

DESIGN OF EMBEDDED NIOS II PROCESSOR BASED SYSTEM FOR

IMPLEMENTING BRIDGING ALGORITHM OF

 PROFILING APPLICATION

by

VINAY S ASHI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2012

Copyright © by Vinay Ashi 2012

All Rights Reserved

iii

ACKNOWLEDGEMENTS

 I would like to gratefully acknowledge the enthusiastic supervision of Dr. Roger walker

who has been a constant source of motivation for me and guiding me with his invaluable advice

during my research work. I am really thankful for his patience, cheerful disposition and positive

feedback.

 I would like to thank Dr. Jonathan Bredow and Dr. W Alan Davis for showing interest in

my research and taking the time to be a part of my thesis committee.

 I sincerely appreciate all the help and encouragement received from my lab mate

Ashwin Arikere. Also I would like to thank my friends and roommates for their moral support.

 Last but not the least; I would like to thank my parents and family for their support

throughout my studies and their faith which made it possible for me to complete my work.

 November 7, 2012

iv

ABSTRACT

DESIGN OF EMBEDDED NIOS II PROCESSOR BASED SYSTEM FOR

IMPLEMENTING BRIDGING ALGORITHM OF

 PROFILING APPLICATION

Vinay Ashi, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Roger Walker

 The Texas Department of Transportation (TxDOT) uses multiple instruments for

quality assurance of new and existing pavements. These instruments measure the different

characteristics of the pavement such as the longitudinal profile, transverse profile, texture,

rutting, etc. to determine the smoothness and ride quality of the pavement. These instruments

mainly consist of different sensors such as lasers, accelerometers, distance encoders, etc., to

calculate the ride quality. Various ride statistics such as International Roughness Index (IRI),

Mean Profile Depth (MPD), and Present Serviceability Index (PSI) are then calculated and used

to monitor the conditions of the roads.

The Roline laser system is used to calculate the road profile. The profiling module is

configured and controlled by a program running on a windows operating system. A certified

profiling system with the wide line laser is now being successfully used on roads. Also, a dual

laser profiling system, which can collect data from two profiling modules simultaneously, is

being used.

v

 The objective of this thesis is to investigate and develop an embedded NIOS II

processor based system on Cyclone IV FPGA (DE2-115 development board) from Altera Corp

for implementing a bridging algorithm. This algorithm is used to preprocess the free mode data

from the Roline line laser and compute the bridge values which will be used in profile

computation. For computing bridge values, processing steps include data qualification, tilt

compensation and averaging. A memory interface has to be designed for this NIOS II

processor based system, so that the Roline laser data to be used for bridge mode data

calculation and computed bridge mode values can be saved in a flash memory. Memory system

design consists of a combination of components such as on-chip memory, DMA controller,

SDRAM and SD card Interface. FPGA resource usage is also monitored for the system design.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ..iii

ABSTRACT ... iv

LIST OF ILLUSTRATIONS..vii

LIST OF TABLES ... viii

Chapter Page

1. INTRODUCTION……………………………………..………..….. 1

1.1 Objective .. 2

1.2 Organization of Thesis ... 2

2. BACKGROUND .. 3

 2.1 Road Profiling ... 3

 2.2 High Speed Inertial Profiler Systems ... 3

3. EMBEDDED SYSTEM DEVELOPMENT FOR PROFILING... 6

3.1 Introduction to DE2-115 Development Board .. 7

 3.2 Introduction to NIOS II Processor .. 10

 3.3 Embedded SoPC Development Flow .. 11

4. BRIDGING ALGORITHM ... 16

4.1 Roline Laser and Modes of Operation ... 16

4.2 Bridging Algorithm Steps .. 18

5. SYSTEM IMPLEMENTATION AND DESCRIPTION .. 21

5.1 NIOS II Processor and Memory Interface using DMA Controller 21

5.2 NIOS II Processor and Memory Interface without DMA Controller 29

5.3 NIOS II Processor and Direct SD Memory Interface...................................... 32

vii

6. SYSTEM IMPLEMENTATION RESOURCE USAGE
 AND EXECUTION TIMING ANALYSIS .. 35

6.1 System Implementation Resource Usage .. 35

6.1.1 NIOS II Processor and SD Memory Interface using DMA 35

6.1.2 NIOS II Processor and SD Memory Interface
 without using DMA ... 36

6.1.3 NIOS II Processor and Direct SD Memory Interface 37

6.2 Bridging Algorithm Execution Timing Analysis ... 38

6.2.1 Execution timing analysis for NIOS II Processor
 and SD Memory Interface using DMA .. 38

6.2.2 Execution timing analysis for NIOS II Processor
 and SD Memory Interface without using DMA 41

6.2.3 Execution timing analysis for NIOS II Processor
 and Direct SD Memory Interface ... 43

6.2.4 Execution timing analysis for NIOS II Processor
 and Direct On-chip Memory Access ... 46

7. SYSTEM IMPLEMENTATION COMPARISION AND CONCLUSION 49

7.1 System Implementation Comparison ... 49

7.2 Conclusion .. 54

APPENDIX

 A. DETAILED ANALYSIS OF READ TIME, BRIDGE MODE VALUE COMPUTE TIME
 AND WRITE TIME FOR DIFFERENT SOPC DESIGNS ... 55

REFERENCES ... 58

BIOGRAPHICAL INFORMATION .. 59

viii

LIST OF ILLUSTRATIONS

Figure Page

2.1 Road Profiler Systems.. 4

3.1 DE2-115 development board (Top View) ... 8

3.2 DE2-115 development board (Bottom View) ... 9

3.3 Embedded SoPC development flow ... 13

4.1 Distance measurement principle of RoLine Laser ... 16

4.2 Free mode data message format. .. 17

4.3 Bridge mode data message format. ... 18

4.4 Tilt Compensation for Bridging Algorithm... 19

5.1 NIOS II Processor and Memory Interface using DMA Controller ... 22

5.2 NIOS II Processor and Memory Interface using DMA Controller in the SOPC builder 27

5.3 Application program implementing the bridging algorithm for NIOS II
 Processor and Memory Interface using a DMA controller ... 28

5.4 NIOS II Processor and Memory Interface without DMA Controller .. 29

5.5 NIOS II Processor and Memory Interface without DMA Controller in SOPC builder 30

5.6 Application program implementing the bridging algorithm for NIOS II
 Processor and Memory Interface without using a DMA controller ... 31

5.7 NIOS II Processor and Direct SD card memory Interface.. 32

5.8 NIOS II Processor and Direct SD card memory Interface in the SOPC builder....................... 33

5.9 Application program implementing the bridging algorithm for NIOS II
 Processor and Direct SD Memory Interface .. 34

6.1 Graphical representation of read time, compute and write time
 for NIOS II processor system using DMA controller ... 40

6.2 Graphical representation of read time, compute and write time
 for NIOS II processor system without using DMA controller ... 42

ix

6.3 Graphical representation of read time, compute and write time
 for system with direct SD card interface ... 45

6.4 Graphical representation of read time, compute and write time
 for system with direct on-chip memory access ... 47

7.1 Graphical representation of clock cycle utilization comparison.. 50

7.2 Graphical representation of free mode data read time comparison ... 52

7.3 Graphical representations of bridge mode data write time comparison
 for different design approaches ... 53

x

LIST OF TABLES

Table Page

3.1 DE2-115 board components and peripherals .. 10

6.1 FPGA resource usage for NIOS II Processor and Memory Interface using DMA 36

6.2 FPGA resource usage for NIOS II processor and
 Memory interface without DMA Controller ... 37

6.3 FPGA resource usage for NIOS II Processor and Direct SD Card Memory Interface37

6.4 Total execution time and total number of clock ticks for system using DMA 39

6.5 Breakup of total execution time for read, compute and write time for system using DMA 39

6.6 Total execution time and total number of clock ticks for system without DMA 41

6.7 Total execution time break-up for read, compute and write for system without DMA 41

6.8 Total execution time and total number of clock ticks for system with Direct SD Interface 44

6.9 Total execution time break-up for read, compute
 and write for system with Direct SD Interface ... 44

6.10 Total execution time and total number of clock ticks for system and on-chip access 46

6.11 Total execution time break-up for read, compute and write for system
 and on-chip access .. 47

7.1 FPGA resource usage comparison for three designs .. 49

7.2 Comparison of number of clock cycles to execute the bridge algorithm
 for three designs .. 50

7.3 Comparison of execution time for bridging algorithm to compute the bridge values
 for all the four designs(all time units in seconds) ... 51

 1

CHAPTER 1

INTRODUCTION

 A high-end embedded system usually has a processor and I/O peripherals to perform

general user interface functions and special hardware accelerators to handle computation-

intensive operations. These components can be integrated into a single integrated circuit,

commonly referred to as SoC (system on a chip). As the capacity of FPGA (field-programmable

gate array) devices continues to increase, the same design methodology can be realized in an

FPGA chip and is known as SoPC (system on a programmable chip) or PSoC (programmable

system on a chip).

