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ABSTRACT

Intra Frame Luma Prediction using

Neural Networks in

HEVC

Dilip Prasanna Kumar, M.S

The University of Texas at Arlington, 2013

Supervising Professor: K. R. Rao

High Efficiency Video Coding, the latest video coding standard proposed by

the JVT-VC and three profiles- HEVC main, main 10 and main intraframe were

adopted in January 2013, provides significant amount of compression compared to

older standards, while retaining similar visual quality. This is achieved at the cost of

a computationally expensive encoding method.

Intra frame coding contributes to a large portion of the computational com-

plexity. In this research, a way to speed up the intra frame prediction mode decision

using Artificial Neural Networks is proposed. The search for the correct prediction

mode is simplified by using neural networks to analyze and reduce the number of

modes that must be searched to arrive at the mode decision.

By employing this scheme, a speed up of upto 20% has been observed without

significant loss of PSNR or increase in bitrate.
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CHAPTER 1

INTRODUCTION

1.1 Video Compression Basics

The properties of an image are height, width, color and brightness of a pixel.

Videos add a time dimension to images by stacking several images (also called frames).

By displaying the sequence of images quickly, videos create the illusion of a moving

image.

A large portion of video compression is related to image compression. Image

compression exploits spatial redundancies in an image to compress the image. Video

compression algorithm performs the same task to compress individual images and

also exploits temporal redundancies (the redundancies between frames) to efficiently

compress several frames. [2].

Video frames that are compressed by exploiting temporal redundancies are

called inter-frames or p-frames (used interchangeably). To compress a p-frame, the

frame is compared to a reference frame and only the difference between the frames

(quantized transform coefficients of residual images and motion vectors [3]) are en-

coded. The frames that are used as a reference for the p-frame can only be compressed

using their own spatial redundancies. These frames are called i-frames or intra frames

(used interchangeably) . A third type of frames, called b-frames use bidirectional pre-

diction and use the both p-frames and i-frames for exploiting temporal redundancies

[4].
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1.2 Need for Video Compression

The table 1.1 shows the raw bit-rate for several popular video formats.

Table 1.1: Raw bit-rates for common video formats [3]

Format Resolution Raw Bitrate
CIF 352x288 30Hz 36.5 Mbps

QCIF 176x144 30Hz 9.13 Mbps

HDTV
1280x720 60Hz 663.6 Mbps
1920x1080 30Hz 1.3905 Gbps

The table 1.1 shows that raw (uncompressed) video sequences require enor-

mous amount of bandwidth and memory. Several video compression schemes have

been developed to address how videos should be compressed. The High Efficiency

Video Coding (HEVC) video compression standard, for example, achieves a bitrate

of around 11.2Mbps for the Basketballdrive test sequence at 1920x1080 60Hz. This is

a reduction of 98.3%. Such a high amount of video compression makes several video

applications like broadcast HDTV, video conferencing, internet streaming services

and many others feasible.

1.3 Video compressing standards

To enable encoders and decoders developed by different vendors to function

together, video compression algorithms have been standardized by bodies such as

International Telecommunication Union - Telecommunication Standardization Sec-

tor (ITU-T), Moving Picture Experts Group (MPEG) and recently the Joint Col-

laborative Team on Video Coding (JCT-VC). Several video compression standards

adopted today, such as MPEG-2 [5], Advanced Video Coding (AVC) [6] and H.264
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[4] are the results of the efforts put in by these bodies. The figure 1.1 shows the

evolution of video compression standards over the years.

Figure 1.1: Evolution of video compression standards [7]

1.4 Thesis Outline

Chapter 2 provides a brief introduction to the HEVC compression standard

along with a description of its encoder block diagram.

In chapter 3, intra prediction is considered in more detail. The complexity of

intra frame prediction mode decision is presented along with some previous attempts

to reduce this. The reference software HM [8] is introduced and the implementation

of intra frame mode decision for luma samples is also presented.
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In chapter 4, a new approach to intra frame mode decision using neural networks

is presented. In chapters 5 and 6 the proposed approach is explored in detail.

Chapter 7 presents the results obtained in terms of time gain, loss of PSNR and

increase in bitrate when compared to the reference software. Chapter ?? presents

conclusions and discusses possible further work.
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CHAPTER 2

HIGH EFFICIENCY VIDEO CODING, HEVC

HEVC is the latest video compression standard to be adopted as an interna-

tional standard. It was developed over a period of 6 years by the JCT-VC from 2007

to 2013 [1]. The main goal for HEVC was to achieve 50% lower bitrate than H.264

while retaining the same visual quality. Figure 2.1 shows the block diagram for the

HEVC encoder.

2.0.1 Encoder description

Figure 2.1 shows the block diagram of a generic HEVC encoder. The input to

this encoder is a sequence of frames from a video source. Each frame is first segmented

to generate the quad tree structure. Then, each segment is passed one by one to the

encoder.

