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Abstract 

TORSIONAL ANALYSIS OF A COMPOSITE I-BEAM  

 

Vishal Sanghavi, M.S. 

 

The University of Texas at Arlington, 2012 

 

Supervising Professor:  Wen S. Chan 

A simple methodology for analysis of thin walled composite I-Beam subjected to 

free torsion and restrained torsion is developed. Classical Lamination Theory is extended 

from the laminate level to the structural level for analysis purpose. 

The developed expressions for shear center, equivalent torsional rigidity and 

equivalent warping rigidity for a composite mono-symmetric I-Beam depends on the 

material properties, ply stacking sequence, fiber orientation and geometry 

The results from the proposed theory gives better agreement with the ANSYS™ 

results than the traditional smeared property approach.  
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Chapter 1  

Introduction 

1.1 General Introduction 

A composite material is the one in which two or more materials are combined on 

a macroscopic scale to get the useful third material whose mechanical performance and 

properties are superior to those of the constituent materials acting independently. The 

basic difference in a composite material and an alloy is the macroscopic examination of 

the material wherein the components can be identified by the naked eye in the former. A 

composite material has two phases: one is called as reinforcement which is stiffer & 

stronger and the less stiff, continuous phase is called the matrix. Composites have the 

following advantages over monolithic materials 

 High Specific stiffness  Design flexibility 

 High Specific strength  Low thermal expansion 

 Low density  Parts count reduction 

 Corrosion resistance  Easy fabrication 

The basis of the superior structural performance of composite material lies in 

high specific strength, high specific stiffness and in the anisotropic & heterogeneous 

character of the material. 

The technology of composite materials has experienced a rapid development in 

last two decades. Because of the aforementioned reasons composites are now replacing 

isotropic materials and one of the major revamp is taking place in the aerospace 

industries where weight saving and  cost competitiveness are of major importance. 

Composites are now used as primary load carrying structural members in aircrafts. 

Thin-walled beams with open and closed cross-sections made of isotropic and 

composite materials are used extensively in the aerospace industry, both as direct load 



 

2 

 

carrying member and as stiffeners in panel construction. Most composite structures are 

designed as assemblies of beams, column, plates and shell. Beams are structural 

members that carry bending loads and have one dimension much larger than the other 

two dimensions (width and height). From geometric point of view,  

 Beams and columns are one dimensional elements  

 Plates and shells are two dimensional elements 

Most of the beams are thin-walled and composed of assembly of flat panels. In 

addition to weight savings generated by certain composite materials, a thin walled 

composite beam has the extra advantage of allowing the designers to tailor the material 

properties of different parts of the beam cross section. This enables the shape of the 

cross section to be exploited to the fullest by arrangement of the unidirectional plies 

within the laminated composite panels. But due to lack of well established analytical 

solutions we are yet not able to explore the maximum use of composite materials.  

 

Design Validation 

Presently, design can be validated by the following methods: 

 Closed form Analytical solutions 

 Finite Element Method 

 Testing 

Composite structures are normally certified by test and not by analysis. But testing in 

nature is very tedious, expensive in terms of cost and time and cannot be performed for 

bulk specimens. In such cases, Finite Element Methods (FEM) and software are handy 

as they can analyze large complex structures with high accuracy. However, the accuracy 

of FEM is mostly dependent upon the quality of modeling and boundary conditions 

applied. An incorrect model will result in meaningless solutions. Hence, it is 
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recommended to perform an initial analysis on a simplified structure using the classical or 

analytical solutions. Added advantage of analytical solutions are, that once they are 

programmed into a mathematical software like MATLAB, the parameters can be easily 

modified to study the changes and effect of each variables. The FEM and analytical 

solutions should be checked for the validation of FEM model as well as analytical 

solution. Thus at initial stages of development we should rely on analytical closed form 

solutions. Once the parameters are finalized we should go for FEM as here we can add 

more complexities in modeling the structure and once the design passes the FEM we 

should go for real time testing of article. This will ensure saving of time, cost and more 

insightful design experience.   

1.2 Why Torsion of Composite I-Beam structure? 

As a guide line for designers, if a section has to carry torsional load then a closed 

beam should be preferred. Although the open sections are not designed to carry torsional 

loads they have to resist some magnitude of torsion for e.g. when an I-beam is used as 

stiffeners for airplane wings. Torsional loading causes warping displacements. Warping, 

in broader terms can be defined as the axial displacements taking place in a thin-walled 

beam due to a non axial loading. The torsional analysis of thin walled beams forms a 

basis in determining the longitudinal behavior of beams which are either restrained 

against warping or that induce warping. If a thin walled beam is restrained against 

warping in any way leads to warping stresses, which are axial and direct.  

Warping stresses are quite significant compared with the bending stresses 

predicted by the classical theories and they are usually not considered in preliminary 

designs. 
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1.3 Literature Review 

As torsional loads are normally applied to closed sections, there are number of 

direct analytical methods for the torsional analysis of thin walled composite box beams. 

But not many literatures were found which discusses the torsional analysis of an open 

section.  

Springer and Kollar [1] in their book have described the warping and torsional 

stiffness and the location of shear center of open cross-section beams which possess an 

orthotropic layup of each wall segment. The formulation can be applied for the beams 

with unsymmetrical laminate layup and stresses and strains for the individual plies can 

also be evaluated. 

Kollar and Pluzsik [2] formulated the stiffness and compliance matrices of a 

beam with arbitrary layup with plain strain consideration and further extend the theory to 

formulate expressions for torsional, axial, bending and shear loads on the open and 

closed section beams [1].The algebraic steps for this theory are long and laborious. 

Ata and Loughlan [3] & [4] proposed the approach which simply makes use of 

existing theories of torsion for isotropic beams and modifying them suitably to account for 

the composite materials. It is basically intended for symmetrical laminates which exhibits 

membrane orthotropy that is            (No axial shear coupling). They compared 

their analytical solution with FEM as well as experimental results and found good 

correlations between all the 3 methods. 

A simple methodology for analysis of thin walled composite beams subjected to 

bending, torsion, shear and axial forces was developed by Massa and Barbero 

[5].Geometric properties used in classical beam theory such as area, first moment of 

area, center of gravity etc were replaced by mechanical properties such as axial stiffness, 

mechanical 1
st
 moment of area, mechanical center of gravity to incorporate both 
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geometry and material properties. The methodology takes into account the balanced and 

symmetrical configuration as they are widely used. They also included the assumptions 

of Wu and Sun for slender thin walled laminated beams in the formulation of the 

constitutive equation. 

Salim and Davalos [6] expanded the Vlasov’s theory to perform the linear 

analysis of open and closed sections composite sections. All the possible elastic 

couplings were taken into account and beam assumptions from Gjelsvik’ book,” The 

theory of thin walled bars” was used to derive the equations for N,   ,   , T,   ,   , and 

   and    defined by Chandra and Chopra by equating the strain energy per unit length. 

Warping effects were also studied and analytical solution for closed section was 

compared to the experimental results for the verification purpose.   

Pultruded FRP bars with open section have relatively low transverse shear 

modulus in relation to their axial and flexural modulii. Thus it might be expected that 

shear deformation would influence the restrained torsional warping. But Roberts and 

Ubaidi [7] claims that their theory indicates that the influence of shear deformation on 

restrained warping torsional stiffness of such members is not significant. They developed 

an approximate theory based on Vlasov’s thin walled elastic beam theory and compared 

the theoretical results with experimental results which support their claims of negligible 

influence of shear deformation. For the experiments they considered I-beam with equal 

flange width and thickness. 

Ramesh Chandra and Inderjit Chopra [8] studied the static structural response of 

composite I-Beam with elastic couplings subjected to bending and torsional load by 

neglecting the shear deformation and an analytical solution developed on the basis of 

Vlasov’s theory. They also studied the constrained warping effects, slenderness ratio and 

fiber orientation and stacking of plies of beam and validated the results with experiments. 
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According to the theory the bending torsion behavior of I-Beam is influenced by bending-

twist and extension-twist couplings of plate segment, transverse shear deformation has a 

negligible influence on the structural behavior of symmetric I-Beam under bending and 

torsional loads and the torsional stiffness of I-beams is significantly influenced by 

restraining the warping deformation of the beams. 

Jaehong Lee [9] combined the classical lamination theory with the Vlasov and 

Gjelsivk theory of thin walled elastic beam to find the closed form solution for center of 

gravity (C.G.) and shear center. The method is application to any arbitrary layup and 

cross-section. He showed that the location of C.G. and shear center is dependent on the 

fiber angle changes in flanges and web. 

Skudra, Bulavs, Gurvich and Kruklinsh in their book [10] discussed about the free 

and pure torsion of a laminated beam considering the interply shear stresses thus 

including the edge effects. Using the basic equilibrium conditions and the Classical 

lamination theory they developed equations for torsional stiffness in free and pure torsion 

condition along with the expressions for stresses and strains 

Gay, Hoa and Tsai have describes an equivalent Prandtl stress function for 

composite beams and developed the torsion equations of the laminated beams [11]. 
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Chapter 2  

Torsional Behavior of an Isotropic I-Beam 

2.1 Overview 

An aircraft is basically an assembly of stiffened shell structures ranging from the 

single cell closed section fuselage to multi-cellular wings and tail- surfaces each of them 

subjected to bending, shear, torsional and axial loads. It also consists of thin walled 

channel, T - , Z- , “top hat” or I – sections, which are used to stiffen the thin skins of 

cellular components and provide supports for internal loads from floors and engine 

mounting. Thin-walled structures have a high load-carrying capacity, despite their small 

thickness [12]. The flat plates develop shear forces, bending and twisting moments to 

resist transverse loads. The twisting rigidity in isotropic plates is quite significant and 

hence considered stiffer than a beam of comparable span and thickness. Thin plates 

combine light weight and form efficiency with high load-carrying capacity, economy and 

technological effectiveness. As a result of all these advantages thin walled structures are 

preferred in all fields of engineering. Structural members are normally classified as open 

section beams and closed section beams. I -, Z- , C – channel are examples of open 

section beams as shown in Figure 2-1 while box beam, hat section, tubular sections are 

all examples of closed section beams as in Figure 2-2. 

 

Figure 2-1 Open Section 
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Figure 2-2 Closed Section 

Usually closed sections are considered if the beam is to be designed for torsion 

as they have greater torsional stiffness and also less warping due to twisting. Any 

structural arrangement in which the loads are transferred to an open section by torsion is 

not an efficient design for resisting loads. In large number of practical designs, the loads 

are usually applied in such a manner that their resultant loads and forces pass through 

the centroid. If the sections are doubly symmetric than the shear center and centroid 

coincides thus eliminating torsional loads. 

In some cases, it is inevitable and we have to ensure open sections can carry 

small magnitude of torsional loads. 

2.2 Torsional behavior of noncircular and open sections 

When a circular cross-section shaft is twisted and the deformations are small, the 

cross-section remains in the plane. The shearing stresses which are induced due to 

torsion acts only in the direction perpendicular to the radius vector and hence they only 

twist without any axial displacement. But this is only true for the circular sections. For 

other sections the shearing stress has component both perpendicular to the radius vector 

and in the direction of the radius vector. This extra shearing force results in a shearing 

strain both within the plane of the cross section and normal to it. This out- of -plane 

distortion is called as warping and it will exist for all but circular cross sections subjected 

to twisting [14]. 

For bars of non - circular sections subjected to twisting, two types of phenomena 

are observed. If the member is allowed to warp freely, then the applied torque is resisted 
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only by torsional shear stresses called as St. Venant’s torsional shear stresses. If the 

member is not allowed to warp freely, that is if the cross section is axially constrained the 

applied torque is resisted by St. Venant’s torsional shear stresses along with the Wagner 

torsion bending torque also called as Warping Torsion both exist in the section. 

Cross-section of a thin walled beam subjected to a restrained torsion 

experiences two types of warping, one is the primary warping and other is the secondary 

warping. Warping of the mid-plane of the cross section which is assumed constant across 

the wall thickness is classified as primary warping. Warping of the section across its wall 

thickness is termed as secondary warping. A section undergoes primary warping if the 

constraints cause the development of two opposite flange shear forces which in turn 

reduces the effect of the torsional load applied. Cross-sections which possess primary 

warping are as shown below in Figure 2-3. Along with primary warping these sections 

also undergo secondary warping. The Figure 2-3 also shows the cross-sections which 

undergoes secondary warping only. In sections which possess primary warping, 

secondary warping and effects of restrained secondary warping are usually neglected as 

they are generally much less than primary warping and the effects of restrained primary 

warping. However if the section exhibits only secondary warping, then the effect of 

restrained secondary warping is quite significant and should not be ignored. For closed 

beams the warping displacements are considered to be of primary nature. For the 

analysis of I-beam we consider primary warping only. 
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Figure 2-3 a) Open Sections possessing primary warping and secondary warping 

 b) Open sections possessing secondary warping only 

The assumptions in evaluation of the theory of torsion of thin walled beams are 

as follows [3]: 

1. Cross-section of any beam, whether of open or closed section, is stiffened against 

distortion, i.e., remains undistorted in their own plane after loading. 

2. Shear stresses normal to beam surfaces are neglected 

3. It is generally agreed that thin wall theory many be applied with reasonable accuracy 

to sections for which the ratio 
     

  
      

where      is the maximum thickness in the section and b is a typical cross sectional 

dimension. 
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2.3 Calculation of Shear Center of I – Beam 

Shear Center is defined as the point in the cross section where the bending and 

torsion are decoupled. That is if the lateral or transverse load pass through this point it 

produces only bending without twisting. It may also be shown by the use of reciprocal 

theorem that this point is also the center of twist of section subjected to torsion. In most of 

the cases it is difficult to guarantee that a shear load will act through the shear center. But 

the shear load may be represented by the combination of shear load through the shear 

center and torque. The stresses can then be super positioned. Therefore, it is essential to 

calculate and locate the shear center in the cross section. When a cross-section has an 

axis of symmetry the shear center must lie on that axis. 

Thus if we assume that the cross section supports the shear loads    and    such 

that there is no twisting of the cross section and also as there are no hoop stresses in the 

beam the shear flow and direct stresses acting on an element of the beam wall are 

related by the below mentioned equilibrium equation [12]: 

 
  

  
   

   

  
   (2.1)  

Where, 

 

     
           

         
 

    
           

         
 

    (2.2)  

q = shear flow = shear force per unit length =     

  = shear force  

t = thickness 

   = axial stress  

   = Moment about z axis 

   = Moment about y axis 

   = Moment of Inertia about y –y Axis 
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   = Moment of Inertia about z –z Axis 

    = Product Moment of Inertia 

   = Shear Force in y – direction 

    = Shear Force in z - direction 

Therefore we get, 

 
   

  
   

 
   

  
    

   

  
   

         
 

    

   

  
    

   

  
   

         
 

   (2.3)  

We also have 

     
   

  
 (2.4)  

     
   

  
 (2.5)  

from Eqs. (2.3), (2.4) and (2.5) we get  

 
   

  
   

            

         
 

    
           

         
 

   (2.6)  

Substituting Eqs. (2.6) in (2.1) gives 

 
  

  
     

            

         
 

     
           

         
 

    (2.7)  

Integrating from s = 0 to s =s which would be the integration of complete cross – section 

we have, 

  
  

  
  

 

 

     
            

         
 

       
 

 

  
           

         
 

       
 

 

 (2.8)  

If the origin for s is taken at the open edge of the cross – section, then q = 0 when s = 0 

and Eq (2.8) becomes, 

         
            

         
 

       
 

 

  
           

         
 

       
 

 

 (2.9)  
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Now, considering I – Beam, as symmetrical about Z – axis     = 0 and also to find 

the shear center we would apply only   . We assume that    is applied at shear center 

which is denoted by S.C in the Figure 2-4 and is     away from the center of the I-beam 

Figure 2-4. 

Now shear flow would be, 

         
   

  
       

 

 

 (2.10)  

   is moment of Inertia about the z – z axis and is of the form of: 

      
      

 

  
   

      
 

  
    

    
 

  
   (2.11)  

 
 

Figure 2-4 I-Beam 
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Calculating shear in each flange and web: 

Top flange: 

From Eq. (2.10) we can write the shear flow in the top flange as: 

         
   

  
          

  

 

  

therefore, 

    
   

 
      

        
   

  
     

   

 
  

  
 
     

 

         
   

  
     

     

 
  

  
 

 
  (2.12)  

Similarly shear flow in the bottom flange can be written as: 

         
   

  
     

     

 
  

  
 

 
  (2.13)  

Shear flow for web would be zero (0). 

Now considering the force balance at the center of the I beam we get 

             
 

  
       

 

  
  (2.14)  

Substituting Eqs (2.12) and (2.13) in (2.14) we get, 

            
   

  
     

     

 
  

  
 

 
 

   

 

 
 

 
       

   

  
     

     

 
  

  
 

 
 

   

 

  
 

 
    

Therefore        
 

   
 
      

 

  
  

      
 

  
  (2.15)  

The above shear center is at a distance of     from the center of the I - beam. 

Now, in the above case we did the force balance with respect to the midpoint of I- Beam, 

but if we take the force balance with respect to the mid-plane of the bottom flange and if e 

represents the distance of the shear center from that point, then we get the following 

equation 
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Thus,      
 

  
 
      

 

  
  (2.16)  

   can be calculated using Eq. (2.11). 

Also, if we assume that the thickness of the plates considered are too thin we can ignore 

the higher powers of thickness in the moment of inertia.  

      
      

 

  
   

      
 

  
  (2.17)  

Substituting Eq. (2.17) in Eq. (2.16), 

 
     

 

 
      

 

  
   

      
 

  
 

  
      

 

  
  

 

Thus,      
       

 

      
         

  
 (2.18)  

The above Eq (2.18) is similar to the equation of shear center mentioned in [15]. 

If            , then 

      
    

 

   
      

  
 (2.19)  

The above Eq (2.19) is similar to the equation of shear center mentioned in [16]. 

The comparison of the shear centers with different forms is as shown in the Table 2-2 for 

cases discussed in Table 2-1 
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Table 2-1 Description of Case 1, 2, 3 

Table Dimensions (inches) Case 1 Case 2 Case 3 Material Properties 

Width of top flange 0.25 0.5 0.625 

                  
                   

        

Width of bottom flange 1.0 0.75 0.625 

Height of web 0.5 0.5 0.5 

Thickness of top flange 0.04 0.04 0.04 

Thickness of bottom flange 0.05 0.05 0.05 

Thickness of web 0.02 0.02 0.02 

The shear centers mentioned are measured from the base of the bottom flange. 

Table 2-2 Isotropic Shear center comparison 

Geometry 

Shear center by 
ANSYS™ BEAM 

TOOL 
(inch) 

Shear center by 
Eq. (2.15) 

(inch) 

Shear center by 
Eq. (2.18) 

(inch) 

Shear center by 
Eq. (2.19) 

(inch) 

Case 1 0.0321 0.0317 0.0317 0.0333 

Case 2 0.1297 0.1294 0.1294 0.1495 

Case 3 0.2672 0.2672 0.2672 0.2975 

 

2.4 Uniform Torsion in Rectangular Section 

When a torque is applied to non- circular cross sections like the rectangular cross 

section in our case, the transverse section which are plane prior to twisting, warp in the 

axial direction and the plane section no longer remains plane after twisting. But as long 

as the warping is not constrained we can apply the same theory of St. Venant’s Torsion 

(   ) which is for the circular cross-section by replacing it with the appropriate torsional 

constant (K) for the rectangular section. 

