e−
∫ T

0 r(ξs)ds]

=
S0

M(T, ξ0)
.

We have now priced a forward in a Markov modulated market.

4.3 Optimal Exercise Strategy for American Style Forwards

In this section we will develop a contract which will be referred to as a

”perpetual American future”. The contract is formed by one party agreeing to buy

a share of stock for a price K at any time of his choosing in the future. Perpetual

refers to the fact that the contract has an infinite time horizon and thus no fixed

termination time. American meaning that the contract can be exercised at any time.

The payoff of the contract at a time t is given by (St − K).
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Next we attempt to find the fair value of K. We must keep in mind one

major difference: the contract can be exercised at any time. Ideally the contract

will be exercised at an optimal time, i.e., the time that maximizes expected future

discounted profit. We conclude that the expected profit under the real world

measure P from the contract is

sup
τ

EP[e−rτ(Sτ − K)1τ<∞]

the indicator being necessary since if the contract is never exercised, we gain no

profit. Without the indicator, it is unclear how to interpret limt→∞ e−rt(St −K). If we

are to price this derivative on the open market, we must use the the risk neutral

measure Q. We set

sup
τ

EQ[e−rτ(Sτ − K)1τ<∞] = 0

to find K. It must be determined whether such a value exist.

We now have two questions to answer. The first, what is the optimal exercise

strategy and expected profit under the real measure for the owner of a contract.

The second, is there a fair price for K under the risk neutral measure. Both of these

questions will be answered when an optimal stopping time is identified. Notice

that the value of the contract is not dependent on time since there is no termination

date. Thus we conclude that the optimal stopping time must be only dependent

upon the stock price. We conclude that if an optimal stopping time exists, it is of

the form

τs = inf{t ≥ 0 : St ≥ c}

for some threshold c. Lets first answer the question of expected profit under this

optimal exercise strategy:

EP[e−rτc(Sτc − K)1τc<∞] = EP[e−rτc1τc<∞](c − K).
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We need only find the value of EP[e−rτc1τc<∞] to determine the expected profit.

First, we will take the perspective of the logarithmic stock process, which by

Ito’s formula 2.1.1 we find to be

Xt = ln(St)

= X0 + (µ −
1
2
σ2)t + σWt.

The hitting time for St hitting c is the same as Xt hitting ln(c). Define b = ln(c) and

α = µ − 1
2σ

2. Define the stopping time

Tb = inf{t ≥ 0 : Xt ≥ b}.

See that

EP[e−rτc1τc<∞] = EP[e−rTb1Tb<∞]

=

∫
∞

0
e−rt f (t)dt

where f (t) is the density function of Tb. All that needs to be done is to find the

density function. Notice that the last line above is the Laplace transform of the

density function. This will allow us to find the expected profit of the contract. The

following two results will provide the tools necessary to find the density function

of Tb.

Lemma 4.3.1.

Let Mt = max{Ws : 0 ≤ s ≤ t}.

P(Mt ≥ b) = 2P(Wt ≥ b) = 2
(
1 −Φ

(
b
√

t

))
where Φ is standard normal distribution.

For a proof we refer the reader to ( [18], Theorem 3.15, p. 71).

47



Theorem 4.3.1.

Let Xt = x + αt + σWt. The distribution of the hitting time Tb = inf{t ≥ 0 : Xt ≥ b} is

F(t) = 1 −Φ

(
b − x − αt

σ
√

t

)
− e

2α(b−x)
σ2 Φ

(
b − x − αt

σ
√

t

)
, x < b, t > 0

and the density function is given by

f (t) =
(b − x)
√

2πt3σ2
exp

(
−(b − x − αt)2

2tσ2

)
, x < b, t > 0.

Before we proceed to the proof of this theorem, observe that if α > 0, then we

have a proper probability distribution, but if α < 0 we have a defective probability

distribution, i.e.,

lim
t→∞

F(t) = e
2α(b−x)
σ2 < 1.

Thus there would be a positive probability the arithmetic Brownian motion never

hits level b when α < 0. It is now clear that is very important that we include 1τb<∞

in taking expected values.

Proof. In the case that α = 0 we use lemma 4.3.1 to show that

P(Tb ≤ t) = P(max{Xs : 0 ≤ s ≤ t} ≥ b)

= P
(
Mt ≥

b − x
σ

)
= 2

(
1 −Φ

(
b − x

σ
√

t

))
. (4.2)

Next Girsanov’s theorem will be used to remove the drift from Xt in the case that

α is not zero. Define the measure Q by a Radon-Nikodym derivative:

dQ
dP

= exp(−
1
2
α2

σ2 t −
α
σ

Wt).

Under the new measure Q, W̃t = Wt + α
σ t is a Wiener process. Now the distribution

of Tb will be found. Define Gt = dP
dQ = exp(−1

2
α2

σ2 t + α
σW̃t). We use the fact that
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EP[H] = EQ[HGT] for any bounded Borel function H and where GT is the terminal

value of the martingale Gs.

P(Tb ≤ t) = EP[1{Tb≤t}]

= EQ[1{Tb≤t}GT]

= EQ[E[1{Tb≤t}GT | FTb∧t]]

= EQ[1{Tb≤t}GTb∧t]

= EQ[1{Tb≤t}GTb]

= EQ[1{Tb≤t} exp
(
−

1
2
α2

σ2 Tb +
α
σ

(
b − x
σ

)
)
]

=

∫ t

0
exp(−

1
2
α2

σ2 s +
α
σ

(
b − x
σ

) f (s)ds (4.3)

where f (s) is the density function of Tb under Q, i.e., with no drift. From (4.2), we

get

f (s) =
d
ds

2Φ

(
b − x
σ
√

s

)
=

(b − x)
√

2πt3σ2
exp

(
−(b − x)2

2tσ2

)
.

Differentiating (4.3) and simplifying we get the density function

f (t) =
(b − x)
√

2πt3σ2
exp

(
−(b − x − αt)2

2tσ2

)
.

It is apparent upon differentiation that F′(t) = f (t) and the proof is finished. �

All that remains is to find the Laplace transform of f (s) and we have E[e−rTb1τb<∞].

E[e−rTb1τb<∞] =

∫
∞

0
e−rs f (s)ds

= exp(−
b − x
σ2 (

√

α2 + 2rσ2 − α)).

