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ABSTRACT

 

ADAPTIVE SAMPLING WITH MOBILE WSN 

 

Publication No. ______ 

 

Koushil Sreenath, M.S. 

 

The University of Texas at Arlington, 2005 

 

Supervising Professor: Dan Popa 

 

The spatiotemporally varying network topology of mobile sensor networks 

makes it very suitable for applications such as reconstruction of environmental fields 

through sampling at locations that maximally reduce the largest uncertainty in the field 

estimate.  Mobile sensor networks comprise of multiple heterogeneous resources and a 

deadlock-free resource scheduling in the presence of shared and routing resources 

becomes necessary to schedule the most efficient (cost / energy / time) resource for a 

task.  Location information is imperative in sensor networks for most applications for 

localized sensing where localizing the network adaptively with no additional hardware 

is important. 
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Adaptive sampling approaches for spatially distributed static linear and 

Gaussian fields with mobile robotic sensors are formulated and experimentally 

validated.  Resource scheduling algorithms for dispatching resources in a deadlock-free 

manner in systems with shared and routing resources are mathematically formulated 

and experimentally validated.  Simultaneous and Adaptive localization algorithms for 

sensor network localization through simple geometric constraints are validated through 

simulations.
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CHAPTER 1 

INTRODUCTION 

Spatiotemporally varying network topologies of mobile sensor networks make 

them suitable for applications such as reconstruction of environmental fields through 

adaptively sampling at locations that maximally reduce the largest uncertainty in the 

field estimate.  Mobile sensor networks comprise of multiple heterogeneous resources 

and a deadlock-free resource scheduling in the presence of shared and routing resources 

becomes necessary to schedule the most efficient (cost / energy / time) resource for a 

task.  Location information is imperative in sensor networks for most applications for 

localized sensing where localizing the network adaptively with no additional hardware 

is important. 

This chapter introduces the research areas of the thesis, namely, Adaptive 

sampling, resource scheduling and sensor network localization. 

1.1 Adaptive Sampling 

Monitoring environmental parameters is a complex task of great importance in 

many areas, such as natural living environments, homeland security, industrial or 

laboratory hazardous environments (biologically, radioactively, or chemically 

contaminated), polluted/toxic natural environments, water treatment plants, nuclear 

stations, war zones, remote environments, such as deep space or underwater [1]. 
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The capabilities and distributed nature of wireless sensor networks provide an 

attractive sampling approach for estimation of spatiotemporally distributed 

environmental phenomena.  Sampling is a broad methodology for gathering statistical 

information about a phenomenon.  Using densely deployed static sensor network to 

cover large sampling volumes is very expensive in time and resource costs and places 

heavy demands on energy consumption.  Physical adaptation of a sensor network, either 

by adaptive sensor scheduling or through robotic mobility may be the only practical 

approach.  This leads to adaptive sampling wherein sampling strategies temporally 

evolve with past measurements.  Information-based approaches to processing and 

organizing spatially distributed, multimodal sensor data in a sensor network are 

discussed in [2, 3]. 

Field estimation using the Kullback-Leibler distance as a measure of the 

approximation error is shown in [4], where sample density is adaptively varied over the 

search space depending on the state uncertainty.  Adaptive Sensing [5] presents an 

energy-efficient topology configuration method for environment monitoring using 

densely deployed wireless sensor networks where redundant nodes are transitioned into 

passive mode as auxiliary nodes for later use.  Backcasting [6], detects correlations in 

an environmental field during the initial preview sampling stage and this information is 

used for refined sampling where only a small subset of sensors are adaptively activated, 

thereby reducing the demands placed on energy consumption. 

Environmental phenomena may appear as single or multiple events and may 

migrate within the environment.  Hence for accurate determination of space- and time-



3 

varying variables, we require the sensing to be spatiotemporally distributed.  Robotics 

technology provides the possibility of mobile sensing nodes in a distributed sensor 

network using prior research in localization of mobile robots [7-9], localization of 

sensor networks [10, 11], and cooperative environment mapping approaches such as 

SLAM [12], and CML [13].  Robotic Sensor Agents [1], presents a wide variety of 

intelligent, autonomous robotic platforms for monitoring the environment.  Deployment 

algorithms for sensor networks with mobile nodes are discussed in [14-16]. 

Mobile sensor agents are most suited to implement adaptive sampling strategies.  

A bacterial motion for detecting, seeking and tracking of an environmental phenomenon 

is presented in [17].  NIMS [18], presents an adaptive sampling approach for 

monitoring of spatiotemporal variation of atmospheric climate phenomena in a forest 

environment by mapping environmental variables of temperature, humidity, and solar 

illumination.  Environmental prediction [19], uses the ensemble transform Kalman filter 

(ET KF) for designing flight tracks along which GPS dropwindsondes are deployed 

from the aircraft and provide vertical profiles of pressure, temperature, humidity and 

wind as they drift down on a parachute.  Various estimation techniques are presented in 

[20] for predictive modeling in oceanography and meteorology.  Optimal sample 

selection using singular value decomposition (SVD) of the parameter variance space is 

introduced in [21], where linear regression of the estimators is performed for 

maximization of various norms of the variance matrix.  Concurrent localization and 

estimation of a field using multiple autonomous underwater vehicles (AUV) is 

presented in [22].  An extended Kalman filter based sampling approach for estimation 
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of parameterized fields is introduced in [23] samples are chosen to minimize the state 

uncertainty, represented by the covariance matrix. 

This thesis considers the problem of estimation of a spatially stationary color 

field using mobile robotic sensors equipped with a color sensing module.  A color field 

is chosen so that the truth model is always known easily and can be used for 

determining the level of accuracy in our estimation algorithms.  Most environmental 

fields can be modeled and projected onto a two-dimensional topographical color map 

which can then be used for estimation.  Extensive simulations and experimental results 

are presented. 

1.2 Resource Scheduling 

Mobile wireless sensor networks comprise of multiple heterogeneous resources 

capable of performing diverse tasks such as measuring, manipulating, moving, sensing, 

etc.  In mobile sensor networks, a strong one-to-many mapping between a resource and 

the tasks that the resource can perform occurs.  This mapping can be statically assigned 

resulting in shared resources, or dynamically assigned resulting in both shared and 

routing resources.  Shared resources arise when multiple tasks contend for a single 

shared resource, while routing resources arise when multiple resources contend to 

perform a single task.  The use of shared or routing resources is a major problem 

occurring in discrete event (DE) systems, including manufacturing systems, computer 

systems, communication systems, highway/vehicle systems, and others [24].  Failure to 

suitably assign, dispatch, or schedule resources in the presence of shared or routing 

resources, can cause serious deleterious effects on system performance, resulting in 
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extreme cases in system deadlock.  The need then arises for deadlock prevention, 

deadlock avoidance, or deadlock detection and recovery. 

Deadlock avoidance algorithms have been used in various scenarios such as 

robotic cells [25, 26], e-commerce driven manufacturing systems [27], process control 

such as semiconductor fabrication [28], communication network routing [29], computer 

operating systems, etc.  The implementation of deadlock avoidance policies in 

autonomous distributed robotic systems such as mobile sensor networks has not been 

still thoroughly investigated.  Preliminary simulations of efficient deadlock avoidance 

policies for shared resources in heterogeneous mobile sensor networks are presented in 

[30]. 

A large amount of research has been done in developing various deadlock 

avoidance algorithms using varied concepts such as circular wait, circular blocking, 

siphons in Petri nets, critical subsystems, etc.  Petri net based deadlock prevention 

polices [31, 32] deal with detecting siphons and statically introducing control places 

into the net to eliminate unmarked siphons signifying deadlock.  In [27], potential 

deadlock patterns are acquired from an off-line simulation of the part processing 

sequence and then, an on-line matching/reordering process is made use of to keep the 

current system state dissimilar to the acquired deadlock patterns.  Mathematical 

formulations of deadlocks and traps by calculation of s-invariants of marked graphs 

using linear algebra are thoroughly discussed in [33].  Supervisory control of Petri nets 

[34] introduces an approach of keeping a Petri net from starvation by using on-line 

routing functions instead of traditional off-line control places, where the routing 
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function assigns a non-shared resource to perform the task from within a pool of 

resources.  Detailed mathematical analysis of deadlocks and an efficient dispatching 

policy for deadlock avoidance based on the generalized kanban scheme using a matrix 

model for discrete event systems is presented in [24, 25, 26, 35-37]. 

Due to the heterogeneous nature of mobile sensor networks, resources are 

capable of performing multiple jobs.  These are systems with flexible routing where 

tasks can choose from a set of resources.  In such systems with flexible routing, route 

enumeration can be of exponential complexity and execution of deadlock avoidance 

constraints are rendered computationally intractable [38].  In [38, 39], a control model is 

developed that allows for small, quickly enumerable subset of less-dense routes which 

allows for several processing alternatives (routes) at each step while still maintaining 

deadlock free operation.  In [40], several novel mathematical formulations are 

constructed for detecting active circular waits leading to a deadlock in flexible routing 

systems; however no deadlock avoidance algorithm is arrived at. 

In this thesis, we extend the preliminary analysis of deadlock avoidance polices 

for shared resources in heterogeneous mobile sensor networks to more complicated 

scenarios.  We show through experimental implementation on an actual mobile sensor 

network test-bed, the feasibility and effectiveness of the proposed deadlock-free 

supervisory control in performing complex and simultaneous sequencing of 

interconnected tasks.  Further, a general deadlock avoidance policy for systems with 

flexible routing, where both shared and routing resources are present, is mathematically 

formulated and various simulations performed to validate deadlock-free operation. 
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1.3 Simultaneous and Adaptive Localization of a WSN 

Location information is imperative for applications in both wireless sensor 

networks and mobile robotics.  Many sensor network applications, such as tracking 

targets, environmental monitoring, geo-spatial packet routing, require that the sensor 

nodes know their locations.  The large scale of deployment in sensor networks makes 

careful placement or uniform distribution of sensor nodes impractical.  The requirement 

of the sensors to be small, un-tethered, low energy consuming, cheap, etc., make the 

sensors resource-constrained [41].  Localization is a challenging problem and yet 

crucial for many applications. 

Approaches to the problem of localization are varied.  A detailed introduction to 

localization in sensor networks is presented in [11].  GPS [42] solves the problem 

trivially, but equipping the sensors with the required hardware may be impractical.  A 

small section of active beacons can be placed in the sensor network and other sensors 

can derive their location from these anchor nodes [43, 44].  Cooperative localization 

methods have been developed for relative localization [10, 45].  Other approaches 

involve RSSI [46], TOA [47, 48], AOA [49], and Signal Pattern Matching [42]. 

For localization with no additional hardware on the sensor node, the geometric 

constraints of radio connectivity are exploited.  Some authors suggest using a mobile 

robot (whose position is known) to localize the sensors.  However, the position of the 

mobile robot may be hard to determine.  LaSLAT [50] uses a Bayesian filter to 

simultaneously localize the sensor network and track the mobile robot.  In [51], a 

particle filter is employed to localize elements of the network based on observation of 
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other elements of the network.  In [52], a mobile robotic sensor localized the network 

based on simple intersections of bounding boxes.  In [53], geometric constraints based 

on both radio connectivity and sensing of a moving beacon localize the sensor network.  

The Kalman filter has been used in dead-reckoning for mobile robots but its full 

potential in localization of WSN has not heretofore been fully explored.  In [54], an 

extended Kalman filter is used for localization and tracking of a target.  The Kalman 

filter was used in [55] for active beacon and mobile AUV localization and in [56] for 

scheduling of sensors for target tracking.  SLAM [12] and CML [13] employ Kalman 

filters for concurrent mapping and mobile robot localization, which can be considered 

similar to our work wherein the geometric constraints introduced due to radio 

connectivity of the static sensors play the role of features.  In this paper we use the full 

capabilities of the Kalman filter in the general WSN localization problem. 

The work in this thesis exploits geometric constrains based on radio connectivity 

such that range information is not needed.  A mobile robot initially sweeps the network, 

and broadcasts from the robot are used to localize the sensor nodes.  Computationally 

inexpensive Kalman filters implemented on the sensors fuse the information.  On the 

other hand, as time passes, the mobile robot gradually loses its own localization 

information.  We present an algorithm that uses updates from the better localized 

sensors along with GPS updates, when they occur, to correct this problem.  A 

continuous-discrete extended Kalman filter running on the robot estimates the robot 

state continuously and fuses the discrete measurement updates. 
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Finally, an adaptive localization algorithm, based on adaptive sampling 

techniques [22, 23], is presented that navigates the mobile robot to an area of nodes 

with highest position uncertainty.  This ensures that the robot maneuvers to an area 

where the nodes are least localized, so that it can maximize the usefulness of its 

positional information in best localizing the overall network. The adaptive localization 

strategy ensures that, with a minimal robot movement, the largest reduction in 

aggregated node uncertainty is achieved at every iteration of the adaptive localization 

algorithm. 

1.4 Summary 

This chapter introduced the scenarios of adaptive sampling using mobile 

wireless sensor networks, resource scheduling and deadlock avoidance policies in the 

presence of shared resources, and routing paths, and simultaneous adaptive localization 

of wireless sensor networks using geometric constraints of radio connectivity. 