       
     

  
 (2.20)  

Where  

G = shear Modulus 

    = the total angle of twist in free torsion case 

K = polar moment of inertia / torsional constant 



 

17 

 

x = direction along the axis of the member 

The behavior of I-Beam under free torsion condition is shown in Figure 2-5. It has 

been shown that when a cross – section is of the open type and consists of several thin 

plate elements rigidly attached with one another to form the “thin walled” shape, K can be 

taken as the sum of the torsional constants of each of the part. K is the factor dependent 

on the form and dimensions of the cross-section. For circular section, K is the polar 

moment of inertia equal to J; for other sections K is less than J and may be only a very 

small fraction of J. I-Beam is made of 3 rectangular sections viz. upper flange, bottom 

flange and web. 

The torsional constant K, for a rectangular section is usually assumed to be: 

    
   

 
 (2.21)  

where, 

b = width of the section and t = thickness 

Thus, for I-beam the torsional constant would be: 

Method 1    
      

 

 
  

      
 

 
  

    
 

 
 (2.22)  

But, this condition is true only if the ratio of     approaches infinity or is very 

large; however for the ratio in excess of 10 the error is of the order of only 6 percent. 

Obviously the approximate nature of the solution increases as     decreases. Therefore, 

in order to retain the usefulness of the analysis a factor μ is included in the torsional 

constant, viz. 

    
    

 
 (2.23)  

Values of μ for different types of sections are found experimentally and quoted in various 

references [30] and listed below in Table 2-3: 
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Table 2-3 Width reduction factor table 

 
   1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 10.0 ∞ 

  0.423 0.588 0.687 0.747 0.789 0.843 0.873 0.897 0.936 0.999 

 

 Thus, for I-beam the torsional constant would be: 

Method 2    
         

 

 
  

         
 

 
  

      
 

 
 (2.24)  

  

Also, the width correction factor can be computed by the method mentioned 

below. The torsional constant for rectangular section as found in [15] can be used to 

calculate the K for overall I-Beam. 

The equations mentioned are in a simplified form involving an approximation, 

with a resulting error no greater than 4 percent. 

 

      
   

 
  

   

 
 
 

 

 
 
 
 
  

 
       

 
   

   

 
   

 
  

  

 

   
 
   

   
 

    
   

 
  

 

 

 

 
 
 
 

 

(2.25)  

 

      
   

 
  

   

 
 
 

 

 
 
 
 
  

 
       

 
   

   

 
   

 
  

  

 

   
 
   

   
 

    
   

 
  

 

 

 

 
 
 
 

 

(2.26)  

      
  

 
  

  
 
 
 

  
  

 
       

 
  

   

 
  

   
     

 
  

   
 

    
  

   
    (2.27)  

Method 3 K =                   (2.28)  

GK is also known as the Torsional rigidity of the section. 
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Figure 2-5 Free Torsion to I-Beam  

A comparison of the Torsional stiffness GK for an isotropic I-Beam, where K is calculated 

by 3 different methods mentioned above is presented below in Table 2-4: 

Table 2-4 Torsional Stiffness comparison for Isotropic I-Beam 

Case 
Torsional Stiffness, GK or GJ (         

Method 1 
Eqs (2.22) 

Method 2 
Eqs (2.24) 

Method 3 
Eqs (2.28) 

1 197.2 188.79 189.51 

2 176.46 168.35 168.77 

3 166.09 159.45 158.4 

 

 We observe that the torsional stiffness by method 2 and method 3 are quite 

comparable and hence we can use any of the width correction method to calculate the 

torsional stiffness. 

2.5 Non-Uniform Torsion in Rectangular Section 

When the warping deformation is constrained, the member undergoes non-

uniform torsion. The presence of warping normal stresses in a thin walled, open cross-

section member depends upon how the member is supported and how it is loaded. We 

will consider a cantilever type of arrangement where one end of the I-Beam is 

constrained and not allowed to warp while the other end is allowed to warp freely. The 
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warping restraint causes bending deformation of the flanges in their plane in addition to 

twisting. The Bending deformation is accompanied by a shear force in each flange.  

 

Figure 2-6 Restrained warping condition in I-Beam 

Since, the flanges bend in opposite directions, the shear forces in two flanges are 

oppositely directed and form a couple. This couple, which acts to resist the applied 

torque, is called as the Warping torsion (  ) as shown in Figure 2-6. This theory was 

originally developed by Wagner and Kappus, and is most generally known as the Wagner 

torsion bending theory. The complete derivation of    is very well documented in [12], 

[13], [14] and also [15]. 

        
   

   
 (2.29)  

E = Axial Stiffness  

  = Warping Constant, analogous to K, torsional constant 

   = warping rigidity of the section, analogous to GK, St. Venant’s torsional stiffness. 

For I beam [15],  

    
                

      
  

          
         

  
 (2.30)  

The Torque will be resisted by a combination of St. Venant’s shearing stresses 

and warping torsion. That is  

X 

Z 
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             (2.31)  

From Eqs. (2.20), (2.25) and (2.31) we have, 

       
  

  
   

   

   
  (2.32)  

may now be solved for  
  

  
. Rearranging and writing     

  

  
 we have, 

 
   

   
    

  

  
      

  

  
 (2.33)  

Applying the boundary conditions 

 The slope of the beam is zero when x = 0 and  

 The Bending moment is zero at x = L 

 
  

  
  

 

  
   

           

      
   (2.34)  

The first term in Eq. (2.32) is seen to be the rate of twist derived from the St. 

Venant torsion theory. The hyperbolic second term is therefore the modification 

introduced by the axial constraint. The Eq. (2.32) can be further integrated to find the 

distribution of angle of twist  , thus, 

    
 

  
   

           

       
 

       

       
     (2.35)  

Thus we can also get the following, 

     
  

  
  

 

  
   

           

      
  (2.36)  

 

      
   

   
  

 

  
 
             

      
  (2.37)  

 

       
   

   
   

 

  
 
              

      
  (2.38)  
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St. Venant Shearing stresses in flanges: 

         
  

  
 (2.39)  

where n varies from -
   

   to +
   

   for upper flange and -
   

   to +
   

   for 

bottom flange.              in the mid-plane of the flanges and maximum shear stresses 

occurs on the surface at the mid-point of the thickest part of the section. By Eq (2.35)and 

Eq (2.39) we get, 

         
 

  
   

           

      
  (2.40)  

 

Warping normal stresses:  

In the presence of axial constraints, 
  

  
 is no longer constant so that the 

longitudinal strains are not zero and direct stresses (     are induced and given by the 

below equation.  

           
   

   
 (2.41)  

where    is the area swept out by a generator, rotation about the center of twist, 

from the point of zero warping and given as below. Detailed description of       are 

avoided in this literature but described in detail in reference [12]. 

           
 

 

 (2.42)  

 

               (2.43)  

 

          
       

 

      
         

  
 (2.44)  
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            (2.45)  

 

          
       

 

      
         

  
 (2.46)  

 

           
   

 
           

   

 
           

   

 
             

   

 
  (2.47)  

From Eqs (2.37) (2.41) (2.42) (2.43) (2.44) (2.45) (2.46) & (2.47) we get,  

 

              
       

 

      
         

  
 
   

 
   

 

  
 
             

      
   

              
       

 

      
         

  
 
   

 
   

 

  
 
             

      
   

(2.48)  

The above expression for stresses matches with the stress formulation in reference [15]. 

 

Warping 

The expression for primary warping ( ) is as below. 

        

  

  
 (2.49)  

From Eqs (2.35) (2.42) (2.43) (2.44) (2.45) (2.46) (2.47), 
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(2.50)  

 

Shearing force: 

The shearing force (    induced in the flanges due to the constraints are given 

as, 

     
   

  
 (2.51)  

 

       
   

   
 (2.52)  

 

         
            

      
  (2.53)  
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Warping bending moment: 

The expression for maximum bending moment which is creating in the flanges 

due to restrained torsion is as below: 

                
      

 

  
   

       
 

      
         

  
  

   

   
 (2.54)  

 

                
 

  
 
             

      
  (2.55)  

 

              
            

      
  (2.56)  

 

              
            

      
  (2.57)  
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Chapter 3  

Finite Element Method 

3.1 Overview 

Most of the real-world problems are too complicated to be solved analytically, 

because of various reasons like line geometry, boundary conditions, environmental 

conditions, etc. The complexity increases if we consider orthotropic material properties. If 

all these things are considered the analytical solutions are practically unreachable. 

Numerical Methods become the only feasible methods to solve those problems. The finite 

element method is one of the most successful numerical methods for boundary-value 

problems. 

A basic idea of finite element method is to divide the entire structural body into 

many small and geometrically simple bodies, called elements, so that equilibrium 

equations can be written down and all the equilibrium equations are then solved 

simultaneously. The elements have finite size and hence the method is named Finite 

Element Methods (FEM). Nowadays, a large number of commercial programs exist with 

many finite element analysis capabilities for different engineering disciplines. They help 

solve a variety of problems from a simple linear static analysis to nonlinear transient 

analysis. A few of these codes, such as ANSYS™ or ABAQUS™, have special 

capabilities to analyze composite materials and they accept user programmed element 

formulations and custom constitutive equations. These softwares are commonly 

organized into three different blocks: the pre-processor, the processor and the post 

processor.  

In the first block, commonly called pre-processor, we define the geometry, 

material properties and elements for the FEM. One should have good knowledge about 

these things as they have major contribution in the final results. With this information, the 
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processor computes the stiffness matrix of the model. In the second stage, we apply the 

boundary conditions and forces, which help in the formation of equilibrium equations that 

are later solved simultaneously. In the last block, the post processor, the derived results, 

such as strain, stress and failure ratios are computed and can be reviewed using graphic 

tools. We are going to use ANSYS™ 13 as the FEM tool to solve the isotropic and 

composite I – Beam problem. 

3.2 Element Type 

ANSYS™ has a variety of elements in its library. One should carefully select 

elements for modeling as it determines the element formulation used like the degree of 

freedom set, the interpolation functions,  1D, 2D or 3D space etc, Some of the element 

types are listed below which are used in ANSYS™ for composite modeling. For detailed 

understanding one can refer ANSYS™ help files [22]. Below are some highlights from the 

mentioned references.   

1–Dimensional Elements: 

BEAM188 and BEAM189 – These are 3-D finite strain beam elements. They are 

based on Timoshenko Beam Theory. 

 

2–Dimensional Elements: 

2-D elements are widely used in composite analysis. ANSYS™ offers a wide 

range of shell elements with different properties. Classical Lamination Theory of 

composites is based on Kirchhoff thin shell theory. In classical Kirchhoff thin shell theory 

it is difficult to derive finite element for other than very simple rectangular geometries. 

This is because to derive the bending strains we need to differentiate the transverse 

displacement twice. It is also difficult to derive shape function and Jacobian matrix for 

arbitrary shaped elements. So typically, to overcome the shortcomings of Kirchhoff theory 



 

28 

 

we use Mindlin theory. Mindlin theory takes transverse shear deformation into account. 

Also the Kirchhoff theory only provides acceptable deflections, natural frequencies and 

critical buckling loads for thin plates whose ratio of thickness to the characteristics 

dimension of mean surface is less than     . Mindlin theory, in which the transverse 

shear strains are constant through the plate thickness, gives satisfactory results for 

flexure, vibration and buckling of moderately thick plates whose ratio of thickness to the 

characteristic dimension of mean surface is between     and     . Hence, shell 

elements in ANSYS™ are based on Mindlin theory. Also the elements can be layered or 

non-layered that is, one can specify individual layer properties or can specify the ABD 

matrices directly. All shell elements assumes plane stress condition. 

SHELL93: 

 It’s a 4 node element 

 Typically used for sandwitch applications 

 Normally not a preferred type of element 

SHELL181: 

 Suitable for analyzing thin to moderately thick shell structures 

 4 node element with 6 degrees of freedom at each node 

 Well suited for linear, large rotation and large strain non-linear applications 

 Works on first order shear deformation theory (usually referred as Mindlin shell 

theory) 

 Layered shell element and specific forms are highly accurate even in coarse 

mesh 

 Includes linear effects of transverse shear deformation and also Interlaminar 

shear stresses evaluated at the layer interface are available 
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 A maximum of 250 elements are supported 

SHELL281: 

 Suitable for analyzing thin to moderately thick shell structures 

 8 node element with 6 degrees of freedom at each node 

 Finite strain shell. Well suited for linear, large rotation and large strain non-linear 

applications 

 Works on first order shear deformation theory (usually referred as Mindlin shell 

theory) 

 Includes linear effects of transverse shear deformation and also Interlaminar 

shear stresses evaluated at the layer interface are available 

 Layered shell element 

Shell elements like SHELL91, SHELL99, and SHELL43 etc are no longer 

available in ANSYS™ 13. 

 

3-Dimentional Elements; 

A 2D element assumes plane stress conditions, so we will never be able to get 

the stress in the third direction. Also for thick composite laminates SHELL elements are 

normally avoided. 3-dimensional elements are preferred when we are modeling 

micromechanics model, when edge stresses are important as in the case of delamination 

analysis, also when we are interested in the stresses near the high stress concentration 

area, discontinuities etc. Use of 3D elements should be done wisely as they need high 

computer space to store the data, high computer configuration to solve the large amount 

of equations and thus directly related to cost of the analysis. 

SOLID46: 

 Layered version of 8-node 3D element SOLID45 
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 Can be used to model thick layered solids and allow 250 uniform thickness layers 

per element 

 Finer meshes are necessary for accuracy 

SOLID185: 

 3-D layered element with 8 nodes with 3 degrees of freedom on each node 

 The element has plasticity, hyper-elasticity, stress stiffening, creep, large 

deflection and large strain capabilities 

 Allows for prism and tetrahedral degenerations when used in irregular regions 

SOLID186: 

 Layered Solid with 20 node 3-D element with 3 degrees of freedom at each node 

 Allow up to 250 layers and full nonlinear capabilities including large strain 

SOLID191: 

 Layered Solid with 20 node 3-D element with 3 degrees of freedom at each node 

 Allows 100 layers per element 

 Element does not support non linear materials or large deflections 

3.3 Meshing 

It is advisable to use mapped mesh for meshing the composite structure in 

ANSYS™. Also rectangular mesh should be used and triangular mesh should be avoided 

for composite modeling. The detailed explanations for this section can be found in the 

Master’s thesis work of Farhan [21] and Chen [20]. Mesh density is also a critical aspect. 

It is normally preferred to have finer mesh in the region where load is applied, the region 

in which we are interested to get the stress and strain results and coarse mesh is 

acceptable in the other region of the structure. This can help to reduce the element 

numbers and make the model run faster and also cost effective. 
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In addition,  the aspect ratio of the elements used is very critical. ANSYS™ 

recommends an aspect ratio of less than 10. Aspect Ratio of more than 20 could lead to 

inaccurate answers. But it is not easy to achieve aspect ratio of less than 10 always, so it 

is usually recommended to have it as low as possible. It is usually true that finer the mesh 

more accurate the solution [18]. Below are few points which validate the above 

statement. 

 The nodal displacements are single valued, that is each node has a unique 

value. The displacement fields are continuous but not necessarily smooth. The 

use of continuous shape functions within the element guarantees the 

displacement fields piecewise smooth, but not necessarily smooth across the 

element boundaries. Stress values are calculated from strain and the calculations 

are element by element. The nodes may have multiple stress values, since the 

nodes may be connected to multiple elements and each element calculation 

results a value. Thus the stresses are not continuous across the element 

boundaries. By default, stresses are averaged in the nodes and the stress fields 

are recalculated. After that the stress values are continuous. Thus in general 

getting finer mesh, solution is more accurate and stress discontinuity is less. 

 For an element, strain energies calculated using average stresses and un-

averaged stresses respectively are different. The difference between these two 

energies is called as structural error of element. Finer the mesh, smaller the 

structural error. The structural error can be used for 2 purposes: 

o As an indicator of global mesh adequacy. In general, we want the values 

as small as possible. 

o As an indicator of local mesh adequacy. In general, we want the 

structural error distribution as uniform as possible to maximize the 
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efficiency of the computing resources. This implies that in the region of 

large values of structural error, we need to refine our mesh. 

The final results are depended on the kind of elements used for the analysis. 

Always quadrilateral elements converge faster than triangular elements. Skewness is 

also one of the important mesh qualities. Skewness is calculated for each element 

according to the geometry. Definition of skewness can be found in the Help section of 

ANSYS™. But we can state that lower the skewness, better the answer. So as guideline, 

element skewness of more than 0.95 are considered un-acceptable. 

3.4 Boundary Conditions 

Type of boundary conditions (B.C) is specific to a particular composite problem. 

Symmetric B.C should be carefully enforced. It has been extensively studied by Chen 

[20] and Farhan [21] that if the symmetric conditions are applied to composite structures 

similar to that of isotropic material structures the results are not always correct. One 

should have an in-depth knowledge about composite materials and its axial-bending-

torsional coupling behavior.  

3.5 Geometry and Material Properties  

Three cases of I-beam with different length of the flanges are considered for 

parametric study.  However, all of the three I-beams have the same total length of 

laminates and with even and uneven top and bottom flanges.  The dimensions and layup 

of the top, bottom flanges and web laminates are listed in Table 3-1. 
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Table 3-1 Dimensions and Stacking sequence of Flanges and Web of I-Beam for  

CASE 1, 2, 3 

CASE 

Width  Height  

Top Flange, in Bottom Flange, in Web, in 

                                

1 0.25 1 0.5 

2 0.5 0.75 0.5 

3 0.625 0.625 0.5 

 
The material used in this study is T300/977-2 graphite/epoxy laminate. The 

unidirectional layer orthotropic properties for the material are given as  

                                                                 

                                                                          

                                                                          

where   ,   , and    are the Young’s moduli of the composite lamina along the 

material coordinates.    ,    , and     are the Shear moduli and    ,    , and     are 

Poisson’s ratio with respect to the 1-2, 2-3 and 1-3 planes, respectively and tply is the 

cured ply thickness.  

The stacking sequences for the top and bottom flanges are             and        

              respectively.   

3.6 Composite I-Beam Modeling in ANSYS 

ANSYS™ Classic (APDL) version 13 is used to carry out all the FEM modeling 

and solutions in this thesis work. Simple steps are used to model the composite/isotropic 

I-Beam in ANSYS™ 13. Also the I-beam is considered to be an assembly of 3 

rectangular cross section. The tool radius, ply drop-off and other features of a realistic I-

beam are ignored. Details are as follows: 
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 Define Element type: 

2D SHELL 181 is used for modeling the I-Beam. 3D elements are not used as 2D 

model will suffice our needs. In this thesis we are not interested in the 3D stresses, edge 

stresses and also the geometry is simple. 

 Define Material type: 

We will define orthotropic properties so that the same model can be used for isotropic 

and composite I-Beam by just modifying the material properties.  

 Define Shell layup: 

As we have different layups for bottom & top flange and web we will define all the 3 

different types of layups. For converting composite model into isotropic we will just 

change all the angles to 0°. 