Now we will answer the question of whether there is a fair value for K to put

this derivative on the market. In the risk neutral measure Q, α = r− 1
2σ

2 and we get

EQ[e−rTb1τb<∞] = e−(b−x).
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Lets find the value of b which maximizes profit,

EQ[e−rTb(STb − K)1τb<∞] = e−(b−x)(eb
− K) = ex(1 − Ke−b).

To maximize profit b → ∞, thus it is impossible to price this derivative on the

market. However, it is still useful to address the issue of optimal exercise of the

contract supposing that one has such a contract. Even if the contract can’t be

sold freely on the market, it is still feasible that the contract might be given to an

individual. For example, an employer might give such a contract to an employee

as a form of payment or bonus.

Lets now address the issue of optimal exercise and expected profit. First we

address the case when µ > r

Ex[e−rt(St − K)] = e(µ−r)tex
− e−rtK.

we see that in this case we want to hang on to this contract, because the discounted

expected profit will gain value with time. Because of this, there is no optimal

stopping time.

Next we address the case when µ < r when it is not in our best interest to

keep the contract indefinitely. Lets find the optimal level for b

Ex[e−rTb(STb − K)1τb<∞] = exp
(
−

b − x
σ2 (

√

α2 + 2rσ2 − α)
)

(eb
− K) f or x < b.

Maximizing this relative to b yields

eb =
K

1 − σ2

z

where z =
√

α2 + 2rσ2 − α and α = µ − 1
2σ

2. Notice that when µ < r then σ2

z < 1 and

there is a valid value for b. On the other hand if µ ≥ r then σ2

z ≥ 1 and there does

not exist a value for b as we would expect from the previous discussion.
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Finally the expected discounted profit when µ < r is given by

Ex[e−rTb(STb − K)1τb<∞] = Ex[e−rTb1τb<∞]

 K
1 − σ2

z

− K


= K exp

(
−

z(b − x)
σ2

) (
σ2

z − σ2

)
.

We have identified an optimal stopping strategy along with an accompanying

discounted expected profit, which concludes this section.

4.4 American Style Forwards in a Markov Modulated Market

In this section we will allow the stock process to change between n states by a

Markov chain as before. However, here we fix the risk-free interest rate r. Our goal

in this section is to identify an optimal stopping strategy for the perpetual American

style forward discussed in the previous section and to find the discounted expected

payoff under the optimal strategy.

The Markov modulated stock process is defined

dSt = µ(ξt)Stdt + σ(ξt)StdWt

as before. Here we do not apply a change of measure since we are interested in the

real optimal strategy and payoff. We define the optimal payoff as

V(x, i) = sup
τ

E(s,i)[e−rτ(Sτ − K)1{τ<∞}]

again applying the indicator to make it clear that there is zero payoff if the contract

is held indefinitely. See that

St = S0 exp
(∫ t

0

(
µ(ξs) −

1
2
σ2(ξs)

)
ds +

∫ t

0
σ(ξs)dWs

)
.

Note that

S0 exp
(∫ t

0
−

1
2
σ2(ξs)ds +

∫ t

0
σ(ξs)dWs

)
is a martingale.
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Proposition 4.4.1.

Let Xt = ln(St) to get

dXt =
(
µ(ξt) −

1
2
σ2(ξt)

)
+ σ(ξt)dWt

then

Es[St] = Ex[eXt]

= E
[
exp

(∫ t

0
µ(ξs)ds

)]
ex.

Proof. We will start by applying the infinitesimal generator from proposition 3.3.1

to the function v(t, x, i) = E(x,i)[eXt] like so

LX,ξ[v](t, x, i) = lim
s↘0

1
s

E(x,i)[v(t,Xs, ξs) − v(t, x, i)]

= lim
s↘0

1
s

E(x,i)
[
E(Xs,ξs)[eXt] − E(x,i)[eXt]

]
= lim

s↘0

1
s

E(x,i)
[
E(x,i)[eXt+s | Fs] − E(x,i)[eXt | Fs]

]
= lim

s↘0

1
s

E(x,i)
[
eXt+s − eXt

]
= lim

s↘0

v(t + s, x, i) − v(t, x, i)
s

=
∂v
∂t

(t, x, i).

Now we make the observation that ∂v
∂x = v as shown below.

∂v
∂x

= lim
h→0

E(x+h,i)[eXt] − E(x,i)[eXt]
h

= lim
h→0

E(x,i)[eXt+h
− eXt]

h

= lim
h→0

eh
− 1
h

E(x,i)[eXt]

= E(x,i)[eXt] = v.
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Combining the above two results, we get

∂v
∂t

(t, x, i) = L(X,ξ)[v](x, i)

=
(
µ(i) −

1
2
σ2(i)

)
vx(t, x, i) +

1
2
σ2(i)vxx(t, x, i) +

n∑
j=1

qi jv(t, x, j)

= µ(i)v(t, x, i) +

n∑
j=1

qi jv(t, x, j).

Put in matrix form, V′ = (Q + U)V v(0, x, i) = ex where V is the vector whose i-th

element is v(t, x, i) and U is the diagonal matrix whose i-th diagonal element is µ(i).

Comparing this to proposition 4.2.1, it becomes clear that

v(t, x, i) = E(x,i)

[
exp

(∫ t

0
µ(ξs)ds

)]
ex

and the proof is complete. �

Now, from proposition 4.4.1 we have that

E(s,i)[e−rt(St − K)] = e−rtEi

[
exp

(∫ t

0
µ(ξs)ds

)]
s − e−rtK.

From proposition 4.2.1 we have that

Ei

[
exp

(∫ t

0
µ(ξs)ds

)]
= M(t, i).

We define M(t, i) as the i-th element of the vector

M(t) =

n∑
i=1

CiVieλit

where Vi and λi are the i-th corresponding eigenvector and eigenvalue of Q + U

with U being the diagonal matrix whos i-th diagonal element is µ(i). The Ci’s make

up n arbitrary constants completely determined by the initial condition M(0) = 1.

Combing the above, we get

E(s,i)[e−rt(St − K)] =

n∑
i=1

(
sCiVie(λi−r)t

)
− e−rtK
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and it becomes clear that if the real part of any of the eigenvalues of Q + U are

larger than r, then we expect the value of the contract to grow without bound and

there is no optimal stopping strategy.

Conjecture 4.4.1.

