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ABSTRACT 

 
MULTI PERSON TRACKING AND QUERYING  

WITH HETEROGENEOUS SENSORS 

 

SHAHINA FERDOUS, PhD 

 

The University of Texas at Arlington, 2012 

 

Supervising Professor:  Fillia Makedon and Leonidas Fegaras 

  

 Tracking the location of a user is considered to be the most fundamental step for 

creating a context aware application, such as activity monitoring in an assistive environment. 

This problem becomes very challenging if there are multiple people involved in this scenario. 

The reason is that any multi-person environment, such as a hospital, demands simultaneous 

identification and localization mechanisms, thus making the system very complex. In this 

dissertation, we present a novel, less-intrusive system that uses RFIDs and sensors deployed 

at various locations of an assistive apartment to continuously track and identify every person in 

a multi-person assistive environment. Our experimental result proves the prospect of using 

RFID and sensors jointly to solve the simultaneous tracking and identification problem. In 

addition, this system stores the large scale spatio-temporal sensor data into a common 

repository and provides a flexible query interface to track the history of the patient. The 

visualization tool embedded in the system helps therapists to remotely monitor a person present 

in a scene in near real time. Such a visualization gives a very good indication about a 

person/patient's activity and behavior in the assistive environment. Our system also 
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incorporates the metadata mapping of the large amount of stored data so that a doctor/therapist 

can query about a patient's records without having a complete knowledge about the schemas 

stored in the repository. 
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CHAPTER 1 

INTRODUCTION 

1.1 Problem 

 An assistive environment is defined as an area that supports people living or working in 

that space through its embedded technologies. With the recent advancement in assistive 

technologies, a large number of applications have emerged to support the healthcare industry. 

Among them, the most commonly reported applications are monitoring elderly people at home 

or patients in a hospital, tracking assets, such as drugs or inventory, building smart furniture and 

developing reminder systems etc. [1, 2, 3, 4, 5]. Automatic collection and transfer of data to 

analyze and track history is another key area of interest for such applications. As a whole, the 

purpose of healthcare applications can be divided into two main directions: 1) real time 

monitoring and assistance, time driven reminder of daily activities, and generating alarms or 

notifying a responsible person in case of emergency; 2) organizing and analyzing statistical data 

in order to identify or query useful patterns related to a particular patient or a group of patients. 

Recent advancement in pervasive technology makes the automated monitoring of elderly 

people living alone in a home much easier. Different pervasive sensors such as IR, motion 

sensors, pressure pads and sunspots can be easily integrated to the daily living spaces without 

making the system invasive to the privacy of its residents. Although such passive sensors are 

sufficient to summarize activities in an assistive environment, where an elderly lives alone, they 

are not sufficient for assistive environments with many people, such as hospitals. But, current 

assistive environments should be smart enough to monitor the interaction among multiple 

humans or between a human and computer in real time. For an assistive environment with 

many people, identifying and tracking the locations of every person simultaneously is 

considered to be one of the biggest challenges. In addition, data generated from such pervasive 



 

 2 

applications are of large volume and can be of many different types or schemas, such as sensor 

readings, text, audio, video, medical records, etc. But an effective application needs to store 

such a huge variety of data into a common repository and provide an easier access to that 

repository. A caregiver or doctor needs to query over that repository to track the status and 

history of a patient. But it is very hard for them to understand and remember each such different 

schema to query the data repository. It is also highly infeasible for a system to cache all 

possible answers to a query beforehand, as the number of queries can vary a lot depending on 

user’s requirements. As a result, pervasive applications should incorporate an interoperability 

standard [3] and metadata mapping techniques such that caregivers or clinicians can query 

about a patient conveniently, irrespective of the schemas or the types of data stored on the 

repository. 

1.2 Motivation 

 Automatic identification and tracking is very useful for applications [6, 7], such as 

surveillance, monitoring movements and activities of assistive daily living (ADL). For example, 

automatic identification and localization methods are key to detect intruders or to track 

suspicious movements. Similarly, remote monitoring of assistive daily living requires continuous 

location tracking of every person in order to measure movements, identify activities, predict or 

detect accidents, falls, or other emergency situations, and summarize behaviors. As a result, a 

system is needed that visualizes the status of every person present in a multi-person 

environment in order to help the caregivers or families to monitor them remotely. This system 

must also integrate a flexible query interface, understandable and usable by any human, who 

acquitted the proper authority. Such a query interface would help the researchers and 

caregivers to analyze and track history and predict behaviors and wellness of the patients.  

 Studies show that video cameras are used most commonly in current ADL to track 

multiple people, as cameras not only help in localizing, but also capture information about a 

person’s pose and interaction with other objects or people in the vicinity. However, capturing 
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this information using only cameras is very challenging for a wide-space containing many 

people as identification requires zooming into a person’s face, while localization requires wide 

coverage to capture and map the respective locations of many people simultaneously. This 

problem becomes harder, if we consider long periods of time and large number of people 

involved.  

 
 With the recent advancement in the mobile phone technology, most of the mobile 

phones contain embedded accelerometers and magnetometers. As a result, methods that 

combine localization using a camera with identification using wearable sensors or 

accelerometers are also proposed in literature to solve the problem of tracking people. But for 

an unconstrained environment with multiple people, information collected through passive 

sensors may found to be very noisy and thus, could lead to incorrect identification [3]. For a very 

dynamic environment, information collected from multiple sources, such as video cameras, 

microphone array, sensors etc. are all combined together, such that the system can achieve 

better identification accuracy. Although the use of cameras and computer vision techniques are 

very promising, current methods do not completely solve the problem of identifying and 

localizing multiple persons, while extensive use of video cameras in an assistive applications 

are invasive to person’s privacy [8]. Therefore, our main focus is to develop a system that can 

achieve the same goal of identifying and localizing multi-persons in an assistive environment 

using sensors in a less-intrusive manner. 

1.3 Contributions 

 In this work, we present a PeopleTrack System that 1) visualizes the locations of every 

person present in an assistive environment, 2) collects and stores the spatio-temporal data in a 

common repository and 3) provides a fast and flexible query interface, such that the clinicians or 

caregivers can query about any information without even knowing the schema that represents 

the data. We have used various less-intrusive sensor technologies and data mining approaches 

to solve the identification and localization problem. In addition, we have applied state of the art 
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data mining algorithms to analyze the data in order to identify activities and predict behaviors. 

The system we present helps the caregivers or doctors to monitor a patient in near real time, as 

wells as helps them to query about history of patient records or the level of activities. However, 

to make the querying faster and easier, we have applied suitable data mining techniques to 

model and map metadata of the large amount of data stored in the repository. Although our 

system is mainly designed to monitor and track assistive daily living, such a system can also be 

used in other applications, such as Warehouses, large Hospitals. The rest of this thesis is 

organized as follows: chapter 2 summarizes the related work; chapter 3 describes a tool that 

simulates computer aided sensor placement and activities in an assistive apartment; chapter 4 

describes collection of different types of sensor data required for our system; chapter 5 

describes simultaneous identification and localization of every people present in a scene; 

chapter 6 presents a web based tool to monitor medication intake patterns; chapter 7 describes 

automatic assessment of depression from text records; chapter 8 describes modeling large-

scale sensor data to provide faster responses to historical queries; chapter 9 describes a 

framework to  integrate and query different types of data generated from pervasive applications 

and chapter 10 summarizes the conclusion. 
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CHAPTER 2 

RELATED WORK 

2.1 Introduction 

 Multimodal person identification has become a significant area of interest in recent 

pervasive assistive applications. Some of these applications use existing biometric identification 

methods, such as face recognition and speaker identification [9, 4], in order to identify multiple 

people in smart environments [10]. Although these works focus on person identification in a 

multi-person environment, they do not convey the location information of the person completely. 

But, locating multiple people simultaneously while identifying them is considered to be the first 

step for creating context-aware applications, such as activity monitoring and human behavior 

recognition in an assistive environment. The next few subsections summarize all different 

directions that the researchers have followed to solve this problem [11].  

2.1.1 Approaches based on Video Cameras 

 Some researchers have used discriminative appearance based affinity models to 

identify and track multiple people in a complex scene with a single camera [12]. Several other 

robust multi-person tracking approaches based on tracking-by-detection have also been 

discussed in literature [13, 14, 15, 16, 17]. In [18], the authors address the problem of multi-

person tracking by using a single mobile camera mounted on a vehicle or mobile robot. They 

propose a robust image level tracker based on level-set segmentation that tracks each 

pedestrian using an automatically initialized level-set. 

 To solve person tracking in a real-world scenario, some researchers have also used 

images from two colored stereo cameras that help to identify and locate multiple people [19]. 

The cameras they use maintain color histograms of the person-shaped blob to disambiguate 

between people who are very close to each other. Their system tracks multiple people standing, 
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walking, sitting, occluding, entering and leaving, near real-time. Multiple camera-based 3-D 

tracking approaches are also proposed in literature [20]. In [20], the authors considered two 

tracking approaches: 1) best-hypothesis heuristic tracking and 2) probabilistic multi-hypothesis 

tracking to derive the 3-D locations of people. Their results show similar tracking performance 

for both approaches. However, the simplistic probabilistic approach produces more false 

alarms, which may be compensated by using a sophisticated probabilistic model, which is left 

for future work.   

2.1.2 Approaches based on RFID 

 Although radio signal propagation suffers various problems, such as multipath, line of 

sight path, diffraction or reflection, even in an indoor environment [21], several indoor-based 

localization algorithms have been proposed in literature to achieve better localization accuracy. 

The methods can be classified into three categories: 1) distance estimation, 2) scene analysis 

and 3) proximity [22]. Among them, distance estimation algorithms use different range 

measurement techniques, such as Received Signal Strength, Time of Arrival, Time Difference 

of Arrival, Received Signal Phase, and apply triangulation to estimate a location. On the other 

hand, the scene analysis approaches first measure fingerprints (information) of an environment 

and then try to match a target’s range measurements with the appropriate set of fingerprints for 

estimating the location. However, the proximity-based algorithms determine a target’s location 

by mapping it to the location of an antenna that receives the strongest signal. 

 Overall, RFID technology posses promising solution to identify and localize multiple 

objects with attached RFID tags [23, 24]. Existing well-known systems, such as SpotON [25] 

and LANDMARC [26], use active RFID tags and exploit signal strength property to correctly 

localize an object. Passive RFID tags have also been applied in the past to identify and locate 

multiple objects [23, 24, 25]. In [23], the authors have utilized the percentage of tag counts at 

different power attenuation levels in order to approximate the distance between a reader and a 

tagged object. Research also suggests that RFID technology can be utilized to extract both 
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identification and location information of moving objects [19, 20]. According to these studies, a 

mobile robot equipped with two RFID antennas can be used to learn a sensor model that 

represents the likelihood of reading a tag, given the relative position between the tag and the 

antenna is known a priori. Such a sensor model can be used to predict the location/position of 

the moving objects or person from the sample of detected tags during the test phase. 

2.1.3 Approaches based on Multiple Modalities 

 The key research goal of a pervasive assistive environment is to develop an integrated 

sensor-camera-microphone-based system that is autonomous and efficient enough to monitor 

every human-computer interaction happening over time, in spaces that are not just limited to 

indoor environment [27]. The following sub-sections describe different previous works based on 

multiple modalities. 

2.1.3.1 Using Cameras and Microphones     

 Research suggests that arrays of cameras and microphones embedded in an assistive 

environment can extract effective features about different events and activities [15, 27]. State-

of-the-art classification and clustering techniques, such as the Hidden Markov Model, the K-

nearest neighbors, can be applied on the captured audio-video signals to extract higher-level 

semantic information, such as identification and location etc., in real time. However, an 

integrated system that combines speech, lip-motion and face images, has also been proposed 

in literature to improve identification accuracy [28].  