 Define Keypoints: 

As we are constructing 2D model, we need to create Areas and one of the simplest 

method is by defining the keypoints. The outer dimensions of the I-Beam would serve as 

the keypoints. For case 2, the keypoints are as listed in Table 3-2 

Table 3-2 Keypoints for modeling I-Beam in ANSYS™ 

 Keypoints X- Axis Y- Axis Z- Axis 

Top Flange 

1 0 0 0 

2 10 0 0 

3 0 -0.375 0 

4 10 -0.375 0 

5 0 0.375 0 

6 10 0.375 0 

Web 
7 0 0 -0.545 

8 10 0 -0.545 

Bottom Flange 

9 10 -0.25 -0.545 

10 10 0.25 -0.545 

11 0 0.25 -0.545 

12 0 -0.25 -0.545 
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As we are modeling 2D I-Beam, in ANSYS™ we define the midsection of web 

and flanges. So we need to modify the web height as it would be equal to 

 

                                          
                    

 
  

                       

 
 

Figure 3-1 below shows the Solid I-Beam and the Shell I-Beam. 

 

 Define Areas: 

We define areas by connecting the keypoints defined earlier. Figure 3-2 depicts the areas 

created with the help of keypoints to form I-Beam in ANSYS™ 13.  

Table 3-3 shows the list of keypoints connected to form areas for I-Beam for Case 2. 

Table 3-3 Areas created by connection key-points 

Area Keypoints connected 

Top Flange 
5, 1, 2, 6 

3, 1, 2, 4 

Web 1, 7, 8, 2 

Bottom Flange 
11, 7, 8, 10 

12, 7, 8, 9 

 

     (a) Solid I-Beam Cross-Section                     (b) Shell I-Beam Cross- Section 

 
Figure 3-1 2D I-Beam cross-section 
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Figure 3-2 Different Areas created with the help of Keypoints to model I-Beam in 

ANSYS™ 13 

 Define Local co-ordinate system: 

The Global co-ordinate system is assigned to the flanges such that X-Axis represents the 

length of flange and Y-Axis will represent the width. But for the web we need to define a 

local co-ordinate system so that X-axis will be the length and Y-Axis will be the height. 

For doing this we rotate the co-ordinate system by -90° with respect to global X-axis. 

Figure 3-3 shows that different co-ordinate system are assigned to web and flanges 
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Figure 3-3 Flange Areas assigned global co-ordinate system and Web assigned local co-

ordinate system 

 Define Meshing Attributes: 

This is the most important step. Here we assign properties like element type, material 

type, co-ordinate system, layup to the areas we modeled.  

 Define element Size: 

Element sizing will define our mesh which in turn will decide the accuracy of our results. 

To get good fine mesh manual meshing option is used. For case 2, the bottom flange is 

divided into 150 elements in width and 200 elements in length, top flange is divided into 

100 elements in width and 200 elements in length and web is divided into 110 elements 

in height and 200 elements in length. This assures a very fine mesh with an Aspect ratio 

less than 10 all over the I-Beam. We can also use the smart size option where we ensure 

a dense mesh in the areas where loads are applied and results are recorded, and a 

coarse mesh in the remaining area. For the I-Beam with the number of elements chosen 

we do get satisfactory results and hence smart meshing is not used. 
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 Meshing 

After defining the meshing attributes and element size, all the areas are meshed. As the 

element size is manually decided we do get a mapped mesh all over the I-Beam. Figure 

3-4 shows the I-Beam with mesh generated with different meshing attributes. 

 

Figure 3-4 Mesh generated, different meshing attributes to all the 3 areas 

 Define Loads and Boundary Conditions: 

For Constrained torsion: 

The load is the torsional moment for the I-Beam considered. So we apply moment in X-

direction to all the nodes on one of the extreme cross-section. The Moment magnitude is 

specified as                                          as shown in Figure 3-6. This 

ensures that the total torsional moment is 1 lb-in. To apply cantilever boundary 

conditions, we constrained all the degrees of freedom (DOF) of all the nodes on the other 

extreme cross-section as shown in Figure 3-5. This will ensure a constrained torsion 

condition.  
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Figure 3-5 Constrain all DOF of nodes of one end of I-Beam 

 

Figure 3-6 Torsional load applied to all the nodes of the I-Beam cross section on the 

other end 

For Free Torsion (unrestrained torsion): 

To get free torsion, we locate the shear center in the middle of beam length and constrain 

all the degrees of freedom of the node present there. We apply moment on the other two 

free ends as discussed above. On one side, torsional moment would be 

                                         and on the other side it would be 
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                                         . This loading and Boundary conditions will 

ensure a free torsion in I-Beam. 

 Solve 

After applying all the required loads and boundary conditions we give the solve command 

to ANSYS™ and get the desired results. Figure 3-7 shows the deformed I-beam.  

 

Figure 3-7 Deformed I-Beam under restrained Torsion 

3.7 Validation of ANSYS™ I-Beam Model 

We need to validate our ANSYS™ I-Beam Model. For this purpose we will 

compare our ANSYS™ results for the Isotropic I-Beam case. The closed form solution for 

Isotropic I-Beam is discussed in Chapter 2. The isotropic properties used for validation 

purpose are: 
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Length of the I-Beam considered for Free Torsion is 20 inches and for 

constrained condition it is 10 inches if not specified. At first, we will compare the following 

properties for all the 3 cases of I-Beam mentioned in Table 2-1: 

K = Torsional constant 

  = Warping Constant 

GK = Torsional Rigidity 

   = Warping rigidity of the section 

e = Shear Center 

    = Angle of twist in free torsion case 

      = Angle of twist in constrained torsion case 

3.8 Methodology adapted to get the above mentioned properties: 

The I-Beam is subjected to free torsion and the deformed shape is obtained. The 

shear center can be located as the point which has the least or no displacement that is, 

the point which remained stationary. Figure 3-8 shows the deformed and original I beam 

cross section. The Shear Center locations documented are all from the base of the 

bottom flange. So  
                          

 
  is added to the result obtained from the 

ANSYS™. The angle of twist is evaluated by applying the Pythagorean Theorem to the 

triangle formed as shown in Figure 3-8. 'A' is the point of intersection of web with bottom 

flange and A' denotes the displacement of point "A", SC denotes the Shear Center. We 

can also consider the other triangle but it was noticed that the error in calculating the     

is less when considered the smaller triangle. Distance AA' is the displacement result by 

ANSYS™. Thus  
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A' 

  

 

Figure 3-8 Cross section of I-Beam Twisting at its Shear Center 

ANSYS™ FEM model would also give the angle of rotation of each node as part 

of result. One can directly use this rotation result as    . Once     is calculated we can 

calculate Torsional constant and Torsional Rigidity by applying the below given 

expressions respectively: 

  
   

      

 

   
   

   

 

To evaluate the warping constant and warping rigidity the I-Beam is given a 

constrained torsion and       is evaluated in the similar method as mentioned for    . 

Warping constant is evaluated by the using equation (2.35) for x = L, the equation 

simplifies to: 

       
   

  
   

         

    
   

The only unknown in the above expression is  , so it can be easily evaluated by 

solving the above expression. 

SC A 
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Thus warping constant and warping rigidity are calculated by using the 

relationship mentioned above. 

We can also get the above properties from the BEAM TOOL in ANSYS™. So the result 

from the ANSYS™ BEAM TOOL, Analytical and from the ANSYS™ I-Beam model which 

is modeled are tabulated in Table 3-4, Table 3-5 & Table 3-6. By observing the data 

presented we can ensure that SHELL 2D ANSYS™ model gives satisfactory results and 

the same model can be used for the study of composite material I -Beam torsional 

analysis by making suitable modifications in material properties and defining the layups.  

Also the analytical torsional stiffness GK values mentioned in the tables are the 

once which are calculated by method 3 in chapter 2 by Eqs (2.28). We conclude that the 

width correction is necessary to calculate the torsional constant K, so as to get better 

comparable results with ANSYS™ FEM model. 
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Table 3-4 Comparison of Torsional properties and angle of twist of Isotropic I-Beam with 

ANSYS™ results for CASE 1 

Case 1: Isotropic material 

 

ANSYS™ 
BEAM 
TOOL 

 

Analytical 
ANSYS™ I-BEAM  

Model 

Difference 
% 

(Analytical 
and 

ANSYS™ 
model) 

K       
Torsional 
Constant 

4.7 x      4.645 x      4.6838 x      -0.84 

Г      
Warping 
Constant 

1.61 x      1.528 x      1.4859 x      2.75 

GK          
Torsional 
Rigidity 

192.17 189.51 191.09 -0.84 

EГ           
WARPING 

Rigidity 
164.22 155.85 151.56 2.75 

Shear  
Center     

0.0319 0.0317 
0.0329 (constrained 

torsion) 
-3.86 

    (rad) - 0.0528 0.0523 0.88 

      (rad) - 0.0480 0.0482 -0.41 
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Table 3-5 Comparison of Torsional properties and angle of twist of Isotropic I-Beam with 

ANSYS™ results for CASE 2 

Case 2: Isotropic material 

 

ANSYS™ 
BEAM 
TOOL 

 

Analytical 
ANSYS™ I-BEAM  

Model 

Difference 
% 

(Analytical 
and 

ANSYS™ 
model) 

K      
Torsional 
Constant 

4.2 x      4.1366 x      4.1855 x      -1.18 

Г      
Warping 
Constant 

1.0 x      1.0005 x      9.4372 x      5.67 

GK           
Torsional 
Rigidity 

171.36 168.77 170.77 -1.19 

EГ           
WARPING 

Rigidity 
1020 1020.47 962.59 5.67 

Shear  
Center     

0.1296 0.1295 
0.1385  

(constrained torsion) 
-6.92 

    (rad) - 0.0593 0.0585 1.27 

      (rad) - 0.0447 0.0446 0.14 
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Table 3-6 Comparison of Torsional properties and angle of twist of Isotropic I-Beam with 

ANSYS™ results for CASE 3 

Case 3: Isotropic material 

 

ANSYS™ 
BEAM 
TOOL 

 

Analytical 
ANSYS™ I-BEAM  

Model 

Difference 
% 

(Analytical 
and 

ANSYS™ 
model) 

K       
Torsional 
Constant 

3.94 x      3.8825 x      3.8395 x      1.11 

Г      
Warping 
Constant 

1.34 x      1.3429 x      1.2536 x      6.65 

GK           
Torsional 
Rigidity 

160.75 158.4 156.65 1.10 

EГ           
WARPING 

Rigidity 
1366.8 1369.74 1278.72 6.65 

Shear  
Center     

0.2673 0.2672 
0.2757 (constrained 

torsion) 
-3.18 

    (rad) 
 

0.0631 0.0638 -1.06 

      (rad) 
 

0.0446 0.0456 -2.23 

 

Effect of Warping constraint on the twist angle was also studied. Comparison 

between angle of twist with free torsion and warping torsion with varying length of I-Beam 

for Case 2 is tabulated in Table 3-7. Observing the data we can conclude that: 

The effect on twisting is significant in shorter I-Beams due to Constrained 

Warping as shown in Figure 3-9. Shear center results of ANSYS™ converges to the 

theoretical value when the I-Beam is longer as observed in  

Figure 3-10. 
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Table 3-7 Comparison of angle of twist and shear center for Isotropic Case 2 with 

ANSYS™ results 

Total 
length 
(Case 

2) 

      

Analytical 
(rad) 

    
Analytical 

(Rad) 

Effect of 
warping  

on I beam 
(%) 

      

ANSYS™ 
(rad) 

Diff  
(       

Analytical 
and       

ANSYS™ 
(%) 

Shear 
Center 
Analytic
al(inch) 

Shear 
Center 
ANSYS
™ (inch) 

Diff SC 
(%) 

3 0.0055 0.0178 68.83 0.0054 2.00 

0.1295 
 

0.1216 6.09 

4 0.0102 0.0237 56.90 0.0096 5.82 0.1365 -5.39 

5 0.0155 0.0296 47.52 0.0149 4.35 0.1409 -8.83 

7 0.0270 0.0415 34.89 0.0269 0.31 0.1399 -8.06 

10 0.0447 0.0593 24.58 0.0451 -0.81 0.1375 -6.15 

20 0.1039 0.1185 12.30 0.1039 -0.01 0.1335 -3.09 

 

 

Figure 3-9 Graphical representation showing effect of warping constraint on the angle of 

twist 
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Figure 3-10 Graphical representation of Shear center variation with respect to length 

Variation of twisting angle at different location lengthwise was also studied. For 

this purpose, a 20 inch long I-Beam with cross-sectional properties of case 2 was studied 

and it was found that the relationship is linear. ANSYS™ and theoretical results have a 

very good match after 3 inches from the constrained boundary. Results are tabulated in 

Table 3-8 and shown graphically in Figure 3-11. Also the variation in the shear center 

location at different length is plotted. 
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Table 3-8 Study of angle of twist variation along the I-Beam length 

Study of angle of twist variation in a 20 inch long I beam 
(cantilever) 

Case 2 considered for this study 

Length 
variation 
(inches) 

Angle in  
(radians) 
Analytical 

Angle in  
(radians) 
ANSYS™ 

Difference 
in angle 

Shear 
center 

(ANSYS™) 

0 0.0000 0.0000 0.00 0.0000 

1 0.0011 0.0018 -69.51 0.0869 

2 0.0037 0.0047 -25.94 0.1087 

3 0.0075 0.0084 -12.16 0.1191 

4 0.0120 0.0128 -6.80 0.1241 

5 0.0170 0.0177 -4.35 0.1266 

6 0.0223 0.0230 -3.37 0.1276 

7 0.0278 0.0287 -3.38 0.1276 

8 0.0334 0.0340 -1.84 0.1291 

9 0.0391 0.0398 -1.79 0.1291 

10 0.0449 0.0457 -1.73 0.1291 

11 0.0508 0.0514 -1.20 0.1295 

12 0.0566 0.0573 -1.20 0.1295 

13 0.0626 0.0633 -1.10 0.1295 

14 0.0684 0.0693 -1.30 0.1295 

15 0.0743 0.0754 -1.44 0.1295 

16 0.0803 0.0816 -1.68 0.1295 

17 0.0862 0.0876 -1.61 0.1300 

18 0.0921 0.0931 -1.08 0.1310 

19 0.0980 0.0992 -1.18 0.1315 

20 0.1040 0.1039 0.05 0.1335 
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Figure 3-11 Graphical representation of shear center and angle of twist variation 
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Chapter 4  

Torsional Behavior of a Composite I-Beam 

4.1 Brief overview of lamination theory 

Lamina Constitutive Equation: 

 Since composite lamina is very thin, a state of plane stress is assumed for the analysis 

purpose. Two co-ordinate systems as shown in Figure 4-1 are used to completely 

describe the  properties of lamina 

 1-2-3 co-ordinates refer to the lamina (local co-ordinate system) where 1 is the 

fiber direction, 2 is the transverse direction and 3 is perpendicular to the ply 

plane. 

 x-y-z co-ordinate system are the global co-ordinate system and are selected at 

mid-plane of laminates. 

               

 

Figure 4-1 Local and Global co-ordinate system in lamina 

Therefore, orthotropic stress strain relation reduces to 3 x 3 matrix in a composite 

lamina. The strain-stress relation is written as  
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  (4.1)  

and stress-strain relationship is  

  

  

  

   
    

       
       
     

  

  
  
   

  (4.2)  

where, 

          = strain in 1 and 2 directions, respectively 

    = shear strain in 1-2 plane 

       = compliance matrix of the order 3 x 3 in 1-2 co-ordinate system  

       = reduced stiffness matrix of the order 3 x 3 in 1-2 co-ordinate system 

 

 

     
 

  

         
 

  

        
   
  

   
   

  

        
 

   

   

     
  

        

         
  

        

  

      
     

        

  
     

        

              

(4.3)  

where, 

              are 4 independent material constants. 

 

Axis Transformation relationship: 

The relationship of the compliance matrix in x-y co-ordinate system and 1-2 co-ordinate 

system is as follows: 

                                (4.4)  

The relationship of the reduced stiffness matrix in x-y co-ordinate system and 1-2 co-

ordinate system is as follows: 
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                                (4.5)  

where, 

          Compliance matrix in x-y co-ordinate system 

         Reduced stiffness matrix in x-y co-ordinate system 

 

          
      
       

            

  

          
       
        

          

  

                

(4.6)  

where, 

  = angle by which the axis is rotated about z-axis 

Thus, the stress-strain relationship for angle ply with   degree fiber orientation in x-y co-

ordinate system is, 

 

 

  

  

   
    

   
        

        
     

   
        

        
     

   
        

        
     

  

  
  
   

  

or 

                       

(4.7)  

4.2 Classical Lamination Theory (CLT): 

The gist of classical lamination theory is described below. For thorough 

understanding of CLT one can refer any textbook or reference books on the mechanics of 

composite materials. The theory provided below is from Ref. [23] and [24]. CLT is 

commonly used to analyze the behavior of laminated composite to evaluate stresses and 

strains in individual plies in the laminate. Following are the assumptions of CLT: 

1. Each Layer of the laminate is quasi-homogeneous and orthotropic. 
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2. The laminate is thin with its lateral dimensions much larger than its thickness 

and is loaded in its plane only, i.e., the laminate and its layer (except for their 

edges) are in a state of plane stress. 

3. All displacements are small compared with the thickness of the laminate. 

4. Displacements are continuous throughout the laminate. 

5. In-plane displacements vary linearly through the thickness of the laminate, i.e., u 

and v displacements in the x and y directions are linear functions of z. 

6. Transverse shear strain     and     are negligible. This assumption and the 

preceding one imply that straight lines normal to the middle surface remain 

straight and normal to that surface after deformation. 

7. Strain-displacement and stress-strain relations are linear. 

8. Normal distances from the middle surface remain constant, i.e., the transverse 

normal strain    is negligible (compared with the in-plane strains    and   ). 
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Figure 4-2 Laminate section before (ABCD) and after (A'B'C'D') deformation 

The reference plane of laminated plate is located at the mid-plane of the plate as shown 

in Figure 4-2. The displacements of the mid-plane is assumed to be 

                                       (4.8)  

The displacement of any points can be written as 

         
  

  
          

  

  
 (4.9)  

where, z is the co-ordinate variable of a general point of the cross section. For small 

displacements, the classical strain-displacement relations of elasticity yields, 
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(4.10)  

Noting that the strain components on the reference plane are expressed as:  

   
   

   

  
     

   
   

  
      

   
   

  
 

   

  
 (4.11)  

And the curvatures of the laminate as:  

       
   

   
          

   

   
           

   

    
 (4.12)  

We can relate the strains at any point in the laminate Figure 4-3 to the reference 

plane strains and the laminate curvatures as follows: 

  

  
  
   

    

  
 

  
 

   
 

     

  

  

   

  (4.13)  

The stresses of the k
th 

layer in the laminate can be written as  

 

                               

i.e. 

