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ABSTRACT

ADAPTIVE SAMPLING WITH MOBILE WSN

Publication No.

Koushil Sreenath, M.S.

The University of Texas at Arlington, 2005

Supervising Professor: Dan Popa

The spatiotemporally varying network topology of mobile sensor networks
makes it very suitable for applications such as reconstruction of environmental fields
through sampling at locations that maximally reduce the largest uncertainty in the field
estimate. Mobile sensor networks comprise of multiple heterogeneous resources and a
deadlock-free resource scheduling in the presence of shared and routing resources
becomes necessary to schedule the most efficient (cost / energy / time) resource for a
task. Location information is imperative in sensor networks for most applications for
localized sensing where localizing the network adaptively with no additional hardware

is important.

v



Adaptive sampling approaches for spatially distributed static linear and
Gaussian fields with mobile robotic sensors are formulated and experimentally
validated. Resource scheduling algorithms for dispatching resources in a deadlock-free
manner in systems with shared and routing resources are mathematically formulated
and experimentally validated. Simultaneous and Adaptive localization algorithms for
sensor network localization through simple geometric constraints are validated through

simulations.
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CHAPTER 1

INTRODUCTION

Spatiotemporally varying network topologies of mobile sensor networks make
them suitable for applications such as reconstruction of environmental fields through
adaptively sampling at locations that maximally reduce the largest uncertainty in the
field estimate. Mobile sensor networks comprise of multiple heterogeneous resources
and a deadlock-free resource scheduling in the presence of shared and routing resources
becomes necessary to schedule the most efficient (cost / energy / time) resource for a
task. Location information is imperative in sensor networks for most applications for
localized sensing where localizing the network adaptively with no additional hardware
is important.

This chapter introduces the research areas of the thesis, namely, Adaptive
sampling, resource scheduling and sensor network localization.

1.1 Adaptive Sampling

Monitoring environmental parameters is a complex task of great importance in
many areas, such as natural living environments, homeland security, industrial or
laboratory hazardous environments (biologically, radioactively, or chemically
contaminated), polluted/toxic natural environments, water treatment plants, nuclear

stations, war zones, remote environments, such as deep space or underwater [1].



The capabilities and distributed nature of wireless sensor networks provide an
attractive sampling approach for estimation of spatiotemporally distributed
environmental phenomena. Sampling is a broad methodology for gathering statistical
information about a phenomenon. Using densely deployed static sensor network to
cover large sampling volumes is very expensive in time and resource costs and places
heavy demands on energy consumption. Physical adaptation of a sensor network, either
by adaptive sensor scheduling or through robotic mobility may be the only practical
approach. This leads to adaptive sampling wherein sampling strategies temporally
evolve with past measurements. Information-based approaches to processing and
organizing spatially distributed, multimodal sensor data in a sensor network are
discussed in [2, 3].

Field estimation using the Kullback-Leibler distance as a measure of the
approximation error is shown in [4], where sample density is adaptively varied over the
search space depending on the state uncertainty. Adaptive Sensing [5] presents an
energy-efficient topology configuration method for environment monitoring using
densely deployed wireless sensor networks where redundant nodes are transitioned into
passive mode as auxiliary nodes for later use. Backcasting [6], detects correlations in
an environmental field during the initial preview sampling stage and this information is
used for refined sampling where only a small subset of sensors are adaptively activated,
thereby reducing the demands placed on energy consumption.

Environmental phenomena may appear as single or multiple events and may

migrate within the environment. Hence for accurate determination of space- and time-



varying variables, we require the sensing to be spatiotemporally distributed. Robotics
technology provides the possibility of mobile sensing nodes in a distributed sensor
network using prior research in localization of mobile robots [7-9], localization of
sensor networks [10, 11], and cooperative environment mapping approaches such as
SLAM [12], and CML [13]. Robotic Sensor Agents [1], presents a wide variety of
intelligent, autonomous robotic platforms for monitoring the environment. Deployment
algorithms for sensor networks with mobile nodes are discussed in [14-16].

Mobile sensor agents are most suited to implement adaptive sampling strategies.
A bacterial motion for detecting, seeking and tracking of an environmental phenomenon
is presented in [17]. NIMS [18], presents an adaptive sampling approach for
monitoring of spatiotemporal variation of atmospheric climate phenomena in a forest
environment by mapping environmental variables of temperature, humidity, and solar
illumination. Environmental prediction [19], uses the ensemble transform Kalman filter
(ET KF) for designing flight tracks along which GPS dropwindsondes are deployed
from the aircraft and provide vertical profiles of pressure, temperature, humidity and
wind as they drift down on a parachute. Various estimation techniques are presented in
[20] for predictive modeling in oceanography and meteorology. Optimal sample
selection using singular value decomposition (SVD) of the parameter variance space is
introduced in [21], where linear regression of the estimators is performed for
maximization of various norms of the variance matrix. Concurrent localization and
estimation of a field using multiple autonomous underwater vehicles (AUV) is

presented in [22]. An extended Kalman filter based sampling approach for estimation



of parameterized fields is introduced in [23] samples are chosen to minimize the state
uncertainty, represented by the covariance matrix.

This thesis considers the problem of estimation of a spatially stationary color
field using mobile robotic sensors equipped with a color sensing module. A color field
is chosen so that the truth model is always known easily and can be used for
determining the level of accuracy in our estimation algorithms. Most environmental
fields can be modeled and projected onto a two-dimensional topographical color map
which can then be used for estimation. Extensive simulations and experimental results
are presented.

1.2 Resource Scheduling

Mobile wireless sensor networks comprise of multiple heterogeneous resources
capable of performing diverse tasks such as measuring, manipulating, moving, sensing,
etc. In mobile sensor networks, a strong one-to-many mapping between a resource and
the tasks that the resource can perform occurs. This mapping can be statically assigned
resulting in shared resources, or dynamically assigned resulting in both shared and
routing resources. Shared resources arise when multiple tasks contend for a single
shared resource, while routing resources arise when multiple resources contend to
perform a single task. The use of shared or routing resources is a major problem
occurring in discrete event (DE) systems, including manufacturing systems, computer
systems, communication systems, highway/vehicle systems, and others [24]. Failure to
suitably assign, dispatch, or schedule resources in the presence of shared or routing

resources, can cause serious deleterious effects on system performance, resulting in



extreme cases in system deadlock. The need then arises for deadlock prevention,
deadlock avoidance, or deadlock detection and recovery.

Deadlock avoidance algorithms have been used in various scenarios such as
robotic cells [25, 26], e-commerce driven manufacturing systems [27], process control
such as semiconductor fabrication [28], communication network routing [29], computer
operating systems, etc. The implementation of deadlock avoidance policies in
autonomous distributed robotic systems such as mobile sensor networks has not been
still thoroughly investigated. Preliminary simulations of efficient deadlock avoidance
policies for shared resources in heterogeneous mobile sensor networks are presented in
[30].

A large amount of research has been done in developing various deadlock
avoidance algorithms using varied concepts such as circular wait, circular blocking,
siphons in Petri nets, critical subsystems, etc. Petri net based deadlock prevention
polices [31, 32] deal with detecting siphons and statically introducing control places
into the net to eliminate unmarked siphons signifying deadlock. In [27], potential
deadlock patterns are acquired from an off-line simulation of the part processing
sequence and then, an on-line matching/reordering process is made use of to keep the
current system state dissimilar to the acquired deadlock patterns. Mathematical
formulations of deadlocks and traps by calculation of s-invariants of marked graphs
using linear algebra are thoroughly discussed in [33]. Supervisory control of Petri nets
[34] introduces an approach of keeping a Petri net from starvation by using on-line

routing functions instead of traditional off-line control places, where the routing



function assigns a non-shared resource to perform the task from within a pool of
resources. Detailed mathematical analysis of deadlocks and an efficient dispatching
policy for deadlock avoidance based on the generalized kanban scheme using a matrix
model for discrete event systems is presented in [24, 25, 26, 35-37].

Due to the heterogeneous nature of mobile sensor networks, resources are
capable of performing multiple jobs. These are systems with flexible routing where
tasks can choose from a set of resources. In such systems with flexible routing, route
enumeration can be of exponential complexity and execution of deadlock avoidance
constraints are rendered computationally intractable [38]. In [38, 39], a control model is
developed that allows for small, quickly enumerable subset of less-dense routes which
allows for several processing alternatives (routes) at each step while still maintaining
deadlock free operation. In [40], several novel mathematical formulations are
constructed for detecting active circular waits leading to a deadlock in flexible routing
systems; however no deadlock avoidance algorithm is arrived at.

In this thesis, we extend the preliminary analysis of deadlock avoidance polices
for shared resources in heterogeneous mobile sensor networks to more complicated
scenarios. We show through experimental implementation on an actual mobile sensor
network test-bed, the feasibility and effectiveness of the proposed deadlock-free
supervisory control in performing complex and simultaneous sequencing of
interconnected tasks. Further, a general deadlock avoidance policy for systems with
flexible routing, where both shared and routing resources are present, is mathematically

formulated and various simulations performed to validate deadlock-free operation.



1.3 Simultaneous and Adaptive Localization of a WSN

Location information is imperative for applications in both wireless sensor
networks and mobile robotics. Many sensor network applications, such as tracking
targets, environmental monitoring, geo-spatial packet routing, require that the sensor
nodes know their locations. The large scale of deployment in sensor networks makes
careful placement or uniform distribution of sensor nodes impractical. The requirement
of the sensors to be small, un-tethered, low energy consuming, cheap, etc., make the
sensors resource-constrained [41]. Localization is a challenging problem and yet
crucial for many applications.

Approaches to the problem of localization are varied. A detailed introduction to
localization in sensor networks is presented in [11]. GPS [42] solves the problem
trivially, but equipping the sensors with the required hardware may be impractical. A
small section of active beacons can be placed in the sensor network and other sensors
can derive their location from these anchor nodes [43, 44]. Cooperative localization
methods have been developed for relative localization [10, 45]. Other approaches
involve RSSI [46], TOA [47, 48], AOA [49], and Signal Pattern Matching [42].

For localization with no additional hardware on the sensor node, the geometric
constraints of radio connectivity are exploited. Some authors suggest using a mobile
robot (whose position is known) to localize the sensors. However, the position of the
mobile robot may be hard to determine. LaSLAT [50] uses a Bayesian filter to
simultaneously localize the sensor network and track the mobile robot. In [51], a

particle filter is employed to localize elements of the network based on observation of



other elements of the network. In [52], a mobile robotic sensor localized the network
based on simple intersections of bounding boxes. In [53], geometric constraints based
on both radio connectivity and sensing of a moving beacon localize the sensor network.
The Kalman filter has been used in dead-reckoning for mobile robots but its full
potential in localization of WSN has not heretofore been fully explored. In [54], an
extended Kalman filter is used for localization and tracking of a target. The Kalman
filter was used in [55] for active beacon and mobile AUV localization and in [56] for
scheduling of sensors for target tracking. SLAM [12] and CML [13] employ Kalman
filters for concurrent mapping and mobile robot localization, which can be considered
similar to our work wherein the geometric constraints introduced due to radio
connectivity of the static sensors play the role of features. In this paper we use the full
capabilities of the Kalman filter in the general WSN localization problem.

The work in this thesis exploits geometric constrains based on radio connectivity
such that range information is not needed. A mobile robot initially sweeps the network,
and broadcasts from the robot are used to localize the sensor nodes. Computationally
inexpensive Kalman filters implemented on the sensors fuse the information. On the
other hand, as time passes, the mobile robot gradually loses its own localization
information. We present an algorithm that uses updates from the better localized
sensors along with GPS updates, when they occur, to correct this problem. A
continuous-discrete extended Kalman filter running on the robot estimates the robot

state continuously and fuses the discrete measurement updates.



Finally, an adaptive localization algorithm, based on adaptive sampling
techniques [22, 23], is presented that navigates the mobile robot to an area of nodes
with highest position uncertainty. This ensures that the robot maneuvers to an area
where the nodes are least localized, so that it can maximize the usefulness of its
positional information in best localizing the overall network. The adaptive localization
strategy ensures that, with a minimal robot movement, the largest reduction in
aggregated node uncertainty is achieved at every iteration of the adaptive localization

algorithm.

1.4 Summary

This chapter introduced the scenarios of adaptive sampling using mobile
wireless sensor networks, resource scheduling and deadlock avoidance policies in the
presence of shared resources, and routing paths, and simultaneous adaptive localization
of wireless sensor networks using geometric constraints of radio connectivity.

1.5 Contributions

This thesis makes the following contributions:
¢ Closed form information measures in linear regression are used to
adaptively estimate spatially distributed static linear and Gaussian fields
with linear parameters. Nonlinear optimal estimation techniques, such as
the Kalman filter, constrained, and unconstrained nonlinear optimizers are
used to adaptively estimate field and field basis parameters. An
experimental robotic sensor is designed, developed and used to adaptively

estimate a linear color field.