The encoder decides if the block should be compressed as an i-frame (intra

frame, exploiting spatial redundancies) or as a p-frame (inter frame, exploiting tem-

poral redundancies). Based on this decision, the encoder generates an image block

that is subtracted from the original image segment. The residual signal is transformed,

scaled, quantized and subjected to entropy encoding. Meanwhile, inverse quantiza-

tion and transforms are applied to the quantized transform coefficients. These are

used by the intra or inter prediction blocks.
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Figure 2.1: HEVC encoder block diagram

2.0.2 Quad Tree Structure

The quad tree structure is introduced in HEVC. The macroblocks used in

H.264 [4] are replaced by Coding Tree Units. Figure 2.2 shows how an image block is

split into the quad tree structure. The Coding Tree Unit (CTU) consists of a Luma

Coding Tree Block (CTB) and the corresponding chroma CTBs and syntax elements.

The CTU specifies the positions and the sizes of the luma Coding Block (CB) and

chroma CB. One luma CB and generally two chroma CBs together with syntax form

a Coding Unit (CU).

A CTB can have one CU or be split into several CUs. The decision to code an

area of image as intra or inter is taken at the CU level. A CU is the root for both

Prediction Unit (PU) and Transform Unit (TU). A Prediction Block (PB) can be the

6



Figure 2.2: HEVC Quad tree structure [1]

size of a CB or be split further into smaller luma and chroma PBs. The supported

sizes are 64x64, 32x32, 16x16, 8x8 and 4x4. For inter prediction modes, non square

modes are allowed as shown in Figure 2.3. An inter frame PB can not have a size of

4x4.

Similarly, starting at the level of a CU, a CB can have one Transform Block (TB)

of the same size as the CB or be split into smaller TBs [1], [9], [10].

2.0.3 DPCM, Quantization and Transform

Differential pulse code modulation (DPCM) is a well known technique used in

several communication systems. In video compression technologies, DPCM is ex-

tended to two dimensional images [2]. In HEVC, an image block (the PB) is sub-

tracted from a generated prediction block or a motion compensated reference image

segment to obtain a difference image block (also called an error image block or a

7



Figure 2.3: Inter frame prediction block modes for luma samples in HEVC [1]

residual image block). The principle behind this operation is that if the histogram of

the error signal is narrow, fewer bits are required to represent it [2].

The residual block is partitioned into several TBs and then transformed. The

possible sizes for the TB are 4x4, 8x8, 16x16 and 32x32. A single 32x32 matrix is

specified for the transform. A 32x32 TB is transformed by simply performing matrix

multiplication with this block. For TBs of sizes 16x16, 8x8 or 4x4, corresponding

transforms are applied. The matrix is based on the Discrete Cosine Transform (DCT).

A special 4x4 transform based on the Discrete Sine Transform (DST) is also available

for 4x4 intra coding [1].

The transform coefficients are then subjected to quantization. HEVC uses

the same Uniform Reconstruction Quantization (URQ) scheme used in H.264. A

Quantization Parameter (QP) is used to control the step size of the quantizer, and

has a range from 0 to 51. A QP increase of 6 doubles the step size. [1].

The quantized transform coefficients are then further compressed using entropy

encoding. HEVC specifies Context Adaptive Binary Arithmetic Coding (CABAC) as

the entropy coding scheme to be used. The number of contexts used in HEVC is less

than those in h.264/AVC but are also more efficient [1].
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2.0.4 Intra Prediction

As shown in figure 2.1, the residual block is generated by subtracting the original

source from a predicted block. The predicted block is generated using either intra or

inter frame prediction.

For intra prediction, HEVC specifies 35 different prediction modes for luma

samples. For each PB, any one of the 35 prediction modes can be used to generate

a prediction. Both the encoder and decoder always use the row of pixels to the

top and the column of pixels to the left of the current prediction block to generate

the prediction. The prediction mode specifies how the top row or the left column

should be used to generate a prediction. In HEVC, there are 33 angular modes,a

DC mode and an interpolation mode. Figure 2.4 shows the angular modes and the

corresponding mode numbers in HEVC.

Figure 2.4: Intra prediction modes for luma samples in HEVC [1]

Figure 2.5 shows an example of how the top row or left column reference is

copied to create the prediction block for an angular mode.
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Figure 2.5: Example of an intra prediction mode in HEVC [1]

Table 2.1 shows the prediction modes for the chroma samples. These are similar

to the ones used in H.264/AVC standard [4][1].

Table 2.1: Intra prediction modes for chroma samples [1]

Intra chroma prediction mode
Intra prediction direction

0 26 10 1 X(0 ≤ X < 35)
0 34 0 0 0 0
1 26 34 26 26 26
2 10 10 34 10 10
3 1 1 1 34 1
4 0 26 10 1 X

2.1 Summary

This chapter has introduced the HEVC video coding standard, the encoder

block description and intra prediction used in HEVC. In the next chapter, intra

prediction is discussed in detail.
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CHAPTER 3

INTRA PREDICTION MODE DECISION IN HEVC

3.1 Mode decision for intra prediction

Figure 3.1 shows an example of a fictional intra prediction scheme where four

intra prediction modes are available. To generate a prediction for the current block,

the decoder has the pixels to the top and the left pixels which can been seen in Figure

3.1b. The current block is shown in Figure 3.1c and the predictions generated for this

block are shown in Figures 3.1d - 3.1g.

In this example, the vertical prediction mode in Figure 3.1d provides the closest

match. Thus, the encoder can select the vertical mode for intra prediction, and inform

the decoder that the vertical mode of prediction must be used while decoding the

frame. Mode decision is this process of determining which prediction scheme has to

be used for the current block.

