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ABSTRACT 
 

AN IMPROVED MODEL FOR ESTIMATING METHANE EMISSIONS FROM LANDFILLS 

BASED ON RAINFALL, AMBIENT TEMPERATURE AND 

WASTE COMPOSITION 

 

Richa Vijay Karanjekar, PhD 

 

The University of Texas at Arlington, 2012 

 

Supervising Professor:  Melanie L. Sattler  

 Accurately estimating the emissions of methane (CH4) and carbon dioxide (CO2) in a 

landfill is important for quantifying its greenhouse gas (GHG) emissions and power generation 

potential. Previous studies have shown that variation in waste composition, rainfall and 

ambient temperature of a landfill significantly influences its methane generation potential. 

Current methane generation models, namely U.S. Environmental Protection Agency’s (EPA) 

Landfill Gas Generation Model (LandGEM) and Intergovernmental Panel on Climate Change’s 

(IPCC) methane generation model, are overly simplified and do not account for the variations 

in waste composition, rainfall and ambient temperature.  

The goal of this research was to improve our ability to estimate methane generation 

rates from landfills worldwide, which can be used by any country/city, with any anticipated 

waste composition, or climatic conditions. The proposed Capturing Landfill Emissions for 
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Energy Needs (CLEEN) model allows methane generation to be estimated for any landfill, with 

basic information about waste composition, annual rainfall, and ambient temperature.  

A statistical experimental design was used for determining the first order methane 

generation constants (k values) for laboratory scale landfills, with varying waste composition, 

temperature, and rainfall conditions. The experimental design was developed using 

incomplete block design, where the waste composition served as a blocking variable and 

combinations of temperature and rainfall were the primary predictor variables. 27 lab scale 

landfills reactors were simulated with varying waste compositions (ranging from 0 to 100 %); 

average rainfall rates of 2, 8, and 15 mm/day; and temperatures of 20, 30, and 37oC. These 

rainfall rates encompass average precipitation rates for most locations worldwide, with the 

exception of deserts. Refuse components considered were the major biodegradable wastes, 

food, paper, yard/wood, and textile, as well as inert inorganic waste.  Methane generation- 

from laboratory scale simulated landfills was monitored for a period of 180 to 400 days until 

the methane generation rates dropped to a low constant value. Based on the simulated landfill 

data, a comprehensive regression equation was developed for predicting the methane 

generation rate constant, (k) using waste composition, rainfall and temperature as predictor 

variables. Finally, the regression equation was incorporated into the CLEEN model and scale-up 

factors were evaluated for studying the applicability of the model for field scale studies.  

It was observed from the simulated landfill data that the methane generation curves 

from reactors with high amounts of textile waste and food waste showed multiple peaks and 

did not follow a typical first-order decay curve. Methane generation curves from reactors with 

yard waste and paper waste followed a classic first order decay curve. Overall, the mixture of 
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waste components helped in supplying nutrients hence the combined waste followed a first 

order decay curve.  

Multiple Linear Regression (MLR) analysis was used on the lab scale data to estimate 

the effect of waste composition, rainfall and ambient temperature on the first-order decay 

constant (k). The best model selected using the backward elimination method, best subsets 

method and stepwise regression method had an adjusted R2 of 0.7538. From the MLR model it 

was observed that increasing the ambient temperature increased the rate of degradation. 

Likewise, increasing the amount of textile waste and yard waste increased the rate of 

degradation. It was observed that the rate of degradation was affected by the combined effect 

of food waste and rainfall. A change in the amount of paper waste affected the overall rate of 

degradation; however, that effect was not significant at 90% confidence level. The 

comprehensive regression equation was able to predict methane generation rates for rainfall 

from 2 mm/day to 12 mm/day, and ambient temperature between 20oC to 37oC, and was 

limited to 0 to 60% of food waste, 0 to 60% of textile waste, and 0-100% for paper and yard 

waste.  

The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by 

incorporating the comprehensive regression equation into first-order decay based model for 

estimating methane generation rates from landfills. Methane recovery and methane oxidation 

factors were also incorporated in the CLEEN model, to estimate the methane emissions from 

the landfill surfaces. A scale-up factor was computed to adapt the lab based regression 

equation to actual landfill scale methane generation using the City of Denton’s landfill 

emissions data, which was found to be 0.012.  
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 This study will possibly allow better estimation of the methane generation rate 

constant k based on waste composition, rainfall and ambient temperature. CLEEN model will 

also allow k values to be adjusted as recycling and composting increase, without developing 

new country-specific ks. Overall, this study will develop a model for better predictions of 

methane generation rates from any landfill worldwide.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Landfills serve not only as waste repositories but also as significant sources of renewable 

energy. As microbes degrade the organic fraction of waste, methane (CH4) is generated, along 

with carbon dioxide (CO2), water, and other trace landfill gas (LFG) constituents.  Methane, the 

primary constituent of natural gas, can be captured and used to generate electricity. Methane 

can also be used directly in industrial and manufacturing operations, or upgraded to pipeline–

quality gas where the gas may be used directly or processed into an alternative vehicle fuel. 

Using LFG helps to reduce odors associated with LFG emissions, and can improve safety by 

reducing explosion hazards from gas accumulation in structures on or near the landfill.  

Comprising 40-60% of landfill gas by volume, methane is not only potentially an energy 

source, but also a potent greenhouse gas: its global warming potential is 22 times that of CO2 on 

a weight basis (over a 100 year time period) (Intergovernmental Panel for Climate Change (IPCC 

2007). According to USEPA (2011), landfills are the fifth largest source of greenhouse gases 

(GHG) in the United States, accounting for about 117 MMT of CO2 equivalents of emissions 

(USEPA 2011). Capturing and burning methane for energy is thus important as a measure for 

reducing the potency of greenhouse gas emissions. Converting a molecule of methane to CO2 by 

burning it for energy reduces its ability to trap the Earth’s outgoing radiation by a factor of 

21/22, or 95% (IPCC 2007).  
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Accurate estimates of methane emissions from landfills are important for: 

 Determining landfill’s carbon footprint (quantify the greenhouse gases emitted 

by the landfill),  

 Estimating power generation potential of the landfill, 

 Designing the landfill’s gas collection and purification system. 

 

1.2 Problem Statement 

Waste degradation in landfills is most commonly modeled using a first-order decay 

equation (Alexander et al. 2005; Eggleston et al. 2006; Kamalan et al. 2011). The two most 

critical factors in the model are the first-order decay constant (k value or half-life) and the 

ultimate methane generation potential (L0).  Amini et al. (2012) stated that the efficiency of 

current models to predict methane generation from landfills is most sensitive to the L0 and k 

values used in the models (Amini et al. 2012). Figure 1.1 shows the effect of changing L0 and k on 

the methane generation rate from a hypothetical landfill with an active life of 15 yrs.  It can be 

seen that higher the k value, the faster is the methane generated in the landfill. Hence, if the k 

value is smaller, the methane generation from the landfill extends long after the landfill is 

closed, implying longer post-closure care duration, as well as longer carbon storage (Staley and 

Barlaz 2009). 
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(a) 

 

 
(b) 

 
Figure 1.1: Effect of Changing Model Parameters on Methane Generation Rate, (a) L0 and (b) k 
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According to IPCC (2006), the methane generation potential (L0) of a landfill depends on 

waste composition and its degradable organic content. Since the waste composition in 

developing countries differs from that in developed countries, methane generation potential 

also differs. In general, waste from developing countries is composed of higher amount of food 

and putrescible matter (Guermoud et al. 2009). Because of the large amount of food in the 

waste streams of developing countries, the waste moisture content is also higher. Moreover, 

each type of waste degrades at a different rate. Thus, waste composition also affects the rate of 

degradation (k value) in landfills (Machado et al. 2009). Figure 1.2 shows a graphical 

representation of relative rate of degradation of waste components in a landfill.  

 

Figure 1.2: Graphical Representation of Rate of Degradation of Different Waste Components 

 

Further, several researchers have pointed out that an increase in moisture content can 

increase the methane generation rate of landfills (Barlaz et al. 1990; Mehta et al. 2002; Wreford 
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et al. 2000). Moisture content within a landfill depends on the initial moisture content of waste, 

operational practice and the rainfall infiltrated into the landfill during its active life. Therefore, it 

is important to identify the effect of rainfall on the rate of degradation (k). Further, moisture 

absorption capacity of different types of waste is different, which primarily depends on the 

saturation limit of the wastes.  Stone and Kahle (1972) observed that paper and textile waste 

can absorb about 4 times more moisture than yard waste (based on a dry weight basis). Hence, 

the impact of moisture content on the degradation of each waste component depends on its 

saturation limit (Stone and Kahle 1972). Furthermore, several researchers have observed that 

increase in temperature of the waste also enhances the microbial activity, thereby increasing 

the methane emissions from waste (Christensen and Kjeldsen 1989; Rees 1980; Bingemer and 

Crutzen 1987). Hence, it is important to incorporate the effect of waste composition, rainfall and 

temperature on k value while modeling gas generation from landfills. 

Current landfill gas generation models, however, are typically overly simplified, not 

accounting for landfill-specific variations in waste composition, moisture content, and ambient 

temperature, which can significantly impact methane generation rates. The widely-used 

LandGEM, for example, contains default methane generation rate constant k values for a 

conventional landfills, arid areas, and bioreactors. These 3 default values account discretely for 

variations in moisture content due to rainfall and leachate recirculation, but do not account for 

variations in temperature or waste composition (USEPA 2005). Although the user can input site-

specific parameter values, such information is often not available without laboratory test data. 

The IPCC Waste Model provides methane generation rate constant values for 2 temperature 

ranges (<20C and >20C) and 2 moisture contents (dry or wet). Rate constant values are 

provided for 4 categories of waste, but the method of combining the rate constant values to 
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arrive at an overall landfill k value is unclear, as stated by IPCC (IPCC 2006). Therefore, it can be 

summarized that existing models have limitations and cannot be used globally without 

developing site specific models. 

1.3 Research Objective 

The goal of this research was to develop a model for predicting methane generation 

rates from landfills, which can be used globally to estimate methane potential of the landfills, 

regardless of waste composition or climate. The proposed Capturing Landfill Emissions for 

Energy Needs (CLEEN) model allows methane generation to be estimated for any landfill with 

basic information about waste composition, annual rainfall, and ambient temperature. The 

proposed CLEEN model helps in predicting methane generation rate and methane emissions 

from the landfill surface by incorporating the methane recovery with gas collection and control 

system, and methane oxidation in landfill covers. 

The specific objectives of this project were three-fold:  

1. Developing laboratory scale simulated landfills to study the effect of rainfall, ambient 

temperature and waste composition on gas generation rates;   

2. Developing a comprehensive regression equation for predicting methane generation rate 

constant (k) based on the laboratory scale data;  

3. Incorporating the regression equation in CLEEN model for predicting methane generation 

rates from landfills, and developing scale-up factor for adapting the CLEEN model for landfill 

scale conditions.  
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1.4 Dissertation Outline 

This dissertation is divided into six chapters as summarized below:  

 Chapter 1 provides an introduction and presents the problem statement and objectives of 

the research.  

 Chapter 2 presents a literature review of the stages of municipal solid waste (MSW) 

decomposition, current models used for predicting methane generation from landfills, 

methods for estimating the ultimate methane potential of landfills, factors affecting the rate 

of degradation and methods for determining the first-order decay constant. 

 Chapter 3 describes the experimental procedures followed to collect MSW samples, to build 

laboratory scale landfill reactors and to measure the rate of decay of waste components as a 

function of waste composition, rainfall and ambient temperature.  

 Chapter 4 presents the experimental results, discussion on the results, and comparison of 

the results with existing literature.  

 Chapter 5 presents a statistical modeling procedure using multiple linear regression. The 

CLEEN model was developed using the scale-up factor calculated from landfill methane 

generation data.   

 Chapter 6 summarizes the main conclusions from the current research and provides 

recommendations for future work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Background on Landfills Gas Generation 

Municipal solid waste (MSW) disposed of in a landfill is comprised of several types of 

waste, such as food, paper, yard, plastic, textiles, and metal waste. The organic fraction of 

municipal solid waste in the landfill decomposes through a series of interacting microbial 

processes into methane (CH4), carbon dioxide (CO2) and water (H2O). While water moves 

downward through the layers of waste in the landfill, forming “leachate”, methane, carbon 

dioxide along with other gases migrate to the landfill cover, forming “Landfill Gas” (LFG).  

Methane generation from landfills depends on several factors, such as the waste 

composition, compaction, unit weight, age, pH, particle size, and initial moisture content, as well 

as climatic factors such as the annual rainfall and temperature. Landfill gas primarily consists of 

methane (about 40-60%); therefore, it is potentially an energy source as well as a greenhouse 

gas. According to IPCC (2004), methane has 22 times more global warming potential than 

carbon dioxide (over a hundred year time period). Typical composition of landfill gas is shown in 

Table 2.1.  

In addition, USEPA (2008) has identified above 100 trace constituents including non-

methane organic compounds (NMOCs) and volatile organic compounds (VOCs) emitted from 

landfills. USEPA (2005) User’s Guide for Landfill Gas Emissions model incorporates default 

emission factors for 46 trace components. 
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Table 2.1: Typical Composition of Landfill Gas (Source: Tchobanoglous et al. 1993) 

 

Component Percent (dry volume basis) 

Methane 45-60 

Carbon dioxide 40-60 

Oxygen 2-5 

Sulfides, disulfides, mercaptans, etc. 0.1-1.0 

Ammonia 0.1-1.0 

Hydrogen 0-0.2 

Carbon monoxide 0-0.2 

Trace constituents 0.01-0.6 

 

 
2.1.1 Landfill Gas Production 

The conversion of solid waste to methane and carbon dioxide is aided by 

microorganisms by a series of chemical conversions. The biochemistry of anaerobic degradation 

of waste can be divided in three stages. In first stage is the hydrolysis stage, where the solid 

waste and dissolved organic compounds are hydrolyzed and fermented to volatile fatty acids, 

alcohols, hydrogen and carbon dioxide. In the second stage, acetogenesis, the acetogenic groups 

of bacteria convert the products from first stage to acetic acid, hydrogen and carbon dioxide. In 

the final stage, methanogenesis phase, methane is produced by methanogenic bacteria (Barlaz 

et al. 1990; Christensen and Kjeldsen 1989). 

The overall process of converting organic matter to methane and carbon-dioxide can be 

stoichiometrically expressed as shown in Eq. 2-1 (Cooper et al. 1992). 

            
             

 
    

        
                                                                                                      

                       
             

 
      

             

 
                            (2-1)       
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2.1.2 Phases of Anaerobic Degradation 

Gas generation from a landfill has been divided into 4 (or more) sequential phases. 

Typical phases in waste degradation are shown in Figure 2.1. 

Phase I – Aerobic Phase - Aerobic decomposition occurs immediately after placement of 

the waste due to oxygen trapped within the landfill. Mainly carbon dioxide is produced during 

this phase, and the amount of carbon dioxide produced is approximately equivalent to the 

amount of oxygen consumed. 

Phase II- Anaerobic Acid Phase - In this phase the acetogenic microorganisms are 

predominant. This leads to accumulation of carboxylic acids and the leachate pH decreases. 

There is very little methane generation in this phase, and the landfill gas predominantly consists 

of carbon-dioxide.  

Phase III- Accelerated Methane Production Phase- The concentration of methane in 

landfill gas increases until it reaches a constant value (mostly between 40- 60%). The carboxylic 

acid concentration decreases. The pH stabilizes, and leachate strength decreases. Methanogenic 

and acid forming bacteria have a mutually beneficial, symbiotic relationship. 

Phase IV- Decelerated Methane Production Phase- The methane and carbon dioxide 

concentrations are relatively constant in this phase. However, the methane generation rate 

decreases. In a landfill, this phase is expected to extend for 20-50 yrs. The pH is similar to phase 

III (Barlaz et al. 1990; Rees 1980; Tchobanoglous et al. 1993; Farquhar and Rovers 1973). 
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Figure 2.1: Phases in Anaerobic Degradation of Solid Waste (Source: Barlaz et al. 1990) 

  
2.2 Models for Landfill Gas Generation 

Various models have been developed to describe landfill waste degradation, including 

zero-order, first-order, second-order decay models, multiphase models, and combination 

models. A brief review of assumptions and equations used in some models is presented in Table 

2.2  
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Table 2.2: Landfill Gas Generation Models (Oonk 2010; Faour et al. 2007; Solid Waste 
Association of North America, 1997) 

 

Model Equation 

Zero-Order Decay Model 
Landfill gas generation in a certain 
amount of waste is assumed to be 
constant with time. Effect of waste age is 
not incorporated in the model. 
 