 Designing a conventional embedded processor based system requires examination of

functional requirements and then selecting a processor, external I/O peripherals, and

application specific standard product devices to construct the hardware platform. Because of

the fixed-sized processor architecture and the cost of manufacturing printed circuit boards, the

hardware configuration is usually rigid and the desired system functionalities are performed by

customized software.

 An FPGA device contains logic cells and interconnects that can be programmed to

perform a specific function. The desired hardware functionalities are usually described in

Hardware Description Language (HDL), which is then synthesized and implemented in the

FPGA device. Because of the programmability of FPGA devices, customized hardware can be

incorporated into the embedded system as well. The processor configuration can be tailored,

custom I/O interface can be created or existing I/O peripherals can be used to implement the

complete hardware system. The SoPC-based embedded system provides flexibility in

customizing the hardware and software and match the system specific needs.

 2

1.1 Objective

 The main objective of current research at the Embedded Systems and

Instrumentation Lab (ESI) at the University of Texas at Arlington (UTA) is to develop a portable

embedded system on programmable chips (SoPC) that can be used for computation of profiles

in real-time. The research conducted as part of this thesis is to develop an embedded NIOS II

processor based system on a Cyclone IV FPGA chip for implementing a bridging algorithm to

run on this embedded system

1.2 Organization of Thesis

The next chapter introduces road profiling and the inertial profiling technique, which

provides a basic knowledge of road profilers. Chapter 3 provides an Introduction to Altera’s

DE2-115 development board and NIOS II embedded processor which is the main component of

the system development. It also provides an overview of embedded SoPC development flow.

Chapter 4 describes the operational modes of the Roline laser used in a profiler and also gives

a description of the bridging algorithm which is used to preprocess the free mode data from the

Roline laser. Chapter 5 describes the system implementation and configuration used in the

NIOS II processor based embedded portable profiler. Chapter 6 provides detailed analysis of

bridging algorithm execution on different system designs and FPGA resource usage of these

designs. Implementation results are compared and concluded in Chapter 7.

 3

CHAPTER 2

BACKGROUND

2.1 Road Profiling

 Road profile measurements are used to provide statistical information regarding road

surface roughness. A profile is a two-dimensional slice of the road surface, taken along an

imaginary line and is obtained by combining three parameters: A reference elevation, height

relative to the reference and longitudinal distance

 Instruments such as Dipstick, Rod and Level, and Inertial Profilers can be used to

compute the profiles. Current technologies use inertial profilers to collect profile data, typically at

highway speeds. An accelerometer provides the inertial reference. The instantaneous distance

is measured using a non-contacting sensor such as a laser. The longitudinal distance of the

instruments is obtained using a distance encoder. Combining the outputs from these three

devices, profile can be computed and various statistics can be obtained by processing the

profile. Depending on the nature of the statistic desired, various techniques may be applied to

the profile data to analyze road conditions. For example, International Roughness Index (IRI) is

one such statistic which can be obtained from the profile data.

2.2 High Speed Inertial Profiler Systems

There are three basic components in an inertial profiler as shown in Figure 2.1 [2]

1. An accelerometer provides inertial reference and measures the vertical acceleration of the

vehicle as it moves along the road. The instantaneous height of the vehicle body with respect to

the reference can be computed using the acceleration measurement.

2. A non-contacting sensor is used to measure the height of the ground relative to the

reference. Lasers, ultrasonic or infrared transducers are used for this purpose.

3. A distance encoder is used to measure the longitudinal distance traveled by the vehicle.

 4

Figure 2.1 Road Profiler Systems

 The main advantage of using inertial profilers is that the data collection can be done at

highway speeds. The profile computed using an inertial profiler does not look like the true profile

since the longer wavelengths (typically 100 meters and greater) are filtered out because of

errors in the measurement process. However, once filtered, accurate and reliable profile data

and corresponding statistics can be obtained.

 The profiler developed at ESI mainly uses an accelerometer, a laser and a distance

encoder as the sensors. Once data is collected from these sensors, the road profile is

constructed from the readings according to equation (2.1)

where,

H(t) is height of the accelerometer from the road measured by laser,

a(t) is vertical acceleration.

 The accelerometer values are integrated twice to yield vertical displacement of the

vehicle body. A two pole high pass filter is applied at this stage to remove the effect of long

wavelengths (low frequency) on the profile. These wavelengths represent the overall road

 5

curvature and underlying grade and are thus attenuated using filters. The result is added to the

laser values and passed through another two pole high pass filter to obtain an accurate road

profile.

 A portable profiler module was developed as part of TxDOT Research Project 0-6004.

The portable profiler computes road surface profile using the same technique as an inertial

profiler. Except for the distance encoder which is attached to the vehicle wheel, all sensors

including laser and accelerometer, power, and signal conditioning are housed inside the profiler

instrument module that is placed on the front or rear bumper of the profiler vehicle. Data from

these sensors are then converted to digital values using a data acquisition board (DT9816) and

sent to a notebook PC running on Windows OS in the vehicle. The UTA Ride console program

interfaces with the data acquisition board and retrieves accelerometer and distance encoder

data from it and stores it in a text file. The Roline laser data is received in the form of ethernet

packets and stored in a separate file as comma separated values. A separate program then

computes the profile using laser and accelerometer readings. This profile however is phase

shifted because of the use of an IIR filter in the profile computation process. A reverse filter is

applied on the profile to remove the non-linear phase characteristics present in the profile.

 6

CHAPTER 3

EMBEDDED SYSTEM DEVELOPMENT FOR PROFILING

 In Chapter 2, the basic inertial profiling techniques and the profiler module developed

as part of TxDOT research project were discussed. During measurements using profiler

module, the data collected from various sensors, are converted to digital values and then sent

to a notebook PC located in the vehicle for computing profile. All communications between the

sensors and the PC is done via a USB cable. The instrument module is attached to the power,

PC (via the USB), distance encoder, and the infrared start signal via four connectors. The UTA

Ride console program interfaces with the data acquisition board, Line laser and stores the raw

sensor data in a text file. A separate program is used to computes profile from the raw laser and

accelerometer readings.

 A real-time program can be developed that processes the data collected from various

lasers immediately, producing the profiles in real-time. A Single Board Computer (SBC) or an

embedded processor based board mounted inside the instrument box can be used to collect

and process the data. With the SBC, or embedded processor in the module, interfaced with

Roline laser and Data Acquisition module (DAQ), profile may be computed by the module itself

rather than having a separate notebook PC inside the vehicle. The embedded processor system

along with peripherals may be designed to start data collection and process it.

 Embedding a processor inside an FPGA has many advantages. Specific peripherals

can be chosen based on the application, with unique user-designed peripherals being easily

interfaced to the system. A variety of memory controllers enhance the FPGA embedded

processor system’s interface capabilities.

An FPGA embedded processor system offers many exceptional advantages including:

 7

1. Customization: Design of an FPGA embedded processor system has complete flexibility to

select any combination of peripherals and controllers. Application specific peripherals can be

designed that can be interfaced directly to the processor.

2. Component and cost reduction: With the versatility of the FPGA, previous systems that

required multiple components can be replaced with interfacing to a single FPGA chip provided

with various peripherals. For example, both data acquisition board and laser can be interfaced

to the FPGA based processor and this system can be used to compute the profile. By reducing

the component count in a design, board size and inventory will be reduced which will save

design time and cost.

3. Hardware acceleration: The most important reason to choose an FPGA embedded processor

is the ability to make tradeoffs between hardware and software to maximize efficiency and

performance. If an algorithm is identified as a software bottleneck, a custom co-processing

engine can be designed in the FPGA specifically for that algorithm.

4. Obsolescence mitigation: FPGA soft processors are an excellent solution in this case since

the source HDL for the soft-processor can be purchased. Ownership of the processor’s HDL

code may fulfill the requirement for product lifespan guarantee.

 Altera and Xilinx are two major companies that produce FPGA families which embed a

physical processor core into the FPGA silicon. In the next section we will discuss the features of

DE2-115 development board from Altera which has Cyclone IV FPGA and provides NIOS II soft

processor based development. This development board will be used for developing embedded

NIOS II processor based system for implementing an algorithm to preprocess the Roline laser

data.

3.1 Introduction to DE2-115 Development Board

 A top view of DE2-115 board is shown in Figure 3.1[10]. It depicts the layout of the

board and indicates the location of the connectors and key components.