 With the recent trend of mobile devices being ubiquitous and more computationally 

powerful, researchers are also studying face and speaker identification techniques applicable to 

mobile devices [29]. A system that combines face and audio-based identification along with 

motion detection, person tracking and audio based localization, has also been proposed in 

literature [30]. Such a system applies state-of-the-art novel methods to process results from 

individual modality, while uses particle filtering to fuse both modalities for providing robust 

identification and localization. 
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2.1.3.2 Using Cameras and Accelerometers  

 Tracks from wearable accelerometers and cameras can be combined together to 

identify and localize multiple people in a scene [16, 17, 31]. According to this technique, the 

motion signatures about a person’s gait are detected for each person in a scene first. Next, the 

motion signatures from the accelerometer worn by the respective person are captured too. 

Finally, the system applies clustering to detect the matching between camera and 

accelerometer track signals, which derives location information. Since each accelerometer is 

associated with a unique ID, it makes the identification much easier. The same authors also 

proposed the use of an existing CCTV infrastructure based system along with sensors 

(accelerometers and magnetometers) embedded to a person’s mobile phones to solve the 

same problem [6]. According to this method, the camera captures the location of each person, 

which is transmitted wirelessly to the mobile devices carried by every person. After receiving the 

location information, the mobile phones resolve the most probable location for them by 

matching those with the measurements from its own sensors. The identification process is easy 

in this case too, as each person is labeled with his/her mobile phone’s unique ID.   

2.1.3.3 Using RFID and Cameras / Passive Sensors     

 The deployment of wireless sensor network (WSN) is another common approach now-

days to monitor and localize person in assistive environments [32, 33]. As identification with 

RFID is near accurate, an RFID system and a WSN can be combined together not only for 

identifying and localizing objects, but also for real-time monitoring in assistive environments [34, 

35]. Researchers in [36] calculate the location uncertainties of each person from received RFID 

signal strength and apply the nearest neighbor algorithm from the point of sensor activations to 

resolve the uncertainties.  

Camera and RFIDs are used jointly in literature to achieve sufficient accuracy for localization as 

well. To identify and localize in open areas, some researchers derived a calibration method for 
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joint RFID-camera system based on the area of overlap between field of view (FoV) of a camera 

and field of sense (FoS) of RFID sensors [2]. 

 2.1.4 Querying over Large Scale Sensor Data 

 To answer high-level queries over the large volumes of continuously changing spatio-

temporal sensor Data, significant amount of processing time and storage capacity are required, 

if no optimization techniques have been adopted. Earlier work [37] describes a Data 

Warehousing technique to compress and aggregate massive RFID Data so that various high- 

level queries can be answered efficiently over this Data. The main assumption of their proposed 

architecture is that most of the RFID objects tend to stay and move together. They achieve 

significant reduction over their Data by compressing multiple rows for objects that move to the 

same location into a single row instead of adding an individual row for each object. 

 In healthcare system, tracking of distributed patient-drug interactions is very important 

to answer questions, such as, which drugs are consumed by whom, when and where. The 

Bonsai Development Corporation (BDC) incorporates distributed, low-cost device technology to 

store and aggregate large volumes of Patient-Drug interactions data captured through tracking 

the distribution of drugs to the patients across a wide geographical area [38]. A centralized Data 

center stores information from all the distributed sources and can answer queries, such as 

tracking of locations and drug history of Patients and tracking of drug distribution both in batch 

and serialized levels. 

 Earlier work [39] describes a temporal RFID data model based on the concept of the 

dynamic relationship ER model [DRER]. The proposed Data model supports evaluation of 

complex queries by capturing continuous state changes and tracking history of events. In this 

paper, the author identifies fundamental RFID entities, which is either static or dynamic and 

defines dynamic relationships and interactions among those entities over time. The system 

transforms fundamental RFID logics, observations and events into high-level semantic Data as 

well as into more complex business logics using a Rule based framework. The framework 



 

 10 

applies Data Filtering, Location Transformation and Data Aggregation techniques to perform the 

transformation.  
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CHAPTER 3 

 
COMPUTER-AIDED SENSOR PLACEMENT 

3.1 Introduction 

 Placing sensors of interest at important locations of an assistive apartment is the key to 

provide maximum coverage that makes the remote monitoring and activity recognition more 

accurate. Applications in assistive environments generally use Finite State Machines (FSM) to 

recognize such human activity [40][41][42]. But, construction of these FSM strictly depends on 

the number and type of available sensors as well the location of these sensors in an assistive 

environment. However, given a fixed layout of an apartment along with the location and type of 

sensors placed in it, modeling the FSM is straightforward. 

 

 

Figure 3.1 A sample apartment layout. 

 Therefore, our system includes a graphical tool [43] that automatically generates a FSM 

for an assistive living environment. Figure 3.1 shows an example layout of an assistive living 

apartment. According to our design of the graphical interface, a user (researcher / technician) 

can choose one or more sensors from a list of available sensors provided in the tool and can 
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place these sensors at different locations. Depending on the number of selected sensors, their 

type and area of coverage, the tool automatically generates an FSM for that particular setup. 

The tool also simulates human actions in that setup and uses the FSM to determine the position 

of a person in the assistive living environment.  

3.2 The Graphical Tool 

 According to the design, we define a particular region as critical area (shown in blue in 

Figure 3.2), if a person generally stays longer in that region during his/her daily living. Example 

of such critical areas include: living room, kitchen, bed, bathroom, etc. As a result, assuming 

that a researcher / technician provides the layout of the apartment and defines the critical areas, 

and the type and position of the sensors, the tool will automatically generate a Finite State 

Machine that models human activity in that apartment. However, the tool does not impose any 

restriction on the number of users living in the apartment, since that depends on how the FSM is 

processed later. 

 

 

 

 

 

 

 

 

 

 

3.2.1 Description of the Graphical Tool Interface 

 Provided that a researcher/technician first upload a layout of the environment, the 

graphical tool suggests a collection of sensor types that the researchers (or technician) can 

 

Figure 3.2 The blue areas are the critical 
areas, the red areas are the areas covered 
by the sensors and the gray areas are the 

temporary states 



 

 13 

choose from. The user can also define the sensor properties, such as range and sampling 

frequencies. Finally, the user can simply drag and drop the sensors to place them at location of 

interest.  

 

Figure 3.3 The resulting Finite State Machine. 

 

3.2.2 Transition to FSM 

 Our system generates the Finite State Machine as follows: 

1. It assumes that there exists a starting state, where previous knowledge of the user 

position is unknown. All critical areas are represented as final states, since they represent 

the areas where a user is likely to remain for a long, unpredictable period of time.  

2.  All other areas covered by sensors, where a user is not likely to remain for a long period 

of time are represented as non-final states. The tool knows with great certainty when a 

user is in that area (assuming non faulty sensors).  

3.  However, a non-critical area that is not covered by a sensor is also represented as a 

non-final state, since it is an area where a user is not likely (or it is not reasonable for the 

user) to remain for a long period of time (eg. a corridor).  

4.  A sensor activation changes the current state to a state that represents the area covered 

by that activated sensor.  

5.  Sometimes, a sensor inactivity may also trigger an alarm and/or a state transition from a 

non-final state to another.  
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 Non-final states may actually be represented by more than one state. Non-final states 

may contain information about the previous position of the simulated person that is used to 

estimate the next state, or may represent that the person is in specific areas with certain 

probability. The non-final states generated from not covered areas are the ones, for which the 

tool is the least confident, since it can only determine that a person is there by inference. For 

example, in Figure 3.3, if a user is in state 10 and the corresponding sensor stops detecting the 

user, he could be either in state 17 or in state 16. As a result, our system has to wait for another 

sensor activation to determine the user’s actual position.  

3.2.3 Discussions 

 Such a tool helps a lot to simulate a person living in an assistive living environment. The 

researcher / technician can click a sensor or a series of sensors, simulating sensor activations, 

and then see the estimated user position. The tool also provides warnings for uncovered areas 

or ambiguities. The simulation results from the tool provide important suggestions concerning 

the optimal placement of the sensors that the user has selected. Thus, the tool helps the user to 

design the optimal placement of the sensors, before they deploy them in a real environment 

which is a time and cost sensitive operation and start collecting Data. 
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CHAPTER 4 

COLLECTION OF LARGE-SCALE SENSOR DATA 

4.1 Introduction 

 Once sensors have been placed optimally in an assistive environment, the next task is 

to collect and store the raw sensor data or the sensor-events of interest. The sensors that we 

use mainly for our system are: 1) RFID readers and tags 2) passive sensors, such as IR, motion 

sensors, pressure mats and sunspots, and 3) Kinect sensors. Since any of these sensors may 

generate large amount of spatio-temporal data within a very short period, our system 

incorporates mechanisms to collect and store only the important/meaningful events, instead of 

the raw sensor data. The subsequent sections in this chapter describes the  collection of 

different types of sensor data based on their applications in our system.  

4.2 Collection of RFID Data to Track History of Patient-Drug Interaction 

4.2.1 RFID Technology     

 RFID systems use radio frequency waves to identify physical objects. An RFID System 

consists of several components, named Tags, Readers, and Application software [44, 45]. 

Whenever a tag receives electromagnetic radio-frequency signal from a reader, the tag 

transmits its identifier and data back to the reader. The reader translates these received radio 

frequency signals into a digital form and sends those data back to a host computer connected to 

the reader. However, RFID tags can be of active or passive type. Active tags operate at active 

high frequency, which can be 455 MHz, 2.45 GHz or 5.8 GHz. On the other hand, passive tags 

operate at frequencies of the range 128 KHz, 13.56 MHz, 850-950 MHz or 2.45 GHz [46]. The 

suitability of a frequency for a particular application completely depends on the following factors: 

distance from which a tag can be detected by a reader, permeability (ability of correct read in 

case of noise) and data transfer rate [47]. As active tags have their own battery power source, 
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they can be read from distances over 100 ft. On the other hand, passive tags power themselves 

from the electromagnetic waves of the external readers and can be read from distances 20ft at 

most. With the recent development in this field, the costs for RFID tags and readers are 

decreasing very rapidly. As a result, this technology is enabling each individual object to be 

tagged in order to achieve better precision [48]. In fact, both active and passive RFID tags are 

suitable for our system to track the patient-drug interaction in a large assistive environment such 

as a hospital. In addition, both fixed and mobile RFID readers can be used as described in [45]. 

Passive tags can be used to track and identify objects, such as drugs, food, equipment or 

furniture, which have low mobility or no mobility at all. In that case, fixed RFID readers are 

deployed at various places of the assistive environment to track mobile objects that change their 

locations less frequently. As stationary objects, such as large hospital equipment or furniture, 

such as beds, are not moved very often, in order to track the interaction of a patient with those 

objects, mobile RFID readers can be used. In addition, a person can carry RFID Reader 

attached to his/her wristband or to ID cards in order to detect the presence of any stationary 

objects close to him/her. Moreover, as persons, such as patients, doctors or staff change their 

locations very frequently, RFID tags can be attached to their wristbands or ID cards to track and 

monitor them. Since active tags can operate from a reasonable amount of distance, hence 

deploying smaller number of fixed RFID readers can cover the whole area of such assistive 

environments. 