  
   

       
  for ti ≤ t ≤ tf 

Where 
Q = Methane generation rate (m3/yr); 
M = Mass of solid waste in place (yr); 
L0 = Ultimate methane generation potential 

(m3/yr); 
t  = Time (yr);  
ti = Lag time (time between waste placement and 

gas generation) (yr); 
tf = Time to the end of gas generation (yr). 

First-Order Decay (FOD) Model 
Landfill gas generation in a certain 
amount of waste is assumed to decrease 
exponentially. The first-order decay 
equation is used in US EPA’s LandGEM. 

       
          

Where 
k = first-order decay rate constant (yr-1). 
 

Modified First-Order Model 
This model assumes that methane 
generation from a certain amount of 
waste may be initially low (due to the 
“lag phase”). The generation then rises to 
a peak before declining exponentially, 
like in the first-order decay model. 

     
   

 
                            

Where 
k = first-order decay rate constant (yr-1); 
s= first-order rise phase rate constant (yr-1) 
 

First-Order Multi-Phase Decay Model 
The first-order multi-phase decay model 
assumes that different fractions of the 
waste decay at different rates. The waste 
is divided into three (or more) fractions, 
depending on the rate of their decay. 
E.g., food waste and grass are assumed 
to degrade faster than paper or certain 
types of textile waste. However, each 
fraction is assumed to follow first-order 
decay.  
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Where 
Fr, Fm ,Fs =  fraction of rapidly, moderately or slowly 

decomposing wastes; 
kr, km, ks

  = first-order decay constants for rapidly, 
moderately, slowly degrading wastes 
(yr-1); 

ti = age of ith increment (yr). 
 

Second-Order Decay Model 
The second-order model is considered 
better when a large number of reactions, 
all of a first-order but with differing 
reaction rates, occur in the system. 

     
  

      
 
 

  

Where 
k = second-order rate constant (m3/kg /yr). 
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Oonk and Boom (1995) studied the prediction efficiency of zero-, first-, multiphase and 

second-order models using gas generation data from 9 Dutch landfills. The study concluded that 

the multiphase model best describes gas generation with a relative error of 18 percent, followed 

by the second- and first-order models each with a relative error of 22 percent, and the zero-

order as the least reliable with a relative error of 44 percent.  Oonk and Boom (1995) used the 

multiphase first-order equation by dividing the waste into 3 categories (rapidly, moderately and 

slowly degrading waste). However, the authors commented that further division of waste may 

help toward improving the performance of the model. 

SWANA (1997) conducted a similar study to compare the model parameters and the 

prediction efficiency of zero-order, first-order, multiphase first-order and modified first-order 

models using methane recovery data from 18 U.S. landfills. SWANA observed that the regression 

coefficients (R2) for all these models were in the range of 0.914 to 0.955. Although the 

regression coefficients were very close, the simple first-order decay had the maximum R2 value 

of 0.955, suggesting that the simple first-order model is the most accurate for estimating 

methane emissions from landfills (Oonk and Boom 1995; Solid Waste Association of North 

America, 1997). 

2.3 Current Landfill Gas Generation Models 

Two of the most commonly used first-order and multi-phase first-order models are the 

U.S. Environmental Protection Agency’s (EPA’s) Landfill Gas Generation Model (LandGEM) and 

the Intergovernmental Panel on Climate Change (IPCC’s) methane generation models, 

respectively (U.S. EPA 2005; IPCC 2006). This section includes a review of the assumptions, 

equations and constants used in these two models.  
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2.3.1 EPA’s Landfill Gas Generation Model (LandGEM)  

US EPA’s LandGEM uses a simple first-order decay equation for predicting methane 

generation rate from landfills. First-order degradation can be expressed as a function of mass of 

waste (degradable waste) remaining, as shown in Eq. 2-2: 

  
   

  
                                                                                                                    (2-2) 

 
Integrating Eq. 2-2 yields the following equation. 

      
                                                                                                                   (2-3) 

 
Where,  

Mr = remaining mass of waste at time t (Mg) 

t    = time elapsed (yr) 

k   = first-order degradation rate constant (yr-1) 

M0= initial mass of degradable waste (Mg) 

Similarly, the total volume of methane that can be produced from a landfill depends on 

the ultimate methane generation potential of the waste and is represented as follows:  

                                                                                                                   (2-4) 
 

The rate of methane produced per year is obtained by differentiating Eq. 2-4 with 

respect to time.   

                                                                                                                        (2-5) 

Where,   

V= cumulative methane generated until time t (m3) 

L0 = methane generation potential (m3/Mg) 

Q = methane production rate at time t (m3/yr) 



15 

 

In a landfill the waste is continuously dumped for several years. Hence the amount of 

waste (M) keeps increasing. To incorporate this effect, Eq. 2.5 is modified by summing up the 

mass of waste added for each time increment. USEPA (2005) suggested the mass of waste 

added in a landfill to be included for 1/10th of a year, as shown in Eq. 2-6. This was done to 

improve the accuracy of the model. 









1

1.0

)(

0

1 104

j

kti
n

i

CH
ije

M
kLQ                                              (2-6) 

 
where  

4CHQ
 = methane emission rate at time t (m3/yr) 

k     = first-order methane generation rate constant (yr-1) 

L0    = methane generation potential (m3 CH4/106 g refuse) 

i     = one year time increment 

j     = 0.1 year time increment  

Mi   = mass of waste in ith section (annual increment) (Mg) 

tij     = age of jth section of waste mass Mi accepted in ith year (decimal years, e.g., 3.4  years) 

Critical input parameters in this model are ultimate methane generation potential (L0) 

and the methane generation rate constant (k).  According to LandGEM User’s Guide (USEPA 

2005), methane generation potential (L0) depends on the waste composition and the first-order 

rate constant (k) depends on moisture content, pH, temperature of waste mass and availability 

of nutrients. The default values for Lo and k for conventional landfill, arid area, and bioreactor 

landfills are shown in Table 2.3. 
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Table 2.3: Model Parameters for LandGEM (USEPA 2005) 
 

Default Type Landfill Type L0
 (m3/Mg) k value (yr-1) 

CAA1 Conventional  
(Rainfall > 25 in/yr) 

170 0.05 

CAA Arid Area 
(Rainfall < 25 in/yr) 

170 0.02 

Inventory2 Conventional 
(Rainfall > 25 in/yr) 

100 0.04 

Inventory Arid Area 
(Rainfall < 25 in/yr) 

100 0.02 

Inventory Wet (Bioreactor) 96 0.7 
NOTE: 1- CAA – Clean Air Act; 2- Inventory – AP 42 (1998) 

Although it is simple to use, LandGEM has several shortcomings:  

1. LandGEM assumes that the waste is a completely homogeneous; hence L0 is assumed to be 

constant with space and time. However, L0 is actually dependent on the degradable organic 

carbon present in the landfill and can change with waste composition. 

2. The k value is assumed to be constant for the landfill. However, k actually depends on 

moisture content, temperature and waste composition (Barlaz et al. 1990). Flexibility of 

varying k values with changes in waste composition is not offered by LandGEM. In fact, 

LandGEM assumes that waste composition affects L0 and not k. 

3. The default values account discretely for variations in moisture content due to rainfall or 

leachate recirculation, but do not account for variations in temperature or waste 

composition.  Although the user can input site-specific values, such information is often not 

available (USEPA 2005). 

2.3.2 IPCC’s Methane Generation Model 

IPCC guidelines (2006) recommended the use of a “multiphase first-order decay model” 

for estimation of methane emissions from landfills (Eggleston et al. 2006). A simplified version of 
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the multiphase model is shown in Eq. 2-7. The landfilled waste is divided into categories: slowly-

degrading waste, moderately-degrading waste, and rapidly-degrading waste.  
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                                        (2-7)

 

where 

4CHQ
 = methane emission rate, m3/yr 

L0  = methane generation potential, m3 of CH4/ Mg refuse 

Mi = mass of waste in ith section (annual increment), Mg 

Fr, Fm ,Fs = fraction of rapidly, moderately or slowly decomposing wastes 

kr, km, ks= first-order decay constants for rapidly-, moderately- or slowly-decomposing waste 

ti = age of ith increment in years 

Variables kr, km and ks are assumed to be dependent on waste composition and other 

environmental factors such as moisture, ambient temperature, and the depth of the landfill, 

while L0 is assumed to be dependent of the waste composition. Although a multiphase model is 

difficult to use, there are several advantages associated with it. Advantages of a multiphase 

model are that:  

 It incorporates the degradability of waste components and waste composition while 

computing the methane generation rate. 

 Multiphase models help in identifying the effect of recycling and changes in landfilling 

practices and its impact on landfill gas emissions over a period of time. 

IPCC’s methane generation model is based on the amount of degradable organic matter 

(DOCm) in the waste disposed. The amount of degradable organic matter (DOCm) in the waste is 

estimated from the information about the waste deposited in the landfill, and its components 
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such as paper, food waste, yard waste, and textile.  The decomposable degradable organic 

matter (DDOC) is defined as the amount of DOC that can be degraded in a landfill under 

anaerobic conditions and can be calculated as shown in Eq. 2-8.  

MCFDOCDOCWDDOC fm 
                                                                                                 (2-8)

 

where 

DDOCm = mass of decomposable DOC deposited (Mg) 

W     = mass of waste deposited (Mg) 

DOC = degradable organic carbon in the year of deposition (Mg C/ Mg waste) 

DOCf = fraction of DOC that can decompose under anaerobic conditions;  

MCF = methane correction factor for aerobic decomposition (before anaerobic 

decomposition starts) in the year of deposition. 

The amount of DDOC accumulated in the landfill in a particular year is computed based 

on the first order decay rate equation, as follows: 

 k

mamdma eDDOCDDOCDDOC
TTT


1                                                                   (2-9)

 

 k

TmaTdecompm eDDOCDDOC 


 1

1                                                                      (2-10) 

Where,  

T  = inventory year 

T
maDDOC

 = DDOCm accumulated in the SWDS at the end of year T (Gg) 

1TmaDDOC
 = DDOCm accumulated in the SWDS at the end of previous year T-1 (Gg) 

TmdDDOC
 = DDOCm deposited into the SWDS in year T (Gg) 

TdecompmDDOC
= DDOCm decomposed in the SWDS in year T (Gg) 
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k  = first-order decay constant (yr-1)  

The amount of methane generated from the decomposable organic matter present in 

the landfill in a particular year is found by using the relationship: 

12

16
4  FDDOCCH

TdecomposedmgeneratedT
                                                                            (2-11)

 

Where, 

Tgenerated
CH4  = amount of methane generated from decomposable material in year ‘T’. 

16/12   = molecular weight ratio CH4/C ratio 

F  = fraction of CH4 by volume, in generated landfill gas (fraction) 

TdecomposedmDDOC = mass of decomposable degradable organic matter (DDOCm) deposited in 

year T, Gg 

The relationship between decomposable degradable organic carbon (DDOC) and L0 is 

shown in Eq. 2-12. 

                                                                                                                               (2-12)                                                                                                                                                         
 

IPCC’s model incorporates the fact that waste is comprised of various components, and 

each component may degrade at a different rate. IPCC encourages use of site-specific values for 

DOC and k if available; else, the IPCC model allows use of default k values which are specific for 

a waste category and rainfall (See Tables 2.4 and 2.5). 

IPCC provides default k values for only 2 ambient temperature ranges (< 20C/ 

temperate and >20C/tropical) and 2 moisture contents (dry, with Mean Annual Precipitation 

(MAP)/Potential Evapotranspiration (PET) < 1, or wet with MAP/PET >1). ks are provided for 4 

categories of waste (and bulk waste), but the method of combining the rate constant values to 
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arrive at an overall landfill k value is unclear. IPCC (2006), states that there are two ways to 

select half-life (k value):   

a. Compute a weighted average of half-lives (or k values) for rapidly-degrading waste, slowly-

degrading waste, and moderately-degrading wastes to find an overall for half-life (k value) 

for a mixed municipal solid waste.  This approach assumes that degradation of different 

types of waste is dependent or is influenced by each other. 

b. Divide waste stream into categories according to rate of degradation and apply individual 

half-life (k values) to compute the total methane production. This approach assumes that 

degradation of different types of waste is completely independent of each other. 

Table 2.4: Default Methane Generation Rate (k) Values Suggested by IPCC (2006) 
 

Type of Waste 

Climate Zone 

Boreal Temperature  

(MAT/PET≤ 20oC) 

Tropical 

(MAT> 20oC) 

Dry 

(MAP/PET < 1) 

Wet 

(MAP/PET>1) 

Dry 

(MAP < 1000  

mm) 

Wet 

(MAP >1000 

mm) 

Default Range Default Range Default Range Default Range 

Slowly 

degrading 

waste 

Paper / 

Textiles 

0.04 0.03-

0.05 

0.06 0.05-

0.07 

0.045 0.04-

0.06 

0.07 0.0-

0.085 

Wood/ 

straw  

0.02 0.01-

0.03 

0.03 0.02-

0.04 

0.025 0.02-

0.04 

0.035 0.03-

0.05 

Moderately 

degrading 

waste 

Non-food 

organic / 

garden, park  

0.05 0.04-

0.06 

0.1 0.06-

0.1 

0.065 0.05-

0.08 

0.17 0.15-

0.2 

Rapidly 

degrading 

waste 

Food waste/ 

Sewage 

sludge 

0.06 0.05-

0.08 

0.185 0.1-0.2 0.085 0.07-

0.1 

0.4 0.17-

0.7 

Bulk Waste 0.05 0.04-

0.06 

0.09 0.08-

0.1 

0.065 0.05-

0.08 

0.17 0.15-

0.2 
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Table 2.5: Default DOC Contents Suggested by IPCC (2006) 
 

MSW component Dry matter content 
% of wet weight 

DOC content  
% of wet waste 

DOC content  
 % of dry waste 

 Default Default Range Default Range 

Paper/cardboard 90 40 36-45 44 40-50 

Textiles 80 24 20-40 30 25-50 

Food waste 40 15 8-20 38 20-50 

Wood 85 43 39-46 50 46-54 

Garden and Park 
waste 

40 20 18-22 49 45-55 

Nappies 40 24 18-32 60 44-80 

Rubber and Leather 84 39 39 47 47 

Plastics 100 - - - - 

Metal 100 - - - - 

Glass 100 - - - - 

Other, inert waste 90 - - - - 

 

According to IPCC, “the first approach assumes degradation of different types of waste 

to be completely dependent on each other. So the decay of wood is enhanced due to the 

presence of food waste, and the decay of food waste is slowed down due to the wood. The 

second approach assumes degradation of different types of waste is independent of each other. 

Wood degrades as wood, irrespective whether it is in an almost inert Solid Waste Disposal Site 

(SWDS) or in a SWDS that contains large amounts of more rapidly degrading wastes. In reality 

the truth will probably be somewhere in the middle. However there has been little research 

performed to identify the better one of both approaches (Oonk and Boom 1995b; Scharff and 

Jacobs 2006) and this research was not conclusive.” This is an area where further research needs 

to be done.   

Further, IPCC (2006) mentions that the recommended k values are based mostly on 

waste characteristics of developed countries under temperate conditions. Few available results 

reflect the characteristics of developing countries and tropical conditions. 



22 

 

 Besides the fact that LandGEM uses the first-order decay equation and IPCC uses the 

multiphase first order decay equation, there are several other dissimilarities between the 

models. For example, the lag time required for methane generation to begin after the waste is 

placed in the landfill is different for both models. LandGEM assumes about 0-1 year lag time, 

while IPCC considers it to be 0-6 months. Moreover, fugitive methane emissions due to the 

efficiency of the methane recovery system and methane oxidation are ignored by LandGEM. 

These factors induce considerable uncertainty in landfill gas modeling. 

2.3.3 Other Landfill Gas Generation Models 

Several models other have been developed and used for estimating methane emissions 

from landfills. A brief discussion of some of these models is provided here. 