1.5 Contributions 

This thesis makes the following contributions: 

• Closed form information measures in linear regression are used to 

adaptively estimate spatially distributed static linear and Gaussian fields 

with linear parameters.  Nonlinear optimal estimation techniques, such as 

the Kalman filter, constrained, and unconstrained nonlinear optimizers are 

used to adaptively estimate field and field basis parameters.  An 

experimental robotic sensor is designed, developed and used to adaptively 

estimate a linear color field. 
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• Deadlock avoidance techniques developed using the discrete event 

controller is extended and implemented on a mobile wireless sensor 

network comprising of Cybermotion SR2 patrol robots and Berkley motes, 

such that smooth, deadlock-free resource scheduling occurs in the 

presence of shared resources.  Further, a general mathematical formulation 

is developed for deadlock avoidance in systems with flexible-routing, 

where both shared and routing resources exist.  Simulations are done to 

validate deadlock-free operation. 

• A simultaneous localization algorithm is developed and simulated for 

localization of a sensor network using geometric constraints of radio 

connectivity.  An adaptive localization algorithm is developed to 

adaptively navigate a mobile robot such that it optimally minimizes the 

largest localization uncertainty of a sensor network. 

1.6 Thesis organization 

This thesis presents algorithms for adaptive sampling, resource scheduling and 

localization using mobile sensor networks.  The remainder of it is structured as follows. 

Chapter 2 presents an adaptive sampling strategy for field estimation using an 

extended Kalman filter.  Extensive simulation results, experimental results and 

development of the mobile robotic sensors are discussed. 

Chapter 3 presents the simulation and experimental implementation of the 

deadlock avoidance policy using the discrete-event controller for resource scheduling in 

the presence of shared resources.  Further mathematical formulations are discussed and 
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a simulation of a deadlock avoidance policy in the general case of routing paths and 

shared resources is presented. 

Chapter 4 provides localization algorithms for the simultaneous and adaptive 

localization of a wireless sensor network using geometrical constraints of radio 

connectivity. 

Chapter 5 details the robotic platform that was designed and built to 

experimentally validate the adaptive sampling algorithms. 

Chapter 6 summarizes the main contributions of this thesis and provides 

suggestions for future research. 
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CHAPTER 2 

ADAPTIVE SAMPLING

The capabilities and distributed nature of wireless sensor networks provide an 

attractive sampling approach for estimation of spatiotemporally distributed 

environmental phenomena.  Adaptive sampling is the scenario where sampling 

strategies temporally evolve with past measurements for optimality.  In the context of 

mobile sensor networks, the problem of adaptive sampling by selection and 

repositioning of mobile sensing nodes in order to optimally estimate the parameters of 

distributed variable field models is considered. 

This chapter considers the problem of estimation of a spatially stationary field 

spread over a region R  using mobile robotic sensors.  The estimation of the field by the 

sampling algorithm reduces the region R  to a set G  of sampling locations.  The optimal 

construction of G  is constrained by several factors such as the non-holonomic 

constraints on vehicle kinematics, the communication connectivity due to mobility of 

the sensor network, the inherent inaccuracy in positional estimates due to navigational 

errors of mobile nodes, and the spatial granularity of the field that arises due to the 

sensors used. 

In this chapter, extensive simulations of field estimations using adaptive 

sampling techniques by simple linear regression, constrained nonlinear optimization and 
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optimal estimation methods are discussed.  Experimental results of 2D deployment 

scenarios using custom-built, low-cost mobile sensor robots are presented. 

This chapter is organized into the following sections.  Section 2.1 discusses 

various field models and mathematical formulations of different adaptive sampling 

algorithms.  Section 2.2 presents several simulations of estimation of spatially 

distributed static fields.  Section 2.3 illustrates the experimental setup and presents 

experimental results validating the proposed adaptive sampling algorithm. 

2.1 Models 

Mathematical models are formulated to represent various parameterized fields. 

These are used for simulating various adaptive sampling algorithms for field estimation. 

This section presents mathematical models of various parameterized fields and 

mathematically proposes several adaptive sampling algorithms. 

2.1.1 Estimation of a parameterized field using linear regression 

Regression is a statistical method of estimating the conditional expected value of 

a dependent variable given the values of the other independent variables.  When the 

relation between the dependent variable to the independent variable is assumed to be a 

linear function of some parameters, we have linear regression. 

Linear regression has been used for estimating linear fields in [22], and for 

nonlinear Gaussian fields but linear in the parameters in [23]. 

The independent variables are the position of the sampling location given as 

 [ ]TyxX =  (2.1) 

with a general field linear in the parameters represented by 
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 ( ) ( )XgaXgaaF mm+++= K110  (2.2) 

where the parameters maaa ,,, 10 L  are all linear and the basis function of the field, 

( ) ( ) ( )XgXgXg m,,, 21 L  may be nonlinear such as the Gaussian basis given by 
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The assumption that the field distribution is linear in its parameters allows us to 

compute a closed form solution for the information measure used by the sampling 

algorithm.  After n  measurements at locations nXXX ,,, 21 L , the field measures depend 

linearly on the coefficients maaa ,,, 10 L  via position-dependent functions, and we can 

directly estimate the unknown coefficients from the least-square solution 
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Since the pseudo-inverse has a closed form, given by 
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The covariance matrix of nÂ  can be related directly to the constant measurement 

uncertainty as 

 ( ) ( )( ) 1
varˆvar

−
= n

T
nin MMZA  (2.8) 

and the adaptive sampling algorithm will move the vehicle from location nX  to 1+nX , 

such that the following normp −  is minimized over the search space Θ . 
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 ( ) ( ) Θ∈∀≤+ XXmXm n ,1  (2.10) 

2.1.2 Estimation of a parameterized field using a Kalman Filter 

Assuming the field distribution to be linear in its parameters allows us to 

compute a closed form solution for the information measure used in the sampling 

algorithm to decide the next sampling location.  But such assumptions are not practical 

for all scenarios.  Here we consider estimation of a parameterized field using a Kalman 

filter such that the need for a closed form information measure is eliminated. 

The sampling location is given as 

 [ ]TyxX =  (2.11) 

with a parameterized field model with linear parameters 

 ( ) ( )XgaXgaaF 22110 ++=  (2.12) 

and nonlinear Gaussian basis 
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The states to be estimated are the field coefficients 

 [ ]TaaaA 210=  (2.14) 

which get updated in time by the time-update equation of the Kalman filter 
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On sampling at a location, the measurement-update equation of the Kalman 

filter is employed to improve the estimate by combining the information available in the 

new measurement.  The measurement-update equation is 
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where the observation matrix is given as 

 ( ) ( )[ ]12111 1 +++ = kkk XgXgH  (2.17) 

The adaptive sampling algorithm will move the vehicle from location kX  to 

1+kX , such that the following norm−2  of the covariance matrix is minimized over the 

search space Θ . 
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2.1.3 Estimation of field parameters using linear regression and nonlinear optimization 

Earlier sections have considered fields with Gaussian basis with known mean 

and variances.  Here we approach the problem of estimating a parameterized field with 
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linear parameters and also estimating the means of the basis that make up the field.  

This is a more accurate approximation of a true environmental field. 

We attempt to arrive at a solution by using linear-regression for estimation of 

the linear field parameters and using nonlinear optimization for estimation of the basis 

parameters of the field. 

The sampling location, the field model and the field basis are given by 

 [ ]TyxX =  (2.19) 

 ( ) ( )XgaXgaaF 22110 ++=  (2.20) 
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After n  measurements at locations nXXX ,,, 21 L , the field measures depend 

linearly on the coefficients maaa ,,, 10 L  via nonlinear position-dependent basis 

functions.  We try estimating the unknown coefficients from the least-square solution 
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and estimating the unknown means of the basis by finding the local minima of the 

minimization function using nonlinear unconstrained optimization techniques.  The 

minimization function is given as 

 ( ) ( )( )∑
∀

−++
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iii ZXgaXgaa
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22110
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2.1.4 Estimation of field parameters using nonlinear optimization 

Using linear regression for estimating field parameters and nonlinear 

optimization for field basis parameters does not incorporate complete knowledge of the 

history of the estimates.  We try to use a nonlinear constrained optimization technique 

for estimating the field parameters and the basis means together. 

The sampling location, the field model and the field basis as earlier are given as 

 [ ]TyxX =  (2.24) 

 ( ) ( )XgaXgaaF 22110 ++=  (2.25) 
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We use a nonlinear constrained optimizer which minimizes a function 

 ( )xf
x

min  (2.27) 

subject to the linear equality and inequality constraints, 
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.
 (2.28) 

the nonlinear equality and inequality constraints, 
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 (2.29) 

and bounded by 

 ubxlb ≤≤  (2.30) 

To minimize the overall error in our estimation of 2211210 ,,,,,, cccc yxyxaaa , we 

use a minimization function 
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For accurate, repeatable convergence of estimating parameters, we partition our 

search space Θ  into various sub search spaces ( )4422 , xx ΘΘ  and carry on sub estimations 

to arrive at an estimate for a particular configuration.  From among the estimates for 

various configurations, the best estimate is chosen.  This is the scenario of Divide-n-

Conquer where the subspace is partitioned and from among the partitioned results, the 

best one is chosen. 

To estimate the entire field (both the field parameters and all basis parameters,) 

we consider a single basis field 

 ( )XgaaF 110 +=  (2.32) 

and to estimate all field and basis parameters, σ,,,, 10 cc yxaa , we use a minimization 

function 
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2.1.5 Estimation of a parameterized field with localization uncertainty 

In approaches described in the previous sections, we assume that there is 

absolutely no uncertainty about the sampling location.  However navigation of a mobile 

robotic sensor is subjected to various localization errors.  We can use location 

information that is embedded in a field sample (due to the inherent background 

mathematical model of the field) to better localize our sampling location.  A given 
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known localization uncertainty described by a simple kinematic model is introduced 

into the system [23]. 

Along with the field, we also estimate the sampling location.  The aggregate 

state then contains both the positional information kX , and the field parameter estimates 

kA .  The state and output equations are written as 
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where the white noise covariances of state and output are 
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The state evolution is governed by the nonlinear Kalman filter time-update 

equation 
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On sampling at a location, the measurement-update equation of the Kalman 

filter is employed to improve the estimate by combining the information available in the 

new measurement.  This information contains both information about the field and the 

position of the sample.  The general nonlinear measurement-update equation is 
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For a linear field of the form )()( 22110 XgaXgaaF ++=  with ( ) ( ) yXgxXg == 21 , , 

we have 
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For a Gaussian field of the form ( )XgaaF 110 +=  with 

( ) ( )
2

22

2
1 )( σ

cc yyxx

eXg

−+−
−

= , we 

have 

 
[ ]
[ ]Tcc

T

yxaaA

nyxX

σ10

2,

=

==
 (2.41) 

with the output equation modified as 
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and the linearized Jacobian output matrix represented as 

 







=

2

1

0

0

H

H
H  (2.44) 



22 

 



































−

−

−+−

=





























∂
∂
∂

∂
∂

∂
∂

∂
∂

∂

==

−+−
−

−+−
−

−+−
−

−+−
−

2

22

2

22

2

22

2

22

2

)()(

2

1
1

2

)()(

21

2

)()(

3

22

1

2

)()(

1

0

221

)()(

1

,

σ

σ

σ

σ

σ

σ

σ

σ cc

cc

cc

cc

yyxx

yyxx

c

yyxx

cc

yyxx

c

c

e
yy

a

e
xx

a

e
yyxx

a

e

h

y
h

x
h

a
h

a
h

HIH  (2.45) 

For information about the development of the nonlinear Kalman filter equations, 

interested users are referred to [57, 58] 

2.1.6 Differential robot simulation 

A differential robot model as illustrated in Figure 2.1 is used to mathematically 

represent the physical robot kinematics.  A systematic error [59] is injected into the 

system to account for navigational errors that arise due to practical inaccuracies in 

construction and mechanical assembly. 

 

 

(a) (b) 

Figure 2.1: Differential robot with uncertainty in wheel radii and axle length. (a) 

Top view, and (b) Front view. 

Taking the states of the system to be [ ] [ ]TT
yxxxxX θ== 321 , the system 

model is given by 
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where the effective axle length is 

 ))(( 22
RLb rrLL −−=  (2.47) 

and the inputs being 

 [ ] [ ]TLR
T

uuu ωω== 21  (2.48) 

The nominal system model can be obtained from the above system by replacing 

rrr rl == , and LLb = .  In the dead reckoning scheme [60], [ ]21 uu  are not control 

inputs, but are rather the measured wheel velocities which can be measured by taking 

the difference between encoder counts from successive sample periods.  If )(),( kk LR φφ  

represent the encoder counts of the right and left wheels respectively, then using 

forward difference approximation of the derivative in the kinematic system, equation 

(2.46), we arrive at the discrete system model given by 
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where LdrvRdrv KK −− ,  are the drive constants of the right and left wheel respectively in 

terms of distance per drive count and ( ) ( ) ( ) ( )1,1 −−=∆−−=∆ kkkk LLLRRR φφφφφφ  are the 

change in drive counts measured between successive sample periods. 
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The encoder is modeled as a simple extrapolation model and is given by 

 ( ) ( ) ( ) tdckdcKkk zerodc ∆−+−= )(1φφ  (2.50) 

where dcK  is a proportionality constant in terms of encoder counts / percent duty cycle, 

zerodc  is the duty cycle percent that keeps the motor at standstill, and t∆  is the time 

interval. 