If r is greater than the real part of all eigenvalues of Q + U and r ≥ max{µ(1), . . . , µ(n)}

then there exists an optimal stopping time for

V(x, i) = sup
τ

E(x,i)[e−rτ(eXτ − K)1{τ<∞}]

which is of the form

τ = inf{t ≥ 0 : V(Xt, ξt) = (eXt − K)}.

As in lemma 3.4.1, we will show that this stopping time is equivalent to

having a series of thresholds, above which it is optimal to exercise the contract.

Lemma 4.4.1.

Supposing a stopping time of the form given in conjecture 4.4.1 there exists a series of

thresholds, {b(1), . . . , b(n)} forming a region C = {(x, i) : x < b(i)} referred to as the

continuation region and a region D = {(x, i) : x ≥ b(i)} referred to as the stopping region

such that the entry time τD = inf{t ≥ 0 : (Xt, ξt) ∈ D} = inf{t ≥ 0 : Xt ≤ b(ξt)} is the

optimal stopping time:

V(x, i) = E(x,i)
[
e−rτD(eXτD − K)1{τD<∞}

]
.

Without loss of generality, we will assume b(1) < · · · < b(n).

Proof. The proof is in effect a reprise of the proof of lemma 3.4.1. We will show

that V(x, i) − φ(x), where φ(x) = (ex
− K), is a decreasing function on R. From

this we conclude that so long as there is a value above which V(x, i) = φ(x) for all

i, then there are unique thresholds depending on the Markov state above which

V(x, i) = φ(x) and the lemma is proven. Let x, x + δ ∈ R and let τ be the optimal
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stopping time when X0 = x. We need the fact that r ≥ max{µ(1), . . . , µ(n)} implies

that e−rteXt is a supermartingale, which follows directly from proposition 4.4.1.

V( j, x + δ) = E(x+δ, j)
[
e−rτφ(Xτ)

]
= E(x, j)

[
e−rτ

(
eXτ+δ − K

)]
= E(x, j)

[
e−rτ

(
eXτ − K + (eδ − 1)eXτ

)]
= E(x, j)

[
e−rτ(eXτ − K)

]
+ (eδ − 1)E(x, j)

[
e−rτeXτ

]
= V(x, j) + (eδ − 1)E(x, j)

[
e−rτeXτ

]
≤ V(x, j) + (eδ − 1) lim inf

t→∞
E(x, j)

[
e−r(t∧τ)eXt∧τ

]
(4.4)

≤ V(x, j) + (eδ − 1)ex (4.5)

= V(x, j) + φ(x + δ) − φ(x).

In (4.4) Fatou’s lemma is applied. Finally (4.5) is valid by theorem 2.2.3 since the

discounted stock process e−rteXt is a supermartingale and t∧τ is a bounded stopping

time. Notice that no assumptions are made about the finiteness of τ.

The ordering of the n thresholds would involve a simple renaming of the

Markov states to achieve descending order and the proof is complete. �

Next the techniques from section 3.4 will be followed and it can be shown

that the payoff function V(x, i) solves the Dirichlet problem

L(X,ξ)[V](x, i) = rV(x, i) in C (4.6)

V(x, i) = ex
− K in D.

This leads to the system of ODEs below(
µ(i) −

1
2
σ2(i)

)
fx(x, i) +

1
2
σ2(i) fxx(x, i) +

n∑
j=1

qi j f (x, j) = r f (x, i) x < bi

f (x, i) = ex
− K x ≥ bi.
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This system is solved in exactly the same manner as in section 3.5. We get the

following solution

f (x, k + 1) =



∑n
i=1ωigi(k + 1)e−λix ; x < b1∑2(n−1)
i=1 ω1

i g1
i (k + 1)e−λ

1
i x + B1(k) + C1(k)ex ; b1 ≤ x < b2

... ;
...∑2(n−k)

i=1 ωk
i gk

i (k + 1)e−λ
k
i x + Bk(1) + Ck(1)ex ; bk ≤ x < bk+1

ex
− K ; bk+1 ≤ x

. (4.7)

Below b1 we only use negative eigenvalues since the solution should decay as

x goes to negative infinity. Again, we will require that the solution be C1 on its

domain, and this will completely determine all weights and boundaries. As before,

it remains to show that this solution matches the profit function of the contract.

Theorem 4.4.1 (Optimality).

Suppose that the thresholds ln(K) < b1 < · · · < bn have been found such that the unique

solution to(
µ(i) −

1
2
σ2(i)

)
fx(x, i) +

1
2
σ2(i) fxx(x, i) +

n∑
j=1

qi j f (x, j) = r f (x, i) x < bi

f (x, i) = φ(x) x ≥ bi

is C1 on its domain and bounded on C. Further, suppose the following assumptions hold

1. f (x, i) ≥ ex
− K for all (x, i)

2. r is greater than the real part of all eigenvalues of Q + U

3. r > max{µ(1), . . . , µ(n)}

4. r > max1≤i≤n

{
M(i)+µ(i)eb(i)

eb(i)−K

}
where M(i) =

∑i−1
j=1 qi jK.

Then the solution f (x, i) and the stopping time τD = {t : Xt ≥ b(ξt)} correspond to the

value function

V(x, i) = sup
τ

E(x,i)[e−rτ(eXτ − K)1{τ<∞}]
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and its optimal stopping time, i.e.,

f (x, i) = V(x, i) = E(x,i)[e−rτD(eXτD − K)1{τD<∞}].

Proof. We will start by looking at the process e−rt f (Xt, ξt). Since by definition f (x, i)

is twice differentiable everywhere except when x = bi for i = 1, 2, · · · ,n where Xt

spends zero time, we can apply the generalized Ito-formula (3.5) to it to get

(4.8)e−rt f (Xt, ξt) = f (X0, ξ0) +

∫ t

0
e−rs

(
L(X,ξ)[ f ](Xs, ξs) − r f (Xs, ξs)

)
ds + Martingale.

To show optimality we need the following

Proposition 4.4.2.