HEVC offers 35 different possible prediction modes (figure 2.4). Further, the

encoder must also determine the size of the PB to be used. For a CB, the HEVC

encoder must check for all possible prediction modes at all allowed PB sizes and select

the best combinations of PB sizes and modes to encode a certain CU. This decision

is made based on rate distortion optimization (RDO).

3.2 Rate Distortion Optimization

The encoder’s decision on the mode of operation to be used (prediction mode,

size of PB) affects the signal dependent rate-distortion characteristics. The encoder’s

11



(a) Original Image (b) Decoded Image

(c) Current block

(d) Prediction using vertical
mode

(e) Prediction using horizontal
mode

(f) Prediction using diagonal
right mode

(g) Prediction using diagonal
left mode

Figure 3.1: Example of prediction modes for intra prediction. Here, figure 3.1c is the
current block and figure 3.1d produces the lowest SAD
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task is then to minimize the distortion D, subject to a constraint Rc, on the number

of bits used R.

min{D} subject R ≤ Rc (3.1)

The encoder can also be optimized to minimize the rate R, subject to a con-

straint Dc on the distortion D as

min{R} subject D ≤ Dc (3.2)

Equations 3.1 and 3.2 represent a constrained problem. This is converted to an

unconstrained problem using a Lagrangian multiplier as

min{J}, where J = D + λR (3.3)

where λ is the Lagrangian multiplier, R is the rate and D is the distortion

observed for a particular combination of modes. The encoder’s task is to select a

combination of modes such that the cost J is minimized [11]. This process is known

as rate distortion optimization (RDO).

In the context of intra prediction in HEVC, the size of the PB and the prediction

mode used for a PB must be selected such that the RDO cost J in (3.3) is minimized.

The rate R can be measured objectively for the purposes of rate-distortion

optimization. The distortion D is a subjective quality and depends upon the human

visual system (HVS). Some subjective measures of distortion are structural similarity

index metric (SSIM) and mean opinion score (MOS) while peak signal to noise ratio

(PSNR), mean squared error (MSE), sum of absolute differences (SAD) and sum of

absolute transform differences (SATD) are bjective measures of distortion.
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The process of intra prediction mode decision in HEVC involves the encoder

measuring the values of distortion D and rate R for each of the 35 available modes

(Figure 2.4) and then selecting the mode that provides the lowest rate-distortion cost

J .

3.3 Quad tree structure and intra prediction mode decision complexity in HEVC

In the HEVC encoder, the PB size is also determined using rate-distortion

optimization. While larger PBs are more efficient, smaller PBs are required in regions

of high detail and texture. The encoder should measure the values of distortion D

and rate R for each of the 35 modes at every level of the PU subtree. Following this,

the quantization and TB sizes are also determined through R-D optimization.

Table 3.1: Number of possible intra prediction combinations in a 64x64 CB

Size of PB Number of
PBs in a
64x64 CU

Number of Modes
to be Tested in
each PB

Total number of
modes to be tested
at this level

32x32 4 35 140
16x16 16 35 560
8x8 64 35 2240
4x4 256 35 8960

Total 11900

Table 3.1 shows the number of possible prediction modes that exist in a 64x64

CB. To find the optimum combination, the encoder must calculate the values of

distortion and rate 11, 900 times. Finding the value of D and R includes performing

the complete prediction, transform, scaling and quantization, and all the inverse

operations 11, 900 times along with the SATD which is computed as the measure of

distortion D.
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The quad tree structure imposes enormous computational requirements for

HEVC.

3.4 Implementation in HM 8.0 reference encoder

The reference software for HEVC developed by the JCT-VC is called HM. It

includes a reference encoder and a decoder that meets the HEVC specifications.

In version 4.0 in the HM reference encoder, a tree pruning algorithm was intro-

duced that reduces the number of subtrees that are explored by the encoder [12]. In

HM 8.0, intra prediction is performed in three stages [13], [14]:

Table 3.2: HM 8.0 intra prediction scheme

Step 1 A rough mode decision is performed based on prediction
residual SATD and estimated mode bits.

Step 2 The selected modes from step 1 is chosen for RDOQ to
obtain the best prediction mode.

Step 3 The best TU partitions are determined for best mode
from the previous RDOQ process.

3.5 Decision cost

Despite the improvements made to the HM encoder, it is still very slow because

of its extensive search of all modes. In the “all intra” configuration in HM 8.0, rate

distortion optimized quantization (RDOQ) was observed to take up 24.4% of the total

encoding time followed by the intra mode decision process at 11.8% and 11.0% for

memcopy/memset. [15].

From table 3.1, it can be seen that if the number of modes that have to be

checked at each PB level can be reduced by 1, the total number of modes that have

to be evaluated reduces by (4 + 16 + 64 + 256 = 340). A new parameter called

15



“decision cost” is introduced as a way to measure the number of modes that have to

be evaluated. Decision cost is defined as the average number of modes that must be

checked by performing intra prediction and calculating distortion and rate in a PB.

Decision cost is related to how computationally intensive the intra prediction

mode decision algorithm is. The higher the decision cost, the more number of intra

prediction modes are being checked by the encoder and hence, higher cost in terms

of computation time.