A simple quasi-holonomic control is used to navigate the robot from an initial 

start location to a destination location.  This is achieved by first orienting the robot 

along the path from the start to the destination, then moving the robot along this path 

and then orienting the robot to match the required destination orientation.  A simple 

Kalman filter implemented serves to fuse information from the GPS (the overhead 

camera) to correct navigational errors. 

2.2 Field estimation simulations 

The proposed adaptive sampling algorithms discussed in section 2.1 are 

simulated on the various mathematical field models for the purpose of estimation of 

parameterized fields. The simulation results for the various combinations of field 

models and adaptive sampling algorithms are presented in this section. 

2.2.1 Estimation of a parameterized Gaussian field using linear regression 

A 2D nonlinear Gaussian field (though still linear in the parameters) is 

considered with 2=m , such that 

 ( ) ( )yxgayxgaaF ,, 22110 ++=  (2.51) 

where a Gaussian basis as described in eq. (2.3) is chosen.  The centers of Gaussians for 

( )yxg ,1 , and ( )yxg ,2  are ( ) )45,65(,30,30  respectively for the norm−2  case and 
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( ) ( )80,35,30,30  respectively for the norm−∞  case.  The standard deviation of the Gaussian 

distribution is chosen as 10=σ . 

Figure 2.2 illustrates the original field, Figure 2.3 depicts the field estimated by 

least squares and the sampling locations using the norm−2 , and Figure 2.4 shows 

convergence graphs of the field parameters. 

Figure 2.5, Figure 2.6, and Figure 2.7 illustrate the same information for 

norm−∞ . 

  
Figure 2.2: Original field (Linear regression with norm−2  sampling). 

  
Figure 2.3: Estimated field and sampling locations ( norm−2  sampling). 
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Figure 2.4: Field parameter coefficient convergence ( norm−2  sampling). 

  
Figure 2.5: Original field (Linear regression with norm−∞  sampling). 

  
Figure 2.6: Estimated field and sampling locations ( norm−∞  sampling). 

   
Figure 2.7: Field parameter coefficient convergence ( norm−2  sampling). 
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2.2.2 Estimation of a parameterized Gaussian field using a Kalman Filter 

The centers of Gaussians for ( )yxg ,1 , and ( )yxg ,2  are ( ) )65,35(,30,30  respectively 

and the standard deviation of the Gaussian distribution is chosen as 10=σ . 

Figure 2.8 illustrates the original field, Figure 2.9 depicts the field estimated by 

a Kalman filter along with the sampling locations, and Figure 2.10 shows the 

convergence graphs of the field parameters.  As is evident, even after 45 samples, the 

field parameters do not converge completely. 

  
Figure 2.8: Original field (KF sampling). 

  
Figure 2.9: Estimated field and sampling locations (KF sampling). 
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Figure 2.10: Field parameter coefficient convergence (KF sampling). 

2.2.3 Estimation of field parameters using linear regression and nonlinear optimization 

The centers of Gaussians for ( )yxg ,1 , and ( )yxg ,2  are ( ) )65,35(,30,30  respectively 

and the standard deviation of the Gaussian distribution is chosen as 10=σ . 

Figure 2.11 illustrates the original field, Figure 2.12 depicts the sampling 

locations and the field estimated by using a combination of linear regression and 

nonlinear optimization techniques, Figure 2.13 shows the convergence graphs of the 

field parameters, and Figure 2.14 depicts the movement of the means of the Gaussian 

basis functions of the field.  This clearly illustrates that the means diverge and we can 

not completely and accurately estimate both the field and the basis parameters using 

hybrid linear and nonlinear optimization techniques. 

 

Figure 2.11: Original field (LS / NLS). 



29 

  
Figure 2.12: Estimated field and sampling locations (LS / NLS). 

   
Figure 2.13: Field parameter coefficient convergence (LS / NLS). 

  
Figure 2.14: Movement of the mean of the Gaussian basis. (LS / NLS). 

2.2.4 Estimation of field parameters using nonlinear optimization 

A constrained nonlinear optimizer is used to estimate the field parameters 

210 ,, aaa  and the basis parameters 2211 ,,, cccc yxyx  with the constraints on the bounds as 
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[ ]1010,, 210 −∈aaa , ( ) ( ) [ ]1000,,, 2211 ∈cccc yxyx .  The expected values are 

5.5,4,1 210 −=== aaa , and ( ) ( )30,30, 11 =cc yx , ( ) ( )65,35, 22 =cc yx . 

Figure 2.15 illustrates the original field, Figure 2.16 depicts the sampling 

locations and the estimated field using a constrained nonlinear optimization technique, 

Figure 2.17 shows the convergence graphs of the field parameters, and Figure 2.18 

depicts the movement of the means of the Gaussian basis functions of the field. 

  
Figure 2.15: Original field (constrained nonlinear optimizer) 

  
Figure 2.16: Estimated field and sampling locations (constrained nonlinear 

optimizer). 
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Figure 2.17: Field parameter coefficient convergence (constrained nonlinear 

optimizer). 

  
Figure 2.18: Movement of the mean of the Gaussian basis (LS / NLS). 

The accuracy in the convergence of the estimation parameters in the previous 

case is not repeatable.  A divide and conquer approach by partition of the search space 

into various nxn  partitions is performed as illustrated in Figure 2.19.  The constraints of 

bounds for the nonlinear optimizer are now updated to each sub-space rather than the 

entire search space. 

 

Figure 2.19: Search space partitioning. 
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For a 22x  search partitioning, Figure 2.20 depicts the sampling locations and 

estimated field, Figure 2.21 shows the convergence graphs of the field parameters, and 

Figure 2.22 depicts the movement of the basis means.  As can be seen the best estimates 

are available in the search space combination of ( ) ( )1,0,0,0  where the two Gaussian basis 

functions are centered.  For a 44x  search partitioning, Figure 2.23, Figure 2.24, and 

Figure 2.25 illustrate the same information. 

The partitioning gives us faster sub-space convergence and has a much higher 

possibility of convergence. 

  
Figure 2.20: Estimated field and sampling locations ( 22x  partitioning). 

   
Figure 2.21: Field parameter coefficient convergence ( 22x  partitioning). 
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Figure 2.22: Movement of the mean of the Gaussian basis ( 22x  partitioning). 

  
Figure 2.23: Estimated field and sampling locations ( 44x  partitioning). 

 

   
Figure 2.24: Field parameter coefficient convergence ( 44x  partitioning). 
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Figure 2.25: Movement of the mean of the Gaussian basis ( 44x  partitioning). 

Further, a single basis function is chosen as the field as in equation (2.32) and all 

the parameters of the field 10 , aa , and basis σ,, 11 cc yx are estimated.  The same 

constraints as in earlier simulations are used along with the new bound of [ ]100∈σ . 

Figure 2.26 illustrates the original field, Figure 2.27 depicts the estimated field 

and the sampling locations where the entire field is estimated, Figure 2.28 shows the 

convergence graphs for the field parameters, and Figure 2.29 shows the convergence 

graphs for the basis parameters. 

  
Figure 2.26: Original field (nonlinear optimization for field and basis parameter 

estimation). 
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Figure 2.27: Estimated field and sampling locations (nonlinear optimization for 

field and basis parameter estimation). 

  
Figure 2.28: Field parameter convergence (nonlinear optimization for field and 

basis parameter estimation). 

  
Figure 2.29: Field basis parameter convergence (nonlinear optimization for field 

and basis parameter estimation). 
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2.2.5 Estimation of a parameterized field with localization uncertainty 

We estimate a linear field with uncertainty in localization as described in section 

2.1.5.  Initial conditions of state is takes as [ ]TX 000000 = , with very high 

uncertainty in the initial estimate 5
10

0 10 IP = , with state uncertainty 

 







=

2

1

0

0

Q

Q
Q  (2.52) 

where the localization uncertainty 21 1.0 IQ = , and field parameter uncertainty 32 0=Q , 

and the measurement uncertainty as 

 



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
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2

1

0

0

R

R
R  (2.53) 

with 21 1.0 IR = , and 1.02 =R . 

Figure 2.30 depicts the original linear field, Figure 2.31 shows the field 

parameter convergence, and Figure 2.32 shows the sampling locations for simulations 

with and without localization uncertainty. 

  
Figure 2.30: Original and estimated linear fields (with localization uncertainty). 
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Figure 2.31: Field parameter coefficient convergence for linear field estimation 

(with localization uncertainty). 

  
(a) (b) 

Figure 2.32: Sampling locations for linear field estimation. (a) With localization 

uncertainty, and (b) Without localization uncertainty. 

A Gaussian field is entirely estimated (both field parameters and basis 

parameters) with localization uncertainty.  An initial state 
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with very large uncertainty in the initial estimate, 7
10

0 10 IP =  is chose, with same 

localization uncertainty, 1Q , and 72 0=Q , and with same measurement uncertainty.  

Figure 2.33 depicts the original Gaussian field, Figure 2.34 illustrates the estimated 
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field and the sampling locations where estimation is done with localization uncertainty, 

Figure 2.35 shows the convergence graphs for field parameters, and Figure 2.36 shows 

the convergence graphs for basis parameters. 

  
Figure 2.33: Original Gaussian field (with localization uncertainty). 

  
Figure 2.34: Estimated Gaussian field and sampling locations (with localization 

uncertainty). 
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Figure 2.35: Field parameter coefficient convergence for Gaussian field 

estimation (with localization uncertainty). 

  
Figure 2.36: Field basis parameter convergence for Gaussian field estimation 

(with localization uncertainty). 

2.2.6 Differential robot simulation 

The differential robot model discussed in section 2.1.6 is simulated with a quasi-

holonomic controller to navigate from an initial location of ( )0,0  to a destination of 

( )50,50  with a simple Kalman filter serving to fuse measurement updates from the GPS. 

Since the differential robot is injected with systematic errors, the commanded 

inputs do not drive it along the desired path to the destination.  Figure 2.37(a) shows the 

estimated robot path (where the robot thinks it is), which is different from the actual 

robot position, Figure 2.37(b).  Figure 2.38 shows the improvement in controlling the 
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position of the robots where information from the GPS (position and orientation 

information, and position information only) is fused by the Kalman filter to improve the 

robot positional estimate. 

  
(a) (b) 

Figure 2.37: Robot simulation of (a) estimated and (b) actual positions. 

  
(a) (b) 

Figure 2.38: Estimated robot position, improved with updates from GPS. (a) 

Position and orientation updates, and (b) Position updates only. 

2.3 Experimental Setup and Results 

An experimental setup as illustrated in Figure 2.39 has been setup comprising of 

a '8'12 x  sample space with a color generated field printed on large format paper and 

assembled on the floor, an inexpensive overhead camera at a height of '13  
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encompassing the entire area in it’s field of view, a base station where the primary AS 

algorithm runs and serves as a central dispatcher of resources, and several mobile 

robotic sensors.  The mobile sensor units (ARRI rovers shown in Figure 2.40) are 

inexpensive (below USD 500 per unit), are equipped with wheel encoders for 

localization, a color sensing module for taking color samples, and a RF communication 

card which serves as the link between the various robotic sensors and the base station in 

a star topological network. 

 

Figure 2.39: Illustration depicting the experimental setup. 

   
(a) (b) (c) 

Figure 2.40: ARRI Rover (a) Robot model, (b) Top view, and (c) Perspective 

view. 
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2.3.1 Field model and description of uncertainty 

A simple linear field, linear in three color components of red, green, and blue, is 

used for initial algorithm validation. The field is given as 
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with nominal field parameters chosen as (Field in Figure 2.41) 
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Figure 2.41: True color field generated for printing using field parameters in 

equation (2.56). 

A rectangular grid array is used to correct the wide-angle lens distortion, Figure 

2.42, and MATLAB image acquisition and processing toolboxes are used to calculate 

the pose of the robot using the camera system using image segmentation, Figure 2.43. 
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Figure 2.42: The grid used to correct camera lens distortion. 

 

Figure 2.43: The MATLAB GUI showing a RGB field and an example of a 

segmented image for robot localization. 

2.3.2 Experimental adaptive sampling for linear field estimation 

Adaptive sampling has been used to estimate a linear field without localization 

uncertainty of the mobile sensor.  The base station runs the adaptive sampling algorithm 

and commands the mobile sensor to sample at a particular location.  The mobile sensor 

navigates to the location by dead reckoning and thus could end up at a location not 

exactly matching the commanded one.  A camera update at this point ensures that the 

sampling location used is the current mobile sensor’s position.  Thus we can ignore 

localization uncertainty for the moment and iterate the adaptive sampling algorithm to 
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generate the next sampling location.  The experiment used twenty five sampling 

location to estimate the field. 