1. Scholl Canyon Model: This model is based on first-order kinetics. However, a lag period for 

initiation of methanogenesis is ignored in the Scholl Canyon Model (Oonk 2010; Reinhart et 

al. 2005; Thompson et al. 2009). 

2. Triangular Model: This model assumes that the methane generation rate follows a linearly 

rising trend in the first phase. In the second phase, the methane generation drops at a 

linearly decreasing rate (Oonk 2010; Reinhart et al. 2005; Halkadavis, 1983).  

3. Palo Verdes Kinetic Model: This is a two stage first-order model. In the first stage, gas 

production rate is assumed to increase exponentially with time, followed by the second 

stage where the gas production rate decreases exponentially with time. It is also assumed 

that the maximum gas production rate and transition from first stage to second occurs at 

the time when the half of ultimate gas production has been reached  (Reinhart et al. 2005; 

USEPA 1998- background emissions). 
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4. Sheldon Arleta Model: Like the Palo Verdes Model, this model assumes a rising exponential 

curve in the first stage, followed by a decreasing exponential phase in the second, except 

that the maximum rate is assumed to occur at a time equal to 35% of the total generation 

period (Reinhart et al. 2005; USEPA 1998- background emissions). 

5. Landfill Gas Generation Model (LFGGEN): This model assumes that a certain lag time (TL) 

precedes anaerobic gas generation. The annual gas generation rate is assumed to increase 

linearly until it reaches a peak rate, which occurs at time (Tp), followed by an exponential 

decrease from peak rate to near zero at the end of the time (Tf). The factors TL,TP and TF are 

dependent on type of waste and the moisture conditions (Cooper et al. 1992). 

6. California Landfill Methane Inventory Model (CALMIM Model): This model relies on field 

validated modeling of methane emissions as “net” emissions rate than methane 

generation.  Methane diffusion is calculated through the top layer, and methane oxidation 

in the top layer is used for estimating methane emissions. The methane emission depends 

on the top layer composition, and daily variations in climatic conditions. This model is 

currently being field validated (Spokas et al. 2009; Bogner et al. 2011). 

7. First-Order Kinetics Two Stage Reaction Model (FKSTR): This model takes in to account the 

actual biochemistry for determining methane generation from landfills. FKSTR model first 

calculates the intermediate products (organic acid and carbon dioxide) based on 

acidification and methanation reactions. The gas generation rates are calculated in next 

step from the difference between the degraded waste and the generated intermediate 

products (Chen et al. 2009). 

In addition, several researchers have attempted to model the methane generation from 

landfills using saturation kinetics (e.g. Monod’s kinetics) under substrate-limiting or microbe-
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limiting conditions (Alvarez and Martinez-Viturtia 1986; Meima et al. 2008; El-Fadel 1999). 

Meima et al. (2009) performed a sensitivity analysis and detailed literature review on the input 

parameters used in modeling methane emission using Monod’s kinetics. They observed that the 

model is very sensitive to the input parameters, which are likely not available in actual landfill 

scale studies. 

According to Oonk (2010), the Scholl Canyon Model, Triangular Model, and Zero order 

models were simplified models and predecessors of current models which are no longer used in 

practice since the current first order and multiphase first order models are more accurate as 

compared to its predecessors. Amini et al. (2012) performed a review of the studies that have 

compared the different landfill gas generation models (See Table 2.6). 

From Table 2.6 it can be seen that most models tend to overestimate the methane 

generation from landfills. The errors are in some cases upto 1109% higher the measured data. 

The authors concluded that the model’s performance usually depends on its input parameters (k 

and Lo), which are likely not available for a certain climatic condition. Further methane recovery 

and oxidation values are difficult to estimate, all these conditions contribute towards the errors 

in estimation (Oonk 2010, Amini et al. 2009, Thompson et al. 2009). 
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Table 2.6: Summary of Landfill Gas Generation Model Performance (Source: Amini et al. 2012) 
 

Study 
Years of 
data 

Models 
Landfill 
characteristics 

k 
yr−1 

L0 

m3 g−1 
Error References 

Validating LFG 
generation 
models based 
on 35 
Canadian 
landfills 

NA 

Zero-order 
German EPER 
TNO Belgium 
Scholl Canyon 
LandGEM 
version 2.01 

35 Canadian 
landfills 

0.023–
0.056 

90–128 
-81% to 
+589% 

Thompson 
et al. 2009 

The CDM 
landfill gas 
projects by the 
World Bank 

1–3  

IPCC First-
order 
US EPA 
LandGEM 
Dutch 
Multiphase 
Scholl Canyon 

Six landfills in 
South America 
and Europe 

0.014–
0.28 

68–102 
-3% to 
+1109% 

Willumsen 
and Terraza 
2007 

Comparison of 
landfill 
methane 
emission 
models: A case 
study 

NA 

US EPA 
LandGEM 
French 
ADEME UK 
GasSim IPCC 
Tier 2 

Four French 
landfills 

0.04–
0.50 

44–170 
−65% to 
+140% 

Ogor and 
Guerbois 
2005 

Landfill gas 
energy 
recovery: 
economic and 
environmental 
evaluation for 
a case study 

NA Scholl Canyon 
Casa Rota 
Landfill, 
Tuscan, Italy 

0.07–
0.36 

13–30 5% 
Corti et al. 
2007 

 
Most models use a first-order exponential decay equation for modeling methane 

generation from landfills, with a few modifications (Thompson et al. 2009). However, the model 

performance is dependent on the input parameters, which in case of first-order models are Lo 

and k values.  Hence it is crucial to accurately estimate the model parameters for achieving 

higher accuracy in model predictions. 
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2.4 Ultimate Methane Generation Potential (L0) 

The ultimate methane generation potential of a landfill depends primarily on the waste 

composition. IPCC’s model incorporates this effect by considering the degradable organic 

content of the waste. However, climatic factors such as rainfall also affect the amount of 

methane that can be generated from a landfill.  

Ultimate methane generation potential of a landfill can be evaluated using the 

stoichiometric analysis and Cellulose-Hemicellulose-Lignin data, or using laboratory analysis 

such as Biochemical Methane Potential (BMP) and laboratory simulations. 

2.4.1 Stoichiometric Analysis 

Cooper et al (1992) illustrated that the methane potential of waste can be determined 

using stoichiometric analysis of the waste components, using a general equation (Eq. 2-1). The 

equations below were derived using Eq. 2-1 for determining the amount of methane and carbon 

dioxide that can be generated using the stoichiometric analysis of waste. The elemental 

composition for MSW components suggested by Cooper et al. (1992) is not included here due to 

inconsistent units.  

The amount of methane that can be generation from any component can be calculated 

using Eqs. 2-13 and 2-14 (Cooper et al. 1992) 

     
 

               

 
 

     

    

 
 

   
                                       (2-13) 

 

     
 

               

 
 

     

    

 
 

   
                                       (2-14) 

 
The elemental analysis of waste components was reported by several authors 

(Tchobanoglous et al. 1993; Cho et al. 1995; Jeon et al. 2007; Shanmugam and Horan 2009; 
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Chiemchaisri et al. 2007). A comparison of the stoichiometric analysis of waste components is 

shown is Table 2.7.  

Table 2.7: Elemental Analysis of Waste Components Reported in the Literature 
 

Source 
Waste 
Component C H O N S 

Cho et al. (1995) 
  
  
  

Boiled Rice 40.9 7.5 50.0 1.6   

Cooked Meat 53.4 8.4 27.7 10.5   

Fresh Cabbage 39.9 5.4 50.6 4.1   

Mixed Korean 
Food Waste  51.2 7.8 37.8 3.2   

Jeon et al. (2007) 
  
  
  
  
  
  

Food Wastes 38.1 2.5 23     

Paper 38.7 5.5 43.9     

Plastics 79.4 13.5 3.3     

Wood 47.5 6.2 42.3     

Textile 52.9 5.6 40.5     

Rubber 68.1 7.8 5.3     

Leather 52.2 6 28.6     

Tchobanoglous et 
al. (1993) 
  
  
  
  
  
  
  
  
  
  
  

Food 48.0 6.4 37.6 2.6 0.4 

Paper 43.5 6 44 0.3 0.2 

Cardboard 44 5.9 44.6 0.3 0.2 

Plastics 60 7.2 22.8     

Textiles 55 6.6 31.2 4.6 0.15 

Rubber 78 10   2   

Leather 60 8 11.6 10 0.4 

Yard Wastes 47.8 6 38 3.4 0.3 

Wood 49.5 6 42.7 0.2 0.1 

Inorganic- Glass 0.5 0.1 0.4 <0.1   

Inorganic- Metals 4.5 0.6 4.3 <0.1   

Dirt, ash etc 26.3 3 2 0.5 0.2 

Shanmugham and 
Horan (2008) Bulk  MSW 

27.5 3.8 1.3 30.5 0.4 

Cheimchaisri et al. 
(2007) Bulk MSW 

44.7 5.1 29.37 1.0 0.05 

 
Jeon et al. (2007) determined the ultimate methane potential of waste components 

using stoichiometric analysis (See Table 2.7). The authors also attempted to find the ultimate 
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methane potential using Biochemical Methane Potential (BMP) analysis (explained in Section 

2.4.3). The difference between the stoichiometric methane potential and the BMP values was 

used to determine the extent of degradation. However, the stoichiometric analysis done by Jeon 

et al. (2007) did not include nitrogen and sulfur content of solid waste; hence, some of the 

values are not consistent with those reported in the literature.  

However, not all of the carbon present in the solid waste can be degraded under 

anaerobic conditions. Some carbon may be recalcitrant and will be stored in the landfill (Staley 

and Barlaz 2009). The amount of methane calculated from Eq. 2-13 needs to be corrected to the 

methane that can be generated under anaerobic conditions using a biodegradability factor (See 

Table 2.9). 

2.4.2 Determination of Cellulose, Hemicellulose and Lignin (C, H, L) 

Several researchers have attempted to find the ultimate methane potential of waste by 

finding the cellulose, hemicellulose and lignin content of the waste (Barlaz et al. 1990; Rees 

1980; Eleazer et al. 1997; Komilis and Ham 2003; Rao et al. 2000; Brenda et al. 1998; Jones et al. 

1983; Rhew and Barlaz 1995). Typical cellulose, hemicellulose and lignin content found in 

municipal solid waste components are shown below in Table 2.8.  

While lignin is assumed to be poorly degradable and is unaffected during biological 

degradation, cellulose and hemicellulose are easily degraded under anaerobic conditions. 

Hence, the ratio of cellulose and hemicelluloses to lignin ((C+H)/L ) is considered as an indicator 

of waste decomposition in landfills. It has been reported that the (C+H)/L ratio decreases as the 

waste age increases (Mehta et al. 2002; Barlaz 2006; Bookter and Ham 1982). The methane 

generated due to cellulose and hemicelluloses decomposition can be calculated using Eqs. 2-15 

and 2-16 (Barlaz 2006): 
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                                                                                                     (2-15) 

                                                                                                    (2-16) 

Table 2.8: Cellulose, Hemicellulose, and Lignin Content of Waste Components Reported in the 
Literature 

 

Waste Reference 
 

Cellulose Hemi-
cellulose 

Lignin Extent of 
decomposition 

Grass Eleazer et al. (1997) 26.5 10.2 28.4 94.3 

Komilis and Ham (2003) 39.67 16.89 17.63  

Leaves Eleazer et al. (1997) 15.3 10.5 43.8 28.3 

Komilis and Ham (2003) 9.48 3.24 33.88  

Branches Eleazer et al. (1997) 35.4 18.4 32.6 27.8 

Food waste Eleazer et al. 1997 55.4 7.2 11.4 84.1 

Komilis and Ham (2003) 46.09 0.0 12.03  

Coated paper Eleazer et al. (1997) 42.3 9.4 15 39.2 

Old 
newsprint 

Eleazer et al. (1997) 48.5 9 23.9 31.1 

Old 
corrugated 
containers 

Eleazer et al. (1997) 57.3 9.9 20.8 54.4 

Office paper Eleazer et al. (1997) 87.4 8.4 2.3 54.6 

Mixed paper Komilis and Ham (2003) 69.66 7.79 15.90  

MSW Eleazer et al. (1997) 28.8 9.0 23.1 58.4 

Barlaz (1990) 51.2 11.9 15.2  

Rao et al. 2002) 15.5 19.5 8.5  

Bookter and Ham 
(1982) 

42.4  10.9  

Brenda et. al (1998) 48.2 10.6 14.5  

Rhew & Barlaz (1995) 38.5 8.7 28.0  

Jones et al. (1983) 25.6 6.6 7.2  

    
Similar to the stoichiometric analysis, the methane calculated from C, H, L analysis also 

needs to be corrected using biodegradability factors (See Table 2.9). 

2.4.3 Biochemical Methane Potential (BMP) 

The third and the most commonly used method for finding ultimate methane potential 

(L0) is the Biochemical Methane Potential test. The BMP test relies on methane production from 
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an anaerobically degrading sample in a defined nutrient media as a measure of decomposition. 

The measured amount of ground solid waste sample, preferably passing through a 2 mm sieve, 

is allowed to degrade with a measured amount of inoculum (seed) and nutrient medium in an 

air-tight bottle for 30-60 days. Gas that accumulates in the headspace of the bottle is measured 

using gas chromatography. A detailed procedure for conducting BMP test and for preparing 

nutrient medium has been described in Shelton and Tiedje (1984). Bogner (1990) and Wang et 

al. (1994) suggested further modifications to the BMP procedure. Chynoweth et al. (1993) found 

that the BMP test results are sensitive to the particle size of solid waste, inoculum-to-feed ratio, 

and the nutrient medium used for the test.  Hansen et al. (2007) and Angelidaki et al. (2009) 

have suggested standard protocols for BMP tests to avoid such variability.  

Owens and Chynoweth (1992) determined methane potential for waste components 

using the BMP method.  The rate of degradation of waste components (k value) was also 

determined in this study.  However conditions in a BMP assay are different compared to an 

actual landfill. Hence, the k values obtained from BMP tests cannot be used for landfill decay.  

The BMP assay has been used by several researchers for finding the ultimate methane potential 

of solid waste components. Gunaseelan (2004) found ultimate methane potential of 54 fruits 

and vegetables for using the BMP test. Chynoweth et al. (1993) attempted to find the ultimate 

methane potential of mixed MSW and MSW components such as yard waste, vegetable waste, 

grass, seaweeds, wood etc.  Jeon et al. (2007) used the BMP test for finding ultimate methane 

potential of Korean waste and food waste components. Isci and Demirer (2007) found the 

methane potential of cotton stocks, cotton seed hull and cotton oil cake to be 65, 86 and 78 mL 

CH4/g of waste, respectively. The ultimate methane potentials reported by these researchers are 

compiled in Figure 2.2 and 2.3.  
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In addition, the BMP is also used as an indicator of biodegradation. Francois et al. (2006) 

found that the BMP of old waste is less than the BMP of fresh waste.  Wang et al. (1994) also 

observed that the BMP reduces as the waste age increases, suggesting that the BMP test can be 

used as an measure of remaining methane potential of old waste. Bigilli et al. (2009) used the 

BMP test to determine the initial and remaining methane potentials of solid waste during the 

operation of two pilot scale lab reactors which were operated with leachate recirculation and 

without leachate recirculation. The initial methane potential of solid waste was 0.347 L of CH4/g 

of dry waste, and the final methane potentials of degraded solid waste samples obtained from 

leachate recirculated and non-recirculated reactors were 0.117 and 0.154 L of CH4/g of dry 

waste, respectively.  

2.4.4 Laboratory Scale Landfill Simulations 

Eleazer et al. (1997) demonstrated that simulated landfill bioreactors can be used for 

finding the ultimate methane potential of waste components in a landfill. Eleazer et al. (1997) 

studied the biodegradability of waste components including grass, leaves, branches, food waste, 

coated paper, old newsprint paper, old corrugated containers, office paper and mixed MSW in 

2-litre simulated landfill bioreactors. These reactors were operated under conditions suitable for 

biodegradation (test temperature = 40oC, leachate was neutralized and recirculated and the 

waste was shredded) until the methane generation dropped to a low constant value. Although 

the ultimate methane potential values reported by Eleazer et al. (1997) gave a realistic estimate 

of the extent of degradation of waste components in a bioreactor landfill, the duration for this 

kind of test was very long. Moreover, this study did not consider the effect of temperature and 

moisture on the L0. The ultimate methane potential values reported by Eleazer et al. (1997) are 

combined with BMP results and are shown in Figure 2.2 and 2.3.  
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(a)                                                                                                                        (b) 
 

                  NOTE: 1- BMP values are converted in mL/g of VS to get consistent units. Conversions are done using Volatile Solids values reported in the paper. 

