
ADAPTIVE SAMPLING WITH MOBILE WSN

by

KOUSHIL SREENATH

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

DECEMBER 2005

Copyright © by Koushil Sreenath 2005

ALL RIGHTS RESERVED

iii

ACKNOWLEDGEMENTS

Well, I’m finally writing the acknowledgments. Whoa!! I was so far away and

the distant horizon was just that - a distant horizon. But a light shone steadily on,

despite my misgivings, despite my wrong doings, despite my attempts at burning the lab

down. And all I did was to follow the path it lit.

It has been a tremendous honor to work with two great professors, Dr. Popa and

Dr. Lewis. It’s a miracle I survived the assault. They were always kind when I did

something, and kind even when I did nothing at all.

Mr. Jyotirmay Gadewadikar has always been there silently watching me for the

past few years. I thank him for letting me make all the mistakes that I could. It was a

pleasure shooting ideas with Dr. Vincenzo Giordano (His ideas were many, mine none.)

And to all my friends out there who kept asking me about the state of this thesis,

it’s been great fun. The Boston trips were many and this is the end, beautiful friend,

THE END.

This work was supported in part by the Automation & Robotics Research

Institute, the Army Research Office grants W91NF-05-1-0314, and M-47928-CI-RIP-

05075-1, and the National Science Foundation grants IIS-0326595, and CNS-0421282.

November 3, 2005

iv

ABSTRACT

ADAPTIVE SAMPLING WITH MOBILE WSN

Publication No. ______

Koushil Sreenath, M.S.

The University of Texas at Arlington, 2005

Supervising Professor: Dan Popa

The spatiotemporally varying network topology of mobile sensor networks

makes it very suitable for applications such as reconstruction of environmental fields

through sampling at locations that maximally reduce the largest uncertainty in the field

estimate. Mobile sensor networks comprise of multiple heterogeneous resources and a

deadlock-free resource scheduling in the presence of shared and routing resources

becomes necessary to schedule the most efficient (cost / energy / time) resource for a

task. Location information is imperative in sensor networks for most applications for

localized sensing where localizing the network adaptively with no additional hardware

is important.

v

Adaptive sampling approaches for spatially distributed static linear and

Gaussian fields with mobile robotic sensors are formulated and experimentally

validated. Resource scheduling algorithms for dispatching resources in a deadlock-free

manner in systems with shared and routing resources are mathematically formulated

and experimentally validated. Simultaneous and Adaptive localization algorithms for

sensor network localization through simple geometric constraints are validated through

simulations.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iii

ABSTRACT .. iv

LIST OF ILLUSTRATIONS... x

LIST OF TABLES... xvi

Chapter

1. INTRODUCTION ... 1

1.1 Adaptive Sampling .. 1

1.2 Resource Scheduling ... 4

1.3 Simultaneous and Adaptive Localization of a WSN 7

1.4 Summary.. 9

1.5 Contributions ... 9

1.6 Thesis organization.. 10

2. ADAPTIVE SAMPLING.. 12

2.1 Models ... 13

2.1.1 Estimation of a parameterized field using linear regression..... 13

2.1.2 Estimation of a parameterized field using a Kalman Filter 15

2.1.3 Estimation of field parameters using linear regression and

nonlinear optimization.. 16

2.1.4 Estimation of field parameters using nonlinear optimization... 18

vii

2.1.5 Estimation of a parameterized field with localization

uncertainty .. 19

2.1.6 Differential robot simulation .. 22

2.2 Field estimation simulations .. 24

2.2.1 Estimation of a parameterized Gaussian field using linear

regression.. 24

2.2.2 Estimation of a parameterized Gaussian field using a

Kalman Filter .. 27

2.2.3 Estimation of field parameters using linear regression and

nonlinear optimization.. 28

2.2.4 Estimation of field parameters using nonlinear optimization... 29

2.2.5 Estimation of a parameterized field with localization

uncertainty .. 36

2.2.6 Differential robot simulation .. 39

2.3 Experimental Setup and Results .. 40

2.3.1 Field model and description of uncertainty 42

2.3.2 Experimental adaptive sampling for linear field estimation..... 43

2.4 Summary.. 47

3. RESOURCE SCHEDULING.. 48

3.1 Matrix-based Discrete Event Controller .. 48

3.2 Deadlock .. 51

3.2.1 Deadlock avoidance policy... 52

3.2.2 Implementation of DEC on WSN test bed 55

3.2.3 Simulation and experimental results... 57

3.3 Routing .. 69

3.3.1 DEC representation for routing .. 69

viii

3.3.2 Deadlock avoidance policy for flexible routing systems.......... 72

3.3.3 Simulation results ... 76

3.4 Summary.. 77

4. LOCALIZATION.. 79

4.1 Sensor Localization using Mobile Robot .. 80

4.1.1 Scenario .. 80

4.1.2 Robot Control ... 81

4.1.3 Sensor Node Kalman Filter .. 82

4.1.4 Simulation Results .. 85

4.2 Simultaneous Mobile Robot and Sensor Localization............................. 88

4.2.1 Mobile Robot Localization ... 88

4.2.2 Simulation Results .. 93

4.3 Adaptive Localization.. 95

4.4 Summary.. 101

5. MOBILE ROBOTIC SENSOR ... 102

5.1 Mechanical Design .. 102

5.2 Electrical Design.. 103

5.2.1 Microcontrollers ... 104

5.2.2 Servos and encoders ... 105

5.2.3 RF Transceiver.. 106

5.2.4 Color Sensor ... 106

5.3 Software... 107

5.3.1 Robot commands .. 108

5.3.2 Wireless communication protocol .. 108

ix

5.3.3 Sensor Interfacing... 109

5.3.4 Fixed-point algorithms.. 109

5.3.5 Matlab programming .. 110

5.4 Experimental Setup.. 110

5.5 Summary.. 111

6. CONCLUSIONS AND FUTURE RESEARCH ... 112

6.1 Thesis contributions... 112

6.2 Future research... 113

7. BIBILIOGRAPHY .. 115

8. BIOGRAPHICAL INFORMATION... 122

x

LIST OF ILLUSTRATIONS

Figure Page

2.1 Differential robot with uncertainty in wheel radii and axle length. (a)

Top view, and (b) Front view.. 22

2.2 Original field (Linear regression with norm−2 sampling).............................. 25

2.3 Estimated field and sampling locations (norm−2 sampling). 25

2.4 Field parameter coefficient convergence (norm−2 sampling)........................ 26

2.5 Original field (Linear regression with norm−∞ sampling). 26

2.6 Estimated field and sampling locations (norm−∞ sampling). 26

2.7 Field parameter coefficient convergence (norm−2 sampling)........................ 26

2.8 Original field (KF sampling)... 27

2.9 Estimated field and sampling locations (KF sampling). 27

2.10 : Field parameter coefficient convergence (KF sampling).............................. 28

2.11 Original field (LS / NLS). ... 28

2.12 Estimated field and sampling locations (LS / NLS). 29

2.13 Field parameter coefficient convergence (LS / NLS). 29

2.14 Movement of the mean of the Gaussian basis. (LS / NLS)............................. 29

2.15 Original field (constrained nonlinear optimizer) .. 30

2.16 Estimated field and sampling locations (constrained nonlinear

optimizer). ... 30

2.17 Field parameter coefficient convergence (constrained nonlinear

optimizer). ... 31

xi

2.18 Movement of the mean of the Gaussian basis (LS / NLS).............................. 31

2.19 Search space partitioning. ... 31

2.20 Estimated field and sampling locations (22x partitioning)............................. 32

2.21 Field parameter coefficient convergence (22x partitioning). 32

2.22 Movement of the mean of the Gaussian basis (22x partitioning). 33

2.23 Estimated field and sampling locations (44x partitioning)............................. 33

2.24 Field parameter coefficient convergence (44x partitioning). 33

2.25 Movement of the mean of the Gaussian basis (44x partitioning). 34

2.26 Original field (nonlinear optimization for field and basis parameter

estimation)... 34

2.27 Estimated field and sampling locations (nonlinear optimization for field

and basis parameter estimation).. 35

2.28 Field parameter convergence (nonlinear optimization for field and basis

parameter estimation).. 35

2.29 Field basis parameter convergence (nonlinear optimization for field and

basis parameter estimation)... 35

2.30 Original and estimated linear fields (with localization uncertainty)............... 36

2.31 Field parameter coefficient convergence for linear field estimation (with

localization uncertainty).. 37

2.32 Sampling locations for linear field estimation. (a) With localization

uncertainty, and (b) Without localization uncertainty. 37

2.33 Original Gaussian field (with localization uncertainty). 38

2.34 Estimated Gaussian field and sampling locations (with localization

uncertainty). .. 38

2.35 Field parameter coefficient convergence for Gaussian field estimation

(with localization uncertainty). ... 39

2.36 Field basis parameter convergence for Gaussian field estimation (with

localization uncertainty).. 39

xii

2.37 Robot simulation of (a) estimated and (b) actual positions. 40

2.38 Estimated robot position, improved with updates from GPS. (a) Position

and orientation updates, and (b) Position updates only. 40

2.39 Illustration depicting the experimental setup. ... 41

2.40 ARRI Rover (a) Robot model, (b) Top view, and (c) Perspective view......... 41

2.41 True color field generated for printing using field parameters in equation

(2.56). .. 42

2.42 The grid used to correct camera lens distortion. ... 43

2.43 The MATLAB GUI showing a RGB field and an example of a

segmented image for robot localization. ... 43

2.44 (a) True printed field and (b) estimated field using adaptive sampling

(25 samples). ... 45

2.45 Sampling locations superimposed on the field image view from the

overhead camera. .. 46

2.46 Field parameter convergence graphs for the 9 unknown field

coefficients. ... 46

3.1 Discrete Event Control architecture. ... 51

3.2 The WSN test bed at ARRI... 56

3.3 Top and perspective views of the virtual WSN test bed in initial network

configuration. .. 56

3.4 Petri net representation of Missions 1-3 (Patrolling, Charging,

Transportation).. 58

3.5 Mission 1 Job sequencing and Resource requirement matrices...................... 61

3.6 Circular wait and Critical subsystem matrices.. 61

3.7 Mission 1 with deadlock. (a) Matlab simulation, (b) Top view of robot

paths, (c) Labview results with simulated resources, (d) Perspective

view of robot paths, (e) Labview results with real resources, and (f)

Final sensor network topology.. 63

xiii

3.8 Mission 1 with deadlock avoidance. (a) Matlab simulation, (b) Top view

of robot paths, (c) Labview results with simulated resources, (d)

Perspective view of robot paths, (e) Labview results with real resources,

and (f) Final sensor network topology. ... 64

3.9 Mission 1, 2 with deadlock. (a) Matlab simulation, (b) Top view of robot

paths, (c) Labview results with simulated resources, (d) Perspective

view of robot paths, (e) Labview results with real resources, and (f)

Final sensor network topology.. 65

3.10 Mission 1, 2 with deadlock avoidance. (a) Matlab simulation, (b) Top

view of robot paths, (c) Labview results with simulated resources, (d)

Perspective view of robot paths, (e) Labview results with real resources,

and (f) Final sensor network topology. ... 66

3.11 Mission 1, 3 with deadlock. (a) Matlab simulation, (b) Top view of robot

paths, (c) Labview results with simulated resources, (d) Perspective

view of robot paths, (e) Labview results with real resources, and (f)

Final sensor network topology.. 67

3.12 Mission 1, 3 with deadlock avoidance. (a) Matlab simulation, (b) Top

view of robot paths, (c) Labview results with simulated resources, (d)

Perspective view of robot paths, (e) Labview results with real resources,

and (f) Final sensor network topology. ... 68

3.13 Sample Petri net with routing resources. .. 71

3.14 Augmented conflict resolution matrix formulation. (a) T
rr SF , matrices

for the sample Petri net. Shared, pseudo-shared and routing resources are

highlighted, and (b) Augmented conflict resolution matrix............................ 72

3.15 Four simple CWs and their corresponding XTJJCWCW ostr ,,,, 76

3.16 Deadlock avoidance simulation with all routing disabled. 77

3.17 Deadlock avoidance in the presence of routing choices. 77

4.1 Tricycle Robot Configuration. .. 81

4.2 Initial sinusoidal sweep path with broadcast locations and range of

broadcast. .. 86

xiv

4.3 Localized sensors, real positions (denoted by ‘x’) and estimated

positions (denoted by ‘ • ’), are illustrated after initial mobile robot

sweep of the deployment area. Uncertainty rectangles have been

illustrated to depict the uncertainty of the sensor in its position estimate. 87

4.4 Localization error, computed as the Euclidean distance between real and

estimated positions, of sensors after initial sweep of the deployment

area. ... 87

4.5 Effect of broadcast interval on average localization error. 88

4.6 Initial sweep path of the mobile robot with (a) GPS and UGS updates

disabled, and (b) GPS and UGS updates enabled. .. 94

4.7 Localized sensors after initial sweep of the deployment area......................... 95

4.8 Localization error of sensors computed as the distance between true and

estimated positions.. 95

4.9 Communication connectivity of the network. Communication routes

between sensors and range of communication of each sensor are

depicted. .. 96

4.10 Flow of the (a) NAV-REQ, navigation request and (b) LOC-REQ,

localization request packets through the sensor network................................ 97

4.11 Adaptive localization robot paths and corresponding uncertainty scalars

for the sensors after (a) Initial sinusoidal sweep, (b) First, (c) Second, (d)

Third, and (e) Fourth adaptive navigation steps, respectively. 99

4.12 Reduction of average localization error of sensors with each adaptive

localization iteration. (a) Iteration-1, (b) Iteration-2, (c) Iteration-3, and

(d) Iteration-4. ... 100

4.13 Reduction of average localization error with each adaptive localization

iteration. .. 100

4.14 The final position estimates of the localized sensors after four iterations

of the adaptive localization algorithm... 101

5.1 Robot evolution (a) Model, (b) Prototype, and (c) Product. 102

5.2 Wheel assembly modeled in AutoCAD, and assembled in 3D Studio

Max. (a) Base extension, (b) Angle bracket, (c) Shaft coupler, and (d)

Wheel assembly. ... 103

xv

5.3 Design of the electrical circuit. (a) Schematics, (b) Prototype, (c) PCB

layout, and (d) Fabricated PCB... 104

5.4 Continuous rotation servo. .. 105

5.5 RF transceiver. .. 106

5.6 TAOS RGB color sensor. ... 106

5.7 Experimental setup.. 111

xvi

LIST OF TABLES

Table Page

3.1 Mission 1 - Task Sequence ... 59

3.2 Mission 1 - Rule base.. 59

3.3 Mission 2 - Task Sequence ... 59

3.4 Mission 2 - Rule base.. 60

3.5 Mission 3 - Task Sequence ... 60

3.6 Mission 3 - Rule base.. 60

4.1 Static sensor node localization algorithm ... 84

4.2 Mobile robot localization algorithm. .. 93

4.3 Adaptive localization algorithm.. 98

5.1 Robot commands. ... 108

5.2 Fixed-point binary representation of a non-integer number. 110

1

CHAPTER 1

INTRODUCTION

Spatiotemporally varying network topologies of mobile sensor networks make

them suitable for applications such as reconstruction of environmental fields through

adaptively sampling at locations that maximally reduce the largest uncertainty in the

field estimate. Mobile sensor networks comprise of multiple heterogeneous resources

and a deadlock-free resource scheduling in the presence of shared and routing resources

becomes necessary to schedule the most efficient (cost / energy / time) resource for a

task. Location information is imperative in sensor networks for most applications for

localized sensing where localizing the network adaptively with no additional hardware

is important.

This chapter introduces the research areas of the thesis, namely, Adaptive

sampling, resource scheduling and sensor network localization.

1.1 Adaptive Sampling

Monitoring environmental parameters is a complex task of great importance in

many areas, such as natural living environments, homeland security, industrial or

laboratory hazardous environments (biologically, radioactively, or chemically

contaminated), polluted/toxic natural environments, water treatment plants, nuclear

stations, war zones, remote environments, such as deep space or underwater [1].

2

The capabilities and distributed nature of wireless sensor networks provide an

attractive sampling approach for estimation of spatiotemporally distributed

environmental phenomena. Sampling is a broad methodology for gathering statistical

information about a phenomenon. Using densely deployed static sensor network to

cover large sampling volumes is very expensive in time and resource costs and places

heavy demands on energy consumption. Physical adaptation of a sensor network, either

by adaptive sensor scheduling or through robotic mobility may be the only practical

approach. This leads to adaptive sampling wherein sampling strategies temporally

evolve with past measurements. Information-based approaches to processing and

organizing spatially distributed, multimodal sensor data in a sensor network are

discussed in [2, 3].

Field estimation using the Kullback-Leibler distance as a measure of the

approximation error is shown in [4], where sample density is adaptively varied over the

search space depending on the state uncertainty. Adaptive Sensing [5] presents an

energy-efficient topology configuration method for environment monitoring using

densely deployed wireless sensor networks where redundant nodes are transitioned into

passive mode as auxiliary nodes for later use. Backcasting [6], detects correlations in

an environmental field during the initial preview sampling stage and this information is

used for refined sampling where only a small subset of sensors are adaptively activated,

thereby reducing the demands placed on energy consumption.