¢ Deadlock avoidance techniques developed using the discrete event
controller is extended and implemented on a mobile wireless sensor
network comprising of Cybermotion SR2 patrol robots and Berkley motes,
such that smooth, deadlock-free resource scheduling occurs in the
presence of shared resources. Further, a general mathematical formulation
is developed for deadlock avoidance in systems with flexible-routing,
where both shared and routing resources exist. Simulations are done to
validate deadlock-free operation.

¢ A simultaneous localization algorithm is developed and simulated for
localization of a sensor network using geometric constraints of radio
connectivity. An adaptive localization algorithm is developed to
adaptively navigate a mobile robot such that it optimally minimizes the
largest localization uncertainty of a sensor network.

1.6 Thesis organization

This thesis presents algorithms for adaptive sampling, resource scheduling and
localization using mobile sensor networks. The remainder of it is structured as follows.

Chapter 2 presents an adaptive sampling strategy for field estimation using an
extended Kalman filter. Extensive simulation results, experimental results and
development of the mobile robotic sensors are discussed.

Chapter 3 presents the simulation and experimental implementation of the
deadlock avoidance policy using the discrete-event controller for resource scheduling in

the presence of shared resources. Further mathematical formulations are discussed and
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a simulation of a deadlock avoidance policy in the general case of routing paths and
shared resources is presented.

Chapter 4 provides localization algorithms for the simultaneous and adaptive
localization of a wireless sensor network using geometrical constraints of radio
connectivity.

Chapter 5 details the robotic platform that was designed and built to
experimentally validate the adaptive sampling algorithms.

Chapter 6 summarizes the main contributions of this thesis and provides

suggestions for future research.
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CHAPTER 2

ADAPTIVE SAMPLING

The capabilities and distributed nature of wireless sensor networks provide an
attractive sampling approach for estimation of spatiotemporally distributed
environmental phenomena. Adaptive sampling is the scenario where sampling
strategies temporally evolve with past measurements for optimality. In the context of
mobile sensor networks, the problem of adaptive sampling by selection and
repositioning of mobile sensing nodes in order to optimally estimate the parameters of
distributed variable field models is considered.

This chapter considers the problem of estimation of a spatially stationary field
spread over a region R using mobile robotic sensors. The estimation of the field by the
sampling algorithm reduces the region R to a set G of sampling locations. The optimal
construction of G is constrained by several factors such as the non-holonomic
constraints on vehicle kinematics, the communication connectivity due to mobility of
the sensor network, the inherent inaccuracy in positional estimates due to navigational
errors of mobile nodes, and the spatial granularity of the field that arises due to the
sensors used.

In this chapter, extensive simulations of field estimations using adaptive

sampling techniques by simple linear regression, constrained nonlinear optimization and
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optimal estimation methods are discussed. Experimental results of 2D deployment
scenarios using custom-built, low-cost mobile sensor robots are presented.

This chapter is organized into the following sections. Section 2.1 discusses
various field models and mathematical formulations of different adaptive sampling
algorithms. Section 2.2 presents several simulations of estimation of spatially
distributed static fields. Section 2.3 illustrates the experimental setup and presents
experimental results validating the proposed adaptive sampling algorithm.

2.1 Models

Mathematical models are formulated to represent various parameterized fields.
These are used for simulating various adaptive sampling algorithms for field estimation.
This section presents mathematical models of various parameterized fields and
mathematically proposes several adaptive sampling algorithms.

2.1.1 Estimation of a parameterized field using linear regression

Regression is a statistical method of estimating the conditional expected value of
a dependent variable given the values of the other independent variables. When the
relation between the dependent variable to the independent variable is assumed to be a
linear function of some parameters, we have linear regression.

Linear regression has been used for estimating linear fields in [22], and for
nonlinear Gaussian fields but linear in the parameters in [23].

The independent variables are the position of the sampling location given as
x=[ (2.1)
with a general field linear in the parameters represented by
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F:ao+a1g1(X)+...+amgm(X) (2.2)

where the parameters a,, a,, ---, a,, are all linear and the basis function of the field,

m

2,(X) g,(X), -, g,,(X) may be nonlinear such as the Gaussian basis given by

(xS -yl

g =glx,y)=e 2 (2.3)
The assumption that the field distribution is linear in its parameters allows us to
compute a closed form solution for the information measure used by the sampling

algorithm. After » measurements at locations X, X,, -, X,, the field measures depend

linearly on the coefficients a,q,,--,a,, via position-dependent functions, and we can

m

directly estimate the unknown coefficients from the least-square solution

Zy =ay +a1gl(Xl)+”'+amgm(Xl)
Z, =ay +a1g1(X2)+"'+amgm(X2)

(2.4)
Zn =4y +a1g1(Xn)+”'+amgm(Xn)
Zl Zl
":171 2(1 &i (Xj )):;m,/Sn PlEM (2:5)
. Z}’l Zl’l
Since the pseudo-inverse has a closed form, given by
My =M, ) T (2.6)
we obtain
LY 1
4= (- alx,) o glx,)] &lx)) Zn:zj &ilx;) (2.7)
j=1 : j=1 :
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The covariance matrix of 4, can be related directly to the constant measurement

uncertainty as

Var(An ): var(Z, )(MnTMn )71 (2.8)
and the adaptive sampling algorithm will move the vehicle from location X, to X

n+l»

such that the following p—norm is minimized over the search space ©.

1
T Mn
m(X)z M, giEX) (1 g,-(X) gm(X) (2'9)
g, (X) )
m(X,.,)<m(X).vX €O (2.10)

2.1.2 Estimation of a parameterized field using a Kalman Filter

Assuming the field distribution to be linear in its parameters allows us to
compute a closed form solution for the information measure used in the sampling
algorithm to decide the next sampling location. But such assumptions are not practical
for all scenarios. Here we consider estimation of a parameterized field using a Kalman
filter such that the need for a closed form information measure is eliminated.

The sampling location is given as
X=[x y|' (2.11)
with a parameterized field model with linear parameters
F=ay+a,g,(X)+a,g,(X) (2.12)

and nonlinear Gaussian basis
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(xS -yl S

g =glx.y)=e 2 (2.13)
The states to be estimated are the field coefficients
A=lay, a a,]" (2.14)
which get updated in time by the time-update equation of the Kalman filter

Py =P, +G0,G{
Ak:rl * onen (2.15)
Ay =4,
On sampling at a location, the measurement-update equation of the Kalman
filter is employed to improve the estimate by combining the information available in the
new measurement. The measurement-update equation is
- ¥ T -l -
Py = [(le ) + Hk+1Rk+1Hk+1}

1
Ky = Pk+1HkT+1Rk+1 (2- 1 6)
A = A + Ky (Zk+1 —Hy A )

where the observation matrix is given as
Hk+1=[1 gl(Xk+l) gz(Xk+1)] (2.17)
The adaptive sampling algorithm will move the vehicle from location X, to
X .1, such that the following 2 -norm of the covariance matrix is minimized over the
search space ©.

m(Xe) =[P,
m(X,,)<m(X, ) VX e® (2.18)

2.1.3 Estimation of field parameters using linear regression and nonlinear optimization
Earlier sections have considered fields with Gaussian basis with known mean

and variances. Here we approach the problem of estimating a parameterized field with
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linear parameters and also estimating the means of the basis that make up the field.
This is a more accurate approximation of a true environmental field.
We attempt to arrive at a solution by using linear-regression for estimation of
the linear field parameters and using nonlinear optimization for estimation of the basis
parameters of the field.
The sampling location, the field model and the field basis are given by
X=[x y] (2.19)
F=ag+ag;(X)+a,g,(X) (2.20)

g =glx.y)=e 2 (2.21)
After » measurements at locations X,, X,,---, X, , the field measures depend
linearly on the coefficients «,,a,, :-,a, via nonlinear position-dependent basis

functions. We try estimating the unknown coefficients from the least-square solution

Zy=a, +a1gl(X1)+"'+amgm(X1)
22=a0+a1g1(X2)+...+amgm(X2) (2 22)

Zn =4ay +a1g1(Xn)+"'+amgm (Xn)
and estimating the unknown means of the basis by finding the local minima of the
minimization function using nonlinear unconstrained optimization techniques. The

minimization function is given as

3 (a0 +ire (%, )+ dre, (£, )-2, (2.23)

Vi
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2.1.4 Estimation of field parameters using nonlinear optimization

Using linear regression for estimating field parameters and nonlinear
optimization for field basis parameters does not incorporate complete knowledge of the
history of the estimates. We try to use a nonlinear constrained optimization technique
for estimating the field parameters and the basis means together.

The sampling location, the field model and the field basis as earlier are given as
X= [x y]T (2.24)
F=ay+a,g,(X)+arg,(X) (2.25)

(xS -yl

g =glx.y)=e 2 (2.26)
We use a nonlinear constrained optimizer which minimizes a function

min £x) (2.27)

subject to the linear equality and inequality constraints,

qux = beq

(2.28)
Ax<b
the nonlinear equality and inequality constraints,
Cylx)=0 (2.29)
C(x)<0
and bounded by
Ib<x<ub (2.30)

To minimize the overall error in our estimation of a,a;,a,,X,.,V.1>X02>Ver» WE

use a minimization function
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2
. ) (»"—»’A‘:»l)z*'(y—f’il)z . (x—;‘iz)z‘*'(y—)}iz)z

D | ag+aje 207 +abe 207 -7,

Vi

(2.31)

For accurate, repeatable convergence of estimating parameters, we partition our

search space © into various sub search spaces (0,,,,0,,,) and carry on sub estimations

to arrive at an estimate for a particular configuration. From among the estimates for
various configurations, the best estimate is chosen. This is the scenario of Divide-n-
Conquer where the subspace is partitioned and from among the partitioned results, the
best one is chosen.

To estimate the entire field (both the field parameters and all basis parameters,)
we consider a single basis field

F=a, +a1g1(X) (2.32)

and to estimate all field and basis parameters, a,,a,,x,,y.,0, We use a minimization

function

, » 2
_(X*Xél ) +(J’*)’;1 )
Mlag+aje 2 -z (2.33)

2.1.5 Estimation of a parameterized field with localization uncertainty

In approaches described in the previous sections, we assume that there is
absolutely no uncertainty about the sampling location. However navigation of a mobile
robotic sensor is subjected to various localization errors. We can use location
information that is embedded in a field sample (due to the inherent background

mathematical model of the field) to better localize our sampling location. A given
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known localization uncertainty described by a simple kinematic model is introduced
into the system [23].
Along with the field, we also estimate the sampling location. The aggregate

state then contains both the positional information X,, and the field parameter estimates

A, . The state and output equations are written as

Xk+l _ Xk In_ Wy 3 Xk
[Akﬂ}_[flk}[o_(/k{0}_[Ak}+BUk+‘gk (2.34)

b A o

where the white noise covariances of state and output are

E[&k,ng]zg{Ql 0}

0 0
(2.36)
E[/l A T]:R: B o
ok 0 R,
The state evolution is governed by the nonlinear Kalman filter time-update
equation
Py =P +G,0,G}
(2.37)

|:Xk+1:|:|:Xk +BUk
AI;+1 Ak

On sampling at a location, the measurement-update equation of the Kalman

filter is employed to improve the estimate by combining the information available in the
new measurement. This information contains both information about the field and the

position of the sample. The general nonlinear measurement-update equation is
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- 1
_ _
= (Pk+1 ) + H£+1Rki1Hk+l }

Ky =P Hi R (2.38)
A T A Y . . A

|:){k+l _ |:){k+l:|+ Koo { e+l }—h()(;, A {{(m}
A | [ Aga Zin A

For a linear field of the form F =a, +a,g,(X)+a,g,(X) with g,(X)=x,¢,(X)=»,

we have

Xzl ol n=2 (2.39)

A:[ao al az ’

e )-m-|s 00 (2.40)

= Pyl
For a Gaussian field of the form F =a, +a,g,(X) with g,(X)=e 207 , We

have

Xz[x y]T, n=2

(2.41)
A:[ao ay Xe Ve U]T
with the output equation modified as
Yk Xk i| |:§k :|
= + 242
{ZJ Lz(Xk A v (2.42)
x P +y-y P
WX, 4, )=a, +ae 207 (2.43)
and the linearized Jacobian output matrix represented as
H = {H 9 } (2.44)
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1

_ 2 _ 2
oh _( x¢)2+(2y Ye)
Oay e e

2 2
oh )2 _ 2 ) Oo-r)”
Aal al (x ‘xc ) +3(y yc ) e 20_2

_ _| oh — o
H =1, H,= Axc - s (2.45)
oh a2, 207
Ve o
Oh (x4 (=5,
oo | a Y= 67 252
1 62

For information about the development of the nonlinear Kalman filter equations,
interested users are referred to [57, 58]

2.1.6 Differential robot simulation

A differential robot model as illustrated in Figure 2.1 is used to mathematically
represent the physical robot kinematics. A systematic error [59] is injected into the
system to account for navigational errors that arise due to practical inaccuracies in

construction and mechanical assembly.