The inequality for the function defined below is true for all (x, i)

Φ(x, i) B L(X,ξ)[ f ](x, i) − r f (x, i)

=
(
µ(i) −

1
2
σ2(i)

)
fx(x, i) +

1
2
σ2(i) fxx(x, i) − r f (x, i) +

n∑
j=1

qi j f (x, j)

≤ 0.
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Proof. Using the hypothesis f (x, i) ≥ φ(x) we first show that f (x, i)−φ(x) is decreas-

ing in x:

V( j, x − δ) = E(x−δ, j)
[
e−r(t∧τD) f (Xt∧τD , ξt∧τD)

]
(4.9)

= E(x−δ, j) [e−rτD f (XτD , ξτD)
]

(4.10)

≥ E(x−δ, j)
[
e−rτDφ(XτD)

]
= E(x, j)

[
e−rτD

(
eXτD−δ − K

)]
= E(x, j)

[
e−rτD

(
eXτD − K + (e−δ − 1)eXτD

)]
= E(x, j)

[
e−rτD(eXτD − K)

]
+ (e−δ − 1)E(x, j)

[
e−rτDeXτD

]
= V(x, j) + (e−δ − 1)E(x, j)

[
e−rτDeXτD

]
≥ V(x, j) + (e−δ − 1) lim inf

t→∞
E(x, j)

[
e−r(t∧τD)eXt∧τD

]
(4.11)

≥ V(x, j) + (e−δ − 1)ex (4.12)

= V(x, j) + φ(x − δ) − φ(x).

(4.9) is valid since e−r(t∧τD) f (Xt∧τD , ξt∧τD) is a martingale due to Φ(x, i) = 0 for (x, i) ∈ C.

We note that when X0 = x−δ at any time t less than τD, Xt is still in region C despite

the fact that τD is found as if X0 = x. In (4.11) and (4.10) Fatou’s lemma is applied.

Finally (4.12) is valid from theorem 2.2.3 since the discounted stock process e−rteXt

is a supermartingale and t ∧ τD is a bounded stopping time.

The above yeilds

f (x, i) − φ(x) ≤ lim
x→−∞

f (x, i) − φ(x)

= lim
x→−∞

n∑
j=1

ω jg j(i)e−λ jx − ex
− K

= K

due to the fact that λi are chosen to be negative.
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For (x, i) ∈ C, we have Φ(x, i) = 0 by construction. For (x, i) ∈ D we have

f (x, i) = φ(x) and

Φ(x, i) B L(X,ξ)[ f ](x, i) − r f (x, i)

=
(
µ(i) −

1
2
σ2(i)

)
fx(x, i) +

1
2
σ2(i) fxx(x, i) − r f (x, i) +

n∑
j=1

qi j f (x, j)

= ex(µ(i) − r) + rK +

n∑
j=1
j,i

qi j( f (x, j) − φ(x))

= ex(µ(i) − r) + rK +

i−1∑
j=1

qi j( f (x, j) − φ(x))

≤ ex(µ(i) − r) + rK +

i−1∑
j=1

qi jK

= −r(ex
− K) + µ(i)ex + M(i)

≤ −
M(i) + µ(i)ex

ex − K
(ex
− K) + µ(i)ex + M(i)

= 0.

The last line follows from the fact that M+µ(i)ex

ex−K is decreasing function and thus

r >
M + µ(n)eb(i)

eb(i) − K
≥

M + µ(n)ex

ex − K
.

Now we have that Φ(x, i) ≤ 0 as desired. �

Using proposition 4.4.2, we have that

e−rtφ(Xt, ξt) ≤ e−rt f (Xt, ξt) ≤ f (x, i) + Martingale.

Therefore for any stopping time τ

E(x,i)[e−r(t∧τ)φ(Xt∧τ, ξt∧τ)] ≤ f (x, i)

and by Fatou’s lemma

E(x,i)[e−rτφ(Xτ, ξτ)] ≤ f (x, i).
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Finally we observe that f (XτD , ξτD) = φ(XτD , ξτD) and that e−r(t∧τ) f (Xt∧τD , ξt∧τD) is a

martingale due to Φ(x, i) = 0 for (x, i) ∈ C. Furthermore, it is a uniformly integrable

martingale since x ≤ b(n) when the process is stopped at τD and f (x, i) is bounded

below b(n). Using theorem 2.2.4 we get

f (x, i) = E(x,i)[e−rτD f (XτD , ξτD)] = E(x,i)[e−rτDφ(XτD , ξτD)]

and optimality is proven. �
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CHAPTER 5

ORNSTEIN-UHLENBECK MODEL

5.1 Introduction

The Ornstein-Uhlenbeck process, thanks to its equilibrium or stationary mea-

sure, has been frequently used in finance. The commonly used Vasicek model [1]

for example utilizes the mean reverting Ornstein-Uhlenbeck process. The Ornstein-

Uhlenbeck is also sometimes used in modeling stochastic volatility as studied in [5].

In what follows we will devise an American option based on a commodity modeled

by the Ornstein-Uhlenbeck process.

5.2 The American Put in an Ornstein-Uhlenbeck Model

Here we pose the question: how would we optimally exercise an American

put option based on a commodity whose price evolution follows the Ornstein-

Uhlenbeck process below?

dXt = −αXtdt + σdBt

The solution to this SDE is obtained by applying Ito’s formula 2.1.1 to eαtXt to get

d(eαtXt) = eαtσdBt

so

Xt = X0e−αt + σ

∫ t

0
e−α(t−s)dBs.

Next we observe that
∫ t

0
e−α(t−s)dBs is a martingale. From this we see that

Ex[Xt] = e−αtx ≤ x
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and also that Xt is a supermartingale. Here we take note that this commodity is

mean reverting to zero. This would indeed be a strange property of real commodi-

ties. This American put option here has purely mathematical interest and the next

section will deal with an Ornstein-Uhlenbeck process which does not revert to zero,

and thus lends itself to practical applications. We now seek to optimally exercise

an infinite time horizon American put option. This corresponds to the optimal

stopping problem

V(x) = sup
τ

Ex[e−rτ(K − Xτ)+].

As before, we conjecture that the form of the stopping time is as follows.

Conjecture 5.2.1.

There exists an optimal stopping time for the optimal stopping problem

V(x) = sup
τ

Ex[e−rτ(K − Xτ)+]

which is of the form

τ = inf{t ≥ 0 : V(Xt) = (K − Xt)+
}.

Lemma 5.2.1.

Supposing a stopping time of the form given in conjecture 5.2.1 there exists a threshold

b ≤ K forming a region C = {x : x > b} referred to as the continuation region and

a region D = {x : x ≤ b} referred to as the stopping region such that the entry time

τD = inf{t ≥ 0 : Xt ∈ D} = inf{t ≥ 0 : Xt ≤ b} is the optimal stopping time:

V(x) = Ex[e−rτD(K − XτD)+].