Let M be the set of possible intra prediction modes for the PB. HEVC specifies

that

M = {0, 1, 2, . . . 34} (3.4)

where 0 is the DC mode, 1 is the planar mode and 2 to 34 are angular modes

(figure 2.4).

Let S be the set of modes that have to be evaluated and L[S] be the length of

set S. Then decision cost C is given by

C = E[ L[S] ] (3.5)

In HM 8.0 reference encoder, all 35 modes are evaluated for a rough mode

decision. For a PB of size 16x16 and larger, the best 3 modes from the rough mode

decision are selected for RDOQ. Totally, 35+3 = 38 modes are evaluated so L[S] = 38

in all cases where the PB size is 16x16 or larger. The decision cost C = E[L[S]] = 38

here for all PBs of size equal to or larger than 16x16. Similarly for PB sizes of 4x4

and 8x8, the best 8 modes from the rough mode decision are selected for RDOQ and

decision cost C = E[L[S]] = 43.
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3.6 Summary

This chapter introduced the concept of rate-distortion optimization. The HM-

8.0 reference encoder was introduced and the intra prediction scheme implementation

in HM-8.0 was discussed. The idea of decision cost was introduced. The next chapter

presents the proposed solution to reduce the decision cost for intra prediction.
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CHAPTER 4

PROPOSED SOLUTION TO INTRA FRAME MODE DECISION COMPLEXITY

In section 3.3, the computational complexity of HEVC intra prediction in HM

8.0 was covered and section 3.5 introduced the idea of decision cost.

To reduce the computational complexity of intra prediction, an artificial neural

network based approach to reduce the decision cost is proposed. The idea is to train

an artificial neural network to identify the best prediction modes to be used for any

PB. The results suggested by the neural network are analyzed and used to generate

a set of most likely possible modes. The best mode is then selected from this set for

intra prediction using RDOQ as explained in steps 2 and 3 in table 3.2.

4.1 Artificial Neural Networks

An artificial neural network [16] is introduced into the encoder to quickly iden-

tify and classify a PB as belonging to one of 33 possible angular modes (Figure 2.4).

Artificial neural networks are used extensively in several pattern recognition tech-

niques because they are faster than conventional computing and they can be trained

to perform a wide variety of tasks [16]. An introduction to artificial neural networks

is given in Appendix A

In this thesis, a neural network is trained to guess which angular mode is

most likely going to provide the lowest RDO cost. After the neural network has

been trained sufficiently, it is integrated with the HM 8.0 reference encoder [8]. The

reference encoder is made to bypass the rough mode decision (step 1 in table 3.2) and

feed all PBs to the neural network instead. The neural network generates a guess on
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which of the angular modes is best suited for the input PB based upon its previous

training.

Ideally, the perfect neural network will always guess the best angular mode for

intra prediction in the RDO sense. Let this mode be N where N ∈M and M is the

set described in (3.4). After including the planar and DC modes, the set of modes

that need to be evaluated becomes S = {N, 0, 1}. Then L[S] = 3. The decision

cost C = 3 for all cases because only three prediction modes need to be evaluated.

However, as will be explained in section 5.3, the neural network approach is not

perfect and further processing needs to be done.

4.2 Obtaining prediction modes from NN

The accuracy of the neural network is not high as will be explained in section

5.3.

Let Q be the best prediction mode in RDO sense for the current PB. The

probability that prediction mode Q is contained in the set of modes to be evaluated S

is denoted as P [Q ∈ S]. To increase the probability that the best mode in RDO sense

is included in set S, the set S can be expanded to include S = {N,N±1, N±2 . . . , 0, 1}

where N ± 1, N ± 2 . . . ∈M (Values outside the range [2, 34] are not considered). As

the number of modes added to S increases, both P [Q ∈ S] and L[S] increases as will

be explained in section 5.3.

In this scheme, L[S] depends on the mode N suggested by the neural network.

This is because N±1, N±2 . . . can not be applied in cases where the resulting modes

will be outside the range [2, 34]. For example, if N = 2, S can only be expanded as

S = {N, 0, 1, N + 1, N + 2 . . .} and if N = 34, S = {N, 0, 1, N − 1, N − 2 . . .}.
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Let Si be the set of modes to be evaluated when the neural network outputs

mode Ni where i = 2, 3, 4, . . . 34. If P [Ni] is the probability of the neural network

outputting Ni, then the decision cost C is given by

C =
i=34∑
i=2

P [Ni].L[Si] (4.1)

P [Ni] depends upon the training of the neural network, the frequency of oc-

currence of each mode in videos and the accuracy of the neural network. Chapter 6

covers the procedure and explores ways to further optimize the process using Bayesian

probabilities.

4.3 Fast search optimization

The set of modes to be evaluated, S can be further reduced. This scheme uses

a simple fast search algorithm that can reduce the size L[S] at a negligible loss to

the accuracy (P [Q ∈ S]). This method provides coding time gain by reducing the

number of modes that must be tested using RDOQ.

4.4 Summary

This chapter introduces the proposed solution. All three components of this

proposed solution- the neural network, finding the set S from the neural network and

the fast search algorithm provide a large number of parameters that can be adjusted

to change the system performance. The following chapters will present some of the

parameters, how they affect the system and how they are chosen.
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CHAPTER 5

SHORTLISTING POSSIBLE INTRA MODES WITH NEURAL NETWORKS

In the first step, the image block is fed to a neural network that has been

trained to guess which of the 33 intra prediction schemes are best suited for that

block. The neural network was trained using the FANN library [17]. The training

algorithm used is RPROP [18] and a simple 3 layer multi layer perceptron architecture

is implemented.