 8

Figure 3.1 DE2-115 development board (Top View)

 The DE2-115 board has many features and peripherals that allow users to implement a

wide range of designed circuits, from simple circuits to various multimedia projects. To provide

maximum flexibility for the user, all connections are made through the Cyclone IV FPGA device.

Thus, the user can configure the FPGA to implement any system design.

 9

DE2-115 board (bottom view) showing the SD card socket is shown in Figure 3.2 [10]

Figure 3.2 DE2-115 development board (Bottom View)

The components and peripheral available on the DE2-115 development board is given in table

3.1

Table 3.1[10] DE2-115 board components and peripherals

DE2-115 Board Information

Feature Description

FPGA
Cyclone IV EP4CE115F29C7 with EPCS64 64-Mbit serial configuration
device

I/O
Interfaces

Built-in USB-Blaster for FPGA configuration

Line In/Out, Microphone In (24-bit Audio CODEC)

Video Out (VGA 8-bit DAC)

Video In (NTSC/PAL/Multi-format)

RS232

Infrared input port

PS/2 mouse or keyboard port

Two 10/100/1000 Ethernet

USB 2.0 (type A and type B)

Expansion headers (one 40-pin header)

HSMC high-speed header

 10

Table 3.1 - Continued

Memory
128 MB SDRAM, 2 MB SRAM, 8 MB Flash

SD memory card slot

Displays
Eight 7-segment displays

16 x 2 LCD display

Switches
and
LEDs

18 toggle switches

18 red LEDs

9 green LEDs

Four denounced pushbutton switches

Clocks 50 MHz clock, External SMA clock input, External SMA clock output

3.2 Introduction to NIOS II Processor

 The NIOS II processor is a configurable soft Intellectual property (IP) core, as opposed

to a fixed, off-the-shelf microcontroller. It is possible to add or remove features on a system-by-

system basis to meet performance or price goals. Soft means the processor core is described in

HDL code and later synthesized by using Altera Cyclone IV FPGA’s generic logic cell.

The NIOS II processor is a general-purpose RISC processor core with the following features:

 Full 32-bit instruction set, data path, and address space, 32 general-purpose registers

and 32 interrupt sources

 External interrupt controller interface for more interrupt sources

 Single-instruction 32 × 32 multiply and divide producing a 32-bit result

 Dedicated instructions for computing 64-bit and 128-bit products of multiplication

 Floating-point instructions for single-precision floating-point operations and single-

instruction barrel shifter

 Access to a variety of on-chip peripherals, and interfaces to off-chip memories and

peripherals

 Hardware-assisted debug module enabling processor start, stop, step, and trace under

control of the NIOS II software development tools

 Optional memory management unit (MMU) to support operating systems that require

MMUs and Optional memory protection unit (MPU)

 11

 Software development environment based on the GNU C/C++ tool chain and the NIOS

II Software Build Tools (SBT) for Eclipse

 Integration with Altera's Signal Tap® II Embedded Logic Analyzer, enabling real-time

analysis of instructions and data along with other signals in the FPGA design

 Instruction set architecture (ISA) compatible across all NIOS II processor systems

 Performance up to 250 DMIPS

There are three different versions of NIOS II processors:

 NIOS Il/f: The fast core is designed for optimal speed performance. It has a 6-stage

pipeline, Instruction cache, data cache, and dynamic branch prediction.

 NIOS II/s: The standard core is designed for small size while maintaining good

performance. It has a 5-stage pipeline, instruction cache, and static branch

prediction.

 NIOS Il/e: The economy core is designed for optimal size. It is not pipeline and contains

no cache.

3.3 Embedded SoPC Development Flow

 The basic NIOS II based development flow is shown in Figure 3.3[1]. The four important

steps in embedded SoPC development [1] are elaborated in the following subsections

1. Software-Hardware partition

2. Hardware development flow

3. Software development flow

4. Physical implementation and test

Software-Hardware partition:

 An embedded application usually performs a collection of tasks. In an SoPC-based

design, a task can be implemented by hardware, software or both. Based on the performance

 12

requirement, complexity and hardware core availability, we can decide the type of

implementation accordingly.

Hardware development flow:

Custom hardware can be divided into 3 categories

• NIOS II processor and standard I/O peripheral ("NIOS configuration" in figure 3.3):

Altera provides the soft cores of the processor and a collection of frequently used I/O

peripherals. We can select the system specific I/O peripherals and configure the basic

NIOS II system.

• User I/O peripherals and hardware accelerators ("User I/O & HA" in figure 3.3): Pre-

designed core may not exist or cannot satisfy the performance requirement for few

specialized I/O functions or computation-intensive tasks. We must design the hardware

from scratch and integrate it into the NIOS II system as a custom I/O peripheral.

• User logic: Some portion of the hardware may be separated from the NIOS II system. It

is not attached to the NIOS interconnect structure and does not interact directly with the

processor.

 13

Figure 3.3 Development flow of a system with NIOS II EDS

 Altera's SOPC Builder software can be used to configure the processor, select the

desired standard I/O cores, and incorporate the user designed I/O peripherals. SOPC Builder

then generates the HDL codes for the customized NIOS II system and also generates the

.sopcinfo file that contains system configuration information. Auto-generated code for NIOS II

system can be combined with the other use logic codes to form the final top-level HDL

 14

description. The top-level HDL code contains the description of the complete hardware. The

Quartus II version 11.1 tool is used to perform synthesis, placement, routing and generate the

FPGA configuration file.

Software development flow:

 Altera provides a software library, which is integrated into its HAL (hardware abstraction

layer) platform, for the NIOS II system. It consists of I/O device drivers, which are low-level

routines to access I/O peripherals, and a collection of high-level functions in an application

programming interface (API).

From the hardware-software interface's point of view, the software code can be divided into

three categories:

• API functions: These are the functions from the Altera HAL platform.

• User I/O drivers: When designing a custom I/O peripheral or hardware accelerator, we

also need to develop software I/O routines to control its operation and to exchange its

data with the processor.

• User functions: These implement the needed functionalities for the embedded

application.

These drivers and functions can be used to construct the application program. When a NIOS II

system is created, the processor and I/O configuration is recorded in the .sopcinfo file. BSP

Editor Software program examines this file, extracts the needed device drivers from the HAL

library, and builds up a BSP (Board Support Package) library to support the system.

Compilation and linking the software routines, BSP library results final software image file (i.e.,

the .elf file).

Physical implementation of the system and testing:

 Physically implementing the system involves two steps. First download the FPGA

configuration file to the FPGA device (i.e. "program" the device), and then load the software

 15

image into NIOS IPs memory. The physical system can be tested afterwards by running the

application program.

 The NIOS II EDS (embedded design suite), is provided by Altera for software

development. It has been customized for the NIOS II processor environment. SBT (Software

Build Tools) GUI is based on the Eclipse open development environment and customized for

the NIOS II software development flow.

 The next chapter provides a brief introduction to the Roline laser and the modes of

operation. The Bridging algorithm used to preprocess the laser’s free mode data sample is also

explained in detail.

.

 16

CHAPTER 4

BRIDGING ALGORITHM

4.1 Roline Laser and Modes of Operation

 The RoLine 11xx family of lasers is a new generation of high speed, high density 3D

lasers that can be used for road profiling. A laser line projector projects a 2.6-5.4" wide laser

footprint. A digital camera mounted at an angle to the laser plane acquires images of the

reflected light pattern created on the target. The distance to the target is calculated from the

images taken by the digital camera based on the position of the laser line in the image. Figure

4.1 [4] shows the measurement principle of the laser

Figure 4.1 Distance measurement principle of RoLine Laser

 The laser has a scanning rate of 3000 Hz and operates at 48VDC. The measurement

range (MR) of this laser is 200 mm, with a field of view (FOV) of 100 mm or 4.0" at the center of

its measurement range. The output of the RoLine laser is in a digital format. The elevation from

the clearance distance is represented as a 16-bit number with a resolution of 0.01 mm. RoLine

1145 has an option of delivering the output in either Ethernet packets or Selcom serial format.

 The RoLine 11xx lasers also outputs an opto-isolated 3000 Hz pulse while it is

 17

collecting data for synchronizing external devices. The profiling algorithm should get the

accelerometer and laser data at the same instant and this sync pulse is used to synchronize

with the accelerometer. The rising edge of the sync pulse coincides with the start of the laser

scan and will be used to synchronize the accelerometer value at that instant.

There are two basic modes of operation for the RoLine 11xx family.

Free Mode: In the free mode, the data for each point in the scan is sent from the laser. Each

packet is configured to contain 100 scans of the laser. Each scan of the laser is configured to

contain 80 points. These parameters can be changed by writing a new settings file to the laser.