                         
Figure 2.2: Ultimate Methane Potential using BMP and Lab-Scale Simulations for (a) Food Waste, (b) Paper Waste. 
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      (a)                                                                                                                         (b)    
NOTE: 1- BMP values are converted in mL/g of VS to get consistent units. Conversions are done using Volatile Solids values reported in the paper. 

       2- BMP for textile waste is represented in mL of CH4/g of dry waste, because the Volatile Solids value was not available in some papers 

 
Figure 2.3: Ultimate Methane Potential using BMP and Lab-Scale Simulations for (a) Yard Waste, and (b) Textile Waste 
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2.4.5 Comparison of Methods for Determining Ultimate Methane Potential 

While the stoichiometric analysis method and C, H, L determination methods are faster, 

they often yield very high methane potential values, because methane potential calculated from 

these methods assumes that the entire carbon would be converted to methane. However, the 

extent of carbon conversion to methane under anaerobic conditions is limited; hence, the 

biodegradation factors need to be incorporated in each case to account for the recalcitrant 

carbon. Barlaz et al. (1997) and Jeon et al. (2007) reported the difference between the 

stoichiometrically calculated methane potential and BMP values. The ratio of methane potential 

obtained from BMP (or from lab scale studies) to the methane potential calculated using the 

stoichiometric or C, H, L analysis was reported as the biodegradability factor (Jeon et al. 2007; 

Barlaz et al. 1997). 

 Machado et al. (2009) performed a literature review of the biodegradability factors 

reported by different researchers. The biodegradability factors reported by Machado et al. 

(2009) and Jeon et al. (2007) are tabulated in Table 2.9. 

   It must be noted that the biodegradation factors were computed by researchers using 

lab scale anaerobic degradation studies (e.g. BMP, lab scale simulated landfills), thereby creating 

“ideal” conditions for biodegradation through shredding, controlling pH or by optimizing C/N 

ratio. Using these factors can help to compute the maximum amount of methane that can be 

generated from solid waste under anaerobic conditions.  However, in practice the actual 

conditions may differ from the ideal conditions and hence an uncertainty in modeling efficiency 

is introduced. 

While BMP tests provide the best guess for the ultimate methane potential of the solid 

waste, the tests are time-consuming and require 30-60 days for completion. Moreover, given 
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the heterogeneity of solid waste, it is very difficult to obtain a “representative sample” of solid 

waste.  Hence, multiple samples need to be analyzed to gain an estimate of the ultimate 

methane potential of waste.   Researchers have attempted to study the relationship between 

other faster and simpler methods (such as cellulose, hemicellulose, lignin, volatile solids, and 

total carbon) and BMP of solid waste samples.  

Table 2.9: Biodegradability factors Reported in the Literature (adopted from Machado et al. 
(2009) and Jeon et al. (2007) 

 

Source Paper 
Card- 
board 

Food 
waste 

Garden 
Waste 

Wood Textiles Plastics 

Tchobanoglous et 
al. (1993) and 
Bonori et al. (2001) 0.44 0.38 0.58 0.45 0.61 0.4  

Barlaz et al. (1997) 
0.19-
0.56 0.39 0.7 

0.70-
0.34 0.14   

Harries et al. (2001) 
0.30-
0.40 0.44  

0.20-
0.51 

0.30-
0.33 

0.17-
0.25  

Lobo (2003) - 
adopted 0.4 0.41 0.64 0.35 0.17 0.32  

Jeon et al (2007) -
adopted for 
stoichiometric 
analysis 0.69  0.68  0.43 0.45 0.06 

 
Wang et al. (1994) attempted to correlate (C+H)/L content of 10 samples collected from 

a Berkeley, California landfill with BMP measured in the lab. The authors found that the data 

had a low R2 value (0.67), indicating that cellulose and hemicellulose is not well correlated with 

measured BMP.  Eleazer et al. (1997) assessed the ultimate methane potential of MSW 

components in 2 litre reactors. They observed that the cellulose and hemicelluloses were not 

well correlated with methane production (R2=0.49). 

However, some studies contradict with the above results. Godley et al. (2005) carried 

out a review of different methods used for estimating biodegradability of wastes. The different 
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methods studied included biological and non-biological tests such as  Dry Matter (DM), Loss on 

Ignition (LOI), Total Organic Carbon (TOC), Total Nitrogen (TN), cellulose, lignin, water- 

extractable dissolved organic carbon, chemical oxygen demand, biochemical oxygen demand, 

dynamic respiration index (DRI), specific oxygen uptake ratio (SOUR), BMP and cellulose 

hydrolysis method.  It was found that cellulose and hemicelluloses tests provided useful 

information on waste composition but were not reliable indicators of waste biodegradability, 

because experiments with certain waste materials, e.g. wool gave unreasonable C/L ratio. In 

contrast, Ivanova et al. (2008) found that (C+H)/L was well correlated with BMP (R2 = 0.84), and 

concluded that the cellulose and hemicellulose data for fresh MSW could be a valuable indicator 

of its biodegradability.  

Shanmugham and Horan (2009) suggested that stoichiometric methane potential (SMP) 

together with Adenosine triphosphate can be used as an indicator for BMP of solid waste. 

Francois et al. (2006) studied the correlation between physical characteristics of waste (particle 

size and composition) and chemical characteristics (organic matter, organic carbon, and 

nitrogen content) as indicators of the methane potential of stabilized waste. They reported good 

correlation between BMP of degraded waste (stabilized waste) and paper cardboard (PC) 

content of the waste (R2 = 0.91).  

To summarize, studies correlating short term chemical analysis test with BMP test 

results have been inconclusive. Hence BMP, although time-consuming, is considered as the most 

reliable estimate of the ultimate methane potential of waste (L0) (Wang et al. 1994; Francois et 

al. 2006; Godley et al. 2003; Kelly et al. 2006).  

However, BMP of a solid waste sample provides the maximum amount of methane that 

can be produced if the waste is allowed to decompose in a landfill. The conditions in the BMP 
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test are optimal for methanogenesis (shredded waste, presence of macro and micro nutrients, 

controlled pH, optimum availability of microorganisms), while conditions in a landfill are mostly 

not optimum for growth. 

The ultimate methane potential of a landfill (L0) is affected by the moisture content 

(rainfall). IPCC mentions that L0 is dependent on moisture, but fails to account for the rainfall 

effect on L0. LandGEM ignores the effect of moisture on Lo values. Kamalan et al. (2011) 

performed a review of landfill gas models used worldwide, and found that only a couple of 

models suggest default values for L0 with respect to moisture. BMP and all other techniques 

described above in this section ignore the effect of moisture and temperature on L0. 

2.5 Rate of Degradation (k value) 

The rate of degradation of solid waste in landfills depends on waste composition, waste 

particle size, moisture, ambient temperature, and pH (Barlaz et al. 1990). As the k value 

increases, the methane generation rate from landfills increases. Alternative term used to denote 

the rate of degradation is half life (t1/2), which is the amount of time required for the degradable 

organic matter in waste to decay to half of its initial mass. The relationship between k and t1/2 is 

given in Eq. 2-17. 

  
      

    
                                                                                                                       (2-17) 

 
The defaults for k values suggested by LandGEM and IPCC are shown in Tables 2.3 and 

2.4, respectively. In this section the factors affecting rate of degradation (k value) and the 

methods of determination of k value are discussed. 
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2.5.1 Factors Affecting Methane Generation Rate in Landfills 

Waste composition, waste particle size, moisture content, ambient temperature, and pH 

have been observed to impact methane production rates, and thus need to be accounted for in 

methane generation models (Barlaz et al. 1990). pH inside a landfill is typically unknown, and 

hence is not included in landfill gas generation models (Stege 2009).  Reduction in particle size 

has been found to be favorable for methane generation from landfills. Shredded and well-mixed 

refuse is expected to permit greater contact to moisture and microorganisms. However, 

shredding of waste is seldom applied for landfills, and hence is also excluded while modeling. 

The key parameters that affect the methane generation rate constant (k value) are thus waste 

composition, moisture and temperature. 

2.5.1.1 Waste Composition 

Waste composition changes with geographical location, depending on economic 

conditions, lifestyle, industrial structure and waste management techniques. Guermond et al. 

(2009) compiled the waste composition information published for various countries (See Table 

2.10).   

Table 2.10: Waste Composition Found in Different Countries  
(Adopted from Guermond et al. (2009)) 

 

Country City Organic Matter Cardboard Plastics Metals Glass 

Morocco Agadir 65-70 18 2-3 5.6 0.5-1 

Jordan Amman 63 11 16 2 2 

Turkey Istanbul 36.1 11.2 3.1 4.6 1.2 

Tunisia Tunis 68 11 7 4 2 

Mauritania Nouakchott 48 6.3 20 4.2 4 

Guinea Labe 69 4.1 22.8 (+textile) 1.4 0.3 

France Paris 28.8 25.3 11.1 4.1 13.1 

Portugal  35.5 25.9 11.5 2.6 5.4 

Greece Palermo 31.7 23.1 11.8 2.7 8.3 

Canada Toronto 30.2 29.6 20.3 2.1 2 
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It is evident from Table 2.10, that the percent of organic matter in waste is higher in 

developing nations than developed nations (Guermoud et al. 2009). 

The waste composition also changes over time due to changes in waste management 

practices, and the economic development of the region. The change in waste composition found 

in the U.S. over the last few decades is shown below (See Figure 2.4). 

 

Figure 2.4: Change in Waste Composition in the U.S. 

The amount of methane generated from a landfill depends on the organic content of 

the waste. Further, different types of waste degrade at different rates. Hence, the rate at which 

methane is generated from landfills also depends on the waste composition. 

Owens and Chynoweth (1992) and Chynoweth et al. (1993) evaluated L0 and k of various 

waste components using the Biochemical Methane Potential (BMP) test. While the BMP method 
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is a reliable test for finding the ultimate methane potential L0, the conditions in a BMP reactor 

cannot be considered truly representative of conditions in a landfill; hence, the k estimates are 

not realistic and cannot be applied in a landfill scenario. However, the Owens and Chynoweth 

(1992) study is helpful for understanding the relative rates of degradation of different waste 

components.   

Tchobanoglous et al. (1993) divided waste components into 2 categories (rapidly-

degrading, and slowly-degrading). Cooper et al. (1992) conducted a review of the rates of 

degradation used for different waste components, and additionally went a step further by 

defining a category of moderately-degrading wastes to be considered in multiphase models (See 

Table 2.11). 

Table 2.11: Relative Degradation Rates for Waste Components 
(Source: Cooper et al. 1992) 

 

MSW 
Component 

Findikakis 
(1988) 

Tchobanoglous 
(1992) 

EMCON 
(1982) 

Ham 
(1979) 

EMCON Cooper 
et. al. 
(1992) 

Food R R R R R R 

Paper M R M M M R,M,S 

Cardboard M R M M M S 

Plastics S    S S 

Textiles S S M  M S 

Rubber  S   S S 

Leather S S    S 

Yard Waste M R,S R M R M,S 

Wood S S M M M S 

Mic. 
Organics 

 S     

 
US EPA’s Landfill Methane Outreach Program (LMOP) in conjunction with U.S. Agency 

for International Development has developed model parameters (L0 and k) for countries such as 

China, Colombia, Ecuador, Mexico, Philippines, Thailand, Ukraine, and for countries in Central 

America.  The model parameters were developed by working with each country to gather data 
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to develop L0 and k values. Out of the 8 landfill models developed under the LMOP program, 

models for 3 countries (namely Columbia, Mexico and Ukraine) divided the waste in 4 

categories; L0 and k values were suggested for each category. However, LMOP uses the 

equations suggested by LandGEM for computing the methane generation rates from the 

landfills. As mentioned earlier (See Section 2.3.1), LandGEM uses a simple first-order decay 

equation and thereby assumes that the waste is homogenous. The provision of including 

different waste degradation rates for different waste components is not included in LandGEM. 

Hence, the total landfill methane generation rate is calculated as the sum of methane generated 

by each waste category. This approach assumes that the individual waste components do not 

affect each other’s degradation. Moreover, the process of finding field specific L0 and k values 

for individual countries is time consuming (Stege 2009). The degradation rates suggested by 

LMOP for waste components are compared against the default k’s recommended by IPCC and 

are shown in Table 2.13. 

Oonk and Boom (1995) attempted to find the model parameters for a multiphase model 

for waste using data from nine Dutch landfills. The waste was divided into 3 categories; rapidly, 

moderately and slowly degrading wastes. The values for k were determined by trial and error 

method using SAS. The values suggested by Oonk and Boom (1995) are krapid= 0.185 yr-1, kmoderate 

=0.1 yr-1, and kslow = 0.03 yr-1. 

IPCC (2006) suggested default k values for the multiphase model for 4 different waste 

categories: rapidly, moderately and slowly degrading waste (See Table 2.13). As mentioned 

earlier in Section2.3.2, IPCC mentions that the information for k values for tropical conditions is 

limited, and default values were suggested based on the assumptions and values obtained from 

the studies conducted temperate conditions. 
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Cruz and Barlaz (2010) attempted to find k for different waste components based on an 

earlier published work by Eleazar et al. (1997). Laboratory scale k values were computed for 7 

waste components based on the rates of degradation observed in 2 liter capacity laboratory 

scale bioreactors operated at conditions suitable for enhanced degradation. A k value for 

combined waste was computed using a weighted average.  Further, the k values for combined 

waste from lab studies were scaled to match the values recommended by USEPA (2005) for field 

scale k values. A scaling factor (f) was computed for each waste component using the field scale 

k values. The lab scale and field scale k values for waste components and scaling factor (f) 

computed by the authors is shown in Table 2.12. The authors observed that the field scale k 

values for waste components used in this study are applicable only if the kfield value of combined 

waste is known. Secondly, this study assumes that the waste components do not influence each 

other’s degradation. In addition, this study does not incorporate the effect of moisture and 

temperature on the rates of degradation, since the lab scale study was conducted on 

bioreactors with leachate recirculation at 37oC. Hence, the values computed in this study have 

significant uncertainty (Eleazer et al. 1997; Cruz and Barlaz 2010). 

A number of studies have developed k values for mixed waste, but not as functions of 

waste composition, and hence have not been included in the discussion here (Oonk and Boom 

1995a; Brown et al. 1999; Solid Waste Association of North America 1998). It is evident from 

Tables 2.11 and 2.13 that the method of combining waste categories for gas modeling is not 

clear. There is a lot of variation in k values for each category; hence studies for estimating k 

values as functions of waste composition are needed, particularly as functions of 

rainfall/moisture content and ambient temperature.   
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Table 2.12: Lab Scale and Field Scale k Values Reported by Cruz and Barlaz (2010) 

 
 

A number of studies have developed k values for mixed waste, but not as functions of 

waste composition, and hence have not been included in the discussion here (Oonk and Boom 

1995a; Brown et al. 1999; Solid Waste Association of North America 1998). It is evident from 

Tables 2.10 and 2.11 that the method of combining waste categories for gas modeling is not 

clear. There is a lot of variation in k values for each category; hence studies for estimating k 

values as functions of waste composition are needed, particularly as functions of 

rainfall/moisture content and ambient temperature.   

2.5.1.2 Moisture Content  

A number of studies have confirmed that methane generation rate increases with an 

increase in waste moisture content (Barlaz et al. 1990; Mehta et al. 2002; Wreford et al. 2000; 

Alvarez and Martinez-Viturtia 1986; Chan et al. 2002; Lay et al. 1998). This may be due to 

increased contact between microbes and waste, as well as mobilization of nutrients, buffer and 

dilution of inhibitors. Lab scale studies concluded that leachate recirculation and neutralization 
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can be beneficial for methane generation, since it not only helps in distributing the nutrients, 

but also facilitates faster degradation due to dilution of carboxylic acids which accumulate at the 

end of phase one (See Section 2.1.2) (Barlaz et al. 1990; Rees 1980; Buivid et al. 1981; Sanphoti 

et al. 2006). 