Proof. To prove this lemma, we will show that V(x, i)−φ(x), where φ(x) = (K− ex)+,

is an increasing function on (−∞,K). From this we conclude that there is a unique
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threshold below which V(x, i) = φ(x) and the lemma is proven. Let x, x+δ ∈ (−∞,K)

and let τ be the optimal stopping time when X0 = x. Then

V(x + δ) ≥ Ex+δ[e−rτ(K − Xτ)+]

= Ex[e−rτ(K − Xτ − δ)+]

≥ Ex[e−rτ(K − Xτ)+] − δE[e−rτ]

≥ V(x) − δ.

From this we get

V(x + δ) − φ(x + δ) ≥ v(x) − δ − (K − x − δ)

= v(x) − φ(x)

and the lemma is proven. �

Next, the techniques from section 3.4 show that the payoff function V(x)

solves the Dirichlet problem

LX[V](x) = rV(x) in C (5.1)

V(x) = (K − x)+ in D.

This leads to the ODE below

−αx fx(x) +
1
2
σ2 fxx(x) = r f (x) x > b (5.2)

f (x) = K − x x ≤ b.

To solve this ODE, we assume that f (x) is analytic and has a convergent Taylor

series expansion. Let

f (x) =

∞∑
k=0

akxk.
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Applying the differential equation yields

0 = −αx
∞∑

k=0

(k + 1)ak+1xk +
σ2

2

∞∑
k=0

(k + 2)(k + 1)ak+2xk
− r

∞∑
k=0

akxk

=

∞∑
k=0

(
−αkakxk +

σ2

2
(k + 2)(k + 1)ak+2xk

− rakxk

)
=

∞∑
k=0

(
−αkak +

σ2

2
(k + 2)(k + 1)ak+2 − rak

)
xk.

We arrive at the recursion relation

ak+2 =
2
σ2

ak(r + αk)
(k + 2)(k + 1)

.

Now, defining the even terms

a0 = a0

a2 = a0
2
σ2

r
2 · 1

a4 = a0

( 2
σ2

)2 r(r + 2α)
4!

... =
...

a2k = a0

( 2
σ2

)k r(r + 2α)(r + 4α) · · · (r + 2(k − 1)α)
(2k)!

.

Next, the odd terms

a1 = a1

a3 = a1
2
σ2

r + α
3 · 2

a5 = a1

( 2
σ2

)2 (r + α)(r + 3α)
5!

... =
...

a2k+1 = a1

( 2
σ2

)k (r + α)(r + 3α) · · · (r + (2k − 1)α)
(2k + 1)!

.

Next, for ease of notation we introduce the Pochhammer symbol

(x)k = x(x + 1) · · · (x + k − 1)
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and define (x)0 = 1. It is straightforward to show the following facts

r(r + 2α)(r + 4α) · · · (r + 2(k − 1)α) = (2α)k−1
( r
2α

)
k

(r + α)(r + 3α) · · · (r + (2k − 1)α) = (2α)k−1
(r + α

2α

)
k

(2k)! = 4k
(1
2

)
k

k!

(2k + 1)! = 4k
(3
2

)
k

k! .

Using the above we get

a2k =
a0

2α

(
α
σ2

)k ( r
2α

)
k(

1
2

)
k

k!

a2k+1 =
a1

2α

(
α
σ2

)k ( r+α
2α

)
k(

3
2

)
k

k!
.

Now we write the two linearly independent solution functions

a0

2α

∞∑
k=0

(
α
σ2

)k ( r
2α

)
k(

1
2

)
k

x2k

k!

a1

2α

∞∑
k=0

(
α
σ2

)k ( r+α
2α

)
k(

3
2

)
k

x2k+1

k!
.

Lets look at a special function called Kummer’s confluent hypergeometric function

[24], which is defined by

M(a, b, x) =

∞∑
k=0

(a)k

(b)K

xk

k!
.

M(a, b, x) is an entire function in x and thus the Taylor series is convergent every-

where. We will now rewrite the two solutions, ignoring the constants, in terms of

Kummer functions

F0(x) = M
(

r
2α
,

1
2
,
αx2

σ2

)
F1(x) = xM

(
r + α

2α
,

3
2
,
αx2

σ2

)
.
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Since all parameters in the Kummer functions are positive, it is clear that the

functions diverge when x → ∞ which is not valid for the value function. We will

try to determine if a linear combination of F0 and F1 that will go to zero when

x→∞. To do so we look at an asymptotic function. The limiting form of M(a, b, x)

when x→∞ is

M(a, b, x) ∼
Γ(b)
Γ(a)

exxa−b.

See [24] for details. Next we find the asymptotics of the functions of interest:

F0(x) ∼
Γ
(

1
2

)
exp

(
αx2

σ2

) (
αx2

σ2

) r
2α−

1
2

Γ( r
2α )

=

√
π

Γ( r
2α )

exp
(
αx2

σ2

) ( √
αx
σ

) r
α−1

F1(x) ∼ x
Γ
(

3
2

)
exp

(
αx2

σ2

) (
αx2

σ2

) r+α
2α −

3
2

Γ( r+α
2α )

=

√
πσ

2
√
αΓ( r+α

2α )
exp

(
αx2

σ2

) ( √
αx
σ

) r
α−1

.

For sake of compactness of notation we define the asymptotics

G0(x) =

√
π

Γ( r
2α )

exp
(
αx2

σ2

) ( √
αx
σ

) r
α−1

G1(x) =

√
πσ

2
√
αΓ( r+α

2α )
exp

(
αx2

σ2

) ( √
αx
σ

) r
α−1

and notice that

G1(x) = BG0(x) where B =
Γ
(

r
2α

)
σ

2
√
αΓ( r+α

2α )
.

Suppose that

lim
x→∞

(
C0F0(x) − C1F1(x)

)
= 0.

Then we have

C0

B
− C1 = lim

x→∞

(
C0F0(x)
BG0(x)

−
C1F1(x)
G1(x)

)
= lim

x→∞

(
C0F0(x) − C1F1(x)

G1(x)

)
= 0.
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Thus we see that for the linear combination to go to zero it is necessary, but not

sufficient, for

C0 = BC1 =
Γ
(

r
2α

)
σ

2
√
αΓ( r+α

2α )
C1.