4.2.2 Description of Data 

 Data generated from an RFID Reader can be described as a continuous stream of 

tuples, where each tuple takes the simple form (EPC, Location, Time) [49], as shown in Table 

4.1. Here, EPC stands for electronic product code and is used as a standard way to identify an 

object universally. Location is actually the location of the reader, but it can be used indirectly to 

refer to the location of an object at the time when the reader detects it. 
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Table 4.1 Example RFID Data Set 

EPC Time Location 

E2009037890401091080A8BA T1 L1 
E20090378904010910803DGB T1 L1 
E2009037890401091080A8BA T8 L1 
E20090378904010910803DGB T10 L1 
E2009037890401091080A8BA T11 L1 
E20090378904010910803DGB T11 L2 
E2009037890401091080A888 T12 L2 
E20090378904010910803DGB T13 L2 
E2009037890401091080A888 T15 L2 
E2009037890401091080A8BA T15 L3 
E2009037890401091080A8BA T20 L3 

  

 According to Venture Development Corporation, retail stores, such as Walmart, 

generate around 7 terabytes of data every day if the tags are placed at item level. Therefore, a 

simple RFID application can generate a large amount of spatio-temporal data within a very short 

period. In the context of healthcare systems, each individual patient can ware RFID readers 

attached to his or her wristbands, while individual items, such as medicine, food, equipment, 

may have attached RFID tags. If a hospital authority wants to ask queries, such as what are the 

most frequent drugs according to their average daily/monthly intake, new data structures and 

algorithms need to be modeled in order to provide fast query responses from these large 

volumes of dynamically changing, time-sensitive and location-specific data [50].  

4.3 Collection of Medicine Intake Data 

4.3.1 Physical Setup     

 Our system includes a smart medicine tracking tool, named Smart Drawer that remotely 

monitors the daily medication intake of a patient living alone in an assistive apartment [51]. The 

Smart Drawer has various real-world components, which is actually a part of our simulated 

apartment as shown in Figure 4.1. The drawer to the right of the bed, which is encircled in red, 

contains the equipment used to measure the medication.  
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 An RFID reader is placed inside that drawer, which can read values from individual 

medicine bottles placed on top of it [52]. In addition, a precision balance (an analytic scale) [53], 

which has a resolution of 0.001 g and a serial connection to report a stream of the current 

weight of the medicine contents, is also placed in the drawer. Hence, the overall setup inside 

the drawer contains all the medicine bottles placed on top of a RFID reader, which is eventually 

put on top of the precision balance. Furthermore, a Sunspot sensor is mounted to the front of 

the drawer to detect the position of the drawer (either open/closed). In addition, a Motion 

Detection sensor, from Phidget [54], is mounted on the leg of the lounge chair to detect when a 

person enters the bedroom. The setup of sensors and spaces mentioned above defines the 

overall workspace for the Smart Drawer that is necessary to track the medicine intake. 

4.3.2 Drawer Events     

 One of the key sensors of the Smart Drawer system, which is being accessed by the 

web tool, is Sunspot wireless sensor mote. It has an embedded accelerometer with three axes. 

Given that the sunspot is mounted on the front of the drawer, the system applies two different 

methods to determine when the drawer is in use, i.e. either open or shut. We call such detection 

of drawer motion as drawer events. 

 

Figure 4.1 Example apartment layout with a Smart Drawer 
containing RFID reader and other sensor 
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Figure 4.2 Drawer Event HMM 

 According to the first method, the system detects a drawer event by simply comparing 

the drawer motion with respect to a predefined threshold.  

 

Here, xj is the current reading, xi are the past n readings, tk is the threshold in gravities for the 

acceleration of the drawer (0.064 g) and n is 30. Hence, when the motion of the drawer exceeds 

the threshold at certain point, the program on the Sunspot detects an event and sends that 

signal over the wireless sensor network (WSN). 

 In the second approach, the same data from sunspot imported to the Java Hidden 

Markov Model API [55] that allows the data to be processed. By using the K-Means Learner, the 

status of the drawer can be modeled as shown in Figure 4.2. Once a model is created, the 

system is programmed such that it recognizes the incoming data streams as observations and 

can estimate the current state of the drawer. If the system detects the accelerometer to be 

moving outwards, i.e. moving in the positive Z direction, then it concludes that the drawer is 

open. However, once an event is detected, the Sunspot reports that event either through the 
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wireless sensor network or through a USB cable connected to the central controller of the 

medicine drawer. 

4.4 Collection of Multi-Person Identification and Location Data 

4.4.1 Kinect Data Collection 

 We have used Microsoft Kinect, as shown in Figure 4.3 to collect the location tracking 

information of multiple person present in a scene [56]. Note that Kinect is a motion-sensing 

device for the XBOX 360 video game console and Windows PC. 

 
 

Figure 4.3 Kinect Sensor 
 

 However, to integrate a Kinect sensor to our system, we have used the commercially 

available Kinect SDK for C#. The SDK supports both depth and RGB images, tilt, microphone 

array and skeletal tracking that gives skeleton data values (shown in Fig. 4.4) in meters with 

respect to a full 3D coordinate system, as shown in Fig. 4.5. 
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Figure 4.4 Skeleton Data 

 

 

Figure 4.5 Coordinate System for the Skeleton Data 

 

 Each skeleton has a unique identifier for a particular session and is defined by the 

coordinates <x, y, z> of the joints expressed in meters. Each joint can be at any of the three 

associated states: 1) tracked, 2) not tracked, and 3) inferred. The SDK also allows choosing 

which skeleton to track at a particular moment. 

4.4.2 RFID Data Collection 

 The RFID system we use to identify multiple persons in a scene is the commercially 

available Alien 9900+ developer kit. The kit includes a reader with two circularly polarized 
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antennas. The tags used in our experiment are EPC Class 1 Generation 2 supported by the 

9900 readers. Figure 4.6 shows an example tag and antenna design from Alien. As the 

antennas are circularly polarized, the tag orientation is not an issue for our experiment. 

However, for an indoor environment, the antenna read range for the passive RFID tags varies 

from 6 to10 ft. Such a read range is sufficient to detect the presence of a person carrying a tag 

in the simulated rooms of our Heracleia Assistive Apartment, given the tags are within the Field 

of Sense (FOS) of the antennas. 

 However, in our experimental setup, we have deployed two antennas at the two corners 

of the bedroom. We have simulated an experiment for identifying and localizing 4 persons, 

limited only to that room, although the system can be extended to more people by adding 

additional Kinect sensors in the apartment. During the experiment, the persons wear the RFID 

tags around their neck like a normal ID card. 

   

 
 

Figure 4.6 Example Alien RFID Tag and Antenna 
Designs 
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CHAPTER 5 

PERSON IDENTIFICATION AND LOCALIZATION 

 Tracking the location of a person is considered to be the most fundamental step for 

creating a context aware application, such as activity monitoring in an assistive environment. 

But, the problem becomes very challenging if multiple people are involved in this scenario. The 

reason is that any multi-person environment, such as a hospital, demands a simultaneous 

identification and localization mechanism, thus making the system very complex. To solve this 

problem, our system applies a novel, less-intrusive approach that uses RFID and passive 

sensors or a Kinect sensor deployed at various locations of an assistive environment. Basically, 

the system maps the RFID events together with the passive sensor activations / kinect tracking 

information to track the location of every person in a room. However, to map the identification 

events from the RFID to the location information from the Kinect sensor, the system applies two 

approaches: 1) a proximity-based and 2) a classification-based. Our evaluation of these two 

approaches proves their effectiveness in real world scenarios.  

5.1 Example Scenario 

 According to the apartment layout described in Figure 5.1, given readings from a RFID 

antenna, Ant 0, our system can deduce 3 persons, such as A, B and C, to be present in the 

room, Room 0. But, in order to deduce the location of each person to a specific level, such as 

person A is near the door, B is near Bed and C is on the couch, the system needs to consider 

the location uncertainty of each of the moving objects and relate these uncertainties with 

respect to different sensor activations [57]. For example, given the current locations of two 

persons  1 and  2 near sensor points  1 and  2 at a moment  , as shown in Figure 5.2, if a 

bedside sensor  5 near point  1 activates on ( +1)-th moment, the system needs to calculate 

the distance between the point  1 and the probable locations of each person at time ( +1) in 
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order to identify the nearest person, who activated the sensor. Hence, depending on the speed 

and direction of each person during [ +1], either  2 or  1 could be the nearest to  1 as shown 

in Figure 5.2b and 5.2c. 

 

Figure 5.1 Example apartment layout with RFID antennas and sensors 

5.2 Identification and Tracking using RFID and Passive Sensor Technology  

5.2.1 Identification using RFID Data    

 As part of the application setting, we deploy one RFID reader antenna per room that 

covers the entire area of that room. Each person carries a unique RFID tag, which is either 

attached to his/her ID-card or embedded to the cell phone. Whenever a person enters in a room 

or more specifically, comes within the range of the antenna deployed in that room, the reader 

detects a new tag for that person for the first time. If a door-side sensor activates at the same 

time, the system updates the initial location of that person to the entrance (door-side) of that 

room. However, if a door-side sensor activates again and some previously detected tags are 

found to be missing from the reader data for a certain amount of time, the system then assumes 

the person with those associated tags have left the room. 
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(a) 

 

(b) 

 

(c) 

Figure 5.2 a) An example scenario of 2 persons, P1 and P2 at sensor locations S1 and 
S2 at time t and a sensor, S5 that activates at time (t+1) near point q1. b) One possible 

scenario, where P2 is more probable to activate the sensor S5 than P1. C) Another 
example scenario of P1 being the most probable persons to activate the sensor S5 

 

5.2.2 Representing Location Uncertainties    

 Given the initial location of each person,    is known at time   and the maximum velocity 

is calculated using the history of data, the system represents the location uncertainty of a 
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person at the next time    using a circle with radius   equals (  − )×    [58], where     is the 

maximum velocity of each person. The location uncertainty can be even reduced to a half circle, 

if the approximate direction of movement of a person is known, as shown in Figure 5.3. In our 

system, we use commercially available Alien 9900+ developer kit [59] that returns the speed 

and approximate direction of a moving person over time. 

  

a. b. 

Figure 5.3 (a) Location uncertainty representation of each person at instant    and (b) 
Computation of longest and shortest distances of each person from q1 

 

5.2.3 Location Update    

 The location update procedure works as follows:  

 • Given the uncertainty region of a person and a sensor activates at point   , the system 

computes both the shortest and longest possible distance, denoted as           respectively, of 

each person from the location  1.  

 • The system next computes the shortest distance,    of all these longest possible 

distances (  ’s) and draws a circle with radius    as shown in Figure 5.4, which defines the 

probable zone of consideration. Any uncertainty region that falls completely outside of this 

bounding region is not considered for the location update with regards to the sensor activation 

at  1. On the contrary, if the uncertainty region of a person lies completely within the bounding 

circle, his/her location will be updated with  1 at time   .  

 • However, if an uncertainty region of a person partially overlaps with the bounding 

circle, the system then computes the total probability of that person being the nearest neighbor 
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to  1 for every point of his/her overlapping region with respect to others. The system then 

compares the probability of each person being the nearest neighbor to  1 at time    and updates 

the location of a person with  1, if he has the highest probability of being the nearest to  1 on 

that instant. 

 

Figure 5.4 Bounding circle representing the probable zone of 
consideration 

 

5.3 Identification and Tracking using RFID and Kinect Sensor 

Table 5.1 Kinect Data Set 

User Time X Cord. Y Cord. Z Cord. 