Faruquhar and Rovers (1973) conducted a critical review of the factors affecting 

methane generation in landfills, and found that maximum methane production was reported at 

moisture contents of 60% to 80% on wet weight basis.  Rees (1980) plotted the methane 

generation and moisture content data published in research papers and found that the log of 

methane generation rate produced from landfills is directly proportional to the moisture 

content (See Figure 2.5a). 

Solid Waste Association of North America (SWANA) (1997) also developed a curve of 

methane generation rate vs. moisture content of waste and observed a linear relationship 

between log of methane generation rate and moisture content of waste until the waste reaches 

saturation limit. However, thereafter methane generation rate is assumed to be constant, 

irrespective of the moisture content of waste. Although the graphs presented in SWANA (1997) 

and Rees (1980) are useful for calculating a relationship between methane generation rate (or 

rate constant k) with moisture content of waste,  they were based on data from different 

landfills with different mixtures of waste, and are thus not useful for predicting methane 

generation as a function of waste composition (See Figure 2.5b). 
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(a)                                                                                      (b) 

Figure 2.5: Plots of Moisture Content vs. Methane Generation Rate by (a) Rees (1980) and (b) 
SWANA (1998) 

  
However, some studies contradict the relationship presented by SWANA (1998). 

Hernandez-Berriel et al. (2008) studied the effect of moisture content of solid waste on 

methane generation rate using 6 columns of 14.5 L each.  Water addition was done to simulate 

rainfall such that the moisture content of waste was maintained at 70% and 80%, respectively. 

The authors found that the methane generation rate was higher in reactors with 70% moisture 

content than in the reactors with 80% moisture content. Further, Hernandez-Berriel et al. (2010) 

studied the effect of various moisture regimes on the methane generation rate and leachate 

characteristics on laboratory scale bioreactors operated with leachate recycle. Four moisture 

content regimes were studied with 50%, 60%, 70% and 80% moisture content, respectively. It 

was found that the methane generation rate increased as the moisture content increased from 

50% to 70%, with 70% moisture content producing the maximum amount of methane. However, 
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the methane generation rate dropped in the 80% moisture content reactor, presumably due to 

washout of nutrients.  

Filipkowska and Agopsowicz (2004) also studied the effect of different water conditions 

on methane generation rate. 6 laboratory scale lysimeters were used at different rates of water 

addition, as well as variable rates of leachate recirculation. It was observed that the methane 

generation rate increased with increase in moisture content; however, when the reactor was 

flooded with water, the methane generation rate dropped sharply due to flooding.  

It is evident from these lab scale studies that there may be optimum moisture content 

above which adding water may actually hinder methane generation, unlike what was suggested 

by SWANA (1997). However, it must be noted that the type of waste considered in Hernandez-

Berriel et al. (2008) and Hernandez-Berriel et al. (2010) is quite different than the type of waste 

considered in the studies summarized by SWANA (1997): while the former used Mexican waste 

with higher food and yard waste, the latter used US waste with a higher percentage of paper 

waste. Paper being water absorbent and moderately-degrading waste, it is likely that the 

increase in moisture content may increase the methane generation rate. Hence it is important 

to find a relationship between methane generation rate constant with moisture content along 

with waste composition to see if any such interactions exists.   

IPCC (2006), Stege (2009) and Stege (2010) have recommended default values for k 

values for different rainfall rates as well as different waste components based on the rainfall in 

the region (See Table 2.13). U.S. EPA considers rainfall effect implicitly by considering 2 regions 

with rainfall > 25 mm/yr and rainfall < 25 mm/yr for default k’s (See Table 2.3). However, a 

conclusive relationship has not yet been reported. 
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Table 2.13: Comparison of Default k Values Suggested in Different Multiphase Models

Source Rainfall Waste Components 

Food 20% 
Diapers 

Toilet 
Paper 

Garden 
waste 
green) 

Paper Card 
board 

Textile Wood Straw Rubber 

Stege (2009), 
M2M for 
Ukraine 

 Fast  Medium 
Fast 

Medium Slow Slowly 

360-429 mm/yr 0.11  0.055 0.022 0.011 

430 - 499 mm/yr 0.12  0.06 0.024 0.012 

500 -599 mm/yr 0.14  0.07 0.028 0.014 

600 -699 mm/yr 0.15  0.075 0.03 0.015 

Stege (2010), 
M2M for 
Columbia 

 Fast Medium Fast Medium Slow Slowly 

> 2000 mm/yr 0.4 0.17 0.07 0.035 

1500-1999 mm/yr 0.34 0.15 0.06 0.03 

1000-1499 mm/yr 0.26 0.12 0.048 0.024 

500-999 mm/yr 0.18 0.09 0.036 0.018 

< 500 mm/yr 0.1 0.05 0.02 0.01 

IPCC (2006)  Fast   Moderate Slow Slow  

Temperate Region 
MAP/PET < 1 

0.05-
0.05 

  0.04-0.06 0.03-0.05 0.01-0.03  

Temperate Region 
MAP/PET > 1 

0.1-
0.2 

  0.06-0.1 0.05-0.07 0.02-0.04  

Tropical Region 
(MAP < 1000) 

0.07-
0.1 

  0.05-0.08 0.02-0.04 0.02-0.04  

Tropical Region 
(MAP >1000) 

0.17-
0.7 

  0.15-0.2 0.06-0.085 0.03-0.05  
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Few field scale studies have also confirmed that increase in moisture content of waste 

(through leachate recirculation) can help to increase the methane generation rate. Mehta et al. 

(2002) studied the effect of leachate recirculation on methane generation on two 8000 metric 

ton test cells and found the moisture content in the test cell with leachate recirculation was 

higher (38.8, 31.7 and 34.8%) than that without leachate recirculation (14.6, 19.2%). Also the 

methane generation rate in test cells with leachate recirculation was also higher than that 

without leachate recirculation.  

Wreford et al. (2000) studied the effect of precipitation on methane generation rate and 

gas composition at the Burns Bog Landfill in Vancouver, Canada. It was found that the methane 

generation rate well correlated with the 14 day precipitation episode with a R2 = 0.88. Gurijala 

and Sufilta (1993) obtained samples from the Fresh Kills Landfill and incubated them in 

laboratory scale reactors. Higher endogenous methane generation rates were observed from 

samples with higher moisture content. Further, supplemental moisture addition led to higher 

methane generation rates.  

Wang-Yao et al. (2006) studied the effect of moisture movement on methane 

generation rate from 3 sanitary landfills and 4 open dumps in Thailand. Thailand being a tropical 

country, there was considerable difference in the moisture movement during the wet season as 

compared to the dry season. The authors found significantly higher methane flux during wet 

months than in dry months. The authors used the field scale methane data for compute k values 

using USEPA’s LandGEM. The k values computed by the authors are shown in Table 2.14.  
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Table 2.14: Change in k Values According to the Wet and Dry Season in Thailand 
(Source: Wang-Yao et al., 2006) 

 

Site Landfilling Condition k- wet season (yr-1) k dry season (yr-1) 

Pattaya Managed Deep 0.192 0.020 

Cha-Am Managed-Shallow 0.040 0.005 

Nakomprathom Unmanaged-Deep 0.005 0.002 

Hua-Hin Managed-Deep 0.138 0.016 

Nontaburi Unmanaged-Deep 0.0003 0.0001 

Rayound Unmanaged-Shallow 0.013 0.004 

Samutprakan Unmanaged- Deep 0.013 0.001 

 
Barlaz et al. (2010) studied the performance of 5 bioreactor landfills in the US. The 

authors observed that the methane generation rate increases as the amount of moisture added 

to waste increases. k values ranging from 0.08-0.21 yr-1 were found in this study, as compared to 

AP-42’s recommended k value of 0.04 yr-1. The authors found a good correlation (R2 =0.66) 

between k and the water added in the horizontal trenches during filling. However, the 

correlation between k and moisture content of the waste was not significant, and hence a 

definite relationship could not be developed.  

Faour et al. (2007) attempted to find k values for wet landfills based on data from 29 

operating bioreactor landfills. This study concluded that a conservative value of k =0.3 yr-1 would 

be reasonable and conservative for bioreactor landfills. However, the model is sensitive to 

moisture, temperature within the landfill and capture efficiency, which are often difficult to 

obtain.  

It is evident that landfill scale studies confirmed the results obtained from lab scale 

studies: that the increase in moisture content of waste through leachate recirculation increased 

the methane generation rate from landfills, and resulted in higher k values than traditional 

landfills. However, a definite relationship between moisture content and k values has not been 

reported. Moreover, these k values were dependent on the type of waste in landfills. Hence, the 
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k value used for a landfill in Thailand for particular moisture content cannot be used for a landfill 

in the United States.  Studies that quantitatively predict methane generation as a function of 

rainfall/moisture content, however, are lacking, particularly as functions of waste composition.  

Gurijala et al. (1997) tried to develop a regression equation based on factors that 

influence landfill methane generation rate, using various samples collected at the Fresh Kills 

landfill. This research provided a statistical relationship of moisture content with methane 

generation rate for mixed waste, but not as a function of waste composition (Gurijala et al. 

1997).  

Moisture content of landfilled waste depends on initial moisture content of fresh solid 

waste, evaporation rates (functions of temperature and relative humidity), and annual rainfall. 

Moisture content of fresh solid waste ranges between 15-40% in the United States. Developing 

countries like India, Bangladesh and China have reported higher values of moisture content for 

fresh MSW, which may be due to the higher percentage of food in the waste (Taufiq, 2010). The 

temperature, relative humidity and annual rainfall further affect the moisture content of the 

waste in a landfill. The rainfall continuously keeps percolating through the intermediate 

temporary soil cover until the final cover of the landfill is in place. The water movement through 

landfilled waste mainly depends on the compaction of the waste. Buivid et al. (1981) showed 

that the moisture content of landfilled waste decreases with increase in level of compaction. 

Thus it is difficult to accurately predict the moisture content of waste within a landfill. Hence 

this study considers annual average rainfall (instead of moisture content of waste) as a 

parameter for predicting methane generation rate constant k.  
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2.5.1.3 Ambient Temperature 

Most microbial processes are affected by temperature. Higher temperatures increase 

microbial activity, which boosts methane generation rates. Anaerobic degradation is considered 

to be an exothermic reaction, although the heat generated during anaerobic degradation is only 

7% of that generated during aerobic degradation. Hence the temperature in a landfill is 

expected to be higher than the atmospheric temperature (Christensen and Kjeldsen 1989; Rees 

1980; Bingemer and Crutzen 1987). 

Faruquhar and Rovers (1973) found that the temperature of waste inside a landfill 

primarily depends on the temperature at which the waste was placed and also on the landfill 

management practices. The temperature is often found to be higher in the landfills if the 

aerobic phase was extended due to air leaks (or poor compaction) or if there was excessive 

moisture movement in the landfill. Attal et al. (1992) studied the temperature variation from 

borehole samples collected from Villeparisis technical landfill, France, where the waste age was 

about 6-8 years. It was found that the temperature inside the landfill increased steadily from 

26oC to 50oC as the depth increased from 2 to 10 m. After 10 m to about 50 m below the ground 

level, the temperature within the landfill was found to stable at around 50oC. Chiampo et al. 

(1996) also conducted a similar study based on borehole samples collected from an Italian 

landfill. It was found that the temperature increased from 15oC to 50oC in the upper 6 meters of 

waste and thereafter was constant at between 50-60oC. Jones et al. (1983) also found a similar 

temperature distribution at Aveley landfill, UK. The waste temperature stabilized at 40-50oC 6 m 

below the ground level.  Maurice et al (1997) studied temperature variation in solid waste test 

cell for a period of 1 year, and found that the waste temperature is often higher than the 

ambient temperature and varies only ±1oC over the winter and summer period.  



 

52 

 

While Attal et al. (1992), Chiampo et al. (1996) and Jones et al. (1983) study results were 

based on one time sampling events, Maurice (1997) included long term temperature 

measurement at relatively low depths.  

Yesiller et al. (2003) studied the spatial distribution of temperature over time in a landfill 

located in Michigan, US.  The authors concluded that temperature of waste is significantly 

affected by seasonal variations, placement of waste, age of waste, depth and location of waste 

together with available moisture. The waste temperature was observed to increase due to 

leachate recirculation.  

Hansen et al. (2005) studied long term spatial and temporal variation in temperature in 

landfilled waste located in Alaska, British Columbia, Michigan and New Mexico. The authors 

recorded the highest temperature at the central location within the landfill and lower 

temperatures were observed above and below the central zone. The authors found that the 

temperatures were affected by the temperature during placement of the waste. Waste 

temperature was also affected by waste age. During the first few years after waste placement 

(0-10 yrs), temperature increased rapidly; however, thereafter it reduced and stabilized. Time-

averaged waste temperature ranges were 0.9-33.0oC for Alaska, 14.4-49.2oC for British 

Columbia, 14.8-55.6oC Michigan, and 20.5-33.6oC for New Mexico. The highest temperature 

fluctuations were found in Michigan due to high precipitation/ moisture content, whereas lower 

temperature variation was found in New Mexico was due to dry climatic conditions.  

It can be concluded that it is extremely difficult to guess the temperature within a 

landfill, which is affected by a number of factors such as waste age, depth, proximity to the 

landfill’s edges, temperature during placement, and moisture content.  However, the 

temperature acts as both a stimulator and response to biodegradation. The higher temperature 
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measurements observed in the landfills may be due to the presence of anaerobic 

microorganisms. It is, however, crucial to study the effect of temperature increase on the rate of 

biodegradation, and whether temperature together with moisture affects the rate of 

biodegradation. 

Laboratory scale studies observed that the methane production rate increases when the 

temperature is raised from 20 to 30 and 40oC (Christensen and Kjeldsen 1989). Significant 

reduction in methane generation was observed with temperature less than 20oC and greater 

than 70oC (Tchobanoglous et al. 1993). Buivid et al. (1981) also studied the effect of 

temperature on waste degradation in laboratory scale landfill reactors. Three temperatures 

were chosen, 25oC, 37oC and 60oC. The authors reported that 37oC was the most favorable 

temperature for enhanced methane generation.  

Alvarez and Martinez-Viturtia (1982) conducted lab scale studies on Spanish waste with 

leachate recycle at 5 different temperatures (30, 34, 38, 44, and 46oC). The authors concluded 

that the optimum ambient temperatures for methane production to be between 36- 38oC.  In 

addition, Arrehnius’s equation was used to determine the effect of temperature on waste 

degradation in this study. Activation energy (Ea) = 13.27 kcal/mole was reported; however, this 

value was computed using saturation kinetics instead of first-order degradation kinetics (Alvarez 

and Martinez-Viturtia 1986; Hartz et al. 1982). El-Fadel et al. (1995) developed a model to 

predict methane generation rate from landfills based on temperature. However this model 

incorporated the Monod’s kinetics for the model development (El-Fadel 1999). 

Thus, it can be inferred from the studies mentioned above that there may be an 

optimum temperature for methane generation from landfills. SWANA (1998) developed a curve 

of k vs.1/T (See Figure 2.6); it was, however, developed from data from different landfills with 
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different mixtures of waste, and is thus not useful for predicting methane generation as a 

function of waste composition (Solid Waste Association of North America 1998).  

 
Figure 2.6: Plot of Temperature vs. k Value Reported by SWANA (1997) 

 
IPCC (2006) suggests k values for different waste components based on the climatic 

conditions of MAP/PET ratio. However, a definite relationship between k values and waste 

composition, combined with moisture and temperature has not yet been reported.  

Another factor that is often considered for predicting methane generation from landfills 

is ambient pressure. However, ambient pressure is mainly responsible for gas transport rather 

than methane generation unlike waste composition, temperature and moisture content.  Spokas 

et al. (2009) have developed a field validated methodology for predicting methane generation 

from landfills, which was based on diffusion based equations which help predicting methane 

transport due to pressure gradient between landfill and the atmosphere.  
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2.5.2 Methods for Determining First Order k Values for Landfills 

Several studies were performed in lab scale landfills as well on field scale landfill data to 

find the k values. This section gives a brief overview of the computations methods and 

equations used in literature for determining the first-order decay rate constant. 

Faour et al. (2007) used actual landfill scale data obtained from 29 wet landfills across 

the US. The following equation was used for curve fitting.  