                        
 
                  

(4.14)  
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Figure 4-3 Layer k within laminate 

 

Force and Moment resultant 

 

Figure 4-4 In-plane forces acting at the reference plane (left) and the moment and the 

transverse shear forces (right) 
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Layer k 

Reference Plane 
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Figure 4-5 Multidirectional laminate with co-ordinate notation of individual plies 

The sum of forces and moment in each layer Figure 4-4, Figure 4-5 is given as: 

 

 

  

  

   

      

  

  

   
 

 

  
  

    

 

   

   
  

  
  

 

  

  

   

      

  

  

   
 

 

   
  

    

 

   

   
     

  
  

(4.15)  

where, 

z =  The coordinate variable of a point in the cross section 

t = Layer thickness 

       = Normal forces per unit lenght 

    = Shear forces per unit lenght 

       = Bending moments per unit lenght 

    = Twisting moment per unit lenght 

The expanded form of the force moment – deformation relation can be stated as below: 
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or in expanded form as: 

 
 
 
 
 
 
 
  

  

   

  

  

    
 
 
 
 
 
 

  

 
 
 
 
 
 
                  

                  

                  

                  

                  

                   
 
 
 
 
 

 
 
 
 
 
 
 
  
 

  
 

   
 

  

  

    
 
 
 
 
 
 

 

(4.16)  

The above equation is the constitutive relation of the laminated plate where, 

 

              

 

   

             

    
 

 
          

 

   

   
       

     

     
 

 
         

 

   

   
       

     

(4.17)  

where, 

    =  Extensional stiffness matrix -  Unit:       

    =  Extensional-bending coupling stiffness matrix - Unit:    

    =  Bending stiffness matix - Unit:       

Also, 

where, 

 

  
 

 
    

  
   

   
 
 

  

 
  
   

     
  
  

 
  

  

(4.18)  

It should be noted that A, B and D as well as ‘a’ and ‘d’ are symmetrical matices while ‘b’ 

is not a symmetric.  
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4.3 Narrow Beam: 

Though beams are classified as one dimensional body which has its length 

dimension quite larger than the other two dimensions viz, width and thickness, the beam 

behavior is also affected by the      
           ratio. That is if       

            is 

roughly less than 6 the beam is classified as narrow beam and if the ratio of  

     
           is greater than 6 its considered as wide beam. This further classification 

of long beams as narrow beam and wide beams helps in understanding and analyzing 

the beam with more precision. For narrow beams only    and    acting in the axial 

direction are considered and loads & moments in other directions are neglected. The 

concept is explained in the Ref. [25]. 

I-Beam also falls under the category of narrow beams with an exception that due 

to the web the twisting     of the whole beam is quite negligile when the I-Beam is under 

axial or bending load and hence we have induced    . For a narrow beam, the axial 

strain distribution gives rise to deformation of cross-section in transverse direction 

because of poisson’s effect. 
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Figure 4-6 Narrow beam - before and after deformation 

 
For narrow beam shown in Figure 4-6, considered for I-Beam we can assume the 

following things: 

 

           

          

            

           

          

             

 

(4.19)  

This laminate constitutive equation for a narrow beam was originally developed in 

Ref.[25]:  
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 = 

    

     . 
  
 

  
  (4.20)  

A*, B* and D* are stiffnesses components defined below: 

where 

 
    

       =  
    

     
  

 

          
   
 

   
  ;           

      

   
 ;           

   
 

   
 

(4.21)  

where   
  and    are the mid-plane strain and curvature and   ,    and    are the 

compliance, coupling and flexibility components of Narrow Beam laminate, respectively.  

A*, B*, and D* refer to the axial, coupling and bending stiffnesses of a narrow 

beam. It is noted that B*≠0 if the cross-section of the beam is unsymmetrical. 

4.4 Constitutive Equation for Sub-laminates 

The constitutive equation for sub-laminates can be deduced from Eq (4.20).  For 

sub-laminate i, we have  

          
      

       
       (4.22)  

          
      

       
       (4.23)  

where i=1 and 2 refer to the top and bottom flange laminates , respectively.   

And for web we have the constitutive equation as follows: 

        
     

    
      (4.24)  

        
     

    
      (4.25)  

We do consider web as having a symmetric layup, hence   
  would be zero, 

flanges having arbitrary layup and the I-Beam symmetric with respect to z-z axis.  

4.5 Centroid of Composite I-Beam: 

The centroid is the average location of forces on each part of cross-section. 

Centroid is the location where axial and bending behavior is decoupled. That is if axial 

load is applied at centroid it would only give pure axial strain and if bending moment is 
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applied at centroid we will have the case of pure bending. The expression for the centroid 

of composite I-Beam is derived in [27] and is: 

   
        

            
          

   

        
          

        
  (4.26)  

 

The geometry of I-Beam is as shown in Figure 4-7. It should be noted that unlike 

isotropic materials, the centriod & shear center location of composite structure depends 

on the material properties and the laminate stacking sequence. 

 

 

 

4.6 Bending stiffness about z axis for Composite I-Beam 

We are interested in finding the bending stiffness of the Composite I-Beam with 

respect to z-z axis and for a given moment    . Thus according to the mechanics theory 

we get the below relationship: 
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Z 

Figure 4-7 I-Beam cross-section 
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 (4.27)  

where,  

     sum of the total moments components of each sub-laminate 

  
              equivalent bending stiffness of I-Beam with respect to z-z Axis  

 

  
 
  Curvature at the centroid of I-Beam = 

   

   
 

Now, 

                                                                   

                        
(4.28)  

                                                 

 
   

 
  

  
   

 
  

    (4.29)  

                                                    

 
   

 
  

  
   

 
  

   (4.30)  

                                               

The web is considered symmetric in layup and hence      will not 

contribute but if the web is not symmetric then we have to modify the above 

equation  

(4.31)  

If a beam is subjected to bending with respect to z-z axis the mid-plane strain can be 

adjusted to  

       
    

 

  
 
 (4.32)  

Thus, considering the top flange, 

             
      

        
       (4.33)  
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Also for top flange we have, 

      
     

    
 

     

 (4.34)  

As only bending moment in z axis is applied at centroid we have, 

 

  
    

        

 

     

  
 

  
 
 

(4.35)  

From eqs. (4.35) (4.34) and (4.33) we have, 

             
     

 

  
 
        

    (4.36)  

From eqs. (4.36) and (4.29) we get, 

                    
     

 

  
 
    

 
   

 
  

  
   

 
  

   (4.37)  

Solving the above expression we get the following expression for top flange, 

              
    

   
 

  
    

 

  
 
  (4.38)  

Similarly for bottom flange we get, 

              
    

   
 

  
    

 

  
 
 (4.39)  

For web laminate the global and local co-ordinates are at different orientation, and hence 

we have the following relationship for web laminate 

     
     

         (4.40)  

where, 
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(4.41)  

From Eqs. (4.41) (4.40) (4.24) (4.25) & (4.31) we have, 

              
    

     
 

  
 
    

   
 

  
 
   (4.42)  

As web is considered having symmetric layup we get, 

              
   

 

  
 
   (4.43)  

Substituting Eqs. (4.43) (4.39) (4.38) in (4.28) we get, 

             
    

   
 

  
          

    
   

 

  
             

     
 

  
 
  (4.44)  

Comparing Eq. (4.44) with (4.27) we get the equivalent bending stiffness for a composite 

I-Beam as: 

  
        

          
   

   
 

  
          

     
 

  
         

   
     (4.45)  

4.7 Shear Center expression for Composite I-Beam: 

Shear center is the location where bending and twisting behavior are uncoupled. 

The shear center expression of isotropic beams depends only on the geometry of the 

cross-section but for composite beams the shear center also depends on the material 

properties and the stacking sequence and it should include the relevant coupling 

behaviors. 

To calculate the shear center we first need to understand and develop an 

expression for shear flow in the composite I-Beam. 

Expression for shear flow in I-Beam: 

If there is no load applied in the axial direction, the equilibrium equation is, 
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   (4.46)  

where, 

q = Shear flow 

s =  Represents the shear flow direction 

     Total force in x-direction, units (lb/in) 

 We are interested in shear force in y-direction    as the I-Beam is symmetric 

with respect to z axis. The procedure followed here has an approach similar to the one 

mentioned for the isotropic I-Beam with the introduction of material properties, stacking 

sequence and coupling effects. 

 

Figure 4-8 I-Beam cross-section with shear flow description 

Shear flow in the top flange: 

From Figure 4-8, we have to equation for       from eqs (4.33) for           applied at 

centroid of I-Beam, 

h 

Y 

Z 

   

    

    

Centroid 
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(4.47)  

We apply only     as we need to create only shear force in y-direction. 

        Equivalent axial stiffness of the composite I-Beam 

Thus from eqs. (4.47) and (4.33) we get, 

             
  

   

      
   

   

  
 
  (4.48)  

Differentiating eq (4.48) with respect to    we get, 

 

      

  
  

 

  
      

  
   

      
   

   

  
 
   

    

  
    

    

  
                    

(4.49)  

Thus we get, 

 
      

  
        

  
  

  
 
 (4.50)  

From eqs. (4.50) and (4.46) we get, 

 

    

   
   

      

  
 

    

   
           

  
  

  
 
  

(4.51)  

Integrating both the sides, 

                
  

  

  
 
    

  

 

 (4.52)  

y varies from 0 to 
   

 
 for top flange and hence, 
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 (4.53)  

        
   

 
  

  
 
          

  
  

  
 
   (4.54)  

Also on the similar bases we can write the equation for bottom flange as, 

        
   

 
  

  
 
          

  
  

  
 
   (4.55)  

For symmetric web 

      (4.56)  

Now, the torque of the external forces about the centroid is equal to the torque produced 

by the internal shear flow and can be written as, 

                    

   

 

              

   

 

     (4.57)  

From Eqs (4.57) (4.54) (4.55) we get, 

                 
   

 
  

  
 
          

  
  

  
 
  

   

 

   

          
   

 
  

  
 
          

  
  

  
 
 

   

 

    

(4.58)  

Thus we get the expression for the shear center for composite I-Beam from  

the centroid position as, 

     
   
  

 
  

   
 

  
     

    
   
  

 
  

   
 

  
     

    

or 

     
 

  
 
  

         
     

 

  
     

         
     

 

  
   

where   
  is given by eq (4.45) and stated below: 

(4.59)  
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Smeared property approach for Shear center: 

    

   
 

   
 
  

    
 

 
 

   
 
  

    
    

 
   

 
  

    
  

 

The location of shear center calculated will be from the mid-plane of bottom 

flange 

(4.60)  

 

Overall ABD matrix approach for composite I-Beam: 

The overall ABD matrix of the composite I-Beam can be easily derived by 

applying the axis translation laws: 

                                  

                                                       

             
  

 

  
                                  

 
      

                             
 
       

(4.61)  

In the above expressions the overall ABD matrix is with respect to the center of 

the I-Beam and it has the width effect of the individual laminate. 

The overall constitutive equation for the I-Beam can be written as, 

 

  
 

  
 =  

   

    
 .  

 

 
  

or 

  
 

 
       

     
   

 

  
   

(4.62)  

And the expression of shear center as stated in [28] is  
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 (4.63)  

where,          is the measure of shear center from the center of the I-Beam. A 

similar method was employed by [29] to find the axial and bending stiffness of composite 

I-Beam and also the centroid location. 

4.8 Results and verification for   
  and Shear Center 

The bending stiffness formulation was verified by first applying it to the isotropic 

material and comparing the results with the mechanics and ANSYS™ model. Good 

agreement was found between all the results from all the 3 approaches as shown below 

in Table 4-1. The method to extract the bending stiffness from ANSYS™ is described in 

[26] and [25]. 

Hence, the formulation of   
  explained in Eqs (4.45) holds good and later applied 

to the composite I-Beam and compared with ANSYS™. The results are tabulated below 

in Table 4-1. 

Table 4-1 Equivalent Bending stiffness verification  

Case  

Bending stiffness -  
  -(lb-in

2
)  

w.r.t z-z Axis 
Percentage differences 

Mechanics 
Approach  

Present 
formulae 
Eq (4.45) 

ANSYS™ 
FEM 

model 

Between 
ANSYS™ 

and 
Mechanics 

Between 
ANSYS™ 

and 
Present 
formulae 

Between 
Mechanics 

and 
Present 
formulae 

Isotropic 

1 43,035 43,035 43,011 0.06 0.06 0 

2 22,183 22,183 22,168 0.07 0.07 0 

3 18,680 18,680 18,692 -0.06 -0.06 0 

  

Composite 

1 

- 

46,870 46,874 

- 

-0.01 

- 2 23,128 23,137 -0.04 

3 18,248 18,268 -0.11 
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Later the shear center proposed in this thesis by Eq (4.59) was applied to the 

isotropic case and results were compared with ANSYS™, smeared property approach 

and complete ABD matrix approach. The shear formulation proposed in this thesis gives 

exactly the same results as the mechanics approach.  

After the isotropic case verification, the formulation was applied to the composite 

I-Beam case and compared with the ANSYS™ and smeared property approach as 

tabulated in Table 4-2. We find a good correlation of the shear center found by the 

present approach and the ANSYS™ 2D model. Here also we find that complete ABD 

matrix approach fails to give a comparable answer. 

Table 4-2 Verification of the composite shear center closed form expression by applying it 

for isotropic cases 

Case  

Shear Center 

Mechanics 
Approach 

Smeared 
Property 
Approach 

Shear Center 
Present 

Formulae 

Complete 
ABD 

matrix 
Approach 

ANSYS™ 
FEM 

model 

Eq (2.15) Eq (4.60) Eq (4.59) Eq (4.63)   

Isotropic 

1 0.0317 0.0317 0.0317 0.1158 0.0329 

2 0.1294 0.1294 0.1294 0.2146 0.1385 

3 0.2672 0.2672 0.2672 0.2672 0.2757 

  

Composite 

1 

- 

0.0301 0.0301 0.1698 0.0319 

2 0.1084 0.1084 0.2505 0.1201 

3 0.2314 0.2314 0.2915 0.2381 

 

We observe that the present formulation for shear center matches perfectly with 

the smeared shear center property and the essence of the present formulation to capture 

the coupling effect is not displayed. To do so, the following case studies are conducted 

and shear center results are compared with the ANSYS™ 2D model. 
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Case 4: 

Table 4-3 I-Beam properties for Case 4 

Geometry of composite I-Beam Layup Material Properties 

Top flange width = 0.625 inch 

Bottom Flange width = 0.4 inch 

Web height = 0.8 inches 

Top flange =           

Bottom Flange =       

Web =       

                      

                    

                   

                       

                              

 

 

Table 4-4 Shear center calculated for Case 4 

Case 4 
ply orientation   

Smeared Property 
Approach 

Shear Center 
Present Formulae ANSYS™ FEM model 

Eq (4.60) Eq (4.59) 

0 0.6597 0.6597 0.6556 

15 0.5531 0.6312 0.6079 

30 0.3997 0.4884 0.4275 

45 0.2685 0.2955 0.2560 

60 0.2080 0.2121 0.1889 

75 0.1918 0.1926 0.1755 

90 0.1892 0.1897 0.1755 
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Figure 4-9 Variation of shear center location with respect to the fiber orientation for  

Case 4 

Case 5: 

Table 4-5 I-Beam properties for Case 5 

Geometry of composite I-

Beam 
Layup Material Properties 

Top flange width = 0.625 inch 

Bottom Flange width = 0.4 inch 

Web height = 0.8 inches 

Top flange =       

Bottom Flange =          

Web =       
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Table 4-6 Shear center calculated for Case 5 

Case 5 

ply orientation θ 

  

Smeared Property 
Approach 

Shear Center 
Present Formulae ANSYS™ FEM model 

Eq (4.60) Eq (4.59) 

0 0.6597 0.6597 0.6595 

15 0.7326 0.6847 0.6997 

30 0.7820 0.7577 0.7704 

45 0.8049 0.8007 0.8017 

60 0.8124 0.8117 0.8114 

75 0.8143 0.8139 0.8129 

90 0.8145 0.8142 0.8136 

 

 

Figure 4-10 Variation of shear center location with respect to the fiber orientation for  

Case 5 
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Figure 4-11 Variation of shear center location in Case 4 & Case 5 combined in one graph 

Case 6: 

Table 4-7 I-Beam properties for Case 6 

Geometry of composite I-

Beam 
Layup Material Properties 

Top flange width = 0.625 inch 

Bottom Flange width = 0.4 inch 

Web height = 0.8 inches 

Top flange =       

Bottom Flange =      

Web =       
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Table 4-8 Shear center calculated for Case 6 

Case 6 

ply orientation θ 

  

Smeared Property 
Approach 

Shear Center 
Present Formulae ANSYS™ FEM model 

Eq (4.60) Eq (4.59) 

0 0.6597 0.6597 0.6556 

15 0.6597 0.6595 0.6586 

30 0.6597 0.6596 0.6735 

45 0.6597 0.6597 0.6735 

60 0.6597 0.6597 0.6682 

75 0.6597 0.6597 0.6623 

90 0.6597 0.6597 0.6548 

 

 

Figure 4-12 Variation of shear center location with respect to the fiber orientation for 

Case 6 
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Observations from the above 3 Case-Studies: 

 From case 6 (Table 4-7, Table 4-8,Figure 4-12) we observe that the shear center 

is not affected by the change in the fiber orientation in web when the stacking 

sequence in the web is symmetric and top and bottom flanges have similar layup. 

 Present formulation has a very good correlation with the smeared properties and 

ANSYS™ results if the fiber orientations are more than     

(                     and at    for case 4 (Table 4-3,  

 Table 4-4) and case 5 (Table 4-5, Table 4-6). 

 In the span of fiber orientation varying from    to     (i.e.           we observe a 

difference in the shear center results between ANSYS™, smeared property 

approach and present formulation for case 4 ( 

 Table 4-4, Figure 4-10) and case 5 (Table 4-6, Figure 4-10). ANSYS™ and 

present formulations are giving more comparable results while the results by 

smeared property approach are off. One of the reasons for this is the variation in 

shear coupling co-efficient      . 

 

            
 

  

 
    
  

  
 

   

      
 

  

 
    
  

  
 

   

      

where, 

 

  

  
  

  

 
  

  

      
   

  

  
    

   

  

              

(4.64)  

 

From the Figure 4-13, it is quite evident that        varies highly from fiber orientation 

between    –      and the variation is quite small for the      –      range. And hence 
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the coupling behavior is quite prominent for fiber orientation between    –      for the 

material properties mentioned.  

 Also as the ANSYS™ model is built with SHELL 181 which is a 2D model, it 

would be a good idea to extract the shear center result from 3D ANSYS™ model 

and compare the results. 

 

Figure 4-13 Shear coupling variation with respect to fiber orientation 

4.9 Reasons for the failure of complete/overall ABD matrix approach to predict shear 

center: 

It was observed that the shear center predicted by complete or overall ABD matrix 

approach presented by Syed [28] failed to predict the shear center for the I beam 

(isotropic and composite) and the error was huge. According to Syed [28], the overall 

ABD for the I-Beam structure is calculated by the following method: 
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(4.65)  

where, 

               
     

 

   

            

     
 

 
          

     

 

   

   
       

     

      
 

 
         

     

 

   

   
       

     

        
     

                                                

                      

                                                                      

                                               

           

   
       
      

            

for I-Beam web                             

            
   
   
   

              

      
  

 
 

   

 
         

  

 
 

   

 
   

(4.66)  

Thus, for web the ABD matrix will have only 4 non-zero terms and will be as follows: 
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 (4.67)  

On investigating, the following reasons were found because of which the overall 

ABD matrix theory fails to predict the correct or comparable shear center: 

Reason 1:  

In I-Beam the bending loads are resisted by the flanges and the shear loads by the web. 