6 4/25/2012 
1:22:28 AM 

-0.1936212 0.1681233 3.099599 

6 4/25/2012 
1:22:30 AM 

-0.08460984 0.08594385 3.164108 

6 4/25/2012 
1:22:34 AM 

-0.4662972 0.07648824 2.894816 

6 4/25/2012 
1:22:40 AM 

-0.5278196 -0.0273742 3.011885 

6 4/25/2012 
1:22:45 AM 

-0.4450822 -0.1373514 2.829979 

6 4/25/2012 
1:22:50 AM 

-0.456997 0.07926513 2.96067 

6 4/25/2012 
1:22:53 AM 

-0.4790949 0.08204032 2.961271 

  

 In this setting, we combine the identification of RFID with the location measurements 

from the Kinect sensor [56]. Each RFID Antenna has a field of sensing (FOS), within which it 
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can detect a tag. Whenever a person enters the field of view (FOV) of a Kinect sensor and the 

FOS of a particular antenna, the Kinect and the RFID system capture the location and 

identification information of that particular person respectively. For a single person, the Kinect 

sensor itself is sufficient enough, since it can track that person as long as he/she remains in its 

FOV. The data captured by the Kinect is shown in Table 5.1.  

Table 5.2 RFID Data Set 

ID Time Antenna RSSI 

E2009037890401091080A8BA 4/25/2012 
1:22:52 AM 

1 4792.4 

E2009037890401090900BD64 4/25/2012 
1:22:52 AM 

2 1351.6 

E2009037890401090900BD64 4/25/2012 
1:22:53 AM 

1 1021.2 

E2009037890401091080A8BA 4/25/2012 
1:22:54 AM 

1 4920 

E2009037890401090900BD64 4/25/2012 
1:22:54 AM 

2 1299.1 

  

 Nevertheless, the problem becomes very challenging if the number of people detected 

from the RFID antennas is more than one. In that case, the Kinect sensor may track people 

within its FOV, but fails to discern between them. The reason is that the User/Tracking ID from 

the Kinect sensor is regenerated every time a user leaves and re-enters the scene. As a result, 

the tracking ID from the Kinect is not unique. On the other hand, RFID antennas capture a 

unique ID of each person carrying a tag, who is in the FOS of the antenna. Therefore, the main 

challenge is to map the tracking information of different users captured through the Kinect with 

the identification information of RFID. However, RFID readers also provide useful information in  
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the form of the RSSI, which can give an approximate measurement of the distance between the 

antenna and the RFID tag as shown in Table 5.2. 

 Therefore, our system utilizes the RSSI so as to increase the accuracy of the 

localization problem. We have considered two approaches to solve this problem: 1) Proximity-

based and 2) Classification based, as shown in Figure 5.5 and described in the following 

subsections. 

5.3.1 Proximity Based Approach    

 According to this approach (Figure 5.5a), we first record the RSSI signature of the 

detected tags from each reporting antenna to the locations of interest, such as bed, chair, 

couch, near bed, between bed and chair in the bedroom area etc. Next, we build a proximity 

database that describes the signature properties of each of the locations. The properties that we 

store in the proximity database are as follows: 

    
 

    
, Where          ,   =         and      denotes a particular location, such as 

bed, chair, couch etc. Note that   defines the total number of distinct locations that we will 

consider for our tracking and   represents the total number of RFID antennas present in the 

  
a. b. 

Figure 5.5 (a) Proximity-Based Approach, (b) Classification-Based Approach 
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system. The value of the attribute:    
 

    
 can be either true or false, which represents 

whether a tag can be read by     , given the location of the tag is     . 

 The next set of attributes is:        
         and        

        , which represent for each 

    , the minimum and maximum RSSI captured from an antenna     . 

 For each location     , we also record the minimum and maximum X, Y, and Z value 

recorded through a Kinect sensor, denoted as:        
        ,        

        , 

       
        ,        

        ,        
        ,        

        . Here,         , where 

  represents the total number of kinect sensors present in the system. 

 For tracking, we consider a window of one second that contains the combined data 

from both the RFID events stream and the Kinect skeletal tracking stream. From the combined 

data stream within the current window, we then calculate the total number of distinct users 

along with their ID, who are present in the scene on that particular second. Next, we consider 

every data point in the current stream and estimate the location signature for each user. The 

procedure is as follows: 

 For each data point in a specific time window, we first check whether the data point is 

an RFID event or a Kinect tracking event. If it is an RFID event, we record the RFID Antenna 

that detects the particular user. For example, if a user X is detected through Antenna 1, the 

system will record,           . Now, if the user is detected for the first time in the current 

window, the system records the observed RSSI (     
    ) as well. But, if the user has been 

detected before, the system first checks whether it is the same RFID antenna that has detected 

the tag. If yes, it simply updates the user attribute info with the maximum observed RSSI 

between the current and previous record. For example, if the same user   is detected by 

antenna 1 again, the system compares: 

        

                 

        
 ,  
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 However, if the current antenna is different than the previously recorded one, the 

system checks the true flag for the new antenna and records the corresponding RSSI for that 

particular user at that particular time. Now, if the data point comes from the Kinect, the system 

first records the X, Y and Z coordinates and then, for each user found in the system, searches 

for a location in the proximity database, for which the signature matches the most to the 

observed pattern. Then the location of that particular user is updated with the location recorded 

through the Kinect in the form of X, Y and Z values. The pseudo code of this approach is given 

in Algorithm 1. 

Algorithm 1 Proximity Based approach 

Build the Location Proximity Database:   
 

    
, 

       
        ,       

        ,       
        ,       

        ,       
        ,

       
        ,        

        ,        
         

Combine data within one second in the current window 

Calculate the total number of distinct users along with the IDs 

for each data point in the current window do 

if the data point is an RFID event then  

Note the Antenna,   that detects the tag 

if no previous event exists for that user then 

     
      

     
                  

else 

if                         then  
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else 

     
      

     
                  

end if 

 end if 

else 

Record the X, Y and Z values of the Kinect 

For each detected user do 

for each location record in the Proximity Database do 

Find out the location, for which the attribute matches the most with the 

signature of the user and the recorded location values X, Y, Z. 

Record that particular user and exit the inner loop. 

end for 

Update the location of that particular user with the X, Y and Z coordinates 

recorded through the Kinect and exit the outer loop. 

end for 

end if 

end for 

 5.3.2 Classification Based Approach    

 In this approach, we divide the entire apartment or individual room into multiple sectors, 

as shown in Figure 5.5b. Next, we collect the RSSI signatures of the detected tags in these 

different sectors using the antennas. In the training phase, we label the signatures with their 

corresponding sector number and apply a statistical regression method (a fitted model to 

describe the relationship between the selected and the observed values as well as to predict 

newer values) to build a classifier that classifies any RSSI measurement from an antenna into 
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one of these different sectors. The idea is that given an RFID event is detected, the system first 

classifies that event to narrow down the location of the detected tag into any one of these 

sectors. Next, given the measurement from the Kinect sensor for any particular user, if the 

measured location falls within that specific sector, then we map that particular user who 

generated the RFID event to the location described by the Kinect sensor. A shortcoming of this 

approach is that if the two users remain in the same sector meaning, they are in close proximity, 

the exact identification with accurate localization may fail. Nevertheless, the system will detect 

the approximate locations, such as sector 1 or 2 for both users correctly. 

5.3.3 Improvements for both Approaches    

 In both of the above-mentioned approaches, we map the RFID event to a Kinect event 

in every second. Realistically, a Kinect sensor can recognize up to 6 persons simultaneously. 

Once a person is mapped to a particular location using RFID signatures and Kinect tracking 

information, that person can be simply tracked using the Kinect as long as the person remains 

in the FOV of that Kinect. However, if the person leaves the FOV and re-enters, a new tracking 

ID is assigned, which needs to be re-mapped. But, the problem becomes simpler, if only one 

person leaves the scene and later re-enters (all others remain in the FOV of the Kinect). In that 

case, if the RFID antenna still detects that person’s tag and the Kinect detects a new skeleton 

with a newly assigned ID, we can simply map that skeleton to the RFID tag. But, if more than 

one person enters the scene and two or more unassigned RFID tags are detected, we can 

apply either proximity or classification based approach to find out the correct mapping. 

5.4 Result 

 In our experimental setup, we have used two RFID antennas and one Kinect sensor in 

the bedroom area of our simulated assistive apartment at the Heracleia lab. 

5.4.1 Accuracy   

 We have run our system in the simulated bedroom of the Heracleia Assistive Apartment 

to identify and localize up to four people simultaneously. For each location update from the 
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Kinect, our visualization component transforms the world coordinates into screen coordinates to 

display the location of each person correctly in the 2D apartment map shown in Figure 5.6. 

 

 

Figure 5.6 2D layout of our simulated apartment with the RFID Antennas 
and Kinect setup 

 

 The accuracy of our system for the two approaches considered in this paper is shown in 

Table 5.3. Note that, for the classification-based approach, we have divided the entire room in 8 

sectors (shown in Figure 5.5b) and applied 10-fold cross validation to calculate the accuracy. 

Here, the accuracy specifies the percentage of correctly predicted locations for each person 

present in the room (the entire room is divided into 8 sectors). As shown in the table, the 

proximity based approach gives higher accuracy than the classification based approach 

with/without improvements. The reason is that in proximity based approach, we compare each 

Kinect event against the unique RFID tags and signal strengths observed on that particular 

second, as well as against the ranges of signatures observed in a particular location (sector). In 

the classification-based approach, we only consider the RFID signal strength for deriving the 

sector and then, we provide the mapping. 
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Table 5.3 Experimental Results 
 

Approach Accuracy 

Classification based on Statistical 
Regression (4-person) 

60% 

Classification with improvements (4-
person) 

65% 

Classification-based (2-person) 67% 

Proximity-based (4-person) 68% 

Proximity-based with improvements 
(4-person) 

76% 

Proximity-based (2-person) 86% 

 

5.5 Discussions 

 In this chapter, we first proposed a fundamental technique to identify and localize 

multiple person in a less-intrusive manner using existing RFID identification and passive sensor 

technology. We also combined the localization capabilities of the Kinect sensor with 

identification information from existing RFID technology. We utilized the high-level location 

information and RSSI property to resolve the localization and identification of multiple people 

simultaneously. We considered two methods: 1) proximity based approach and 2) classification 

based approach as a solution to this problem and ran experiments in a simulated room of an 

apartment. Our experiments proved the effectiveness of our system for the 4-person localization 

scenario. Future extensions will include the integration of multiple Kinect sensors as well as the 

utilization of the Kinect’s microphone array.  
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CHAPTER 6 

AUTOMATED MONITORING OF MEDICINE INTAKE 

6.1 Introduction 

 Monitoring medication intake of a person, who needs assistance has become an 

important research arena recently. Statistical report has shown that almost 55 percent of the 

elderly people in US fail to adhere to their daily medication routine [60]. Among these, 26 

percent of the errors are severe. As patients forget to comply with their prescription, they need 

constant care from doctors, nurses or other caregivers. Therefore, at home pervasive and 

assistive monitoring systems with minimal intrusion into a person’s personal life can be very 

effective in this scenario. The Smart Drawer is one such application that helps patients in 

maintaining their medication intake as consistent as it is prescribed by a healthcare professional 

to them. Besides reminding a patient to take his or her pills on time, the system also logs all the 

activities of the patient for further analysis in case he or she fails to obey the prescription [52]. 

The Smart Drawer system includes: 1) sensors to detect the open or close state of the drawer, 

2) sensors to detect when a medicine bottle has been removed/placed back in the drawer and 

3) a precision balance to detect how many pills has actually been taken out of the bottle after 

removing it from the drawer. In the context of a pervasive environment, such an application with 

multi sensor data fusion improves the inferring capability of the system more than it could 

achieve using single sensor alone [61]. Perhaps, the most appropriate example of multi-sensor 

data fusion would be the one that is naturally performed by humans and animals. A human uses 

the combination of touch, smell, taste, vision and hearing capability so that they can access 

their surrounding environment better to improve the overall chances of survival. 