The default mode for the RoLine laser is the free mode. The format of the free mode data is

shown in Figure 4.2[4]

Figure 4.2 Free mode data message format.

 18

Bridge Mode: In this mode, laser sends a single value per scan. This reduces the high-

resolution, high-density full profile data to an averaged value in that scan. The bridge values

contain the distance to the target and the attribute field contains the sync index and tracking

mode information. Each packet is configured to contain 100 scans of the laser and each scan

will contain one bridged value. The format of the Bridge mode data is shown in Figure 4.3 [4]

Figure 4.3 Bridge mode data message format.

4.2 Bridging Algorithm Steps

 The profiling algorithm requires one data point per scan to compute the profile. If free

mode is selected for operation, then the laser output file contains the entire raw data and a

bridged value for each scan has to be calculated before it is used for computing the profile.

Laser output will contain only the bridged values if the bridge mode is set in the configuration,

which can then be used directly for generating the longitudinal profile.

 19

 The laser manufacturer specifies the steps in calculating the bridge mode values but

does not provide the source code for computing the bridge values from free mode operation

because of the Intellectual Property (IP) concerns. At ESI, the bridging algorithm is implemented

from the steps specified by the laser manufacturers and have obtained bridge mode equivalent

values using free mode data.

 The International Roughness Index (IRI) values obtained from running the ESI version

of bridging algorithm are lower than those obtained by using the laser’s bridge mode. TxDOT

wants to investigate the differences because these results affect the operation of TxDOT for

evaluating the conditions of the road in terms of the profile.

The bridging algorithms involve the following steps[4]:

1. Data qualification – Scan should not contain more than a user-defined number of invalid

points. Invalid points are represented by a value of -32767 and occur when the laser line is not

captured by the camera sensor. These invalid points are discarded before computing the

bridged value.

2. Tilt Compensation (Optional) - Vehicle movement (roll) and rutting may modify the perceived

contact point and may be accommodated. If compensating for tilt, the center point of the scan is

used for compensating the tilt. Figure 4.4 [4] illustrates this step.

Figure 4.4Tilt Compensation for Bridging Algorithm

 20

3. The points are then sorted according to their elevation for selection. The highest and lowest

values can then be removed depending on user defined parameters called "window skip" and

"window size". This is done to remove the outliers.

4. The average of the remaining points is calculated and the resulting value is the bridged value

for that scan.

 21

CHAPTER 5

SYSTEM IMPLEMENTATION AND DESCRIPTION

 The Altera’s DE2-115 prototyping board is used in the development of hardware design.

It contains an FPGA device from Cyclone IV family. The development board has 128 MB

SDRAM, 2 MB SRAM and 8 MB flash memory. The Roline laser data and Analog to Digital

(A/D) data from the Data Acquisition (DAQ) module need to be stored for intermittent bridge

mode data calculation and profile computation. The Roline laser data and the A/D data

collection from multiple runs could exceed a size of 2 GB. The Flash memory provided on this

development board does not satisfy the requirement needs of profiling application.

 There is a need to interface a flash memory SD card to the NIOS II Processor so that

the Roline laser and A/D data samples can be stored for computation of the bridge mode data.

The SD memory card slot has been provided on the development board and will be used for this

purpose. Then to handle the data, a Direct Memory Access (DMA) needs to be included in the

design. The complete system will be a combination of FPGA on chip components and a few

onboard components.

 Roline laser data in free mode is saved on the SD card as a text file. An application

program running on NIOS II processor computes the bridge mode values using the bridging

algorithm. The computed bridge values are then written to a second text file on the SD card by

the same program.

 This chapter will discuss the main components used to design the FPGA based

embedded NIOS processor system for implementing the Bridging algorithm.

5.1 NIOS II Processor and Memory Interface using DMA Controller

A Block diagram consisting of NIOS II processor and memory interface with a DMA controller is

shown in Figure 5.1

 22

NIOS PROCESSOR

Program
Memory(On

chip)

Input
Buffer(Source_o
nchipMemory)

Input DMA

Output DMA
OutputBuffer(Dest_O

nchip_Memory)
SDRAM(Off Chip)

SD Card

DE2-115 Development Board

FPGA Chip

Free Mode
Data

Bridge Mode
Data to be

stored
Computed Bridge Data

Free
Mode

Data for
one Scan

Free Mode
Data(80 points

of one scan)

NIOS II Processor and Memory Interface using DMA

Timer

Clock(50 MHz)

Figure 5.1 NIOS II Processor and Memory Interface using DMA Controller

 In this design, the NIOS II processor is interfaced to flash memory (SD card) via

SDRAM and DMA controller. The components used in this system design are integrated into

SOPC builder-generated system. These components are internal to the FPGA chip.

NIOS II/f Processor Core: The configuration and features of the NIOS II/f processor is given

below

 Has separate optional instruction and data caches

 Provides optional MMU to support operating systems that require an MMU

 Provides optional MPU to support operating systems and runtime environments that

desire memory protection but do not need virtual memory management

 Can access up to 2 GB of external address space when no MMU is present and 4

GB when the MMU is present

 23

 Supports optional external interrupt controller (EIC) interface to provide

customizable interrupt prioritization

 Supports optional shadow register sets to improve interrupt latency

 Supports optional tightly-coupled memory for instructions and data

 Employs a 6-stage pipeline to achieve maximum DMIPS/MHz

 Performs dynamic branch prediction and provides optional hardware multiply,

divide, shift options to improve arithmetic performance

 Supports the addition of custom instructions

 Supports the JTAG debug module

 Performance Max. FMAX (2) =185 MHz and the processor is connected to 50 MHz

clock using DE2-115 onboard oscillator.

On Chip Memory:

 Cyclone® IV devices feature embedded memory structures to address the on-chip

memory needs of Altera® Cyclone IV device designs.

 Embedded memory structure consists of columns of M9K memory blocks that can

be configured to provide various functions, such as RAM, shift registers, ROM, and

FIFO buffers.

 M9K block has the following features:

 8,192 memory bits per block (9,216 bits per block including parity)

 Independent read-enable (rden) and write-enable (wren) signals for each

port

 Single-port and simple dual-port modes support for all port widths

 True dual-port (one read and one write, two reads, or two writes) operation

 Byte enables for data input masking during writes

 Two clock-enable control signals for each port (port A and port B)

 Initialization file to pre-load memory content in RAM and ROM modes

 24

 Single-port mode supports non-simultaneous read and write operations from a

single address

 IORD and IOWR API’s are used to read and write data from on-chip memory

location.

Interval Timer:

 Interval Timer core with Avalon® interface is an interval timer for Avalon-based

processor systems, such as a NIOS® II processor system

 The core provides the following features:

 32-bit and 64-bit counters.

 Controls to start, stop, and reset the timer.

 Two count modes: count down once and continuous count-down.

 Option to enable or disable the interrupt request (IRQ) when timer reaches

zero.

 Optional watchdog timer feature that resets the system if timer ever

reaches zero.

 Optional periodic pulse generator feature that outputs a pulse when timer

reaches zero.

 Interval Timer is used as a Timestamp driver in this design to count the number of

clock ticks and then calculate the time spent in particular method/function.

 Rate is same as the hardware frequency of the NIOS II processor system (i.e., 50

MHz)

Input/ Output DMA:

 Direct memory access (DMA) controller core with the Avalon® interface performs

bulk data transfers, reading data from a source address range and writing the data

to a different address range.

 25

 Avalon Memory-Mapped (Avalon-MM) master peripheral (CPU) offloads memory

transfer tasks to the DMA controller.

 DMA is configured to transfer 32 bytes of data for every transaction in this design.

 DMA controller is SOPC Builder-ready and integrates into SOPC Builder-generated

system.

DE2-115 board components including SDRAM and SD card socket are used to provide the

memory support to the entire system.

SDRAM:

 DE2-115 board features 128MB SDRAM, implemented using two 64MB SDRAM

(IS42S16320B from ISSI).

 IS42S16320B Memory chip is organized as 8M x16x4 Banks .Each 134,217,728-bit

bank is organized as 8,192 rows by 1024 columns by 16 bits.

 Each 512Mb SDRAM is a high speed CMOS, dynamic random-access memory

designed to operate in 3.3V Vdd and 3.3V Vddq memory systems containing

536,870,912 bits

 Each device has separate 16-bit data lines connected to the FPGA, and share

control and address lines.

SDRAM Controller:

 SDRAM controller core with Avalon® interface provides an Avalon Memory-

Mapped (Avalon-MM) interface to off-chip SDRAM

 Core presents an Avalon-MM slave port that appears as linear memory (flat

address space) to Avalon-MM master peripherals.

 Controller performs refresh operations, open-row management, and other delays

and command sequences.