Environmental phenomena may appear as single or multiple events and may

migrate within the environment. Hence for accurate determination of space- and time-

3

varying variables, we require the sensing to be spatiotemporally distributed. Robotics

technology provides the possibility of mobile sensing nodes in a distributed sensor

network using prior research in localization of mobile robots [7-9], localization of

sensor networks [10, 11], and cooperative environment mapping approaches such as

SLAM [12], and CML [13]. Robotic Sensor Agents [1], presents a wide variety of

intelligent, autonomous robotic platforms for monitoring the environment. Deployment

algorithms for sensor networks with mobile nodes are discussed in [14-16].

Mobile sensor agents are most suited to implement adaptive sampling strategies.

A bacterial motion for detecting, seeking and tracking of an environmental phenomenon

is presented in [17]. NIMS [18], presents an adaptive sampling approach for

monitoring of spatiotemporal variation of atmospheric climate phenomena in a forest

environment by mapping environmental variables of temperature, humidity, and solar

illumination. Environmental prediction [19], uses the ensemble transform Kalman filter

(ET KF) for designing flight tracks along which GPS dropwindsondes are deployed

from the aircraft and provide vertical profiles of pressure, temperature, humidity and

wind as they drift down on a parachute. Various estimation techniques are presented in

[20] for predictive modeling in oceanography and meteorology. Optimal sample

selection using singular value decomposition (SVD) of the parameter variance space is

introduced in [21], where linear regression of the estimators is performed for

maximization of various norms of the variance matrix. Concurrent localization and

estimation of a field using multiple autonomous underwater vehicles (AUV) is

presented in [22]. An extended Kalman filter based sampling approach for estimation

4

of parameterized fields is introduced in [23] samples are chosen to minimize the state

uncertainty, represented by the covariance matrix.

This thesis considers the problem of estimation of a spatially stationary color

field using mobile robotic sensors equipped with a color sensing module. A color field

is chosen so that the truth model is always known easily and can be used for

determining the level of accuracy in our estimation algorithms. Most environmental

fields can be modeled and projected onto a two-dimensional topographical color map

which can then be used for estimation. Extensive simulations and experimental results

are presented.

1.2 Resource Scheduling

Mobile wireless sensor networks comprise of multiple heterogeneous resources

capable of performing diverse tasks such as measuring, manipulating, moving, sensing,

etc. In mobile sensor networks, a strong one-to-many mapping between a resource and

the tasks that the resource can perform occurs. This mapping can be statically assigned

resulting in shared resources, or dynamically assigned resulting in both shared and

routing resources. Shared resources arise when multiple tasks contend for a single

shared resource, while routing resources arise when multiple resources contend to

perform a single task. The use of shared or routing resources is a major problem

occurring in discrete event (DE) systems, including manufacturing systems, computer

systems, communication systems, highway/vehicle systems, and others [24]. Failure to

suitably assign, dispatch, or schedule resources in the presence of shared or routing

resources, can cause serious deleterious effects on system performance, resulting in

5

extreme cases in system deadlock. The need then arises for deadlock prevention,

deadlock avoidance, or deadlock detection and recovery.

Deadlock avoidance algorithms have been used in various scenarios such as

robotic cells [25, 26], e-commerce driven manufacturing systems [27], process control

such as semiconductor fabrication [28], communication network routing [29], computer

operating systems, etc. The implementation of deadlock avoidance policies in

autonomous distributed robotic systems such as mobile sensor networks has not been

still thoroughly investigated. Preliminary simulations of efficient deadlock avoidance

policies for shared resources in heterogeneous mobile sensor networks are presented in

[30].

A large amount of research has been done in developing various deadlock

avoidance algorithms using varied concepts such as circular wait, circular blocking,

siphons in Petri nets, critical subsystems, etc. Petri net based deadlock prevention

polices [31, 32] deal with detecting siphons and statically introducing control places

into the net to eliminate unmarked siphons signifying deadlock. In [27], potential

deadlock patterns are acquired from an off-line simulation of the part processing

sequence and then, an on-line matching/reordering process is made use of to keep the

current system state dissimilar to the acquired deadlock patterns. Mathematical

formulations of deadlocks and traps by calculation of s-invariants of marked graphs

using linear algebra are thoroughly discussed in [33]. Supervisory control of Petri nets

[34] introduces an approach of keeping a Petri net from starvation by using on-line

routing functions instead of traditional off-line control places, where the routing

6

function assigns a non-shared resource to perform the task from within a pool of

resources. Detailed mathematical analysis of deadlocks and an efficient dispatching

policy for deadlock avoidance based on the generalized kanban scheme using a matrix

model for discrete event systems is presented in [24, 25, 26, 35-37].

Due to the heterogeneous nature of mobile sensor networks, resources are

capable of performing multiple jobs. These are systems with flexible routing where

tasks can choose from a set of resources. In such systems with flexible routing, route

enumeration can be of exponential complexity and execution of deadlock avoidance

constraints are rendered computationally intractable [38]. In [38, 39], a control model is

developed that allows for small, quickly enumerable subset of less-dense routes which

allows for several processing alternatives (routes) at each step while still maintaining

deadlock free operation. In [40], several novel mathematical formulations are

constructed for detecting active circular waits leading to a deadlock in flexible routing

systems; however no deadlock avoidance algorithm is arrived at.

In this thesis, we extend the preliminary analysis of deadlock avoidance polices

for shared resources in heterogeneous mobile sensor networks to more complicated

scenarios. We show through experimental implementation on an actual mobile sensor

network test-bed, the feasibility and effectiveness of the proposed deadlock-free

supervisory control in performing complex and simultaneous sequencing of

interconnected tasks. Further, a general deadlock avoidance policy for systems with

flexible routing, where both shared and routing resources are present, is mathematically

formulated and various simulations performed to validate deadlock-free operation.

7

1.3 Simultaneous and Adaptive Localization of a WSN

Location information is imperative for applications in both wireless sensor

networks and mobile robotics. Many sensor network applications, such as tracking

targets, environmental monitoring, geo-spatial packet routing, require that the sensor

nodes know their locations. The large scale of deployment in sensor networks makes

careful placement or uniform distribution of sensor nodes impractical. The requirement

of the sensors to be small, un-tethered, low energy consuming, cheap, etc., make the

sensors resource-constrained [41]. Localization is a challenging problem and yet

crucial for many applications.

Approaches to the problem of localization are varied. A detailed introduction to

localization in sensor networks is presented in [11]. GPS [42] solves the problem

trivially, but equipping the sensors with the required hardware may be impractical. A

small section of active beacons can be placed in the sensor network and other sensors

can derive their location from these anchor nodes [43, 44]. Cooperative localization

methods have been developed for relative localization [10, 45]. Other approaches

involve RSSI [46], TOA [47, 48], AOA [49], and Signal Pattern Matching [42].

For localization with no additional hardware on the sensor node, the geometric

constraints of radio connectivity are exploited. Some authors suggest using a mobile

robot (whose position is known) to localize the sensors. However, the position of the

mobile robot may be hard to determine. LaSLAT [50] uses a Bayesian filter to

simultaneously localize the sensor network and track the mobile robot. In [51], a

particle filter is employed to localize elements of the network based on observation of

8

other elements of the network. In [52], a mobile robotic sensor localized the network

based on simple intersections of bounding boxes. In [53], geometric constraints based

on both radio connectivity and sensing of a moving beacon localize the sensor network.

The Kalman filter has been used in dead-reckoning for mobile robots but its full

potential in localization of WSN has not heretofore been fully explored. In [54], an

extended Kalman filter is used for localization and tracking of a target. The Kalman

filter was used in [55] for active beacon and mobile AUV localization and in [56] for

scheduling of sensors for target tracking. SLAM [12] and CML [13] employ Kalman

filters for concurrent mapping and mobile robot localization, which can be considered

similar to our work wherein the geometric constraints introduced due to radio

connectivity of the static sensors play the role of features. In this paper we use the full

capabilities of the Kalman filter in the general WSN localization problem.

The work in this thesis exploits geometric constrains based on radio connectivity

such that range information is not needed. A mobile robot initially sweeps the network,

and broadcasts from the robot are used to localize the sensor nodes. Computationally

inexpensive Kalman filters implemented on the sensors fuse the information. On the

other hand, as time passes, the mobile robot gradually loses its own localization

information. We present an algorithm that uses updates from the better localized

sensors along with GPS updates, when they occur, to correct this problem. A

continuous-discrete extended Kalman filter running on the robot estimates the robot

state continuously and fuses the discrete measurement updates.

9

Finally, an adaptive localization algorithm, based on adaptive sampling

techniques [22, 23], is presented that navigates the mobile robot to an area of nodes

with highest position uncertainty. This ensures that the robot maneuvers to an area

where the nodes are least localized, so that it can maximize the usefulness of its

positional information in best localizing the overall network. The adaptive localization

strategy ensures that, with a minimal robot movement, the largest reduction in

aggregated node uncertainty is achieved at every iteration of the adaptive localization

algorithm.

1.4 Summary

This chapter introduced the scenarios of adaptive sampling using mobile

wireless sensor networks, resource scheduling and deadlock avoidance policies in the

presence of shared resources, and routing paths, and simultaneous adaptive localization

of wireless sensor networks using geometric constraints of radio connectivity.

1.5 Contributions

This thesis makes the following contributions:

• Closed form information measures in linear regression are used to

adaptively estimate spatially distributed static linear and Gaussian fields

with linear parameters. Nonlinear optimal estimation techniques, such as

the Kalman filter, constrained, and unconstrained nonlinear optimizers are

used to adaptively estimate field and field basis parameters. An

experimental robotic sensor is designed, developed and used to adaptively

estimate a linear color field.

10

• Deadlock avoidance techniques developed using the discrete event

controller is extended and implemented on a mobile wireless sensor

network comprising of Cybermotion SR2 patrol robots and Berkley motes,

such that smooth, deadlock-free resource scheduling occurs in the

presence of shared resources. Further, a general mathematical formulation

is developed for deadlock avoidance in systems with flexible-routing,

where both shared and routing resources exist. Simulations are done to

validate deadlock-free operation.

• A simultaneous localization algorithm is developed and simulated for

localization of a sensor network using geometric constraints of radio

connectivity. An adaptive localization algorithm is developed to

adaptively navigate a mobile robot such that it optimally minimizes the

largest localization uncertainty of a sensor network.

1.6 Thesis organization

This thesis presents algorithms for adaptive sampling, resource scheduling and

localization using mobile sensor networks. The remainder of it is structured as follows.

Chapter 2 presents an adaptive sampling strategy for field estimation using an

extended Kalman filter. Extensive simulation results, experimental results and

development of the mobile robotic sensors are discussed.

Chapter 3 presents the simulation and experimental implementation of the

deadlock avoidance policy using the discrete-event controller for resource scheduling in

the presence of shared resources. Further mathematical formulations are discussed and

11

a simulation of a deadlock avoidance policy in the general case of routing paths and

shared resources is presented.

Chapter 4 provides localization algorithms for the simultaneous and adaptive

localization of a wireless sensor network using geometrical constraints of radio

connectivity.

Chapter 5 details the robotic platform that was designed and built to

experimentally validate the adaptive sampling algorithms.

Chapter 6 summarizes the main contributions of this thesis and provides

suggestions for future research.

12

CHAPTER 2

ADAPTIVE SAMPLING

The capabilities and distributed nature of wireless sensor networks provide an

attractive sampling approach for estimation of spatiotemporally distributed

environmental phenomena. Adaptive sampling is the scenario where sampling

strategies temporally evolve with past measurements for optimality. In the context of

mobile sensor networks, the problem of adaptive sampling by selection and

repositioning of mobile sensing nodes in order to optimally estimate the parameters of

distributed variable field models is considered.

This chapter considers the problem of estimation of a spatially stationary field

spread over a region R using mobile robotic sensors. The estimation of the field by the

sampling algorithm reduces the region R to a set G of sampling locations. The optimal

construction of G is constrained by several factors such as the non-holonomic

constraints on vehicle kinematics, the communication connectivity due to mobility of

the sensor network, the inherent inaccuracy in positional estimates due to navigational

errors of mobile nodes, and the spatial granularity of the field that arises due to the

sensors used.

In this chapter, extensive simulations of field estimations using adaptive

sampling techniques by simple linear regression, constrained nonlinear optimization and

13

optimal estimation methods are discussed. Experimental results of 2D deployment

scenarios using custom-built, low-cost mobile sensor robots are presented.

This chapter is organized into the following sections. Section 2.1 discusses

various field models and mathematical formulations of different adaptive sampling

algorithms. Section 2.2 presents several simulations of estimation of spatially

distributed static fields. Section 2.3 illustrates the experimental setup and presents

experimental results validating the proposed adaptive sampling algorithm.

2.1 Models

Mathematical models are formulated to represent various parameterized fields.

These are used for simulating various adaptive sampling algorithms for field estimation.

This section presents mathematical models of various parameterized fields and

mathematically proposes several adaptive sampling algorithms.

2.1.1 Estimation of a parameterized field using linear regression

Regression is a statistical method of estimating the conditional expected value of

a dependent variable given the values of the other independent variables. When the

relation between the dependent variable to the independent variable is assumed to be a

linear function of some parameters, we have linear regression.

Linear regression has been used for estimating linear fields in [22], and for

nonlinear Gaussian fields but linear in the parameters in [23].

The independent variables are the position of the sampling location given as

 []TyxX = (2.1)

with a general field linear in the parameters represented by

14

 () ()XgaXgaaF mm+++= K110 (2.2)

where the parameters maaa ,,, 10 L are all linear and the basis function of the field,

() () ()XgXgXg m,,, 21 L may be nonlinear such as the Gaussian basis given by

 ()
() ()

2

22

2,)(σ
cc yyxx

eyxgXg

−+−
−

== (2.3)

The assumption that the field distribution is linear in its parameters allows us to

compute a closed form solution for the information measure used by the sampling

algorithm. After n measurements at locations nXXX ,,, 21 L , the field measures depend

linearly on the coefficients maaa ,,, 10 L via position-dependent functions, and we can

directly estimate the unknown coefficients from the least-square solution

() ()
() ()

() ()nmmnn

mm

mm

XgaXgaaZ

XgaXgaaZ

XgaXgaaZ

+++=

+++=

+++=

...

...

...

110

221102

111101

M
 (2.4)

 ()()
















=
















= ++
≤≤

n

n

n

njmijin

Z

Z

M

Z

Z

XgA MM

11

,
1ˆ (2.5)

Since the pseudo-inverse has a closed form, given by

 () T
nn

T
nn MMMM

1−+ = (2.6)

we obtain

 () ()() ()

()

()

()

∑∑
=

−

=



































































=
n

j

jm

jij

jm

ji

n

j

jmjin

Xg

XgZ

Xg

XgXgXgA

1

1

1

11

1ˆ

M

M

M

M

LL (2.7)

15

The covariance matrix of nÂ can be related directly to the constant measurement

uncertainty as

 () ()() 1
varˆvar

−
= n

T
nin MMZA (2.8)

and the adaptive sampling algorithm will move the vehicle from location nX to 1+nX ,

such that the following normp − is minimized over the search space Θ .

 () ()

()

() ()

p

mi

n

m

i
T
n

XgXg

M

Xg

XgMXm 






























=
LL

M

M

1

1

 (2.9)

 () () Θ∈∀≤+ XXmXm n ,1 (2.10)

2.1.2 Estimation of a parameterized field using a Kalman Filter

Assuming the field distribution to be linear in its parameters allows us to

compute a closed form solution for the information measure used in the sampling

algorithm to decide the next sampling location. But such assumptions are not practical

for all scenarios. Here we consider estimation of a parameterized field using a Kalman

filter such that the need for a closed form information measure is eliminated.

The sampling location is given as

 []TyxX = (2.11)

with a parameterized field model with linear parameters

 () ()XgaXgaaF 22110 ++= (2.12)

and nonlinear Gaussian basis

16

 ()
() ()

2

22

2,)(σ
cc yyxx

eyxgXg

−+−
−

== (2.13)

The states to be estimated are the field coefficients

 []TaaaA 210= (2.14)

which get updated in time by the time-update equation of the Kalman filter

kk

T
kkkkk

AA

GQGPP

ˆˆ
1

1

=

+=
−
+

−
+ (2.15)

On sampling at a location, the measurement-update equation of the Kalman

filter is employed to improve the estimate by combining the information available in the

new measurement. The measurement-update equation is

()

()−
++++

−
++

−
++++

−

+
−
++

−−
++

−+=

=





 +=

111111

1
1111

1

1
1
11

1

11

ˆˆˆ
kkkkkk

k
T
kkk

kk
T
kkk

AHzKAA

RHPK

HRHPP

 (2.16)

where the observation matrix is given as

 () ()[]12111 1 +++ = kkk XgXgH (2.17)

The adaptive sampling algorithm will move the vehicle from location kX to

1+kX , such that the following norm−2 of the covariance matrix is minimized over the

search space Θ .

()
() () Θ∈∀≤

=

+ XXmXm

PXm

kk

kk

,1

2 (2.18)

2.1.3 Estimation of field parameters using linear regression and nonlinear optimization

Earlier sections have considered fields with Gaussian basis with known mean

and variances. Here we approach the problem of estimating a parameterized field with

17

linear parameters and also estimating the means of the basis that make up the field.

This is a more accurate approximation of a true environmental field.

We attempt to arrive at a solution by using linear-regression for estimation of

the linear field parameters and using nonlinear optimization for estimation of the basis

parameters of the field.