We look at another special function known as Tricomi’s confluent hypergeometric

function or the confluent hypergeometric function of the second kind, see [24],

defined

U(a, b, z) =
Γ(1 − b)

Γ(a − b + 1)
M(a, b, z) +

Γ(b − 1)
Γ(a)

z1−bM(a − b, 2 − b, z).

It is straightforward to verify that with the prescribed relationship between C0 and

C1,

C0F0(x) − C1F1(x) = CU
(

r
2α
,

1
2
,
αx2

σ2

)
for some constant C. Tricomi’s function has the asymptotic

U(a, b, z) ∼ z−a
(
1 + O

(1
z

))
,

see [24] for details. Since a = r
2α > 0 we have that

lim
x→∞

U
(

r
2α
,

1
2
,
αx2

σ2

)
= 0

as desired.

It is interesting to note that an analytic extension of the Hermite polynomials

[6] is provided by

H(a, x) = 2nxU
(1
2
−

a
2
,

3
2
, x2

)
= 2nU

(
−

a
2
,

1
2
, x2

)
where the second equality comes from a Kummer transformation U(a, b, z) =

z1−bU(1 + a − b, 2 − b, z), see ( [31], p. 505). This provides an elegant and strait-

forward way of writing the desired function

U
(

r
2α
,

1
2
,
αx2

σ2

)
= κH

(
−

r
α
,

√
αx
σ

)
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for an appropriate constant κ. We now have a bounded solution to the ODEs given

by

f (x) =


cH

(
−

r
α
,

√
αx
σ

)
; x > b

K − x ; x ≤ b

where c is an arbitrary constant. Again, we mandate that the solution be C1 at the

boundary b. Matching derivative and function value at the boundary point will

completely determine both c and the boundary b.

All that remains is prove the optimality of the solution.

Theorem 5.2.1 (Optimality).

Suppose that the threshold b < r
r+αK has been found such that the unique solution to

−αx fx(x) +
1
2
σ2 fxx(x) = r f (x) x > b

f (x) = K − x x ≤ b

is C1 on its domain and bounded above b. Further, suppose that f (x) ≥ (K − x)+. Then the

solution f (x) and the stopping time τD = {t ≥ 0 : Xt ∈ D} correspond to the value function

V(x) = sup
τ

Ex[e−rτ(K − Xτ)+]

and its optimal stopping time, i.e.,

f (x) = V(x) = Ex[e−rτD(K − XτD)+].

Proof. To do this we will apply Ito’s formula (2.1.1) to e−rt f (Xt) to get

e−rt f (Xt) = f (X0) +

∫ t

0
e−rs (LX[ f ](Xs) − r f (Xs)

)
ds + Martingale.

We need to show that

Φ(x) =
(
LX[ f ](x) − r f (x)

)
ds

= −αx fx(x) +
1
2
σ2 fxx(x) − r f (x)

≤ 0.
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From (5.2), we see that Φ(x) = 0 for x ∈ C. When x ∈ D we get f (x) = (K − x) and

Φ(x) = αx − r(K − x)

= (r + α)x − rK

≤ (r + α)b − rK

≤ (r + α)
r

r + α
K − rK

= 0.

Next, observe that

e−rt(K − Xt)+
≤ e−rt f (Xt) ≤ f (X0) + Martingale

and thus for any stopping time τ

Ex[e−r(τ∧t)(K − Xτ∧t)+] ≤ f (x)

and by Fatou’s Lemma,

Ex[e−rτ(K − Xτ)+] ≤ f (x).

Finally, we see that e−r(τD∧t) f (XτD∧t) is a martingale due to Φ(x) = 0 when in region

C. It is a bounded martingale since f (x) is a bounded function on C. Using the

optional sampling theorem (2.2.3) we get

Ex[e−rτD f (XτD)] = Ex[e−rτD(K − XτD)+] = f (x)

and optimality is proven. �

5.3 The American Put in an Ornstein-Uhlenbeck Model with Non-Zero Mean

Next we will attempt to price the American put in model whose mean is non-

zero. This is a much more realistic and general assumption, since no commodities
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are mean reverting to zero. The Ornstein-Uhlenbeck process with mean reversion

to m is given by

dXt = −α(Xt −m)dt + σdBt

the solution of which is obtained by applying Ito’s formula 2.1.1 to eαtXt to get

d(eαtXt) = αmeαt + eαtσdBt.

So,

Xt = X0e−αt + m(1 − e−αt) + σ

∫ t

0
e−α(t−s)dBs.

The value of an American put is given by the optimal stopping problem

V(x) = sup
τ

Ex[e−rτ(K − Xτ)+].

The same procedure from the previous section will be followed to verify an optimal

stopping time of the form

τ = inf{t ≥ 0 : Xt ≤ b}

for some threshold b and to show that

LX[V](x) = rV(x) f or x > b

V(x) = (K − x)+ f or x ≤ b.

This leads to the ODE

−α(x −m) fx(x) +
1
2
σ2 fxx(x) = r f (x) x > b (5.3)

f (x) = K − x x ≤ b.

Here we do a change of variables

y = x −m

g(y) = f (y + m)

70



arriving at

−αygy(y) +
1
2
σ2gyy(y) = rg(y) y > b −m.

This is solved identically to (5.2), and we arrive at the solution

g(y) = cH
(
−

r
α
,

√
αy
σ

)
f or y > b −m.

So,

f (x) =


cH

(
−

r
α
,

√
α(x −m)
σ

)
; x > b

K − x ; x ≤ b

where c is an arbitrary constant. Again, we mandate that the solution be C1 at the

boundary b. Matching derivative and function value at the boundary point will

completely determine both c and the boundary b.

All that remains is prove the optimality of the solution.

Theorem 5.3.1 (Optimality).

Suppose that the threshold b < rK+αm
r+α has been found such that the unique solution to

−αx fx(x) +
1
2
σ2 fxx(x) = r f (x) x > b

f (x) = K − x x ≤ b

is C1 on its domain. Further, suppose that f (x) ≥ (k − x)+. Then the solution f (x) and the

stopping time τD = {t ≥ 0 : Xt ∈ D} correspond to the value function

V(x) = sup
τ

Ex[e−rτ(K − Xτ)+]

and its optimal stopping time, i.e.,

f (x) = V(x) = Ex[e−rτD(K − XτD)+].