A simple Kalman filter is setup to estimate the field.  The state to be estimated is 

the compound tri-field representing the three different linear fields of red, green and 

blue, given as 

 [ ]TbbbgggrrrX 210210210=  (2.57) 

The field is assumed to be stationary and thus does not evolve temporally.  The 

Kalman filter time-update equation illustrates this 
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The measurement-update equation fuses the information obtained after sampling 

a particular location 
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where the observation matrix is given as 
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Based on the height and resolution of the CCD camera, we estimate a 

measurement uncertainty of cm5.2± .  The color sensor (TAOS TCS 230) measurement 

uncertainty, given by the number of discrete RGB values it can measure with, is 

expressed in RGB units as unity. 
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Figure 2.44 shows the actual field and the estimated field after 25 samples using 

the adaptive sampling algorithm.  Our eye can not tell the difference; however, in reality 

there are errors due to color printing, color sensor and localization errors.  Figure 2.45 

shows the various sampling locations of the mobile robotic sensor.  Figure 2.46 

illustrates the evolution of the field parameters to values close to nominal as successive 

samples are taken.  The reason for the discrepancy is not color measurement error but 

rather differences between screen and printer colors. 

  
(a) (b) 

Figure 2.44: (a) True printed field and (b) estimated field using adaptive sampling 

(25 samples). 
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Figure 2.45: Sampling locations superimposed on the field image view from the 

overhead camera. 

   

   

   
Figure 2.46: Field parameter convergence graphs for the 9 unknown field 

coefficients. 
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2.4 Summary 

Extensive simulations for field estimation using adaptive sampling algorithms 

have been discussed involving various approaches for linear and Gaussian fields, with 

and without localization uncertainty.  An experimental setup with mobile robotic 

sensors, a sample color field, and an overhead camera system as GPS has been 

constructed.  Experimental validation of adaptive sampling approaches for field 

estimation has been demonstrated. 
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CHAPTER 3 

RESOURCE SCHEDULING

In Manufacturing systems, resources are usually application specific with slight 

flexibility of resource assignment to tasks, whereas in mobile sensor networks, the 

resources are heterogeneous and capable of performing diverse tasks.  Hence we have 

shared resources where multiple tasks contend for a single shared resource, or multiple 

resources contend to perform a single task.  In the former case we have shared 

resources, and in the latter, routing resources.  The need then arises to suitably assign, 

dispatch, schedule resources in such a manner so as to avoid contention, or circular wait 

of resources leading to deadlock. 

This chapter is organized into the following sections.  Section 3.1 discusses the 

matrix-based discrete event controller, section 3.2 introduces deadlocks and presents the 

deadlock avoidance policy along with implementation on the WSN test bed, section 3.3 

discusses the issues of deadlock avoidance in the presence of routing resources, and 

section 3.4 concludes the chapter. 

3.1 Matrix-based Discrete Event Controller 

A patented matrix formulation [61] is presented for modeling and analysis of 

complex interconnected DE systems needing dynamic online resource assignment in the 

presence of shared resources.  The discrete event controller (DEC) is a hybrid system 
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with logical and algebraic components that allows fast, direct design and 

reconfiguration of rule-based controllers [62].  The matrix approach provides a 

rigorous, yet intuitive mathematical framework to represent the dynamic evolution of 

DE systems through linguistic if-then rules: 

Rule i: If <condition
i
> then <consequent

i
> 

The framework of the Discrete Event Controller is described which provides a 

rigorous simple representation of these linguistic rules.  Let r  be the set of resources in 

the system (e.g., various mobile robots and UGSs), v  the set of tasks that the resources 

can perform (e.g., take a sensor reading, navigate to a commanded location along a 

desired path, and retrieve/deploy UGS), u  the set of inputs that trigger the system (e.g., 

detection of events such as chemical alert, intruder alert, etc., node failures), y  the set 

of outputs indicating completed missions, and x  the logical state vector of rules of the 

DE controller indicating the activated rules of the supervisory control policy. 

The condition and consequent of each rule are segregated by the two sets of 

logical equations, one for checking the prior conditions leading to the activation of rule 

i (matrix controller state equation), and one for determining the a priori consequent of 

rule i (matrix controller output equation).  The logical equations make use of matrix 

algebra for multiplications and additions with the element multiplications replaced by 

logical-and operations and the element additions replaced by logical-or operations.  

Logical negations are indicated by overbars. 

The matrix controller state equation is 

 cucurv uFuFrFvFx +++=  (3.1) 
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where vF  is the task sequencing matrix, rF  the resource requirements matrix, uF  the 

input matrix, ucF  the conflict resolution matrix, and cu  the conflict resolution vector.  

cu  along with ucF , is used to inhibit simultaneous activation of conflicting rules.  The 

state of the DE system is maintained in the x , v , r , and u  vectors whose active (true) 

entries indicate the activated rules, the completed tasks, the available resources and the 

occurrence of events respectively. 

The task sequencing matrix vF  has element ( )ji,  set if the completion of task jv  

is an immediate prerequisite for the activation of logic state ix .  The resource 

requirements matrix rF  has element ( )ji,  set if the availability of resource jr  is an 

immediate prerequisite for the activation of logic state ix . 

The matrix controller state equation, eq. (3.1), defines the prior conditions 

required for the activation of for a rule, while the matrix controller output equation, eqs. 

(3.2-3.4), define the a priori consequents of a rule. 

The matrix controller output equations are 

 xSv vs =  (3.2) 

 xSr rs =  (3.3) 

 xSy y=  (3.4) 

where vS  is the task start matrix having element ( )ji,  set if logic state jx  determines the 

activation of task iv , rS  is the resource release matrix having element ( )ji,  set if logic 

state jx  determines the release of resource ir . 
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Equations (3.1-3.4) represent the rule-base of the supervisory control of the DE 

system.  All the matrices are composed of sparse boolean entries, so that real time 

control of large interconnected DE systems with multiple missions and routes is 

computationally feasible. 

The DEC has been used as a supervisory control in mobile sensor networks as 

detailed in [63]. 

Figure 3.1 illustrates the DEC architecture. 
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Figure 3.1: Discrete Event Control architecture. 

3.2 Deadlock 

Deadlock research in computer systems has focused on four main areas.  

Deadlock prevention is involved with removing any possibility of system deadlocks; the 

result is often over-conservative polices resulting in poor utilization of resources.  
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Deadlock detection focuses on detecting imminent or current deadlocks, and is required 

for deadlock recovery and avoidance strategies.  Deadlock recovery methods are used to 

clear deadlocks once they occur, often by placing jobs in buffers, or by completely 

flushing one or more of the deadlocked processes, resulting in lost work.  In deadlock 

avoidance the possibility of system deadlock is not totally removed, but whenever a 

deadlock is imminent, it is sidestepped by a real-time decision-making procedure [24].  

In this thesis, we focus on deadlock avoidance. 

3.2.1 Deadlock avoidance policy 

Deadlock-free dispatching rules are derived by performing circular wait (CW) 

analysis in matrix form for possible deadlock situations.  An analysis of deadlocks in 

manufacturing systems using the matrix based DEC is presented in [24, 37].  Deadlock 

avoidance algorithms have been implemented in robotic cells in manufacturing systems 

using the DEC [25, 26].  Preliminary Analysis of deadlock avoidance policies for 

shared resources in heterogeneous mobile sensor networks is presented in [30]. 

For deadlocks, we consider the following assumptions 

• No preemption - No resource can be removed from a task until the 

completion of the task. 

• Mutual exclusion - Every resource performs only one task at a given 

time. 

• Hold while waiting – A process holds the resources allocated to it until it 

has all resources required to perform a job. 
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Under these assumptions, a necessary condition for deadlock to occur is the 

presence of a circular wait relation among the resources [24, 26, 35-37]. 

For any two resources ri and rj, ri is said to wait for rj, denoted by ji rr → , if the 

availability of rj is an immediate requirements for the release of ri.  Circular waits (CW) 

among resources are a set of resources ra, rb,… rw whose wait relationship among them 

are wba rrr →→→ L  and aw rr → .  To identify simple Circular Waits (sCW), a wait 

relation digraph of resources needs to be constructed.  The digraph of resources is easily 

obtained from the matrix formulation 

 ( )TrrFSW =  (3.5) 

where element ijW  is set if ji rr →  holds.  Simple circular waits are calculated from the 

digraph matrix using string algebra [25].  The sCW do not represent all the circular 

waits and we require the circular wait (CW) matrix that is composed of all sCW along 

with unions of non-disjoint sCW.  The Gurel algorithm [35, 36] is used to efficiently 

compute all CWs and composed CWs, outC . 

In order to implement efficient real-time deadlock avoidance policies, other 

relevant sets of task and resources from Petri net theory need to be defined.  The term 

token is used to indicate a task in progress or an available resource and the term 

transition to indicate a rule of the supervisory controller. 

A siphon is a set of tasks and resources which if token-free after firing of a 

certain transition, will remain token-free under all subsequent transition firings.  The 

critical siphon of a CW is the smallest siphon containing the CW.  If the critical siphon 
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ever becomes empty, all its resources are busy and can never become available again.  

The Siphon- task set ( )CJ s  is the set of tasks of the critical siphon.  The critical 

subsystem ( )CJ o  is set of tasks of the CW, ( )CJ  which do not add a token to the CW. 

A deadlock condition occurs if and only if there is an empty CW, which 

corresponds to an empty critical siphon, or equivalently to a condition where all tasks of 

the CW belong to the critical subsystem. 

Thus, in order to perform deadlock analysis, we need matrix computation tools 

to determine the siphon-task sets ( )CJ s , and the critical subsystems ( )CJ o  of every CW 

C.  Since the deadlock conditions are dependent on the number of tokens in these sets, 

we need to calculate the set of transitions (input and output transitions) which when 

fired, add or subtract tokens from the CWs. 

The input and output transitions of a CW are calculated as 
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The adding and clearing transitions are calculated as 
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where the ∧  operator represents logical and. 

These set of transitions are important in keeping track, in real-time, of the 

available resources inside every CW, and hence in determining the status of tasks and 

resources inside the critical siphon.  The task set, siphon-task set, and the critical 

subsystem of a CW is calculated as 
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The critical subsystem is the set of tasks which require one of the resources from 

the CW for execution.  Therefore the activation of all tasks in the critical subsystem will 

make the CW empty and lead to a deadlock condition.  A simple deadlock avoidance 

strategy consists of keeping the number of activated tasks of a critical subsystem lesser 

than the number of resources in the corresponding CW.  This is the MAXWIP policy 

 ( )( ) ( )ii CmCJm 00 <  (3.9) 

The described deadlock avoidance policy has been implemented on the mobile 

wireless sensor network test bed and complex interconnected missions executed in a 

smooth, deadlock-free manner. 

3.2.2 Implementation of DEC on WSN test bed 

The wireless sensor network test bed at the Automation & Robotics Research 

Institute comprises of mobile sentry robots, unattended ground sensors, a wireless 

network, and a centralized control unit, see Figure 3.2.  Cybermotion SR2 mobile robots 

serve as the patrol robots and Berkley motes serve as the UGSs.  The base-station PC 

runs the DE controller, and serves as a central supervisor controlling the various 

resources through a wireless transceiver. 
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Figure 3.2: The WSN test bed at ARRI. 

A virtual WSN test bed has been created to illustrate various mobile robot 

movements as the WSN topology reconfigures to handle various missions, see Figure 

3.3. 

  
Figure 3.3: Top and perspective views of the virtual WSN test bed in initial 

network configuration. 
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3.2.3 Simulation and experimental results 

The results presented in this section have been obtained using Matlab and 

Labview environments.  Matlab has been used for initial simulations of the missions, 

followed by a Labview implementation of the missions with simulated resources.  On 

satisfactory performance of the deadlock avoidance algorithm, the simulated resources 

have been replaced with actual resources. 

Three different missions have been implemented to illustrate the effectiveness of 

the deadlock avoidance algorithm.  All missions use the wireless sensor network 

comprising of two mobile robots ( )21 , RR , and six Berkley motes ( )61 MM −  as UGSs.  

Mission-1 achieves patrolling and sensing of the warehouse, Mission-2 serves to charge 

the UGSs, and Mission-3 transports dangerous cargo from location ‘A’ to location ‘B’.  

Missions are triggered by events from sensors, such as the intruder alert, battery low 

alert, etc.  The sensor network reacts to events and could physically reconfigure its 

topology to adapt to the event. 

The Petri net representation of Missions 1-3 is illustrated in Figure 3.4. 
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Figure 3.4: Petri net representation of Missions 1-3 (Patrolling, Charging, 

Transportation). 