 In this chapter, we describe the Smart Drawer system that records the removal of each 

individual medicine bottle from the drawer as well as the time when the medicine is actually 
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taken. By doing so, the system can track the most common problems in patients and helps to 

treat them better according to their medical history. The system also tracks prior and 

subsequent activities of a person before they remove a pill from the drawer to derive useful 

information about the person’s behavior. For example, a person may open or close the drawer 

several times, but forgets to take the medicine from it. On the other hand, the person may 

remove the medicine out from the drawer, but put it back again without consuming a pill. Such 

information could give very good indication about a person's behavior. 

6.2 Approach 

 In this section, we explain our approach by describing the system architecture, the 

layout of the experimental setup, a state diagram followed by a sequence diagram. 

6.2.1 System Architecture of the Web Tool    

The Smart Drawer project implements a web based tool for an RFID reader system, where it 

first establishes a connection by imposing some constraints on the hardware. However, the 

web-based tool offers three different views: 1) a caregiver view, 2) a maintenance view and 3) a 

patient view. Here, the caregiver view displays the details about the history of drug taking 

patterns of the patients. The maintenance view reports the working status of different sensor 

nodes over time. The patient's view includes an alert system that prompts the patients to take 

their medication. Now in an assistive living environment, a patient is supposed to take different 

types of pills each day. Therefore, detecting the sequence of medicine intake by creating a 

pattern helps the patients to take their medicine on time. Such a system also helps the patients 

in taking the right number of pills, by incorporating the precision balance. On the other hand, 

once the caregiver/doctor log on to the system by authenticating themselves as the legitimate 

users of the web based Smart Drawer tool, they can see all the details of their patients and 

verify, if the patients have taken the right amount of medication at the right time. They can also 

add new patients and their details as well as compare the medication details with the backend 

database. In short, the Web Tool Architecture shown in Figure 6.1 has two parts: 1) the web 
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module and 2) controller module. The Web module consists of the pages containing 

caregivers/doctors login and display of patient's medication intake records as well as patterns. 

The Controller Module acquires the heterogeneous data from all the sensors operating in the 

Wireless Sensor Network Environment and determines the Pattern using an algorithm like 

Dynamic Time Wrapping algorithm [62]. The Controller Module also compares the pattern with a 

dictionary of normal behaviors to recognize whether the behavior is normal or abnormal.  

Get details of 

old patients 

or add new 

patient

Controller 

Module

Care 

Giver 

Module

Recognizing 

Patterns

Sensor Data 

Data Packets

Logon

View Patterns

Sens

or 

Mote

Caregiver/

Doctor
Desktop

Base Station

Hash map/ 

Dictionary of patterns

 

Figure 6.1 Web Tool Architecture 

   

6.2.2 Architecture of Data Fusion Model    

 The Data Fusion model as shown in Figure 6.2 contains: 1) a Human computer 

interface module, 2) a module containing all sensors, 3) a source pre-processing module and 4) 

database management module [61]. However, the Database Management System consists of 

two components named Support Database module and Fusion Database module. For the 
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purpose of Data Fusion, we consider information from only the RFID reader, SunSPOT [63] 

device and a precision balance. Here, the RFID reader generates a continuous stream of tuples 

identifying the presence of a medicine bottle inside the drawer. The SunSPOT device generates 

data to represent the drawer opening/closing status at a particular moment. Finally, the 

precision balance generates data representing the total weights of medicine bottles in the 

drawer at a specific time. 

 

Figure 6.2 Data Fusion Architecture 

 The HCI (Human-Computer Interface) module contains high-level user interfaces for 

inserting prescriptions, monitoring drug intake and gathering statistics. We believe it is the 

responsibility of the caregivers, doctors or the families that they provide accurate prescription 

information to the system. But, the system at least provides a flexible interface to them for 

adding these prescription data with minimum effort. The HCI module also generates alerts or 

reminds caregivers and patients in case a patient deviates from their prescribed medication 

pattern. Moreover, the system summarizes all the activities of a patient at different time via HCI 

so that doctors and caregivers can analyze that information to identify useful patterns. The Data 

Cleaning and Filtering module is a very important component as sensors generate a large 

volume of data; most of which may be irrelevant to the current context. Moreover, data 

generated from sensors contain both redundancy and error. Therefore, appropriate filtering 

techniques must be adopted in order to remove this redundant information. Reliable data 
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cleaning techniques should also be applied to the data in order to correct any errors. The Data 

Aggregation module combines all the preprocessed data from different sources in the form of 

(drawer open time, drawer close time, RFID event start time, RFID event end time, RFID tag, 

weight changes). However, the Support Database component of the Data Fusion module 

contains information about doctor’s prescription for a patient, patient’s current medical condition 

as well as his or her personal information. It contains medication records, total number of bottles 

per medicine, total weight per bottle along with its associated RFID tag and expiry date as well. 

Finally, the Fusion Database contains all the aggregated information generated from the 

continuous interaction of patients with the sensors. The Database Management System also 

provides support functions to access the fused data as well as to make queries about it. 

6.2.3 State Diagram and Sequence Diagram     

 6.2.3.1 Sensor Combining State Diagram 

 Figure 6.3 shows our drawer system consisting four states, which correspond to the 

different types of sensors involved in the testbed. S1 represents the start state, when no motion 

is detected within the room containing the medicine drawer. Once the motion detector is 

triggered by the presence of a user, the machine makes transition to state S2. However, state 

S2 remains unchanged until it is triggered by a drawer event (open/close), where it changes the 

state to S3. State S4 indicates that a medicine bottle has been removed from the drawer. As 

soon as the medicine bottle is placed back in the drawer, the balance records the new weight.  
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Figure 6.3 Sensor State Machine 

 6.2.3.2 Sequence Diagram 

 As shown in the sequence diagram of Figure 6.4, the system starts scanning for the 

available RFID tags in the drawer as soon as a patient opens it. Now, if the reader misses a tag 

in the drawer for a while, the system scans for this missing RFID tag until it detects it again. The 

system then creates a corresponding RFID event from the raw RFID data that represents the 

amount of time a medicine bottle was missing from the drawer. The system also measures the 

weight difference of the medicines at the end of that interval. However, if the weight changes 

within this time, the system records that difference and logs the time, which is eventually 

displayed to the caregivers through the monitoring medicine intake interface. The system also 

keeps track of all the activities, such as individual drawer event, RFID event in order to identify 

useful information about the patient’s behavior. The system finally summarizes the entire drug 

taking activities of a patient by comparing whether it is close to normal or deviating from the 

normal and displays such information to the caregivers or doctors through the "generate 

statistics" interface. 
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Figure 6.4 Sequence Diagram 

6.3 Results and Snapshots 

 

Figure 6.5 Login Page 

The system is designed such that, on a successful login to the page as shown in Figure 6.5, the 

caregiver can view the details of the patients, as described in Figure 6.6. 
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Figure 6.6 Patient details viewed by the Caregivers 

 Such details include: 1) the time at which the patient has taken the medication, 2) the name, 

type and amount of medication taken. However, the system measures the amount of medicine 

taken in a particular round, by comparing the weight difference (shown in analytic balance 

sensor) between all the medicine bottles, after a bottle is removed from the drawer and placed 

back again. Note that, the analytic balance used in the system is able to detect changes in 

weight to the order of milligrams.  

6.4 Discussions 

 The major contribution of the Smart Drawer system includes the web-based medicine 

tracking tool. The tool plays a crucial role from the care giver logins being the primary 

authentication step till the determination of the quantity or the amount of medication consumed 

by the patient at the prescribed time. This makes the system accessible from a remote 

workplace, where the caregivers can track the medication using the web interface. The tool also 

helps the caregivers to identify the behaviors of the patients according to their medicine intake 

patterns. 
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CHAPTER 7 

AUTOMATED ASSESSMENT OF DEPRESSION FROM TEXT 

7.1 Introduction 

 Major Depression is a severe mood disorder that affects both physical and cognitive 

functioning of a person (patient) while limiting his/her physical and emotional recovery [64]. 

Such a disorder is very common in the adult population and the severity level may depend on a 

patient’s prior stroke records or brain injury [65]. However, the task of automatic assessment 

and monitoring of depression symptoms is still dependant on the paper-and-pencil based 

homework (HW) assignments, where a person is asked to write his thought records (TR) in 

plain text and rate his current emotional state. A TR is a loosely structured document consisting 

of emotional expressions and feelings of a patient with respect to any recent stressful events, 

which is later examined by the clinicians or therapists manually. But, the process of manual 

examination by the therapists is very expensive with regards to both cost and time. 

Nevertheless, the accuracy of the clinician’s rating about a patient’s depressive symptoms also 

depends on his/her overall skill and experience level. Therefore, our system includes an 

automatic depression assessment tool that uses collection of text-based homework records 

such as TRs. Given, the thought records filled out by different individuals, our system 

automatically classifies the text records into one of the two main categories: Depressed or Not 

Depressed. Such step can be utilized as an initial start-point for a therapist to work further. 

 To train our system with sample data points for non-depression, we use the corpus of 

natural conversations collected in text format by the University of Santa Barbara. For the 

depression records, we use the anonymous thought records of different patients from the 

Psychology department of UTA. We consider each term or word appearing in a text document 

as a feature and apply different feature selection methods such as information gain to select the 
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best feature set. We later apply different classification schemes such as SVMs to classify the 

text records into one of the two categories. Our system obtains approximately 90% classification 

accuracy [66] for the dataset containing 77 sample points for depression documents and 55 

sample points for natural conversation.  

7.1.1 Background     

 According to American Psychiatric Association 2010, Cognitive Behavior Therapy 

(CBT) is considered to be an effective first line treatment of depression for the patients, who are 

non-adherent to antidepressant medication. Homework (HW) in CBT, which is a list of activity 

assignments that a patient performs outside the office, has a positive effect on the therapy 

session. Such an assignment helps the patient to exercise what is learnt during the therapy 

session and also develop and improve skills to identify negative thoughts through practice. The 

hallmark CBT homework assignment is a thought record (TR). TR is a critical tool for the 

therapy process that allows patients to express negative automatic thoughts and emotional 

reactions while describing their recent stressful life events. The information in TR helps the 

therapists to understand and select the interventions to be used in a therapy session that would 

reduce a patient’s depressive symptoms. But, such a process is very challenging, as the tasks 

seem less enjoyable to the patients and thus, remains incomplete most of the time. 

 Various attempts to automate the process of depression assessment have been 

presented in the literature. Most approaches try to determine the emotional state of the subject 

using different types of information. Among them, facial features are the most popular while 

vocal features yield significant results as well. Furthermore, advanced techniques use both 

types of features in a multimodal implementation in order to increase robustness and accuracy 

[67, 68, 69, 70]. Text is also informative concerning the emotional state of the subject by 

determining the use of specific words or grammar rules. There are variety of methods for 

analyzing text content such as keyword and phrase spotting [71], rule-based modeling [72], 

Semantic Trees [73] and N-Grams [74]. Nevertheless, depression assessment is a higher level 
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process that can be more challenging than emotion recognition. So far, most researchers have 

used other types of data as indicators for depression. Magnetic resonance imaging data in 

conjunction with machine learning techniques such as Support Vector Machines have been 

used for diagnosis and prognosis of depression too [75]. Alternatively, SVMs were used with 

functional MRI data used to monitor neural responses to verbal fluency in order to detect 

depression and other disorders [76]. An alternative approach uses facial expression and vocal 

prosody with SVMs on videos from a clinical trial to detect depression [77]. In our work, we 

follow an alternative approach by focusing on information extracted from text in order to detect 

depression.  