5.1 Training the neural network

The HM 8.0 encoder [8] was modified to log pixel values of PBs and the cor-

responding intra mode chosen. PB blocks of sizes 4x4, 8x8, 16x16 and 32x32 were

logged. The logged data was then formatted to be compatible with the FANN library.

The FANN library is an open source neural network library, which implements

multilayer artificial neural networks in C. It provides several functions for creating

and training a neural network. Among the training methods provided by this library,

the RPROP [18] method was found to be the most effective for this problem. The

neural network was generated and trained using the FANN library and the training

data logged from the HM 8.0 encoder. The neural network was trained to identify

the mode that produces the lowest RDO cost.

5.2 HM encoder simulation for testing the accuracy of proposed scheme

To test the neural network, a simulation tool was developed. Figure 5.1 shows

the block diagram for the simulation tool.
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Figure 5.1: HM encoder simulation tool

The tool uses data previously logged from an unmodified HM 8.0 encoder [8].

From these logs, pixel values for several PBs and their corresponding best modes are

extracted. The pixels are fed to the neural network being tested. The neural network

generates the best guess mode which is used to generate a set of modes to be tested

as explained in section 4.2. If a fast search algorithm is used, then this set is further

modified by the fast search algorithm. Finally, the set S is compared to the best

mode selected by the unmodified HM encoder to calculate the accuracy of the neural

network.

The tool also helps compute the Bayesian search tables (section 6.3) and the

fast search tables (section 6.4).

5.3 Accuracy of Neural Networks and system performance

With the goal of speeding up the encoding process, the neural network process

is designed to be fast and simple. The neural network’s input is not subjected to any

feature extraction. This is because of two reasons:

1. The suitable feature in this case, edge detection, is very computationally intense.

2. The neural network showed the ability to classify images with sufficient accu-

racy.
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Table 5.1: 7-tap and 8-tap interpolating filters [1]

Filter -3 -2 -1 0 1 2 3 4
8-tap -1 4 -11 40 40 -11 4 1
7-tap -1 4 -10 58 17 -5 1

The HM 8.0 encoder uses a 7-tap filter and an 8-tap filter for sub-pixel interpola-

tions (Table 5.1 [1]). To make the system faster, it was chosen to not use interpolating

filters. As a result, the neural network can not be accurate in deciding between two

similar angular modes. However, this is acceptable because the final mode decision

is taken by the HM encoder after performing RDOQ and the neural network’s guess

is equivalent to the rough mode decision process used in HM 8.0 encoder.

Table 5.2 shows the accuracy of a neural network (P [Q ∈ S]) that was trained

to identify the angular mode in an 16x16 block. Although it first appears that the

neural net has a very low accuracy, it must be observed that the neural network can

not distinguish between closely lying angles. 82% of the time, the neural network

picked within ±3 of the best mode in the RDO sense. Figure 5.2 shows that the

neural network’s predicted modes (x-axis) are highly correlated with the best mode

(y-axis).

Table 5.2: Accuracy of a neural network for mode decision

Set S Accuracy of NN
S = {N} 37.9789%
S = {N,N ± 1} 67.7177%
S = {N,N ± 1, N ± 2} 77.4162%
S = {N,N ± 1, N ± 2, N ± 3} 82.2148%
S = {N,N ± 1, N ± 2, N ± 3, N ± 4} 85.3779%

It can be seen from table 5.2 that a neural network can be used to shortlist a set

of prediction modes that can contain the best mode in an RDO sense, without the use
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Figure 5.2: Correlation between best mode and neural net output for 16x16 block

of any pre-processing to extract features from the image block. While it is possible to

further improve the accuracy of the neural network in several ways (increase number

of hidden layers/neurons, cascade neural networks in chains to take decisions in stages

and improve pre-processing techniques), the improvement comes at a cost of increased

computational load required by the neural network stage in the encoder. In section

6.3, an improved method of determining set S from the output of the neural network

is explored which allows higher accuracy (around 85%) at lower L[S] (L[S] around 7

to 8). Thus, a low accuracy fast neural network with very few hidden layers and very

few neurons within the hidden layers can still be used to generate the set S where

P [Q ∈ S] is very high.

5.4 Neural networks architecture

Block sizes of 8x8 and 4x4 are very small and most angles require half and

quarter pixel interpolation. While the neural networks have low accuracy at these
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sizes, it is still possible to use them to obtain good R-D characteristics while improving

the time gain by avoiding upsampling and interpolation.

Table 5.3: Configuration of neural networks used for intra prediction

Neural net Hidden layers
Number of neurons in

Input Layer Hidden Layer Output Layer
16x16 Neural Net 1 256 300 33
8x8 Neural Net 1 64 100 33
4x4 Neural Net 1 16 100 33

For block sizes of 16x16 and higher, a single neural network is trained to obtain

the guessed mode. Larger block sizes are downsampled to 16x16 by skipping alternate

rows and columns prior to being fed to a neural network. For 8x8 block sizes, a

separate neural net is trained. This is because upsampling and interpolating an

8x8 block and feeding it to a 16x16 block is slow and does not provide significant

accuracy improvements over a simple fast neural network trained for 8x8 blocks. A

smaller neural network requiring fewer computations can provide adequate accuracy

at this level and help speed the encoding time. Similarly, another low accuracy neural

net is trained for 4x4 blocks.