To implement the supervisory control policy, we define the vector of resources 

[ ]65432121 ,,,,,,, MMMMMMRRr =  of the system consisting of two robots and six 

stationary sensors.  For each mission- i  we define the vector of inputs iu , of output iy , 

and of tasks iv .  The task sequence for each mission is defined (Table 3.1, Table 3.3, 

and Table 3.5 for Missions 1, 2, and 3 respectively) and the if-then rules representing 

the supervisory coordination strategy to sequence the programmed missions are defined 

(Table 3.2, Table 3.4, and Table 3.6 for Missions 1, 2, and 3 respectively).  The 

linguistic description of the coordination rules is translated into a more convenient 
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matrix representation suitable for mathematical analysis and computer implementation.  

As an example, matrices i
r

i
v FF ,  (Figure 3.5) relative to mission-1 is illustrated. 

Table 3.1: Mission 1 - Task Sequence 
Mission-1 Notation Description 

Input u
1 

Intruder Alert from any UGS 

Task 1 R1Pa
1 

i. R1 navigates to M2 

ii. R1 takes measurement at M2 

iii. R1 navigates from M2 to M1 

iv. R1 takes measurement at M1 

Task 2 UGS1
1 

i. M1 takes measurement 

Task 3 R1Pb
1
 i. R1 navigates to M1 

ii. R1 takes measurement at M1 

iii. R1 navigates from M1 to M3 

iv. R1 takes measurement at M3 

Output y
1 

i. Patrol and sensing of warehouse 

Table 3.2: Mission 1 - Rule base. 
Mission 1 – Operation Sequence 

Rule 1 x1
1 

If u
1
 occurs and R1 available then start R1Pa

1 

Rule 2 x2
1 

If R1Pa
1
 completed and M1 available then release 

R1 and start UGS1
1
 

Rule 3 x3
1 

If UGS1
1
 completed and R1 available then 

release M1 and start R1Pb
1 

Rule 4 x4
1 

If R1Pb
1
 completed then release R1 and terminate 

mission-1 by producing output y
1 

Table 3.3: Mission 2 - Task Sequence 
Mission-2 Notation Description 

Input u
2 

Low battery warning from UGS 

Task 1 R1cS3
2 

i. R1 navigates to M3 

ii. R1 charges M3 

Task 2 UGS3
2 

i. M3 takes measurement 

Task 3 R2vS3cS2
2 

i. R2 navigates to M3 

ii. R2 takes measurement and 

verifies M3 charge 

iii. R2 navigates from M3 to M2 

iv.  R2 charges M2 

Task 4 UGS2
2 

i. M2 takes measurement 

Task 5 R2vS2cS4
2 

i. R2 navigates to M2 

ii. R2 takes measurement and 

verifies M2 charge 

iii. R2 navigates from M2 to M4 

iv. R2 charges M4 

Task 6 UGS4
2 

i. M4 takes measurement 

Task 7 R1vS4
2 

i. R1 navigates to M4 

ii. R1 takes measurement and 

verifies M4 charge 

Output y
2 

i. Charging of UGSs 
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Table 3.4: Mission 2 - Rule base 
Mission 2 – Operation Sequence 

Rule 1 x1
2 

If u
2
 occurs and R1 available then start R1cS3

2 

Rule 2 x2
2 

If R1cS3
2
 completed and M3 available then 

release R1 and start UGS3
2
 

Rule 3 x3
2 

If UGS3
2 
completed and R2 available then 

release M3 and start R2vS3cS2
2 

Rule 4 x4
2 

If R2vS3cS2
2
 completed and M2 available then 

release R2 and start UGS2
2 

Rule 5 x5
2
 If UGS2

2
 completed and R2 available then 

release M2 and start R2vS2cS4
2
 

Rule 6 x6
2 

If R2vS2cS4
2
 completed and M4 available then 

release R2 and start UGS4
2
 

Rule 7 x7
2 

If UGS4
2
 completed and R1 available then 

release M4 and start R1vS4
2
 

Rule 8 x8
2
 If R1vS4

2
 completed then release R1 and 

terminate mission-2 by producing output y
2
 

Table 3.5: Mission 3 - Task Sequence 
Mission-1 Notation Description 

Input u
3 

Fourty minutes have elapsed 

Task 1 UGS1c
3 

M1 takes measurement 

Task 2 R1dA
3
 R1 picks up dangerous cargo and 

drops off at temporary storage 

location A 

Task 3 UGS5c
3 

UGS6c
3 

M5 and M6 take measurements 

Task 4 R2pA R2 picks up cargo from A and 

transports to location B along path 

decided by readings from M5 and 

M6 

Output y
3 

Dangerous cargo transported 

Table 3.6: Mission 3 - Rule base 
Mission 3 – Operation Sequence 

Rule 1 x1
3 

If u
3
 occurs and M1 available then start UGS1c

3 

Rule 2 x2
3 

If UGS1c
3
 completed and R1 available then 

release M1 and start R1dA
3
 

Rule 3 x3
3 

If R1dA
3 
completed and M5 and M6 available then 

release R1 and start UGS5c
3
 and UGS6c

3 

Rule 4 x4
3 

If UGS5c
3
 and UGS6c

3
 completed and R2 

available then release M5 and M6 and start R2pA 

Rule 5 x5
3
 If R2pA then release R2 and terminate mission-3 

by producing output y
3
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Figure 3.5: Mission 1 Job sequencing and Resource requirement matrices. 

The circular wait matrix outC  and the critical subsystem matrix 0J  are fairly 

complex for these interconnected missions.  Figure 3.6 illustrates these matrices. 

 

Figure 3.6: Circular wait and Critical subsystem matrices. 

Figure 3.7(a,c,e) illustrate the time traces of the discrete event system if no 

deadlock avoidance policy has been applied.  In these time traces, idle resources and 

tasks not in progress are denoted by low level, whereas busy resources and tasks in 

progress are denoted by high level. 

Figure 3.7 shows the simple case of deadlock of mission 1 when it is triggered 

multiple times.  With the initial trigger, task R1Pa executes to completion and task UGS1 
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starts.  At this time, a second trigger of the mission causes a second instance of R1Pa to 

start simultaneously and both resources R1 and M1 are consumed.  For UGS1 to 

complete and R1Pb to begin, R1 is required, but this is being used by R1Pa.  For R1Pa to 

complete and UGS1 to begin, M1 is required, but this is being used.  Thus we have a 

cyclic wait of resources which lead to a deadlock situation.  This cyclic wait of 

resources can be seen easily in the first row of the circular wait matrix in Figure 3.6 and 

a deadlock occurs when the corresponding tasks in the critical subsystem matrix are 

simultaneously in progress.  Thus to avoid deadlocks, the dispatching policy has to 

ensure that all tasks in a particular row of the critical subsystem matrix are not in 

progress simultaneously.  In the case of mission-1, when UGS1 is in progress, rule-1 has 

to be inhibited by updating the conflict resolution vector du .  Figure 3.8 shows the 

deadlock avoidance policy in effect which smoothly takes mission-1 to completion 

twice.  The dispatching policy is capable of handling deadlocks of higher order which 

arise when both mission-1, and mission-2 are triggered multiple times, as illustrated in 

Figure 3.9, with no deadlock avoidance, and in Figure 3.10 with deadlock avoidance. 

Deadlocks can also arise when two or more missions run in parallel and there 

exists a circular wait between the missions.  This scenario is illustrated in Figure 3.11 

where deadlock arises due to a circular wait of resources 1M  in mission-3, and 1R  in 

mission-1.  Figure 3.12 illustrates that the same dispatching policy handles complex 

deadlocks between missions where task R1Pa from mission-1 is inhibited until task 

UGS1c from mission-3 is completed. 
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(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 3.7: Mission 1 with deadlock. (a) Matlab simulation, (b) Top view of robot 

paths, (c) Labview results with simulated resources, (d) Perspective view of robot 

paths, (e) Labview results with real resources, and (f) Final sensor network 

topology. 
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(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 3.8: Mission 1 with deadlock avoidance. (a) Matlab simulation, (b) Top 

view of robot paths, (c) Labview results with simulated resources, (d) Perspective 

view of robot paths, (e) Labview results with real resources, and (f) Final sensor 

network topology. 
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(a) (b) 

 
 

(c) (d) 

  
(e) (f) 

Figure 3.9: Mission 1, 2 with deadlock. (a) Matlab simulation, (b) Top view of 

robot paths, (c) Labview results with simulated resources, (d) Perspective view of 

robot paths, (e) Labview results with real resources, and (f) Final sensor network 

topology. 
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(a) (b) 

 
 

(c) (d) 

  
(e) (f) 

Figure 3.10: Mission 1, 2 with deadlock avoidance. (a) Matlab simulation, (b) Top 

view of robot paths, (c) Labview results with simulated resources, (d) Perspective 

view of robot paths, (e) Labview results with real resources, and (f) Final sensor 

network topology. 
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(a) (b) 

 
 

(c) (d) 

  
(e) (f) 

Figure 3.11: Mission 1, 3 with deadlock. (a) Matlab simulation, (b) Top view of 

robot paths, (c) Labview results with simulated resources, (d) Perspective view of 

robot paths, (e) Labview results with real resources, and (f) Final sensor network 

topology. 
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(a) (b) 

 
 

(c) (d) 

  
(e) (f) 

Figure 3.12: Mission 1, 3 with deadlock avoidance. (a) Matlab simulation, (b) Top 

view of robot paths, (c) Labview results with simulated resources, (d) Perspective 

view of robot paths, (e) Labview results with real resources, and (f) Final sensor 

network topology. 
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3.3 Routing 

Resources in mobile sensor networks are heterogeneous in nature and capable of 

performing several diverse tasks unlike in manufacturing systems where resources are 

usually dedicated to a specific task.  Thus, for every task awaiting execution, multiple 

resources are available for being scheduled and the task can request the best (cost / time 

/ energy efficient) resource that can take the task to completion in an optimal manner.  

Hence we need a formal mathematical model for deadlock-free dynamic resource 

scheduling where routing as well as dispatching decisions need to be made. 

Deadlock analysis in the presence of routing choices is of exponential 

complexity and deadlock avoidance constraints are rendered computationally intractable 

[38]. 

Very little research exists in the field of mobile sensor networks where resources 

are scheduled dynamically for task execution in a deadlock-free manner.  This thesis 

presents a mathematical formulation for dynamic resource scheduling using the matrix-

based discrete event controller.  A deadlock avoidance algorithm is developed and 

simulated for task sequencing in the presence of routing choices. 

3.3.1 DEC representation for routing 

The matrix-based discrete event controller presented in an earlier section, eqs. 

(3.1 – 3.4) is flexible and can be easily used to implement the scenario of task 

sequencing where predetermined resource assignments do not exist and dynamic on-line 

resource scheduling needs to be performed for allocating a resource to a particular task. 
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In the presence of shared resources, or in the case of online resource assignment 

(routing resources), simultaneous activation of conflicting rules arises.  The conflict 

resolution matrix, ucF , in eq. (3.1) is used to resolve conflicts.  In earlier work on 

deadlock avoidance in the presence of shared resources in mobile sensor networks [30], 

the conflict resolution policy had to handle conflicts of shared resources, i.e., conflicts 

deriving by the simultaneous activation of rules which start different tasks requiring the 

same resource.  However in the current scenario, with no predetermined resource 

assignments, conflicts of pseudo-shared resources, and conflicts of routing-resources 

arise. 

Conflicts of pseudo-shared resources arise when simultaneous activation of rules 

which start the same job using the same resource but having different consequents (such 

as releasing different resources) occurs.  This happens when multiple paths though the 

sequence join, for instance, logic transitions 4t , 5t  in Figure 3.13 where the resource 2B  

acts like a shared resource but starts the same task. 

Conflicts of routing resources arise when simultaneous activation of rules which 

start the same job using different resources (different routes) occurs.  This happens 

when a single route splits, where the same job can be assigned from among a set of 

resources, for instance, logic transitions 2t , 3t  in Figure 3.13 where resources 1R , 2R  

can perform the same job. 

A novel augmented conflict resolution matrix is proposed 

 routingucsharedpseudoucshareducuc FFFF −−−= |||| _  (3.10) 
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such that element ( )ji,  is set if completion of conflict arising task jv  is an immediate 

prerequisite for the activation of logic state ix .  Then setting the element j  in the 

conflict resolution vector cu  determines the inhibition of logic state ix  (rule i cannot be 

fired.) Thus, depending on the way one selects the conflict-resolution strategy to 

generate cu , different dispatching strategies can be selected to avoid resource conflicts 

due to shared resources, pseudo-shared resources and routing resources.  Figure 3.14 

depicts the construction of the augmented conflict resolution matrix from elements of 

the resource requirements, and the resource release matrices. 

 

Figure 3.13: Sample Petri net with routing resources. 

Pin 

R2 

R1 

t1 

t2 

t3 

t4 

t5 

t6 

t7 

t8 

t9 

t10 

t11 

t12 

t13 

B1 B2 B3 

M1 

M2 

r1a r1b 

r2a r2b 

b1 b2 b3 

m1 

m2 Pout 



72 

  
(a) (b) 

Figure 3.14: Augmented conflict resolution matrix formulation. (a) 
T

rr SF ,  

matrices for the sample Petri net. Shared, pseudo-shared and routing resources are 

highlighted, and (b) Augmented conflict resolution matrix. 