The sampling location, the field model and the field basis are given by

 []TyxX = (2.19)

 () ()XgaXgaaF 22110 ++= (2.20)

 ()
() ()

2

22

2,)(σ
cc yyxx

eyxgXg

−+−
−

== (2.21)

After n measurements at locations nXXX ,,, 21 L , the field measures depend

linearly on the coefficients maaa ,,, 10 L via nonlinear position-dependent basis

functions. We try estimating the unknown coefficients from the least-square solution

() ()
() ()

() ()nmmnn

mm

mm

XgaXgaaZ

XgaXgaaZ

XgaXgaaZ

+++=

+++=

+++=

...

...

...

110

221102

111101

M
 (2.22)

and estimating the unknown means of the basis by finding the local minima of the

minimization function using nonlinear unconstrained optimization techniques. The

minimization function is given as

 () ()()∑
∀

−++
i

iii ZXgaXgaa
2

22110
ˆˆˆˆˆ (2.23)

18

2.1.4 Estimation of field parameters using nonlinear optimization

Using linear regression for estimating field parameters and nonlinear

optimization for field basis parameters does not incorporate complete knowledge of the

history of the estimates. We try to use a nonlinear constrained optimization technique

for estimating the field parameters and the basis means together.

The sampling location, the field model and the field basis as earlier are given as

 []TyxX = (2.24)

 () ()XgaXgaaF 22110 ++= (2.25)

 ()
() ()

2

22

2,)(σ
cc yyxx

eyxgXg

−+−
−

== (2.26)

We use a nonlinear constrained optimizer which minimizes a function

 ()xf
x

min (2.27)

subject to the linear equality and inequality constraints,

bxA

bxA eqeq

≤

=

.
 (2.28)

the nonlinear equality and inequality constraints,

()

() 0

0

≤

=

xC

xCeq
 (2.29)

and bounded by

 ubxlb ≤≤ (2.30)

To minimize the overall error in our estimation of 2211210 ,,,,,, cccc yxyxaaa , we

use a minimization function

19

() () () ()
∑
∀

−+−
−

−+−
−

















−++
i

i

yyxx

i

yyxx

ii Zeaeaa

i
c

i
c

i
c

i
c

2

2

ˆˆ

2
2

ˆˆ

10

2

2

2

2

2

2

2

1

2

1

ˆˆˆ σσ (2.31)

For accurate, repeatable convergence of estimating parameters, we partition our

search space Θ into various sub search spaces ()4422 , xx ΘΘ and carry on sub estimations

to arrive at an estimate for a particular configuration. From among the estimates for

various configurations, the best estimate is chosen. This is the scenario of Divide-n-

Conquer where the subspace is partitioned and from among the partitioned results, the

best one is chosen.

To estimate the entire field (both the field parameters and all basis parameters,)

we consider a single basis field

 ()XgaaF 110 += (2.32)

and to estimate all field and basis parameters, σ,,,, 10 cc yxaa , we use a minimization

function

() ()

∑
∀

−+−
−

















−+
i

i

yyxx

ii Zeaa
i

i
c

i
c

2

ˆ2

ˆˆ

10

2

2

1

2

1

ˆˆ σ (2.33)

2.1.5 Estimation of a parameterized field with localization uncertainty

In approaches described in the previous sections, we assume that there is

absolutely no uncertainty about the sampling location. However navigation of a mobile

robotic sensor is subjected to various localization errors. We can use location

information that is embedded in a field sample (due to the inherent background

mathematical model of the field) to better localize our sampling location. A given

20

known localization uncertainty described by a simple kinematic model is introduced

into the system [23].

Along with the field, we also estimate the sampling location. The aggregate

state then contains both the positional information kX , and the field parameter estimates

kA . The state and output equations are written as

 kk
k

kk
k

n

k

k

k

k
BU

A

Xw
U

I

A

X

A

X
ϑ++








=








+








+








=









+

+

001

1 (2.34)

 [] [] k
k

k
T

k

n

k

k

k
T

k

k

k

k

A

X

X

I

vAX

X

Z

Y
λ

ξ
+
















=








+








=









10

0

1
 (2.35)

where the white noise covariances of state and output are

[]

[] 







==









==

2

1

1

0

0
,

00

0
,

R

R
RE

Q
QE

T
kk

T
kk

λλ

ϑϑ

 (2.36)

The state evolution is governed by the nonlinear Kalman filter time-update

equation

k

k

k

k

k

T
kkkkk

BU
A

X

A

X

GQGPP

+











=













+=

−
+

−
+

−
+

ˆ

ˆ

ˆ

ˆ

1

1

1

 (2.37)

On sampling at a location, the measurement-update equation of the Kalman

filter is employed to improve the estimate by combining the information available in the

new measurement. This information contains both information about the field and the

position of the sample. The general nonlinear measurement-update equation is

21

()

()

























−








+












=













=





 +=

−
+

−
+−−

+

+
+−

+

−
+

+

+

−
++++

−

+
−
++

−−
++

1

1

1

1
1

1

1

1

1

1
1111

1

1
1
11

1

11

ˆ

ˆ
ˆ,ˆ

ˆ

ˆ

ˆ

ˆ

k

k
kk

k

k
k

k

k

k

k

k
T
kkk

kk
T
kkk

A

X
AXh

Z

Y
K

A

X

A

X

RHPK

HRHPP

 (2.38)

For a linear field of the form)()(22110 XgaXgaaF ++= with () () yXgxXg == 21 , ,

we have

[]
[]T

T

aaaA

nyxX

210

2,

=

==
 (2.39)

 () []






==−−

T
k

kkk
X

I
HAXh

10

0ˆ,ˆ 2 (2.40)

For a Gaussian field of the form ()XgaaF 110 += with

() ()
2

22

2
1)(σ

cc yyxx

eXg

−+−
−

= , we

have

[]
[]Tcc

T

yxaaA

nyxX

σ10

2,

=

==
 (2.41)

with the output equation modified as

 () 







+








=









k

k

kk

k

k

k

vAXh

X

Z

Y ξ
,

 (2.42)

 ()
() ()

2

22

2
10, σ

cc yyxx

kk eaaAXh

−+−
−

+= (2.43)

and the linearized Jacobian output matrix represented as

 







=

2

1

0

0

H

H
H (2.44)

22



































−

−

−+−

=





























∂
∂
∂

∂
∂

∂
∂

∂
∂

∂

==

−+−
−

−+−
−

−+−
−

−+−
−

2

22

2

22

2

22

2

22

2

)()(

2

1
1

2

)()(

21

2

)()(

3

22

1

2

)()(

1

0

221

)()(

1

,

σ

σ

σ

σ

σ

σ

σ

σ cc

cc

cc

cc

yyxx

yyxx

c

yyxx

cc

yyxx

c

c

e
yy

a

e
xx

a

e
yyxx

a

e

h

y
h

x
h

a
h

a
h

HIH (2.45)

For information about the development of the nonlinear Kalman filter equations,

interested users are referred to [57, 58]

2.1.6 Differential robot simulation

A differential robot model as illustrated in Figure 2.1 is used to mathematically

represent the physical robot kinematics. A systematic error [59] is injected into the

system to account for navigational errors that arise due to practical inaccuracies in

construction and mechanical assembly.

(a) (b)

Figure 2.1: Differential robot with uncertainty in wheel radii and axle length. (a)

Top view, and (b) Front view.

Taking the states of the system to be [] []TT
yxxxxX θ== 321 , the system

model is given by

23

()

()























−

+

+

=
















b

LLRR

LLRR

LLRR

L

rr

x
rr

x
rr

x

x

x

)(

sin
2

)(

cos
2

)(

3

3

3

2

1

ωω

ωω

ωω

&

&

&

 (2.46)

where the effective axle length is

))((22
RLb rrLL −−= (2.47)

and the inputs being

 [] []TLR
T

uuu ωω== 21 (2.48)

The nominal system model can be obtained from the above system by replacing

rrr rl == , and LLb = . In the dead reckoning scheme [60], []21 uu are not control

inputs, but are rather the measured wheel velocities which can be measured by taking

the difference between encoder counts from successive sample periods. If)(),(kk LR φφ

represent the encoder counts of the right and left wheels respectively, then using

forward difference approximation of the derivative in the kinematic system, equation

(2.46), we arrive at the discrete system model given by

() () ()

() () ()

() ()
b

LLLdrvRRRdrv

LLLdrvRRRdrv

LLLdrvRRRdrv

L

rKrK
kxkx

kx
rKrK

kxkx

kx
rKrK

kxkx

φφ

φφ

φφ

∆−∆
+−=

−
∆+∆

+−=

−
∆+∆

+−=

−−

−−

−−

1ˆˆ

)1(ˆsin
2

1ˆˆ

)1(ˆcos
2

1ˆˆ

33

322

311

 (2.49)

where LdrvRdrv KK −− , are the drive constants of the right and left wheel respectively in

terms of distance per drive count and () () () ()1,1 −−=∆−−=∆ kkkk LLLRRR φφφφφφ are the

change in drive counts measured between successive sample periods.

24

The encoder is modeled as a simple extrapolation model and is given by

 () () () tdckdcKkk zerodc ∆−+−=)(1φφ (2.50)

where dcK is a proportionality constant in terms of encoder counts / percent duty cycle,

zerodc is the duty cycle percent that keeps the motor at standstill, and t∆ is the time

interval.

A simple quasi-holonomic control is used to navigate the robot from an initial

start location to a destination location. This is achieved by first orienting the robot

along the path from the start to the destination, then moving the robot along this path

and then orienting the robot to match the required destination orientation. A simple

Kalman filter implemented serves to fuse information from the GPS (the overhead

camera) to correct navigational errors.

2.2 Field estimation simulations

The proposed adaptive sampling algorithms discussed in section 2.1 are

simulated on the various mathematical field models for the purpose of estimation of

parameterized fields. The simulation results for the various combinations of field

models and adaptive sampling algorithms are presented in this section.

2.2.1 Estimation of a parameterized Gaussian field using linear regression

A 2D nonlinear Gaussian field (though still linear in the parameters) is

considered with 2=m , such that

 () ()yxgayxgaaF ,, 22110 ++= (2.51)

where a Gaussian basis as described in eq. (2.3) is chosen. The centers of Gaussians for

()yxg ,1 , and ()yxg ,2 are ())45,65(,30,30 respectively for the norm−2 case and

25

() ()80,35,30,30 respectively for the norm−∞ case. The standard deviation of the Gaussian

distribution is chosen as 10=σ .

Figure 2.2 illustrates the original field, Figure 2.3 depicts the field estimated by

least squares and the sampling locations using the norm−2 , and Figure 2.4 shows

convergence graphs of the field parameters.

Figure 2.5, Figure 2.6, and Figure 2.7 illustrate the same information for

norm−∞ .

Figure 2.2: Original field (Linear regression with norm−2 sampling).

Figure 2.3: Estimated field and sampling locations (norm−2 sampling).

26

Figure 2.4: Field parameter coefficient convergence (norm−2 sampling).

Figure 2.5: Original field (Linear regression with norm−∞ sampling).

Figure 2.6: Estimated field and sampling locations (norm−∞ sampling).

Figure 2.7: Field parameter coefficient convergence (norm−2 sampling).

27

2.2.2 Estimation of a parameterized Gaussian field using a Kalman Filter

The centers of Gaussians for ()yxg ,1 , and ()yxg ,2 are ())65,35(,30,30 respectively

and the standard deviation of the Gaussian distribution is chosen as 10=σ .

Figure 2.8 illustrates the original field, Figure 2.9 depicts the field estimated by

a Kalman filter along with the sampling locations, and Figure 2.10 shows the

convergence graphs of the field parameters. As is evident, even after 45 samples, the

field parameters do not converge completely.

Figure 2.8: Original field (KF sampling).

Figure 2.9: Estimated field and sampling locations (KF sampling).

28

Figure 2.10: Field parameter coefficient convergence (KF sampling).

2.2.3 Estimation of field parameters using linear regression and nonlinear optimization

The centers of Gaussians for ()yxg ,1 , and ()yxg ,2 are ())65,35(,30,30 respectively

and the standard deviation of the Gaussian distribution is chosen as 10=σ .

Figure 2.11 illustrates the original field, Figure 2.12 depicts the sampling

locations and the field estimated by using a combination of linear regression and

nonlinear optimization techniques, Figure 2.13 shows the convergence graphs of the

field parameters, and Figure 2.14 depicts the movement of the means of the Gaussian

basis functions of the field. This clearly illustrates that the means diverge and we can

not completely and accurately estimate both the field and the basis parameters using

hybrid linear and nonlinear optimization techniques.

Figure 2.11: Original field (LS / NLS).

29

Figure 2.12: Estimated field and sampling locations (LS / NLS).

Figure 2.13: Field parameter coefficient convergence (LS / NLS).

Figure 2.14: Movement of the mean of the Gaussian basis. (LS / NLS).

2.2.4 Estimation of field parameters using nonlinear optimization

A constrained nonlinear optimizer is used to estimate the field parameters

210 ,, aaa and the basis parameters 2211 ,,, cccc yxyx with the constraints on the bounds as

30

[]1010,, 210 −∈aaa , () () []1000,,, 2211 ∈cccc yxyx . The expected values are

5.5,4,1 210 −=== aaa , and () ()30,30, 11 =cc yx , () ()65,35, 22 =cc yx .

Figure 2.15 illustrates the original field, Figure 2.16 depicts the sampling

locations and the estimated field using a constrained nonlinear optimization technique,

Figure 2.17 shows the convergence graphs of the field parameters, and Figure 2.18

depicts the movement of the means of the Gaussian basis functions of the field.

Figure 2.15: Original field (constrained nonlinear optimizer)

Figure 2.16: Estimated field and sampling locations (constrained nonlinear

optimizer).

31

Figure 2.17: Field parameter coefficient convergence (constrained nonlinear

optimizer).

Figure 2.18: Movement of the mean of the Gaussian basis (LS / NLS).

The accuracy in the convergence of the estimation parameters in the previous

case is not repeatable. A divide and conquer approach by partition of the search space

into various nxn partitions is performed as illustrated in Figure 2.19. The constraints of

bounds for the nonlinear optimizer are now updated to each sub-space rather than the

entire search space.

Figure 2.19: Search space partitioning.

32

For a 22x search partitioning, Figure 2.20 depicts the sampling locations and

estimated field, Figure 2.21 shows the convergence graphs of the field parameters, and

Figure 2.22 depicts the movement of the basis means. As can be seen the best estimates

are available in the search space combination of () ()1,0,0,0 where the two Gaussian basis

functions are centered. For a 44x search partitioning, Figure 2.23, Figure 2.24, and

Figure 2.25 illustrate the same information.

The partitioning gives us faster sub-space convergence and has a much higher

possibility of convergence.

Figure 2.20: Estimated field and sampling locations (22x partitioning).

Figure 2.21: Field parameter coefficient convergence (22x partitioning).

33

Figure 2.22: Movement of the mean of the Gaussian basis (22x partitioning).

Figure 2.23: Estimated field and sampling locations (44x partitioning).

Figure 2.24: Field parameter coefficient convergence (44x partitioning).

34

Figure 2.25: Movement of the mean of the Gaussian basis (44x partitioning).

Further, a single basis function is chosen as the field as in equation (2.32) and all

the parameters of the field 10 , aa , and basis σ,, 11 cc yx are estimated. The same

constraints as in earlier simulations are used along with the new bound of []100∈σ .

Figure 2.26 illustrates the original field, Figure 2.27 depicts the estimated field

and the sampling locations where the entire field is estimated, Figure 2.28 shows the

convergence graphs for the field parameters, and Figure 2.29 shows the convergence

graphs for the basis parameters.

Figure 2.26: Original field (nonlinear optimization for field and basis parameter

estimation).

35

Figure 2.27: Estimated field and sampling locations (nonlinear optimization for

field and basis parameter estimation).

Figure 2.28: Field parameter convergence (nonlinear optimization for field and

basis parameter estimation).

Figure 2.29: Field basis parameter convergence (nonlinear optimization for field

and basis parameter estimation).

36

2.2.5 Estimation of a parameterized field with localization uncertainty

We estimate a linear field with uncertainty in localization as described in section

2.1.5. Initial conditions of state is takes as []TX 000000 = , with very high

uncertainty in the initial estimate 5
10

0 10 IP = , with state uncertainty

 







=

2

1

0

0

Q

Q
Q (2.52)

where the localization uncertainty 21 1.0 IQ = , and field parameter uncertainty 32 0=Q ,

and the measurement uncertainty as

 







=

2

1

0

0

R

R
R (2.53)

with 21 1.0 IR = , and 1.02 =R .

Figure 2.30 depicts the original linear field, Figure 2.31 shows the field

parameter convergence, and Figure 2.32 shows the sampling locations for simulations

with and without localization uncertainty.

Figure 2.30: Original and estimated linear fields (with localization uncertainty).

37

Figure 2.31: Field parameter coefficient convergence for linear field estimation

(with localization uncertainty).

(a) (b)

Figure 2.32: Sampling locations for linear field estimation. (a) With localization

uncertainty, and (b) Without localization uncertainty.

A Gaussian field is entirely estimated (both field parameters and basis

parameters) with localization uncertainty. An initial state





























+

+

+

=

randny

randnx

randn

X

c

c

*1.0

*1.0

*1.0

0

0

0

0

0

σ
 (2.54)

with very large uncertainty in the initial estimate, 7
10

0 10 IP = is chose, with same

localization uncertainty, 1Q , and 72 0=Q , and with same measurement uncertainty.

Figure 2.33 depicts the original Gaussian field, Figure 2.34 illustrates the estimated

38

field and the sampling locations where estimation is done with localization uncertainty,

Figure 2.35 shows the convergence graphs for field parameters, and Figure 2.36 shows

the convergence graphs for basis parameters.