7.2 Methods 

7.2.1 Data Collection and Preprocessing     

 7.2.1.1 Collection of Thought Records 

 We have collected anonymous homework records, known as TRs completed by the 

patients outside therapy session, from our psychology department at UTA. The dataset contains 

plain text written by the patients, which describe their current mood or feelings and automatic 

negative thoughts, or experiences from any recent events of frustration.   

 7.2.1.2 Corpus of Natural Conversation 

 As a reference dataset for non-depressed dialogue, we have used the corpus of natural 

conversation from the University of Santa Barbara that contains hundreds of recordings of 

natural speech from all over the United States. Each speech record also contains its associated 

transcript file, where dialogues are time-stamped and ordered according to the audio recording. 

The names or identity information used in all these transcripts are fictitious. Also, the audio 

portions that contain identity information are filtered to be unrecognizable to preserve the 

anonymity of the speakers. The dataset contains a wide variety of conversations among people 

of different regional origins, ages, occupations, and social backgrounds. Such conversations 
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include natural talk, arguments, on-the-job talk, games, meetings, sales pitches, lectures, 

stories, etc. 

7.2.2 Feature Selection     

 7.2.2.1 Speaker Separation 

 Each audio record as well as the transcript file from the corpus of natural conversation 

contains speech records of multiple speakers. Therefore, given the records of mixed 

conversation, we first parse the speech from different speakers into separate files.  

 7.2.2.2 Stop Words Removal and Vocabulary Construction 

 We have identified approximately 150 stop (common) words, such as “the”, ”so”, “an”, 

“he” etc, which do not convey any meaningful information in detecting depression. Therefore, 

from the raw text record of each individual speaker, we identify and remove the stop words. In 

addition, we also remove the words that appear for less than 3 times in the overall record set. 

Finally, we add the rest of the words to a unique vocabulary set, called dictionary. Such 

dictionary contains all the unique words or terms that have appeared in the raw text record 

either as a normal conversation or depression thought records. 

 7.2.2.3 Term Frequency and Inverse Document Frequency (TF-IDF) Computation 

 We consider each word or term present in the dictionary as a feature for our 

classification and compute their corresponding TF-IDF weights. TF-IDF is a well-known 

information retrieval technique, where the term TF represents the occurrence of a word,   or 

the frequency count of a feature in a document,   (    ) with respect to the total number of 

words (  ) present in it. Therefore,  

       
    

  

 

 The TF scheme considers each word or feature to be equally important, which is less 

effective in many cases as certain words or features convey more information than others. To 

solve this problem, the Inverse Document Frequency or IDF of a word is computed that reflects 

the relative importance of a word with respect to some documents. In short, IDF scheme 
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provides higher importance to the words that appear in less number of documents. According to 

the definition, we first compute the DF (document frequency) for each word in the dictionary, 

denoted as    . This means, for each word, we count the number of documents (   ) that 

contain the word,  . Next, given the total number of documents in the collection is  , we 

compute the inverse document frequency of a word (    ) using the following equation: 

        
 

   
 

 Finally, we compute the TF-IDF weight of each word in a document as 

                       

7.2.3 Classification     

 7.2.3.1 Cross Validation 

 We apply a well-known statistical technique, called 10-fold cross validation to measure 

how accurately our classification system works. According to the 10-fold cross validation 

approach, for each fold/iteration, the entire dataset is partitioned into 10 equal sub-groups. 

Among these 10 sub-groups, 9 are selected for the training purpose and the rest one is used for 

validation or the testing purpose. Thus, in each round, the system takes disjoint training and test 

data set. However, the same operation is repeated for 10 times and the final classification 

accuracy is measured by taking the average of the accuracy from each fold. Since multiple 

rounds of partitioning and classification are considered, the approach reduces variability of the 

final classification result.  

 7.2.3.2 Feature Selection Methods 

7.2.3.2.1 Information gain. 

 Information Gain (IG) measures the number of bits of information obtained for class 

prediction by knowing the value of a feature. Let  m

iic
1  denote the set of classes. Let V be the 

set of possible values for feature f. The information gain of a feature f is defined to be: 
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7.2.3.2.2 Chi-Squared. 

 The χ
2
-statistic (χ

2
) [78] measures the lack of independence between f and c. It is 

defined as follows: 
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 where V is the set of possible values for feature f, Ai(f = υ) is the number of instances in 

class ci  with f = υ, Ei(f = υ) is the expected value of Ai(f = υ). Ei(f = υ) is computed with Ei(f = υ) 

= P(f = υ)P(ci)N, where N is the total number of instances. 

7.2.3.2.3 ℓ2,1-Norms minimization. 

 ℓ2,1-Norms Minimization, is a feature selection method which reduces the feature 

dimensionality by performing sparsity regularization on the initial feature set which gives a high 

weight to the most discriminative features and small weight to the rest of them. The optimal 

weights (coefficients) are obtained by performing ℓ2,1-Norms Minimization on the linear 

regression objective function. The minimization problem to be solved is:  

1,21,2

1min WYWX T

W 
  

 where nd

n RxxxX  ],...,,[ 21
 is the data matrix,  n

n RyyyY  ],...,,[ 21
 is the 

vector of labels (classes) and cdRW   is the matrix of coefficients to be computed. For more 

details on how to efficiently solve this optimization problem, please refer to [79]. 

7.2.3.2.4 SVM-RFE. 

 SVM Recursive Feature Elimination (SVM-RFE) is a feature selection algorithm, which 

selects the top features by deciding a ranking of the features of a classification problem by 

training a SVM with a linear kernel and removing the feature with smallest ranking criterion at 

each round. This criterion is the w value of the decision hyper plane given by the SVM. For a 

more detailed explanation of the algorithm, please refer to [80]. 
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7.2.3.2.5 SVM classification techniques. 

 Support Vector Machine (SVM) is a standard binary classification technique [81, 82] 

that selects the best hyper-plane, which provides the largest separation or margin between two 

classes. Since larger margin between two classes means lower classification error, SVM selects 

a hyper plane that has the largest distances from any training data of the two classes. Given a 

set of labeled training data set                        , where           and   ’s are input 

vectors, SVM obtains an optimal hyper-plane that linearly separates the training data set, only if 

there exists a vector   and a scalar b such that  

              ,                   

 holds. However, the optimal hyper plane can be derived using 

               , 

 where         are the arguments that maximize the margin between the two classes. 

Now, for the case, where the training data sets are not linearly separable, SVM separates the 

training set with minimal number of errors, while introducing some non-negative slack 

variables   ,          . In such a case, SVM classifies the training data set based on the 

equation: 

                  ,                   . 

 In other words, the goal of the SVM is to minimize the function 

 
 

 
          

       

 

   

 

 where   is the error penalty,      is the decision function and for a small value of    ,  

   
  

    defines the number of training errors.  

 Hence, the goal of SVM is to determine the hyper plane with arguments    and    that 

minimizes the error function as described by (4), as well as provides maximum separation 

among the rest of the training data from the two classes. 
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7.3 Experimental Results 

 We have experimented with 4 different feature selection methods (IG, χ
2
-statistic, l2,1-

Norm minimization and SVM-RFE) to reduce the dimensionality of the feature vector and have 

used SVM with RBF kernel to perform classification. To find the number of features that gives 

the highest accuracy, we have trained our classifier with an incremental number of features 

starting from 100 and going up to 2100 features in increments of 200 every time. In our 

experiments, l2,1-Norm minimization and SVM-RFE have performed comparably and 

significantly better than IG, χ
2
-statistic. The highest accuracy of 92.6% has been achieved by 

l2,1-Norm minimization with 900 features, although the accuracy was marginally above 90% 

even with 300 features, which indicates that only a few key words are enough to detect signs of 

depression in an individual. The results of applying different methods are shown in Figure 7.1. 

 

 

Figure 7.1 Classification Results for Different Approaches 
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7.4 Discussions 

 To classify different users as depressed or non-depressed using their text input, we 

have experimented with a variety of feature selection and text classification methods. Our 

results have shown that the task of automatically identifying depressed users can be 

successfully achieved with high accuracy. It means, the way people express themselves in 

writing can carry important information about their mental state and such information can be 

utilized by computer programs to identify problematic cases. These findings encourage us to 

further experiment with computer-aided methods of depression diagnosis and treatment that 

may facilitate the work of psychologists. 
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CHAPTER 8 

TAGGING AND WAREHOUSING TO QUERY HISTORICAL DATA 

 Data generated from an assistive application can be of large volume. Now, if a user 

wants to ask queries about the patient/drug history, traditional database system might not be 

fast enough to provide fast query responses from these larger volumes of dynamically 

changing, time-sensitive and location-specific data [50]. Therefore, we need special data 

structures such as a Data Warehouse built on top of the relational data to provide fast 

responses over the historical data [44, 85].    

8.1 Construction of Data Warehouse 

 Data Warehousing is a collection of decision support techniques such as OLAP, DSS 

and Data Mining that enables a knowledge worker/analyst to make better and faster decisions 

after performing time-series and trend analysis over massive amount of historical Data [83]. 

Figure 8.1 describes the architecture and subsequent steps necessary to construct a traditional 

Data Warehouse. In comparison to Traditional Relational Databases, which are optimized to 

process queries and transactions over fast changing Data Sets, Data Warehouses supports 

efficient query extraction, processing and analysis for making decision by constructing a multi-

dimensional model of storage of integrated Data from multiple heterogeneous sources.  

 

Figure 8.1 Overall Process of Data Warehouse [83] 
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 In the context of our assistive environment, we focus on time series and trend analysis 

of historical spatio-temporal Data generated from RFID Applications. Therefore, the first level 

input to our Warehousing System consists of raw RFID Data. But, Data generated from RFID 

applications contain errors and a lot of redundancy. For example, a single tag can be read 

multiple times by the same reader in a same location within a very short interval. Furthermore, 

multiple readers can detect the same tag at the same time in case the distance between these 

two readers are close and the tag comes close to the vicinity of both readers in the course of its 

movement. In order to remove the duplicate data without losing any useful or significant 

information for our analysis, efficient Data cleaning is required over these raw RFID Data. 

Table 8.1 Example Raw RFID Data for both Patients and Drugs tracking 

RFID Tag Time Location 
Patient1 T1 L1 
Patient2 T1 L1 
Patient1 T8 L1 
Patient2 T10 L1 
Patient1 T11 L1 
Patient2 T11 L2 
Patient3 T12 L2 
Patient2 T13 L2 
Patient3 T15 L2 
Patient1 T15 L3 
Patient1 T20 L3 

 

 Table 8.1 is an example of raw RFID Data generated from 3 readers at different 

locations L1, L2, L3. As we can see from the table, the same patient, Patient1 has been 

detected three times in the same location L1 within a very short interval. Therefore, after we 

clean and merge all these duplicate Data into a single row, we get final output tuples in the form 

of (EPC, Time In, Time Out, Location), which is shown in Table 8.2.  