Thus web contributes for the major percentage of the shear stiffness while the flanges 

contribute for the major part of the bending stiffness. In composites the different stiffness 

are given by the following elements of the ABD matrix; 

                                                                           

                                                                             

From Eqs(4.67) we observe that the web has only Axial stiffness and bending stiffness 

while the Shear stiffness and twisting stiffness are equal to zero. Thus there are some 

major errors in the method proposed by Syed [28]. 

Reason 2:  

When the web ABD matrix is rotated by        with respect to global x- axis, the original 

(un-rotated) ABD matrix of the laminate should be achieved, but that is not the case with 

this method. 

Reason 3: 

As proposed the shear center depends on             elements Eqs (4.63) but as the 

web does not contribute to the             element, the shear center predicted is not 

correct. 
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However, centroid depends on the             elements of the overall ABD 

matrix, where web and flanges both are contributing for the             elements and 

hence the overall ABD matrix approach gives comparable centroid location with equation 

(4.26). Also as the logic of shifting the ABD matrix of flanges are correct and as flanges 

contribute the major percentage of the bending stiffness and the axial stiffness, the 

overall ABD matrix approach gives comparable results for both of them too.  

 

           
   
    

   
    

 

    
   
    

          
        

       
       

       

          
        

       
   

(4.68)  

Reason 4: 

If we carefully observe         in Eqs (4.67) we can deduce that the matrix is a singular 

matrix and hence we cannot have the constitutive relationship shown below: 

  
 

 
    

  
   

 
 
  
 
 

  

where, 

 
  
   

 
 

    
   

    
 
 

                                     
   

    
 
 

 

(4.69)  

Reason 5: 

Web should possess plane stress properties i.e. 2D properties as CLT is based on plane 

stress assumption. But looking at the        in Eqs (4.67) we derive that web only has 

properties in global x-direction. Even though the web laminate is made of composite 

material, it losses all its coupling effects with the other direction which in our case is 

global z- axis. 
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4.10  Equivalent Torsional Stiffness for a Composite I-Beam 

For a thin rectangular cross-section we have the following relationship: 

 

 
 
 
 
 
 
 
  
 

  
 

   
 

  

  

    
 
 
 
 
 
 

  

 
 
 
 
 
 
                  

                  

                  

                  

                  

                   
 
 
 
 
 

 
 
 
 
 
 
 
  

  

   

  

  

    
 
 
 
 
 
 

 (4.70)  

Definitions [15]: 

Shear center / Flexural center – With reference to a beam, the flexural center of 

any section is that point in the plane of section through which a transverse load, applied 

at that section, must act if bending deflection only is to be produced, with no twist of 

section. i.e. bending – twist decoupled at shear center 

 

Torsional center / Center of twist / Center of torsion / Center of shear – If a 

twisting couple is applied at a given section of a straight member, that section rotates 

about some point in its plane. This point which does not move when the member twist, is 

the torsional center of that section, i.e. twisting-shear decoupled at torsional center.  

But one surprising thing though is, if the beam is only subjected to torsion, then 

the center of twist is same as the shear center i.e. bending – torsion – shear decoupled if 

only torsion applied to a beam at center of twist. 

Thus for a thin rectangular composite section subjected to torsion we have, 

  
   

 

  

   

    

         

         

         

  

   

  

   

  (4.71)  

As mentioned above at the center of twist which is also the shear center       

Thus we have the following relationship: 
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Thus,  

      
   

   

     
   

   

     

(4.72)  

From Eqs. (4.71) and (4.72) 
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      (4.74)  

From eqs. (4.73) and (4.74) we can write, 

  
   

 

   
    

  
   

 

  
   

    
   

   
  (4.75)  

where, 

  
         

   
 

   

     
         

      

   

      
          

   
 

   

   (4.76)  

Now, if        &       we have the following relationship from eqs. (4.75) 

 

   
     

      

      
      

(4.77)  

So at a distance  , we can write: 

         
         (4.78)  

Now, if      , means that point is the center of twist, thus        

    
            (4.79)  

       
   

 

    

   
  

    

   
    

   
  

 

   
  (4.80)  
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Thus we get the expression for center of twist, where if only torsion is applied, we 

will have pure twisting with no shear & bending taking place in the laminate. We can also 

write eqs (4.75) as 

 

 
   

   
    

  
   

 

  
   

   
   

 

   
  

 
  

   
 

  
   

     
  

   
 

  
   

  
  

  

(4.81)  

So we need to shift our stiffness to the center of twist location. 

 

     
     

  

     
     

       
     

     
     

        
     

   
    

(4.82)  

Thus eqs (4.81) modifies to, 

  
   

   
    

     
  

      
   

   
 

   
  (4.83)  

So from the above relationship we derive: 

 

          
     

  

          
        

(4.84)  

Expression for     from eqs (4.12) is, 

         
   

    
    

 
  
  

  
    

  

  
      

(4.85)  

where       is rate of twist =   

Also,  

       
 

  
 (4.86)  

where, 

T = torsional load applied on the section 
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b = width of the laminate 

Substituting eqs (4.85) (4.86) in (4.84) we get 

  
 

  
       

       (4.87)  

  we get,    
 

        
  (4.88)  

Thus, we can affirm that the torsional stiffness of the rectangular composite cross –

section is  

             
  (4.89)  

Therefore, we can observe that the torsional stiffness of the composite rectangular cross-

section depends on: 

 Material properties 

 Stacking sequence 

 Ply orientation 

 Geometry of the cross-section 

If an open –section composite beam is made of thin wall segments, the torsional stiffness 

of the overall section can be approximated as shown below which is similar to the 

isotropic case. 

                               (4.90)  

where k denotes the number of thin wall segments. 

For a composite I-Beam the torsional stiffness can be approximated as: 

                            (4.91)  

where,  

     = torsional stiffness of top flange 

      = torsional stiffness of bottom flange 

     = torsional stiffness of the web section 
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(4.92)  

Thus from eqs. (4.92) and (4.91) we get: 

Present 

approach 

                      
                 

                
    (4.93)  

 

Smeared property approach to find the torsional stiffness of composite I-Beam 

Smeared 

property 

approach 

         
    

     

  
    

     

  
   

    

 (4.94)  

 

4.11  Results and verification for Torsional stiffness expressions derived for Composite I-

Beam 

The above expression derived for the torsional stiffness of the composite I-Beam 

was applied to the isotropic cases described in Table 2-1 discussed in Chapter 2. In the 

results tabulated in Table 4-9 we observe that present approach mentioned above to find 

the         gives the results which are similar to Eqs (2.22) i.e. without the width 

correction factor. To get comparable results we need to include the width correction 

factor in the method discussed above in eqs. (4.93). For composite the width correction 

factor should depend on the stacking sequence, ply orientation and the material 

properties, but at present we will use the width correction factor mentioned in chapter 2, 

Table 2-3. Therefore the modified expression for composite I-Beam GK would be: 
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Present 

approach 

                         
                    

  

                
   

(4.95)  

where  

    = width correction factor for top flange 

    = width correction factor for bottom flange 

   = width correction factor for web  

and all the width correction factors depend on the      
                    ratio and 

selected from the table mentioned in chapter 2, Table 2-3. 

Table 4-9 Composite equivalent Torsional stiffness verification for isotropic material 

properties 

Cases 

Isotropic 
material 

properties 

Torsional Stiffness, GK or GJ (         

Mechanics approach Composite formulation 

ANSYS™   
I-Beam  
Model 

Method 1 

Eqs 
(2.22) 

Method 2 

Eqs 
(2.24) 

Method 3 

Eqs 
(2.28) 

Present 
approach 

Eqs (4.93) 

Present 
approach 

Eqs (4.95) 

1 197.2 188.79 188.51 197.20 188.79 191.09 

2 176.46 168.35 168.77 176.46 168.57 170.77 

3 166.09 159.45 158.4 166.09 159.45 156.65 

 

We observe that the composite GK formulation with width correction gives 

comparable results with the GK calculated by the mechanics approach and the ANSYS™ 

FEM model. 

Now, the composite GK formulation is applied to the composite cases discussed 

below: 
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CASE A: 

Symmetric and Balanced stacking sequence 

Equal top flange and bottom flange width 

Equal top flange and bottom flange thickness 

Table 4-10 Configuration for Case A 

Geometry of composite I-Beam Layup Material Properties 

Top flange width = 0.625 inch 

Bottom Flange width = 0.625 inch 

Web height = 0.5 inches 

Top flange =            

Bottom Flange =           

Web =        

  takes the values of 0, 15, 30, 

45, 60, 75, 90. 

                    

                   

                       

         
     
     

           

 

 
Table 4-11 Torsional Stiffness comparison for case A without width reduction factor 

CASE A Torsional Stiffness - GK (         % Difference 

  

Smeared 
property 
approach 

Eqs (4.94) 

Present 
formulation 

Eqs (4.93) 

ANSYS™ I-
beam model 

Between 
ANSYS™ 

and 
Smeared 
property 
approach 

Between 
ANSYS™ 
Present 

formulation 

0 27.59 27.98 27.53 -0.20 -1.65 

15 53.21 55.73 52.98 -0.43 -5.18 

30 104.74 108.35 98.46 -6.38 -10.04 

45 130.27 131.60 116.72 -11.61 -12.75 

60 104.07 104.55 93.91 -10.82 -11.33 

75 52.97 53.37 50.23 -5.46 -6.26 

90 27.59 27.98 27.28 -1.13 -2.59 
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Table 4-12 Torsional Stiffness comparison for case A with width reduction factor 

CASE A Torsional Stiffness - GK           WIDTH REDUCTION % Difference  

  
Present formulation 

Eqs (4.95) 
ANSYS™ I-beam model  

Between 
ANSYS™ 
Present 

formulation 

0 26.50 27.53 3.74 

15 52.68 52.98 0.57 

30 101.94 98.46 -3.53 

45 123.80 116.72 -6.06 

60 98.38 93.91 -4.75 

75 50.26 50.23 -0.07 

90 26.50 27.28 2.85 

 

CASE B: 

Anti-symmetrical stacking sequence for the flanges 

Equal top flange and bottom flange width 

Equal top flange and bottom flange thickness 

Table 4-13 Configuration for Case B 

Geometry of composite I-Beam Layup Material Properties 

Top flange width = 0.625 inch 

Bottom Flange width = 0.625 inch 

Web height = 0.5 inches 

Top flange =             

Bottom Flange =            

Web =        

  takes the values of 0, 15, 30, 

45, 60, 75, 90. 
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Table 4-14 Torsional Stiffness comparison for case B without width reduction factor 

CASE B Torsional Stiffness - GK (         % Difference 

  

Smeared 
property 
approach 

Eqs (4.94) 

Present 
formulation 

Eqs (4.93) 

ANSYS™ I-
beam model 

Smeared 
property 
approach 

Eqs (4.94) 

Present 
formulation 

Eqs (4.93) 

0 27.59 27.98 27.42 -0.59 -2.04 

15 41.79 42.30 40.67 -2.75 -4.02 

30 68.08 68.65 64.11 -6.20 -7.09 

45 80.96 81.43 74.76 -8.30 -8.93 

60 67.97 68.37 63.34 -7.31 -7.94 

75 41.74 42.14 40.16 -3.93 -4.93 

90 27.59 27.98 27.23 -1.32 -2.78 

 
Table 4-15 Torsional Stiffness comparison for case B with width reduction factor 

CASE B Torsional Stiffness - GK           WIDTH REDUCTION % Difference  

  
Present formulation 

Eqs (4.95) 
ANSYS™ I-beam model  

Between 
ANSYS™ 
Present 

formulation 

0 26.50 27.42 3.37 

15 39.86 40.67 1.98 

30 64.63 64.11 -0.82 

45 76.63 74.76 -2.51 

60 64.36 63.34 -1.61 

75 39.70 40.16 1.15 

90 26.40 27.23 3.04 

 
CASE C: 

Symmetric and Balanced stacking sequence 

Unequal top flange and bottom flange width 

Unequal top flange and bottom flange thickness 
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Table 4-16 Configuration for Case C 

Geometry of composite I-Beam Layup Material Properties 

Top flange width = 0.25 inch 

Bottom Flange width = 1 inch 

Web height = 0.5 inches 

Top flange =            

Bottom Flange =            

Web =        

  takes the values of 0, 15, 30, 
45, 60, 75, 90. 

                    

                   

                       

         
     
     

           

 

 

Table 4-17 Torsional Stiffness comparison for case C without width reduction factor 

CASE C Torsional Stiffness - GK (         % Difference 

  

Smeared 
property 
approach 

Eqs (4.94) 

Present 
formulation 

Eqs (4.93) 

ANSYS™ I-
beam model 

Smeared 
property 
approach 

Eqs (4.94) 

Present 
formulation 

Eqs (4.93) 

0 45.28 45.68 44.37 -2.05 -2.95 

15 87.87 90.20 85.14 -3.21 -5.95 

30 173.25 176.36 163.71 -5.83 -7.73 

45 215.25 216.34 198.27 -8.57 -9.11 

60 172.05 172.51 159.41 -7.93 -8.22 

75 87.41 87.81 82.32 -6.19 -6.67 

90 45.28 45.68 44.03 -2.83 -3.74 
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Table 4-18 Torsional Stiffness comparison for case C without width reduction factor 

CASE C Torsional Stiffness - GK           WIDTH REDUCTION % Difference  

  
Present formulation 

Eqs (4.95) 
ANSYS™ I-beam model  

Between 
ANSYS™ 
Present 

formulation 

0 43.28 44.37 2.46 

15 85.94 85.14 -0.95 

30 168.00 163.71 -2.62 

45 206.06 198.27 -3.93 

60 164.33 159.41 -3.09 

75 83.67 82.32 -1.64 

90 43.55 44.03 1.10 

 

CASE D: 

Anti-symmetrical stacking sequence for the flanges 

Unequal top flange and bottom flange width 

Unequal top flange and bottom flange thickness 

Table 4-19 Configuration for Case D 

Geometry of composite I-Beam Layup Material Properties 

Top flange width = 0.25 inch 

Bottom Flange width = 1 inch 

Web height = 0.5 inches 

Top flange =             

Bottom Flange =             

Web =        

  takes the values of 0, 15, 30, 

45, 60, 75, 90. 
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Table 4-20 Torsional Stiffness comparison for case D without width reduction factor 

CASE D Torsional Stiffness - GK (         % Difference 

  

Smeared 
property 
approach 

Eqs (4.94) 

Present 
formulation 

Eqs (4.93) 

ANSYS™ I-
beam model 

Smeared 
property 
approach 

Eqs (4.94) 

Present 
formulation 

Eqs (4.93) 

0 45.28 45.68 44.36 -2.08 -2.98 

15 66.97 67.53 65.14 -2.82 -3.67 

30 105.84 106.46 101.06 -4.73 -5.34 

45 124.44 124.92 117.35 -6.04 -6.45 

60 105.54 105.94 99.96 -5.58 -5.98 

75 66.84 67.24 64.40 -3.80 -4.42 

90 45.28 45.68 44.24 -2.35 -3.24 

 
Table 4-21 Torsional Stiffness comparison for case D with width reduction factor 

CASE D Torsional Stiffness - GK           WIDTH REDUCTION % Difference  

  
Present formulation 

Eqs (4.95) 
ANSYS™ I-beam model  

Between 
ANSYS™ 
Present 

formulation 

0 43.56 44.36 1.79 

15 64.36 65.14 1.19 

30 101.38 101.06 -0.32 

45 118.94 117.35 -1.35 

60 100.89 99.96 -0.93 

75 64.07 64.40 0.51 

90 43.59 44.24 1.48 
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Observations from the above case studies: 

 Torsional stiffness given by Present formulation Eqs (4.93) and Smeared 

property approach Eqs (4.94) are quite comparable for composite cases A, B, C 

and D (Table 4-10, Table 4-13, Table 4-16, Table 4-19), but present formulation 

fulfills the requirement of no bending and shear for pure torsion while smeared 

property approach doesn’t. 

 Analytical Torsional stiffness Eqs (4.93) when compared with ANSYS™ result ( 

Table 4-11, Table 4-14, Table 4-17, Table 4-20) has some percentage of 

difference and this is because of the analytical approach not having the width 

correction factor included.  

 Analytical Torsional stiffness Eqs (4.95) which includes the width correction 

factor gives quite comparable results with the ANSYS™ result (Table 4-12, Table 

4-15, Table 4-18, Table 4-21) for GK.  

 Width correction factor used for composite in Eqs (4.95) is basically for the 

isotropic case Table 2-3, which are found experimentally and tabulated in [30]. 

 Width correction factor for composite depends on stacking sequence, material 

properties and ply orientation, but in this thesis isotropic width correction factor is 

applied for the composite case. 

4.12  Equivalent Warping Stiffness for a Composite I-beam 

As explained in Chapter 2, when the beam is axially constrained at one of its 

cross-section, then at this cross-section warping cannot occur. The effect of restrained 

warping are more pronounced for thin-walled open section beams than the thin walled 

closed section beams. As a summary, we know that when the composite beam is 

subjected to pure torsion the expression is: 
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Free torsion 

expression 
           (4.96)  

And if the composite beam is axially constrained, the restrained torsion expression 

modifies to: 

Beam under 

restrained warping 
               

   

   
  (4.97)  

where, 

GK = Equivalent torsional stiffness of the composite I-Beam eqs (4.95) 

E  =  Equivalent warping stiffness of the composite I-Beam  

    =  Total torsional load applied 

  =  Rate of twist of composite I-Beam =       

The expression for (E ) for a composite I-Beam can be approximated by the 

method described below: 

When the cross-section of beam is axially restrained we have axial forces    

introduced and these axial forces create a bending moment which acts on the individual 

flange with respect to z-z axis. The forces created due to restrained warping as clearly 

shown in Figure 4-14 below: 
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Figure 4-14 I-Beam under pure torsion with axial constraints 
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From Eqs (4.38) and (4.39) we can write the expression for the bending moments 

created in top and bottom flange due to the axial force as: 

 

               
  

   
 

  
  

     

   
 

              
  

   
 

  
  

     

   
 

(4.98)  

Where, 

    =  Displacement of top flange due to rotation about x-axis 

      Displacement of bottom flange due to rotation about x-axis 

The expression for the displacements are as described below which can be 

easily derived by looking at the Figure 4-15: 

 

             

            
(4.99)  

 

 

 

    

    

  

Figure 4-15 Rotation of I-Beam about x-axis 
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Also, 

 

    

  
  

 

   
                  

    

  
  

 

   
                  

(4.100)  

Thus from eqs (4.100) (4.98) we get, 

 

                
  

   
 

  
       

  

  
 

                
  

   
 

  
       

  

  
 

(4.101)  

Now these moments develops shear forces in the individual flanges as shown in the 

Figure 4-14. 