Figure 2.33: Original Gaussian field (with localization uncertainty).

Figure 2.34: Estimated Gaussian field and sampling locations (with localization

uncertainty).

39

Figure 2.35: Field parameter coefficient convergence for Gaussian field

estimation (with localization uncertainty).

Figure 2.36: Field basis parameter convergence for Gaussian field estimation

(with localization uncertainty).

2.2.6 Differential robot simulation

The differential robot model discussed in section 2.1.6 is simulated with a quasi-

holonomic controller to navigate from an initial location of ()0,0 to a destination of

()50,50 with a simple Kalman filter serving to fuse measurement updates from the GPS.

Since the differential robot is injected with systematic errors, the commanded

inputs do not drive it along the desired path to the destination. Figure 2.37(a) shows the

estimated robot path (where the robot thinks it is), which is different from the actual

robot position, Figure 2.37(b). Figure 2.38 shows the improvement in controlling the

40

position of the robots where information from the GPS (position and orientation

information, and position information only) is fused by the Kalman filter to improve the

robot positional estimate.

(a) (b)

Figure 2.37: Robot simulation of (a) estimated and (b) actual positions.

(a) (b)

Figure 2.38: Estimated robot position, improved with updates from GPS. (a)

Position and orientation updates, and (b) Position updates only.

2.3 Experimental Setup and Results

An experimental setup as illustrated in Figure 2.39 has been setup comprising of

a '8'12 x sample space with a color generated field printed on large format paper and

assembled on the floor, an inexpensive overhead camera at a height of '13

41

encompassing the entire area in it’s field of view, a base station where the primary AS

algorithm runs and serves as a central dispatcher of resources, and several mobile

robotic sensors. The mobile sensor units (ARRI rovers shown in Figure 2.40) are

inexpensive (below USD 500 per unit), are equipped with wheel encoders for

localization, a color sensing module for taking color samples, and a RF communication

card which serves as the link between the various robotic sensors and the base station in

a star topological network.

Figure 2.39: Illustration depicting the experimental setup.

(a) (b) (c)

Figure 2.40: ARRI Rover (a) Robot model, (b) Top view, and (c) Perspective

view.

42

2.3.1 Field model and description of uncertainty

A simple linear field, linear in three color components of red, green, and blue, is

used for initial algorithm validation. The field is given as

ybxbbB

ygxggG

yrxrrR

210

210

210

++=

++=

++=

 (2.55)

with nominal field parameters chosen as (Field in Figure 2.41)

;0053.0,0040.0,0.1

;0096.0,0010.0,0

;0026.0,0061.0,2307.0

210

210

210

−=−==

===

−===

bbb

ggg

rrr

 (2.56)

Figure 2.41: True color field generated for printing using field parameters in

equation (2.56).

A rectangular grid array is used to correct the wide-angle lens distortion, Figure

2.42, and MATLAB image acquisition and processing toolboxes are used to calculate

the pose of the robot using the camera system using image segmentation, Figure 2.43.

43

Figure 2.42: The grid used to correct camera lens distortion.

Figure 2.43: The MATLAB GUI showing a RGB field and an example of a

segmented image for robot localization.

2.3.2 Experimental adaptive sampling for linear field estimation

Adaptive sampling has been used to estimate a linear field without localization

uncertainty of the mobile sensor. The base station runs the adaptive sampling algorithm

and commands the mobile sensor to sample at a particular location. The mobile sensor

navigates to the location by dead reckoning and thus could end up at a location not

exactly matching the commanded one. A camera update at this point ensures that the

sampling location used is the current mobile sensor’s position. Thus we can ignore

localization uncertainty for the moment and iterate the adaptive sampling algorithm to

44

generate the next sampling location. The experiment used twenty five sampling

location to estimate the field.

A simple Kalman filter is setup to estimate the field. The state to be estimated is

the compound tri-field representing the three different linear fields of red, green and

blue, given as

 []TbbbgggrrrX 210210210= (2.57)

The field is assumed to be stationary and thus does not evolve temporally. The

Kalman filter time-update equation illustrates this

QPP

XX

kk

kk

+=

=
−
+

−
+

1

1
ˆ

 (2.58)

The measurement-update equation fuses the information obtained after sampling

a particular location

()
()

()−
++++

−
++

−
++++

−
+++

−
++

−+=

−=

+=

111111

1111

1

11111

ˆˆˆ
kkkkkk

kkkk

k
T
kkk

T
kkk

XHZKXX

PHKIP

RHPHHPK

 (2.59)

where the observation matrix is given as

















=

yx

yx

yx

H

1000000

0001000

0000001

 (2.60)

Based on the height and resolution of the CCD camera, we estimate a

measurement uncertainty of cm5.2± . The color sensor (TAOS TCS 230) measurement

uncertainty, given by the number of discrete RGB values it can measure with, is

expressed in RGB units as unity.

45

Figure 2.44 shows the actual field and the estimated field after 25 samples using

the adaptive sampling algorithm. Our eye can not tell the difference; however, in reality

there are errors due to color printing, color sensor and localization errors. Figure 2.45

shows the various sampling locations of the mobile robotic sensor. Figure 2.46

illustrates the evolution of the field parameters to values close to nominal as successive

samples are taken. The reason for the discrepancy is not color measurement error but

rather differences between screen and printer colors.

(a) (b)

Figure 2.44: (a) True printed field and (b) estimated field using adaptive sampling

(25 samples).

46

Figure 2.45: Sampling locations superimposed on the field image view from the

overhead camera.

Figure 2.46: Field parameter convergence graphs for the 9 unknown field

coefficients.

47

2.4 Summary

Extensive simulations for field estimation using adaptive sampling algorithms

have been discussed involving various approaches for linear and Gaussian fields, with

and without localization uncertainty. An experimental setup with mobile robotic

sensors, a sample color field, and an overhead camera system as GPS has been

constructed. Experimental validation of adaptive sampling approaches for field

estimation has been demonstrated.

48

CHAPTER 3

RESOURCE SCHEDULING

In Manufacturing systems, resources are usually application specific with slight

flexibility of resource assignment to tasks, whereas in mobile sensor networks, the

resources are heterogeneous and capable of performing diverse tasks. Hence we have

shared resources where multiple tasks contend for a single shared resource, or multiple

resources contend to perform a single task. In the former case we have shared

resources, and in the latter, routing resources. The need then arises to suitably assign,

dispatch, schedule resources in such a manner so as to avoid contention, or circular wait

of resources leading to deadlock.

This chapter is organized into the following sections. Section 3.1 discusses the

matrix-based discrete event controller, section 3.2 introduces deadlocks and presents the

deadlock avoidance policy along with implementation on the WSN test bed, section 3.3

discusses the issues of deadlock avoidance in the presence of routing resources, and

section 3.4 concludes the chapter.

3.1 Matrix-based Discrete Event Controller

A patented matrix formulation [61] is presented for modeling and analysis of

complex interconnected DE systems needing dynamic online resource assignment in the

presence of shared resources. The discrete event controller (DEC) is a hybrid system

49

with logical and algebraic components that allows fast, direct design and

reconfiguration of rule-based controllers [62]. The matrix approach provides a

rigorous, yet intuitive mathematical framework to represent the dynamic evolution of

DE systems through linguistic if-then rules:

Rule i: If <condition
i
> then <consequent

i
>

The framework of the Discrete Event Controller is described which provides a

rigorous simple representation of these linguistic rules. Let r be the set of resources in

the system (e.g., various mobile robots and UGSs), v the set of tasks that the resources

can perform (e.g., take a sensor reading, navigate to a commanded location along a

desired path, and retrieve/deploy UGS), u the set of inputs that trigger the system (e.g.,

detection of events such as chemical alert, intruder alert, etc., node failures), y the set

of outputs indicating completed missions, and x the logical state vector of rules of the

DE controller indicating the activated rules of the supervisory control policy.

The condition and consequent of each rule are segregated by the two sets of

logical equations, one for checking the prior conditions leading to the activation of rule

i (matrix controller state equation), and one for determining the a priori consequent of

rule i (matrix controller output equation). The logical equations make use of matrix

algebra for multiplications and additions with the element multiplications replaced by

logical-and operations and the element additions replaced by logical-or operations.

Logical negations are indicated by overbars.

The matrix controller state equation is

 cucurv uFuFrFvFx +++= (3.1)

50

where vF is the task sequencing matrix, rF the resource requirements matrix, uF the

input matrix, ucF the conflict resolution matrix, and cu the conflict resolution vector.

cu along with ucF , is used to inhibit simultaneous activation of conflicting rules. The

state of the DE system is maintained in the x , v , r , and u vectors whose active (true)

entries indicate the activated rules, the completed tasks, the available resources and the

occurrence of events respectively.

The task sequencing matrix vF has element ()ji, set if the completion of task jv

is an immediate prerequisite for the activation of logic state ix . The resource

requirements matrix rF has element ()ji, set if the availability of resource jr is an

immediate prerequisite for the activation of logic state ix .

The matrix controller state equation, eq. (3.1), defines the prior conditions

required for the activation of for a rule, while the matrix controller output equation, eqs.

(3.2-3.4), define the a priori consequents of a rule.

The matrix controller output equations are

 xSv vs = (3.2)

 xSr rs = (3.3)

 xSy y= (3.4)

where vS is the task start matrix having element ()ji, set if logic state jx determines the

activation of task iv , rS is the resource release matrix having element ()ji, set if logic

state jx determines the release of resource ir .

51

Equations (3.1-3.4) represent the rule-base of the supervisory control of the DE

system. All the matrices are composed of sparse boolean entries, so that real time

control of large interconnected DE systems with multiple missions and routes is

computationally feasible.

The DEC has been used as a supervisory control in mobile sensor networks as

detailed in [63].

Figure 3.1 illustrates the DEC architecture.

Node Deployment & Failure- Modify Fr

RESOURCE RESET LOGIC:

MISSION COMPLETE LOGIC:

Wireless Sensor Net

Sensor reading events

Tasks performed

Resources available

Performance

Measures

Targets or

Events In

Matrix
DE Controller

u

v

y

vs

rs

vs

dudurv uFuFrFvFx +++=

xSv vs =

xSr rs =

xSy y=

Program DEC

 For WSN

Applications

Program Missions- Selection of matrices

Select Resources- Priority modification of Fr

NEXT TASK LOGIC:

Missions completed

Sensor readings

Tasks completed

Resources Idle

Missions completed

Task Commands

Resource Reset

Commands

WSN logical

Status information

y

Node Deployment & Failure- Modify Fr

RESOURCE RESET LOGIC:

xSr rs =

rs

Deadlock avoidance policy

Figure 3.1: Discrete Event Control architecture.

3.2 Deadlock

Deadlock research in computer systems has focused on four main areas.

Deadlock prevention is involved with removing any possibility of system deadlocks; the

result is often over-conservative polices resulting in poor utilization of resources.

52

Deadlock detection focuses on detecting imminent or current deadlocks, and is required

for deadlock recovery and avoidance strategies. Deadlock recovery methods are used to

clear deadlocks once they occur, often by placing jobs in buffers, or by completely

flushing one or more of the deadlocked processes, resulting in lost work. In deadlock

avoidance the possibility of system deadlock is not totally removed, but whenever a

deadlock is imminent, it is sidestepped by a real-time decision-making procedure [24].

In this thesis, we focus on deadlock avoidance.

3.2.1 Deadlock avoidance policy

Deadlock-free dispatching rules are derived by performing circular wait (CW)

analysis in matrix form for possible deadlock situations. An analysis of deadlocks in

manufacturing systems using the matrix based DEC is presented in [24, 37]. Deadlock

avoidance algorithms have been implemented in robotic cells in manufacturing systems

using the DEC [25, 26]. Preliminary Analysis of deadlock avoidance policies for

shared resources in heterogeneous mobile sensor networks is presented in [30].

For deadlocks, we consider the following assumptions

• No preemption - No resource can be removed from a task until the

completion of the task.

• Mutual exclusion - Every resource performs only one task at a given

time.

• Hold while waiting – A process holds the resources allocated to it until it

has all resources required to perform a job.

53

Under these assumptions, a necessary condition for deadlock to occur is the

presence of a circular wait relation among the resources [24, 26, 35-37].

For any two resources ri and rj, ri is said to wait for rj, denoted by ji rr → , if the

availability of rj is an immediate requirements for the release of ri. Circular waits (CW)

among resources are a set of resources ra, rb,… rw whose wait relationship among them

are wba rrr →→→ L and aw rr → . To identify simple Circular Waits (sCW), a wait

relation digraph of resources needs to be constructed. The digraph of resources is easily

obtained from the matrix formulation

 ()TrrFSW = (3.5)

where element ijW is set if ji rr → holds. Simple circular waits are calculated from the

digraph matrix using string algebra [25]. The sCW do not represent all the circular

waits and we require the circular wait (CW) matrix that is composed of all sCW along

with unions of non-disjoint sCW. The Gurel algorithm [35, 36] is used to efficiently

compute all CWs and composed CWs, outC .

In order to implement efficient real-time deadlock avoidance policies, other

relevant sets of task and resources from Petri net theory need to be defined. The term

token is used to indicate a task in progress or an available resource and the term

transition to indicate a rule of the supervisory controller.

A siphon is a set of tasks and resources which if token-free after firing of a

certain transition, will remain token-free under all subsequent transition firings. The

critical siphon of a CW is the smallest siphon containing the CW. If the critical siphon

54

ever becomes empty, all its resources are busy and can never become available again.

The Siphon- task set ()CJ s is the set of tasks of the critical siphon. The critical

subsystem ()CJ o is set of tasks of the CW, ()CJ which do not add a token to the CW.

A deadlock condition occurs if and only if there is an empty CW, which

corresponds to an empty critical siphon, or equivalently to a condition where all tasks of

the CW belong to the critical subsystem.

Thus, in order to perform deadlock analysis, we need matrix computation tools

to determine the siphon-task sets ()CJ s , and the critical subsystems ()CJ o of every CW

C. Since the deadlock conditions are dependent on the number of tokens in these sets,

we need to calculate the set of transitions (input and output transitions) which when

fired, add or subtract tokens from the CWs.

The input and output transitions of a CW are calculated as

T

routd

routd

FCC

SCC

.

.

=

=
 (3.6)

The adding and clearing transitions are calculated as

()
()CCCT

CCCT

dddm

dddp

∧−=

∧−=
 (3.7)

where the ∧ operator represents logical and.

These set of transitions are important in keeping track, in real-time, of the

available resources inside every CW, and hence in determining the status of tasks and

resources inside the critical siphon. The task set, siphon-task set, and the critical

subsystem of a CW is calculated as

55

()
()
() () ()vdo

vps

T
vdvd

FCCJCJ

FTCJ

SCFCCJ

∧=

=

== ..

 (3.8)

The critical subsystem is the set of tasks which require one of the resources from

the CW for execution. Therefore the activation of all tasks in the critical subsystem will

make the CW empty and lead to a deadlock condition. A simple deadlock avoidance

strategy consists of keeping the number of activated tasks of a critical subsystem lesser

than the number of resources in the corresponding CW. This is the MAXWIP policy

 ()() ()ii CmCJm 00 < (3.9)

The described deadlock avoidance policy has been implemented on the mobile

wireless sensor network test bed and complex interconnected missions executed in a

smooth, deadlock-free manner.

3.2.2 Implementation of DEC on WSN test bed

The wireless sensor network test bed at the Automation & Robotics Research

Institute comprises of mobile sentry robots, unattended ground sensors, a wireless

network, and a centralized control unit, see Figure 3.2. Cybermotion SR2 mobile robots

serve as the patrol robots and Berkley motes serve as the UGSs. The base-station PC

runs the DE controller, and serves as a central supervisor controlling the various

resources through a wireless transceiver.

56

Figure 3.2: The WSN test bed at ARRI.

A virtual WSN test bed has been created to illustrate various mobile robot

movements as the WSN topology reconfigures to handle various missions, see Figure

3.3.

Figure 3.3: Top and perspective views of the virtual WSN test bed in initial

network configuration.

UGSs

Sentry robot

DEC

Transceiver

Sentry robot

charger

57

3.2.3 Simulation and experimental results

The results presented in this section have been obtained using Matlab and

Labview environments. Matlab has been used for initial simulations of the missions,

followed by a Labview implementation of the missions with simulated resources. On

satisfactory performance of the deadlock avoidance algorithm, the simulated resources

have been replaced with actual resources.

Three different missions have been implemented to illustrate the effectiveness of

the deadlock avoidance algorithm. All missions use the wireless sensor network

comprising of two mobile robots ()21 , RR , and six Berkley motes ()61 MM − as UGSs.

Mission-1 achieves patrolling and sensing of the warehouse, Mission-2 serves to charge

the UGSs, and Mission-3 transports dangerous cargo from location ‘A’ to location ‘B’.

Missions are triggered by events from sensors, such as the intruder alert, battery low

alert, etc. The sensor network reacts to events and could physically reconfigure its

topology to adapt to the event.

The Petri net representation of Missions 1-3 is illustrated in Figure 3.4.