 Avalon-MM slave port supports peripheral-controlled wait states for read and writes.

 26

 Interface signals must be connected externally to the SDRAM chip(s) through I/O

pins on the Altera device

 Clock for the SDRAM chip (SDRAM clock) must be driven at the same frequency as

the clock for the Avalon-MM interface on the SDRAM controller (controller clock).

On-chip phase-locked loop (PLL) can be used to alleviate clock skew between the

SDRAM controller core and the SDRAM chip

SD card Interface:

 Altera DE-series boards also have an SD card port. It allows a SD card to be connected

to an FPGA-based design on these boards. Altera University Program (UP) SD Card IP Core is

used to access the files on the SD card.

Features of Altera University Program (UP) SD Card IP Core are listed below:

• Hardware circuit designed by Altera that enables the use of an SD card on the

Altera DE2-115 development board

• SD Card IP Core included in an SOPC Builder design with a Nios II processor,

can be accessed and controlled from software.

• Hardware Abstraction Layer (HAL) device driver designed for the Altera

University Program SD Card IP Core provides an easy way to access data

stored on an SD card.

• Hardware Abstraction Layer (HAL) device driver makes a SD card to appear as

a 16-bit File Allocation Table (FAT16)-based portable drive.

• Driver functions as a File Allocation Table (FAT) reader/writer, allowing users to

access data on the SD card that has been saved in FAT16 format.

• Current version of the driver supports only FAT16.

The system implemented in the SOPC builder is as shown in the Figure 5.3

 27

Fig 5.3 NIOS II Processor and Memory Interface using DMA Controller in the SOPC builder

 The main idea behind using a DMA controller is to perform parallel computation of

bridge values in different tasks (threads) and schedule them using some real time operating

system.

An application program running on this processor would compute the bridge mode value from

free mode data of Roline laser. The flowchart in figure 5.2 illustrates the flow of the application

program implementing the bridging algorithm for the NIOS II processor and memory interface

using a DMA controller.

 28

Start

Initialize SD card IP core driver
and Specify SDRAM memory location

Specify output file for bridge values to be
written on SD card

Open Input file
 containing free mode data on SD card

Close Input/output files

Read byte from file into char array.
Format to integer data(distance ,sync

index ,track value)

Store free mode data in consecutive
SDRAM memory location directly by

accessing address

 Specified Number(80)
of data points to read

complete ?

Initiate DMA transfer from SDRAM to On-
Chip memory location by providing source

and destination address to DMA

Read distance value from on-chip memory

Store Bridge mode values to on-chip
memory

Initiate DMA transfer from On-Chip to
SDRAM memory location by providing

source and destination address to DMA

Write Bridge mode values from SDRAM
memory to output files on SD card

End

End of Input file
reached ?

No

No

Yes

Yes

Compute bridge mode value using Bridging
Algorithm

Application Program Implementing bridging algorithm using NIOS II Processor and Memory Interface with DMA

Figure 5.2 Application program implementing the bridging algorithm for NIOS II Processor and

Memory Interface using a DMA controller

 29

The SD card driver is initialized and SDRAM memory location for storing the free mode data is

specified. API functions provided by HAL device driver are used to read data from the file on the

SD card. The free mode data (distance value, sync index and track information) for 80 points of

one scan read from file are stored into SDRAM memory by accessing its address location. The

address range of the SDRAM and on-chip memory used is provided by the SOPC builder tool

and is available in a system library file of the project created using the SOPC information file.

Input DMA is instructed to transfer a set of data points for one scan from SDRAM to on-chip

memory locations. The processor then computes bridge mode value using the bridging

algorithm and stores the result in the on-chip memory. The Output DMA then transfers this

result back to SDRAM. Finally the bridge values are written from the SDRAM to a text file on SD

card by this application program.

5.2 NIOS II Processor and Memory Interface without DMA Controller

 A block diagram consisting of NIOS II processor and memory interface without the DMA

controller is shown in the Figure 5.4

NIOS PROCESSOR

Program
Memory(On

chip)

SDRAM(Off Chip)

SD Card

DE2-115 Development Board

FPGA Chip

Free Mode
Data

Bridge Mode
Data to be

stored

Computed Bridge Data

Free
Mode

Data for
one Scan Free Mode

Data(80 points
of one scan)

NIOS II Processor and Memory Interface without DMA

Timer

Clock(50 MHz)

Figure 5.4 NIOS II Processor and Memory Interface without DMA Controller

 30

In this design, NIOS II processor is interfaced to flash memory (SD card) via SDRAM only. The

configuration of the components used is similar to that used in the section 5.1.

The system implemented in the SOPC builder is as shown in the Figure 5.5

Figure 5.5 NIOS II Processor and Memory Interface without DMA Controller in SOPC builder

 31

The flowchart in figure 5.6 illustrates the flow of the application program implementing the

bridging algorithm for the NIOS II processor and memory interface without using a DMA.

Start

Initialize SD card IP core driver
and Specify SDRAM memory location

Specify output file for bridge values to be
written on SD card

Open Input file
 containing free mode data on SD card

Close Input/output files

Read byte from file into char array.
Format to integer data(distance ,sync

index ,track value)

Store free mode data in consecutive
SDRAM memory location directly by

accessing address

 Specified Number(80)
of data points to read

complete ?

Read distance value from SDRAM memory
location

Store Bridge mode values to SDRAM
memory location

Write Bridge mode values from SDRAM
memory to output files on SD card

End

End of Input file
reached ?

No

No

Yes

Yes

Compute bridge mode value using Bridging
Algorithm

Application Program Implementing bridging algorithm using NIOS II Processor and Memory Interface without DMA

Figure 5.6 Application program implementing the bridging algorithm for NIOS II Processor and

Memory Interface without using a DMA controller

 32

Free mode data (80 points) of one scan saved on the text file in the SD card is initially read into

SDRAM memory by the application program. The bridging algorithm reads the free mode values

from SDRAM memory and computes the bridge mode values. The bridge mode values are

stored to SDRAM initially. Then the bridge value is written from the SDRAM to a text file on the

SD card by the application program.

5.3 NIOS II Processor and Direct SD Memory Interface

 A block diagram consisting of the NIOS II processor and a direct SD card memory

interface is shown in the Figure 5.7

NIOS PROCESSOR
Program

Memory(On
chip)

SD Card

DE2-115 Development Board

FPGA Chip

Free Mode
Data

Computed Bridge Data

 NIOS II Processor and Direct SD Interface

Timer

Clock(50 MHz)

Figure 5.7 NIOS II Processor and Direct SD card memory Interface

 In this design, NIOS II processor is interfaced to flash memory (SD card) directly and

does not involve SDRAM memory or DMA in its operation of computing the bridge mode values

using the bridging algorithm. The configuration of the components used is similar to that used in

the section 5.1

 33

The system implemented in the SOPC builder is shown in the Figure 5.8

Figure 5.8 NIOS II Processor and Direct SD card memory Interface in the SOPC builder

 The flowchart in figure 5.9 illustrates the flow of the application program implementing

the bridging algorithm for NIOS II processor and direct SD card interface. Free mode data (80

points) of one scan of Roline laser saved on a text file in the SD card is read into data memory

of the processor by the application program. The bridging algorithm computes the bridge mode

value using the free mode data from data memory. The computed bridge values are then written

to a text file on the SD card by this program.

 34

Start

Initialize SD card IP core driver
and Specify SDRAM memory location

Specify output file for bridge values to be
written on SD card

Open Input file
 containing free mode data on SD card

Close Input/output files

Read byte from file into char array.
Format to integer data(distance ,sync

index ,track value)

Store free mode values in processor’s data
memory

 Specified Number(80)
of data points to read

complete ?

Store Bridge mode values processor
memory’s data section

Write Bridge mode values from data
memory to output files on SD card

End

End of Input file
reached ?

No

No

Yes

Yes

Compute bridge mode value using Bridging
Algorithm

Application Program Implementing bridging algorithm using NIOS II Processor and Direct SD Memory Interface

Figure 5.9 Application program implementing the bridging algorithm for the NIOS II Processor

and Direct SD Memory Interface

 35

CHAPTER 6

SYSTEM IMPLEMENTATION RESOURCE USAGE AND EXECUTION TIMING ANALYSIS

 The different hardware designs which were discussed in Chapter 5 were implemented

on the DE2-115 development board and are analyzed for throughput and resource usage in this

chapter. Throughput and resource usage are two of the most important issues to be considered

in the design of the system. Therefore, an analysis of FPGA resource usage and execution time

for each design executing the bridging algorithm was made.