 

        
        

  
          

  
   

 

  
       

   

   
 

        
       

  
          

  
   

 

  
       

   

   
 

(4.102)  

Now the shear forces results in a torque    , defined by, 

                                (4.103)  

Thus from eqs (4.103) (4.102) we get, 

 

              
  

   
 

  
     

        
  

   
 

  
     

   
   

    

 

 

 

(4.104)  

   

  

Equivalent Warping stiffness for 
composite I-Beam 
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Warping stiffness for 

composite I-Beam 

            
   

   
 

          
  

   
 

  
     

        
  

   
 

  
     

   

(4.105)  

 

Therefore for a composite I-Beam: 

               (4.106)  

Where, 

   = Total torque applied to composite I-Beam 

     = Saint –Venant torque 

    = Restrained warping induced torque 

 

Summary: 

Approach 

proposed in this 

thesis (present 

work) 

                 

            

                   

                   

  

               
   

             
   

   
 

          
  

   
 

  
     

        
  

   
 

  
     

   

(4.107)  

Also, similar to isotropic theory Eqs (2.31) we can write the expression for angle of twist   

as, 
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For composite I-

Beam 

        
 

  
   

           

       
 

       

       
     

Where, 

    
  

  
  

(4.108)  

 

L = Total length of I-Beam 

  = Length of interest  

  = 0 at constrained edge 

                    

Thus at free end, 

        
 

  
   

        

    
   (4.109)  

 

Smeared 

property 

approach 

                

            

     
    

     

  
    

     

  
   

    

  

             
   

   
 

    

 
 
 
  

   
 

   
 
  

  
 

   
 
  

    
     

 

 
 

   
 
  

    
    

 
   

 
  

    
  

 
 
 
 

 

(4.110)  
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4.13  Results and Verification of Equivalent Warping stiffness expression and total angle of 

twist expression derived for Composite I-Beam 

The composite formulation for equivalent warping stiffness was compared for the 3 cases 

discussed in Chapter 2, Table 2-1 for isotropic properties. The results are as tabulated in 

Table 4-22: 

Table 4-22 Composite equivalent Torsional stiffness verification for isotropic material 

properties 

Case - 
Isotropic 
Material 

properties 

Warping Rigidity –    -  (lb-in
2
) 

% Difference  

Mechanics 
Approach 

Eq (2.25) 

Composite Formulation 

ANSYS™ 
results 

Chapter 3 

Present 
formulation 

Eq (4.105) 

Smeared 
property 
approach 

Eq 
(4.110) 

Between 
Mechanics 

and 
present 

formulation 

Between 
ANSYS™ 

and 
present 

formulation 

1 155.85 155.85 155.85 151.56 0.00 2.83 

2 1020.47 1020.47 1020.47 962.59 0.00 6.01 

3 1369.74 1369.74 1369.74 1278.72 0.00 7.12 

 

The results of warping stiffness by the composite formulation match perfectly with 

the warping stiffness computed by the mechanics approach and ANSYS and hence we 

can apply the formulation for the composite cases too. 

Later, total angle of twist at free edge for a cantilever I-Beam were calculated by 

using eqs (4.109) and compared with the isotropic material properties and tabulated 

below: 
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Table 4-23 Composite Angle of twist expression verified for isotropic material properties 

Case - 
Isotropic 
Material 

properties 

Total Angle of twist-        - (radians) 

% Difference  

Mechanics 
Approach 

Eq (2.31) 

 

Composite 
Formulation 

ANSYS 
results 

Chapter 3 

Present 
formulation 

Eq (4.109) 

Smeared 
property 
approach 

Between 
Mechanics 

and 
present 

formulation 

Between 
ANSYS 

and 
present 

formulation 

1 0.048 0.048 0.0462 0.0482 0.00 -0.41 

2 0.0447 0.0447 0.043 0.0446 0.00 0.22 

3 0.045 0.045 0.043 0.0456 0.00 -1.32 

 

From the above comparison we conclude that the angle of twist approximated by 

composite formulation for an isotropic material property I-beam works good and hence it 

was applied for the 4 cases (A, B, C, and D) discussed earlier in the chapter (Table 4-10, 

Table 4-13, Table 4-16 & Table 4-19) and compared with the ANSYS™ results. 

Table 4-24 Comparison of Angle of twist for Case A  

Case - A 
Composite 
Properties 

  variation 

Total Angle of twist (radians) % Difference  

Present 
formulation 

Eq (4.109) 

Smeared 
property 
approach 

ANSYS™ 
result 

Between 
ANSYS™ and 

present 
formulation 

Between 
ANSYS™ 

and 
Smeared 
property  

0 0.1097 0.1080 0.1147 -4.36 -5.84 

15 0.0855 0.0849 0.0872 -1.95 -2.64 

30 0.0621 0.0608 0.0642 -3.20 -5.23 

45 0.0578 0.0554 0.0615 -6.02 -9.92 

60 0.0722 0.0690 0.0757 -4.65 -8.87 

75 0.1210 0.1166 0.1218 -0.67 -4.29 

90 0.1821 0.1776 0.1818 0.15 -2.33 
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Table 4-25 Comparison of Angle of twist for Case B 

Case - B 
Composite 
Properties 

  variation 

Total Angle of twist (radians) % Difference  

Present 
formulation 

Eq (4.109) 

Smeared 
property 
approach 

ANSYS™ 
result 

Present 
formulation 

Eq (4.109) 

Smeared 
property 
approach 

0 0.1097 0.1110 0.1157 -5.19 -4.06 

15 0.0983 0.0981 0.1009 -2.55 -2.75 

30 0.0857 0.0832 0.0869 -1.43 -4.30 

45 0.0843 0.0813 0.0864 -2.43 -5.90 

60 0.1002 0.0969 0.1018 -1.54 -4.79 

75 0.1419 0.1388 0.1414 0.35 -1.84 

90 0.1820 0.1800 0.1816 0.22 -0.88 

 

Table 4-26 Comparison of Angle of twist for Case C 

Case - C 
Composite 
Properties 

  variation 

Total Angle of twist (radians) % Difference  

Present 
formulation 

Eq (4.109) 

Smeared 
property 
approach 

ANSYS™ 
result 

Present 
formulation 

Eq (4.109) 

Smeared 
property 
approach 

0 0.1739 0.1683 0.1663 4.57 1.20 

15 0.0971 0.0952 0.0968 0.36 -1.61 

30 0.0533 0.0518 0.0542 -1.71 -4.48 

45 0.0447 0.0428 0.0461 -3.09 -7.20 

60 0.0559 0.0535 0.0572 -2.24 -6.44 

75 0.1063 0.1020 0.1067 -0.36 -4.39 

90 0.1944 0.1877 0.1884 3.20 -0.36 
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Table 4-27 Comparison of Angle of twist for Case D 

Case – D 
Composite 
Properties 

  variation 

Total Angle of twist (radians) % Difference  

Present 
formulation 

Eq (4.109) 

Smeared 
property 
approach 

ANSYS™ 
result 

Present 
formulation 

Eq (4.109) 

Smeared 
property 
approach 

0 0.1739 0.1694 0.1660 4.73 2.02 

15 0.1258 0.1220 0.1226 2.58 -0.52 

30 0.0857 0.0824 0.0845 1.43 -2.47 

45 0.0754 0.0723 0.0754 0.01 -4.10 

60 0.0889 0.0854 0.0884 0.60 -3.36 

75 0.1363 0.1314 0.1344 1.41 -2.24 

90 0.1944 0.1882 0.1879 3.44 0.14 

 

Observations from above tabulated values: 

1. Present method of angle of twist, torsional stiffness and warping stiffness gives a 

better match with the ANSYS™ results 

Later the equivalent torsional stiffness, warping stiffness, angle of twist in free torsion and 

angle of twist in restrained torsion for a composite I-beam were compared and the graphs 

were plotted to get a better understanding of the relationship of fiber angle with the above 

mentioned properties. 
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Table 4-28 Torsional Properties of Composite I-beam Case A 

Case - A 
Composite Properties 

  variation 

Analytically calculated properties – present method 

GJ 
(lb-in

2
) 

Eqs (4.93) 

EГ 
(lb-in

2
) 

Eq (4.105) 

  
(restrained 
warping) - 

radians 

Eq (4.109) 

  
(Free torsion) 

- radians 

 

0 26.50 1989.10 0.1097 0.3774 

15 52.68 1822.80 0.0855 0.1898 

30 101.94 1400.90 0.0621 0.0981 

45 123.80 1007.50 0.0578 0.0808 

60 98.38 831.80 0.0722 0.1016 

75 50.26 792.47 0.1210 0.1990 

90 26.50 789.60 0.1821 0.3774 

 

 

Figure 4-16 Variation of Torsional properties of Composite I-beam Case A 
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Table 4-29 Torsional Properties of Composite I-beam Case B 

Case – B  

Composite 
Properties 

  variation 

Analytically calculated properties – present method 

GJ 
(lb-in

2
) 

Eqs (4.93) 

EГ 
(lb-in

2
) 

Eq (4.105) 

  
(restrained 
warping) - 

radians 

Eq (4.109) 

  
(Free torsion) 

- radians 

 

0 26.50 1988.50 0.1097 0.2311 

15 39.86 1812.30 0.0983 0.1164 

30 64.63 1355.10 0.0857 0.0595 

45 76.63 973.14 0.0843 0.0485 

60 64.36 824.28 0.1002 0.0609 

75 39.70 792.15 0.1419 0.1195 

90 26.40 789.63 0.1820 0.2296 
 

 

Figure 4-17 Variation of Torsional properties of Composite I-beam Case B 
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Table 4-30 Torsional Properties of Composite I-beam Case C 

Case – C  

Composite Properties 

  variation 

Analytically calculated properties – present method 

GJ 
(lb-in

2
) 

Eqs (4.93) 

EГ 
(lb-in

2
) 

Eq (4.105) 

  
(restrained 
warping) - 

radians 

Eq (4.109) 

  
(Free torsion) 

- radians 

 

0 43.28 256.32 0.1739 0.2311 

15 85.94 234.95 0.0971 0.1164 

30 168.00 180.72 0.0533 0.0595 

45 206.06 130.12 0.0447 0.0485 

60 164.33 107.51 0.0559 0.0609 

75 83.67 102.44 0.1063 0.1195 

90 43.55 102.07 0.1944 0.2296 
 

 

Figure 4-18 Variation of Torsional properties of Composite I-beam Case C 
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Table 4-31 Torsional Properties of Composite I-beam Case D 

Case – D  

Composite Properties 

  variation 

Analytically calculated properties – present method 

GJ 
(lb-in

2
) 

Eqs (4.93) 

EГ 
(lb-in

2
) 

Eq (4.105) 

  
(restrained 
warping) - 

radians 

Eq (4.109) 

  
(Free torsion) 

- radians 

 

0 43.56 256.60 0.1739 0.2296 

15 64.36 233.82 0.1258 0.1554 

30 101.38 174.82 0.0857 0.0986 

45 118.94 125.78 0.0754 0.0841 

60 100.89 106.70 0.0889 0.0991 

75 64.07 102.57 0.1363 0.1561 

90 43.59 102.25 0.1944 0.2294 
 

 

Figure 4-19 Variation of Torsional properties of Composite I-beam Case D 
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Observations from the above graphs and tabulated values: 

Table 4-32 Observation for the Torsional Properties of a Composite I-Beam 

Equivalent 
Properties 

Maximum 

(at fiber 
orientation) 

Minimum 

(at fiber 
orientation) 

Variation pattern with respect to fiber 
orientation 

Torsional 
Stiffness 

 

45 degree 

 

0 & 90 
degrees 

 

Increases from 0 – 45 and decreases from 45 
– 90 degrees. It follows a bell shaped curve 
which is symmetric with respect to 45 degree 

 

Warping 
stiffness 

 

0 degree 

 

90 degree 

 

Decreases continuously from 0 – 90 degree. 
The reduction in stiffness is more severe from 
0 – 45 and minimal from 45 – 90  

 

Angle of 
twist – free 

torsion 

 

0 & 90 
degrees 

 

45 degree 

 

It is inversely related to the torsional stiffness. 
It follows an inverted bell shaped curve which 
has a maximum at 0 and reduced 
continuously till 45, where it holds the 
minimum value and then again increases till 
90 degree.  

 

Angle of 
twist – 

restrained 
warping 

 

Depends 

 

45 degree 

 

Warping constrain will restrict the rotation of I-
beam under torsion.  

Case A and B: As warping stiffness is 
comparatively quite higher than the torsional 
stiffness it has a prominent effect in reducing 
the angle of twist.  

 

 

Case C and D: Warping stiffness has minimal 
effect on the angle of twist and can be easily 
observed from the variation of angle of twist 
curve. 
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4.14  Comparison and study of variation of Equivalent Stiffness of Composite I-Beam 

The variation of Equivalent axial stiffness, bending stiffness with respect to y-axis 

and z-axis, torsional stiffness and warping stiffness with respect to the fiber orientation in 

Case A, B, C and D are shown below in Figure 4-20, Figure 4-21, Figure 4-22, Figure 

4-23, Table 4-33, Table 4-34 & Table 4-36  . 

The expressions for equivalent axial stiffness and bending stiffness with respect to y-axis 

are derived in [27]. 

Equivalent Axial Stiffness is given by: 

                
             

          
   

Equivalent Bending Stiffness with respect to Y-axis is given by: 
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Table 4-33 Equivalent Stiffness of composite I-beam Case A 

Case – A  

Composite  

properties 

  variation 

Analytically calculated properties 

EA 
(lb) 

(EI)yy 

(lb-in
2
) 

(EI)zz 

(lb-in
2
) 

GJ 
(lb-in

2
) 

EГ 
(lb-in

2
) 

0 868,000 61,820 27,286 26.50 1989.10 

15 798,500 56,700 25,005 52.68 1822.80 

30 620,790 43,738 19,218 101.94 1400.90 

45 455,010 31,621 13,822 123.80 1007.50 

60 380,960 26,214 11,411 98.38 831.80 

75 364,399 25,005 10,872 50.26 792.47 

90 363,180 24,916 10,832 26.50 789.60 

 

Figure 4-20 Variation of Equivalent stiffness properties with respect to fiber orientation for 

Case A 
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Table 4-34 Equivalent Stiffness of composite I-beam Case B 

Case – B  

Composite  

properties 

  variation 

Analytically calculated properties 

EA 
(lb) 

(EI)yy 

(lb-in
2
) 

(EI)zz 

(lb-in
2
) 

GJ 
(lb-in

2
) 

EГ 
(lb-in

2
) 

0 868,320 61,821 27,276 26.50 1988.50 

15 794,080 56,399 24,859 39.86 1812.30 

30 601,460 42,331 18,589 64.63 1355.10 

45 440,500 30,577 13,350 76.63 973.14 

60 377,780 25,995 11,308 64.36 824.28 

75 364,260 25,006 10,867 39.70 792.15 

90 363,170 24,929 10,832 26.40 789.63 

 

 

Figure 4-21 Variation of Equivalent stiffness properties with respect to fiber orientation for 

Case B 
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Table 4-35 Equivalent Stiffness of composite I-beam Case C 

Case – C  

Composite  

properties 

  variation 

Analytically calculated properties 

EA 
(lb) 

(EI)yy 

(lb-in
2
) 

(EI)zz 

(lb-in
2
) 

GJ 
(lb-in

2
) 

EГ 
(lb-in

2
) 

0 1,086,700 43,830 74,925 43.28 256.32 

15 1,016,200 40,440 70,148 85.94 234.95 

30 838,330 31,830 58,101 168.00 180.72 

45 672,550 23,798 46,876 206.06 130.12 

60 598,540 20,202 41,866 164.33 107.51 

75 582,430 19,399 40,782 83.67 102.44 

90 581,480 19,341 40,722 43.55 102.07 

 

 

Figure 4-22 Variation of Equivalent stiffness properties with respect to fiber orientation for 

Case C 
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Table 4-36 Equivalent Stiffness of composite I-beam Case D 

Case – D  

Composite  

properties 

  variation 

Analytically calculated properties 

EA 
(lb) 

(EI)yy 

(lb-in
2
) 

(EI)zz 

(lb-in
2
) 

GJ 
(lb-in

2
) 

EГ 
(lb-in

2
) 

0 1,086,200 43,702 74,893 43.56 256.60 

15 1,011,000 40,167 69,788 64.36 233.82 

30 816,790 30,958 56,608 101.38 174.82 

45 656,340 23,197 45,752 118.94 125.78 

60 594,980 20,151 41,619 100.89 106.70 

75 582,270 19,494 40,771 64.07 102.57 

90 581,470 19,443 40,721 43.59 102.25 

 

Figure 4-23 Variation of Equivalent stiffness properties with respect to fiber orientation for 

Case D 
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Table 4-37 Observation for the Equivalent stiffnesses of a Composite I-Beam 

Equivalent 
Properties 

Maximum 

(at fiber 
orientation) 

Minimum 

(at fiber 
orientation) 

Variation pattern with respect to fiber 
orientation 

Torsional 
Stiffness 

45 degree 
0 & 90 

degrees 

Increases from 0 – 45 and decreases from 45 
– 90 degrees. It follows a bell shaped curve 
which is symmetric with respect to 45 degree 

Warping 
stiffness 

0 degree 90 degree 

Decreases continuously from 0 – 90 degree. 
The reduction in stiffness is more severe from 

0 – 45 and minimal from 45 – 90 

 

Axial 
Stiffness 

Bending 
Stiffness 

(EI)zz and 
(EI)yy  
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Chapter 5  

Conclusive Summary and Future Work 

Analytical method to calculate: 

1. Shear Center  

2. Equivalent torsional stiffness 

3. Equivalent warping stiffness 

4. Equivalent bending stiffness with respect to z-z axis  

for a mono-symmetric composite I-beam were developed and the results were compared 

with the smeared property approach and the result from the ANSYS™ 2D model. 

Following conclusions can be drawn on the basis of this study 

Shear Center: 

 Shear center of a composite I-beam depends upon the material properties, 

stacking sequence, fiber orientation and geometry. 

 The formulation proposed in this study gives better agreement with ANSYS™ 

results. 

 The composite formulation when applied to isotropic material properties gives 

same results as the mechanics approach. 

 The formulation also captures the coupling behavior. As shown, for angle plies 

with high shear coupling variation, present formulation predicts better results than 

smeared property approach. 

 Also it was highlighted that if the stacking sequence is symmetrical in web, the 

change in fiber orientation in web does not affect the shear center location. 

 The variation of shear center with respect to the fiber orientation in flanges and 

web were discussed. 
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 The study also highlights the loopholes in the complete ABD matrix approach 

and suggests that this approach should be avoided to calculate the shear center 

and torsional stiffness for an open section. 

 

Equivalent Torsional stiffness: 

 Equivalent Torsional stiffness of a composite I-beam depends upon the material 

properties, stacking sequence, fiber orientation and geometry. 

 The composite formulation when applied to isotropic material properties gives 

same results as the mechanics approach. 

 The formulation proposed in this study suppresses the curvature and shear in the 

composite I-beam when subjected to pure torsion which is not the case with the 

smeared property approach. 

 It was observed that if width reduction factor is not applies, we get high 

differences between the results obtained from ANSYS and analytical calculation. 

 The study also highlights the need to incorporate the width correction factor 

similar to an isotropic case while calculating the torsional stiffness of the 

laminate. 