O

-

—=

r+6r, r+er r+sr e
I

I
L]

I +61
(a) (b)

Figure 2.1: Differential robot with uncertainty in wheel radii and axle length. (a)
Top view, and (b) Front view.

Taking the states of the system tobe X =[x, x, x;]" =[x » 6], the system

model is given by
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_(WR”R +taopr) cos(x3 )_
X 2
5y |=| LCRIREOLTL) G ) (2.46)
X3 (wgrg —@prg)

L Ly ]

where the effective axle length is

Ly =~/ (L* =(rp —rp)%) (2.47)

and the inputs being

u=ly w,]" =log o] (2.48)

The nominal system model can be obtained from the above system by replacing

r=r.=r,and L, = L. In the dead reckoning scheme [60], [4, u,] are not control
inputs, but are rather the measured wheel velocities which can be measured by taking
the difference between encoder counts from successive sample periods. If ¢, (k),d; (k)
represent the encoder counts of the right and left wheels respectively, then using
forward difference approximation of the derivative in the kinematic system, equation
(2.46), we arrive at the discrete system model given by
K gy rAPRTR + Ky 1 AP 1, cos(i; (k-1))

2

%y () = %, (1 — 1)+ Ken=rAPrTr ;KdrHM’L”L sin(iy(k—1) (2.49)

Ky rAPrrg =K gy 1 AP 1,
L,

% (k)= x,(k=1)+

%3 (k)= &5 (k- 1)+

where K, z,K,,_; are the drive constants of the right and left wheel respectively in

terms of distance per drive count and Ag, = g, (k) gz (k—1),Ag, = ¢, (k)-¢, (k1) are the

change in drive counts measured between successive sample periods.
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The encoder is modeled as a simple extrapolation model and is given by
#k) = gk ~1)+ K 1. (de(h) - de,,, JAt (2.50)
where K,. is a proportionality constant in terms of encoder counts / percent duty cycle,

de,,., 1s the duty cycle percent that keeps the motor at standstill, and Ar is the time

zero

interval.

A simple quasi-holonomic control is used to navigate the robot from an initial
start location to a destination location. This is achieved by first orienting the robot
along the path from the start to the destination, then moving the robot along this path
and then orienting the robot to match the required destination orientation. A simple
Kalman filter implemented serves to fuse information from the GPS (the overhead
camera) to correct navigational errors.

2.2 Field estimation simulations

The proposed adaptive sampling algorithms discussed in section 2.1 are
simulated on the various mathematical field models for the purpose of estimation of
parameterized fields. The simulation results for the various combinations of field
models and adaptive sampling algorithms are presented in this section.

2.2.1 Estimation of a parameterized Gaussian field using linear regression

A 2D nonlinear Gaussian field (though still linear in the parameters) is
considered with m =2, such that
F=ay+a,g (x,y)+a,g,(x,») (2.51)
where a Gaussian basis as described in eq. (2.3) is chosen. The centers of Gaussians for

g,(x,»), and g,(x,y) are (30,30),(65,45) respectively for the 2 —norm case and
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(30,30),(35,80) respectively for the «—norm case. The standard deviation of the Gaussian
distribution is chosen as o =10.

Figure 2.2 illustrates the original field, Figure 2.3 depicts the field estimated by
least squares and the sampling locations using the 2-norm , and Figure 2.4 shows
convergence graphs of the field parameters.

Figure 2.5, Figure 2.6, and Figure 2.7 illustrate the same information for

o0 —norm .

Original Field
T T

Original Field

| : : . i : v
10 20 30 40 a0 <] 70 a0 a0 100

Figure 2.3: Estimated field and sampling locations (2 -norm sampling).
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Figure 2.4: Field parameter coefficient convergence (2 -norm sampling).
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Figure 2.5: Original field (Linear regression with o —norm sampling).
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Figure 2.7: Field parameter coefficient convergence (2 —norm sampling).
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2.2.2 Estimation of a parameterized Gaussian field using a Kalman Filter

The centers of Gaussians for g,(x,y), and g,(x,y) are (30,30),(35,65) respectively
and the standard deviation of the Gaussian distribution is chosen as o =10.

Figure 2.8 illustrates the original field, Figure 2.9 depicts the field estimated by
a Kalman filter along with the sampling locations, and Figure 2.10 shows the
convergence graphs of the field parameters. As is evident, even after 45 samples, the

field parameters do not converge completely.

Original Field

Original Field
100 F T T T

Figure 2.8: Original field (KF sampling).
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Figure 2.9: Estimated field and sampling locations (KF sampling).
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Figure 2.10: Field parameter coefficient convergence (KF sampling).
2.2.3 Estimation of field parameters using linear regression and nonlinear optimization

The centers of Gaussians for g,(x,y), and g,(x,y) are (30,30),(35,65) respectively
and the standard deviation of the Gaussian distribution is chosen as o =10.

Figure 2.11 illustrates the original field, Figure 2.12 depicts the sampling
locations and the field estimated by using a combination of linear regression and
nonlinear optimization techniques, Figure 2.13 shows the convergence graphs of the
field parameters, and Figure 2.14 depicts the movement of the means of the Gaussian
basis functions of the field. This clearly illustrates that the means diverge and we can
not completely and accurately estimate both the field and the basis parameters using

hybrid linear and nonlinear optimization techniques.

Original Field

a0 a0 100

Figure 2.11: Original field (LS / NLS).
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Estimated Field Sampling Seguence
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Figure 2.12: Estimated field and sampling locations (LS / NLS).
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Figure 2.13: Field parameter coefficient convergence (LS / NLS).
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Figure 2.14: Movement of the mean of the Gaussian basis. (LS / NLS).
2.2.4 Estimation of field parameters using nonlinear optimization

A constrained nonlinear optimizer is used to estimate the field parameters

ay,a,,a, and the basis parameters x,,y,,x.,,»., With the constraints on the bounds as
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ag,ay,ay€[-10 10], (x,1, 14 ) (x02, 7., )€[0 100]. The expected values are
ay=l,a,=4,a, =55, and (x.,v.)=(30,30), (x5, 7.2 )=(3565).

Figure 2.15 illustrates the original field, Figure 2.16 depicts the sampling
locations and the estimated field using a constrained nonlinear optimization technique,
Figure 2.17 shows the convergence graphs of the field parameters, and Figure 2.18

depicts the movement of the means of the Gaussian basis functions of the field.
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Figure 2.15: Original field (constrained nonlinear optimizer)
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Figure 2.16: Estimated field and sampling locations (constrained nonlinear
optimizer).
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Figure 2.17: Field parameter coefficient convergence (constrained nonlinear
optimizer).
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Figure 2.18: Movement of the mean of the Gaussian basis (LS / NLS).

The accuracy in the convergence of the estimation parameters in the previous
case is not repeatable. A divide and conquer approach by partition of the search space
into various nxn partitions is performed as illustrated in Figure 2.19. The constraints of
bounds for the nonlinear optimizer are now updated to each sub-space rather than the

entire search space.
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Figure 2.19: Search space partitioning.
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For a 2x2 search partitioning, Figure 2.20 depicts the sampling locations and
estimated field, Figure 2.21 shows the convergence graphs of the field parameters, and
Figure 2.22 depicts the movement of the basis means. As can be seen the best estimates
are available in the search space combination of (0,0),(0,1) where the two Gaussian basis
functions are centered. For a 4x4 search partitioning, Figure 2.23, Figure 2.24, and
Figure 2.25 illustrate the same information.

The partitioning gives us faster sub-space convergence and has a much higher

possibility of convergence.
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Figure 2.20: Estimated field and sampling locations (2x2 partitioning).
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Figure 2.21: Field parameter coefficient convergence (2x2 partitioning).
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Figure 2.22: Movement of the mean of the Gaussian basis (2x2 partitioning).
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Figure 2.23: Estimated field and sampling locations (4x4 partitioning).
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Figure 2.24: Field parameter coefficient convergence (4x4 partitioning).
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Figure 2.25: Movement of the mean of the Gaussian basis (4x4 partitioning).

Further, a single basis function is chosen as the field as in equation (2.32) and all
the parameters of the field «,,q,, and basis x,, y.,o are estimated. The same
constraints as in earlier simulations are used along with the new bound of o<[0 10].

Figure 2.26 illustrates the original field, Figure 2.27 depicts the estimated field
and the sampling locations where the entire field is estimated, Figure 2.28 shows the

convergence graphs for the field parameters, and Figure 2.29 shows the convergence

graphs for the basis parameters.
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Figure 2.26: Original field (nonlinear optimization for field and basis parameter
estimation).
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Figure 2.27: Estimated field and sampling locations (nonlinear optimization for
field and basis parameter estimation).
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Figure 2.28: Field parameter convergence (nonlinear optimization for field and
basis parameter estimation).
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Figure 2.29: Field basis parameter convergence (nonlinear optimization for field
and basis parameter estimation).
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2.2.5 Estimation of a parameterized field with localization uncertainty

We estimate a linear field with uncertainty in localization as described in section
2.1.5. Initial conditions of state is takes as X, =[0 0 0 0 0]", with very high

uncertainty in the initial estimate P, =10'" /5, with state uncertainty

o 0
s

where the localization uncertainty Q, =0.11,, and field parameter uncertainty Q, =0,

and the measurement uncertainty as
R 0
2 2[ 1 } (2.53)

with R, =0.1/,,and R, =0.1.
Figure 2.30 depicts the original linear field, Figure 2.31 shows the field
parameter convergence, and Figure 2.32 shows the sampling locations for simulations

with and without localization uncertainty.

Original Field Estimated Field

Figure 2.30: Original and estimated linear fields (with localization uncertainty).
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Figure 2.31: Field parameter coefficient convergence for linear field estimation
(with localization uncertainty).
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Figure 2.32: Sampling locations for linear field estimation. (a) With localization
uncertainty, and (b) Without localization uncertainty.

A Gaussian field is entirely estimated (both field parameters and basis

parameters) with localization uncertainty. An initial state

S O O

2
Il

0 (2.54)
o +0.1*randn

x. +0.1*randn

| v, +0.1*randn |
with very large uncertainty in the initial estimate, P, =10'°1, is chose, with same

localization uncertainty, Q,, and Q, =0,, and with same measurement uncertainty.

Figure 2.33 depicts the original Gaussian field, Figure 2.34 illustrates the estimated
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field and the sampling locations where estimation is done with localization uncertainty,
Figure 2.35 shows the convergence graphs for field parameters, and Figure 2.36 shows

the convergence graphs for basis parameters.

Original Field Original Field
e 50 : >

45

40+

e

0r

20r

A LT
LR

0 T
AR
SRS

0 £l

¥ 0 n M 5] 10 15 20 2‘5 30 35 40 45 50
Figure 2.33: Original Gaussian field (with localization uncertainty).
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Figure 2.34: Estimated Gaussian field and sampling locations (with localization
uncertainty).
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Figure 2.35: Field parameter coefficient convergence for Gaussian field
estimation (with localization uncertainty).
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Figure 2.36: Field basis parameter convergence for Gaussian field estimation
(with localization uncertainty).

2.2.6 Differential robot simulation

The differential robot model discussed in section 2.1.6 is simulated with a quasi-

holonomic controller to navigate from an initial location of (0,0) to a destination of

(50,50) with a simple Kalman filter serving to fuse measurement updates from the GPS.

Since the differential robot is injected with systematic errors, the commanded

inputs do not drive it along the desired path to the destination. Figure 2.37(a) shows the

estimated robot path (where the robot thinks it is), which is different from the actual

robot position, Figure 2.37(b). Figure 2.38 shows the improvement in controlling the
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position of the robots where information from the GPS (position and orientation
information, and position information only) is fused by the Kalman filter to improve the

robot positional estimate.
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Figure 2.37: Robot simulation of (a) estimated and (b) actual positions.
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Figure 2.38: Estimated robot position, improved with updates from GPS. (a)
Position and orientation updates, and (b) Position updates only.

2.3 Experimental Setup and Results

An experimental setup as illustrated in Figure 2.39 has been setup comprising of
a 12'x8' sample space with a color generated field printed on large format paper and

assembled on the floor, an inexpensive overhead camera at a height of 13'
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encompassing the entire area in it’s field of view, a base station where the primary AS
algorithm runs and serves as a central dispatcher of resources, and several mobile
robotic sensors. The mobile sensor units (ARRI rovers shown in Figure 2.40) are
inexpensive (below USD 500 per unit), are equipped with wheel encoders for
localization, a color sensing module for taking color samples, and a RF communication
card which serves as the link between the various robotic sensors and the base station in

a star topological network.

Figure 2.39: Illustration depicting the experimental setup.

Figure 2.40: ARRI Rover (a) Robot model, (b) Top view, and (c) Perspective
view.

41



2.3.1 Field model and description of uncertainty

A simple linear field, linear in three color components of red, green, and blue, is

used for initial algorithm validation. The field is given as

R = ry, + nx + ny
G & + g&ix + gy
B by + bx + byy

with nominal field parameters chosen as (Field in Figure 2.41)

7y =02307, 7, =0.0061, 7, =-0.0026;
g0=0, g, =00010, g, =0.0096;
by =1.0, b, =-0.0040, b, =-0.0053;

Field Image

X

(2.55)

(2.56)

Figure 2.41: True color field generated for printing using field parameters in

equation (2.56).