Table 8.2 Cleansed RFID Data Sets for both Patients and Drugs tracking 

RFID Tag Time In Time Out Location 
Patient1 T1 T11 L1 
Patient1 T15 T20 L3 
Patient2 T1 T10 L1 
Patient2 T11 T13 L2 
Patient3 T12 T15 L2 

RFID 
Tag 

Time Location 

Drug1 T1 L1 
Drug2 T1 L1 
Drug1 T3 L1 
Drug1 T5 L1 
Drug2 T6 L1 
Drug2 T11 L2 
Drug2 T12 L2 
Drug3 T12 L3 
Drug3 T15 L3 
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Table 8.2 - Continued 

RFID Tag Time In Time Out Location 
Drug1 T1 T5 L1 
Drug2 T1 T6 L1 
Drug2 T11 T12 L2 
Drug3 T12 T15 L3 

 

 Here, the difference between Time Out and Time In, called Time Duration, represents 

the amount of time a particular object stays at that particular location without visiting any other 

intermediate location in between. The next step is to construct Data Cubes or Hyper Cubes by 

aggregating information across higher dimensions over these cleansed RFID Data. Any 

multidimensional storage model of Data Warehouse, such as Data Cube or Hyper Cube, 

consists of two types of tables. One type is the Dimension Tables that store path independent 

information for each type of RFID tagged objects or location. The other type of tables is called 

the Fact Table that stores observed or measured facts as well as contain pointers to the 

Dimension Tables. For example, the Dimension Table for Patient may contain different path-

independent dimensions, such as Patient’s Name, Age, Type of Disease, Stage, prescription 

and so on. Compared to Dimension Table, a Fact Table contains cleansed RFID Data, which 

are records of various time dependent observed events at various locations in our assistive 

environment. 

 However, the two common conceptual Data modeling schemes to describe these multi 

dimensional storage models are: 1) Star Schema that consists of a fact table with a single table 

for each dimension and 2) Snow Flake Schema, where dimension tables from Star Schema can 

be organized into hierarchy. Figure 8.2 displays examples of the corresponding Star and Snow 

Flake schemas related to our assistive environment. We construct Data Cubes or Hyper Cubes 

such as Patient-Drug Interactions by modeling and viewing Data in multiple dimensions of 

Patient (Name, Disease, Description, Prescription, Age), Drug (Drug No, Category, Name, 

Description, Manufacturer, Expiry Date), Time (Day, Week, Month, Quarter, Year), Location 

(Room No, Room, Description, Sub Location), a fact table containing pointers to the dimension 
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tables and so on. Our top-level cuboids contain flat summary of all Patients, Drugs, Time and 

location Data, which are called as Apex Cuboids or 0-D Cuboids. 
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(b) 
Figure 8.2 (a) Star Schema and (b) Snow Flake Schema 
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Figure 8.3 Example RFID Hyper Cube by aggregating Data up to 4 Dimensions 

  

 

Figure 8.4 Sample RFID Cuboids 

 As long as we aggregate these Data on higher level, we can construct higher 

dimensional Cubes. Figure 8.3 describes an example RFID Hyper Cube by aggregating Patient-

Drug interaction Data up to 4 dimensions. Now, two example RFID Cubes for tracking location 

of Patients over Time (month) and possible Patient-Drug interactions over Time (month) are 

depicted in Figure 8.4. Finally, we can describe the RFID warehouse as a multi level database, 

where the lower level contains the raw RFID Data generated from the application, the next level 

contains cleansed RFID records, next contains minimum abstraction level RFID Cuboids and 

the top level consists of frequently queried RFID Cuboids or hyper cubes as in Figure 8.5. 
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Figure 8.5 RFID Warehouse as a multi level Database 

8.2 OLAP Operations 

 OLAP (Online Analytical Processing) is the most commonly used technique to analyze 

complex Data from Data Warehouses. Any multidimensional model of Data Warehouse can be 

displayed in hierarchical views. The most common operations in OLAP include Slice and Dice, 

Roll-up, Drill-down and pivot [83], which can be described as follows:  

Slice and Dice: Displays subset of multi dimensional array by performing projections along 

dimensions. 

Roll-up: Grouping or Summing up Data from the most detailed level to the most generalized 

level. In short, this operation aggregates Data into more coarse-grained view by computing 

larger units along a dimension. Examples of Roll-up display are: listing Patient’s activities 

according to their disease type or summarizing daily, monthly or yearly Drug-intakes of different 

types of drugs according to their category. By aggregating the low level Data values, Roll-up 

eventually conceals these raw Data from public access and thus, can preserve Data privacy as 

well. 

Drill-down: Opposite of Roll-up that displays Data into more detailed/specific level. 

Pivot: Performs rotation. In a word, changes dimensional hierarchy or orientation of a Data 

Cube. 
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8.3 Sliding Window Techniques 

 Although Data Warehousing supports historical Data Analysis over RFID Data Stream, 

sometimes it is necessary to answer a query not over the entire history of Data, rather over the 

most recent Data [84]. One example scenario can be: “When a Patient takes the wrong 

medicine, the system should generate an alarm or report to a responsible doctor/nurse about 

this incident immediately.” In this scenario, it is not possible to first load all the arriving Data into 

DBMS (Database Management System) and then trigger the alert at real time. Because, a 

traditional DBMS does not support rapid and continuous loading of Data Items, thus making it 

difficult to support executing continuous queries like above. In order to detect abnormal or 

emergency behavior from this type of continuous Data Stream, a sliding window of the past ten 

to fifteen minutes or max one to two hours of Data needs to be considered to process the RFID 

data at real time. A Sliding Window is a very well known approximation technique to answer 

continuous queries efficiently. Here, the answer to a continuous query is completely based on 

what Data has been seen so far and can be changed/updated as soon as more Data arrives. 

Examples of one of these types of queries are Aggregate queries. Determining a suitable 

Window Size to provide fast responses is the key issue in Sliding Window techniques. If the 

window size is very large, it may not be possible to process all Data at once by keeping it into 

memory adding more delay. In the context of applying RFID technology to assistive 

environments, keeping the window size even in the range of one/two hours can be difficult to 

deal with, as the amount of Data generated in this very short period can be massive. But in real 

world, actual window size specification completely depends on the particular application. If the 

system needs to trigger an action immediately after a patient takes the wrong medicine or an 

unauthorized person carries the wrong drug, keeping the window size as small as possible does 

the best. Processing queries like Daily medicine intake or usage per patient requires updating 

the results from previous windows with more recent Data.  
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Figure 8.6 Applying Sliding Window over RFID Data 
  

Figure 8.6 shows an example of processing a continuous stream of spatio-temporal Patient-

Drug RFID Data using the Sliding Window mechanism. Each time, only the most recent events 

within the window of thirty minutes time interval is considered. 

8.4 Performance Study 

 In this section, we do a performance analysis of the Data Warehousing technique over 

raw RFID Data generated from an assistive environment. For this experiment, we have 

generated millions of synthetic RFID Data for both Patients and Drugs movements by randomly 

constructing a set of different parameters (RFID Tag, Tag Detection Time and Location) for an 

individual RFID Event. Here, we have considered the movements and the interactions among 

ten patients and ten different drugs in five different locations at several times over seven days. 

This synthetic Data set conforms to the actual RFID Data set. Because in real environment, as 

soon as an object, either a person or a drug, carrying a RFID tag comes close to a reader, the 

reader detects that tag and transmit it’s ID to the system. After receiving the ID, the system can 

record the current time of when the tag has been detected. Here, we are assuming that the 

actual time, when the tag has been detected by the reader is same as the time recorded by the 

system after its ID has been transmitted to the system. Moreover, the system can record the 

location information indirectly from the reader’s location. From the synthetic RFID Data Set, we 

have constructed Cleansed RFID Database by eliminating redundancy and merging continuous 

RFID Events generated for an individual patient or a same drug in a single location into one 

single event. The merged event contains both ‘Time in’ and ‘Time out’ for the object in that 

particular location. Depending on the Randomness of the raw RFID Data Set, the size of the 

cleansed data set varies significantly. For a completely Random Dataset of 5000 raw RFID 

Process Drug 

Patient 
Current Window 
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Data, the size of the cleaned RFID Dataset found is 4019. For Datasets containing a little bias 

such as a dataset that contains continuous RFID events for an individual patient at one single 

location for a small time interval, which is the most likely real time scenario, the size of the 

cleansed Dataset was decreased to a great extent. Figure 8.7 shows the size of different 

cleansed RFID Data Sets against the size of corresponding Raw RFID Data Sets generated 

through our application. 

 

Figure 8.7 Cleansed RFID Data Set vs. Raw RFID Data Set 

  

 In the next step, we have computed different levels of RFID Cuboids from the Cleansed 

Data Set generated from the Random Data Set. Level-1 Cuboids contain the presence of 

Patients in different locations or activities of patients over time. Level-2 Cuboids consist of 

tracking activities of all Patients by aggregating information across days and locations. We have 

constructed Level-3 Cuboids by aggregating interactions of different Drugs and Patients along 

the three dimensions of locations, family of Drugs and Patients grouped by their disease 

categories. We have also computed Level-3 Cuboids for activities of Patients in different 

locations in different times by aggregating these information across the three dimensions of 

days, locations and Patients grouped by their disease categories. After we have computed the 

Cuboids and Hyper Cubes, we have executed several queries over both the cleansed RFID 
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Data Set and the RFID Cuboids. We have executed these queries on SQL Server 2009 

installed on an Intel Core 2 Duo machine with 4GB RAM. Figure 8.8 shows the execution times 

for four different queries using Level-3 RFID Cuboids vs. Cleansed RFID Data Set. In each 

case, the Level-3 Cuboids take less time than the relational DBMS (Cleansed Data Set) by a 

noticeable amount. 

 

Figure 8.8 Query Execution Time (Level-3 Cuboids vs. Cleansed RFID Data) 

 Moreover, with the increase in the size of Data Set, the percentage improvement over 

the query execution times between RFID Cubes and Cleansed RFID Set increases more as 

depicted in Figure 8.9. In this run, we have executed a simple query of “listing all the activities of 

a single patient (P0) into one location (L0) from January 1 to January 4”. Since our fundamental 

assumption in querying into assistive environment is to deal with massive amount RFID Data 

generated through monitoring and tracking of several objects, significant performance 

enhancement can be achieved in this case by building Data Warehouse rather than querying 

over relational DBMS. 

0 

100 

200 

300 

400 

500 

600 

1 2 3 4 

Q
u

er
y
 E

x
ec

u
ti

o
n

 T
im

e 
 

(I
n

 m
il

li
se

co
n

d
s)

 

Query No. 

Level-3 Cuboid 

Cleansed RFID Data 



 

 63 

 

Figure 8.9 Performance improvement in query execution time with increasing Data Size  

8.5 Discussions 

 Our system applies two well-recognized techniques: 1) Data Warehousing and 2) 

Sliding Window Protocol for answering both statistical and real-time queries using RFID in an 

Assistive environment. Our experimental result shows, the RFID Cuboids can boost 

performance to a great extent over the relational DBMS by considering the fact that Data 

generated using RFID applications in assistive environment is very large in volume. For the 

performance analysis, we have constructed our Data Warehouse from massive amount of 

synthetic Data generated through our application. However, we have only focused on Data 

Warehousing and OLAP-based query analysis of RFID Data. Other efficient methods for Data 

Mining over RFID Data such as trend analysis, path clustering, and outlier detection remains as 

another line of future work.  

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

0 0.5 1 1.5 2 

Q
u

er
y
 E

x
ec

u
ti

o
n

 T
im

e 

 (
In

 s
ec

o
n

d
s)

 

Data Set Size (In millions) 

Level-3 Cuboid 

Cleansed RFID Data 



 

 64 

CHAPTER 9 

FRAMEWORK TO INTEGRATE AND QUERY ARCHIVE DATA 

9.1 Introduction 

 Data generated from pervasive applications can be of many different types, such as 

sensor readings, text, audio, video, medical records, etc. A pervasive application deploys 

various non-invasive sensors as an integral part of a persons’ assistive daily living to 

automatically monitor his activities. It may also deploy a less-intrusive audio and video recording 

system, based on the needs and privacy requirements of the patient. To be effective, an 

assistive environment needs to store the data generated from pervasive applications into a 

common repository and to provide the healthcare providers a flexible and easier access to that 

repository. 