               
                                                                                           (2-18) 

 

where Vs = specific cumulative methane volume (m3/mg), and L0 = Ultimate Methane Potential 

(m3/mg). The authors found the model parameters using regression analysis with SAS employing 

the Gauss-Newton Method. The lag time was ignored while computing k values; however, 

during the lag phases, certain amounts of methane are produced. The cumulative methane 

produced during the lag phase (Vstorage) was also determined.  

Owens and Chynoweth (1993) found L0 and k values using BMP data. Although the k 

values used in this study are not realistic, the method used for finding was Non-Linear 

Regression fit using Marquardt-Levenberg algorithm in SigmaPlot 4.0.  

Tolaymat et al. (2010) used landfill gas emissions from 2 bioreactor landfill cells and one 

conventional for modeling methane.  L0
 was determined using BMP, and was found to be 48.4 

m3/wet Mg. A decay rate of 0.06 yr-1 was found for the conventional landfill and 0.11 yr-1 was 

found for the bioreactor landfill. k was estimated by optimizing the LandGEM equation using 

statistical software package R.  The following equation was used for optimization, which 

primarily depended on minimization on sum of squared errors using a quasi-Newton method.  
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where Qm = Amount of methane measured from the landfills during any particular year. This 

paper does not specifically mentions how the initial lag period was treated (Tolaymat et al. 

2010). 

Cruz and Barlaz (2010) used laboratory data previously published by Eleazer et al. (1997) 

for determining lab scale k’s. klab were computed for waste components using the first order 

decay equation as shown in Eqs. 2-20 to 2-23. 

  

  
                                                                                                                                    (2-20) 

  
 

  
                                                                                                                                  (2-21) 

                                                                                                                      (2-22) 

                                                                                                        (2-23) 

where, m = mass of reactive carbon remaining, kg;  

m0 = Initial mass of reactive carbon in the waste computed using the measured methane yield, 

kg; mCH4 and mCO2= Mass of methane generated from the waste, kg; k = first-order decay rate 

constant, yr-1; t= time, yr.   

The authors used Simple Linear Regression (SLR) for curve fitting.  It is also important to 

note that the authors ignored the initial lag time for computing k’s and lag times were removed 

since the equation was expected to be used in LandGEM. Also, carbon lost as COD in leachate 

was not accounted for because the lab scale reactors were bioreactors (leachate was 

recirculated). 

Bigilli et al. (2009) used lab scale reactors with and without leachate recirculation for 

finding k values. Samples were withdrawn from the reactors every 100 days for a reactor life of 

800 days. BMP analysis was done on each sample to find the rate of degradation. L0 was 
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obtained from BMP studies and k was computed by fitting the methane generation curve using 

MATLAB.  

Machado et al. (2009) found L0 and k values for a landfill in Brazil using two methods. In 

the first method, waste samples were obtained from the landfill at different depths. Change in 

waste composition and moisture was studied with waste age. The L0 values were computed 

from the waste composition data using the computation method suggested by IPCC (2006). k 

values were determined using the following equation. 

                
   

  
                                                                                                        (2-24) 

 
In the second approach, curve fitting was done on landfill methane emissions for 

determining k using Eq. 2.18.  L0 of fresh waste was computed using IPCC (2006) guidelines and 

was used in Eq. 2.18.  The authors concluded that the L0 and k values found using these two 

methods were comparable and close, indicating that either could be used for further research. 

To summarize, Faour et al (2007) and Owens and Chynoweth (1993) used non-linear 

regression methods for determining L0 and k values. Cruz and Barlaz (2010), Tolaymat et al. 

(2010), Bigilli (2009), Oonk and Boom (1995) and Machado et al. (2009) fixed L0 either by finding 

BMP or using the waste composition data and then used either curve fitting or simple linear 

regression for determining the k value.  

Amini et al. (2012) conducted a review of methods used for determining L0 and k in 

literature. The authors identified 4 approaches for determining the model parameters, and 

studied the impact of approach used for calculating L0 and k on the model performance using 

actual landfill scale data from Florida landfills. The authors concluded that the model was 

insensitive to the approach taken for identifying the model parameters. However, the authors 
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commented that fixing L0 using waste composition or BMP and the finding k using model fitting 

or regression is the simplest method of determining L0 and k for landfills. 

Biochemical Oxygen Demand (BOD) studies also use an equation similar to Eq. 2-18 for 

determining the “Ultimate BOD”. The most commonly used for determining ultimate BOD and 

rate of BOD exertion are Fujimoto’s method, Thomas’s Slope method, Least Squares method 

and Non-Linear Regression method. Oke and Akindahunsi (2005) conducted a comparison to 

study the method of determination with the best goodness of fit and found that the non-linear 

regression method was better than the other methods used for finding the model parameters. 

2.6 Lab Scale Studies vs. Field Scale Studies 

Controlling moisture, temperature, and waste composition under field conditions is 

difficult. Lab studies allow control of these factors, but tend to over predict field rates due to 

ideal conditions: nutrients such as nitrogen and phosphorous may be added, and waste is 

shredded, which presumably increases decomposition by increasing surface area for contact 

between microbes and substrate (Ress et al. 1998; Barlaz 2006). In lysimeter tests, Ham and 

Bookter (1982) confirmed that shredding produced higher methane concentrations. Buivid et al. 

(1981) however, in landfill test cell experiments found that methane generation rate increased 

with particle size.  

Barlaz et al. (1990) reviewed these contrasting results, and believed that this may be 

due to inoculum addition and the larger particle size range in Buivid’s experiments (1 cm to 35 

cm). Further research needs to be done to confirm the effect of shredding on methane 

generation from laboratory scale reactors. The small size of lab scale reactors may also 

accelerate methane production, due to more uniform ideal conditions. Larger lab scale reactors 

would allow use of un-shredded wastes, and more heterogeneous conditions that come closer 
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to those in an actual landfill.  Cruz and Barlaz (2010) found that the lab scale k values were high 

compared to the field scale ks, and formulated a scaling factor (f) for determining the field scale 

degradation rates (See Section 2.5.1.1 for detailed description).  

2.7 Summary 

The efficiency of a model to predict methane generation from landfills depends on its 

input parameters (L0 and k). Literature shows that k values depend on the waste composition, 

moisture and ambient temperature. However, the studies for finding k values based on waste 

composition particularly with respect to moisture and ambient temperatures have not yet been 

conducted. Therefore, the aim of this study was to find a relationship between first order decay 

rate constant (k values) with respect to waste composition, rainfall and temperature and also to 

study any interactions among these predictor variables. 
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CHAPTER 3 

MATERIAL AND METHODS 

3.1 Introduction. 

The goal of this research was to develop a model for predicting methane generation 

rates for any landfill with basic information about waste composition, annual rainfall, and 

ambient temperature. The proposed Capturing Landfill Emissions for Energy Needs (CLEEN) 

model enables predicting methane generation rates from landfills worldwide; it can be used by 

any country to estimate methane potential of its landfills, regardless of waste composition or 

climate.  

The methodology for this research was divided in 5 tasks. 

Task 1: Developing an experimental design for studying the effect of rainfall, ambient 

temperature and waste composition on the first-order degradation rate constant (k).  

Task 2:  Setting up laboratory scale simulated landfill reactors based on the experimental design. 

This task included waste collection and storage, as well as designing and constructing gas tight 

laboratory scale landfill reactors.  

Task 3: Operating and monitoring laboratory scale simulated landfill reactors. This step involved 

measuring parameters such as moisture content, volatile solids, gas volume and percentage of 

methane (CH4), carbon dioxide (CO2) and oxygen (O2) in gas; and measuring leachate volume 

and pH. 
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Task 4: Analysis and Model Development. A comprehensive multiple linear regression (MLR) 

model was developed to predict first order decay constant (k) using rainfall, ambient 

temperature and waste composition.  

Task 5: Incorporating the MLR equation into the CLEEN model and finding scale-up factor using 

landfill scale data. 

Each of these tasks will be discussed in detail in the next sections. 

3.2 Task 1: Experimental Design 

3.2.1 Rainfall Rates  

To study the effect of average annual rainfall on the methane generation rate constant, 

rainfall rates of 2, 6, and 12 mm/day were used, corresponding to 60, 180, and 360 mm/month. 

These rates encompass monthly precipitation rates for most developing countries in Central 

America, South America, Africa (with the exception of the Sahara countries), and the Far East 

(India, China, Thailand, and Indonesia). The average monthly rainfall across the world is shown 

in Figure 3.1 (Pidwirny 2010). 

It is evident from Figure 3.1 that some regions in the world receive rainfall beyond the 

range considered in this study. However, extremely low rainfall rates would mean extremely 

slow waste degradation, and hence were avoided in this study. Likewise, simulating higher 

rainfall rates could lead to flooding conditions in the simulated landfills, and hence were 

eliminated from this study. Although testing a larger number of rainfall rates would better 

characterize methane variation with respect to rainfall, the time involved in measuring gas 

production for each reactor is extensive. Therefore, only three rainfall rates were incorporated 

into the design to limit the overall number of reactors.  
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Figure 3.1: World Map Depicting Average Monthly Precipitation (Source: Pidwirny 2010) 

 

 
3.2.2 Ambient Temperatures  

To determine the effect of ambient temperature on methane generation rate, tests 

were conducted at 3 temperatures, 20oC, 30oC and 37 oC (corresponding to 68°F, 86°F, and 98°F, 

respectively) as representative ambient temperatures. These temperatures were selected 

because annual mean temperatures for most of South America, Central America, Africa, India, 

and Indonesia range between 20°-35°C. Average monthly summer temperatures in these 

regions can range up to 40°C. The rate of degradation is lower at lower temperature; hence, to 
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limit the duration of this study, temperatures lower than 20oC were not considered. Annual 

average ambient temperatures observed across the world are shown in Figure 3.2. 

 
 

Figure 3.2: World Map Depicting Average Annual Ambient Temperatures. 
(Source: Sustainable Development Department (SD), Food and Agriculture Organization of the United Nations) 

(http://www.fao.org/WAICENT/FAOINFO/SUSTDEV/EIdirect/CLIMATE/EIsp0002.htm) 

 
Laboratory scale landfill reactors were placed in 2 constant temperature rooms at 30oC 

and 37oC. In order to incorporate the lower temperature range, reactors were placed in the 

laboratory, where the temperature is approximately 20oC (70°F).  

3.2.3 Waste Composition 

Methane generation from landfills mostly occurs due to anaerobic degradation of the 

organic portion of the solid waste. Hence solid waste components considered in this research 

were highly biodegradable wastes: food, paper, yard, and textile (Weitz et al. 2002), as well as 

inert inorganic waste. Although inorganic waste is not biodegradable, it may interfere with 
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microbial access to organics, which can impact the first-order decay constant (k); hence, it was 

considered as a variable in the design.  

3.2.4 Experimental Design  

A cyclic incomplete block design (Dean and Voss 1999) was used for the experimental 

setup to minimize the number of reactors. Since the time involved in monitoring the reactors 

was enormous and the space available in the constant temperature rooms was limited, the 

number of laboratory scale reactors had to be limited to 30. 

As described above, temperatures of 20oC, 30oC and 37oC, and average rainfall rates of 

2, 6 and 12 mm/day, were considered in this research. Thus, temperature and rainfall were the 

two factors of primary interest, each studied at 3 levels and in all combinations; hence, all 32 = 9 

combinations of temperature and rainfall were used in the experimental design.  It is known 

that the effect of these 2 factors on k also depends on the composition of the waste, which is 

represented by 5 waste components.  

Considering the factors mentioned above, the experimental design could be conducted 

using a complete factorial design, a complete block design or an incomplete block design.  

Complete Factorial Design: A complete factorial design enabled exploration of all main effects 

and interaction effects. However, if 3 levels were assumed for each of the 7 factors mentioned 

above (temperature, rainfall, % food,% paper, % textile, % yard and %Inorganic waste)  then  37 

= 2187 combinations (reactors) were required. With a restriction of 30 reactors, it would have 

been impossible to analyze more than one waste component using the complete factorial 

design; hence this design was not used in this study.  

Complete Block Design: In experimental design, so-called “blocking” factors are used to model 

the variability due to factors that affect the response, but are not of primary interest.  The 
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interaction effects between temperature and rainfall were anticipated to be more significant; 

hence these were given priority, and the waste composition effect was treated as a “blocking” 

factor.  With the regression modeling approach, it is possible to explore interactions with waste 

composition and potentially include a few of these in the model to predict k.  

A complete block design required a reactor assigned to all combinations of the waste 

composition (blocking factor) and the 9 combinations of temperature and rainfall, i.e., if there 

are b blocks, then we need 9b reactors. With the restriction of 30 reactors, at most b = 3 blocks 

are possible, which means that only three waste combinations could be explored in the 

experimental design. Given the wide variety of possible waste compositions, it was pertinent to 

maximize the waste combinations to study their impact of methane generation rates. Hence, an 

incomplete block design was chosen to allow the inclusion of more waste combinations because 

not all waste combinations will be tested under all temperature-rainfall conditions. A complete 

block design is orthogonal, while an incomplete block design is not; hence, analysis of an 

incomplete block is mathematically more complex, but can be easily handled with a regression 

based approach. 

Balanced Incomplete Block Design: In a Balanced Incomplete Block (BIB) design, the number of 

treatments and blocks are designed in such a way that the following three conditions are 

satisfied: 

1. v*r = b*k 

2. r*(k-1) = λ*(v-1) where λ is an integer. 

3. b ≥ v 

Where, 

v =  No. of Treatments = combinations of rainfall and temperatures 32 = 9 combinations 



 

66 

 

b =  No. of Blocks   =  Waste compositions  

r =  number of times a treatment appears in the design. 

k =  block size (number of times the blocks appear in the design. 

n =  number of experiments = b*k = v*r  

To satisfy these conditions the following assumptions were made: 

v=9,  λ =1, r =4, k=3, b =12 

Using these assumptions the total number of reactors required was:  

n = vr (or kb)= 4*9 = 36 

As mentioned earlier, it was necessary to restrict the number of reactors to 30, due to practical 

considerations; hence a cyclic incomplete block design was used in this study. 

3.2.5 Constructing a Cyclic Incomplete Block Design 

To construct an incomplete block design, 9 combinations of waste components were 

selected with varying waste compositions.  The following assumptions were made for the cyclic 

incomplete block design: 

Number of treatments (v) = rainfall and temperature combinations 32=9 

Number of blocks (b) = combinations of waste components = 9 

Block size (k) = number of times a block appears in the design = 3 

Number of times a treatment appears in the design (r) = 3 

Total no. of reactors = vr = bk = 27 

The specific combined waste cases were determined by a mixture design (Mason et al. 

1989), such that each biodegradable waste component (food, yard, textile, and paper) could be 

observed in a range of 0-100%. Since inorganic waste does not have a potential to generate gas 

by itself, its range was selected between 0 to 40%. Table 3.1 summarizes the 9 waste 
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combinations used in the experimental design. These combined waste cases serve as 9 blocks 

for the cyclic incomplete block design. 

Table 3.1 Component Percent by Weight for Each Waste Combination 
 

Component 

Component % by Weight for each Waste Combination 

A B C D E F G H I 

Food 100 0 0 0 0 60 30 10 20 

Paper 0 100 0 0 60 0 10 30 20 

Textile 0 0 100 0 0 30 0 60 20 

Yard 0 0 0 100 0 10 60 0 20 

Inorganic 0 0 0 0 40 0 0 0 20 

 
The percentages of waste components in the 9 blocks were selected chosen such that 

the following three conditions were satisfied: 

a. The sum of all components in a reactor was equal to 100. 

b. The correlation between the percentages of waste components was minimized.  This 

was done to ensure that the correlation between the rates of degradation for any waste 

components was not induced due to the design. For example, if the results indicated 

that food waste influences the degradation of paper waste, it should not be due to the 

correlation between the percentages of waste components chosen in the design. Figure 

3.3 shows the box plots depicting the correlation between waste components. 
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Figure 3.3: Correlation Between Percentages of Waste Components Chosen for the Experimental 

Design. 
 

c. Euclidean distance of components in the 5-dimensional waste component space 

(percentages of food, yard, textile, paper and inorganic waste) was maximized. As 

mentioned above it was necessary to vary the waste components from 0-100% (except 

inorganic waste varied between 0-40%). While the design required the 9 blocks to cover 

the 5 dimensional waste component spaces, it was also necessary to ensure that the 

points were not too close to each other. Hence Euclidean distances of waste 

components were computed.  
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For satisfying these conditions multiple combinations were chosen by trial and error. 