Table 5.3 shows the configuration of the different neural networks used for intra

prediction. A sigmoidal activation function shown in (5.1) was used for all the hidden

layer neurons. The output layer neurons used a linear activation function shown in

(5.2).

y =
2

1 + e−2sx
− 1 (5.1)

yout = x.s (5.2)
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where s is a steepness parameter, x is the net input
(∑

wixi
)
, y and yout are

the outputs of the neurons in the neural network.

5.5 Summary

It is possible to train neural networks to identify the best prediction mode to

use in a PB. Seperate neural networks are used for 4x4, 8x8 and 16x16 blocks. 32x32

blocks are downsampled by skipping alternate rows and columns and fed to the 16x16

neural net. By using neural networks to guess the best prediction mode, the decision

cost is reduced.
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CHAPTER 6

OBTAINING PREDICTION MODES FROM NEURAL NETWORKS

6.1 Accuracy of Neural Networks and System Performance

Figures 6.1, 6.2 and 6.3 show the probability of the neural network suggesting

a mode N when the best mode is known to be Q for the 4x4, 8x8 and 16x16 neural

networks. The graphs show the probability P [N |Q] for all the angular modes. It can

be seen that the neural network usually suggests a mode which is very close to the

best mode. This is exploited to improve the system accuracy as explained below.

Figure 6.1: Performance of 4x4 neural network
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Figure 6.2: Performance of 8x8 neural network

Figure 6.3: Performance of 16x16 neural network

6.2 Linear Search

The set of modes to be tested can be expanded as S = {N,N ± 1, N ± 2 . . .}

where N is the mode suggested by the neural network. The decision cost C is given

by equation 4.1. Figure 6.4 shows a plot of accuracy of the system with increasing

decision cost for the 16x16 neural network.
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Figure 6.4: Linear search accuracy vs decision cost for 16x16 neural network

6.3 Bayesian Search

The linear search technique helps to improve accuracy but by increasing the

decision cost. To reduce the decision cost, the linear search technique is improved to

take advantage of the fact that the neural network is more accurate at guessing some

modes than others.

Let

P [UMi
] = P [N = Mi|Q = Mj] (6.1)

where Mi,Mj ∈M and i, j = 0, 1 . . . 34. Then, from Bayes theorem,

P [VMi
] = P [Q = Mj|N = Mi] (6.2)

=
P [N = Mi|Q = Mj]P [Q = Mj]

P [N = Mi]
(6.3)

=
P [U ]P [Q = Mj]

P [N = Mj]
(6.4)

Then, the set of modes to be evaluated can be generated as

Si = {M1,M2,M3 . . .} (6.5)
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such that

P [VM1 ] > P [VM2 ] > . . . > P [VMl
] (6.6)

The length of set Si, L[Si], can be limited by setting a parameter α where

α = P [VM1 ] + P [VM2 ] + . . .+ P [VMl
] (6.7)

By increasing α, the accuracy of the system increases along with the decision

cost C. The decision cost C is given by (4.1). The advantage of this method is that

when the neural network is more accurate at guessing a certain mode, the length L[S]

required for that mode is very low, and when the neural network is not accurate at

guessing a mode, L[S] increases for that mode. Thus, the decision cost C required for

certain accuracy is lower than the decision cost required for the simple linear search

described in section 6.2

The probabilities P [UMi
], P [VMj

], P [Q = Mj] and P [N = Mi] are obtained

from running the HM simulation tool shown in figure 5.1. Then, a look up table is

created to obtain a set S given the neural network output N according to (6.5), (6.6)

and (6.7).

Figure 6.5 shows a plot of accuracy of the system with increasing decision cost

for the 16x16 neural network when compared to the linear search.

6.4 Fast search technique

To evaluate the modes in set S, the encoder performs intra prediction for each of

these modes and then performs RDOQ to determine the best mode. It has been found

that RDOQ is very computationally intensive [15]. In order to reduce the number of

times the encoder has to perform RDOQ, a fast search technique is implemented to

short list the best modes to be tested for RDOQ.
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Figure 6.5: Linear search vs Bayesian search for 16x16 neural network

A rough mode decision is performed on every other element of the set S to

calculate its rough cost when set S is arranged in descending order. The mode that

has the lowest estimated cost is selected along with the two adjoining modes present

in the set S. These three modes are selected for RDOQ to obtain the best mode.

Then the decision cost becomes

Cfast =

[
1

2

i=33∑
i=3

P [Ni]L[Si] + 3

]
+

[
1

2
P [N2](L[S2] + 2)

]
+

[
1

2
P [N34](L[S34] + 2)

]
(6.8)

≈ 1

2
CBayesian + 3 (6.9)

where CBayesian is the cost of the Bayesian search tables without fast search,

given by (4.1).The fast search provides two advantages: it reduces the average number

of modes to be evaluated at each PU level and it reduces the number of modes that

have to be subjected to RDOQ. It comes at a cost of reduced accuracy that leads to

negligible loss in performance. When Cfast is much greater than CBayesian for a certain

mode, the fast skip technique is dropped and the entire set S from the Bayesian search
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table is used. Also, fast search technique does not provide significant benefits for 4x4

blocks so it is only used for 8x8 and larger PB blocks.