3.3.2 Deadlock avoidance policy for flexible routing systems 

An analysis of deadlock structures using matrices for reentrant flow lines with 

routing in a flexible manufacturing systems is performed in [40].  However, these 

mathematical constructions give us a method of detecting active circular waits only.  

Since, in systems with routing choices, an active circular wait does not always lead to a 

deadlock.  In this section we present mathematical formulations for detecting when an 

active circular wait could become a potential deadlock and we also present a 

computationally feasible deadlock avoidance algorithm. 

In addition to assumptions for deadlock that were made in section 3.2.1, we have 

the following non-restrictive capability that 

• Some tasks have the option of being executed by a resource from a set of 

resources (routing resources), and each resource might be used for 

different tasks (shared resources.) 
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• Task routings are deterministic and are provided by a dynamic 

controller. 

Mathematical constructions defined in section 3.2.1 are modified as suggested in 

[40] for adapting the deadlock analysis for the more complex case of routing.  Due to 

the diversity of loop paths that a set of resources contained in a sCW might have 

[section 3.2.1, equation (3.5)], we need to identify not only the resources that compose 

the sCW, but also the transitions that link them.  This will give us specific information 

needed to locate siphons and certain critical subsystems needed for construction of the 

deadlock policy.  A general digraph matrix is used 

 







=

tr

rr

F

S
W

0

0
 (3.11) 

where n0  is a nxn  zero matrix, r  the number of resources, and t  the number of 

transitions. 

Using the general digraph matrix, W with the get both simple circular wait of 

resources and simple circular wait of transitions 

 [ ]** wtwrw CCC =  (3.12) 

and using the Gurel algorithm, we obtain the the matrix G  of composed circular waits 

to get all the circular wait of resources and transitions 

 
*

*

wt
T

t

wr
T

r

CGCW

CGCW

=

=
 (3.13) 

The input and output transitions of a CW are still calculated as eq. (3.6), 

however the adding and clearing transitions, eq. (3.7) is modified as 
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( )
( )tddm

tddp

CWCCT

CWCCT

∧−=

∧−=
 (3.14) 

The task set, siphon-task set, and the critical subsystem of a CW, eq. (3.8) is also 

modified as 

 ( ) ( )

( ) vto

vds

T
vdvdC
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FCCJCJ

SCFCJ

.

.

..

_______

=
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


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


∧=

==

 (3.15) 

With these formulations, equations (3.11 – 3.15), we can detect only active 

circular waits but not when an active circular wait progresses to a potential deadlock.  In 

a system with routing choices, the system can exist in an active circular wait and still 

not cause a deadlock.  In this thesis, we introduce the concept of exit policies, exit 

transitions, and exit CW to try to detect when an active circular wait may progress to a 

potential deadlock. 

The exit transition matrix, XT  is introduced, which is the set of transitions that 

when fired would introduce a token into an empty circular wait.  Such transitions only 

exist in systems with routing choices.  The exit transition matrix is given as 

 ( ) tCWCWJXT −•= 0  (3.16) 

The exit circular wait matrix, XCW  defines the set of circular waits into which 

an active circular wait could exit to on the firing an exit transition.  An exit transition on 

introducing a token into an active token could cause another circular wait to become 

empty.  The XCW  matrix defines the set of such circular waits for a particular circular 

wait.  The exit circular wait matrix is given as 
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 { }ttX CWXTCWCW ∈= :  (3.17) 

The proposed deadlock avoidance policy allows a circular wait to progress into 

an active circular wait provided there exists at least one or more exit transitions which 

when fired would clear the current circular wait without transiting another circular wait 

into an active circular wait.  Hence one or more free exit transitions need to exist, 

expressed mathematically as 

 ( ) 0>∈ Xactive CWCWn  (3.18) 

Thus our deadlock avoidance policy allows an empty circular wait to form 

provided a free exit transition exists.  This is a computationally feasible solution for 

deadlock-free dispatching in the presence of routing choices.  Figure 3.15 illustrates the 

various constructs discussed in this section for the four simple circular waits of the 

sample Petri net in Figure 3.13. 
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Figure 3.15: Four simple CWs and their corresponding XTJJCWCW ostr ,,,, . 

3.3.3 Simulation results 

The sample Petri net considered in Figure 3.13 is simulated.  This has multiple 

routing choices to be made and the proposed augmented udF  matrix ensures that the 

conflicts that arise due to shared, pseudo-shared, and routing resources are resolved.  

Initial simulations for deadlock consist of disabling all routing choices and triggering 

the mission multiple times (ten times), this is the case of simple deadlock and the 

discrete event transition traces is as seen in Figure 3.16.  On enabling both routing and 

deadlock avoidance, and triggering the mission multiple times (ten times) to cause 

multiple complex deadlocks, we get the event trace as seen in Figure 3.17.  This clearly 

illustrates that the mission is taken to completion smoothly without any deadlocks 

multiple times.  Comparing Figure 3.16 and Figure 3.17, we see, as expected that with 
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multiple choices of routing for a particular task, the overall throughput of the entire 

mission is greatly improved. 

 

 
Figure 3.16: Deadlock avoidance simulation with all routing disabled. 

 

 
Figure 3.17: Deadlock avoidance in the presence of routing choices. 

3.4 Summary 

This chapter has extended the preliminary analysis of deadlock avoidance 

polices for shared resources in heterogeneous mobile sensor networks to more 

complicated scenarios.  We have show through experimental implementation on an 

actual mobile sensor network test-bed, the feasibility and effectiveness of the proposed 

deadlock-free supervisory control in performing complex and simultaneous sequencing 

of interconnected tasks.  Further, a general deadlock avoidance policy for system with 
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flexible routing, where both shared and routing resources are present, has been 

mathematically formulated and various simulations performed to validate deadlock-free 

operation in the presence of multiple routing choices. 
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CHAPTER 4 

LOCALIZATION

Location information is imperative for applications in both wireless sensor 

networks and mobile robotics.  Many sensor network applications, such as tracking 

targets, environmental monitoring, geo-spatial packet routing, require that the sensor 

nodes know their locations.  The large scale of deployment in sensor networks makes 

careful placement or uniform distribution of sensor nodes impractical.  Here we propose 

a localization algorithm for simultaneous localization of the sensor network and the 

mobile robot using simple geometric constraints of radio connectivity. 

The chapter is organized into the following sections.  Section 4.1 presents an 

algorithm for localization of static sensor nodes using positional updates broadcast from 

the mobile robot.  Section 4.2 presents an algorithm that updates the location 

information of the mobile robot based on GPS measurements, when they occur, and 

position information from nodes that are well localized.  We illustrate the simultaneous 

localization of both static sensors and the mobile robot by fusing information from 

multiple sources.  Section 4.3 addresses the problem of where to send the mobile robot 

next to maximally decrease the localization uncertainty in the sensor network.  This is 

the scenario of Adaptive Localization.  Section 4.4 concludes the chapter. 

 



80 

4.1 Sensor Localization using Mobile Robot 

In this section we provide an algorithm that runs on each Unattended Ground 

Sensor (UGS) node that allows it to update its position estimate, and the uncertainty in 

that estimate, as a mobile robot with known position moves through the network.   The 

algorithm is range-free in that only the communication range need be known, not the 

range from the node to the mobile robot.   It is assumed in this section that the mobile 

robot’s position is exactly known. 

4.1.1 Scenario 

A deployed wireless sensor network comprised of static unattended ground 

sensors is to be absolutely localized by a mobile robot.  The robot broadcasts consist of 

its own position and its position uncertainty estimates.  Broadcasts can only be heard 

within the robot’s communication range.  The static sensors, on receiving these 

broadcasts, combine the new information to update their current location estimate.  A 

simple discrete-time Kalman filter running on each static sensor node serves to fuse 

information and update its location and uncertainty estimates. 

This is a formalized rigorous approach employing Kalman filters for 

localization, in contrast to bounding boxes [52, 53], which are harder to update and 

keep track of.  The developed algorithm is simple and can efficiently be implemented 

on the sensor nodes with a small computing power.   The Kalman filter is simply an 

optimal recursive data processing algorithm [64] and has been subject of extensive 

research and applications, particularly in the area of autonomous navigation. 
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4.1.2 Robot Control 

A classical three-wheeled tricycle robot model is employed in all simulations.  

This configuration uses a controlled steering angle and drive speed to navigate to a 

desired position as illustrated in Figure 4.1. 

 

Figure 4.1: Tricycle Robot Configuration. 

The states and kinematics of the robot are given by, 

 [ ]TyxX αφ=  (4.1) 
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with ( )yx,  the position of the robot, α  the steering angle, and φ  the heading angle.  The 

control inputs are the speed tv and the steering rate αω . 

A simple Proportional-Derivative goal-based controller with a temporally 

varying goal is implemented to navigate the robot along a desired trajectory.  For more 

details, see [65]. 

This dynamical setup allows more accurate simulations than the simple moving-point 

model usually assumed in sensor network localization papers. 
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4.1.3  Sensor Node Kalman Filter 

Each static sensor node maintains its own position and uncertainty estimates.  

The mobile robot broadcasts contain the robot’s position estimate and uncertainty 

estimate.  The broadcasts can only be heard within the robot’s communication range.  A 

discrete-time Kalman filter running on each sensor node combines this information to 

optimally update the node’s position estimate and its uncertainty.  For more details on 

the derivation of the Kalman filter equations, interested readers are referred to [58]. 

 The Kalman filter is a set of mathematical equations running in a software 

algorithm that provide an efficient computational means to estimate the state of a 

process.  The state of sensor i at discrete time instant k  is 

 [ ]Tiii
k yxx =  (4.3) 

The sensor state is governed by the linear stochastic difference equation 
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with measurements given by 

 i
k

i
k

i
k

i
k vxHz +=  (4.5) 

The random variables i
kw  and i

kv  represent process and measurement noises 

given by 
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where ( )Pm,  denotes a Gaussian noise process with mean m  and covariance P . 

For stationary nodes, the system matrices are given by 
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The a priori position estimates prior to measurement updates at time 1+k  are 

given by the time update equations, which give the effects of time on sensor 

localization: 
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In these equations, i
kx̂  represents the position estimate of node i  at time k , while the 

covariance matrix i
kP  gives the corresponding uncertainty in the position estimate. 

The a posteriori estimates given a position measurement kz  are given by the 

measurement update equations, which gives the effect of the robot broadcast on sensor 

localization: 
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The covariance matrices i
kQ  and kR  are design parameters chosen by the 

engineer.  With a zero i
kQ , the uncertainty in location of the sensor i remains constant 

with time.  With an extremely small i
kQ , the localization uncertainty slowly drifts with 

time.  This means that the current measurements from the mobile robot are given more 

weight than the current node position estimate, which avoids the node’s becoming too 

certain of a position that may be incorrect. 

When the robot is in range and the sensor hears the broadcast position of the 

robot, the measurement update equation is used to combine the new information to 
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improve sensor node position and uncertainty estimates.  In this section, the robot is 

assumed to be perfectly localized.  Thus when a sensor hears a broadcast, it could only 

be within the communication range of the robot whose position is broadcast.  The 

measurement uncertainty matrix kR  reflects this, and is chosen as 
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where Botσ  is the uncertainty introduced due to BotRange , the communication range of the 

robot.  We assume the design parameter 3=constσ , to include 70% of the communication 

range, BotRange , of the robot (Gaussian uncertainties are assumed.)  Through this 

selection of 
kR  the Kalman filter automatically takes care of the range of the robot 

within which it hears broadcasts. 

Algorithm in Table 4.1 shows the position update algorithm that runs on each 

node, which is very simple and easy to implement.  It consists of four equations, two for 

the time update, and two for the measurement update.  This algorithm automatically 

provides uncertainty estimates through the computation of the error covariance i
kP , 

which is equivalent to the bounding box information provided by the algorithm in [52]. 

Table 4.1: Static sensor node localization algorithm 
1. At each discrete time instant 
2. if robot broadcast received by sensor 
3. then 
4.   Update sensor state and uncertainty estimates using KF 

measurement Eqs. (4.10), (4.11). 

5. else 
6.   Propagate estimates using time update Eqs. (4.8), (4.9). 
7. end if 
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4.1.4 Simulation Results 

Extensive simulations have been performed to verify the effectiveness of the 

proposed algorithm.  We also studied the effects of initial sweep paths and the robot 

broadcast interval on sensor localization.  The mobile robot is navigated along the 

desired sweep path and periodic location information is broadcast.  On receiving a 

broadcast, sensors update their location and uncertainty estimates.  This is a range-free 

procedure that relies on the limited communication range of the robot, and as such, the 

sensor locations are updated based on the position of the robot.  That is, the updated 

sensor position estimate is a weighted combination of its current location estimate and 

the current location of the robot.  Thus sensors hearing only one broadcast will have an 

estimated location that is projected onto the path of the robot. 

Figure 4.2 shows the initial sinusoidal sweep path and the position and range of 

the broadcast with a broadcast interval of 5 discrete time instants.  The ‘ x ’ represent the 

actual positions of the static sensors that are to be localized.  The sensor nodes do not 

initially know their actual positions.  The nodes all have initial position estimates being 

the centroid of the deployment area, and an initial uncertainty of infinity, corresponding 

to complete lack of knowledge of their positions. 