Proof. To do this we will apply Ito’s formula (2.1.1) to e−rt f (Xt) to get

e−rt f (Xt) = f (X0) +

∫ t

0
e−rs (LX[ f ](Xs) − r f (Xs)

)
ds + Martingale.
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We would like to show that

Φ(x) =
(
LX[ f ](x) − r f (x)

)
ds

= −αx fx(x) +
1
2
σ2 fxx(x) − r f (x)

≤ 0.

From (5.3), we immediately see that Φ(x) = 0 for x > b. When x ≤ b we get

f (x) = (K − x) and

Φ(x) = α(x −m) − r(K − x)

= (r + α)x − rK

≤ (r + α)b − (rK + αm)

≤ (r + α)
rK + αm

r + α
− (rK + αm)

= 0.

Next, observe that

e−rt(K − Xt)+
≤ e−rt f (Xt) ≤ f (X0) + Martingale

and thus for any stopping time τ

Ex[e−r(τ∧t)(K − Xτ∧t)+] ≤ f (x)

and applying Fatou’s Lemma,

Ex[e−rτ(K − Xτ)+] ≤ f (x).

Finally we see that e−r(τD∧t) f (XτD∧t) is a martingale since Φ(x) = 0 when in region C.

Further, it is bounded martingale since f (x) is a bounded function on C. So using

the optional sampling theorem (2.2.3) we get

Ex[e−rτD f (XτD)] = Ex[e−rτD(K − XτD)+] = f (x)

and optimality is proven. �
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5.4 The American Put in an Ornstein-Uhlenbeck Model with 2-State Markov

Modulation

Here we modify the model Ornstein-Uhlenbeck model and incorporate Markov

modulation

dXt = −α(ξt)Xtdt + σ(ξt)dBt,

where ξ : Ω × [0,∞)→ {1, 2} is a Markov chain defined by the infinitesimal gener-

ating matrix

Q =

 −λ1 λ1

λ2 −λ2

 .
The value of an American put is given by the optimal stopping problem

V(x, i) = sup
τ

E(x,i)[e−
∫ τ

0 r(ξs)ds(K − Xτ)+].

The same procedure from section 5.2 will be followed to verify an optimal stopping

time of the form

τ∗ = inf{t ≥ 0 : Xt ≤ b(ξt)}

for two thresholds b(1) = d1 and b(2) = d2 and to show that

LX,ξ[V](x, i) = r(i)V(x, i) f or x > di

V(x) = (K − x)+ f or x ≤ di.

This leads to the ODE system

−α(i)x fx(x, i) +
1
2
σ2(i) fxx(x, i) +

2∑
j=1

qi j f (x, j) = r(i) f (x, i) x > di

f (x, i) = K − x x ≤ di.

We will separate this into 3 regions supposing, with out loss of generality, that

d1 > d2. The three regions to be considered are (−∞, d2], (d2, d1], and (d1,∞). When
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x ≤ d2 we get trivially that f (x, i) = K − x for i = 1, 2. When d2 < x ≤ d1 we get that

f (x, 1) = K − x and that f (x, 2) satisfies the following non-homogeneous ODE:

−α(2)x fx(x, 2) +
1
2
σ2(2) fxx(x, 2) − (r(2) + λ2) f (x, 2) = −λ2(K − x).

First, we solve the homogeneous equations exactly as in section 5.2 and arrive at

the solution

c0M
(

r2 + λ2

2α2
,

1
2
,
α2x2

σ2
2

)
+ c1xM

(
r2 + λ2 + α2

2α2
,

3
2
,
α2x2

σ2
2

)
f or d2 < x ≤ d1.

Next we find a particular solution of the form γ1 + γ2x arriving at the full solution

of f (x, 2) below d1

f (x, 2) =


c0M

(
r2+λ2

2α2
, 1

2 ,
α2x2

σ2
2

)
+ c1xM

(
r2+λ2+α2

2α2
, 3

2 ,
α2x2

σ2
2

)
+ γ1 + γ2x f or d2 < x ≤ d1

K − x f or x ≤ d2

.

For x > d1, the problem becomes considerably harder. Here, both f (x, 1) and

f (x, 2) are unknown and we have the following 2 dimensional ODE −α(1)x fx(x, 1) + 1
2σ

2(1) fxx(x, 1) − (r(1) + λ1) f (x, 1) + λ1 f (x, 2) = 0

−α(2)x fx(x, 2) + 1
2σ

2(2) fxx(x, 2) − (r(2) + λ2) f (x, 2) + λ2 f (x, 1) = 0.

We will attempt to solve this ODE by the technique presented in section 5.2. Sup-

pose f (x, 1) and f (x, 2) have the following expansion above d1

f (x, 1) =

∞∑
k=0

akxk

f (x, 2) =

∞∑
k=0

bkxk.
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Using these expansions in the first ODE yields

− α1x
∞∑

k=0

(k + 1)ak+1xk +
σ2

1

2

∞∑
k=0

(k + 2)(k + 1)ak+2xk
− (r1 + λ1)

∞∑
k=0

akxk +

∞∑
k=0

λ1bkxk

=

∞∑
k=0

(
−α1kakxk +

σ2
1

2
(k + 2)(k + 1)ak+2xk

− (r1 + λ1)akxk + λ1bkxk

)
=

∞∑
k=0

(
−α1kak +

σ2
1

2
(k + 2)(k + 1)ak+2 − (r1 + λ1)ak + λ1bk

)
xk

= 0.

From this we get the recursive relation

ak+2 =
2
σ2

1

(r1 + λ1 + α1k)ak − λ1bk

(k + 2)(k + 1)

and similarly

bk+2 =
2
σ2

2

(r2 + λ2 + α2k)bk − λ2ak

(k + 2)(k + 1)
.

This can be restated in matrix form

Ck+2 = AkCk

where

Ck =

 ak

bk

 and Ak =
2

(k + 2)(k + 1)


r1+λ1+kα1

σ2
1

−
λ1
σ2

1

−
λ2
σ2

2

r2+λ2+kα2
σ2

2

 .
From this we get

C2n =

 n−1∏
k=0

A2k

 C0

C2n+1 =

 n−1∏
k=0

A2k+1

 C1.