 However, current advances in sensor technology allow many different sensors that use 

different technology to be used interchangeably to generate and record similar information 

about an environment. For example, a person may wear a wireless wrist-watch [86] as a heart 

rate monitor, which may also include a 3-axis accelerometer, a pressure and a temperature 

monitor. On the other hand, a Sunspot sensor [87] can be used as an accelerometer and a 

temperature sensor as well. Although, both devices can be used to generate the same 

acceleration and temperature data, the format of their representation can be very different. In 

fact, a sensor can be programmed in many different ways to deliver data in different formats. 

For example, a sunspot can be programmed to transmit either 3-axis accelerometer data or the 

angle of acceleration. Therefore, even for a simple sensor device, such as a sunspot, the data 

storage may contain data in various schemas and configurations. As a result, it is very hard for 

a caregiver or a doctor to understand and remember each such different schema to query the 

data repository. 
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 A pervasive application may sometimes refine a sensor reading specific to its settings. 

For example, sensor devices, such as a smoke/heat detector, only detect and transmit results 

when the environment reaches a predefined threshold. On the other hand, a stand-alone 

temperature sensor, such as a sunspot, can be configured to indirectly generate a heat alarm 

when the temperature exceeds some pre-specified heat threshold. Moreover, such thresholds 

and conditions can change dynamically depending on a user’s query requirements, thus making 

it highly infeasible for the system to cache all possible answers related to a user’s query 

beforehand.  

 As a solution to this problem, our system constructs a Digital Library that consists of a 

repository of sensor data collected from various pervasive applications and a flexible query 

interface for the user that requires minimum knowledge about the real metadata schemas from 

a user’s point of view.  

9.1.1 Framework     

 The framework for the sensor data repository contains datasets, such as C11, C12, …, 

Cnm, derived from many different sensors, collected over a long period of time, possibly after 

years of experiments [88]. We call each such dataset Cij, collected from various applications and 

contexts, a collection. Each collection is also associated with a metadata schema, which 

describes the format of that collection. For example, in Figure 1, the schema S1 describes the 

collection C11. A user can query over these different collections by simply using one of his 

preferred schemas, which we call a virtual schema, Sv in our framework. In  our framework, 

given a user-query Qv over the collections of different schemas, the user first provides the 

needed parts of “Map(Si -> Sv)”, the mapping for each individual schema Si of a selected 

collection to the specified virtual schema, Sv. Given that the user specifies all such required 

mappings, the system next applies these mappings to return the final query answers, denoted 

by Q1, Q2…Qn. Thus, based on our framework, a user may query on any kind and of any 

number of collections and obtain fine-grained results without knowing details about the real 
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schemas. In the future, we are planning to use this framework as the building block to obtain the 

background knowledge for automatic metadata mappings.   

 
 

Figure 9.1 Framework to query over the Digital Library 
 

 
9.1.2 Challenges     

 Sensor records may not of the same format, since they can be generated from different 

types of sensors installed in various setups, or different versions of similar sensors, with small 

variations on the record formats. Besides, the values recorded from similar sensors can have 

different semantics too. The following example shows that even for a simple scenario, such as 

monitoring “whether a door of an assistive apartment is open or not”, the system may require 

many different mappings to answer a user query. 

 A pervasive application can use variety of door sensors, which eventually produces 

door-“open/close” datasets in different formats. For example, the system may use a sensor 

based on door-mounted magnetic contacts, which denotes that the door is open (1) or closed 

(0) as an OPEN_STATUS (1/0) attribute, combined with the time of this event as an attribute 
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named TIME_DETECTED. Any accelerometer sensor, such as a sunspot, can also be mounted 

on the door to obtain similar information. Since, a sunspot can be preprogrammed in different 

configurations, one configuration may transmit and store Cartesian (x, y, z) coordinates of the 

door, while the other may compute and transmit the angle of the current position of the door. 

Such a programmable sunspot may provide both TIME_RECEIVED and TIME_BROADCAST 

attributes as well. 

 

 

Figure 9.2 Metadata Mapping between similar attributes with 
different names 

 
 
 A user may not know anything about the schema for the sensor being used to collect 

such door-data, but he still may ask a query such as “Give me the time when the door was 

open” over the collection of door datasets. Although answering such a simple query seems 

trivial, the mappings can be very different and complex. Figure 9.2 describes the simplest 

mapping scenarios, where differently named attributes convey similar information, such as 

Open and OPEN_STATUS or Time and TIME_RECEIVED from the “Virtual” and the “Magnetic” 

schemas respectively. 
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Figure 9.3 Metadata Mapping from One-to-Many 

 
 However, a metadata field from one schema can be mapped to multiple metadata fields 

from the other by applying appropriate mapping function. Hence, if a user wants to select such 

an one-to-many mapping, he needs to specify the correct mapping function as well to obtain 

meaningful results. Figure 9.3 shows one example scenario, where the field “Open” in the virtual 

schema is mapped as a function of X_COORD, Y_COORD and Z_COORD fields of the 

Accelerometer-xyz schema. Figure 9.4 shows another scenario, where a user may need to 

specify a condition even for a one-to-one metadata mapping. As shown in the example, a user 

may map the field “Open” to the field “Angle”. But, since the attribute “Angle” does not directly 

specify the open status of the door, the user also needs to specify a condition, such as “the door 

is open, if the angle is greater than at least 4 degrees” and so on. 

 However, even if the metadata field describing an attribute is the same for two 

schemas, the associated units of their values can be completely different. For example, the 

temperature can be described in either Celsius or Fahrenheit, distances can be written either in 
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feet or in meters, time can be a represented in milliseconds or as a general date/time 

expression. Therefore, in addition to field mappings, the system needs to be able to apply value 

mappings as well. 

 

Figure 9.4 Indirect Metadata Mapping 

9.1.3 Contribution     

 The system provides a flexible query interface for searching relevant records from a 

Digital Library of sensor data. Such an interface requires minimum background knowledge and 

returns results in a format chosen by the user himself. The Library also stores the history of 

mappings as part of a user profile. Thus, a user can re-use existing mappings to query over the 

same collections multiple times, thus providing minimal information. However, the system is 

flexible enough to allow the user to re-write some existing mappings or to add new conditions to 

the previously specified mappings. Our system may also suggest existing mappings from other 

user’s profiles, which helps a new user to get some idea about the mapping between schemas. 
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The flexibility of reusing and revising metadata mappings make the framework adaptive to 

different data management needs and different sensor metadata and formats. 

9.2 Description of the System 

9.2.1 Design     

 Based on the design, a user may have one of two different roles: he can either 

contribute or retrieve data to/from the repository. Whenever a user adds a new collection to the 

repository, he must also specify the metadata schema to describe that collection. Our system 

stores all such metadata schemas in the repository and stores the link between each collection 

and its corresponding metadata schema.  

 Our system also provides a suitable query interface for the users who want to search 

over the repository for relevant data. The query interface consists of a suitable window to 

browse for different collections and metadata schemas. The user can either select a metadata 

schema from the list of collections or may use a “virtual” schema, which is not used in any 

collection. The user may either query over the entire library by selecting all collections or select 

some specific collections. As soon as the user asks to execute a query, the system first checks 

the stored metadata mappings to see whether some mappings already exist in the system from 

the schemas of the selected collections to the preferred virtual schema. Our interface collects 

and displays all such mappings and asks the user to select any of the following mapping 

choices:  

1. Re-use an existing mapping. 

2. Select the mapping used last time, which is the default choice for the preexisting mappings. 

3. Specify a new mapping. This is the default option for the mappings that have not been 

specified yet. Since, initially, the system does not have any stored mappings; our interface 

asks the user to enter the mappings first. A user may only provide mappings for the fields 

that he wants to query at that moment. However, he may enter a new mapping based on 
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similar attribute names or RDF descriptions. He may also define a function to map one 

schema attribute to the others.  

4. Select the recommended mapping from the system. Since our system stores mapping 

preferences into a user profile, it can identify the most commonly used mappings by 

different users for a pair of schemas and can recommend such mappings to the user. 

 Next, as soon as the user specifies his preferred mappings, the system retrieves the 

resulting records or data from the collections and returns those to the user. The user may either 

view all such records in a separate output window or browse individual collection manually and 

only view the results for that particular collection.  

9.2.2 Implementation     

 

Figure 9.5 A Screenshot of the Query Interface 

 Our system incorporates a prototype interface in Java to store and view mappings and 

collections data from the Library. A screenshot of that interface is shown in Figure 9.5. From the 

interface, the user may express a query using the attributes listed under a particular metadata 

schema. Executing such a query is straightforward, as it does not require any mapping. 
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However, the user does not need to use any such schema to search over the collections. 

Instead, the user can select any type and number of collections and can query using a virtual 

schema. In this case, he may be asked to provide the right pair-wise mapping for each selected 

dataset of new metadata schema to his preferred virtual schema, before the query can be 

executed. The user may also specify a mapping condition using the interface and as soon as he 

saves it, the mappings become part of the user profile. However, whenever he is done with all 

the mappings, the system executes the query and returns the results to the user. 

9.2.3 Management of Mappings     

 In our framework, a mapping, Mij, from schema Si to the schema Sj is associated with a 

set of bindings Ajk:fjk(Ai1,...Ain) that derive the attribute value of Ajk in  Sj   from the attributes  

Ai1,...Ain in  Si . The expression fjk may consist of simple arithmetic operations, such as the 

comparison of an attribute value with a constant threshold, and string manipulation operations, 

such as string concatenation. These expressions are represented as abstract syntax trees and 

are stored in a mapping repository along with the rest of the mapping information. When a query 

is expressed in the schema Si and the mapping Mij is selected to query the data collections that 

conform to the schema Sj, then the query attributes are mapped to the Sj attributes using the 

expression fjk and the derived query is used for querying the data collections that match Sj. 

9.3 Discussions 

In short, our system incorporates a framework for the repository of heterogeneous sensor data. 

The system also provides a prototype for a flexible query interface, which allows the user to 

search over the collections of different metadata schemas using minimal background 

knowledge. The system then collects and stores possible mappings from various users 

incrementally, which could work as a building block to derive commonly accepted mappings. As 

a future work, we are planning to use our mapping repository as a knowledge base to facilitate 

automatic metadata mappings.  
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CHAPTER 10 

CONCLUSION 

  

 In this dissertation, we have presented a PeopleTrack system that tracks multiple 

people in a scene simultaneously. The system provides different views to remotely monitor the 

persons living in an assistive environment as well as to identify their activities and behavior. The 

system also collects and stores the spatio-temporal data generated from the deployed sensor 

networks to monitor and track the person living in the assistive environment. In addition, the 

system builds efficient data models on top of the Data Store, which makes it faster to respond to 

the historical queries. The Query Interface provided by the system offers a generic view of the 

collection of data stored in the Database, irrespective of their schemas.  

 Our result shows that combination of different passive sensors, which are less-intrusive, 

can be deployed in an assistive environment to identify and track activities. We have shown the 

effectiveness of such passive sensor technology to solve some important problems, such as 

medicine intake and depression assessment, which can be further generalized to other similar 

human-centered activities and conditions. Furthermore, we have shown that integration of data 

from heterogeneous sources, i.e. data from multiple modalities, improves the accuracy of the 

overall results. 
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