Figure 6.6: Bayesian search vs fast search for 16x16 neural network

Figure 6.6 shows a plot of accuracy of the system with increasing decision cost

for the 16x16 neural network. Although the plot does not show any improvements

over the Bayesian search technique, the difference is in the number of modes subjected

to RDOQ. The fast search technique subjects only 2 or 3 modes to RDOQ while the

Bayesian search subjects every mode to RDOQ. This makes fast search run faster

despite having the same decision cost as Bayesian.

6.5 Summary

This chapter presents some techniques that are used to improve the accuracy

of the intra mode decision process at the cost of increase in decision cost. The

Bayesian search technique and the fast search techniques are discussed in terms of

their accuracy and decision cost in this chapter.

The proposed algorithm can be summarized as:
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Step 1: Feed the normalized pixel values to the neural network based on

the size of the PB.

Step 2: Scan the output nodes of the neural network. The prediction

mode associated with the higest value output node is the best

guess of the neural network

Step 3: Obtain the set of prediction modes to be tested, S, from the

Bayesian search tables or the fast search tables.

Step 4: Evaluate the modes in set S to determine which is the best

prediction mode for that PB

The next chapter presents the coding time gain, loss of PSNR and increase in

bitrate obtained by this algorithm.
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CHAPTER 7

RESULTS

For testing the proposed system, the test sequences in table 7.1 were used.

Table 7.1: Test sequences used for testing the proposed system

No. Sequence Class Resolution Number of Frames
1 BQSquare Class D 416x240 60Hz 600
2 BasketballDrill Class C 832x480 50Hz 502
3 BQMall Class C 832x480 50Hz 600
4 Traffic Class A 2560x1600 30Hz 150
5 BasketballDrive Class B 1920x1080 50Hz 502

7.1 Coding time gain over HM-8.0

Figure 7.1: Encoding time gain for QP 20
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Figure 7.1 shows the encoding time gain for various test sequences tested at QP

20.

Table 7.2: Encoding time gain, loss in PSNR and increase in bitrate of the proposed
encoder compared to original HM encoder at QP 20

No. Sequence Class Resolution Number
of
Frames

Speedup
(%)

PSNR
loss
(dB)

Increase
in
Bitrate
(%)

1 BQSquare Class C 416x240
60Hz

600 19.430 -0.154 -1.384

2 BasketballDrill Class C 832x480
50Hz

502 17.939 -0.087 -2.109

3 BQMall Class C 832x480
50Hz

600 20.640 -0.079 -0.740

4 Traffic Class A 2560x1600
30Hz

150 19.370 -0.073 -0.658

5 BasketballDrive Class B 1920x1080
50Hz

502 19.602 -0.098 0.006

6 Average 19.396 -0.098 -0.977

Table 7.2 shows the change in PSNR, bitrate along with the coding time gain

for the various sequences.

7.2 Bitrate and PSNR Loss

The proposed system shows negligible bitrate increase and PSNR loss. Figures

7.2, 7.3, 7.4 and 7.5 show the bitrate-psnr graphs for the test sequences BQMall,

BQSquare, BasketballDrill and Traffic respectively. It can be seen that the perfor-

mance is very similar to the original HM 8.0 encoder.

The encoding was performed for QP values of 20, 24, 27 and 32. The change in

average coding time gain with respect to QP is shown in figure 7.6
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Figure 7.2: Bitrate vs PSNR for BQMall sequence

Figure 7.3: Bitrate vs PSNR for BQSquare sequence
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Figure 7.4: Bitrate vs PSNR for BasketballDrill sequence

Figure 7.5: Bitrate vs PSNR for Traffic sequence

7.3 Summary

This chapter discusses the performance of the HEVC encoder with the proposed

intra prediction scheme. An encoding time gain of upto 20% has been observed at a37



Figure 7.6: Gain vs QP

negligible loss of PSNR and negligible increase in bitrate for various test sequences

at different values of the quantization parameter QP.

38



CHAPTER 8

CONCLUSIONS

In the current configuration, the proposed system provides upto 20% encoding

time gain at negligible loss in performance. The average encoding time gain is 18.16%.

The average increase in bitrate is 1.57% and the average loss in PSNR is 0.0856 dB.

8.1 Scope for future work

The results show that neural networks are a feasible way to speed up intra coding

in HEVC. In the current implementation, the neural networks are used from a generic

neural networks library. Specialized libraries exist that can run the neural networks

on GPUs to achieve extremely high performance [19]. Since the neural networks

account for roughly 20% in the total encoding time in this scheme, significant gains

can be obtained by simply optimizing the neural networks.

Neural networks can also be run on dedicated custom hardware [20]. It is possi-

ble to reduce the time spent computing the state of the neural networks significantly

with these technologies. When neural networks can be made faster, it is possible to

design more complex systems that provide even greater accuracy at very little ex-

tra cost. When the accuracy of the neural networks increases, the decision cost C

required for reaching a specified performance limit also reduces.