58

x1
1 R1Pa

1
u1

M1

UGS1
1 R1Pb

1

x2
1

x3
1

x4
1

x1
3

x2
3 x3

3
x4

3
x5

3
u3

u2

M5

R1

M6

UGS1c
3 R1dA

3

UGS5c
3

UGS6c
3

R2pA
3

y1

y3

y2

R2

x1
2 x2

2 x3
2

x4
2 x5

2
x6

2 x7
2 x8

2
R1cS3

2
 UGS3

2

R2vS3cS2
2

UGS2
2

R2vS3cS4
2

UGS4
2 R1vS4

2

M3 M2 M4

Figure 3.4: Petri net representation of Missions 1-3 (Patrolling, Charging,

Transportation).

To implement the supervisory control policy, we define the vector of resources

[]65432121 ,,,,,,, MMMMMMRRr = of the system consisting of two robots and six

stationary sensors. For each mission- i we define the vector of inputs iu , of output iy ,

and of tasks iv . The task sequence for each mission is defined (Table 3.1, Table 3.3,

and Table 3.5 for Missions 1, 2, and 3 respectively) and the if-then rules representing

the supervisory coordination strategy to sequence the programmed missions are defined

(Table 3.2, Table 3.4, and Table 3.6 for Missions 1, 2, and 3 respectively). The

linguistic description of the coordination rules is translated into a more convenient

59

matrix representation suitable for mathematical analysis and computer implementation.

As an example, matrices i
r

i
v FF , (Figure 3.5) relative to mission-1 is illustrated.

Table 3.1: Mission 1 - Task Sequence
Mission-1 Notation Description

Input u
1

Intruder Alert from any UGS

Task 1 R1Pa
1

i. R1 navigates to M2

ii. R1 takes measurement at M2

iii. R1 navigates from M2 to M1

iv. R1 takes measurement at M1

Task 2 UGS1
1

i. M1 takes measurement

Task 3 R1Pb
1
 i. R1 navigates to M1

ii. R1 takes measurement at M1

iii. R1 navigates from M1 to M3

iv. R1 takes measurement at M3

Output y
1

i. Patrol and sensing of warehouse

Table 3.2: Mission 1 - Rule base.
Mission 1 – Operation Sequence

Rule 1 x1
1

If u
1
 occurs and R1 available then start R1Pa

1

Rule 2 x2
1

If R1Pa
1
 completed and M1 available then release

R1 and start UGS1
1

Rule 3 x3
1

If UGS1
1
 completed and R1 available then

release M1 and start R1Pb
1

Rule 4 x4
1

If R1Pb
1
 completed then release R1 and terminate

mission-1 by producing output y
1

Table 3.3: Mission 2 - Task Sequence
Mission-2 Notation Description

Input u
2

Low battery warning from UGS

Task 1 R1cS3
2

i. R1 navigates to M3

ii. R1 charges M3

Task 2 UGS3
2

i. M3 takes measurement

Task 3 R2vS3cS2
2

i. R2 navigates to M3

ii. R2 takes measurement and

verifies M3 charge

iii. R2 navigates from M3 to M2

iv. R2 charges M2

Task 4 UGS2
2

i. M2 takes measurement

Task 5 R2vS2cS4
2

i. R2 navigates to M2

ii. R2 takes measurement and

verifies M2 charge

iii. R2 navigates from M2 to M4

iv. R2 charges M4

Task 6 UGS4
2

i. M4 takes measurement

Task 7 R1vS4
2

i. R1 navigates to M4

ii. R1 takes measurement and

verifies M4 charge

Output y
2

i. Charging of UGSs

60

Table 3.4: Mission 2 - Rule base
Mission 2 – Operation Sequence

Rule 1 x1
2

If u
2
 occurs and R1 available then start R1cS3

2

Rule 2 x2
2

If R1cS3
2
 completed and M3 available then

release R1 and start UGS3
2

Rule 3 x3
2

If UGS3
2
completed and R2 available then

release M3 and start R2vS3cS2
2

Rule 4 x4
2

If R2vS3cS2
2
 completed and M2 available then

release R2 and start UGS2
2

Rule 5 x5
2
 If UGS2

2
 completed and R2 available then

release M2 and start R2vS2cS4
2

Rule 6 x6
2

If R2vS2cS4
2
 completed and M4 available then

release R2 and start UGS4
2

Rule 7 x7
2

If UGS4
2
 completed and R1 available then

release M4 and start R1vS4
2

Rule 8 x8
2
 If R1vS4

2
 completed then release R1 and

terminate mission-2 by producing output y
2

Table 3.5: Mission 3 - Task Sequence
Mission-1 Notation Description

Input u
3

Fourty minutes have elapsed

Task 1 UGS1c
3

M1 takes measurement

Task 2 R1dA
3
 R1 picks up dangerous cargo and

drops off at temporary storage

location A

Task 3 UGS5c
3

UGS6c
3

M5 and M6 take measurements

Task 4 R2pA R2 picks up cargo from A and

transports to location B along path

decided by readings from M5 and

M6

Output y
3

Dangerous cargo transported

Table 3.6: Mission 3 - Rule base
Mission 3 – Operation Sequence

Rule 1 x1
3

If u
3
 occurs and M1 available then start UGS1c

3

Rule 2 x2
3

If UGS1c
3
 completed and R1 available then

release M1 and start R1dA
3

Rule 3 x3
3

If R1dA
3
completed and M5 and M6 available then

release R1 and start UGS5c
3
 and UGS6c

3

Rule 4 x4
3

If UGS5c
3
 and UGS6c

3
 completed and R2

available then release M5 and M6 and start R2pA

Rule 5 x5
3
 If R2pA then release R2 and terminate mission-3

by producing output y
3

61



















=



















=

00000000

01000000

00000001

01000000

,

100

010

001

000

21654321

1

111

1

RRMMMMMM

F

PRUGSPR

F r

ba

v

Figure 3.5: Mission 1 Job sequencing and Resource requirement matrices.

The circular wait matrix outC and the critical subsystem matrix 0J are fairly

complex for these interconnected missions. Figure 3.6 illustrates these matrices.

Figure 3.6: Circular wait and Critical subsystem matrices.

Figure 3.7(a,c,e) illustrate the time traces of the discrete event system if no

deadlock avoidance policy has been applied. In these time traces, idle resources and

tasks not in progress are denoted by low level, whereas busy resources and tasks in

progress are denoted by high level.

Figure 3.7 shows the simple case of deadlock of mission 1 when it is triggered

multiple times. With the initial trigger, task R1Pa executes to completion and task UGS1

62

starts. At this time, a second trigger of the mission causes a second instance of R1Pa to

start simultaneously and both resources R1 and M1 are consumed. For UGS1 to

complete and R1Pb to begin, R1 is required, but this is being used by R1Pa. For R1Pa to

complete and UGS1 to begin, M1 is required, but this is being used. Thus we have a

cyclic wait of resources which lead to a deadlock situation. This cyclic wait of

resources can be seen easily in the first row of the circular wait matrix in Figure 3.6 and

a deadlock occurs when the corresponding tasks in the critical subsystem matrix are

simultaneously in progress. Thus to avoid deadlocks, the dispatching policy has to

ensure that all tasks in a particular row of the critical subsystem matrix are not in

progress simultaneously. In the case of mission-1, when UGS1 is in progress, rule-1 has

to be inhibited by updating the conflict resolution vector du . Figure 3.8 shows the

deadlock avoidance policy in effect which smoothly takes mission-1 to completion

twice. The dispatching policy is capable of handling deadlocks of higher order which

arise when both mission-1, and mission-2 are triggered multiple times, as illustrated in

Figure 3.9, with no deadlock avoidance, and in Figure 3.10 with deadlock avoidance.

Deadlocks can also arise when two or more missions run in parallel and there

exists a circular wait between the missions. This scenario is illustrated in Figure 3.11

where deadlock arises due to a circular wait of resources 1M in mission-3, and 1R in

mission-1. Figure 3.12 illustrates that the same dispatching policy handles complex

deadlocks between missions where task R1Pa from mission-1 is inhibited until task

UGS1c from mission-3 is completed.

63

(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Mission 1 with deadlock. (a) Matlab simulation, (b) Top view of robot

paths, (c) Labview results with simulated resources, (d) Perspective view of robot

paths, (e) Labview results with real resources, and (f) Final sensor network

topology.

64

(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Mission 1 with deadlock avoidance. (a) Matlab simulation, (b) Top

view of robot paths, (c) Labview results with simulated resources, (d) Perspective

view of robot paths, (e) Labview results with real resources, and (f) Final sensor

network topology.

65

(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Mission 1, 2 with deadlock. (a) Matlab simulation, (b) Top view of

robot paths, (c) Labview results with simulated resources, (d) Perspective view of

robot paths, (e) Labview results with real resources, and (f) Final sensor network

topology.

66

(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Mission 1, 2 with deadlock avoidance. (a) Matlab simulation, (b) Top

view of robot paths, (c) Labview results with simulated resources, (d) Perspective

view of robot paths, (e) Labview results with real resources, and (f) Final sensor

network topology.

67

(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Mission 1, 3 with deadlock. (a) Matlab simulation, (b) Top view of

robot paths, (c) Labview results with simulated resources, (d) Perspective view of

robot paths, (e) Labview results with real resources, and (f) Final sensor network

topology.

68

(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Mission 1, 3 with deadlock avoidance. (a) Matlab simulation, (b) Top

view of robot paths, (c) Labview results with simulated resources, (d) Perspective

view of robot paths, (e) Labview results with real resources, and (f) Final sensor

network topology.

69

3.3 Routing

Resources in mobile sensor networks are heterogeneous in nature and capable of

performing several diverse tasks unlike in manufacturing systems where resources are

usually dedicated to a specific task. Thus, for every task awaiting execution, multiple

resources are available for being scheduled and the task can request the best (cost / time

/ energy efficient) resource that can take the task to completion in an optimal manner.

Hence we need a formal mathematical model for deadlock-free dynamic resource

scheduling where routing as well as dispatching decisions need to be made.

Deadlock analysis in the presence of routing choices is of exponential

complexity and deadlock avoidance constraints are rendered computationally intractable

[38].

Very little research exists in the field of mobile sensor networks where resources

are scheduled dynamically for task execution in a deadlock-free manner. This thesis

presents a mathematical formulation for dynamic resource scheduling using the matrix-

based discrete event controller. A deadlock avoidance algorithm is developed and

simulated for task sequencing in the presence of routing choices.

3.3.1 DEC representation for routing

The matrix-based discrete event controller presented in an earlier section, eqs.

(3.1 – 3.4) is flexible and can be easily used to implement the scenario of task

sequencing where predetermined resource assignments do not exist and dynamic on-line

resource scheduling needs to be performed for allocating a resource to a particular task.

70

In the presence of shared resources, or in the case of online resource assignment

(routing resources), simultaneous activation of conflicting rules arises. The conflict

resolution matrix, ucF , in eq. (3.1) is used to resolve conflicts. In earlier work on

deadlock avoidance in the presence of shared resources in mobile sensor networks [30],

the conflict resolution policy had to handle conflicts of shared resources, i.e., conflicts

deriving by the simultaneous activation of rules which start different tasks requiring the

same resource. However in the current scenario, with no predetermined resource

assignments, conflicts of pseudo-shared resources, and conflicts of routing-resources

arise.

Conflicts of pseudo-shared resources arise when simultaneous activation of rules

which start the same job using the same resource but having different consequents (such

as releasing different resources) occurs. This happens when multiple paths though the

sequence join, for instance, logic transitions 4t , 5t in Figure 3.13 where the resource 2B

acts like a shared resource but starts the same task.

Conflicts of routing resources arise when simultaneous activation of rules which

start the same job using different resources (different routes) occurs. This happens

when a single route splits, where the same job can be assigned from among a set of

resources, for instance, logic transitions 2t , 3t in Figure 3.13 where resources 1R , 2R

can perform the same job.

A novel augmented conflict resolution matrix is proposed

 routingucsharedpseudoucshareducuc FFFF −−−= |||| _ (3.10)

71

such that element ()ji, is set if completion of conflict arising task jv is an immediate

prerequisite for the activation of logic state ix . Then setting the element j in the

conflict resolution vector cu determines the inhibition of logic state ix (rule i cannot be

fired.) Thus, depending on the way one selects the conflict-resolution strategy to

generate cu , different dispatching strategies can be selected to avoid resource conflicts

due to shared resources, pseudo-shared resources and routing resources. Figure 3.14

depicts the construction of the augmented conflict resolution matrix from elements of

the resource requirements, and the resource release matrices.

Figure 3.13: Sample Petri net with routing resources.

Pin

R2

R1

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

B1 B2 B3

M1

M2

r1a r1b

r2a r2b

b1 b2 b3

m1

m2 Pout

72

(a) (b)

Figure 3.14: Augmented conflict resolution matrix formulation. (a)
T

rr SF ,

matrices for the sample Petri net. Shared, pseudo-shared and routing resources are

highlighted, and (b) Augmented conflict resolution matrix.

3.3.2 Deadlock avoidance policy for flexible routing systems

An analysis of deadlock structures using matrices for reentrant flow lines with

routing in a flexible manufacturing systems is performed in [40]. However, these

mathematical constructions give us a method of detecting active circular waits only.

Since, in systems with routing choices, an active circular wait does not always lead to a

deadlock. In this section we present mathematical formulations for detecting when an

active circular wait could become a potential deadlock and we also present a

computationally feasible deadlock avoidance algorithm.

In addition to assumptions for deadlock that were made in section 3.2.1, we have

the following non-restrictive capability that

• Some tasks have the option of being executed by a resource from a set of

resources (routing resources), and each resource might be used for

different tasks (shared resources.)

73

• Task routings are deterministic and are provided by a dynamic

controller.

Mathematical constructions defined in section 3.2.1 are modified as suggested in

[40] for adapting the deadlock analysis for the more complex case of routing. Due to

the diversity of loop paths that a set of resources contained in a sCW might have

[section 3.2.1, equation (3.5)], we need to identify not only the resources that compose

the sCW, but also the transitions that link them. This will give us specific information

needed to locate siphons and certain critical subsystems needed for construction of the

deadlock policy. A general digraph matrix is used

 







=

tr

rr

F

S
W

0

0
 (3.11)

where n0 is a nxn zero matrix, r the number of resources, and t the number of

transitions.

Using the general digraph matrix, W with the get both simple circular wait of

resources and simple circular wait of transitions

 []** wtwrw CCC = (3.12)

and using the Gurel algorithm, we obtain the the matrix G of composed circular waits

to get all the circular wait of resources and transitions

*

*

wt
T

t

wr
T

r

CGCW

CGCW

=

=
 (3.13)

The input and output transitions of a CW are still calculated as eq. (3.6),

however the adding and clearing transitions, eq. (3.7) is modified as

74

()
()tddm

tddp

CWCCT

CWCCT

∧−=

∧−=
 (3.14)

The task set, siphon-task set, and the critical subsystem of a CW, eq. (3.8) is also

modified as

 () ()

() vto

vds

T
vdvdC

FCWCJ

FCCJCJ

SCFCJ

.

.

..

=









∧=

==

 (3.15)

With these formulations, equations (3.11 – 3.15), we can detect only active

circular waits but not when an active circular wait progresses to a potential deadlock. In

a system with routing choices, the system can exist in an active circular wait and still

not cause a deadlock. In this thesis, we introduce the concept of exit policies, exit

transitions, and exit CW to try to detect when an active circular wait may progress to a

potential deadlock.

The exit transition matrix, XT is introduced, which is the set of transitions that

when fired would introduce a token into an empty circular wait. Such transitions only

exist in systems with routing choices. The exit transition matrix is given as

 () tCWCWJXT −•= 0 (3.16)

The exit circular wait matrix, XCW defines the set of circular waits into which

an active circular wait could exit to on the firing an exit transition. An exit transition on

introducing a token into an active token could cause another circular wait to become

empty. The XCW matrix defines the set of such circular waits for a particular circular

wait. The exit circular wait matrix is given as

75

 { }ttX CWXTCWCW ∈= : (3.17)

The proposed deadlock avoidance policy allows a circular wait to progress into

an active circular wait provided there exists at least one or more exit transitions which

when fired would clear the current circular wait without transiting another circular wait

into an active circular wait. Hence one or more free exit transitions need to exist,

expressed mathematically as

 () 0>∈ Xactive CWCWn (3.18)

Thus our deadlock avoidance policy allows an empty circular wait to form

provided a free exit transition exists. This is a computationally feasible solution for

deadlock-free dispatching in the presence of routing choices. Figure 3.15 illustrates the

various constructs discussed in this section for the four simple circular waits of the

sample Petri net in Figure 3.13.

76

Figure 3.15: Four simple CWs and their corresponding XTJJCWCW ostr ,,,, .

3.3.3 Simulation results

The sample Petri net considered in Figure 3.13 is simulated. This has multiple

routing choices to be made and the proposed augmented udF matrix ensures that the

conflicts that arise due to shared, pseudo-shared, and routing resources are resolved.

Initial simulations for deadlock consist of disabling all routing choices and triggering

the mission multiple times (ten times), this is the case of simple deadlock and the

discrete event transition traces is as seen in Figure 3.16. On enabling both routing and

deadlock avoidance, and triggering the mission multiple times (ten times) to cause

multiple complex deadlocks, we get the event trace as seen in Figure 3.17. This clearly

illustrates that the mission is taken to completion smoothly without any deadlocks

multiple times. Comparing Figure 3.16 and Figure 3.17, we see, as expected that with

Pin

R2

R1

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

B1 B2 B3

M1

M2

r1a r1b

r2a r2b

b1 b2 b3

m1

m2 Pout

Exit Transition
Jo

CW Resource

Js

Pin

R2

R1

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

B1 B2 B3

M1

M2

r1a r1b

r2a r2b

b1 b2 b3

m1

m2 Pout

Exit Transition
Jo

CW Resource

Js

Pin

R2

R1

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

B1 B2 B3

M1

M2

r1a r1b

r2a r2b

b1 b2 b3

m1

m2 Pout

Exit Transition
Jo

CW Resource

Js

Pin

R2

R1

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

B1 B2 B3

M1

M2

r1a r1b

r2a r2b

b1 b2 b3

m1

m2 Pout

Exit Transition
Jo

CW Resource

Js

77

multiple choices of routing for a particular task, the overall throughput of the entire

mission is greatly improved.