6.1 System Implementation Resource Usage

 The Quartus II tool used to program the FPGA device (EP4CE115F29C7) provides an

estimate of the resources on the chip that is needed for the system design. An important

resource available on the FPGA chip is the logic cell. The current design is used for

implementing the bridging algorithm used in profile computation. An effort has been made to

analyze resource usage because as system complexity increases, resource usage becomes a

critical parameter in implementing the entire profiling algorithm on the FPGA. The number of

FPGA on chip resources consumed is dependent on the components that are used in each

design. Each subsection provides an overview of the number of resource elements used for the

design.

6.1.1 NIOS II Processor and SD Memory Interface using DMA

 This design approach interfaces the processor and the SD card memory via SDRAM

memory (Off-Chip) and a DMA controller. Altera’s pre-designed SDRAM controller core is used

on chip to generate the required control signals for SDRAM access. Also the DMA controller

core which is used to transfer data blocks between SDRAM memory and on-chip memory is

part of the FPGA. Due to the additional SDRAM controller core and DMA controller in this

design, there is an increased usage of logic cells and memory bits when compared to the other

designs which are discussed in the next section.

 36

 Information about the number of elements of FPGA resources used for this design is

shown in table 6.1

Table 6.1 FPGA resource usage for NIOS II Processor and Memory Interface using DMA

Controller

6.1.2 NIOS II Processor and SD Memory Interface without using DMA

 This design approach interfaces the processor and SD card memory via SDRAM

memory (Off-Chip) only. A DMA controller is not used in this design. As in the previous design

Altera’s pre-designed SDRAM controller core is used on chip to generate the necessary control

signals for SDRAM access. SDRAM controller in this design has increased use of logic cells

when compared to the Direct SD card interface design which is discussed in the next section.

And since there is no DMA controller in the design, the number of resources consumed is less

compared to the previous design. Information about the number of elements of FPGA resources

used for the design in which the NIOS II processor and SD Memory is interfaced without using a

DMA component is shown in table 6.2

Table 6.2 FPGA resource usage for NIOS II Processor and Memory interface without DMA

Controller

FPGA Resources Number of Elements

Logic Cells 6679

Dedicated Logic Registers 3630

I/O Registers 68

Memory Bits 1924480

M9Ks 251

DSP Elements 4

Pins 62

LUT-Only LCs 3049

Register-Only LCs 665

LUT/Register LCs 2965

 37

FPGA Resources Number of Elements

Logic Cells 5293

Dedicated Logic Registers 3126

I/O Registers 68

Memory Bits 1707392

M9Ks 217

DSP Elements 4

Pins 62

LUT-Only LCs 2167

Register-Only LCs 642

LUT/Register LCs 2484

6.1.3 NIOS II Processor and Direct SD Card Memory Interface

 This design interfaces the processor and SD card memory directly without using

SDRAM memory and DMA. Since there is no SDRAM controller core as well as any DMA, the

number of elements used is the least compared to other two designs. Information about the

number of elements of FPGA resources used for the design in which NIOS II Processor and SD

Memory is interfaced directly is shown in table 6.3

Table 6.3 FPGA resource usage for NIOS II Processor and Direct SD Card Memory Interface

FPGA Resources Number of Elements

Logic Cells 4704

Dedicated Logic Registers 2789

I/O Registers 0

Memory Bits 1706432

M9Ks 217

DSP Elements 4

Pins 5

LUT-Only LCs 1915

Register-Only LCs 583

LUT/Register LCs 2206

6.2 Bridging Algorithm Execution Timing Analysis

 38

 The Roline laser scan data samples in free mode format are saved on a text file and

stored in the SD card for this analysis. An application program written in the C programming

language would read the set of data points from the laser scan stored on the SD card and feed

these set of values to the bridging algorithm for calculating the bridge mode value. Once the

bridge mode values are computed, the bridge mode value is saved on a text file in the SD card.

 The total time taken by the application includes reading the free mode data from SD

card memory, computing the bridge mode value using bridging algorithm and then saving the

bridge mode values to a text file on the SD card. The total execution time can be represented by

the equation 6.2a given as

 Total Execution Time = Read laser free mode data from SD card + Compute bridge

 mode values using bridging algorithm + Write bridge mode

 values to SD card --- (6.2a)

Also, total execution time can be calculated using the formula given in equation 6.2b

 Total Execution Time = Total number of clock cycles * Clock time period------------ (6.2b)

The system clock is running on 50 MHz in each design using the on-board oscillator. The clock

time period will be 20 ns. An interval timer is used to count the total number of clock cycles. This

timer also runs using the system clock i.e. 50 MHz.

6.2.1 Execution timing analysis for NIOS II processor and Memory Interface using DMA

 Initially data points for a single scan of the Roline laser are copied from a file on the SD

card to SDRAM memory. These data points are transferred to the FPGA on-chip memory by the

DMA. The DMA is configured to transfer 32 bytes of data for every transaction. On chip

memory access has a typical access latency of one clock cycle. Since the clock latency is low,

the processor can access data at a faster rate as compared to the rate if the data is available in

the off chip SDRAM memory. The Bridging algorithm reads the data from on-chip memory to

compute and then save the bridge mode values into on-chip memory again. Then the bridge

mode values are transferred from on-chip memory to SDRAM using DMA. Finally the bridge

 39

mode values are written from SDRAM memory to a file on SD card. These steps are repeated

for each scan and execution time is computed. The total number of laser scans equals 10, 20,

30, 40 and 50.

 The experiment was run five times for the varying number of laser scans and table 6.4

shows the average total execution time of the bridging algorithm with the SD card interface

using the DMA.

Table 6.4 Total execution time and total number of clock ticks for system using DMA

Number of Laser
Scans

Number of Clock
Cycles

Total Execution Time
(in sec)

10 21349150 0.426983

20 44242600 0.884852

30 59185230 1.1837046

40 75696100 1.513922

50 92327820 1.8465564

The breakup of the total execution time of bridging algorithm including reading of laser free

mode data, compute bridge mode values and writing the values to SD card memory for different

number of scans is shown in table 6.5.

Table 6.5 Breakup of total execution time for read, compute and write time for system using

DMA

Number of
Laser Scans

Read Time
(in sec)

Compute Time
(in sec)

Write Time
(in sec)

10 0.3564852 0.0616828 0.0088148

20 0.7357274 0.130562 0.0185622

30 0.9676594 0.186569 0.029476

40 1.2265298 0.2490326 0.0383598

50 1.4883088 0.3110168 0.0472306

The read time, compute and write time is shown as a graphical representation for SD card

interface using DMA in Figure 6.1

 40

Figure 6.1 Graphical representation of read time, compute and write time for NIOS II processor

system using DMA controller

 From Table 6.5, time spent in reading the laser free mode data from the SD card is very

high again, compared to the time spent in bridge mode calculation and time spent in writing the

bridge mode values to the SD card.

 This design also shows that read time is comparable to the initial system design without

using DMA. In this design, DMA offloads the task of data transfer from the processor but the

processor has to wait until the DMA completes the transfer of a set of data points so that the

processor can run the bridging algorithm on these set of data points. The system performance

can be greatly improved if the processor can compute the bridge mode values for the set of

data points already in on-chip memory while the DMA is transferring a new set of data points to

different locations of the on-chip memory. Such a feature would require a real time operating

system to control the functions.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5

Time
(in secs)

Number of Laser Scans
(axis_label * 10)

Execution Timing Analysis
(System With DMA)

 Avg Read Time

Avg Compute Time

Avg Write Time

 41

6.2.2 Execution timing analysis for NIOS II processor and Memory Interface without using DMA

 Data points for a single scan are copied from a file on the SD card to SDRAM memory

for processing. The bridging algorithm reads the data from the SDRAM memory to compute and

save the bridge mode values into SDRAM again. The bridge mode values are then written from

SDRAM to a file on the SD card. These steps are repeated for each scan and execution time is

computed for varying number of laser scans.The experiment was run for five times for the

varying number of laser scans and the table 6.6 shows the average total execution time of

bridging algorithm for SD card interface without using DMA.

Table 6.6 Total execution time and total number of clock ticks for system without DMA

Number of
Scans

Number of Clock
Cycles

Total Execution Time
(in sec)

10 20572310 0.4114462

20 42398190 0.8479638

30 56483020 1.1296604

40 72162840 1.4432568

50 87836680 1.7567336

 The breakup of total execution time of bridging algorithm including reading of laser free

mode data, compute bridge mode values and write the values to SD card memory for different

number of scans is shown in table 6.7

Table 6.7 Total execution time break-up for read, compute and write for system without DMA

Number of
Laser Scans

Read time
(in sec)

Compute time
(in sec)

Write time
(in sec)

10 0.344909 0.0582944 0.008243

20 0.7075808 0.1230892 0.017294

30 0.9277564 0.17415 0.027754

40 1.1738174 0.2334328 0.0360062

50 1.4209122 0.2914884 0.0443328

 42

The read time, compute time and write time for SD card interface without using DMA is shown

in figure 6.2 as a graphical representation.