A rectangular grid array is used to correct the wide-angle lens distortion, Figure

2.42, and MATLAB image acquisition and processing toolboxes are used to calculate

the pose of the robot using the camera system using image segmentation, Figure 2.43.
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Figure 2.43: The MATLAB GUI showing a RGB field and an example of a
segmented image for robot localization.

2.3.2 Experimental adaptive sampling for linear field estimation

Adaptive sampling has been used to estimate a linear field without localization
uncertainty of the mobile sensor. The base station runs the adaptive sampling algorithm
and commands the mobile sensor to sample at a particular location. The mobile sensor
navigates to the location by dead reckoning and thus could end up at a location not
exactly matching the commanded one. A camera update at this point ensures that the
sampling location used is the current mobile sensor’s position. Thus we can ignore

localization uncertainty for the moment and iterate the adaptive sampling algorithm to
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generate the next sampling location. The experiment used twenty five sampling
location to estimate the field.
A simple Kalman filter is setup to estimate the field. The state to be estimated is
the compound tri-field representing the three different linear fields of red, green and
blue, given as
X=[r, n rn g & & by b b (2.57)
The field is assumed to be stationary and thus does not evolve temporally. The

Kalman filter time-update equation illustrates this

(2.58)

The measurement-update equation fuses the information obtained after sampling

a particular location

. T -1
Ky =P Hiy (Hk+1Pka+l +Rk)
Pk+1 :(I_Kk‘FlHk‘Fl)Pk:’l (259)
KXo =X + Ky (Zk+1 _Hk+1X1;+l)

where the observation matrix is given as

—_ o O
= O O

0
0 (2.60)
Yy

f
(=
S O =
S O =
S = O
S ®v OO
o O

Based on the height and resolution of the CCD camera, we estimate a

measurement uncertainty of +2.5¢m . The color sensor (TAOS TCS 230) measurement

uncertainty, given by the number of discrete RGB values it can measure with, is

expressed in RGB units as unity.
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Figure 2.44 shows the actual field and the estimated field after 25 samples using
the adaptive sampling algorithm. Our eye can not tell the difference; however, in reality
there are errors due to color printing, color sensor and localization errors. Figure 2.45
shows the various sampling locations of the mobile robotic sensor. Figure 2.46
illustrates the evolution of the field parameters to values close to nominal as successive
samples are taken. The reason for the discrepancy is not color measurement error but

rather differences between screen and printer colors.

Estimated Field Image

X

(a) (b)
Figure 2.44: (a) True printed field and (b) estimated field using adaptive sampling
(25 samples).
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Sampling Locations

Figure 2.45: Sampling locations superimposed on the field image view from the
overhead camera.
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Figure 2.46: Field parameter convergence graphs for the 9 unknown field
coefficients.
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2.4 Summary

Extensive simulations for field estimation using adaptive sampling algorithms
have been discussed involving various approaches for linear and Gaussian fields, with
and without localization uncertainty. An experimental setup with mobile robotic
sensors, a sample color field, and an overhead camera system as GPS has been
constructed. Experimental validation of adaptive sampling approaches for field

estimation has been demonstrated.
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CHAPTER 3

RESOURCE SCHEDULING

In Manufacturing systems, resources are usually application specific with slight
flexibility of resource assignment to tasks, whereas in mobile sensor networks, the
resources are heterogeneous and capable of performing diverse tasks. Hence we have
shared resources where multiple tasks contend for a single shared resource, or multiple
resources contend to perform a single task. In the former case we have shared
resources, and in the latter, routing resources. The need then arises to suitably assign,
dispatch, schedule resources in such a manner so as to avoid contention, or circular wait
of resources leading to deadlock.

This chapter is organized into the following sections. Section 3.1 discusses the
matrix-based discrete event controller, section 3.2 introduces deadlocks and presents the
deadlock avoidance policy along with implementation on the WSN test bed, section 3.3
discusses the issues of deadlock avoidance in the presence of routing resources, and
section 3.4 concludes the chapter.

3.1 Matrix-based Discrete Event Controller

A patented matrix formulation [61] is presented for modeling and analysis of
complex interconnected DE systems needing dynamic online resource assignment in the

presence of shared resources. The discrete event controller (DEC) is a hybrid system
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with logical and algebraic components that allows fast, direct design and
reconfiguration of rule-based controllers [62]. The matrix approach provides a
rigorous, yet intuitive mathematical framework to represent the dynamic evolution of
DE systems through linguistic if~then rules:

Rule i: If <condition™ then <consequent™

The framework of the Discrete Event Controller is described which provides a
rigorous simple representation of these linguistic rules. Let » be the set of resources in
the system (e.g., various mobile robots and UGSs), v the set of tasks that the resources
can perform (e.g., take a sensor reading, navigate to a commanded location along a
desired path, and retrieve/deploy UGS), u the set of inputs that trigger the system (e.g.,

detection of events such as chemical alert, intruder alert, etc., node failures), y the set

of outputs indicating completed missions, and x the logical state vector of rules of the
DE controller indicating the activated rules of the supervisory control policy.

The condition and consequent of each rule are segregated by the two sets of
logical equations, one for checking the prior conditions leading to the activation of rule
i (matrix controller state equation), and one for determining the a priori consequent of
rule 7 (matrix controller output equation). The logical equations make use of matrix
algebra for multiplications and additions with the element multiplications replaced by
logical-and operations and the element additions replaced by logical-or operations.
Logical negations are indicated by overbars.

The matrix controller state equation is

Xx=FVv+F,r+Fu+F,u, 3.1
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where F, is the task sequencing matrix, F, the resource requirements matrix, F, the
input matrix, F,. the conflict resolution matrix, and «, the conflict resolution vector.

u, along with F,, is used to inhibit simultaneous activation of conflicting rules. The
state of the DE system is maintained in the x, v, », and « vectors whose active (true)
entries indicate the activated rules, the completed tasks, the available resources and the
occurrence of events respectively.

The task sequencing matrix 7, has element (i, /) set if the completion of task v,

is an immediate prerequisite for the activation of logic state x;. The resource

requirements matrix F, has element (i, /) set if the availability of resource r; is an

immediate prerequisite for the activation of logic state x;.

The matrix controller state equation, eq. (3.1), defines the prior conditions
required for the activation of for a rule, while the matrix controller output equation, egs.
(3.2-3.4), define the a priori consequents of a rule.

The matrix controller output equations are

vy =8,x (3.2)
re =8,x (3.3)
y=8,x (3.4)

where S, is the task start matrix having element (;, /) set if logic state x; determines the

activation of task v,, S, is the resource release matrix having element (;, ;) set if logic

state x; determines the release of resource ;.
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Equations (3.1-3.4) represent the rule-base of the supervisory control of the DE
system. All the matrices are composed of sparse boolean entries, so that real time
control of large interconnected DE systems with multiple missions and routes is
computationally feasible.

The DEC has been used as a supervisory control in mobile sensor networks as
detailed in [63].

Figure 3.1 illustrates the DEC architecture.

Performance
; Measures

Deadlock avoidance policy

Program Missions- Selection of matrices Program DEC
Node Deployment & Failure- Modify F, > For WSN
— - - Applications
Select Resources- Priority modification of F.
NEXT TASK LOGIC: 14—\
Ve X=Fy+Fr+Fu+F,u, |+«—
&
v, =S8x -
7| RESOURCE RESET LOGIC: Matrix
< >DE Controller
r,=8x
y MISSION COMPLETE LOGIC:
y=_8x
%
Targets or
Events In Wireless Sensor Net
u
. 4t
Sensor reading event Sensor readings | | WSN logical
B, Tasks performed v | Status information
TaserOmmands Tasks completed
Resource Reset Resources available Resources Idle
Commandg y
Missions completed —»
Missions completed

Figure 3.1: Discrete Event Control architecture.
3.2 Deadlock

Deadlock research in computer systems has focused on four main areas.
Deadlock prevention is involved with removing any possibility of system deadlocks; the

result is often over-conservative polices resulting in poor utilization of resources.
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Deadlock detection focuses on detecting imminent or current deadlocks, and is required
for deadlock recovery and avoidance strategies. Deadlock recovery methods are used to
clear deadlocks once they occur, often by placing jobs in buffers, or by completely
flushing one or more of the deadlocked processes, resulting in lost work. In deadlock
avoidance the possibility of system deadlock is not totally removed, but whenever a
deadlock is imminent, it is sidestepped by a real-time decision-making procedure [24].
In this thesis, we focus on deadlock avoidance.

3.2.1 Deadlock avoidance policy

Deadlock-free dispatching rules are derived by performing circular wait (CW)
analysis in matrix form for possible deadlock situations. An analysis of deadlocks in
manufacturing systems using the matrix based DEC is presented in [24, 37]. Deadlock
avoidance algorithms have been implemented in robotic cells in manufacturing systems
using the DEC [25, 26]. Preliminary Analysis of deadlock avoidance policies for
shared resources in heterogeneous mobile sensor networks is presented in [30].

For deadlocks, we consider the following assumptions

e No preemption - No resource can be removed from a task until the
completion of the task.

e Mutual exclusion - Every resource performs only one task at a given
time.

e Hold while waiting — A process holds the resources allocated to it until it

has all resources required to perform a job.
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Under these assumptions, a necessary condition for deadlock to occur is the
presence of a circular wait relation among the resources [24, 26, 35-37].

For any two resources r; and r;, 7; is said to wait for 7, denoted by r, —»r;, if the

availability of 7; is an immediate requirements for the release of ;. Circular waits (CW)
among resources are a set of resources r,, 75,... 1, whose wait relationship among them
are r, »>r, —»--—r, and r, - r,. To identify simple Circular Waits (sSCW), a wait
relation digraph of resources needs to be constructed. The digraph of resources is easily

obtained from the matrix formulation
w=(s,E, ) (3.5)
where element w; is setif », - r; holds. Simple circular waits are calculated from the

digraph matrix using string algebra [25]. The sCW do not represent all the circular
waits and we require the circular wait (CW) matrix that is composed of all sSCW along
with unions of non-disjoint sSCW. The Gurel algorithm [35, 36] is used to efficiently
compute all CWs and composed CWs, C,,,.

In order to implement efficient real-time deadlock avoidance policies, other
relevant sets of task and resources from Petri net theory need to be defined. The term
token is used to indicate a task in progress or an available resource and the term
transition to indicate a rule of the supervisory controller.

A siphon is a set of tasks and resources which if token-free after firing of a
certain transition, will remain token-free under all subsequent transition firings. The

critical siphon of a CW is the smallest siphon containing the CW. If the critical siphon
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ever becomes empty, all its resources are busy and can never become available again.
The Siphon- task set J,(C) is the set of tasks of the critical siphon. The crifical
subsystem J,(C) is set of tasks of the CW, J(C) which do not add a token to the CW.

A deadlock condition occurs if and only if there is an empty CW, which
corresponds to an empty critical siphon, or equivalently to a condition where all tasks of
the CW belong to the critical subsystem.

Thus, in order to perform deadlock analysis, we need matrix computation tools
to determine the siphon-task sets J(C), and the critical subsystems J,(C) of every CW
C. Since the deadlock conditions are dependent on the number of tokens in these sets,
we need to calculate the set of transitions (input and output transitions) which when
fired, add or subtract tokens from the CWs.

The input and output transitions of a CW are calculated as

d C= Cout 'Sr (3 6)
Cd = Cuut ’FrT .
The adding and clearing transitions are calculated as
T,=,C-(,CAC,) 3.7)

T, =Cq4 _(Cd A dC)
where the A operator represents logical and.
These set of transitions are important in keeping track, in real-time, of the
available resources inside every CW, and hence in determining the status of tasks and
resources inside the critical siphon. The task set, siphon-task set, and the critical

subsystem of a CW is calculated as
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(C)=T1,F (3.8)

The critical subsystem is the set of tasks which require one of the resources from
the CW for execution. Therefore the activation of all tasks in the critical subsystem will
make the CW empty and lead to a deadlock condition. A simple deadlock avoidance
strategy consists of keeping the number of activated tasks of a critical subsystem lesser
than the number of resources in the corresponding CW. This is the MAXWIP policy

m(Jo(C;))<my(C;) (3.9)

The described deadlock avoidance policy has been implemented on the mobile
wireless sensor network test bed and complex interconnected missions executed in a
smooth, deadlock-free manner.

3.2.2 Implementation of DEC on WSN test bed

The wireless sensor network test bed at the Automation & Robotics Research
Institute comprises of mobile sentry robots, unattended ground sensors, a wireless
network, and a centralized control unit, see Figure 3.2. Cybermotion SR2 mobile robots
serve as the patrol robots and Berkley motes serve as the UGSs. The base-station PC
runs the DE controller, and serves as a central supervisor controlling the various

resources through a wireless transceiver.
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Figure 3.2: The WSN test bed at ARRL

A virtual WSN test bed has been created to illustrate various mobile robot

movements as the WSN topology reconfigures to handle various missions, see Figure

3.3.
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Figure 3.3: Top and perspective views of the virtual WSN test bed in initial
network configuration.
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3.2.3 Simulation and experimental results

The results presented in this section have been obtained using Matlab and
Labview environments. Matlab has been used for initial simulations of the missions,
followed by a Labview implementation of the missions with simulated resources. On
satisfactory performance of the deadlock avoidance algorithm, the simulated resources
have been replaced with actual resources.