Figure 3.16: Deadlock avoidance simulation with all routing disabled.

Figure 3.17: Deadlock avoidance in the presence of routing choices.

3.4 Summary

This chapter has extended the preliminary analysis of deadlock avoidance

polices for shared resources in heterogeneous mobile sensor networks to more

complicated scenarios. We have show through experimental implementation on an

actual mobile sensor network test-bed, the feasibility and effectiveness of the proposed

deadlock-free supervisory control in performing complex and simultaneous sequencing

of interconnected tasks. Further, a general deadlock avoidance policy for system with

Pin

R2

R1

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

B1 B2 B3
M1

M2

r1a r1b

r2a r2b

b1 b2 b3

m1

m2 Pout

R2

R1

Pin
t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

B1 B2 B3

M1

M2

r1a r1b

r2a r2b

b1 b2 b3

m1

m2 Pout

78

flexible routing, where both shared and routing resources are present, has been

mathematically formulated and various simulations performed to validate deadlock-free

operation in the presence of multiple routing choices.

79

CHAPTER 4

LOCALIZATION

Location information is imperative for applications in both wireless sensor

networks and mobile robotics. Many sensor network applications, such as tracking

targets, environmental monitoring, geo-spatial packet routing, require that the sensor

nodes know their locations. The large scale of deployment in sensor networks makes

careful placement or uniform distribution of sensor nodes impractical. Here we propose

a localization algorithm for simultaneous localization of the sensor network and the

mobile robot using simple geometric constraints of radio connectivity.

The chapter is organized into the following sections. Section 4.1 presents an

algorithm for localization of static sensor nodes using positional updates broadcast from

the mobile robot. Section 4.2 presents an algorithm that updates the location

information of the mobile robot based on GPS measurements, when they occur, and

position information from nodes that are well localized. We illustrate the simultaneous

localization of both static sensors and the mobile robot by fusing information from

multiple sources. Section 4.3 addresses the problem of where to send the mobile robot

next to maximally decrease the localization uncertainty in the sensor network. This is

the scenario of Adaptive Localization. Section 4.4 concludes the chapter.

80

4.1 Sensor Localization using Mobile Robot

In this section we provide an algorithm that runs on each Unattended Ground

Sensor (UGS) node that allows it to update its position estimate, and the uncertainty in

that estimate, as a mobile robot with known position moves through the network. The

algorithm is range-free in that only the communication range need be known, not the

range from the node to the mobile robot. It is assumed in this section that the mobile

robot’s position is exactly known.

4.1.1 Scenario

A deployed wireless sensor network comprised of static unattended ground

sensors is to be absolutely localized by a mobile robot. The robot broadcasts consist of

its own position and its position uncertainty estimates. Broadcasts can only be heard

within the robot’s communication range. The static sensors, on receiving these

broadcasts, combine the new information to update their current location estimate. A

simple discrete-time Kalman filter running on each static sensor node serves to fuse

information and update its location and uncertainty estimates.

This is a formalized rigorous approach employing Kalman filters for

localization, in contrast to bounding boxes [52, 53], which are harder to update and

keep track of. The developed algorithm is simple and can efficiently be implemented

on the sensor nodes with a small computing power. The Kalman filter is simply an

optimal recursive data processing algorithm [64] and has been subject of extensive

research and applications, particularly in the area of autonomous navigation.

81

4.1.2 Robot Control

A classical three-wheeled tricycle robot model is employed in all simulations.

This configuration uses a controlled steering angle and drive speed to navigate to a

desired position as illustrated in Figure 4.1.

Figure 4.1: Tricycle Robot Configuration.

The states and kinematics of the robot are given by,

 []TyxX αφ= (4.1)

 ()





















=



















==

αω
α

φα
φα

α
φ sin

sincos

coscos

,

L
v

v

v

y

x

txaX
t

t

t

&

&

&

&

&
 (4.2)

with ()yx, the position of the robot, α the steering angle, and φ the heading angle. The

control inputs are the speed tv and the steering rate αω .

A simple Proportional-Derivative goal-based controller with a temporally

varying goal is implemented to navigate the robot along a desired trajectory. For more

details, see [65].

This dynamical setup allows more accurate simulations than the simple moving-point

model usually assumed in sensor network localization papers.

82

4.1.3 Sensor Node Kalman Filter

Each static sensor node maintains its own position and uncertainty estimates.

The mobile robot broadcasts contain the robot’s position estimate and uncertainty

estimate. The broadcasts can only be heard within the robot’s communication range. A

discrete-time Kalman filter running on each sensor node combines this information to

optimally update the node’s position estimate and its uncertainty. For more details on

the derivation of the Kalman filter equations, interested readers are referred to [58].

 The Kalman filter is a set of mathematical equations running in a software

algorithm that provide an efficient computational means to estimate the state of a

process. The state of sensor i at discrete time instant k is

 []Tiii
k yxx = (4.3)

The sensor state is governed by the linear stochastic difference equation

 i
k

i
k

i
k

i
k

i
k

i
k

i
k wGuBxAx ++=+1 (4.4)

with measurements given by

 i
k

i
k

i
k

i
k vxHz += (4.5)

The random variables i
kw and i

kv represent process and measurement noises

given by

 () () ()iki
k

i
k

i
k

i
x

ii
RvQwPxx ,0,,0,,

000 === (4.6)

where ()Pm, denotes a Gaussian noise process with mean m and covariance P .

For stationary nodes, the system matrices are given by

 







=








=








=








=

10

01
,

10

01
,

00

00
,

10

01 i
k

i
k

i
k

i
k HGBA (4.7)

83

The a priori position estimates prior to measurement updates at time 1+k are

given by the time update equations, which give the effects of time on sensor

localization:

 i
k

i
k

i
k QPP +=

−
+1 (4.8)

 i
k

i
k xx ˆˆ 1 =

−
+ (4.9)

In these equations, i
kx̂ represents the position estimate of node i at time k , while the

covariance matrix i
kP gives the corresponding uncertainty in the position estimate.

The a posteriori estimates given a position measurement kz are given by the

measurement update equations, which gives the effect of the robot broadcast on sensor

localization:

1

1
1

11

1

11

−

+
−

++

−−
++ 








+= i

kk

Ti
k

i
k

i
k HRHPP (4.10)

 




 −+=

−
+++

−
+++

−
++

i
k

i
k

i
kk

Ti
k

i
k

i
k

i
k xHzRHPxx 111

1
11111

ˆˆˆ (4.11)

The covariance matrices i
kQ and kR are design parameters chosen by the

engineer. With a zero i
kQ , the uncertainty in location of the sensor i remains constant

with time. With an extremely small i
kQ , the localization uncertainty slowly drifts with

time. This means that the current measurements from the mobile robot are given more

weight than the current node position estimate, which avoids the node’s becoming too

certain of a position that may be incorrect.

When the robot is in range and the sensor hears the broadcast position of the

robot, the measurement update equation is used to combine the new information to

84

improve sensor node position and uncertainty estimates. In this section, the robot is

assumed to be perfectly localized. Thus when a sensor hears a broadcast, it could only

be within the communication range of the robot whose position is broadcast. The

measurement uncertainty matrix kR reflects this, and is chosen as












==

Bot
y

Bot
xBotBot

kR
σ

σ
σσ

0

0
, (4.12)

const

Bot
yBot

y
const

Bot
xBot

x

RangeRange

σ
σ

σ
σ == , (4.13)

where Botσ is the uncertainty introduced due to BotRange , the communication range of the

robot. We assume the design parameter 3=constσ , to include 70% of the communication

range, BotRange , of the robot (Gaussian uncertainties are assumed.) Through this

selection of
kR the Kalman filter automatically takes care of the range of the robot

within which it hears broadcasts.

Algorithm in Table 4.1 shows the position update algorithm that runs on each

node, which is very simple and easy to implement. It consists of four equations, two for

the time update, and two for the measurement update. This algorithm automatically

provides uncertainty estimates through the computation of the error covariance i
kP ,

which is equivalent to the bounding box information provided by the algorithm in [52].

Table 4.1: Static sensor node localization algorithm
1. At each discrete time instant
2. if robot broadcast received by sensor
3. then
4. Update sensor state and uncertainty estimates using KF

measurement Eqs. (4.10), (4.11).

5. else
6. Propagate estimates using time update Eqs. (4.8), (4.9).
7. end if

85

4.1.4 Simulation Results

Extensive simulations have been performed to verify the effectiveness of the

proposed algorithm. We also studied the effects of initial sweep paths and the robot

broadcast interval on sensor localization. The mobile robot is navigated along the

desired sweep path and periodic location information is broadcast. On receiving a

broadcast, sensors update their location and uncertainty estimates. This is a range-free

procedure that relies on the limited communication range of the robot, and as such, the

sensor locations are updated based on the position of the robot. That is, the updated

sensor position estimate is a weighted combination of its current location estimate and

the current location of the robot. Thus sensors hearing only one broadcast will have an

estimated location that is projected onto the path of the robot.

Figure 4.2 shows the initial sinusoidal sweep path and the position and range of

the broadcast with a broadcast interval of 5 discrete time instants. The ‘ x ’ represent the

actual positions of the static sensors that are to be localized. The sensor nodes do not

initially know their actual positions. The nodes all have initial position estimates being

the centroid of the deployment area, and an initial uncertainty of infinity, corresponding

to complete lack of knowledge of their positions.

Figure 4.3 illustrates the localized sensors after the robot has made its sweep

through the network. The ‘ • ’ represent the final position estimates of the nodes. To

remain consistent with earlier work involving bounding boxes (e.g. [52]), the

uncertainty of the sensors in their position estimates has been depicted as rectangles

representing σ3 of the uncertainty distribution, assuming Gaussian uncertainties. Note

86

that the sensors always outside the communication range of the mobile robot do not

become localized (i.e. they have no bounding box, which denotes infinite position

uncertainty). The sensors that receive more than one broadcast from the mobile robot

end up being better localized, since each position update reduces the position

uncertainty.

The effectiveness of the algorithm is demonstrated by the fact that in every case,

the actual location (marked by an ‘ x ’) is within the uncertainty bound of the estimated

position (marked by a ‘ • ’).

The localization error of the sensors, computed as the Euclidean distance

between true and estimated positions, is depicted in the vertical axis of Figure 4.4.

Sensors near the path of the mobile robot that have received multiple broadcasts have

smaller errors.

Figure 4.2: Initial sinusoidal sweep path with broadcast locations and range of

broadcast.

87

Figure 4.3: Localized sensors, real positions (denoted by ‘x’) and estimated

positions (denoted by ‘ • ’), are illustrated after initial mobile robot sweep of the

deployment area. Uncertainty rectangles have been illustrated to depict the

uncertainty of the sensor in its position estimate.

Figure 4.4: Localization error, computed as the Euclidean distance between real

and estimated positions, of sensors after initial sweep of the deployment area.

The same simulation was rerun with different mobile robot broadcast intervals,

and the effect of broadcast interval on the average localization error of the network is

88

depicted in Figure 4.5. Generally, as broadcast interval decreases, the average error

decreases.

Figure 4.5: Effect of broadcast interval on average localization error.

4.2 Simultaneous Mobile Robot and Sensor Localization

In this section we consider the realistic case where the mobile robot’s position is

not exactly known. We provide an algorithm which runs on the mobile robot that fuses

position information from GPS, when it is available, and from the already-localized

sensor nodes. This allows the robot to update its position estimate as well as the

uncertainty estimate. When this algorithm is run simultaneously with the algorithm of

the previous section running on each sensor node, the result is simultaneous mobile

robot and sensor localization. A procedure is given to avoid detrimental recursive

feedback between the two algorithms.

4.2.1 Mobile Robot Localization

When localizing the sensor nodes in the previous section, the robot was assumed

to know its position exactly at all instants of time. However, as the robot navigates by

89

dead reckoning, or due to steering inaccuracies, its localization increasingly deteriorates

as time passes. Location updates from the GPS, when they occur, and from stationary

sensor nodes that have already been localized can be used to improve the localization

estimate of the robot.

Some sensor nodes are localized more finely due to more numerous updates they

have previously received from the mobile robot. These sensors can be employed to

localize the robot when its position information deteriorates. This is accomplished by

having each sensor node make a transmission that contains the node’s position estimate

and uncertainty. This is received by the robot when it is in range. The sensors transmit

at fixed intervals, with each sensor having a different random interval. This ensures that

the updates between mobile robot and sensor nodes are staggered in time and that no

recursive feedback occurs.

A continuous-discrete extended Kalman filter running on the mobile robot is

used to simulate the robot and update the states using measurements from the GPS

system and the better-localized UGSs. Extended Kalman filters have been used for

local and infrequent global senor data fusion [66], for mobile robot localization [9], and

in navigation of autonomous vehicles [8]. For information about the Extended Kalman

filter see [58].

The continuous-time system model of the robot is given by (4.2) as

 () ()wtGtuXaX += ,,& (4.14)

The sampled discrete-time measurement model of the robot is given by

90

[]
[] ugs

kk
ugsugs

k

gps
kk

gpsgps
k

vktXhZ

vktXhZ

+=

+=

),(

),(
 (4.15)

where

 () () () () () ()ugsugs
k

gpsgps
k

RvRvQtwPXX ,0,,0,,0,,0 00 ==== (4.16)

 () ()


















=





















=



















=

0000

0000

0010

0001

,
sin

sincos

coscos

, tG

L
v

v

v

y

x

tXa
t

t

t

αω
α

φα
φα

α
φ
&

&

&

&

 (4.17)

 [] [] 







=








=

y

x
ktXh

y

x
ktXh k

ugs
k

gps
),(,),((4.18)

In the extended Kalman filter, the effect of time on the robot states is given by

the time update equation

()
() () TT GQGtXPAPtXAP

tuXaX

++=

=

,ˆ,ˆ

,,ˆˆ

&

&

 (4.19)

In [7], the deleterious effects of time passing are shown in terms of increasing position

uncertainty and decreasing belief. These effects are formally captured in a rigorous

manner by the time-update equations (4.18), (4.19), which shows how uncertainty

increases due to dead reckoning and steering uncertainties.

The effects of the GPS navigation updates, when they are received, are given by

the measurement update equation

() ()
() ()[] ()

()[]kXhZKXX

tPXHKItP

RXHtPXHXHtPK

k
gpsgps

kkkk

kk
gps

kk

gps
k

Tgps
kk

gps
k

Tgps
kk

,ˆˆˆ

ˆ

)ˆ()()ˆ(ˆ
1

−−

−−

−
−−−−−

−+=

−=





 +=

 (4.20)

91

The effects of the updates based on localized sensor nodes, when they are received, are

given by the UGS measurement update equation

() ()
() ()[] ()

()[]kXhZKXX

tPXHKItP

RXHtPXHXHtPK

k
ugsugs

kkkk

kk
ugs

kk

ugs
k

Tugs
kk

ugs
k

Tugs
kk

,ˆˆˆ

ˆ

)ˆ()()ˆ(ˆ
1

−−

−−

−
−−−−−

−+=

−=





 +=

 (4.21)

The measurement uncertainty matrices gpsR and ugsR represent the uncertainty

in the GPS and the uncertainty in the update offered by UGS i respectively. The

uncertainty in the sensor update, ugsR , is a combination of the uncertainty of the sensor

position and the uncertainty due to the communication range of the sensor. These

uncertainties combine in quadrature as

const

i
yi

y
const

i
xi

x

i
y

i
xiiiugs

k

RangeRange

PR

σ
σ

σ
σ

σ
σ

σσ

==












=



 +=

,

0

0
,

22

 (4.22)

where iσ is the uncertainty introduced due to iRange , the communication range

of sensor i .

Similarly, the measurement noise covariance of the sensor, eq. (4.12), has to be

modified to include the uncertainty in the robot’s position. The robot is no longer

absolutely localized with zero uncertainty. The uncertainty in robot localization and the

uncertainty due to robot communication range combine in quadrature, modifying eq.

(4.12) as

 



 +=

22 BotBot
XYk PR σ (4.23)

92

Bot
XYP is the partial error covariance of the robot which effects only the position of

the robot, and Botσ is as defined earlier.

The Jacobians of the nonlinear system, determined from (4.2), are given by the

following system matrices:

()

() ()

() ()








=

∂

∂
=









=

∂

∂
=





















−

−−

=
∂

∂
=

0010

0001,

0010

0001,

0000

cos000

sinsincoscos00

cossinsincos00

),(
,

X

kXh
XH

X

kXh
XH

L
v

vv

vv

X

tXa
tXA

ugs
ugs

gps
gps

t

tt

tt

α

φαφα
φαφα

 (4.24)

With these equations in place and programmed as a software algorithm on the

mobile robot, and the sensor nodes running the algorithm presented in the previous

section, the mobile robot and the static sensors automatically mutually update their

estimates with incoming updates. There is no additional decision-making logic to be

implemented as in other range-free work discussed earlier. There is no need to compute

bounding boxes, as the error covariance matrices are automatically updated as

measurements are received.