Figure 6.2 Graphical representation of read time, compute and write time for NIOS II processor

system without using DMA controller

From Table 6.7, time spent in reading the laser free mode data from SD card is very high

compared to the time spent in bridge mode calculation and time spent in writing the bridge

mode values to SD card.

Three main factors affecting the read time are:

1. Altera University Program (UP) SD Card IP core is used to provide commands and data

to the SD card. The Hardware Abstraction Layer (HAL) device driver designed for the

Altera University Program SD Card IP core provides an easy way to access data stored

on an SD card. API functions from the device driver are used for reading and writing

data to a file on SD card. The read function reads a byte from a file on SD card and

returns an integer (ASCII) value of the character read. The characters read have to be

converted into appropriate integer data format of the laser scan. All the values for eighty

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5

Time
(in secs)

Number of Laser Scans (axis_label * 10)

Execution Timing Analysis
(System Without DMA)

Avg Read Time

Avg Compute Time

Avg Write Time

 43

points of scan have to be read byte wise by using the read function and then used for

computing the bridge value. This is one of the main reasons why read time is more

compared to bridge mode value compute time and write time. The write function from

the device driver also writes only one byte per write function call. The computed bridge

mode values (one for 80 data points) to be written on the SD card is less than the

number of data points to be read, hence the total write time is lower compared to the

total read time.

2. Each scan has 80 points and each point has three attributes to be read from the file on

the SD card i.e. distance value, sync index and track mode information. All the

attributes are represented by 32 bit integers. For ten scans, a total of 800 data points

need to be read from the file. As the number of scans increase the read timing also

increases.

3. An SDRAM controller is used to provide the control signals for SDRAM access. The

CAS latency for SDRAM in this design is three clock cycles. Three attributes of each

scan point has to be read from SDRAM memory. Since the latency is higher compared

to on-chip memory, the read time for read operation from SDRAM memory is high.

 To improve the efficiency i.e. speed of the system, the total read time has to be

decreased. The next section is simplified by directly interfacing the SD card to processor without

using SDRAM memory or the DMA and analyses the execution time for the bridging algorithm.

6.2.3 Execution timing analysis for NIOS II processor and Direct SD Memory Interface

 Data points for a single scan are read from the file on the SD card and stored in data

memory of the processor (on-chip). The bridging algorithm then computes the bridge mode

values and writes them back to a text file on the SD card. This process is repeated for varying

number of laser scans.

 44

 The experiment was run for five times and table 6.8 shows the average total execution

time of the bridging algorithm for a different number of scans for Direct SD card interface to the

system.

Table 6.8 Total execution time and total number of clock ticks for system with direct SD card

Interface

Number of
Laser Scans

Number of
 Clock Cycles

Total Execution Time
(in sec)

10 20101830 0.4020366

20 41541940 0.8308388

30 55378260 1.1075652

40 70713800 1.414276

50 85864770 1.7172954

 Table 6.9 shows the breakup of total execution time of the bridging algorithm including

reading of laser free mode data, computing the bridge mode values and writing the values to SD

card memory for different number of scans

Table 6.9 Total execution time for read, compute and write for system with direct SD card

Interface

Number of
Laser Scans

Read time
(in sec)

Compute Time
(in sec)

Write time
(in sec)

10 0.3322518 0.0616576 0.0081272

20 0.6842244 0.1295524 0.0170618

30 0.8936954 0.1865534 0.0273162

40 1.1303164 0.2484366 0.0355226

50 1.3636734 0.3099038 0.0437182

The graphical representation of read time, compute and write time for NIOS II processor system

and direct SD card interface is shown in figure 6.3

 45

Figure 6.3 Graphical representation of read time, compute time and write time for system with

direct SD card interface

 From the results it is clear that this design approach reduces the read time compared to

the initial system design. The number of memory read, writes and data transfers are minimal

compared to the other two designs. Also the design complexity is reduced since there is no

SDRAM controller and DMA controller. Even though the speed is increased compared to the

initial design, the overall performance of the system is slow if the same bridging algorithm is run

on a system running on Windows OS using a GHz processor. The reason for this is that the

speed of the NIOS II Processor and the IP core used to send commands to SD card is 50 MHz

only.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5

Time
(in secs)

Number of Laser Scans
(axis_label * 10)

Execution Timing Analysis
(System with direct SD card Interface)

Avg Read Time

Avg Compute Time

Avg Write Time

 46

6.2.4 Execution timing analysis for NIOS II processor and On-chip memory access

 Each of the designs discussed in the previous sections were successfully able to

compute the bridge mode values from free mode data stored on the SD card. All three designs

show high read time because of the SD card memory access even though there are some

variations in each design. A different approach is necessary for faster read access. This

approach uses the same hardware design as in section 6.2.3 but the timing is calculated with a

different technique. This analysis was carried out assuming that Roline laser interfaced to the

NIOS II processor would store the free mode data on the on-chip memory. Data points for a

single scan are read directly from the on-chip memory location instead of the SD card. The

bridging algorithm then computes the bridge mode values and writes it back to the SD card.

This process is repeated for varying number of laser scans from 10 to 50.

Table 6.10 show the total execution time of bridging algorithm for different number of scans for

reading the free mode laser data from the on-chip memory location

Table 6.10 Total execution time and total number of clock ticks for system with direct on-chip

memory access

Number of
Scans

Number of
Clock Cycles

Total Execution Time
(in sec)

10 3542480 0.0708496

20 7427990 0.1485598

30 10842230 0.2168446

40 14377800 0.287556

50 17922340 0.3584468

 Table 6.11 shows the breakup of total execution time of the bridging algorithm including

reading of laser free mode data, computing the bridge mode values, and writing the values to an

on-chip memory for a different number of scans

 47

Table 6.11 Break-up of total execution time for read, compute and write for system with direct

on-chip memory access

Number of
Scans

Read time
(in sec)

Compute time
(in sec)

Write time
(in sec)

10 0.001795 0.060919 0.008136

20 0.003579 0.1278762 0.0171042

30 0.00526 0.184252 0.0273332

40 0.006874 0.245046 0.035636

50 0.008701 0.3059404 0.0438052

 Figure 6.4 shows the graphical representation of read, compute and write time for the

NIOS II processor system for accessing the free mode data from on chip memory and writing

the bridge mode values to SD card.

Figure 6.4 Graphical representation of read time, compute time and write time for system with

direct on-chip memory access

 This analysis shows that the read time is decreased to a great extent because a set of

data points are now available on chip memory and the clock latency in low. There is no

overhead of reading the data from SD card since it has been assumed in this design that Roline

laser interfaced to NIOS II processor system will write free mode data to on-chip memory. Initial

approach of reading the free mode data stored on the SD card for computing bridge mode

0

0.1

0.2

0.3

0.4

1 2 3 4 5

Time
(in secs)

Number of Laser Scans
(axis_label * 10)

Execution Timing Analysis
(System with free mode data on on-chip memory)

Avg Read Time

Avg Compute Time

Avg Write Time

 48

values would be a time consuming task. The Bridging algorithm can now read the free mode

data from on-chip memory and compute the bridge mode values. The values are then written to

the SD card. The write time is comparable with the other designs. The final design approach

may even compute the profile using the profiling algorithm and write the profile values to SD

card.

 The next chapter compares the four designs in terms of resource usage, execution

timing and also provides a brief idea for the possible future work that can be done on this

embedded NIOS II system to improve the performance and achieve enhanced speed.

 49

CHAPTER 7

SYSTEM IMPLEMENTATION COMPARISON AND CONCLUSION

7.1 System Implementation Comparison

 The three designs discussed in Chapter 5 were implemented on the DE2-115

development board and a comparison of FPGA resource usage was made. Table 7.1 shows the

comparison.

Table 7.1 FPGA resource usage comparison for three designs

FPGA Resources/Design
Type

Design1
(With DMA)

Design2
(Without DMA)

Design3
(Direct SD Card)

Logic Cells 6679 5293 4704

Dedicated Logic Registers 3630 3126 2789

I/O Registers 68 68 0

Memory Bits 1924480 1707392 1706432

M9Ks 251 217 217

DSP Elements 4 4 4

Pins 62 62 5

LUT-Only LCs 3049 2167 1915

Register-Only LCs 665 642 583

LUT/Register LCs 2965 2484 2206

 Performance comparison of the three systems in terms of a number of clock cycles

consumed to execute the bridge algorithm was made for a different number of laser scans for a

given set of data. Table 7.2 shows this comparison. The table also includes the analysis results

of number clock cycles used for system (Design 4) in which the free mode data is assumed to

be available on the on-chip memory directly.