Three different missions have been implemented to illustrate the effectiveness of
the deadlock avoidance algorithm. All missions use the wireless sensor network

comprising of two mobile robots (R,, R, ), and six Berkley motes (M, - M) as UGSs.

Mission-1 achieves patrolling and sensing of the warehouse, Mission-2 serves to charge
the UGSs, and Mission-3 transports dangerous cargo from location ‘A’ to location ‘B’.
Missions are triggered by events from sensors, such as the intruder alert, battery low
alert, etc. The sensor network reacts to events and could physically reconfigure its
topology to adapt to the event.

The Petri net representation of Missions 1-3 is illustrated in Figure 3.4.
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Figure 3.4: Petri net representation of Missions 1-3 (Patrolling, Charging,
Transportation).

To implement the supervisory control policy, we define the vector of resources
r=[R,Ry, M, M,,M;,M,,Ms,Mg] of the system consisting of two robots and six
stationary sensors. For each mission-i we define the vector of inputs «’, of output y’,
and of tasks v'. The task sequence for each mission is defined (Table 3.1, Table 3.3,
and Table 3.5 for Missions 1, 2, and 3 respectively) and the if-then rules representing
the supervisory coordination strategy to sequence the programmed missions are defined

(Table 3.2, Table 3.4, and Table 3.6 for Missions 1, 2, and 3 respectively). The

linguistic description of the coordination rules is translated into a more convenient
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matrix representation suitable for mathematical analysis and computer implementation.

As an example, matrices F,’,F,' (Figure 3.5) relative to mission-1 is illustrated.

Table 3.1: Mission 1 - Task Sequence

Mission-1 | Notation Description
Input u' Intruder Alert from any UGS
Task 1 R1Pa1 i. R; navigates to M,
ii. R; takes measurement at M,
iii. R; navigates from M, to M;
iv. R; takes measurement at M,
Task 2 UGS ,1 1. M, takes measurement
Task 3 R,Py i. R; navigates to M,
ii. R; takes measurement at M,
iii. R; navigates from M to M;
iv. R; takes measurement at M;
Output yl i. Patrol and sensing of warehouse
Table 3.2: Mission 1 - Rule base.
Mission 1 — Operation Sequence
Rule 1 xll If u” occurs and R; available then start R,Pal
Rule 2x,' | If R,P,’ completed and M, available then release
R;and start UGS,I
Rule 3 x31 If UGS,I completed and R; available then
release M, and start R, P’
Rule 4 x41 IfR 1P,,1 completed then release R; and terminate

mission-1 by producing output y'

Table 3.3: Mission 2 - Task Sequence

Mission-2 | Notation Description
Input u Low battery warning from UGS
Task 1 R1cS32 i. R; navigates to M;

ii. R; charges M;
Task 2 UGSy 1. Mj; takes measurement
Task 3 szS3cSZZ i. R, navigates to M;
ii. R, takes measurement and
verifies M; charge
iii. R, navigates from Mj; to M,
iv. R, charges M,
Task 4 UGSy i. M, takes measurement
Task 5 R zszch i. R, navigates to M,
ii. R, takes measurement and
verifies M, charge
iii. R, navigates from M, to M,
iv. R, charges M,
Task 6 UGS, i. M, takes measurement
Task 7 R 1vS42 i. R; navigates to M,
ii. R; takes measurement and
verifies M, charge
Output I i. Charging of UGSs
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Table 3.4: Mission 2 - Rule base

Mission 2 — Operation Sequence

Rule 1 x12 If u’ occurs and R; available then start R,cS32

Rule 2 x," | If R;cSy” completed and M; available then
release R, and start UGS;’

Rule 3 x32 If UGS 32 completed and R, available then
release M and start R,vS;cSy”

Rule 4 x4* | If R,vS;¢S5” completed and M, available then
release R, and start UGS 22

Rule 5x5° | If UGS, completed and R, available then
release M, and start R,vS»cS,;

Rule 6 x62 If RS ZcS42 completed and M, available then
release R, and start UGS‘,2

Rule 7 x72 If UGS42 completed and R; available then
release M, and start R le42

Rule 8x5° | IfFRVS/ completed then release R; and

terminate mission-2 by producing output ¥

Table 3.5: Mission 3 - Task Sequence

Mission-1 | Notation Description

Input u Fourty minutes have elapsed

Task 1 UGS, M, takes measurement

Task 2 R,dA’ R, picks up dangerous cargo and
drops off at temporary storage
location A

Task 3 U GS5C3 M and M, take measurements

UGS,

Task 4 RpA R, picks up cargo from A and
transports to location B along path
decided by readings from Ms and
M;

Output y3 Dangerous cargo transported

Table 3.6: Mission 3 - Rule base
Mission 3 — Operation Sequence
Rule 1 x,° | If &’ occurs and M, available then start UGS,
Rule 2x,° | IFUGS,.’ completed and R; available then
release M, and start R 1dA3
Rule 3 x5 | If R;dA’ completed and M and M available then
release R, and start UGS, and UGS,
Rule 4x4° | If UGS, and UGS,.” completed and R,
available then release Ms and My and start RypA
Rule 5 x53 If RypA then release R, and terminate mission-3

by producing output y
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Figure 3.5: Mission 1 Job sequencing and Resource requirement matrices.

The circular wait matrix C,,, and the critical subsystem matrix J, are fairly

out

complex for these interconnected missions. Figure 3.6 illustrates these matrices.
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Figure 3.6: Circular wait and Critical subsystem matrices.

Figure 3.7(a,c,e) illustrate the time traces of the discrete event system if no
deadlock avoidance policy has been applied. In these time traces, idle resources and
tasks not in progress are denoted by low level, whereas busy resources and tasks in
progress are denoted by high level.

Figure 3.7 shows the simple case of deadlock of mission 1 when it is triggered

multiple times. With the initial trigger, task R;P, executes to completion and task UGS;
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starts. At this time, a second trigger of the mission causes a second instance of R;P, to
start simultaneously and both resources R; and M; are consumed. For UGS; to
complete and R, P} to begin, R; is required, but this is being used by R;P,. For R;P, to
complete and UGS; to begin, M; is required, but this is being used. Thus we have a
cyclic wait of resources which lead to a deadlock situation. This cyclic wait of
resources can be seen easily in the first row of the circular wait matrix in Figure 3.6 and
a deadlock occurs when the corresponding tasks in the critical subsystem matrix are
simultaneously in progress. Thus to avoid deadlocks, the dispatching policy has to
ensure that all tasks in a particular row of the critical subsystem matrix are not in
progress simultaneously. In the case of mission-1, when UGS; is in progress, rule-1 has
to be inhibited by updating the conflict resolution vector u,. Figure 3.8 shows the
deadlock avoidance policy in effect which smoothly takes mission-1 to completion
twice. The dispatching policy is capable of handling deadlocks of higher order which
arise when both mission-1, and mission-2 are triggered multiple times, as illustrated in
Figure 3.9, with no deadlock avoidance, and in Figure 3.10 with deadlock avoidance.
Deadlocks can also arise when two or more missions run in parallel and there
exists a circular wait between the missions. This scenario is illustrated in Figure 3.11

where deadlock arises due to a circular wait of resources M, in mission-3, and R, in

mission-1. Figure 3.12 illustrates that the same dispatching policy handles complex
deadlocks between missions where task R;P, from mission-1 is inhibited until task

UGS, from mission-3 is completed.
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Figure 3.7: Mission 1 with deadlock. (a) Matlab simulation, (b) Top view of robot

paths, (c) Labview results with simulated resources, (d) Perspective view of robot
paths, (e) Labview results with real resources, and (f) Final sensor network

topology.
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Figure 3.8: Mission 1 with deadlock avoidance. (a) Matlab simulation, (b) Top
view of robot paths, (¢) Labview results with simulated resources, (d) Perspective
view of robot paths, (e) Labview results with real resources, and (f) Final sensor

network topology.
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Figure 3.9: Mission 1, 2 with deadlock. (a) Matlab simulation, (b) Top view of
robot paths, (c) Labview results with simulated resources, (d) Perspective view of
robot paths, (e) Labview results with real resources, and (f) Final sensor network
topology.
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Figure 3.10: Mission 1, 2 with deadlock avoidance. (a) Matlab simulation, (b) Top
view of robot paths, (c) Labview results with simulated resources, (d) Perspective
view of robot paths, () Labview results with real resources, and (f) Final sensor

network topology.
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Figure 3.11: Mission 1, 3 with deadlock. (a) Matlab simulation, (b) Top view of
robot paths, (c) Labview results with simulated resources, (d) Perspective view of
robot paths, (e) Labview results with real resources, and (f) Final sensor network
topology.
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Figure 3.12: Mission 1, 3 with deadlock avoidance. (a) Matlab simulation, (b) Top
view of robot paths, (c) Labview results with simulated resources, (d) Perspective
view of robot paths, () Labview results with real resources, and (f) Final sensor
network topology.
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3.3 Routing

Resources in mobile sensor networks are heterogeneous in nature and capable of
performing several diverse tasks unlike in manufacturing systems where resources are
usually dedicated to a specific task. Thus, for every task awaiting execution, multiple
resources are available for being scheduled and the task can request the best (cost / time
/ energy efficient) resource that can take the task to completion in an optimal manner.
Hence we need a formal mathematical model for deadlock-free dynamic resource
scheduling where routing as well as dispatching decisions need to be made.

Deadlock analysis in the presence of routing choices is of exponential
complexity and deadlock avoidance constraints are rendered computationally intractable
[38].

Very little research exists in the field of mobile sensor networks where resources
are scheduled dynamically for task execution in a deadlock-free manner. This thesis
presents a mathematical formulation for dynamic resource scheduling using the matrix-
based discrete event controller. A deadlock avoidance algorithm is developed and
simulated for task sequencing in the presence of routing choices.

3.3.1 DEC representation for routing

The matrix-based discrete event controller presented in an earlier section, egs.
(3.1 —3.4) is flexible and can be easily used to implement the scenario of task
sequencing where predetermined resource assignments do not exist and dynamic on-line

resource scheduling needs to be performed for allocating a resource to a particular task.
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In the presence of shared resources, or in the case of online resource assignment
(routing resources), simultaneous activation of conflicting rules arises. The conflict

resolution matrix, F,, in eq. (3.1) is used to resolve conflicts. In earlier work on

uc >

deadlock avoidance in the presence of shared resources in mobile sensor networks [30],
the conflict resolution policy had to handle conflicts of shared resources, i.e., conflicts
deriving by the simultaneous activation of rules which start different tasks requiring the
same resource. However in the current scenario, with no predetermined resource
assignments, conflicts of pseudo-shared resources, and conflicts of routing-resources
arise.

Conlflicts of pseudo-shared resources arise when simultaneous activation of rules
which start the same job using the same resource but having different consequents (such
as releasing different resources) occurs. This happens when multiple paths though the

sequence join, for instance, logic transitions ¢,, ¢; in Figure 3.13 where the resource 5,

acts like a shared resource but starts the same task.

Conlflicts of routing resources arise when simultaneous activation of rules which
start the same job using different resources (different routes) occurs. This happens
when a single route splits, where the same job can be assigned from among a set of

resources, for instance, logic transitions ¢, , ¢, in Figure 3.13 where resources R, R,

can perform the same job.
A novel augmented conflict resolution matrix is proposed

F,

uc = Luc—shared H Fuc—pseudoishared H Fuc—routing

(3.10)
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such that element (;, j) is set if completion of conflict arising task v, is an immediate

prerequisite for the activation of logic state x;,. Then setting the element ; in the
conflict resolution vector u, determines the inhibition of logic state x; (rule i cannot be
fired.) Thus, depending on the way one selects the conflict-resolution strategy to
generate u,., different dispatching strategies can be selected to avoid resource conflicts
due to shared resources, pseudo-shared resources and routing resources. Figure 3.14
depicts the construction of the augmented conflict resolution matrix from elements of

the resource requirements, and the resource release matrices.
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Figure 3.13: Sample Petri net with routing resources.
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Figure 3.14: Augmented conflict resolution matrix formulation. (a) Ers

matrices for the sample Petri net. Shared, pseudo-shared and routing resources are
highlighted, and (b) Augmented conflict resolution matrix.
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3.3.2 Deadlock avoidance policy for flexible routing systems

An analysis of deadlock structures using matrices for reentrant flow lines with
routing in a flexible manufacturing systems is performed in [40]. However, these
mathematical constructions give us a method of detecting active circular waits only.
Since, in systems with routing choices, an active circular wait does not always lead to a
deadlock. In this section we present mathematical formulations for detecting when an
active circular wait could become a potential deadlock and we also present a
computationally feasible deadlock avoidance algorithm.