The algorithm to be implemented on the mobile robot that updates its position

estimate and uncertainty based on GPS measurements and on the localized sensor nodes

is given as algorithm in Table 4.2. This algorithm is efficient to implement since the

bulk of it is mathematical equations.

93

When algorithm in Table 4.2 is run on the robot simultaneously along with

algorithm in Table 4.1 on each sensor node, simultaneous mobile robot and sensor

localization occurs.

Table 4.2: Mobile robot localization algorithm.
1. Navigate robot along desired path.
2. Broadcast location information at discrete intervals.
3. if broadcast from GPS received
4. Update robot state and uncertainty estimates using measurement

eq. (4.20).

5. end if
6. if broadcast from sensor received
7. Update robot state and uncertainty estimates using measurement

eq.(4.21).

8. end if

4.2.2 Simulation Results

The simulations described in the previous section have been rerun with GPS

updates and sensor updates implemented as algorithm in Table 4.2 on the mobile robot.

Infrequent GPS updates and temporally staggered sensor updates help localize the

robot. Figure 4.6(a) shows the robot’s sweep path with GPS and UGS updates disabled.

A systematic dead reckoning error [59] has been injected into the mobile robot to give

gradually deteriorating position information. The localization of the robot deteriorates

with time as can be seen in the deviation of the robot’s estimated path (hyphenated

green line) from the robot’s true path (continuous green line.)

Figure 4.6(b) illustrates the robot’s sweep path which is corrected in time by

GPS and UGS updates using algorithm in Table 4.2. As is evident, the robot’s

localization has improved and the positions of where the robot thinks it is (the estimated

position), and where the robot actually is (the true position) are much closer, since the

94

estimates are continuously corrected using algorithm in Table 4.2 as position

information arrives, either from GPS or from sensor node broadcasts.

Robot broadcasts occur along the true path of the robot and consist of the robot’s

estimated position (slightly different from the robot’s true position where the broadcast

occurs) and uncertainty. Sensors within range receive the broadcast and update their

positional information based on the robot’s estimates.

Figure 4.7 illustrates the localized sensors after the initial sweep. True sensor

positions are indicated by an ‘x’ and estimated positions by a ‘ • ’. Now, some true

sensor positions are outside the 3σ boxes due to the added uncertainty in the robot

position, though they are generally close to these boxes. Figure 4.8 depicts the final

localization error of each sensor.

(a) (b)

Figure 4.6: Initial sweep path of the mobile robot with (a) GPS and UGS updates

disabled, and (b) GPS and UGS updates enabled.

95

Figure 4.7: Localized sensors after initial sweep of the deployment area.

Figure 4.8: Localization error of sensors computed as the distance between true

and estimated positions.

4.3 Adaptive Localization

A navigation strategy, to be used subsequent to the initial sweep of the

deployment area that was presented in the previous sections, is developed here which

further minimizes the localization uncertainty of the sensor network in the most

efficient manner. An adaptive localization policy is adopted to navigate the mobile

96

robot to an area of least localized sensor nodes. This ensures that the robot maneuvers

to an area with sensor nodes possessing the largest uncertainty in location.

Accurate position of coarsely localized sensors can not be known (due to

inherent coarse localization) so that navigating to these sensors is not possible. The

radio connectivity of the network is exploited to address the problem of having the

robot navigate to a location which is imprecise. Figure 4.9 depicts the communication

connectivity of the network.

Figure 4.9: Communication connectivity of the network. Communication routes

between sensors and range of communication of each sensor are depicted.

A communication protocol is developed wherein, the robot broadcasts a

navigation request packet, NAV-REQ, when the robot wants to find a new location to

navigate to. Sensors which receive the NAV-REQ packet, forward it along the network.

Sensors having a large uncertainty scalar, the Frobenius Norm [67] of the uncertainty

matrix, reply back with a localization request packet, LOC-REQ. The LOC-REQ packet

consists of the uncertainty matrix of the requesting sensor and propagates along the

97

network until it is received by a friendly localized neighbor. Friendly localized

neighboring sensors receiving the LOC-REQ packet append it with their position and

forward the packet along the sensor network to the robot. Figure 4.10(a) and Figure

4.10(b) show the flow of the NAV-REQ and LOC-REQ packets.

(a) (b)

Figure 4.10: Flow of the (a) NAV-REQ, navigation request and (b) LOC-REQ,

localization request packets through the sensor network.

The robot receives packets from multiple non-unique friendly neighbors each

representing a single coarsely localized sensor. The robot needs to choose a friendly

neighbor to navigate to. Friendly neighbor arbitration is performed by grouping

uncertainties of the same friendly neighbor in quadrature to give its combined

uncertainty scalar. The friendly neighbor with the largest combined uncertainty scalar

is picked as the location to navigate to. If multiple such neighbors exist, the most

localized neighbor is chosen.

Thus regions with a large density of coarsely localized sensors having a

common friendly neighbor are adaptively navigated to. However, due to the inherent

98

imprecise location of the friendly neighbor, the robot actually navigates a circular path

around the neighbor.

Algorithm in Table 4.3 summarizes the Adaptive localization algorithm.

Table 4.3: Adaptive localization algorithm.
1. Broadcast Navigation request, NAV-REQ, packet.

2. Wait to receive Localization request, LOC-REQ, packets.

3. for all LOC-REQ with the same friendly neighbor

4. Combine uncertainty scalars of the requesting sensors.

5. end for

6. Pick friendly neighbor with maximum combined uncertainty scalar

of the requesting sensors.

7. if multiple maximas arise

8. Among the maxima, pick the most localized friendly neighbor.

9. end if

10. Navigate around the picked friendly neighbor executing the
simultaneous localization algorithm, algorithm in Table 4.1 on

the senors and algorithm in Table 4.2 on the mobile robot.

11. Repeat Steps 1-10 as required.

After the initial sinusoidal sweep, see Figure 4.7, Figure 4.12(b), sensors 7 and

11 both receive three Localization request packets each and on combining the

uncertainties of the requesting coarsely localized sensors, an equal maximum

uncertainty scalar arises for sensors 7 and 11. However sensor 11 is more localized

than sensor 7 and robot navigation occurs around sensor 11, see Figure 4.11(b).

Figure 4.11 illustrates four adaptive localization iterations and its navigation

paths with corresponding uncertainty scalars of the sensors at the end each adaptive

localization iteration as illustrated in (a-e). With each adaptive localization iteration,

Figure 4.12 shows the reduction of localization error of each sensor, and Figure 4.13

depicts the reduction of the average localization error of the sensor network. Figure

4.14 illustrates the localized sensors after four iterations of the adaptive localization

99

algorithm. As can be seen, all sensors are localized and uncertainty in localization

fairly small.

At every instant, along with the adaptive localization algorithm, algorithm in

Table 4.3, the entire simultaneous localization algorithm with updates from the GPS,

and more localized sensor, algorithms in Table 4.1 and Table 4.2, are always running.

This demonstrates simultaneous adaptive localization of the sensor network.

(a) (b)

(c) (d)

(e)

Figure 4.11: Adaptive localization robot paths and corresponding uncertainty

scalars for the sensors after (a) Initial sinusoidal sweep, (b) First, (c) Second, (d)

Third, and (e) Fourth adaptive navigation steps, respectively.

100

(a) (b) (c) (d)

Figure 4.12: Reduction of average localization error of sensors with each adaptive

localization iteration. (a) Iteration-1, (b) Iteration-2, (c) Iteration-3, and (d)

Iteration-4.

Figure 4.13: Reduction of average localization error with each adaptive

localization iteration.

101

Figure 4.14: The final position estimates of the localized sensors after four

iterations of the adaptive localization algorithm.

4.4 Summary

Rigorous mathematical algorithms for adaptive simultaneous localization of the

static unattended ground sensors and the mobile robot have been demonstrated. The

first algorithm localizes the static sensors and the second algorithm localizes the mobile

robot. These algorithms together allow simultaneous localization of the static sensor

and the mobile robot. A third adaptive localization algorithm ensures that the region of

the deployment area with the largest uncertainty is localized with minimal robot

movement.

102

CHAPTER 5

MOBILE ROBOTIC SENSOR

The mobile robotic sensor used for experimental validation of Adaptive

Sampling algorithms presented in Chapter 2 has been entirely designed and developed

at the Automation & Robotics Research Institute. Figure 5.1 illustrates the evolution of

the robot through different stages of design and development. This chapter discusses

the design, development and functionality of the mobile robotic sensor.

(a) (b) (c)

Figure 5.1: Robot evolution (a) Model, (b) Prototype, and (c) Product.

5.1 Mechanical Design

The mechanical design for machining of custom parts is detailed in this section.

The mobile robotic sensor uses a robot chassis from Parallax (Part # 700-00022) as the

base and all external components are mounted on to this base. The wheel assembly

illustrated in Figure 5.2 has been modeled in AutoCAD and machined to fit on to the

chassis.

103

(a) (b) (c)

(d)

Figure 5.2: Wheel assembly modeled in AutoCAD, and assembled in 3D Studio

Max. (a) Base extension, (b) Angle bracket, (c) Shaft coupler, and (d) Wheel

assembly.

5.2 Electrical Design

The mobile robotic sensor is a dual microcontroller based system with modules

for sensing, radio communication, and motion tracking interfaced onto a common bus.

Figure 5.3 shows the design and prototyping of the circuit.

This section details the various electronic components of the mobile robotic

sensor.

104

(a) (b)

(c) (d)

Figure 5.3: Design of the electrical circuit. (a) Schematics, (b) Prototype, (c) PCB

layout, and (d) Fabricated PCB.

5.2.1 Microcontrollers

The mobile robot used in this thesis was designed with two separate

microcontrollers. A central microcontroller, the Javelinstamp (Part # JS1-IC), deals

with all communication and processing for the robot. While a secondary

microcontroller, the PIC (Part # 12F508), is solely responsible for the motion of the

robot by driving the servos with a pulse width modulated signal. A serial

communication protocol for inter-microcontroller communication has been developed

for the javelinstamp to send commands to the PIC. By offloading the PWM signal

generation to a secondary microcontroller, we guarantee that the central processor is not

105

bothered for generating periodic pulses and can spend more processing time on other

algorithms.

5.2.2 Servos and encoders

The servo motors, Figure 5.4, used on the mobile robots are the continuous

rotation servos (#900-00008) from Parallax. These motors operate on 6 Vdc and have

an average speed of 60 rpm with no load. The set-point of the servos needs to be

calibrated before use to ensure that both left and right wheels revolve at the same speed

for the same signal. But achieving this is difficult and we rather command the two

wheels with different PWM duty cycle values to ensure that they revolve at the same

speed and that the robot moves forward when commanded to do so.

Figure 5.4: Continuous rotation servo.

The encoders used were from Clarostat (Part # 600EN-128-CBL) and produce

128 pulses / revolution. A dedicated 24-bit dual-axis quadrature counter (Part #

LS7266R1) has been used dedicated for keeping count of the encoder pulses. A bus

architecture connects the encoder counter with the microcontroller for data

transmission.

106

5.2.3 RF Transceiver

The RF transceiver, illustrated in Figure 5.5, is distributed by Parallax Inc. and

is manufactured by RF Digital Corp. (Part # 27988). The carrier frequency is 433.92

MHz. The RF transceivers are located on each of the mobile robot platforms and on the

base station. The base station is connected to a PC via RS-232 communication link.

Figure 5.5: RF transceiver.

5.2.4 Color Sensor

The robotic sensor is equipped with a color detecting sensor. This facilitates the

sampling of a color-coded field. The color sensor is a light to frequency (LTF) sensor

modulates the output frequency of a periodic pulse based on the light intensity. The

output comprises of the different components of white light - red, green, and blue.

Figure 5.6: TAOS RGB color sensor.

107

5.3 Software

Extensive coding in multiple languages has been done to achieve a unified

functionality of the entire mobile sensor network. In our particular case, the mobile

sensor network functions solely to achieve estimation of a linear color field using

adaptive sampling. The need for so many different programming environments arises

due to the seamless interfacing of multiple native devices which can understand a

specific command set only. In our current setup, the following interfaces were

programmed.

• Matlab GUI � Base station.

• Base station � Multiple mobile robots.

• Mobile robot � Onboard sensors and devices.

A simple point-n-click command directing a mobile robot to go to a particular

location is fairly involved. Firstly, a string command is built up addressing the robot

with the “go to” location. (Robot commands are described in section 5.3.1.) Further,

this command is serially passed on to the base station where a simplistic network stack

is used to package the command into packets to ensure error free wireless transmission

with handshaking and acknowledgements. Once the command is received by the

wireless module of the robot, a simple parsing algorithm breaks up the command into

tokens to be identified. These tokens serve as requests to particular sensors for current

readings or for actuators for motion. A low level interfacing module for each specific

sensor or device is required here.

108

The following sections address the various programming requirements at

different stages of transmission and processing of a simple command.

5.3.1 Robot commands

Commands to the robot are simple strings terminated with a terminal character

such as the semi-colon. These commands achieve motion, sensing, and other

miscellaneous system tasks. Motion commands are either open loop where the robot is

in motion until a stop command is received, or closed loop where the robot is in motion

until the encoders register a motion corresponding to the commanded amount. Some of

the commands are described in Table 5.1.

Table 5.1: Robot commands.
Command Command description

F; Move forward.

B; Move backward.

R; Turn right.

L; Turn left.

S; Stop.

M 120; Move forward by 120 encoder counts.

T -85; Turn clockwise by 85 encoder counts.

T 40; Turn anti-clockwise by 40 encoder counts.

C; Take color sample (responds with color read.)

5.3.2 Wireless communication protocol

An error-free communication protocol has been designed such that all

communication between the base station and the robot are always acknowledged by

each other. A simple checksum inserted computed and inserted into the message

ensures that the packet is not corrupted. A packet that is corrupted is not acknowledged

by the receiver and this causes the sender to retransmit. Retransmission occurs for a

fixed number of times before the sender aborts.

109

5.3.3 Sensor Interfacing

Low level interfaces for the light sensor and the encoder have been

programmed. These involve a physical signal-level commanding of the device for

addressing a particular device-specific port or register for obtaining data. The servo

actuators are commanded by a dedicated microcontroller (The PIC.) A dedicated

microcontroller is required since these actuators need continuous commanding which

may take up way too much time by the general purpose microcontroller (the

Javelinstamp.) A low-level one signal-line serial interface between the two

microcontrollers has been programmed for data communication between the two

microcontrollers.

5.3.4 Fixed-point algorithms

Most microcontrollers operate only on signed and unsigned integer numbers.

However to implement even the simplest Kalman filter requires mathematical

operations on non-integer numbers. The Javelinstamp microcontroller does not support

these operations and equipping it with a floating point co-processor would make the

system more expensive and also slow down normal operations. A different solution is

sought for.

On the current robot system, we implement simple mathematical operations

such as addition, subtraction, multiplication and division using a fixed-point binary

representation of a non-integer number. This binary representation can easily be stored

on a integer register and hardware operations of addition and subtraction suffice for

addition and subtraction of non-integer numbers. Separate multiplication and division

110

algorithms are required however and have been implemented on the robot. Table 5.2

illustrates the binary representation of a non-integer number.

Table 5.2: Fixed-point binary representation of a non-integer number.

integer part binary point fractional part

... 2
5
 2

4
 2

3
 2

2
 2

1
 2

0
 . 2

-1
 2

-2
 2

-3
 2

-4
 2

-5
 ...

... 32 16 8 4 2 1 .
1
/2

1
/4

1
/8

1
/16

1
/32 ...

5.3.5 Matlab programming

The adaptive sampling algorithms have been entirely implemented in the Matlab

programming environment. A simple graphical user interface developed serves as the

interface to the user who can monitor the current topology of the mobile sensor network

as mobile robotic sensors navigate adaptively to take samples to estimate the field. The

graphical user interface can be use for monitoring the evolution of the estimated field

and to compare it with the truth model.

5.4 Experimental Setup

The mobile sensor network system for adaptive sampling is setup as in Figure

5.7. An inexpensive overhead camera serves as the GPS offering infrequent updates of

robot poses. The base station and the camera are connected to a PC. All

communication with the robots occurs through the base station in a star network

topographical manner. Each robot has a unique identifier for communication message

arbitration.

111

Figure 5.7: Experimental setup.

This simple setup models a real-life scenario where multiple mobile sensors can

be deployed in the open, with a global positioning system, when available, localizing

the sensors, and the entire sensor network topology changing adaptively to estimate

some modeled environmental parameter

5.5 Summary

This chapter has detailed some of the design ideas that went into making the

robotic sensor. Various components of the robot and their functionalities have been

discussed. The physical setup of the mobile sensor network test bed has been described.

With a physical test bed available, adaptive sampling algorithms developed in

simulation can be easily used for experimental feasibility and verification.

112

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

This chapter summarizes the contributions of this thesis and presents

suggestions for further research in Adaptive sampling, resource scheduling and

localization.

6.1 Thesis contributions

This thesis has served in developing Adaptive sampling algorithms for

estimating spatially distributed static linear and Gaussian fields which are linear in its

parameters. Closed form information measures in linear regression have been used to

adaptively estimate linear and Gaussian fields with linear parameters. Nonlinear

optimal estimation techniques, such as the Kalman filter, constrained, and

unconstrained nonlinear optimizers have been used to adaptively estimate field and field

basis parameters. An experimental mobile robotic sensor developed has helped in the

validation of the adaptive sampling algorithm by experimentally estimating a linear

color field.