 In this literature, the isotropic width reduction factor is used to calculate the 

equivalent torsional stiffness and it was observed that it gives better co-relation 

with ANSYS™ results than the one with no width reduction factor. 

 Torsional stiffness can be maximized by including 45 degree plies and minimized 

by using 0 or 90 degree plies. 

 It the torsional load application in ANSYS should be distributed equally to all the 

nodes at the cross-section rather than making a master node. Making a master 
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node and applying torsional load only to it would have a restrain effect which will 

in turn not capture the free torsion condition. 

 

Equivalent Warping stiffness: 

 Equivalent Warping stiffness of a composite I-beam depends upon the material 

properties, stacking sequence, fiber orientation and geometry. 

 The composite formulation when applied to isotropic material properties gives 

same results as the mechanics approach. 

 Primary Warping is only considered as secondary warping effect will be very low 

and can be neglected for thin walled beams. 

 The method proposed in this work to deduce Warping stiffness (  ) from ANSYS 

is an indirect method and hence a pure    is not extracted from ANSYS. There is 

a need to find a method to directly get    from ANSYS 

 Warping stiffness can be maximized by including 0 degree plies and it goes on 

reducing when other angle plies are included. 

Also the angle of twist was calculated and it gives good agreement with the angle of twist 

calculated by ANSYS™ model. The variation of equivalent torsional, warping, axial, 

bending stiffness and angle of twist (free torsion and restrained torsion) were also 

discussed. 
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Future work 

The topic of torsion is vast like an ocean and this thesis work is just a droplet of that vast 

deep ocean. Numerous studies can be done on the torsional response of the open and 

closed section beam. Following topics can serve as future work: 

 Predicting the width reduction factor 

 Analysis of the effect of secondary warping 

 Stresses and strains in each ply 

 Torsional analysis of other open sections 

 Study of behavior of warping and more accurate prediction of stiffness by 

incorporating some modifications to the present formulations 

 Comparing the results with 3D model in ANSYS™ 

 Hygrothermal analysis  

 Torsional analysis when torsion is applied at location other than shear center/ 

torsional center 

 Experimental verification of the results 

 Modification of the formulation for a more realistic I-beam (which includes the ply 

drop off, tool radius, spool ply effect, etc…) 

 Comparing the formulation with other analytical approaches 

 Effect of inter-laminar shear stress
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Appendix A 

MATLAB™ code used for this study 
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%% Matlab program for I-Beam (composite/isotropic) 

  
%% By Vishal Sanghavi 

  
%% program calculates Centroid, Axial Stiffness, Bending 

Stiffness with 
% respect to y axis and z- axis, 
% Shear center (3 approaches), Torsional Stiffness (3 

approaches), angle of 
% twist (3 approaches), 

  
%% last modified on 28 October 2012 

  
clc 
clear 

  
prompt = {'Enter E1(psi):','Enter E2(psi):', 'Enter G12(psi):' , 

'Enter \nu 12 (psi):', 'Enter ply thickness tply (in):'}; 
dlg_title = 'Input for material properties for Q matrix'; 
num_lines = 1; 
def = {'21.75*10^6','1.595*10^6','0.8702*10^6','0.25','0.005' }; 
%%def = {'1.02*10^7','1.02*10^7','4.08*10^6','0.25','0.005' }; 
%%def = {'18.2*10^6','1.41*10^6','0.92*10^6','0.274','0.005' }; 
a  = inputdlg(prompt,dlg_title,num_lines,def); 
answer = [a(1),a(2),a(3),a(4),a(5)]; 
%a = str2num(answer{1} 
S11=1/str2num(a{1}) ;  
S22 = 1/str2num(a{2});; 
S12 = -str2num(a{4})/str2num(a{1}); 
S66 = 1/str2num(a{3}); 
s = [S11,S12,0;S12,S22,0;0,0,S66]; 
%pretty (s); 
Q = inv(s); 
%pretty (Q); 

  
% TOP FLANGE PLY INPUT % 

  
prompt = {'Enter no of plies for the top most flange:'}; 
dlg_title = 'No of ply'; 
num_lines = 1; 
def = {'1'}; 
b  = inputdlg(prompt,dlg_title,num_lines,def); 
b = str2num(b{1}); 
ply_f1 = b; 
thickness_top = b * str2num(a{5}); 
% TOP FLANGE PLY angle INPUT % 

  
for i=1:b, 
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prompt = {'Enter thetha in degrees (start with first ply- top 

most ply)for top most flange :'}; 
dlg_title = 'thetha'; 
num_lines = 1; 
def = {'0'}; 
c(i) = inputdlg(prompt,dlg_title,num_lines,def); 
end 
c; 
c_f1 = c 
h = [0:b]; 
for i=0:b 
    if i < b/2 
        k = 0+i; 
        j = 1+i; 
        h(1,j) = (-b/2)+k; 
   else  
     k = i; 
     j = 1+i; 
     h(1,j) = h(1,j-1)+1; 
    end 
end 
h = str2num(a{5})*h; 
h_f1 = h 
% CALCULATION OF ABBD MATRIX OF TOP FLANGE 
A0 = zeros(3); 
B0 = zeros(3); 
D0 = zeros(3); 

  
e = 0; 
for j=1:b 

    
     angle = str2num(c{b-e}); 
      e = e+1; 
     theta = angle * pi / 180 
     n = sin(-theta); 
     m = cos(-theta); 
     Tsigma = [m^2 , n^2 , 2*m*n ; n^2 , m^2 , -2*m*n ; -m*n , 

m*n , m^2 - n^2]; 
     n = sin(theta); 
     m = cos(theta); 
     Tepsilon = [m^2 , n^2 , m*n ; n^2 , m^2 , -m*n ; -2*m*n , 

2*m*n , m^2 - n^2]; 
     Qbar = Tsigma * Q * Tepsilon; 
     n = sin(-theta); 
     m = cos(-theta); 
     TepsilonN = [m^2 , n^2 , m*n ; n^2 , m^2 , -m*n ; -2*m*n , 

2*m*n , m^2 - n^2]; 

     
     A = A0 + Qbar*(h(1,j+1) - h(1,j)); 
     f = ((h(1,j+1)*h(1,j+1)) - ((h(1,j)*h(1,j)))); 
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format short 
     B = B0 + (Qbar*f)/2; 
format short 
     D = D0 + (Qbar*(h(1,j+1)^3 - h(1,j)^3))/3; 
     A0 = A; 
     B0 = B; 
     D0 = D; 
end 
A; 
B; 
D; 
ABBD=[A,B;B,D]; 
Abarf1 = A; 
Bbarf1 = B; 
Dbarf1 = D; 
 

%CALCULATION OF A*B*B*D* matric 

  
abbd_t = inv(ABBD); 
Etf1_smeared = (1 / abbd_t(1,1)); 

  
Eft1_warp = (1/( abbd_t(1,1) - ( (abbd_t(1,4)^2)/abbd_t(4,4)) )  

); 
astar = abbd_t(1,1) - (abbd_t(1,6)^2/abbd_t(6,6)); 
bstar = abbd_t(1,4) - (abbd_t(1,6)*abbd_t(4,6)/abbd_t(6,6)); 
dstar = abbd_t(4,4) - (abbd_t(4,6)^2/abbd_t(6,6)); 

  
astarbstardstar_t = [astar , bstar ; bstar , dstar ]; 
centroid_top = (-bstar / dstar ) 
thickness_top 

  
ABBDstar_t = inv(astarbstardstar_t); 
Af1 = ABBDstar_t(1,1); 
Bf1 = ABBDstar_t(2,1); 
%%---------------------------------------------------------------

--- 
%%calculation for torsional stiffness elements by method 1 

(smeared) 
d66f1_1 = abbd_t(6,6); 
GJf1_1 = 1/d66f1_1 
%%---------------------------------------------------------------

--- 
%%calculation for torsional stiffness elements by method 2  
abdbarf1_2 = [abbd_t(1,1), abbd_t(1,4), abbd_t(1,6); 
            abbd_t(1,4), abbd_t(4,4), abbd_t(4,6); 
            abbd_t(1,6), abbd_t(4,6), abbd_t(6,6)]; 
ABDbarf1_2 = inv(abdbarf1_2); 
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GJf1_2 = ((ABDbarf1_2(3,3))/(1-(ABDbarf1_2(1,3)*abbd_t(1,6))- 

(ABDbarf1_2(2,3)*abbd_t(4,6)))) 

  
%%---------------------------------------------------------------

--- 
%%calculation for torsional stiffness elements by method 3  

  
%%GJf1_3 = 1 / ( abbd_t(6,6) - ((abbd_t(4,6)^2)/abbd_t(4,4))); 

  
astarf1_t = abbd_t(3,3) - (abbd_t(3,4)^2/abbd_t(4,4)); 
bstarf1_t = abbd_t(3,6) - (abbd_t(3,4)*abbd_t(4,6)/abbd_t(4,4)); 
dstarf1_t = abbd_t(6,6) - (abbd_t(4,6)^2/abbd_t(4,4)); 
astarbstardstarf1_t = [astarf1_t , bstarf1_t ; bstarf1_t , 

dstarf1_t ]; 

  
rho_sc_f1 = -(bstarf1_t/dstarf1_t) 
ABBDstarf1_t = inv(astarbstardstarf1_t); 

  
Astar_t_f1sc = ABBDstarf1_t(1,1); 
Bstar_t_f1sc = ABBDstarf1_t(1,2) - rho_sc_f1 * ABBDstarf1_t(1,1); 
Dstar_t_f1sc = ABBDstarf1_t(2,2) - 2 * rho_sc_f1 * 

ABBDstarf1_t(1,2) + (rho_sc_f1^2) * ABBDstarf1_t(1,1); 

  
D66f1_t = Dstar_t_f1sc 

  
%% 
% BOTTOM FLANGE PLY angle INPUT % 

  
% BOTTOM FLANGE PLY INPUT % 

  
prompt = {'Enter no of plies for the bottom most flange:'}; 
dlg_title = 'No of ply'; 
num_lines = 1; 
def = {'1'}; 
b  = inputdlg(prompt,dlg_title,num_lines,def); 
b = str2num(b{1}); 
ply_f2 = b; 
thickness_bottom = b * str2num(a{5}); 
for i=1:b, 
prompt = {'Enter thetha in degrees (start with first ply)for 

bottom most flange :'}; 
dlg_title = 'thetha'; 
num_lines = 1; 
def = {'0'}; 
c(i) = inputdlg(prompt,dlg_title,num_lines,def); 
end 
c; 
c_f2 = c 
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h = [0:b]; 
for i=0:b 
    if i < b/2 
        k = 0+i; 
        j = 1+i; 
        h(1,j) = (-b/2)+k; 
   else  
     k = i; 
     j = 1+i; 
     h(1,j) = h(1,j-1)+1; 
    end 
end 
h = str2num(a{5})*h; 
h_f2 = h 
 

% CALCULATION OF ABBD MATRIX OF bottom FLANGE 
 

A0 = zeros(3); 
B0 = zeros(3); 
D0 = zeros(3); 
e = 0; 
for j=1:b 

    
     angle = str2num(c{b-e}); 
      e = e+1; 
     theta = angle * pi / 180; 
     n = sin(-theta); 
     m = cos(-theta); 
     Tsigma = [m^2 , n^2 , 2*m*n ; n^2 , m^2 , -2*m*n ; -m*n , 

m*n , m^2 - n^2]; 
     n = sin(theta); 
     m = cos(theta); 
     Tepsilon = [m^2 , n^2 , m*n ; n^2 , m^2 , -m*n ; -2*m*n , 

2*m*n , m^2 - n^2]; 
     Qbar = Tsigma * Q * Tepsilon; 
     n = sin(-theta); 
     m = cos(-theta); 
     TepsilonN = [m^2 , n^2 , m*n ; n^2 , m^2 , -m*n ; -2*m*n , 

2*m*n , m^2 - n^2]; 
     A = A0 + Qbar*(h(1,j+1) - h(1,j)); 
     f = ((h(1,j+1)*h(1,j+1)) - ((h(1,j)*h(1,j)))); 
format short 
     B = B0 + (Qbar*f)/2; 
format short 
     D = D0 + (Qbar*(h(1,j+1)^3 - h(1,j)^3))/3; 
     A0 = A; 
     B0 = B; 
     D0 = D; 
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end 
A; 
B; 
D; 
ABBD=[A,B;B,D]; 
Abarf2 = A; 
Bbarf2 = B; 
Dbarf2 = D; 

  
%CALCULATION OF A*B*B*D* matric 

  
abbd_b = inv(ABBD); 
Etf2_smeared = (1 / abbd_b(1,1)); 

  
Eft2_warp = (1/( abbd_b(1,1) - ( (abbd_b(1,4)^2)/abbd_b(4,4)))); 

  
astar = abbd_b(1,1) - (abbd_b(1,6)^2/abbd_b(6,6)); 
bstar = abbd_b(1,4) - (abbd_b(1,6)*abbd_b(4,6)/abbd_b(6,6)); 
dstar = abbd_b(4,4) - (abbd_b(4,6)^2/abbd_b(6,6)); 

  
astarbstardstar_b = [astar , bstar ; bstar , dstar ]; 
centroid_bottom = (-bstar / dstar ) 
thickness_bottom 

  
ABBDstar_b = inv(astarbstardstar_b); 
Af2 = ABBDstar_b(1,1); 
Bf2 = ABBDstar_b(2,1); 

  
%%---------------------------------------------------------------

--- 
%calculation for torsional stiffness elements by method 1 

(smeared) 
 

d66f2_1 = abbd_b(6,6); 

  
%%---------------------------------------------------------------

--- 
%%calculation for torsional stiffness elements by method 2  
abdbarf2_2 = [abbd_b(1,1), abbd_b(1,4), abbd_b(1,6); 
            abbd_b(1,4), abbd_b(4,4), abbd_b(4,6); 
            abbd_b(1,6), abbd_b(4,6), abbd_b(6,6)]; 
ABDbarf2_2 = inv(abdbarf2_2); 

  
GJf2_2 = ((ABDbarf2_2(3,3))/(1-(ABDbarf2_2(1,3)*abbd_b(1,6))- 

(ABDbarf2_2(2,3)*abbd_b(4,6)))); 

  
%%---------------------------------------------------------------

--- 
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%%calculation for torsional stiffness elements by method 3  

  
%GJf2_3 = 1 / ( abbd_b(6,6) - ((abbd_b(4,6)^2)/abbd_b(4,4))); 
astarf2_t = abbd_b(3,3) - (abbd_b(3,4)^2/abbd_b(4,4)); 
bstarf2_t = abbd_b(3,6) - (abbd_b(3,4)*abbd_b(4,6)/abbd_b(4,4)); 
dstarf2_t = abbd_b(6,6) - (abbd_b(4,6)^2/abbd_b(4,4)); 

  
astarbstardstarf2_t = [astarf2_t , bstarf2_t ; bstarf2_t , 

dstarf2_t ]; 

  
ABBDstarf2_t = inv(astarbstardstarf2_t); 
D66f2_t = ABBDstarf2_t(2,2); 

  
astarf2_t = abbd_b(3,3) - (abbd_b(3,4)^2/abbd_b(4,4)); 
bstarf2_t = abbd_b(3,6) - (abbd_b(3,4)*abbd_b(4,6)/abbd_b(4,4)); 
dstarf2_t = abbd_b(6,6) - (abbd_b(4,6)^2/abbd_b(4,4)); 
astarbstardstarf2_t = [astarf2_t , bstarf2_t ; bstarf2_t , 

dstarf2_t ]; 

  
rho_sc_f2 = -(bstarf2_t/dstarf2_t) 
ABBDstarf2_t = inv(astarbstardstarf2_t); 

  
Astar_t_f2sc = ABBDstarf2_t(1,1); 
Bstar_t_f2sc = ABBDstarf2_t(1,2) - rho_sc_f2 * ABBDstarf2_t(1,1); 
Dstar_t_f2sc = ABBDstarf2_t(2,2) - 2 * rho_sc_f2 * 

ABBDstarf2_t(1,2) + (rho_sc_f2^2) * ABBDstarf2_t(1,1); 

  
D66f2_t = Dstar_t_f2sc 
%% 
% WEB PLY angle INPUT % 

  
% WEB PLY INPUT % 

  
prompt = {'Enter no of plies for the WEB:'}; 
dlg_title = 'No of ply'; 
num_lines = 1; 
def = {'1'}; 
b  = inputdlg(prompt,dlg_title,num_lines,def); 
b = str2num(b{1}); 
thickness_web = b * str2num(a{5}); 
ply_w= b; 
for i=1:b, 
prompt = {'Enter thetha in degrees (start with first ply)for WEB 

:'}; 
dlg_title = 'thetha'; 
num_lines = 1; 
def = {'0'}; 
d(i) = inputdlg(prompt,dlg_title,num_lines,def); 
end 
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d; 
d_w = d 
h = [0:b]; 
for i=0:b 
    if i < b/2 
        k = 0+i; 
        j = 1+i; 
        h(1,j) = (-b/2)+k; 
   else  
     k = i; 
     j = 1+i; 
     h(1,j) = h(1,j-1)+1; 
    end 
end 
h = str2num(a{5})*h; 
h_w = h 

  
% CALCULATION OF ABBD MATRIX OF web 
 

A0 = zeros(3); 
B0 = zeros(3); 
D0 = zeros(3); 
e = 0; 
for j=1:b 

    
     angle = str2num(d{b-e}); 
      e = e+1; 
     theta = angle * pi / 180; 
     n = sin(-theta); 
     m = cos(-theta); 
     Tsigma = [m^2 , n^2 , 2*m*n ; n^2 , m^2 , -2*m*n ; -m*n , 

m*n , m^2 - n^2]; 
     n = sin(theta); 
     m = cos(theta); 
     Tepsilon = [m^2 , n^2 , m*n ; n^2 , m^2 , -m*n ; -2*m*n , 

2*m*n , m^2 - n^2]; 
     Qbar = Tsigma * Q * Tepsilon; 
     n = sin(-theta); 
     m = cos(-theta); 
     TepsilonN = [m^2 , n^2 , m*n ; n^2 , m^2 , -m*n ; -2*m*n , 

2*m*n , m^2 - n^2]; 
     A = A0 + Qbar*(h(1,j+1) - h(1,j)); 
     f = ((h(1,j+1)*h(1,j+1)) - ((h(1,j)*h(1,j)))); 
format short 
     B = B0 + (Qbar*f)/2; 
format short 
     D = D0 + (Qbar*(h(1,j+1)^3 - h(1,j)^3))/3; 
     A0 = A; 
     B0 = B; 
     D0 = D; 
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end 
A; 
B; 
D; 

  
ABBD=[A,B;B,D]; 

  
%CALCULATION OF A*B*B*D* matric 

  
abbd_w = inv(ABBD); 
astar = abbd_w(1,1) - (abbd_w(1,6)^2/abbd_w(6,6)); 
bstar = abbd_w(1,4) - (abbd_w(1,6)*abbd_w(4,6)/abbd_w(6,6)); 
dstar = abbd_w(4,4) - (abbd_w(4,6)^2/abbd_w(6,6)); 

  
astarbstardstar_w = [astar , bstar ; bstar , dstar ]; 
centroid_web1 = (-bstar / dstar ); 
thickness_web 