In addition to assumptions for deadlock that were made in section 3.2.1, we have
the following non-restrictive capability that

e Some tasks have the option of being executed by a resource from a set of
resources (routing resources), and each resource might be used for

different tasks (shared resources.)
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e Task routings are deterministic and are provided by a dynamic
controller.
Mathematical constructions defined in section 3.2.1 are modified as suggested in

[40] for adapting the deadlock analysis for the more complex case of routing. Due to
the diversity of loop paths that a set of resources contained in a sSCW might have
[section 3.2.1, equation (3.5)], we need to identify not only the resources that compose
the sCW, but also the transitions that link them. This will give us specific information
needed to locate siphons and certain critical subsystems needed for construction of the

deadlock policy. A general digraph matrix is used

Wz[or Sr} (3.11)

F, 0,

r

where 0, is a nxn zero matrix, » the number of resources, and ¢ the number of

transitions.
Using the general digraph matrix, » with the get both simple circular wait of
resources and simple circular wait of transitions
C,=[Cos Copl (3.12)
and using the Gurel algorithm, we obtain the the matrix G of composed circular waits
to get all the circular wait of resources and transitions

CW, =G'C,,»

. (3.13)
cw, =G'C,,.

The input and output transitions of a CW are still calculated as eq. (3.6),

however the adding and clearing transitions, eq. (3.7) is modified as
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T,=,C-(,CnCw,)
T, =C,—(Cy ACW,)

(3.14)
The task set, siphon-task set, and the critical subsystem of a CW, eq. (3.8) is also
modified as
']C = dCFV = CdSVT
J,(C)= J(C)/\(Cd FJ (3.15)

J,(C)=Cw, F,

With these formulations, equations (3.11 — 3.15), we can detect only active
circular waits but not when an active circular wait progresses to a potential deadlock. In
a system with routing choices, the system can exist in an active circular wait and still
not cause a deadlock. In this thesis, we introduce the concept of exit policies, exit
transitions, and exit CW to try to detect when an active circular wait may progress to a
potential deadlock.

The exit transition matrix, X7 1is introduced, which is the set of transitions that
when fired would introduce a token into an empty circular wait. Such transitions only
exist in systems with routing choices. The exit transition matrix is given as

XT =J,(Cw)e—CW, (3.16)

The exit circular wait matrix, CW, defines the set of circular waits into which

an active circular wait could exit to on the firing an exit transition. An exit transition on
introducing a token into an active token could cause another circular wait to become

empty. The Cw, matrix defines the set of such circular waits for a particular circular

wait. The exit circular wait matrix is given as
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CWy ={CW, : XT e CW,} (3.17)
The proposed deadlock avoidance policy allows a circular wait to progress into
an active circular wait provided there exists at least one or more exit transitions which
when fired would clear the current circular wait without transiting another circular wait
into an active circular wait. Hence one or more free exit transitions need to exist,
expressed mathematically as

n(Cw,

werive ) €CWy >0 (3.18)
Thus our deadlock avoidance policy allows an empty circular wait to form

provided a free exit transition exists. This is a computationally feasible solution for

deadlock-free dispatching in the presence of routing choices. Figure 3.15 illustrates the

various constructs discussed in this section for the four simple circular waits of the

sample Petri net in Figure 3.13.
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Exit Transition

3.3.3 Simulation results

The sample Petri net considered in Figure 3.13 is simulated. This has multiple

routing choices to be made and the proposed augmented F,, matrix ensures that the

conflicts that arise due to shared, pseudo-shared, and routing resources are resolved.
Initial simulations for deadlock consist of disabling all routing choices and triggering
the mission multiple times (ten times), this is the case of simple deadlock and the
discrete event transition traces is as seen in Figure 3.16. On enabling both routing and
deadlock avoidance, and triggering the mission multiple times (ten times) to cause
multiple complex deadlocks, we get the event trace as seen in Figure 3.17. This clearly
illustrates that the mission is taken to completion smoothly without any deadlocks

multiple times. Comparing Figure 3.16 and Figure 3.17, we see, as expected that with
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multiple choices of routing for a particular task, the overall throughput of the entire

mission is greatly improved.
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Figure 3.16: Deadlock avoidance simulation with all routing disabled.
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Figure 3.17: Deadlock avoidance in the presence of routing choices.

3.4 Summary

This chapter has extended the preliminary analysis of deadlock avoidance
polices for shared resources in heterogeneous mobile sensor networks to more
complicated scenarios. We have show through experimental implementation on an
actual mobile sensor network test-bed, the feasibility and effectiveness of the proposed
deadlock-free supervisory control in performing complex and simultaneous sequencing

of interconnected tasks. Further, a general deadlock avoidance policy for system with
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flexible routing, where both shared and routing resources are present, has been
mathematically formulated and various simulations performed to validate deadlock-free

operation in the presence of multiple routing choices.
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CHAPTER 4

LOCALIZATION

Location information is imperative for applications in both wireless sensor
networks and mobile robotics. Many sensor network applications, such as tracking
targets, environmental monitoring, geo-spatial packet routing, require that the sensor
nodes know their locations. The large scale of deployment in sensor networks makes
careful placement or uniform distribution of sensor nodes impractical. Here we propose
a localization algorithm for simultaneous localization of the sensor network and the
mobile robot using simple geometric constraints of radio connectivity.

The chapter is organized into the following sections. Section 4.1 presents an
algorithm for localization of static sensor nodes using positional updates broadcast from
the mobile robot. Section 4.2 presents an algorithm that updates the location
information of the mobile robot based on GPS measurements, when they occur, and
position information from nodes that are well localized. We illustrate the simultaneous
localization of both static sensors and the mobile robot by fusing information from
multiple sources. Section 4.3 addresses the problem of where to send the mobile robot
next to maximally decrease the localization uncertainty in the sensor network. This is

the scenario of Adaptive Localization. Section 4.4 concludes the chapter.
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4.1 Sensor Localization using Mobile Robot

In this section we provide an algorithm that runs on each Unattended Ground
Sensor (UGS) node that allows it to update its position estimate, and the uncertainty in
that estimate, as a mobile robot with known position moves through the network. The
algorithm is range-free in that only the communication range need be known, not the
range from the node to the mobile robot. It is assumed in this section that the mobile
robot’s position is exactly known.

4.1.1 Scenario

A deployed wireless sensor network comprised of static unattended ground
sensors is to be absolutely localized by a mobile robot. The robot broadcasts consist of
its own position and its position uncertainty estimates. Broadcasts can only be heard
within the robot’s communication range. The static sensors, on receiving these
broadcasts, combine the new information to update their current location estimate. A
simple discrete-time Kalman filter running on each static sensor node serves to fuse
information and update its location and uncertainty estimates.

This is a formalized rigorous approach employing Kalman filters for
localization, in contrast to bounding boxes [52, 53], which are harder to update and
keep track of. The developed algorithm is simple and can efficiently be implemented
on the sensor nodes with a small computing power. The Kalman filter is simply an
optimal recursive data processing algorithm [64] and has been subject of extensive

research and applications, particularly in the area of autonomous navigation.
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4.1.2 Robot Control

A classical three-wheeled tricycle robot model is employed in all simulations.
This configuration uses a controlled steering angle and drive speed to navigate to a

desired position as illustrated in Figure 4.1.

¥

Figure 4.1: Tricycle Robot Configuration.

The states and kinematics of the robot are given by,

X=[ y ¢ of (4.1)
X v, COS o cos ¢
. % v, cos o sin ¢
X =a(x,1)= AR (4.2)
sin o
_ L
a ®

a
with (x,y) the position of the robot, « the steering angle, and ¢ the heading angle. The
control inputs are the speed v, and the steering rate o, .

A simple Proportional-Derivative goal-based controller with a temporally
varying goal is implemented to navigate the robot along a desired trajectory. For more
details, see [65].

This dynamical setup allows more accurate simulations than the simple moving-point

model usually assumed in sensor network localization papers.
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4.1.3 Sensor Node Kalman Filter

Each static sensor node maintains its own position and uncertainty estimates.
The mobile robot broadcasts contain the robot’s position estimate and uncertainty
estimate. The broadcasts can only be heard within the robot’s communication range. A
discrete-time Kalman filter running on each sensor node combines this information to
optimally update the node’s position estimate and its uncertainty. For more details on
the derivation of the Kalman filter equations, interested readers are referred to [58].

The Kalman filter is a set of mathematical equations running in a software
algorithm that provide an efficient computational means to estimate the state of a

process. The state of sensor i at discrete time instant & is

e (4.3)
The sensor state is governed by the linear stochastic difference equation
Xh. = Aix} +Biul +Giwi (4.4)
with measurements given by
zi = Hixi +v} 4.5)
The random variables w} and v, represent process and measurement noises
given by
xh = (%, 2L Jwi = (0,0 )vi =(0.R]) (4.6)
where (m, P) denotes a Gaussian noise process with mean m and covariance P .

For stationary nodes, the system matrices are given by

) 1 0 . 0 0 . 1 0 . 1 0
A,z{o J,B;{O 0}@1{0 J,H;:[O J @.7)



The a priori position estimates prior to measurement updates at time & +1 are
given by the time update equations, which give the effects of time on sensor
localization:
Py =P +0; (4.8)

)eliﬁli = )Acllc (49)
In these equations, #; represents the position estimate of node i at time &, while the
covariance matrix P{ gives the corresponding uncertainty in the position estimate.

The a posteriori estimates given a position measurement z, are given by the

measurement update equations, which gives the effect of the robot broadcast on sensor
localization:

-1

-1
i i i T “1yyi
Py = |:Pk+l +Hp Riy Hpy } (4.10)

Rpy =% + P1§+1H1i+1TRk+171 (Zlim - H/i+1f51ic+1ij (4.11)
The covariance matrices 0, and R, are design parameters chosen by the
engineer. With a zero Q; , the uncertainty in location of the sensor i remains constant
with time. With an extremely small Q; , the localization uncertainty slowly drifts with
time. This means that the current measurements from the mobile robot are given more
weight than the current node position estimate, which avoids the node’s becoming too
certain of a position that may be incorrect.

When the robot is in range and the sensor hears the broadcast position of the

robot, the measurement update equation is used to combine the new information to
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improve sensor node position and uncertainty estimates. In this section, the robot is
assumed to be perfectly localized. Thus when a sensor hears a broadcast, it could only
be within the communication range of the robot whose position is broadcast. The

measurement uncertainty matrix R, reflects this, and is chosen as

Bot
0
Ry = o2 o % :{O’g Bm} 4.12)
O-y
0 Bot
Bot _ Rangefl ’O_an _ Rangey (413)
. (e Y o

const const

where &% is the uncertainty introduced due to Rrange®” , the communication range of the

robot. We assume the design parameter o, =3, to include 70% of the communication

range, Range® , of the robot (Gaussian uncertainties are assumed.) Through this
selection of g, the Kalman filter automatically takes care of the range of the robot
within which it hears broadcasts.

Algorithm in Table 4.1 shows the position update algorithm that runs on each
node, which is very simple and easy to implement. It consists of four equations, two for
the time update, and two for the measurement update. This algorithm automatically
provides uncertainty estimates through the computation of the error covariance P/,
which is equivalent to the bounding box information provided by the algorithm in [52].

Table 4.1: Static sensor node localization algorithm

1. At each discrete time instant

2. if robot broadcast received by sensor

3. then

4. Update sensor state and uncertainty estimates using KF
measurement Egs. (4.10), (4.11).

5. else

6. Propagate estimates using time update Egs. (4.8), (4.9).

7. end if
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4.1.4 Simulation Results

Extensive simulations have been performed to verify the effectiveness of the
proposed algorithm. We also studied the effects of initial sweep paths and the robot
broadcast interval on sensor localization. The mobile robot is navigated along the
desired sweep path and periodic location information is broadcast. On receiving a
broadcast, sensors update their location and uncertainty estimates. This is a range-free
procedure that relies on the limited communication range of the robot, and as such, the
sensor locations are updated based on the position of the robot. That is, the updated
sensor position estimate is a weighted combination of its current location estimate and
the current location of the robot. Thus sensors hearing only one broadcast will have an
estimated location that is projected onto the path of the robot.

Figure 4.2 shows the initial sinusoidal sweep path and the position and range of
the broadcast with a broadcast interval of 5 discrete time instants. The  x ’ represent the
actual positions of the static sensors that are to be localized. The sensor nodes do not
initially know their actual positions. The nodes all have initial position estimates being
the centroid of the deployment area, and an initial uncertainty of infinity, corresponding
to complete lack of knowledge of their positions.

Figure 4.3 illustrates the localized sensors after the robot has made its sweep
through the network. The e’ represent the final position estimates of the nodes. To
remain consistent with earlier work involving bounding boxes (e.g. [52]), the
uncertainty of the sensors in their position estimates has been depicted as rectangles

representing 3o of the uncertainty distribution, assuming Gaussian uncertainties. Note
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that the sensors always outside the communication range of the mobile robot do not
become localized (i.e. they have no bounding box, which denotes infinite position
uncertainty). The sensors that receive more than one broadcast from the mobile robot
end up being better localized, since each position update reduces the position
uncertainty.