Figure 4.3 illustrates the localized sensors after the robot has made its sweep 

through the network.  The ‘ • ’ represent the final position estimates of the nodes.  To 

remain consistent with earlier work involving bounding boxes (e.g. [52]), the 

uncertainty of the sensors in their position estimates has been depicted as rectangles 

representing σ3  of the uncertainty distribution, assuming Gaussian uncertainties.  Note 
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that the sensors always outside the communication range of the mobile robot do not 

become localized (i.e. they have no bounding box, which denotes infinite position 

uncertainty).  The sensors that receive more than one broadcast from the mobile robot 

end up being better localized, since each position update reduces the position 

uncertainty.   

The effectiveness of the algorithm is demonstrated by the fact that in every case, 

the actual location (marked by an ‘ x ’) is within the uncertainty bound of the estimated 

position (marked by a ‘ • ’). 

The localization error of the sensors, computed as the Euclidean distance 

between true and estimated positions, is depicted in the vertical axis of Figure 4.4. 

Sensors near the path of the mobile robot that have received multiple broadcasts have 

smaller errors. 

 

Figure 4.2: Initial sinusoidal sweep path with broadcast locations and range of 

broadcast. 
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Figure 4.3: Localized sensors, real positions (denoted by ‘x’) and estimated 

positions (denoted by ‘ • ’), are illustrated after initial mobile robot sweep of the 

deployment area.  Uncertainty rectangles have been illustrated to depict the 

uncertainty of the sensor in its position estimate. 

 

Figure 4.4: Localization error, computed as the Euclidean distance between real 

and estimated positions, of sensors after initial sweep of the deployment area. 

The same simulation was rerun with different mobile robot broadcast intervals, 

and the effect of broadcast interval on the average localization error of the network is 
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depicted in Figure 4.5.  Generally, as broadcast interval decreases, the average error 

decreases. 

 

Figure 4.5: Effect of broadcast interval on average localization error. 

4.2 Simultaneous Mobile Robot and Sensor Localization 

In this section we consider the realistic case where the mobile robot’s position is 

not exactly known.  We provide an algorithm which runs on the mobile robot that fuses 

position information from GPS, when it is available, and from the already-localized 

sensor nodes.  This allows the robot to update its position estimate as well as the 

uncertainty estimate.  When this algorithm is run simultaneously with the algorithm of 

the previous section running on each sensor node, the result is simultaneous mobile 

robot and sensor localization.  A procedure is given to avoid detrimental recursive 

feedback between the two algorithms. 

4.2.1 Mobile Robot Localization 

When localizing the sensor nodes in the previous section, the robot was assumed 

to know its position exactly at all instants of time.  However, as the robot navigates by 
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dead reckoning, or due to steering inaccuracies, its localization increasingly deteriorates 

as time passes.  Location updates from the GPS, when they occur, and from stationary 

sensor nodes that have already been localized can be used to improve the localization 

estimate of the robot. 

Some sensor nodes are localized more finely due to more numerous updates they 

have previously received from the mobile robot.  These sensors can be employed to 

localize the robot when its position information deteriorates.  This is accomplished by 

having each sensor node make a transmission that contains the node’s position estimate 

and uncertainty.  This is received by the robot when it is in range.  The sensors transmit 

at fixed intervals, with each sensor having a different random interval.  This ensures that 

the updates between mobile robot and sensor nodes are staggered in time and that no 

recursive feedback occurs. 

A continuous-discrete extended Kalman filter running on the mobile robot is 

used to simulate the robot and update the states using measurements from the GPS 

system and the better-localized UGSs.  Extended Kalman filters have been used for 

local and infrequent global senor data fusion [66], for mobile robot localization [9], and 

in navigation of autonomous vehicles [8].  For information about the Extended Kalman 

filter see [58]. 

The continuous-time system model of the robot is given by (4.2) as 

 ( ) ( )wtGtuXaX += ,,&  (4.14) 

The sampled discrete-time measurement model of the robot is given by 
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where 
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In the extended Kalman filter, the effect of time on the robot states is given by 

the time update equation 
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In [7], the deleterious effects of time passing are shown in terms of increasing position 

uncertainty and decreasing belief.  These effects are formally captured in a rigorous 

manner by the time-update equations (4.18), (4.19), which shows how uncertainty 

increases due to dead reckoning and steering uncertainties. 

The effects of the GPS navigation updates, when they are received, are given by 

the measurement update equation 
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The effects of the updates based on localized sensor nodes, when they are received, are 

given by the UGS measurement update equation 
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The measurement uncertainty matrices gpsR  and ugsR  represent the uncertainty 

in the GPS and the uncertainty in the update offered by UGS i  respectively.  The 

uncertainty in the sensor update, ugsR , is a combination of the uncertainty of the sensor 

position and the uncertainty due to the communication range of the sensor.  These 

uncertainties combine in quadrature as 
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where iσ  is the uncertainty introduced due to iRange , the communication range 

of sensor i . 

Similarly, the measurement noise covariance of the sensor, eq. (4.12), has to be 

modified to include the uncertainty in the robot’s position.  The robot is no longer 

absolutely localized with zero uncertainty.  The uncertainty in robot localization and the 

uncertainty due to robot communication range combine in quadrature, modifying eq. 

(4.12) as 
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Bot
XYP  is the partial error covariance of the robot which effects only the position of 

the robot, and Botσ  is as defined earlier. 

The Jacobians of the nonlinear system, determined from (4.2), are given by the 

following system matrices: 
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With these equations in place and programmed as a software algorithm on the 

mobile robot, and the sensor nodes running the algorithm presented in the previous 

section, the mobile robot and the static sensors automatically mutually update their 

estimates with incoming updates.  There is no additional decision-making logic to be 

implemented as in other range-free work discussed earlier.  There is no need to compute 

bounding boxes, as the error covariance matrices are automatically updated as 

measurements are received.   

The algorithm to be implemented on the mobile robot that updates its position 

estimate and uncertainty based on GPS measurements and on the localized sensor nodes 

is given as algorithm in Table 4.2. This algorithm is efficient to implement since the 

bulk of it is mathematical equations. 
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When algorithm in Table 4.2 is run on the robot simultaneously along with 

algorithm in Table 4.1 on each sensor node, simultaneous mobile robot and sensor 

localization occurs. 

Table 4.2: Mobile robot localization algorithm. 
1. Navigate robot along desired path. 
2. Broadcast location information at discrete intervals. 
3. if broadcast from GPS received 
4.   Update robot state and uncertainty estimates using measurement 

eq. (4.20). 

5. end if 
6. if broadcast from sensor received 
7. Update robot state and uncertainty estimates using measurement 

eq.(4.21). 

8. end if 

 

4.2.2 Simulation Results 

The simulations described in the previous section have been rerun with GPS 

updates and sensor updates implemented as algorithm in Table 4.2 on the mobile robot.  

Infrequent GPS updates and temporally staggered sensor updates help localize the 

robot.  Figure 4.6(a) shows the robot’s sweep path with GPS and UGS updates disabled.  

A systematic dead reckoning error [59] has been injected into the mobile robot to give 

gradually deteriorating position information.  The localization of the robot deteriorates 

with time as can be seen in the deviation of the robot’s estimated path (hyphenated 

green line) from the robot’s true path (continuous green line.)  

Figure 4.6(b) illustrates the robot’s sweep path which is corrected in time by 

GPS and UGS updates using algorithm in Table 4.2.  As is evident, the robot’s 

localization has improved and the positions of where the robot thinks it is (the estimated 

position), and where the robot actually is (the true position) are much closer, since the 
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estimates are continuously corrected using algorithm in Table 4.2 as position 

information arrives, either from GPS or from sensor node broadcasts. 

Robot broadcasts occur along the true path of the robot and consist of the robot’s 

estimated position (slightly different from the robot’s true position where the broadcast 

occurs) and uncertainty.  Sensors within range receive the broadcast and update their 

positional information based on the robot’s estimates. 

Figure 4.7 illustrates the localized sensors after the initial sweep.  True sensor 

positions are indicated by an ‘x’ and estimated positions by a ‘ • ’.  Now, some true 

sensor positions are outside the 3σ  boxes due to the added uncertainty in the robot 

position, though they are generally close to these boxes.  Figure 4.8 depicts the final 

localization error of each sensor. 

  
(a) (b) 

Figure 4.6: Initial sweep path of the mobile robot with (a) GPS and UGS updates 

disabled, and (b) GPS and UGS updates enabled. 
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Figure 4.7: Localized sensors after initial sweep of the deployment area. 

 

Figure 4.8: Localization error of sensors computed as the distance between true 

and estimated positions. 

4.3 Adaptive Localization 

A navigation strategy, to be used subsequent to the initial sweep of the 

deployment area that was presented in the previous sections, is developed here which 

further minimizes the localization uncertainty of the sensor network in the most 

efficient manner.  An adaptive localization policy is adopted to navigate the mobile 
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robot to an area of least localized sensor nodes.  This ensures that the robot maneuvers 

to an area with sensor nodes possessing the largest uncertainty in location. 

Accurate position of coarsely localized sensors can not be known (due to 

inherent coarse localization) so that navigating to these sensors is not possible.  The 

radio connectivity of the network is exploited to address the problem of having the 

robot navigate to a location which is imprecise.  Figure 4.9 depicts the communication 

connectivity of the network. 

 

Figure 4.9: Communication connectivity of the network. Communication routes 

between sensors and range of communication of each sensor are depicted. 

A communication protocol is developed wherein, the robot broadcasts a 

navigation request packet, NAV-REQ, when the robot wants to find a new location to 

navigate to.  Sensors which receive the NAV-REQ packet, forward it along the network.  

Sensors having a large uncertainty scalar, the Frobenius Norm [67] of the uncertainty 

matrix, reply back with a localization request packet, LOC-REQ.  The LOC-REQ packet 

consists of the uncertainty matrix of the requesting sensor and propagates along the 
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network until it is received by a friendly localized neighbor.  Friendly localized 

neighboring sensors receiving the LOC-REQ packet append it with their position and 

forward the packet along the sensor network to the robot.  Figure 4.10(a) and Figure 

4.10(b) show the flow of the NAV-REQ and LOC-REQ packets. 

  
(a) (b) 

Figure 4.10: Flow of the (a) NAV-REQ, navigation request and (b) LOC-REQ, 

localization request packets through the sensor network. 

The robot receives packets from multiple non-unique friendly neighbors each 

representing a single coarsely localized sensor.  The robot needs to choose a friendly 

neighbor to navigate to.  Friendly neighbor arbitration is performed by grouping 

uncertainties of the same friendly neighbor in quadrature to give its combined 

uncertainty scalar.  The friendly neighbor with the largest combined uncertainty scalar 

is picked as the location to navigate to.  If multiple such neighbors exist, the most 

localized neighbor is chosen. 

Thus regions with a large density of coarsely localized sensors having a 

common friendly neighbor are adaptively navigated to.  However, due to the inherent 
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imprecise location of the friendly neighbor, the robot actually navigates a circular path 

around the neighbor. 

Algorithm in Table 4.3 summarizes the Adaptive localization algorithm. 

Table 4.3: Adaptive localization algorithm. 
1. Broadcast Navigation request, NAV-REQ, packet. 

2. Wait to receive Localization request, LOC-REQ, packets. 

3. for all LOC-REQ with the same friendly neighbor 

4.   Combine uncertainty scalars of the requesting sensors. 

5. end for 

6. Pick friendly neighbor with maximum combined uncertainty scalar 

of the requesting sensors. 

7. if multiple maximas arise 

8.   Among the maxima, pick the most localized friendly neighbor. 

9. end if 

10. Navigate around the picked friendly neighbor executing the 
simultaneous localization algorithm, algorithm in Table 4.1 on 

the senors and algorithm in Table 4.2 on the mobile robot. 

11. Repeat Steps 1-10 as required. 

 

After the initial sinusoidal sweep, see Figure 4.7, Figure 4.12(b), sensors 7 and 

11 both receive three Localization request packets each and on combining the 

uncertainties of the requesting coarsely localized sensors, an equal maximum 

uncertainty scalar arises for sensors 7 and 11.  However sensor 11 is more localized 

than sensor 7 and robot navigation occurs around sensor 11, see Figure 4.11(b). 

Figure 4.11 illustrates four adaptive localization iterations and its navigation 

paths with corresponding uncertainty scalars of the sensors at the end each adaptive 

localization iteration as illustrated in (a-e).  With each adaptive localization iteration, 

Figure 4.12 shows the reduction of localization error of each sensor, and Figure 4.13 

depicts the reduction of the average localization error of the sensor network.  Figure 

4.14 illustrates the localized sensors after four iterations of the adaptive localization 
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algorithm.  As can be seen, all sensors are localized and uncertainty in localization 

fairly small. 

At every instant, along with the adaptive localization algorithm, algorithm in 

Table 4.3, the entire simultaneous localization algorithm with updates from the GPS, 

and more localized sensor, algorithms in Table 4.1 and Table 4.2, are always running.  