The neural networks in this thesis are trained to only recognize angular modes.

It may be possible to train a neural network to recognize the planar and DC modes

as well. This would directly reduce the decision cost by a factor of 2 when compared

to this work.
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The proposed method reduces the encoding time by reducing the number of

modes to be evaluated. This is complementary to another approach taken by re-

searchers where the focus is on limiting the quad tree depth that is traversed [21].

When combined with that technique, the total encoding gain will be significantly

high.

Since the 4x4, 8x8 and 16x16 block sizes use separate neural networks in this

thesis, it can be possible to parallelize them to check for all the modes in the quad

tree simultaneously. This will produce significant encoding time gain over the current

work. Also, when the neural nets are run in parallel, the combined outputs of all

the neural networks may lead to an even more powerful algorithm for reducing the

decision cost C.

By reducing the decision cost, one significant improvement is the number of

times a buffer has to be loaded with the image, predicted signal and residual signal.

This can be further investigated to find efficient ways to store data in a buffer to

share the buffer between 4x4, 8x8 and 16x16 neural networks to further reduce the

number of times data has to be moved.

This system can be implemented on an FPGA to evaluate the performance of

the neural networks on hardware in terms of power consumption and encoding time.

This information can lead to additional projects regarding implementing the neural

net on a mobile device with custom hardware.

Finally, this system can be implemented for HEVC lossless, HEVC HE10 profile

[22] and also be ported back to H.264/AVC standards [4].

40



APPENDIX A

Introduction to Artificial Neural Networks
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The basics of artificial neural networks are covered in Appendix A.

The introductory book on neural networks [16] defines neural networks as a

massively parallel distributed processor made up of simple processing units, which

has a natural property for storing experimental knowledge and making it available

for use which resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning

process

2. Intra neuron connection strengths, known as synaptic weights, are used to store

acquired knowledge

A.1 Artificial Neurons

A single artificial neuron is implemented as shown in (A.1)

y = g

((∑
i

xiwi

)
+ b

)
(A.1)

Figure A.1: An artificial neuron

where xi are the inputs to the neural network, wi is the weight of that input, b

is a bias that is added and g() is the activation function. The inputs to the network

can be the outputs of other neurons, or can be supplied from an external source. The
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activation function is a function like (5.1) and (5.2). The output from each neuron is

y in (A.1).

A connection of these neurons into a network forms an artificial neural network.

Figure A.1 shows a schematic for a neuron and Figure A.2 shows how neurons can

be connected to form a type of neural network called multi layer perceptron (MLP).

In general, there are three types of neural networks:

1. Single Layer perceptron

2. Multilayer perceptron

3. Reccurrant networks

Single layer perceptrons are neural networks that have only a single layer of

neurons and recurrent networks are neural networks that have feedback loops with

delays [16].

Neural networks that have one or more hidden layers are called multilayer per-

ceptrons. Figure A.2 shows a 3 stage multilayer perceptron with 1 input layer, 1

hidden layer and 1 output layer. The source nodes to the input supply respective

elements of the input vector (activation pattern) to the neurons in the hidden layer.

The outputs of the third layer are used to drive the third layer and so on. [16].

Figure A.2: 3 layer MLP
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A.2 Training an artificial neural network

The knowledge of the neural network is stored in the form of the values of values

of the weights and biases. Thus, the process of training the neural network involves

adjusting the values of the weights and biases such that the output of the neural

network is similar to the desired response for a set of training data. The training

process can be seen as an optimization problem, where the mean square error of the

entire set of training data should be minimized. This problem can be solved in many

ways, from standard optimization huristics to special optimization techniques like

genetic algorithms and gradient descent algorithms like back-propogation [16].

Although the back-propogation algorithm is popular, it has some limitations

that are overcome with more advanced algorithms like RPROP [18].

A.3 Running cost of a multilayer perceptron

During the execution of a neural network, (A.1) must be computed for each

neuron present in the network. This means one addition and one multiplication

needs to be performed for each connection, and for the bias of the neuron. Then, the

call to the activation function must be performed. If there are c connections, n is the

total number of neurons and ni is the number of input neurons in a net, A is the cost

of multiplying and adding one weight and G is the cost of the activation function,

total cost is

T (n) = cA+ (n− ni)G (A.2)

If the neural network is fully connected, then we can express cost as

T (n) = (l − 1)(n2
l + nl)A+ (l − 1)nlG (A.3)
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where l is the number of layers and nl is the number of neurons in each hidden

layer.
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APPENDIX B

Test sequences used
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Frames from each video are shown here. These test videos are accessed from

ftp://hvc:US88Hula@ftp.tnt.uni-hannover.de/testsequences

B.1 BQMall

Figure B.1: BQMall

Width : 832

Height : 480

Frame rate : 50Hz

Number of Frames : 600
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Figure B.2: BQSquare

B.2 BQSquare

Width : 416

Height : 240

Frame rate : 60Hz

Number of Frames : 600

B.3 BasketballDrill

Width : 832

Height : 480

Frame rate : 50Hz

Number of Frames : 502
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Figure B.3: BasketballDrill

Figure B.4: Traffic
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B.4 Traffic

Width : 2560

Height : 1600

Frame rate : 30Hz

Number of Frames : 150
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