The effectiveness of the algorithm is demonstrated by the fact that in every case,
the actual location (marked by an ‘ x ’) is within the uncertainty bound of the estimated
position (marked by a ‘e ).

The localization error of the sensors, computed as the Euclidean distance
between true and estimated positions, is depicted in the vertical axis of Figure 4.4.
Sensors near the path of the mobile robot that have received multiple broadcasts have
smaller errors.
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Figure 4.2: Initial sinusoidal sweep path with broadcast locations and range of
broadcast.
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Figure 4.3: Localized sensors, real positions (denoted by ‘x’) and estimated
positions (denoted by e ), are illustrated after initial mobile robot sweep of the
deployment area. Uncertainty rectangles have been illustrated to depict the
uncertainty of the sensor in its position estimate.
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Figure 4.4: Localization error, computed as the Euclidean distance between real
and estimated positions, of sensors after initial sweep of the deployment area.

The same simulation was rerun with different mobile robot broadcast intervals,

and the effect of broadcast interval on the average localization error of the network is
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depicted in Figure 4.5. Generally, as broadcast interval decreases, the average error
decreases.

Awverage error vs Broadcast interval of Mobile Robot
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Figure 4.5: Effect of broadcast interval on average localization error.

4.2 Simultaneous Mobile Robot and Sensor Localization

In this section we consider the realistic case where the mobile robot’s position is
not exactly known. We provide an algorithm which runs on the mobile robot that fuses
position information from GPS, when it is available, and from the already-localized
sensor nodes. This allows the robot to update its position estimate as well as the
uncertainty estimate. When this algorithm is run simultaneously with the algorithm of
the previous section running on each sensor node, the result is simultaneous mobile
robot and sensor localization. A procedure is given to avoid detrimental recursive
feedback between the two algorithms.

4.2.1 Mobile Robot Localization

When localizing the sensor nodes in the previous section, the robot was assumed
to know its position exactly at all instants of time. However, as the robot navigates by
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dead reckoning, or due to steering inaccuracies, its localization increasingly deteriorates
as time passes. Location updates from the GPS, when they occur, and from stationary
sensor nodes that have already been localized can be used to improve the localization
estimate of the robot.

Some sensor nodes are localized more finely due to more numerous updates they
have previously received from the mobile robot. These sensors can be employed to
localize the robot when its position information deteriorates. This is accomplished by
having each sensor node make a transmission that contains the node’s position estimate
and uncertainty. This is received by the robot when it is in range. The sensors transmit
at fixed intervals, with each sensor having a different random interval. This ensures that
the updates between mobile robot and sensor nodes are staggered in time and that no
recursive feedback occurs.

A continuous-discrete extended Kalman filter running on the mobile robot is
used to simulate the robot and update the states using measurements from the GPS
system and the better-localized UGSs. Extended Kalman filters have been used for
local and infrequent global senor data fusion [66], for mobile robot localization [9], and
in navigation of autonomous vehicles [8]. For information about the Extended Kalman
filter see [58].

The continuous-time system model of the robot is given by (4.2) as

X =a(X,u,t)+G(t)w (4.14)

The sampled discrete-time measurement model of the robot is given by
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ZES = & [X (1)), k]+ v

. (4.15)
Z8 =" (X (1), k]+v®
where

x(0)= (X, 2y ) w(e)= (0,00 v = (0, R ) v = (0, ") (4.16)

X Vv, COS 0 COS ¢ 1 0 0 0

¥ v, cos a sin ¢ 010 0

X,t)=1"|= ,Glt)= 4.17

a( ) ¢ v% sina ( ) 00 0 0 ( )

a o, 0000
h” [X(tk),k]:[x}h“gs [X(tk),k]{x} (4.18)

y y

In the extended Kalman filter, the effect of time on the robot states is given by

the time update equation

);( = a()A(,u,t)
P= A(f(, t)P +pAT (X t)+ GOGT

(4.19)
In [7], the deleterious effects of time passing are shown in terms of increasing position
uncertainty and decreasing belief. These effects are formally captured in a rigorous
manner by the time-update equations (4.18), (4.19), which shows how uncertainty
increases due to dead reckoning and steering uncertainties.

The effects of the GPS navigation updates, when they are received, are given by
the measurement update equation

-1
T(A A T =~
Ky = P (g )H=" (X{[Hg‘”(X{)P‘(tk)HgPS (X{)+Rgﬂ

Pl =1 - ko (2, TP (o) (4.20)
- b+ &z v (2o )

90



The effects of the updates based on localized sensor nodes, when they are received, are
given by the UGS measurement update equation

—1
Ko =P (s )H“gST(X{{H“gf(xk‘w*(rk )H“gST(Xk‘HR“gS}

Plo) =[ - ke (2, TP (o) (4.21)
K= X Kz w4

The measurement uncertainty matrices R%° and R"®* represent the uncertainty
in the GPS and the uncertainty in the update offered by UGS i respectively. The
uncertainty in the sensor update, "', is a combination of the uncertainty of the sensor
position and the uncertainty due to the communication range of the sensor. These

uncertainties combine in quadrature as

ugs i2 i2 i U)lc 0
R =P +0 |o = ;
0 o,

; i
i _Range, , Range,
ocl=—"% 05 =

o

(4.22)

o

const const

where o' is the uncertainty introduced due to Range’, the communication range

of sensor i.

Similarly, the measurement noise covariance of the sensor, eq. (4.12), has to be
modified to include the uncertainty in the robot’s position. The robot is no longer
absolutely localized with zero uncertainty. The uncertainty in robot localization and the
uncertainty due to robot communication range combine in quadrature, modifying eq.

(4.12) as

R, :[p)f;fz +UB‘”2} (4.23)

91



P22 is the partial error covariance of the robot which effects only the position of

the robot, and o?” is as defined earlier.
The Jacobians of the nonlinear system, determined from (4.2), are given by the

following system matrices:

0 0 —v,cosasing —v,sinacosd
0 0 v,cosacos —v, sina sin
Alx,r) =240 _ f $ ¢
oX 0 0 0 )/ cosa
00 0 0
8ps 1 00O
pe (x)= DR (4.24)
oxX 01 00
ugs 1 000
HugS(X):ah (X, k) _
oX 0100

With these equations in place and programmed as a software algorithm on the
mobile robot, and the sensor nodes running the algorithm presented in the previous
section, the mobile robot and the static sensors automatically mutually update their
estimates with incoming updates. There is no additional decision-making logic to be
implemented as in other range-free work discussed earlier. There is no need to compute
bounding boxes, as the error covariance matrices are automatically updated as
measurements are received.

The algorithm to be implemented on the mobile robot that updates its position
estimate and uncertainty based on GPS measurements and on the localized sensor nodes
is given as algorithm in Table 4.2. This algorithm is efficient to implement since the

bulk of it is mathematical equations.
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When algorithm in Table 4.2 is run on the robot simultaneously along with
algorithm in Table 4.1 on each sensor node, simultaneous mobile robot and sensor
localization occurs.

Table 4.2: Mobile robot localization algorithm.

1. Navigate robot along desired path.

2. Broadcast location information at discrete intervals.

3. if broadcast from GPS received

4. Update robot state and uncertainty estimates using measurement
eqg. (4.20).

5. end if

6. if broadcast from sensor received

7. Update robot state and uncertainty estimates using measurement
eq. (4.21) .

8. end if

4.2.2 Simulation Results

The simulations described in the previous section have been rerun with GPS
updates and sensor updates implemented as algorithm in Table 4.2 on the mobile robot.
Infrequent GPS updates and temporally staggered sensor updates help localize the
robot. Figure 4.6(a) shows the robot’s sweep path with GPS and UGS updates disabled.
A systematic dead reckoning error [59] has been injected into the mobile robot to give
gradually deteriorating position information. The localization of the robot deteriorates
with time as can be seen in the deviation of the robot’s estimated path (hyphenated
green line) from the robot’s true path (continuous green line.)

Figure 4.6(b) illustrates the robot’s sweep path which is corrected in time by
GPS and UGS updates using algorithm in Table 4.2. As is evident, the robot’s
localization has improved and the positions of where the robot thinks it is (the estimated

position), and where the robot actually is (the true position) are much closer, since the
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estimates are continuously corrected using algorithm in Table 4.2 as position
information arrives, either from GPS or from sensor node broadcasts.

Robot broadcasts occur along the true path of the robot and consist of the robot’s
estimated position (slightly different from the robot’s true position where the broadcast
occurs) and uncertainty. Sensors within range receive the broadcast and update their
positional information based on the robot’s estimates.

Figure 4.7 illustrates the localized sensors after the initial sweep. True sensor
positions are indicated by an ‘x’ and estimated positions by a “e’. Now, some true
sensor positions are outside the 3 & boxes due to the added uncertainty in the robot
position, though they are generally close to these boxes. Figure 4.8 depicts the final

localization error of each sensor.

Sensor Localization - Robot Path Sensor Localization - Robat Path

(2, T R Desired Path i)
— — Simulated Path [Nominal]
Actual Path [Perturbed] 100 F

------- Desired Path
— — Simulated Path [Norminal]
Actual Path [Perturbed]

100

Lox =
g sl P e ;

B0 GOt

..............

a0t st

ot anl

20k -20¢
L L L L L L

! ! L L L L L L L L
20 0 20 40 B0 ) 100 120 =20 0 20 40 B0 a0 100 120
x

(a) (b)
Figure 4.6: Initial sweep path of the mobile robot with (a) GPS and UGS updates
disabled, and (b) GPS and UGS updates enabled.
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Figure 4.7: Localized sensors after initial sweep of the deployment area.
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Figure 4.8: Localization error of sensors computed as the distance between true
and estimated positions.

4.3 Adaptive Localization

A navigation strategy, to be used subsequent to the initial sweep of the
deployment area that was presented in the previous sections, is developed here which
further minimizes the localization uncertainty of the sensor network in the most

efficient manner. An adaptive localization policy is adopted to navigate the mobile
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robot to an area of least localized sensor nodes. This ensures that the robot maneuvers
to an area with sensor nodes possessing the largest uncertainty in location.

Accurate position of coarsely localized sensors can not be known (due to
inherent coarse localization) so that navigating to these sensors is not possible. The
radio connectivity of the network is exploited to address the problem of having the
robot navigate to a location which is imprecise. Figure 4.9 depicts the communication

connectivity of the network.
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Figure 4.9: Communication connectivity of the network. Communication routes
between sensors and range of communication of each sensor are depicted.

A communication protocol is developed wherein, the robot broadcasts a
navigation request packet, NAV-REQ, when the robot wants to find a new location to
navigate to. Sensors which receive the NAV-REQ packet, forward it along the network.
Sensors having a large uncertainty scalar, the Frobenius Norm [67] of the uncertainty
matrix, reply back with a localization request packet, LOC-REQ. The LOC-REQ packet

consists of the uncertainty matrix of the requesting sensor and propagates along the
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network until it is received by a friendly localized neighbor. Friendly localized
neighboring sensors receiving the LOC-REQ packet append it with their position and
forward the packet along the sensor network to the robot. Figure 4.10(a) and Figure

4.10(b) show the flow of the NAV-REQ and LOC-REQ packets.
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Figure 4.10: Flow of the (a) NAV-REQ, navigation request and (b) LOC-REQ,
localization request packets through the sensor network.

The robot receives packets from multiple non-unique friendly neighbors each
representing a single coarsely localized sensor. The robot needs to choose a friendly
neighbor to navigate to. Friendly neighbor arbitration is performed by grouping
uncertainties of the same friendly neighbor in quadrature to give its combined
uncertainty scalar. The friendly neighbor with the largest combined uncertainty scalar
is picked as the location to navigate to. If multiple such neighbors exist, the most
localized neighbor is chosen.

Thus regions with a large density of coarsely localized sensors having a

common friendly neighbor are adaptively navigated to. However, due to the inherent
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imprecise location of the friendly neighbor, the robot actually navigates a circular path

around the neighbor.

Algorithm in Table 4.3 summarizes the Adaptive localization algorithm.

Table 4.3: Adaptive localization algorithm.

o U W N

= O 0 J

11.

Broadcast Navigation request, NAV-REQ, packet.
Wait to receive Localization request, LOC-REQ, packets.
for all LOC-REQ with the same friendly neighbor

Combine uncertainty scalars of the requesting sensors.
end for
Pick friendly neighbor with maximum combined uncertainty scalar
of the requesting sensors.
if multiple maximas arise

Among the maxima, pick the most localized friendly neighbor.
end if
Navigate around the picked friendly neighbor executing the
simultaneous localization algorithm, algorithm in Table 4.1 on
the senors and algorithm in Table 4.2 on the mobile robot.
Repeat Steps 1-10 as required.