The combination which had maximum Euclidean distance was chosen (Chen et al. 2006). Table 

3.2 shows the Euclidean distances computed for the percentages of waste components chosen 

for the 9 blocks. 

 
Table 3.2: Euclidean distances Computed for the Percentages of Waste Components Chosen for 

the 9 Blocks. 
 

Distance 
w.r.t   Distance between aij in five dimensional space 

point 1 2 3 4 5 6 7 8 9 
Min 
Distance 

1   141.42 141.42 141.42 123.29 50.99 92.74 112.25 89.44 50.99 

2     141.42 141.42 56.57 120.83 112.25 92.74 89.44 56.57 

3       141.42 123.29 92.74 120.83 50.99 89.44 50.99 

4         123.29 112.25 50.99 120.83 89.44 50.99 

5           98.99 92.74 78.74 56.57 56.57 

6             66.33 66.33 50.99 50.99 

7               89.44 50.99 50.99 

8                 50.99 50.99 

 Performance metric value (least distance between any two points) 50.99 

 
Table 3.3 shows the matrix with treatment and block combinations used in the 

experimental design for setting up the laboratory scale landfill reactors. Practical considerations 

were required while designing this, e.g. a high percentage of slow degrading waste was avoided 

with the lowest temperature and rainfall combination, because of its slow degradation process. 

For example, reactor 1 was installed with 2 mm/day rainfall at an ambient temperature of 20C, 

and contained waste combination corresponding to combination a, which according to Table 3.1 
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is 100% paper waste. Methane emissions were measured over time for 27 lab scale landfills with 

varying waste compositions, rainfall and temperature.     

Table 3.3: Rainfall, Temperature, and Waste Component Combinations for the Simulated Landfill 
Reactors 

 

Rainfall,   
mm/day 

Temperature, 
oC (oF ) 

Waste Component Combination 

A B C D E F G H I 

2 20 (68)   1         2   3 

2 30 (86) 4   5         6   

2 37 (98)   7   8         9 

6 20 (68) 10   11   12         

6 30 (86)   13   14   15       

6 37 (98)     16   17   18     

12 20 (68)       19   20   21   

12 30 (86)         22   23   24 

12 37 (98) 25         26   27   

Note: Each blue number denotes the number of the lab-scale landfill reactor. 

In addition, Reactors 28-30 were control reactors with seeding but no waste installed at 

20oC, 30oC, and 36°C, respectively. Methane generated from the control reactors was subtracted 

from that generated by other reactors to account for the methane emissions from the seed. 

3.3 Task 2: Setting up Laboratory Scale Simulated Landfill Reactors. 

3.3.1 Waste Collection 

As mentioned earlier in Section 2.2.3, food, paper, yard, and textile were the major 

biodegradable waste components considered in this study. In addition, inert inorganic waste 

was included to study the impact of non-biodegradable waste on the decay rate constant (k). 

Waste components were collected from individual sources instead of a waste transfer station or 

landfill in order to obtain “pure” waste. “Pure” waste is a commonly used term, which indicates 

that the waste components are not mixed. For example, paper waste being absorbent, quickly 
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absorbs the moisture and nutrients from food waste. To avoid such mixtures, waste 

components were obtained from individual waste sources. 

Food waste was obtained from the University of Texas at Arlington’s (UTA) cafeteria, 

and from Indian and Thai restaurants near Arlington, TX, as examples of food from developing 

countries. The waste from UTA cafeteria mostly contained fruits, vegetable skin, bread, and 

processed meat. The waste from Indian and Thai restaurants contained fruit and vegetable 

leftovers and mostly unprocessed meat. The waste was mixed well and stored in air-tight 

containers at 4oC for a period of 7 days. 

A mixture of grass, leaves, and tree/bush trimmings was obtained from the university’s 

vicinity and is representative of the variety particularly found in Texas. The species of trees 

found in Texas are mostly Live Oak, Post Oak, Red Oak, American Elm, Pecan, Bald Cypress, and 

Creepy Myrtle. The waste was collected in a period from July to November and stored in air-

tight bags at 4oC. 

A mixture of textiles was obtained from local tailors. The waste contained a mixture of 

cut textiles, mostly made of polyester and cotton, or a blend of the two. Large pieces of textiles 

were discarded, but the cut pieces of textiles were not shredded further, and were directly 

loaded in the reactor.  

 Paper waste was obtained from the university’s recycling bins (office paper), and faculty 

and student’s personal recycling bins (newspapers, mail, magazines, tissues and towels, 

diapers), and local stores (corrugated boxes and milk cartons). Individual waste components 

were mixed together to replicate the percentages found in the US (USEPA 2007).  Although it 

would be better to replicate the percentages found in the developing countries, very little 

information was available related to the actual composition of paper waste in the developing 
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countries. Large pieces of waste were cut in order to fit into the reactors. The average paper size 

in the reactor was 4” x 6”. Paper was not cut into finer pieces or shredded because it has been 

reported to become bio-available due to shredding, which can lead to faster degradation and 

larger k values (Buivid et al. 1981). Hence the course structure of waste was maintained in the 

reactors to try to replicate the actual conditions in the landfills.  

Inerts, including sand, dust, stones, glass bottles, metal cans, and plastic bottles, were 

obtained from the university’s recycling facility. Cut glass and metals were discarded to avoid 

injuries in the laboratory. Construction and demolition waste was collected from the 

Department of Civil Engineering’s concrete testing facility. The waste components were then 

stored in air-tight bags in a constant temperature room (Environmental Growth Chamber) at 

4oC.  

3.3.2 Reactor Setup 

Experiments were conducted in 16-L HDPE wide-mouth plastic buckets (United States 

Plastic Corporation, OH) modified for gas and leachate collection and for water addition (See 

Figure 3.4).  

Before filling the reactors with waste, all reactors were leak-checked. Leak tests were 

conducted using a simple U-tube manometer (Dwyer Instruments Inc., Michigan City, IN) after 

proper sealing of reactors. To verify that there was no significant leakage; reactors were 

monitored for 1-2 days.  The head difference at 12 and 48 hours was recorded to confirm that it 

was within permissible limits of 0.5 in. and 3 in. of water column, respectively (Mohammad Adil 

Haque 2007). Once the reactors were leak-tested, their empty weight was measured.   
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(a)                                                                      (b) 

 
Figure 3.4: Laboratory Scale Landfill Reactor Setup (a) Photograph and (b) Schematic 

 
Reactors were then filled with refuse components, as described in the Experimental 

Design section. A 10 inch diameter piece of filter fabric (Geotextile) was placed at the bottom of 

the reactor and overlain with waste. Seed was obtained from a continuously-stirred anaerobic 

sludge digester operated at a hydraulic loading rate of 19 days at 20oC and added to each 

reactor to achieve 10-12 % by weight. Sludge was obtained from the Village Creek wastewater 

treatment plant, Fort Worth, TX.  

 In addition, tap water was added to the waste to make sure that the waste was near 

saturation limit. In a landfill, lack of moisture affects acclimatization of micro-organisms to the 

waste, which results in a longer lag phase. LandGEM assumes a lag phase extending to about 0-1 

years, and the gas produced (if any) during this period is neglected. Although saturating the 
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waste with water ensures that the reactors overcome the lag phase faster, it does not affect its 

overall rate of degradation (k value). Moreover, leachate is produced only when the waste has 

moisture exceeding its saturation limit. It was crucial to study the pH during the initial stages of 

the reactors, because there is a possibility of acid accumulation during the acidogenic phase 

(Christensen and Kjeldsen 1989). Hence, to ensure good microbial contact, and to reduce the lag 

period, water was added, such that the waste was near saturation limit. The amount of water 

required for each waste component (food, paper, textile, yard and inorganic) to reach saturation 

was calculated based on values reported by Stone and Kahle (1972). 

Each reactor was then weighed and placed in its position in one of the constant 

temperature locations (see Experimental Design section), and connected to a leachate collection 

bag (2-L Kendall-KenGuard Drainage Bag) and gas collection bag (22-L Cali 5-Bond Bag, 

Calibrated Instruments, Inc.). A schematic of the reactor installation process is shown in Figure 

3.5. 

27 laboratory scale landfill reactors were filled with various proportions of waste 

components and operated at various rainfall-temperature combinations, as discussed in the 

Experimental Design section (See Section 3.2.5). Three reactors, with seeding but no waste, 

served as controls to determine methane production from the seed. 
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Figure 3.5: Reactor Installation Process 

 

3.4 Task 3: Reactor Operation and Measurements 

3.4.1 Average Rainfall 

As mentioned earlier, rainfall rates of 2, 6, and 12 mm/day were used to study the effect 

of rainfall on the methane generation rate constant. Tap water was added to the reactors to 

simulate rainfall. Distilled or deionized water was not used for rainfall simulation, because 

distilled water has a tendency to absorb more contaminants than tap water and which could 

result in higher carbon washout. The amount of water to be added to the reactors was 

computed using the bucket dimensions.  

Recirculation rates for rainfall intensities of 2, 6 and 12 mm/day were calculated as 100, 

300 and 600 mL/day, respectively. Water addition was done using the three way valve 

attachment shown in Figure 3.6. 
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Figure 3.6: Water Addition for Rainfall Simulation 

 
Potassium hydroxide (KOH) addition was required in 100% food reactors during the 

initial period to avoid excessive acid accumulation as observed in previous studies (Vavilin et al. 

2004; Wang et al. 1997). 

3.4.2 Gas Generation Measurement 

Gas production was measured by pumping gas out of the collection bag through a 

standard SKC grab air sampler (SKC Aircheck sampler model 224-44XR) at 1.0 L/min connected 

to a calibrator (Bios Defender 510M) to get a minute by minute gas pumping rate. LANDTEC-

GEM 2000 PLUS with infrared gas analyzer (3% accuracy) was used for measuring % Methane 

(CH4), % Carbon Dioxide (CO2), %Oxygen (O2), and percentage of other gases. In addition, 

Hydrogen Sulfide (H2S) and Carbon Monoxide (CO) were recorded. The frequency of gas 

sampling depended on the amount of gas generated. During the initial stages of degradation, 

the gas bags were emptied twice a day, to avoid excessive buildup in the gas bags. As 

degradation progressed, the rate of gas production decreased and the frequency of sampling 

was reduced accordingly. Gas production rate was reported in STP.  
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Figure 3.7 shows instruments used for gas volume and composition measurement. Each 

reactor was destructively sampled when gas production dropped to a low constant value. 

 
 (a)                                                                          (b) 

Figure 3.7: Gas Measurements (a) Composition using Landtec GEM 2000 and (b) Volume using 
SKC Sampler & Calibrator 

 
Methane readings from Landtec GEM 2000 were compared with those from a gas 

chromatograph (SRI 8610) with flame ionization detector equipped with Hayesep D packed 

column. It was found that the % methane found by Landtec GEM 2000 was within ±7% of that 

found by the gas chromatograph. 

3.4.3 Leachate Volume and pH 

Leachate volume generated was recorded daily. pH (HQD 40 Hach meter) was measured 

daily as an indicator for the degradation stage (Barlaz et al., 1990). Leachate collection and pH 

measurement procedure is shown in Figure 3.8. 



 

78 

 

 
Figure 3.8: Leachate Collection, and pH Measurement Procedure 

 
3.4.4 Moisture Content 

The initial moisture content of the waste components in each reactor was determined 

to understand the moisture content of each component. However, before installing each 

reactor, anaerobic sludge and water were added to the waste to ensure good microbial contact. 

Hence, a sample was withdrawn from each reactor for finding the moisture content before 

putting it into operation, and is hereafter referred to as initial moisture content of the reactor. 

Each sample was analyzed in triplicate for determining moisture content on a wet weight basis, 

as summarized below according to Standard Methods APHA 2540B (AWWA-APHA, 2005).  

Approximately 500 g of waste (except food waste) was dried in an oven at 105oC (±5 oC) 

until a constant weight was achieved. The duration of drying was separate for each waste 

sample; yard waste samples reached constant weight within 24 hours, while textile wastes 

required 48-54 hours to reach constant weight.  Extra care was taken while finding the moisture 

content of samples containing higher percentages of food waste (for e.g. waste composition a-

100% food, and f- 60% food, 30% Textile and 10% Yard), because it was reported that some of 

the organic matter from food waste volatilizes at 105oC (Angelidaki et al. 2009). Hence, food 
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waste samples were dried at 65oC (± 5oC) for about 5-7 days, until the samples reached constant 

weight.  

Moisture content on a wet weight basis (ww) was determined using the following 

relationship.                         

   
                   

                        
                                                                                                                  (3-1) 

At the end of the reactor operation, samples were taken from the top, middle and 

bottom layer of each reactor and moisture content was determined for each of these samples. 

This was done to examine the effect of rainfall rates on the moisture content of the waste and 

to detect if there was unequal distribution of moisture in the reactors. 

The ongoing probable moisture content of waste in each reactor was computed using a 

water balance (Tchobanoglous et al. 1993), as shown below: 

∆FSW = WSW + WA - WL                                                                                                                                                        (3-2) 
 
where  

∆FSW = Solid waste field capacity or variation of water content (L/kg) 

WSW = Initial moisture content of the refuse (L/kg) 

WA = Water added (L/kg)  

WL = Percolated water (leachate) (L/kg) 

3.4.5 Volatile Solids Determination 

Volatile solids are an indicator of the organic content in the waste samples.  Organic 

content of the waste is expected to decrease as the waste decomposes. Initial volatile solids 

were determined in triplicate for each reactor. Once the gas production had reached a low 

constant value, the reactors were destructively sampled and the volatile solids concentration in 
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the degraded waste was also measured in triplicate, according to Standard Method APHA 2540-

E.  

Dried waste samples were ignited in a muffle furnace at 550oC (± 10oC) for about 2 

hours, or until it reached constant weight. The percent weight lost during ignition was the 

volatile solids in the waste. The biodegradable portions of waste (food, paper, textile, and yard) 

were used for finding the volatile solids. Plastics and metal were avoided because they may 

cause dioxin emissions and volatilize easily, thus inducing an error into the computation. The 

volatile solids content of inorganic waste (including plastic, metals, concrete and soil) was 

assumed to be negligible. Figure 3.9 shows the samples after burning, and the muffle furnace. 

 
(a)                                                                 (b) 

Figure 3.9: Volatile Solids Determination (a) Samples after Burning (b) Muffle Furnace 

 
3.4.6 L0 Determination 

Ultimate methane generation capacity (L0) of the waste components was determined 

using the Biochemical Methane Potential (BMP) method (I. Angelidaki, M. Alves, D. Bolzonella, L. 

Borzacconi, J. L. Campos, A. J. Guwy, S. Kalyuzhnyi, P. Jenicek and J. B. van Lier 2009; U.S. EPA 

1998; Bogner 1990b). For the BMP test, the samples from all reactors were ground using a 
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Thomas Wiley Mini mill, and sample passing through a 2 mm sieve was used for the study. Since 

the ultimate methane potential is a property of the waste composition or the degradable 

organic content of the waste, the samples with the same composition were mixed together. For 

example, reactor nos. 8, 19, and 14 had the same composition; hence, they were mixed in equal 

quantities. Thus, 9 samples corresponding to the 9 blocks were analyzed using BMP. BMP was 

carried out in 125 mL Wheaton Serum Bottles with rubber stoppers and crimps (Sigma Aldrich 

Co. LLC, St. Louis, MO). The procedure followed for the BMP test was as specified in Wang et al. 

(1994), except that the inoculums were obtained from an anaerobic CFSTR operated at a 

residence time of 20 days.   

BMP bottles were incubated at 37oC for a period of 60-80 days. Gas volume was 

measured by equilibrating pressure using a 60 mL ground glass syringe, followed by a 5 mL 

ground glass syringe to ensure that all the excess pressure is removed. The gas composition was 

measured in a GC (SRI 8610) equipped with FID detector. The samples were tested in triplicate 

for BMP, to obtain a mean and standard deviation.  

3.4.7  Data Analysis 

Methane production rate was recorded versus time for each reactor. The ultimate 

methane potential and k value for each reactor were computed using non-linear regression 

analysis with Guass-Newton method using SAS software. Three methods were used for finding 

the parameters Lo and k: 

1. Assuming L0 = Total amount of methane generated from the reactor, and substituting it into 

Equation 3-3.  