  
ABBDstar_w = inv(astarbstardstar_w); 
Dw = ABBDstar_w(2,2); 
Aw = ABBDstar_w(1,1); 

  
%%---------------------------------------------------------------

--- 
%calculation for torsional stiffness elements by method 1 

(smeared) 
d66w_1 = abbd_w(6,6); 

  
%%---------------------------------------------------------------

--- 
%%calculation for torsional stiffness elements by method 2  
abdbarw_2 = [abbd_w(1,1), abbd_w(1,4), abbd_w(1,6); 
            abbd_w(1,4), abbd_w(4,4), abbd_w(4,6); 
            abbd_w(1,6), abbd_w(4,6), abbd_w(6,6)]; 
ABDbarw_2 = inv(abdbarw_2); 

  
GJw_2 = ((ABDbarw_2(3,3))/(1-(ABDbarw_2(1,3)*abbd_w(1,6))- 

(ABDbarw_2(2,3)*abbd_w(4,6)))); 

  
%%---------------------------------------------------------------

--- 
%%calculation for torsional stiffness elements by method 3  

  
D66w_t= 1 / ( abbd_w(6,6) - ((abbd_w(4,6)^2)/abbd_w(4,4))); 
 

%% 
%width of flanges 
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prompt = {'Enter width of top flange in inches:'}; 
dlg_title = 'top flange width'; 
num_lines = 1; 
def = {'0.25'}; 
bf1  = inputdlg(prompt,dlg_title,num_lines,def); 
bf1 = str2num(bf1{1}); 

  
prompt = {'Enter width of bottom flange in inches:'}; 
dlg_title = 'bottom flange width'; 
num_lines = 1; 
def = {'1'}; 
bf2  = inputdlg(prompt,dlg_title,num_lines,def); 
bf2 = str2num(bf2{1}); 

  
prompt = {'Enter the height of web in inches:'}; 
dlg_title = 'web height'; 
num_lines = 1; 
def = {'0.5'}; 
hw  = inputdlg(prompt,dlg_title,num_lines,def); 
hw = str2num(hw{1}); 
centroid_web = hw/2 

  
z1 = thickness_bottom + hw + (thickness_top/2)+ centroid_top  
z2 = (thickness_bottom/2)+centroid_bottom 
z3 = thickness_bottom + hw/2 

  
Af1 
Af2 
Dw 
Aw 

  
bf1 
bf2 
hw 

  
zc = ((Af1 * bf1 * z1) + (Af2 * bf2 * z2) +  (hw * z3 * Aw)) / 

((Af1 * bf1 ) + (Af2 * bf2 ) +  (hw *  Aw)) 

  
EA = (Af1 * bf1 ) + (Af2 * bf2 ) +  (hw *  Aw)  

  
z1c = z1 - zc 
z2c = z2 - zc 
hwc = z3-zc 

  
EIyy = bf1*(ABBDstar_t(2,2)+2*ABBDstar_t(2,1)*z1c + 

z1c*z1c*ABBDstar_t(1,1)) + 

bf2*(ABBDstar_b(2,2)+2*ABBDstar_b(2,1)*z2c + 
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z2c*z2c*ABBDstar_b(1,1)) + (1/12 * hw *hw * hw + hw * hwc * hwc 

)* ABBDstar_w(1,1) 

  
EIzz = ((ABBDstar_t(1,1) * bf1^3) /12) + ((ABBDstar_b(1,1) * 

bf2^3)/12) + Dw*(hw)  

  
%%---------------------------------------------------------------

---------- 
%% Shear center calculation 

  
%% width reduction factor" 

  
prompt = {'Enter width reduction factor for top flange:'}; 
dlg_title = 'width reduction factor '; 
num_lines = 1; 
def = {'0.897'}; 
mu1_f1  = inputdlg(prompt,dlg_title,num_lines,def); 
mu1_f1 = str2num(mu1_f1{1}); 

  
prompt = {'Enter width reduction factor for bottom flange:'}; 
dlg_title = 'width reduction factor '; 
num_lines = 1; 
def = {'0.96'}; 
mu2_f2  = inputdlg(prompt,dlg_title,num_lines,def); 
mu2_f2 = str2num(mu2_f2{1}); 

  
prompt = {'Enter width reduction factor for web laminate:'}; 
dlg_title = 'width reduction factor '; 
num_lines = 1; 
def = {'0.96'}; 
mu_w  = inputdlg(prompt,dlg_title,num_lines,def); 
mu_w = str2num(mu_w{1}); 

 
%%Mathod 1 - from centroid - suggested my Vishal Sanghavi 
e_sc_1 = (((z1c*Af1*bf1^3)/12)+((z2c*Af2*bf2^3)/12))* (1/EIzz); 
e_bottom_1 =  zc+ e_sc_1  

  
%% Method 2 -  smeared property  
heightweb = (hw + (thickness_top/2)+(thickness_bottom/2)); 
e_sc_2 = (heightweb * Etf1_smeared *(bf1^3))/( Etf1_smeared 

*(bf1^3)+ Etf2_smeared *(bf2^3)) + (thickness_bottom/2) 

  
%%Method 3 - Suggested by Syed - total ABD property  
% CALCULATION OF ABBD MATRIX OF web 
A0 = zeros(3); 
B0 = zeros(3); 
D0 = zeros(3); 
e = 0; 
for j=1:b 
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     angle = str2num(d{b-e}); 
      e = e+1; 
     theta = angle * pi / 180; 
     n = sin(-theta); 
     m = cos(-theta); 
     Tsigma = [m^2 , n^2 , 2*m*n ; n^2 , m^2 , -2*m*n ; -m*n , 

m*n , m^2 - n^2]; 
     n = sin(theta); 
     m = cos(theta); 
     Tepsilon = [m^2 , n^2 , m*n ; n^2 , m^2 , -m*n ; -2*m*n , 

2*m*n , m^2 - n^2]; 
    %%Qbar = Tsigma * [1,0,0;0,0,0;0,0,0]* Q 

*[1,0,0;0,0,0;0,0,0]* Tepsilon; 
    Qbar = Tsigma * Q * Tepsilon; 
     A = A0 + Qbar*(h(1,j+1) - h(1,j)); 
     f = ((h(1,j+1)*h(1,j+1)) - ((h(1,j)*h(1,j)))); 
format short 
     B = B0 + (Qbar*f)/2; 
format short 
     D = D0 + (Qbar*(h(1,j+1)^3 - h(1,j)^3))/3; 
     A0 = A; 
     B0 = B; 
     D0 = D; 

    
end 
A; 
B; 
D; 

  
ABBD=[A,B;B,D]; 
Abarw = [1,0,0;0,0,0;0,0,0]*A*[1,0,0;0,0,0;0,0,0]; 
Bbarw = [1,0,0;0,0,0;0,0,0]*B*[1,0,0;0,0,0;0,0,0]; 
Dbarw = [1,0,0;0,0,0;0,0,0]*D*[1,0,0;0,0,0;0,0,0]; 
htf1 = (hw/2) + (thickness_top/2); 
htf2 = (hw/2) + (thickness_bottom/2); 
Abarcomplete = hw*Abarw + bf1*Abarf1 + bf2*Abarf2; 
Bbarcomplete = hw*Bbarw + bf1*(Bbarf1+((htf1)*Abarf1)) + 

bf2*(Bbarf2-((htf2 )*Abarf2)); 
Dbarcomplete = (hw*Dbarw + ((hw^3)*Abarw / 12 ))+ bf1*(Dbarf1 

+(2*(htf1)*Bbarf1)+((htf1)^2*Abarf1)) + bf2*(Dbarf2 - 

(2*(htf2)*Bbarf2)+((htf2)^2*Abarf2)); 
 

ABDcomplete = 

[Abarcomplete,Bbarcomplete;Bbarcomplete,Dbarcomplete]; 
abdcomplete = inv(ABDcomplete); 
centroid_3_bottom = -(abdcomplete(1,4)/abdcomplete(4,4)) + (hw/2)  

+ (thickness_bottom); 
sc_3 = -(abdcomplete(3,6)/abdcomplete(6,6)) + (hw/2)  + 

(thickness_bottom) 
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EA_ABD = (abdcomplete(4,4)/((abdcomplete(1,1)*abdcomplete(4,4))-

(abdcomplete(1,4)^2))) 
EI_ABD = (abdcomplete(1,1)/((abdcomplete(1,1)*abdcomplete(4,4))-

(abdcomplete(1,4)^2))) 
%%---------------------------------------------------------------

---------- 

  
prompt = {'Enter Torsional Moment applied in lbs/inch'}; 
dlg_title = 'Torsion'; 
num_lines = 1; 
def = {'1'}; 
Torsion  = inputdlg(prompt,dlg_title,num_lines,def); 
Torsion = str2num(Torsion{1}); 

  
prompt = {'Enter the effective length of beam in inches'}; 
dlg_title = 'Lenght'; 
num_lines = 1; 
def = {'10'}; 
Lenght = inputdlg(prompt,dlg_title,num_lines,def); 
Lenght = str2num(Lenght{1}); 

  

  
%%---------------------------------------------------------------

---------- 
%%Torsional Stiffness - Smeared properties - Method 1: 

  
GJ_1 = ((4*bf1)/d66f1_1) + ((4*bf2)/d66f2_1) + ((4*hw)/d66w_1) 
theta_1 = (Torsion * Lenght)/GJ_1 
%%---------------------------------------------------------------

---------- 
%%Torsional Stiffness -Skudra - Method 2: 

  
GJ_2 = ((4*bf1)*(GJf1_2)) + ((4*bf2)*(GJf2_2)) + ((4*hw)*(GJw_2)) 
theta_2 = (Torsion * Lenght)/GJ_2 
%%---------------------------------------------------------------

---------- 
%%Torsional Stiffness - present method  - Method 3- suggested my 

Vishal 
%%Sanghavi 

  
GJ_3 = ((4*mu1_f1*bf1)*D66f1_t) + ((4*mu2_f2*bf2)*D66f2_t) + 

((4*mu_w*hw)*D66w_t) 
theta_3 = (Torsion * Lenght)/GJ_3 
%%---------------------------------------------------------------

---------- 
%%---------------------------------------------------------------

---------- 
%%Warping Stiffness suggested my Vishal Sanghavi 
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ef2 = e_bottom_1 - (thickness_bottom/2); 
eff1 = heightweb - ef2 ; 

  
warpingstiffness_1 = ( (((ABBDstar_t(1,1) * bf1^3) /12)* eff1^2) 

+ (((ABBDstar_b(1,1) * bf2^3)/12)*ef2^2) ) 
%%warpingstiffness_1 = ( (((Etf1_smeared * bf1^3) /12)* eff1^2) + 

(((Etf2_smeared * bf2^3)/12)*ef2^2) ) 
%%---------------------------------------------------------------

---------- 
%%Warping Stiffness by smeared properties  

  
e_sc_2_warping = e_sc_2 - (thickness_bottom/2); 
warpingstiffness_2 = ((heightweb * Etf2_smeared *(bf2^3))/12) * 

e_sc_2_warping   

  
%%---------------------------------------------------------------

---------- 
%% Calculation of total angle of twist - (warping effect included 

) - 
% present formulation used  
L = 10; % total lenght of beam 
z = 10; % point at which the thetha needs to be evaluated 
mu_1 = sqrt( GJ_3  / warpingstiffness_1); 
theta_warp_1 = ((Torsion /(GJ_3 )))* (z + (sinh( mu_1*(L-z)) / 

(mu_1 * cosh( mu_1 * L))) - (((sinh( mu_1 * L)) /( mu_1 *cosh( 

mu_1 * L))))) 
theta_warp_1_deg = theta_warp_1  * 180 / pi 

  
%%---------------------------------------------------------------

---------- 
%% Calculation of total angle of twist - smeared properties  
mu_2 = sqrt( GJ_1  / warpingstiffness_2); 

  
theta_warp_2 = ((Torsion /(GJ_1 )))* (z + (sinh( mu_2*(L-z)) / 

(mu_2 * cosh( mu_2* L))) - (((sinh( mu_2 * L)) /( mu_2 *cosh( 

mu_2* L))))) 
theta_warp_2_deg = theta_warp_2  * 180 / pi 

  

  

 

 

 

 

 

 

 



 

136 

 

Appendix B 

APDL code for Modeling 2D composite I-Beam 



 

137 

 

/PREP7   

!*   

ET,1,SHELL181    

!*   

KEYOPT,1,1,0 

KEYOPT,1,3,0 

KEYOPT,1,8,2 

KEYOPT,1,9,0 

!*   

!*   

MPTEMP,,,,,,,,   

MPTEMP,1,0   

MPDATA,EX,1,,21.75e6 

MPDATA,EY,1,,1.595e6 

MPDATA,EZ,1,,1.595e6 

MPDATA,PRXY,1,,0.25  

MPDATA,PRYZ,1,,0.45  

MPDATA,PRXZ,1,,0.25  

MPDATA,GXY,1,,0.8702e6   

MPDATA,GYZ,1,,0.5366e6   

MPDATA,GXZ,1,,0.8702e6   

sect,1,shell,,Top Flange 

secdata, 0.005,1,45,3    

secdata, 0.005,1,-45,3   

secdata, 0.005,1,0,3 

secdata, 0.005,1,90,3    

secdata, 0.005,1,90,3    

secdata, 0.005,1,0,3 

secdata, 0.005,1,-45,3   

secdata, 0.005,1,45,3    

secoffset,MID    

seccontrol,,,, , , , 

sect,2,shell,,Bottom Flange  

secdata, 0.005,1,45,3    

secdata, 0.005,1,-45,3   

secdata, 0.005,1,0,3 

secdata, 0.005,1,0,3 

secdata, 0.005,1,90,3    
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secdata, 0.005,1,90,3    

secdata, 0.005,1,0,3 

secdata, 0.005,1,0,3 

secdata, 0.005,1,-45,3   

secdata, 0.005,1,45,3    

secoffset,MID    

seccontrol,,,, , , , 

sect,3,shell,,Web    

secdata, 0.005,1,45,3    

secdata, 0.005,1,-45,3   

secdata, 0.005,1,-45,3   

secdata, 0.005,1,45,3    

secoffset,MID    

seccontrol,,,, , , , 

sect,3,shell,,Web    

secdata, 0.005,1,45,3    

secdata, 0.005,1,-45,3   

secdata, 0.005,1,-45,3   

secdata, 0.005,1,45,3    

secoffset,MID    

seccontrol,,,, , , , 

K,1,0,0,0,   

K,2,10,0,0,  

K,3,0,0.375,0,   

K,4,10,0.375,0,  

K,5,0,0.75,0,    

K,6,10,0.75,0,   

K,7,0,0.375,0.545,   

K,8,10,0.375,0.545,  

K,9,0,0.125,0.545,   

K,10,10,0.125,0.545, 

K,11,0,0.625,0.545,  

K,12,10,0.625,0.545, 

FINISH   

/SOL 

FINISH   

/PREP7   

!*   
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LOCAL,11,0,0,0.375,0, ,90, ,1,1, 

!*   

LOCAL,12,0,0,0,0,0,0,0,1,1,  

FLST,2,4,3   

FITEM,2,3    

FITEM,2,1    

FITEM,2,2    

FITEM,2,4    

A,P51X   

FLST,2,4,3   

FITEM,2,5    

FITEM,2,3    

FITEM,2,4    

FITEM,2,6    

A,P51X   

!*   

APLOT    

LPLOT    

FLST,5,2,5,ORDE,2    

FITEM,5,1    

FITEM,5,-2   

CM,_Y,AREA   

ASEL, , , ,P51X  

CM,_Y1,AREA  

CMSEL,S,_Y   

!*   

CMSEL,S,_Y1  

AATT,       1, ,   1,      12,   2   

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

FLST,5,4,4,ORDE,4    

FITEM,5,1    

FITEM,5,3    

FITEM,5,5    

FITEM,5,-6   

CM,_Y,LINE   
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LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,,_Y    

!*   

LESIZE,_Y1, , ,75, , , , ,1  

!*   

FLST,5,3,4,ORDE,3    

FITEM,5,2    

FITEM,5,4    

FITEM,5,7    

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,,_Y    

!*   

LESIZE,_Y1, , ,200, , , , ,1 

!*   

MSHKEY,0 

FLST,5,2,5,ORDE,2    

FITEM,5,1    

FITEM,5,-2   

CM,_Y,AREA   

ASEL, , , ,P51X  

CM,_Y1,AREA  

CHKMSH,'AREA'    

CMSEL,S,_Y   

!*   

AMESH,_Y1    

!*   

CMDELE,_Y    

CMDELE,_Y1   

CMDELE,_Y2   

!*   

KPLOT    

!*   

!*   

FLST,2,4,3   

FITEM,2,7    
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FITEM,2,9    

FITEM,2,10   

FITEM,2,8    

A,P51X   

FLST,2,4,3   

FITEM,2,11   

FITEM,2,7    

FITEM,2,8    

FITEM,2,12   

A,P51X   

!*   

LPLOT    

FLST,5,2,5,ORDE,2    

FITEM,5,3    

FITEM,5,-4   

CM,_Y,AREA   

ASEL, , , ,P51X  

CM,_Y1,AREA  

CMSEL,S,_Y   

!*   

CMSEL,S,_Y1  

AATT,       1, ,   1,      12,   1   

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

FLST,5,4,4,ORDE,4    

FITEM,5,8    

FITEM,5,10   

FITEM,5,12   

FITEM,5,-13  

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,,_Y    

!*   

LESIZE,_Y1, , ,50, , , , ,1  

!*   
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FLST,5,3,4,ORDE,3    

FITEM,5,9    

FITEM,5,11   

FITEM,5,14   

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,,_Y    

!*   

LESIZE,_Y1, , ,200, , , , ,1 

!*   

MSHKEY,0 

FLST,5,2,5,ORDE,2    

FITEM,5,3    

FITEM,5,-4   

CM,_Y,AREA   

ASEL, , , ,P51X  

CM,_Y1,AREA  

CHKMSH,'AREA'    

CMSEL,S,_Y   

!*   

AMESH,_Y1    

!*   

CMDELE,_Y    

CMDELE,_Y1   

CMDELE,_Y2   

!*   

KPLOT    

FLST,2,4,3   

FITEM,2,3    

FITEM,2,7    

FITEM,2,8    

FITEM,2,4    

A,P51X   

CM,_Y,AREA   

ASEL, , , ,       5  

CM,_Y1,AREA  

CMSEL,S,_Y   
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!*   

CMSEL,S,_Y1  

AATT,       1, ,   1,      11,   3   

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

LPLOT    

FLST,5,2,4,ORDE,2    

FITEM,5,15   

FITEM,5,-16  

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,,_Y    

!*   

LESIZE,_Y1, , ,110, , , , ,1 

!*   

FLST,5,2,4,ORDE,2    

FITEM,5,4    

FITEM,5,11   

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,,_Y    

!*   

LESIZE,_Y1, , ,200, , , , ,1 

!*   

MSHKEY,0 

CM,_Y,AREA   

ASEL, , , ,       5  

CM,_Y1,AREA  

CHKMSH,'AREA'    

CMSEL,S,_Y   

!*   

AMESH,_Y1    

!*   

CMDELE,_Y    
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CMDELE,_Y1   

CMDELE,_Y2   

!*   

NPLOT    
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