 50

Table 7.2 Comparison of number of clock cycles to execute the bridge algorithm for three

designs.

Number of Scans Design 1
(With DMA)

Design 2
 (Without

DMA)

Design 3
(Direct SD

Card)

Design 4
(System

with on-chip
memory)

10 21349150 20572310 20101830 3542480

20 44242600 42398190 41541940 7427990

30 59185230 56483020 55378260 10842230

40 75696100 72162840 70713800 14377800

50 92327820 87836680 85864770 17922340

 Figure 7.1 shows the graphical representation of comparison of clock cycle utilization

for the different design approaches. The design approach in which the free mode data will be

available on-chip memory directly will have the least clock cycle consumption.

Figure 7.1 Graphical representation of clock cycle utilization comparison

Table 7.3 shows the comparison for total time taken by the system to computing the bridge

mode values including reading the free mode data from SD card memory, computing the bridge

mode value using bridging algorithm and then save the bridge mode values in text file on SD

card. The table also includes the analysis results for system (Design 4) in which the free mode

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

1 2 3 4 5

Number of
Clock Cycles

Number of Laser Scans
 (axis_label * 10)

Clock Cycle Utilization Comparision
System without
DMA
System with DMA

System with Direct
SD Interface
System with on-chip
access

 51

data is available on the on-chip memory and time taken by the system to compute the bridge

mode values.

Table 7.3 Comparison of execution time taken for bridging algorithm to compute the bridge

values for all the four designs (all time units in seconds)

Number of
Laser
Scans

Design 1
(With DMA)

Design 2
(Without

DMA)

Design 3
(Direct SD

Card)

Design 4
(System with on-

chip memory)

10 0.4248984 0.4457164 0.4041258 0.0706736

20 0.8808088 0.9260236 0.836273 0.1481152

30 1.1759644 1.2391028 1.115673 0.2160814

40 1.5053102 1.5886554 1.4231784 0.2868654

50 1.834115 1.9351358 1.7270286 0.3573028

 The break-up of total execution time into read time, compute time and write time for

each design are calculated as per the formulas mentioned in the appendix A.

The graphical representation for comparison of read time for the different design approaches is

shown in figure 7.2

 52

Figure 7.2 Graphical representation of free mode data read time comparison

From the graph in figure 7.1.1, it is clearly visible that the read time is minimum compared to

other designs if we can follow the design approach in which the processor can directly read free

mode data from on-chip memory. It would be a good design if the Roline laser can be interfaced

to a processor such that it can write free mode data to on-chip memory. This design approach

indicates that the NIOS II processor system can be used to compute the bridge mode values at

a faster rate. The other designs read the free mode data from SD card for every scan. The

method of accessing the SD card and its access time results in high read time.

The graphical representation for comparison of write time for the different design approaches is

shown in figure 7.3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5

Time
(in secs)

Number of Laser Scans
 (axis_label * 10)

Free mode data read time comparision

System Without DMA

System With DMA

System With direct SD
Interface

System With on-chip
access

 53

Figure 7.3 Graphical representations of bridge mode data write time comparison for different

design approaches

 From the graph in figure 7.3, it is clear that the write time is comparable for each of the

designs. It is necessary to store the bridge mode values for further processing in profiling

algorithm. Therefore the data has to be written to SD card. If design changes can be made such

that once the Roline laser and DAQ modules are interfaced to NIOS processor system, the

profile can be computed and only the profile values can be directly written to the SD card.

 From the design comparisons made, it can be concluded that the design in which the

SD card is interfaced directly to the processor has minimal resource usage, and if the free mode

data is available on chip directly, then the read time for free mode data would be less. The

principal reason for this is the reduced time access from on-chip memory and reduced number

of writes with the direct SD card interface. Using DMA has certainly reduced the load on the

NIOS II processor but the processor has to wait until a set of data points has been transferred to

on chip memory before using it to compute the bridge mode results. The NIOS II processor can

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1 2 3 4 5

Time
(in secs)

Number of Laser Scans
(axis_label * 10)

Bridge mode write time comparision

System Without DMA

System With DMA

System With direct SD
Interface

System With on-chip access

 54

compute the bridge mode values while the DMA is transferring if support is provided for the

design for using a real time operating system.

7.2 Conclusion

 Embedded NIOS II processor based system was designed to implement bridging

algorithm to preprocess free mode data of laser stored on SD card and save the bridge mode

values to SD card memory. This system can be extended to interface the Roline laser and DAQ

modules to the processor and compute the profile in real time.

 The NIOS II processor can run at maximum frequency of 185 MHz and the IP core used

to interface the SD card can run at 50 MHz. To improve the system performance and efficiency

the system should target using a 1 to 2 GHz processor. Development boards like the Kontron

nanoETXexpress-SP COM module based on Intel Atom Z510 1.1 GHz CPU or the Beagle

Board based on the TI ARM Cortex A8 processor running at 1 GHz are available in the market

and can be used for design enhancements to increase the processing speed. Also a Serial

Peripheral Interface (SPI) can be implemented to provide an interface to the SD card to write a

block (usually 512 bytes) of data directly.

 55

APPENDIX A

DETAILED ANALYSIS OF READ TIME, BRIDGE MODE VALUE COMPUTE TIME AND

WRITE TIME FOR DIFFERENT SOPC DESIGNS

56

1. Total execution timing analysis for NIOS II processor and memory Interface

without using DMA

 Total Read Time = Read time for laser free mode data from SD card byte wise to

 SDRAM + Read time from SDRAM memory to data memory

 section of processor.

 Total Compute Time = Time taken to compute bridge values from free mode data

 available in data memory section.

 Total Write Time = Write time for bridge mode values to SDRAM memory + Write

 time for SDRAM memory to SD card byte wise.

2. Total execution timing analysis for NIOS II processor and memory Interface

using DMA

 Total Read Time = Read time for laser free mode data from SD card byte wise to

 SDRAM +DMA transfer time from SDRAM to separate on-chip

 memory in design + Read time for on-chip memory to data

 memory section of processor.

 Total Compute Time = Time taken to compute bridge values from free mode data

 available in data memory section.

 Total Write Time = Write time for bridge mode values to separate on-chip memory in

 design + DMA transfer from on-chip memory to SDRAM memory

 + Write time for SDRAM memory to SD card byte wise.

57

3. Total execution timing analysis for NIOS II processor and Direct SD card

memory Interface based system

 Total Read Time = Read time for laser free mode data from SD card byte wise to

 data memory of processor

 Total Compute Time = Time taken to compute bridge values from free mode data

 available in data memory section.

 Total Write Time = Write time for bridge mode values to data memory + Write time

 for data memory to SD card byte wise.

4. Total execution timing analysis for NIOS II processor and On-chip memory

access

 Total Read Time = Read time for laser free mode data from data memory of

 processor

 Total Compute Time = Time taken to compute bridge values from free mode data

 available in data memory section.

 Total Write Time = Write time for bridge mode values to data memory + Write time

 for data memory to SD card byte wise

58

REFERENCES

[1] Pong P. Chu, Embedded SoPC Design with NIOS II Processor and Verilog Examples.

[2] M. W. Sayers and S. M. Karamihas, The Little Book of Profiling. University of Michigan, Ann

Arbor, Transportation Research Institute,1998.

[3] R. Walker and E. Fernando, “A portable profiler for pavement profile measurements - interim

report.” Texas Transportation Institute, College Station, TX” Technical Report 0-6004-1, 2009

[4] RoLine 11x0 User’s Manual, LMI Technologies, Inc, 2010.

[5] Cyclone IV Device Handbook Volume 1 from Altera’s website documentation section.

[6] NIOS II Processor Reference handbook from Altera’s website documentation section.

[7] NIOS II software developer’s handbook from Altera’s website documentation section.

[8] Embedded peripherals IP user guide from Altera’s website documentation section.

[9] Embedded design handbook from Altera’s website documentation section

[10] DE2-115 development board datasheets from Altera’s website documentation section.

 [11] FPGA Embedded Processors: Revealing True System Performance, Embedded Systems

Conference San Francisco 2005

[12] Akshay Joshi, “Design and development of a general purpose embedded acquisition

system for transportation applications”, July 2011

59

BIOGRAPHICAL INFORMATION

Vinay Ashi was born in Karnataka, India in 1985. He completed his bachelor’s in

Electronics and Communication engineering from Visvesvaraya Technological University, India

in 2007. He then worked for three years as project associate at Cognizant technology solutions

private limited. He came to University of Texas at Arlington to pursue his Master’s degree in

Electrical engineering. His areas of interest include real time embedded system design and

System on programmable chip development.