This demonstrates simultaneous adaptive localization of the sensor network. 

  
(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 4.11: Adaptive localization robot paths and corresponding uncertainty 

scalars for the sensors after (a) Initial sinusoidal sweep, (b) First, (c) Second, (d) 

Third, and (e) Fourth adaptive navigation steps, respectively. 
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(a) (b) (c) (d) 

Figure 4.12: Reduction of average localization error of sensors with each adaptive 

localization iteration. (a) Iteration-1, (b) Iteration-2, (c) Iteration-3, and (d) 

Iteration-4. 

 

Figure 4.13: Reduction of average localization error with each adaptive 

localization iteration. 
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Figure 4.14: The final position estimates of the localized sensors after four 

iterations of the adaptive localization algorithm. 

4.4 Summary 

Rigorous mathematical algorithms for adaptive simultaneous localization of the 

static unattended ground sensors and the mobile robot have been demonstrated.  The 

first algorithm localizes the static sensors and the second algorithm localizes the mobile 

robot.  These algorithms together allow simultaneous localization of the static sensor 

and the mobile robot.  A third adaptive localization algorithm ensures that the region of 

the deployment area with the largest uncertainty is localized with minimal robot 

movement. 
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CHAPTER 5 

MOBILE ROBOTIC SENSOR

The mobile robotic sensor used for experimental validation of Adaptive 

Sampling algorithms presented in Chapter 2 has been entirely designed and developed 

at the Automation & Robotics Research Institute.  Figure 5.1 illustrates the evolution of 

the robot through different stages of design and development.  This chapter discusses 

the design, development and functionality of the mobile robotic sensor. 

   
(a) (b) (c) 

Figure 5.1: Robot evolution (a) Model, (b) Prototype, and (c) Product. 

5.1 Mechanical Design 

The mechanical design for machining of custom parts is detailed in this section.  

The mobile robotic sensor uses a robot chassis from Parallax (Part # 700-00022) as the 

base and all external components are mounted on to this base.  The wheel assembly 

illustrated in Figure 5.2 has been modeled in AutoCAD and machined to fit on to the 

chassis. 
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(a) (b) (c) 

 
(d) 

Figure 5.2: Wheel assembly modeled in AutoCAD, and assembled in 3D Studio 

Max. (a) Base extension, (b) Angle bracket, (c) Shaft coupler, and (d) Wheel 

assembly. 

5.2 Electrical Design 

The mobile robotic sensor is a dual microcontroller based system with modules 

for sensing, radio communication, and motion tracking interfaced onto a common bus.  

Figure 5.3 shows the design and prototyping of the circuit. 

This section details the various electronic components of the mobile robotic 

sensor. 
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(a) (b) 

  

(c) (d) 

Figure 5.3: Design of the electrical circuit. (a) Schematics, (b) Prototype, (c) PCB 

layout, and (d) Fabricated PCB. 

5.2.1 Microcontrollers 

The mobile robot used in this thesis was designed with two separate 

microcontrollers.  A central microcontroller, the Javelinstamp (Part # JS1-IC), deals 

with all communication and processing for the robot.  While a secondary 

microcontroller, the PIC (Part # 12F508), is solely responsible for the motion of the 

robot by driving the servos with a pulse width modulated signal.  A serial 

communication protocol for inter-microcontroller communication has been developed 

for the javelinstamp to send commands to the PIC.  By offloading the PWM signal 

generation to a secondary microcontroller, we guarantee that the central processor is not 
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bothered for generating periodic pulses and can spend more processing time on other 

algorithms. 

5.2.2 Servos and encoders 

The servo motors, Figure 5.4, used on the mobile robots are the continuous 

rotation servos (#900-00008) from Parallax.  These motors operate on 6 Vdc and have 

an average speed of 60 rpm with no load.  The set-point of the servos needs to be 

calibrated before use to ensure that both left and right wheels revolve at the same speed 

for the same signal.  But achieving this is difficult and we rather command the two 

wheels with different PWM duty cycle values to ensure that they revolve at the same 

speed and that the robot moves forward when commanded to do so. 

 

Figure 5.4: Continuous rotation servo. 

The encoders used were from Clarostat (Part # 600EN-128-CBL) and produce 

128 pulses / revolution.  A dedicated 24-bit dual-axis quadrature counter (Part # 

LS7266R1) has been used dedicated for keeping count of the encoder pulses.  A bus 

architecture connects the encoder counter with the microcontroller for data 

transmission. 
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5.2.3 RF Transceiver 

The RF transceiver, illustrated in Figure 5.5, is distributed by Parallax Inc. and 

is manufactured by RF Digital Corp. (Part # 27988).  The carrier frequency is 433.92 

MHz.  The RF transceivers are located on each of the mobile robot platforms and on the 

base station.  The base station is connected to a PC via RS-232 communication link. 

 

Figure 5.5: RF transceiver. 

5.2.4 Color Sensor 

The robotic sensor is equipped with a color detecting sensor.  This facilitates the 

sampling of a color-coded field.  The color sensor is a light to frequency (LTF) sensor 

modulates the output frequency of a periodic pulse based on the light intensity.  The 

output comprises of the different components of white light - red, green, and blue. 

 

Figure 5.6: TAOS RGB color sensor. 
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5.3 Software 

Extensive coding in multiple languages has been done to achieve a unified 

functionality of the entire mobile sensor network.  In our particular case, the mobile 

sensor network functions solely to achieve estimation of a linear color field using 

adaptive sampling.  The need for so many different programming environments arises 

due to the seamless interfacing of multiple native devices which can understand a 

specific command set only.  In our current setup, the following interfaces were 

programmed. 

• Matlab GUI � Base station. 

• Base station � Multiple mobile robots. 

• Mobile robot � Onboard sensors and devices. 

A simple point-n-click command directing a mobile robot to go to a particular 

location is fairly involved.  Firstly, a string command is built up addressing the robot 

with the “go to” location. (Robot commands are described in section 5.3.1.)  Further, 

this command is serially passed on to the base station where a simplistic network stack 

is used to package the command into packets to ensure error free wireless transmission 

with handshaking and acknowledgements.  Once the command is received by the 

wireless module of the robot, a simple parsing algorithm breaks up the command into 

tokens to be identified.  These tokens serve as requests to particular sensors for current 

readings or for actuators for motion.  A low level interfacing module for each specific 

sensor or device is required here. 
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The following sections address the various programming requirements at 

different stages of transmission and processing of a simple command. 

5.3.1 Robot commands 

Commands to the robot are simple strings terminated with a terminal character 

such as the semi-colon.  These commands achieve motion, sensing, and other 

miscellaneous system tasks.  Motion commands are either open loop where the robot is 

in motion until a stop command is received, or closed loop where the robot is in motion 

until the encoders register a motion corresponding to the commanded amount.  Some of 

the commands are described in Table 5.1. 

Table 5.1: Robot commands. 
Command Command description 

F; Move forward. 

B; Move backward. 

R; Turn right. 

L; Turn left. 

S; Stop. 

M 120; Move forward by 120 encoder counts. 

T -85; Turn clockwise by 85 encoder counts. 

T 40; Turn anti-clockwise by 40 encoder counts. 

C; Take color sample (responds with color read.) 

 

5.3.2 Wireless communication protocol 

An error-free communication protocol has been designed such that all 

communication between the base station and the robot are always acknowledged by 

each other.  A simple checksum inserted computed and inserted into the message 

ensures that the packet is not corrupted.  A packet that is corrupted is not acknowledged 

by the receiver and this causes the sender to retransmit.  Retransmission occurs for a 

fixed number of times before the sender aborts. 
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5.3.3 Sensor Interfacing 

Low level interfaces for the light sensor and the encoder have been 

programmed.  These involve a physical signal-level commanding of the device for 

addressing a particular device-specific port or register for obtaining data.  The servo 

actuators are commanded by a dedicated microcontroller (The PIC.)  A dedicated 

microcontroller is required since these actuators need continuous commanding which 

may take up way too much time by the general purpose microcontroller (the 

Javelinstamp.)  A low-level one signal-line serial interface between the two 

microcontrollers has been programmed for data communication between the two 

microcontrollers. 

5.3.4 Fixed-point algorithms 

Most microcontrollers operate only on signed and unsigned integer numbers.  

However to implement even the simplest Kalman filter requires mathematical 

operations on non-integer numbers.  The Javelinstamp microcontroller does not support 

these operations and equipping it with a floating point co-processor would make the 

system more expensive and also slow down normal operations.  A different solution is 

sought for. 

On the current robot system, we implement simple mathematical operations 

such as addition, subtraction, multiplication and division using a fixed-point binary 

representation of a non-integer number.  This binary representation can easily be stored 

on a integer register and hardware operations of addition and subtraction suffice for 

addition and subtraction of non-integer numbers.  Separate multiplication and division 
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algorithms are required however and have been implemented on the robot.  Table 5.2 

illustrates the binary representation of a non-integer number. 

Table 5.2: Fixed-point binary representation of a non-integer number. 

integer part binary point fractional part 

... 2
5
 2

4
 2

3
 2

2
 2

1
 2

0
 . 2

-1
 2

-2
 2

-3
 2

-4
 2

-5
 ...  

... 32 16 8 4 2 1 . 
1
/2 

1
/4 

1
/8 

1
/16 

1
/32 ...  

 

5.3.5 Matlab programming 

The adaptive sampling algorithms have been entirely implemented in the Matlab 

programming environment.  A simple graphical user interface developed serves as the 

interface to the user who can monitor the current topology of the mobile sensor network 

as mobile robotic sensors navigate adaptively to take samples to estimate the field.  The 

graphical user interface can be use for monitoring the evolution of the estimated field 

and to compare it with the truth model. 

5.4 Experimental Setup 

The mobile sensor network system for adaptive sampling is setup as in Figure 

5.7.  An inexpensive overhead camera serves as the GPS offering infrequent updates of 

robot poses.  The base station and the camera are connected to a PC.  All 

communication with the robots occurs through the base station in a star network 

topographical manner.  Each robot has a unique identifier for communication message 

arbitration. 



111 

 

Figure 5.7: Experimental setup. 

This simple setup models a real-life scenario where multiple mobile sensors can 

be deployed in the open, with a global positioning system, when available, localizing 

the sensors, and the entire sensor network topology changing adaptively to estimate 

some modeled environmental parameter  

5.5 Summary 

This chapter has detailed some of the design ideas that went into making the 

robotic sensor.  Various components of the robot and their functionalities have been 

discussed.  The physical setup of the mobile sensor network test bed has been described. 

With a physical test bed available, adaptive sampling algorithms developed in 

simulation can be easily used for experimental feasibility and verification. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH

This chapter summarizes the contributions of this thesis and presents 

suggestions for further research in Adaptive sampling, resource scheduling and 

localization. 

6.1 Thesis contributions 

This thesis has served in developing Adaptive sampling algorithms for 

estimating spatially distributed static linear and Gaussian fields which are linear in its 

parameters.  Closed form information measures in linear regression have been used to 

adaptively estimate linear and Gaussian fields with linear parameters.  Nonlinear 

optimal estimation techniques, such as the Kalman filter, constrained, and 

unconstrained nonlinear optimizers have been used to adaptively estimate field and field 

basis parameters.  An experimental mobile robotic sensor developed has helped in the 

validation of the adaptive sampling algorithm by experimentally estimating a linear 

color field. 

This thesis has extended the preliminary analysis of deadlocks using the 

Discrete Event Controller.  A deadlock avoidance algorithm for resource scheduling in 

the presence of shared heterogeneous resources in mobile sensor networks has been 

implemented experimentally on the ARRI WSN test bed comprising of Cybermotion 
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SR2 patrol robots and Berkley motes thereby validating the deadlock avoidance 

algorithm.  Furthermore, a general mathematical formulation has been innovated for 

deadlock avoidance in systems with flexible-routing. 

The thesis also serves in developing a simultaneous and adaptive localization 

algorithm for the localization of a wireless sensor network using simple geometric 

constraints of radio connectivity.  An adaptive localization algorithm has also been 

developed for adaptive navigation of a mobile robot such that optimal minimization of 

the largest uncertainty in the sensor network occurs. 

6.2 Future research 

Adaptive sampling of complex fields where both the field parameters and the 

basis parameters of the field need to be estimated still remains unsolved.  Further 

research in nonlinear optimal estimation techniques would serve in approaching this 

problem. 

Several challenges still remain with the mobile robotic sensor where processing 

power is limited.  A Kalman filter implemented directly on the robot would aid in 

navigation.  A logical next step would be to distribute the algorithms to run more locally 

on the robot itself. 

More extensive analysis and simulations of the deadlock avoidance algorithms 

in the presence of routing choices would help in understanding when such algorithms 

may fail and deadlock becomes eminent. 

Implementing the proposed algorithms in chapter 4 on physical sensors and 

mobile robots would experimentally validate the proposed algorithms.  Future research 
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should take into consideration, time-varying geometrical constraints of radio 

connectivity for the sensor network. 
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