If we let

Ak =
2

(k + 2)(k + 1)
A + kB
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where

A =


r1+λ1
σ2

1
−
λ1
σ2

1

−
λ2
σ2

2

r2+λ2
σ2

2

 and B =


α1
σ2

1
0

0 α2
σ2

2

 ,
we have an elegant expression for Ck

C2n =
2n

(2n)!

 n−1∏
k=0

(A + kB)

 C0

C2n+1 =
2n

(2n + 1)!

 n−1∏
k=0

(2A + B
2

+ kB
) C1.

Define

A2n =
2n

(2n)!

n−1∏
k=0

(A + kB)

A2n+1 =
2n

(2n + 1)!

n−1∏
k=0

(2A + B
2

+ kB
)
.

Let An(i, j) represent the i, j element of the matrix An. Now a compact form of

f (x, 1) for x > d1 is presented

f (x, 1) =

∞∑
k=0

(A2k(1, 1)a0 +A2k(1, 2)b0) x2k + x
∞∑

k=0

(A2k+1(1, 1)a1 +A2k+1(1, 2)b1) x2k

= a0

∞∑
k=0

A2k(1, 1)x2k + b0

∞∑
k=0

A2k(1, 2)x2k + a1x
∞∑

k=0

A2k+1(1, 1)x2k + b1x
∞∑

k=0

A2k+1(1, 2)x2k

and similarly for f (x, 2) when x > d1

f (x, 2) = a0

∞∑
k=0

A2k(2, 1)x2k+b0

∞∑
k=0

A2k(2, 2)x2k+a1x
∞∑

k=0

A2k+1(2, 1)x2k+b1x
∞∑

k=0

A2k+1(2, 2)x2k.

Conjecture 5.4.1.

There exists an appropriate choice of the parameters {a0, a1, b0, b1} such that

a0

∞∑
k=0

A2k(1, 1)x2k + b0

∞∑
k=0

A2k(1, 2)x2k + a1x
∞∑

k=0

A2k+1(1, 1)x2k + b1x
∞∑

k=0

A2k+1(1, 2)x2k

a0

∞∑
k=0

A2k(2, 1)x2k + b0

∞∑
k=0

A2k(2, 2)x2k + a1x
∞∑

k=0

A2k+1(2, 1)x2k + b1x
∞∑

k=0

A2k+1(2, 2)x2k
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are bounded functions in R. With the appropriate choice of {a0, a1, b0, b1}, we will rename

the above functions ψ1(x) and ψ2(x) respectively.

Relying on this conjecture, we have a solution bounded above d1

f (x, 1) =

 aψ1(x) x > d1

K − x x ≤ d1

and

f (x, 2) =


bψ2(x) x > d1

c0M
(

r2+λ2
2α2

, 1
2 ,

α2x2

σ2
2

)
+ c1xM

(
r2+λ2+α2

2α2
, 3

2 ,
α2x2

σ2
2

)
+ γ1 + γ2x d2 < x ≤ d1

K − x x ≤ d2

.

We mandate that the solution be C1 at the boundaries, and in so doing determine

all unknown parameters {a, b, c0, c1} and unknown boundaries d1 and d2. We now

prove that such a solution is optimal.

Theorem 5.4.1 (Optimality).

Suppose that thresholds d2 < d1 < K have been found such that the unique solution to

−α(i)x fx(x, i) +
1
2
σ2(i) fxx(x, i) +

2∑
j=1

qi j f (x, j) = r f (x, i) x > di (5.4)

f (x, i) = K − x x ≤ di

is C1 on its domain. Further, suppose that the following assumptions hold

1. f (x, i) ≥ (k − x)+

2. f (x, i) ≤M for i = 1, 2.

3. di ≤
riK−λiM
αi+ri

.

Then the solution f (x, i) and the stopping time τ∗ = {t ≥ 0 : Xt ≤ b(ξt)} correspond to the

value function

V(x, i) = sup
τ

E(x,i)[e−
∫ τ

0 r(ξs)ds(K − Xτ)+]
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and its optimal stopping time, i.e.,

f (x, i) = V(x, i) = E(x,i)[e−
∫ τ∗

0 r(ξs)ds(K − Xτ∗)+].

Proof. To do this we will apply Ito’s formula (2.1.1) to e−
∫ τ

0 r(ξs)ds f (Xt) to get

e−
∫ τ

0 r(ξs)ds f (Xt) = f (X0) +

∫ t

0
e−

∫ s
0 r(ξu)du (

LX,ξ[ f ](Xs, ξs) − r(ξs) f (Xs, ξs)
)

ds + Martingale.

We need to show that

Φ(x, i) =
(
LX,ξ[ f ](x, i) − r(i) f (x, i)

)
ds

= −α(i)x fx(x, i) +
1
2
σ(i)2 fxx(x, i) − r(i) f (x, i) +

2∑
j=1

qi j f (x, j)

≤ 0.

From (5.2), we see that Φ(x) = 0 for x ∈ C = {(x, i) : x > bi}. When x ∈ D = {(x, i) :

x ≤ bi}we get f (x) = (K − x) and

Φ(x, i) = αix − ri(K − x) + λi( f (x, i) − (K − x))

≤ (ri + αi)x − riK + λiM

≤ (ri + αi)di − riK + λiM

≤ (ri + αi)
riK − λiM
αi + ri

− riK + λiM

= 0.

Next, observe that

e−
∫ t

0 r(ξs)ds(K − Xt)+
≤ e−

∫ t
0 r(ξs)ds f (Xt, i) ≤ f (X0, ξ0) + Martingale

and thus for any stopping time τ

E(x,i)[e−
∫ τ∧t

0 r(ξs)ds(K − Xτ∧t)+] ≤ f (x)
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whence by Fatou’s Lemma,

E(x,i)[e−
∫ τ

0 r(ξs)ds(K − Xτ)+] ≤ f (x).

Finally, we see that e−
∫ τ∗∧t

0 r(ξs)ds f (Xτ∗∧t) is a martingale due to Φ(x) = 0 in the region

C. Further, it is bounded martingale since f (x, i) is a bounded function on C. By

the optional sampling theorem (2.2.3) we get

E(x,i)[e−
∫ τ∗

0 r(ξs)ds f (Xτ∗)] = E(x,i)[e−
∫ τ∗

0 r(ξs)ds(K − Xτ∗)+] = f (x, i)

which concludes the proof of optimality. �
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