This thesis has extended the preliminary analysis of deadlocks using the

Discrete Event Controller. A deadlock avoidance algorithm for resource scheduling in

the presence of shared heterogeneous resources in mobile sensor networks has been

implemented experimentally on the ARRI WSN test bed comprising of Cybermotion

113

SR2 patrol robots and Berkley motes thereby validating the deadlock avoidance

algorithm. Furthermore, a general mathematical formulation has been innovated for

deadlock avoidance in systems with flexible-routing.

The thesis also serves in developing a simultaneous and adaptive localization

algorithm for the localization of a wireless sensor network using simple geometric

constraints of radio connectivity. An adaptive localization algorithm has also been

developed for adaptive navigation of a mobile robot such that optimal minimization of

the largest uncertainty in the sensor network occurs.

6.2 Future research

Adaptive sampling of complex fields where both the field parameters and the

basis parameters of the field need to be estimated still remains unsolved. Further

research in nonlinear optimal estimation techniques would serve in approaching this

problem.

Several challenges still remain with the mobile robotic sensor where processing

power is limited. A Kalman filter implemented directly on the robot would aid in

navigation. A logical next step would be to distribute the algorithms to run more locally

on the robot itself.

More extensive analysis and simulations of the deadlock avoidance algorithms

in the presence of routing choices would help in understanding when such algorithms

may fail and deadlock becomes eminent.

Implementing the proposed algorithms in chapter 4 on physical sensors and

mobile robots would experimentally validate the proposed algorithms. Future research

114

should take into consideration, time-varying geometrical constraints of radio

connectivity for the sensor network.

115

BIBILIOGRAPHY

[1] E.M. Petriu, T.E. Whalen, R. Abielmona and A. Stewart, "Robotic sensor agents: a

new generation of intelligent agents for complex environment monitoring," IEEE

Instrumentation & Measurement Magazine, vol. 7, pp. 46-51, September 2004.

[2] F. Zhao, J. Shin and J. Reich, "Information-driven dynamic sensor collaboration,"

IEEE Signal Processing Magazine, vol. 19, pp. 61-72, March 2002.

[3] F. Zhao, J. Liu, J. Liu, L. Gibas and J. Reich, "Collaborative signal and information

processing: an information-directed approach," Proceedings of the IEEE, vol. 91,

pp. 1199-1209, August 2003.

[4] D. Fox, "KLD-Sampling: Adaptive particle filters," in Advances in Neural

Information Processing Systems 14 [Neural Information Processing Systems:

Natural and Synthetic], T.G. Dietterich, S. Becker and Z. Ghahramani Eds.

Cambridge, MA: MIT Press, 2001, pp. 713-720.

[5] T. Arici and Y. Altunbasak, "Adaptive sensing for environment monitoring using

wireless sensor networks," in Wireless Communications and Networking

Conference, 2004, pp. 21-25.

[6] R. Willett, A. Martin and R. Nowak, "Backcasting: Adaptive sampling for sensor

networks," in IPSN'04: Proceedings of the third international symposium on

Information processing in sensor networks, 2004, pp. 124-133.

[7] D. Fox, W. Burgard, F. Dellaert and S. Thrun, "Monte Carlo Localization: Efficient

Position Estimation for Mobile Robots," Proceedings of the Sixteenth National

Conference on Artificial Intelligence (AAAI'99), July, 1999

[8] A. Kelly, "A 3D State Space Formulation of a Navigation Kalman Filter for

Autonomous Vehicles," Carnegie Mellon University., Pittsburgh, PA, Tech. Rep.

CMU-RI-TR-94-19, May, 1994.

[9] E. Kiriy and M. Buehler, "Three-state Extended Kalman Filter for Mobile Robot

Localization," McGill University., Montreal, Canada, Tech. Rep. TR-CIM 05.06,

April, 2002.

116

[10] C. Savarese, J.M. Rabaey and J. Beutel, "Locationing in distributed ad-hoc wirless

sensor networks," IEEE International Conference on Acoustics, Speech, and

Signal Processing, 2001.

[11] J. Bachrach and C. Taylor, "Localization in sensor networks," in Handbook of

Sensor Networks : Algorithms and Architectures, 1st ed., vol. 1, I. Stojmenovi Ed.

USA: Wiley, 2005,

[12] Dissanayake, Gamini M. W. M., P. Newman, S. Clark and H.F. Durrant-Whyte, "A

Solution to the Simultaneous Localization and Map Building (SLAM) Problem,"

vol. 17, pp. 229-241, June 2001.

[13] J.W. Fenwick, P.M. Newman and J.J. Leonard, "Cooperative Concurrent Mapping

and Localization," in Proceedings of the 2002 IEEE International Conference on

Robotics and Automation, May 2002, pp. 1810-1817.

[14] S. Poduri and G.S. Sukhatme, "Constrained coverage for mobile sensor networks,"

in Proceedings of IEEE International Conference on Robotics and Automation,

2004, pp. 165-171.

[15] D.O. Popa, H.E. Stephanou, C. Helm and A.C. Sanderson, "Robotic deployment of

sensor networks using potential fields," in IEEE International Conference on

Robotics and Automation, 2004, pp. 642-647.

[16] C.F. Helm, "Robotic Sensor Deployment using Potential Fields," M.S.

Dissertation/Thesis, Rensselaer Polytechnic Institute, Troy, NY, USA, April 2004.

[17] A. Dhariwal, G.S. Sukhatme and Requicha, Aristides A. G., "Bacterium-inspired

Robots for Environmental Monitoring," in IEEE International Conference on

Robotics and Automation, 2004, pp. 1436-1443.

[18] M. Rahimi, R. Pon, W.J. Kaiser, G.S. Sukhatme, D. Estrin and M. Srivastava,

"Adaptive sampling for environmental robotics," in IEEE International Conference

on Robotics and Automation, 2004, pp. 3537-3544.

[19] S.J. Majumdar, C.H. Bishop, B.J. Etherton and Z. Toth, "Adaptive sampling with

the ensemble transform Kalman filter. II. Field program implementation,"

Mon.Weather Rev., vol. 130, pp. 1356-1369, 05// 2002.

[20] A.F. Bennett, Inverse Modeling of the Ocean and Atmosphere, Cambridge, UK:

Cambridge University Press, 2002.

117

[21] D.O. Popa, A. Sanderson, V. Hombal, R. Komerska, S. Mupparapu, R. Blidberg

and S. Chappel, "Optimal Sampling Using Singular Value Decomposition of the

Parameter Variance Space," in IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2005,

[22] D.O. Popa, A.C. Sanderson, R.J. Komerska, S.S. Mupparapu, D.R. Blidberg and

S.G. Chappel, "Adaptive sampling algorithms for multiple autonomous underwater

vehicles," in Autonomous Underwater Vehicles, 2004, pp. 108-118.

[23] D.O. Popa, K. Sreenath and F.L. Lewis, "Robotic Deployment for Environmental

Sampling Applications," in International Conference on Control and Automation,

2005, pp. 197-202.

[24] F.L. Lewis, D. Tacconi, A. Gurel, H.H. Huang and O.C. Pastravanu,

"Manufacturing Controller Design and Deadlock Avoidance using a Matrix Model

for Discrete Event Systems," in Methods and Applications of Intelligent Control,

1st ed., S.G. Tzafestas Ed. Netherlands: Kluwer Academic Publishers, 1997, pp.

485-508.

[25] Mireles, Jose Garcia, Jr., "Matrix-Based Intelligent Discrete Event Control for

Flexible Manufacturing Systems," Ph.D. Dissertation/Thesis, The University of

Texas at Arlington, Arlington, Texas USA, May 2002.

[26] J. Mireles Jr., F.L. Lewis, A. Gurel and S. Bogdan, "Deadlock Avoidance

Algorithms and Implementation, a Matrix Based Approach," in Deadlock

Resolution in Computer-Integrated Systems, 1st ed., vol. 1, M. Zhou and M.P. Fanti

Eds. New York: Marcel Dekker, 2004, pp. 183-232.

[27] T. Cheng, "On-line Deadlock Avoidance for Complex Routing Flexible

Manufacturing Cells," International Journal of Applied Science and Engineering,

vol. 2, pp. 163-176, 2004.

[28] H.J. Yoon and D.Y. Lee, "Deadlock-Free Scheduling of Photolithography

Equipment in Semiconductor Fabrication," IEEE Transactions on Semiconductor

Manufacturing, vol. 17, pp. 42-54, Feb. 2004.

[29] M. Koibuchi, A. Jouraku, K. Watanabe and H. Amano, "Descending layers routing:

a deadlock-free deterministic routing using virtual channels in system area

networks with irregular topologies," in Proceedings of 2003 International

Conference on Parallel Processing, 2003, pp. 527-536.

[30] V. Giordano, F.L. Lewis, J. Mireles Jr. and B. Turchiano, "Coordination control

policy for mobile sensor networks with shared heterogeneous resources," in 2005

International Conference on Control and Automation, 2005, pp. 191-196.

118

[31] J. Ezpeleta, J.M. Colom and J. Martinez, "A Petri net based deadlock prevention

policy for flexible manufacturing systems," IEEE Transactions on Robotics and

Automation, vol. 11, pp. 173-184, April 1995.

[32] Y. Huang, M. Jeng, X. Xie and S. Chung, "Deadlock prevention policy based on

Petri nets and siphons," International Journal of Production Research, vol. 39, pp.

283-305, 2001.

[33] K. Lautenbach, "Linear Algebraic Calculation of Deadlocks and Traps," in

Concurrency and Nets, 1st ed., vol. 1, K. Voss, H.J. Genrich and G. Rozenberg

Eds. Berlin, Germany: Springler-Verlag, 1987, pp. 315-336.

[34] G. Alpan and B. Gaujal, "Supervisory control of Petri nets using routing functions:

starvation avoidance issues," IEEE Transactions on Systems, Man and

Cybernetics, Part B, vol. 30, pp. 684-694, Oct. 2000.

[35] F.L. Lewis, S. Bogdan, A. Gurel and O. Pastravanu, "Analysis of deadlocks and

circular waits using a matrix model for discrete event systems," in Proceedings of

the 36th IEEE Conference on Decision and Control, 1997, pp. 4080-4085.

[36] F.L. Lewis, A. Gurel, S. Bogdan, A. Doganalp and O.C. Pastravanu, "Analysis of

deadlock and circular waits using a matrix model for flexible manufacturing

systems," Automatica, vol. 34, pp. 1083-1100, 1998.

[37] J. Mireles Jr., F.L. Lewis and A. Gurel, "Deadlock avoidance for manufacturing

multipart re-entrant flow lines using a matrix-based discrete event controller,"

International Journal of Production Research, vol. 40, pp. 3139-3166, 2002.

[38] M. Lawley, "Integrating flexible routing and algebraic deadlock avoidance policies

in automated manufacturing systems," International Journal of Production

Research, vol. 38, pp. 2931-2950, 2000.

[39] M. Lawley, "Flexible Routing and Deadlock Avoidance in Automated

Manufacturing Systems," in Proceedings of the 1998 IEEE International

Conference on Robotics & Automation, 1998, pp. 591-596.

[40] J. Mireles Jr. and F.L. Lewis, "Deadlock Analysis and Routing on Free-Choice

Multipart Reentrant Flow Lines Using a Matrix-Based Discrete Event Controller,"

in Proceedings of the 41st IEEE Conference on Decision and Control, 2002, pp.

793-798.

[41] N. Bulusu, J. Heidemann and D. Estrin, "Gps-less low cost outdoor localization for

very small devices," IEEE Personal Communications Magazine, vol. 7, pp. 28-34,

2005.

119

[42] B. Hofmann-Wellenhof, H. Lichtenegger and J. Collins, Global Positioning System

: Theory and Practice, New York: Springer, 2004.

[43] R.L. Moses, D. Krishnamurthy and R.M. Patterson, "A self-localization method for

wireless sensor networks," EURASIP Journal on Applied Signal Processing, 2002.

[44] N. Bulusu, J. Heidemann and D. Estrin, "Adaptive Beacon Placement," ICDCS

'01: Proceedings of the the 21st International Conference on Distributed

Computing Systems, pp. 489, 2001.

[45] N. Patwari, J.N. Ash, S. Kyperountas, A.O. Hero III, R.L. Moses and N.S. Correal,

"Locating the nodes: cooperative localization in wireless sensor networks," Signal

Processing Magazine, IEEE, vol. 22, pp. 54-69, July 2005.

[46] P. Bahl and V.N. Padmanabhan, "RADAR: An In-Building RF-Based User

Location and Tracking System," in Proceedings of the IEEE Infocom 2000, pp.

775-784.

[47] N.B. Priyantha, A. Chakraborty and H. Balakrishnan, "The cricket location-support

system," in Sixth Annual ACM International Conference on Mobile Computing and

Networking (MOBICOM),

[48] A. Savvides, C. Han and M.B. Strivastava, "Dynamic fine-grained localization in

Ad-Hoc networks of sensors," in MobiCom '01: Proceedings of the 7th annual

international conference on Mobile computing and networking, pp. 166-179.

[49] D. Niculescu and B. Nath, "Ad Hoc Positioning System (APS) using AoA," in

Proceedings of INFOCOM,

[50] C. Taylor, A. Rahimi, J. Bachrach and H. Shrobe, "Simultaneous Localization and

Tracking in an Ad Hoc Sensor Network," Information Procession in Sensor

Networks, 2005.

[51] A.M. Brooks, S. Williams and A. Makarenko, "Automatic Online Localization of

Nodes in an Active Sensor Network," International Conference on Robotics and

Automation, vol. 5, pp. 4821-4826, 2004.

[52] S. Shenoy and J. Tan, "Simultaneous Localization and Mobile Robot Navigation in

a Hybrid Sensor Network," IEEE/RSJ International Conference on Intelligent

Robots and Systems, August 2005

[53] A. Galstyan, B. Krishnamachari, K. Lerman and S. Pattem, "Distributed online

localization in sensor networks using a moving target," IPSN'04: Proceedings of

the Third International Symposium on Information Processing in Sensor Networks,

pp. 61-70, 2004.

120

[54] V. Cevher and J.H. McClellan, "Sensor array calibration via tracking with the

extended Kalman filter," IEEE International Conference on Acoustics, Speech, and

Signal Processing, vol. 5, pp. 2817-2820, 2001.

[55] E. Olson, J. Leonard and S. Teller, "Robust Range-Only Beacon Localization," in

IEEE/OES Autonomous Underwater Vehicles, 2004, pp. 66-75.

[56] W. Xiao, J.K. Wu and L. Xie, "Sensor scheduling for target tracking in networks of

active sensors," in IEEE International Workshop on Sensor Networks and

Applications, 2005,

[57] F.L. Lewis, Optimal Estimation with an Introduction to Stochastic Control Theory,

New York: John Wiley and Sons, 1986.

[58] F.L. Lewis, Optimal Estimation, New York: John Wiley & Sons, 1986.

[59] J. Borenstein and L. Feng, "Measurement and correction of systematic odometry

errors in mobile robots," IEEE Transactions on Robotics and Automation, vol. 12,

pp. 869-880, 1996.

[60] A. Divelbiss, "Nonholonomic motion planning in the presence of obstacles," Ph.D.

Dissertation/Thesis, Rensselaer Polytechnic Institute, Troy, New York, December

1993.

[61] F.L. Lewis, D.A. Tacconi, O.C. Pastravanu and A. Gurel, "Method and apparatus

for testing and controlling a flexible manufacturing system," U.S. Patent 6,185,469,

February 6, 2001.

[62] D.A. Tacconi and F.L. Lewis, "A new matrix model for discrete event systems:

application to simulation," IEEE Control Systems Magazine, vol. 17, pp. 62-71,

Oct. 1997.

[63] V. Giordano, F.L. Lewis, B. Turchiano, P. Ballal and V. Yeshala, "Matrix

computational framework for discrete event control of wireless sensor networks

with some mobile agents," in Proc. Mediterranean Conference on Control &

Automation, 2005,

[64] P.S. Maybeck, Stochastic models, estimation, and control, USA: Academic Press,

1979.

[65] W.S. Levine Ed., The Control Handbook, New York: CRC Press, 1996.

[66] S.I. Roumeliotis and G.A. Bekey, "An extended Kalman filter for frequent local

and infrequent global sensor data fusion," in SPIE International Symposium on

Intelligent Systems and Advanced Manufacturing, pp. 11-22.

121

[67] E.W. Weisstein, Frobenius Norm. From MathWorld--A Wolfram Web Resource.

Available: http://mathworld.wolfram.com/FrobeniusNorm.html

122

BIOGRAPHICAL INFORMATION

Koushil Sreenath received his Bachelor of Engineering in Electronics and

Communications from The Visveshwaraiah Technological University in 2002 where he

developed a bipedal full-body exoskeleton based motion capture system as his

graduating project. He then worked as an Asst. Systems Engineer in Tata Consultancy

Services. His work on writing simulators for car chases introduced him to the broad

world of control systems. He began his Masters in Electrical Engineering at the

University of Texas at Arlington in January 2004, specializing in the area of systems,

control and robotics. He has been a Graduate Teaching Assistant for both

undergraduate and graduate level courses. He began working on various research

projects as a Graduate Research Assistant at the Automation & Robotics Research

Institute for professors Dr. Dan Popa and Dr. Frank Lewis. His current research

interests include robotics, bipedal motion, nonlinear control systems, and control theory

in computer game systems.