After the initial sinusoidal sweep, see Figure 4.7, Figure 4.12(b), sensors 7 and

11 both receive three Localization request packets each and on combining the

uncertainties of the requesting coarsely localized sensors, an equal maximum

uncertainty scalar arises for sensors 7 and 11. However sensor 11 is more localized

than sensor 7 and robot navigation occurs around sensor 11, see Figure 4.11(b).

Figure 4.11 illustrates four adaptive localization iterations and its navigation

paths with corresponding uncertainty scalars of the sensors at the end each adaptive

localization iteration as illustrated in (a-¢). With each adaptive localization iteration,

Figure 4.12 shows the reduction of localization error of each sensor, and Figure 4.13

depicts the reduction of the average localization error of the sensor network. Figure

4.14 illustrates the localized sensors after four iterations of the adaptive localization

98




algorithm. As can be seen, all sensors are localized and uncertainty in localization
fairly small.

At every instant, along with the adaptive localization algorithm, algorithm in
Table 4.3, the entire simultaneous localization algorithm with updates from the GPS,
and more localized sensor, algorithms in Table 4.1 and Table 4.2, are always running.

This demonstrates simultaneous adaptive localization of the sensor network.

Figure 4.11: Adaptive localization robot paths and corresponding uncertainty
scalars for the sensors after (a) Initial sinusoidal sweep, (b) First, (c) Second, (d)
Third, and (e) Fourth adaptive navigation steps, respectively.
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(b)
Figure 4.12: Reduction of average localization error of sensors with each adaptive
localization iteration. (a) Iteration-1, (b) Iteration-2, (c) Iteration-3, and (d)

Iteration-4.
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Figure 4.13: Reduction of average localization error with each adaptive
localization iteration.
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Figure 4.14: The final position estimates of the localized sensors after four
iterations of the adaptive localization algorithm.

4.4 Summary

Rigorous mathematical algorithms for adaptive simultaneous localization of the
static unattended ground sensors and the mobile robot have been demonstrated. The
first algorithm localizes the static sensors and the second algorithm localizes the mobile
robot. These algorithms together allow simultaneous localization of the static sensor
and the mobile robot. A third adaptive localization algorithm ensures that the region of
the deployment area with the largest uncertainty is localized with minimal robot

movement.
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CHAPTER 5

MOBILE ROBOTIC SENSOR

The mobile robotic sensor used for experimental validation of Adaptive
Sampling algorithms presented in Chapter 2 has been entirely designed and developed
at the Automation & Robotics Research Institute. Figure 5.1 illustrates the evolution of
the robot through different stages of design and development. This chapter discusses

the design, development and functionality of the mobile robotic sensor.

(a)
Figure 5.1: Robot evolution (a) Model, (b) Prototype, and (c) Product.

5.1 Mechanical Design

The mechanical design for machining of custom parts is detailed in this section.
The mobile robotic sensor uses a robot chassis from Parallax (Part # 700-00022) as the
base and all external components are mounted on to this base. The wheel assembly
illustrated in Figure 5.2 has been modeled in AutoCAD and machined to fit on to the

chassis.
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(d)
Figure 5.2: Wheel assembly modeled in AutoCAD, and assembled in 3D Studio
Max. (a) Base extension, (b) Angle bracket, (¢) Shaft coupler, and (d) Wheel
assembly.

5.2 Electrical Design

The mobile robotic sensor is a dual microcontroller based system with modules
for sensing, radio communication, and motion tracking interfaced onto a common bus.
Figure 5.3 shows the design and prototyping of the circuit.

This section details the various electronic components of the mobile robotic

SENsor.
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Figure 5.3: Design of the electrical circuit. (a) Schematics, (b) Prototype, (c) PCB
layout, and (d) Fabricated PCB.

5.2.1 Microcontrollers

The mobile robot used in this thesis was designed with two separate
microcontrollers. A central microcontroller, the Javelinstamp (Part # JS1-1C), deals
with all communication and processing for the robot. While a secondary
microcontroller, the PIC (Part # 12F508), is solely responsible for the motion of the
robot by driving the servos with a pulse width modulated signal. A serial
communication protocol for inter-microcontroller communication has been developed
for the javelinstamp to send commands to the PIC. By offloading the PWM signal

generation to a secondary microcontroller, we guarantee that the central processor is not
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bothered for generating periodic pulses and can spend more processing time on other
algorithms.

5.2.2 Servos and encoders

The servo motors, Figure 5.4, used on the mobile robots are the continuous
rotation servos (#900-00008) from Parallax. These motors operate on 6 Vdc and have
an average speed of 60 rpm with no load. The set-point of the servos needs to be
calibrated before use to ensure that both left and right wheels revolve at the same speed
for the same signal. But achieving this is difficult and we rather command the two
wheels with different PWM duty cycle values to ensure that they revolve at the same

speed and that the robot moves forward when commanded to do so.

PARALLAX
continuous rotation

Figure 5.4: Continuous rotation servo.

The encoders used were from Clarostat (Part # 600EN-128-CBL) and produce
128 pulses / revolution. A dedicated 24-bit dual-axis quadrature counter (Part #
LS7266R 1) has been used dedicated for keeping count of the encoder pulses. A bus
architecture connects the encoder counter with the microcontroller for data

transmission.
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5.2.3 RF Transceiver

The RF transceiver, illustrated in Figure 5.5, is distributed by Parallax Inc. and
is manufactured by RF Digital Corp. (Part # 27988). The carrier frequency is 433.92
MHz. The RF transceivers are located on each of the mobile robot platforms and on the

base station. The base station is connected to a PC via RS-232 communication link.

Figure 5.5: RF transceiver.
5.2.4 Color Sensor

The robotic sensor is equipped with a color detecting sensor. This facilitates the
sampling of a color-coded field. The color sensor is a light to frequency (LTF) sensor
modulates the output frequency of a periodic pulse based on the light intensity. The

output comprises of the different components of white light - red, green, and blue.

e P AOS @

Figure 5.6: TAOS RGB color sensor.
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5.3 Software

Extensive coding in multiple languages has been done to achieve a unified
functionality of the entire mobile sensor network. In our particular case, the mobile
sensor network functions solely to achieve estimation of a linear color field using
adaptive sampling. The need for so many different programming environments arises
due to the seamless interfacing of multiple native devices which can understand a
specific command set only. In our current setup, the following interfaces were
programmed.

e Matlab GUI <> Base station.

e Base station <> Multiple mobile robots.

e Mobile robot <> Onboard sensors and devices.

A simple point-n-click command directing a mobile robot to go to a particular
location is fairly involved. Firstly, a string command is built up addressing the robot
with the “go to” location. (Robot commands are described in section 5.3.1.) Further,
this command is serially passed on to the base station where a simplistic network stack
is used to package the command into packets to ensure error free wireless transmission
with handshaking and acknowledgements. Once the command is received by the
wireless module of the robot, a simple parsing algorithm breaks up the command into
tokens to be identified. These tokens serve as requests to particular sensors for current
readings or for actuators for motion. A low level interfacing module for each specific

sensor or device is required here.

107



The following sections address the various programming requirements at
different stages of transmission and processing of a simple command.

5.3.1 Robot commands

Commands to the robot are simple strings terminated with a terminal character
such as the semi-colon. These commands achieve motion, sensing, and other
miscellaneous system tasks. Motion commands are either open loop where the robot is
in motion until a stop command is received, or closed loop where the robot is in motion
until the encoders register a motion corresponding to the commanded amount. Some of
the commands are described in Table 5.1.

Table 5.1: Robot commands.

Command Command description

F; Move forward.
B; Move backward.
R; Turn right.
L; Turn left.
S; Stop.

M 120; Move forward by 120 encoder counts.

T -85; Turn clockwise by 85 encoder counts.

T 40; Turn anti-clockwise by 40 encoder counts.
C; Take color sample (responds with color read.)

5.3.2 Wireless communication protocol

An error-free communication protocol has been designed such that all
communication between the base station and the robot are always acknowledged by
each other. A simple checksum inserted computed and inserted into the message
ensures that the packet is not corrupted. A packet that is corrupted is not acknowledged
by the receiver and this causes the sender to retransmit. Retransmission occurs for a

fixed number of times before the sender aborts.
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5.3.3 Sensor Interfacing

Low level interfaces for the light sensor and the encoder have been
programmed. These involve a physical signal-level commanding of the device for
addressing a particular device-specific port or register for obtaining data. The servo
actuators are commanded by a dedicated microcontroller (The PIC.) A dedicated
microcontroller is required since these actuators need continuous commanding which
may take up way too much time by the general purpose microcontroller (the
Javelinstamp.) A low-level one signal-line serial interface between the two
microcontrollers has been programmed for data communication between the two
microcontrollers.

5.3.4 Fixed-point algorithms

Most microcontrollers operate only on signed and unsigned integer numbers.
However to implement even the simplest Kalman filter requires mathematical
operations on non-integer numbers. The Javelinstamp microcontroller does not support
these operations and equipping it with a floating point co-processor would make the
system more expensive and also slow down normal operations. A different solution is
sought for.

On the current robot system, we implement simple mathematical operations
such as addition, subtraction, multiplication and division using a fixed-point binary
representation of a non-integer number. This binary representation can easily be stored
on a integer register and hardware operations of addition and subtraction suffice for

addition and subtraction of non-integer numbers. Separate multiplication and division
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algorithms are required however and have been implemented on the robot. Table 5.2
illustrates the binary representation of a non-integer number.

Table 5.2: Fixed-point binary representation of a non-integer number.

‘ integer part ‘binary point | fractional part

LR R R R R0 TR

--p2ies e il el el el

5.3.5 Matlab programming

The adaptive sampling algorithms have been entirely implemented in the Matlab
programming environment. A simple graphical user interface developed serves as the
interface to the user who can monitor the current topology of the mobile sensor network
as mobile robotic sensors navigate adaptively to take samples to estimate the field. The
graphical user interface can be use for monitoring the evolution of the estimated field
and to compare it with the truth model.

5.4 Experimental Setup

The mobile sensor network system for adaptive sampling is setup as in Figure
5.7. An inexpensive overhead camera serves as the GPS offering infrequent updates of
robot poses. The base station and the camera are connected to a PC. All
communication with the robots occurs through the base station in a star network
topographical manner. Each robot has a unique identifier for communication message

arbitration.
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Figure 5.7: Experimental setup.

This simple setup models a real-life scenario where multiple mobile sensors can
be deployed in the open, with a global positioning system, when available, localizing
the sensors, and the entire sensor network topology changing adaptively to estimate

some modeled environmental parameter

3.5 Summary

This chapter has detailed some of the design ideas that went into making the
robotic sensor. Various components of the robot and their functionalities have been
discussed. The physical setup of the mobile sensor network test bed has been described.

With a physical test bed available, adaptive sampling algorithms developed in

simulation can be easily used for experimental feasibility and verification.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

This chapter summarizes the contributions of this thesis and presents
suggestions for further research in Adaptive sampling, resource scheduling and
localization.

6.1 Thesis contributions

This thesis has served in developing Adaptive sampling algorithms for
estimating spatially distributed static linear and Gaussian fields which are linear in its
parameters. Closed form information measures in linear regression have been used to
adaptively estimate linear and Gaussian fields with linear parameters. Nonlinear
optimal estimation techniques, such as the Kalman filter, constrained, and
unconstrained nonlinear optimizers have been used to adaptively estimate field and field
basis parameters. An experimental mobile robotic sensor developed has helped in the
validation of the adaptive sampling algorithm by experimentally estimating a linear
color field.

This thesis has extended the preliminary analysis of deadlocks using the
Discrete Event Controller. A deadlock avoidance algorithm for resource scheduling in
the presence of shared heterogeneous resources in mobile sensor networks has been

implemented experimentally on the ARRI WSN test bed comprising of Cybermotion
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SR2 patrol robots and Berkley motes thereby validating the deadlock avoidance
algorithm. Furthermore, a general mathematical formulation has been innovated for
deadlock avoidance in systems with flexible-routing.

The thesis also serves in developing a simultaneous and adaptive localization
algorithm for the localization of a wireless sensor network using simple geometric
constraints of radio connectivity. An adaptive localization algorithm has also been
developed for adaptive navigation of a mobile robot such that optimal minimization of
the largest uncertainty in the sensor network occurs.

6.2 Future research

Adaptive sampling of complex fields where both the field parameters and the
basis parameters of the field need to be estimated still remains unsolved. Further
research in nonlinear optimal estimation techniques would serve in approaching this
problem.

Several challenges still remain with the mobile robotic sensor where processing
power is limited. A Kalman filter implemented directly on the robot would aid in
navigation. A logical next step would be to distribute the algorithms to run more locally
on the robot itself.

More extensive analysis and simulations of the deadlock avoidance algorithms
in the presence of routing choices would help in understanding when such algorithms
may fail and deadlock becomes eminent.

Implementing the proposed algorithms in chapter 4 on physical sensors and

mobile robots would experimentally validate the proposed algorithms. Future research
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should take into consideration, time-varying geometrical constraints of radio

connectivity for the sensor network.
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