                                                                                                                           (3-3) 
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                                                                                                                  (3-4) 

where,  

V= Cumulative volume of methane generated from reactor (m3/kg),  

L0 = Ultimate methane potential (m3/kg),  

k = first order methane generation rate constant (yr-1),  

t = time (year).   

k and L0 were computed from Eq. 3-4 using Simple Linear Regression (SLR) analysis using SAS 

software. 

2. Thomas Method used to find parameters for BOD (Thomas, 1937). 

3. Non Linear Regression Analysis.  

Guass-Newton method was used for computing the parameters L0 and k for each reactor 

using SAS software.  

A comparative analysis was conducted to find the best method for finding the model 

parameters. The goodness of fit was tested using the following criteria: 

1. Sum of Square of Errors (SSE) should be minimized. 

SSE = (Ycalculated – Yobs)
2                                                                                                             (3-5) 

Where,  

Ycalculated = Predicted cumulative methane generation (m3/kg),  

Yobs = Observed cumulative methane generation from reactors (m3/kg) 

2. Coefficient of Determination (CD) value should be maximized. 

   
       

       
   

          
       

   
   

       
       

  
   

                                                                           (3-6) 
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The comparative analysis was performed for 5 reactors and is presented in Appendix A. 

The comparative analysis showed that Non-Linear Regression provided the best fit; hence, it was 

used for finding L0 and k values for all the reactors. 

3.5 Task4: Developing Multiple Linear Regression Model 

Using SAS software, a comprehensive statistical model was developed that incorporates 

all of the above 7 factor variables (temperature, rainfall, and proportions of 5 waste 

components) in predicting the response variable (methane generation rate constant, k). Based 

on data collected, a multiple linear regression model was developed to predict k as a function of 

waste composition, annual rainfall, and temperature, as shown in Eq. 3-7.  

k = 0 + 1R + 2T+ 3F + 4P + 5TX+ 6Y+ 7I +                    (3-7) 
 
where  

k = first-order methane generation rate constant (yr-1) 

s = parameters to be determined through multiple linear regression, using the lab data 

R = annual rainfall (mm/day) 

T = average annual temperature at the landfill location (K) 

F = fraction of landfilled waste that is food (%) 

Y = fraction of landfilled waste that is yard waste (%) 

TX = fraction of landfilled waste that is textiles (%) 

P = fraction of landfilled waste that is paper (%) 

I = fraction of landfilled waste that is inorganic (%) 

 = error uncertainty, modeled as a random variable. 

s were  determined through multiple linear regression, using data from the laboratory 

experiments. With the regression function, the expected value of k was estimated using 
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statistical confidence intervals, and k was predicted using statistical prediction intervals (Kutner 

et al., 2005). These intervals provided information on model’s uncertainty.  

3.6 Task 5: Developing CLEEN Model 

The CLEEN model was developed by incorporating the MLR equation in the first order 

decay based model for predicting methane generation rates from landfills. It was anticipated 

that the lab scale data would yield higher k values than those found in the landfills. Hence scale-

up factors were developed using the methane recovery data from City of Denton landfill. 

Ambient temperature, rainfall rate, and waste composition data was acquired from the City of 

Denton’s landfill and were used in the statistical model (Eq. 3.7) to determine field scale k 

values. Lo values for various waste components developed using the BMP test were used to 

calculate a weighted-average Lo using the waste composition information. Methane recovery 

estimates were compared to the actual recovery rates from the landfill and scale-up factor (f) 

was developed by computing a ratio of the actual k value to the computed k value. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Introduction 

The experimental results are presented and discussed in this chapter, which is divided 

into three sections. The first section includes the characteristics of municipal solid waste 

components (moisture content, volatile solids and biochemical methane potential). The gas 

generation data from the laboratory scale landfill reactors, along with leachate volume, pH and 

probable moisture content inside the reactor, are presented in the second section. The methane 

generation data from laboratory scale reactors was then used for computing the first order 

decay constant (k) for each reactor. The last section of this chapter includes details about 

modeling the ultimate methane potential (Lo) and the rate constant (k). 

4.2 Characteristics of Municipal Solid Waste Components 

4.2.1 Moisture Content of Waste 

As discussed in Chapter 3, individual waste components (food, paper, textile, yard, and 

inorganic waste) were obtained directly from their sources, not allowed to be mixed and stored 

at 4oC. Moisture content of each waste component was determined and the results are 

presented in Table 4.1. Food waste had the maximum moisture content (82.85 %), followed by 

yard waste (56.91%). Textile waste did not have much moisture, since it was collected from local 

tailors and was not allowed to be mixed with any other components.  Similarly, paper waste 

collected from UTA’s paper recycling bins was not expected to have much moisture. However, 

paper waste also contained food packaging cardboard, paper cups and milk cartons which were 
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collected from local grocery stores, along with toilet tissues and paper towels collected from 

UTA’s trash cans. The moisture content of paper waste (8.52%) can be attributed to these 

sources. 

Table 4.1: Moisture Content of Waste Components 
 

Waste 
Combination*1 

A B C D 

Composition 100% Food 100% Paper 100% Textile 100% Yard 

Sample1 80.46 10.39 4.339 54.00 

Sample2 85.27 6.540 4.396 59.82 

Average 82.87 8.465 4.367 56.91 

Note 1: Waste combination nomenclature can be found from Table 3.1 

The waste components were then mixed according to the weights specified in the 

experimental design (See Section 3.2). The moisture content of waste after mixing is presented 

in Table 4.2. The paper and textile wastes have the maximum moisture absorption capacities. 

The inorganic waste contained metal cans and plastic bottles along with construction and 

demolition (C&D) waste. In some cases, the plastic bottles and cans had some liquid residue, 

which was responsible for higher moisture content of waste combination E- 60% paper and 40% 

inorganic as compared to waste combination B- 100% paper.  

Table 4.2: Moisture Content of Waste after Mixing 
 

Waste 
Combination 

E F G H I 

Composition 
60%Paper 

+ 40% 
Inorganic 

60% Food 
+30% textile 
+10% Yard 

60%Yard 
+30% Food 

+ 10% Paper 

60% Textile 
+30% Paper 
+ 10% food 

20% each 

Sample 1 13.88 47.99 64.32 12.06 20.52 

Sample 2 10.39 52.80 58.72 7.535 29.00 

Sample 3 10.31 64.58 50.69 5.139 32.97 

Average 11.53 55.13 57.91 8.245 27.50 

Std. Dev. 2.038 8.532 6.848 3.515 6.358 
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Moisture contents of fresh waste observed in this study were compared with those 

reported in the literature (See Table 4.3). It can be observed that the moisture content values 

found in this study were close to the values found in the literature.  

Table 4.3: Comparison of Moisture Content Observed in this Study with Previous Studies 
 

 
Moisture Content 

(% wet wt ) 
Author 

Moisture Content (% wet 
wt) found in this study 

 

Food Waste 

Mixed Food Waste 68.30 Qudias (2000) 

82.86 
 

Boiled Rice 65.00 Cho et al. (1995) 

Cooked Meat 47.00 Cho et al. (1995) 

Fresh Cabbage 95.00 Cho et al. (1995) 

Mixed food waste 
(Korean) 

74.00 Cho et al. (1995) 

Bean Sprouts 80.00 Cho et al. (1995) 

Fried Egg 78.00 Cho et al. (1995) 

Food Waste 50-80% Tchbanoglous (1993) 

Paper Waste 

Paper 4-10 Tchobanoglous (1993) 
8.466 

Cardboard 4-8 Tchobanoglous (1993) 

Yard Waste 

Yard Wastes 30-80 Tchobanoglous (1993) 
56.91 

Wood 15-40 Tchobanoglous (1993) 

Textile Waste 

Textiles 6-15 Tchobanoglous (1993) 4.368 

Other Waste 

Plastic 2.75 Qudias (2000) 

Not Determined Plastic 1-4 Tchobanoglous (1993) 

Tin Cans 1-4 Tchobanoglous (1993) 
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4.2.2 Initial Moisture Content of Waste  

As mentioned earlier in Chapter 3, the reactors were filled with waste components 

according to the experimental design. Sludge was added to the reactors to ensure microbial 

contact. Additional water was also added in all reactors, except 100% food reactors, to saturate 

the waste. Since 100% food waste reactors were already saturated with moisture (with 82.86% 

moisture content); no additional water was added in these reactors. Instead, 100% food waste 

reactors were allowed to drain excess moisture during the first few days.  

Solid waste samples were collected after mixing sludge and water with waste, for 

determining the initial characteristics of waste inside the reactor. Hereafter, this moisture 

content will be referred as the initial moisture content of the waste. The initial moisture content 

of waste was used for calculating the methane yield and for finding the probable moisture 

content within the reactor. The initial moisture content data for each reactor is tabulated in 

Table 4.4. The average initial moisture content of waste after sludge and water addition for all 

reactors is plotted in Figure 4.1.   
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Table 4.4: Initial Moisture Content within the Reactors 
 

Moisture Content of 20oC Reactors (% on wet weight basis) 

Waste 
Combination A B C D E F G H I 

Sample 1 87.47 21.08 76.33 78.82 59.00 84.70 64.60 33.56 62.62 

Sample 2 84.21 27.81 74.85 82.25 58.01 85.89 74.77 47.69 51.58 

Sample 3         45.28 

Average 85.84 24.45 75.59 80.53 58.51 85.30 69.69 40.63 53.16 

 

Moisture Content of 30oC Reactors (% on wet weight basis) 

Waste 
Combination A B C D E F G H I 

Sample 1 88.20 50.26 54.13 63.96 39.36 61.51 68.73 55.40 50.84 

Sample 2 85.96 70.39 52.86 71.76 43.29 67.10 63.73 55.26 53.89 

Sample 3 90.44 70.03 53.19 69.67 43.54 64.50 63.63 60.32 50.47 

Average 88.20 63.56 53.39 68.47 42.06 64.37 65.37 56.99 51.73 

Std. Dev 2.239 11.52 0.656 4.041 2.347 2.798 2.913 2.881 1.879 

 

Moisture Content of 37oC Reactors (% on wet weight basis) 

Waste 
Combination*1 A B C D E F G H I 

Sample 1 93.70 48.11 44.59 79.88 42.83 72.34 74.59 46.25 60.00 

Sample 2 93.00 56.58 42.23 81.96 39.55 75.14 74.20 52.79 61.34 

Sample 3 94.36 52.65 45.96 76.40 48.14 75.79 75.63 53.51 50.85 

Average 93.68 52.45 44.26 79.41 43.51 74.42 74.81 50.85 57.40 

Std. Dev 0.6816 4.238 1.891 2.810 4.335 1.834 0.7409 4.001 5.709 
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        *Note: The waste composition and reactor numbers can be found in Table 3.1 and 3.2 

Error bars are not shown for reactors at 20
o
C because the tests were carried out in duplicates. 

 

Figure 4.1: Average Initial Moisture Content on Wet Weight Basis within the Reactors. 

 
4.2.3 Initial Volatile Solids   

Volatile Solids (VS) of the waste combinations (A to I) were determined before the 

reactors were put into operation and hereafter will be referred as initial volatile solids. The 

volatile solids test was performed for each reactor, and the results are tabulated in Table 4.5.  

Since the volatile solid is a property of the waste, it was expected to be similar for reactors with 

identical composition. Hence the average values and standard deviations were computed with 

respect to waste combinations, and are graphically represented in Figure 4.2. Waste 

combination “E- 60% paper and 40% inorganic” and “I = 20% each” had inorganic waste in it. 

0

10

20

30

40

50

60

70

80

90

100

A B C D E F G H I

M
o

is
tu

re
 C

o
n

te
n

t 
o

n
 w

e
t 

w
e

ig
h

t 
b

as
is

 (
%

)

Waste Combination

20 C Reactors 30 C Reactors 36 C Reactors



 

91 

 

Since plastic waste is highly volatile, the inorganic portion of the waste was segregated and the 

volatile solids test was performed on the organic portion only. The values were then adjusted 

using a weighted average, assuming the volatile solids of inorganic waste to be equal to zero. 

Table 4.5: Volatile Solids Results for Waste Combinations (A to I) 
 

Volatile Solids (%) 

Waste 
Combination*1 A B C D E*2 F G H I*2 

20oC 
92.73 89.42 94.97 80.39 53.74 92.64 82.68 92.53 72.00 

92.49 88.83 99.85 80.95 55.46 93.48 87.56 90.56 64.08 

30oC 

88.12 89.75 98.85 86.51 53.57 91.26 88.75 94.74 71.53 

90.82 91.21 98.22 88.52 54.00 93.94 87.59 97.01 71.42 

91.96     86.20   95.55 87.97   70.23 

37oC 

89.38 91.44 98.84 86.86 54.70 95.00 86.50 96.06 72.95 

88.97 90.38 99.11 85.68 55.90 88.57 86.84 95.97 72.03 

86.77 84.87       93.53 87.46     

  88.85         82.94     

AVG 90.16 89.34 98.31 85.02 54.56 93.00 86.71 94.48 70.61 

Std Dev 2.183 2.057 1.718 3.101 0.9586 2.226 2.176 2.464 2.992 
NOTE: 

1- The waste combination details and reactor numbers can be found in Table 3.1 and 3.2 
2- Volatile solids for waste combination with inorganic waste was adjusted using weighted average. 
3- Blanks indicate that the number of replicates for each reactor were not constant. 
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NOTE: Volatile solids for waste combination (E and I) with inorganic waste was adjusted using weighted average. 
             Values in parenthesis are standard deviations. 

 

Figure 4.2: Average Volatile Solids Content for Waste Combinations (A to I). 

 
The initial volatile solids data was used for computing the Biochemical Methane 

Potential (BMP). The initial volatile solids for 100% waste combinations were compared to the 

values reported in the literature. (See Table 4.6) Volatile solids found in this study were 

comparable to those reported in the literature. The volatile solids for yard waste found in this 

study, however, were less than those reported in literature. It must be noted that the values 

listed in Table 4.6 were for waste components e.g. grass, leaves. Since the yard waste 

considered in this study included all components such as grass, leaves, and branches, there was 

some variability observed in this study.  
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Table 4.6: Comparison of Volatile Solids Found in This Study with Literature 
 

Waste Composition 
Volatile Solids 
(% wt) 

Author 
VS (% ) 
found in this study 

Food Waste 

Mixed Food Waste 88.34 Qudias (2000) 

90.16 (± 2.183) 

Boiled Rice 99.00 Cho et al. (1995) 

Cooked Meat 97.00 Cho et al. (1995) 

Fresh Cabbage 84.00 Cho et al. (1995) 

Mixed food waste 
(Korean) 

95.00 Cho et al. (1995) 

Fruits and Vegetable 
waste 

81.7 - 98.4 Gunaseelan (2004) 

Food 93.80 Eleazer et. al. (1997) 

Paper Waste 

Paper and Cardboard 83.65 Qudias (2000) 

89.34  (±2.057) 

Office Paper 96.20 Owens and Chynoweth (1993) 

Corrugated Paper 94.80 Owens and Chynoweth (1993) 

Newsprint (unprinted) 91.40 Owens and Chynoweth (1993) 

Newsprint (printed) 92.20 Owens and Chynoweth (1993) 

Magazine 97.10 Owens and Chynoweth (1993) 

Food Board (uncoated) 98.60 Owens and Chynoweth (1993) 

Food Board (coated) 93.30 Owens and Chynoweth (1993) 

Milk Carton 99.40 Owens and Chynoweth (1993) 

Wax Paper 98.40 Owens and Chynoweth (1993) 

Coated Paper 74.30 Eleazer et. al. (1997) 

Old News Print 98.50 Eleazer et. al. (1997) 

Old Corrugated 
Containers 

98.20 Eleazer et. al. (1997) 

Office Paper 98.60 Eleazer et. al. (1997) 

Office Paper 88.40 Wu et. al. (2001) 

Newsprint 98.00 Wu et. al. (2001) 

Yard Waste 

Grass 88.10 Owens and Chynoweth (1993) 

85.02 (± 3.101) 

Leaves 95.00 Owens and Chynoweth (1993) 

Branch 93.90 Owens and Chynoweth (1993) 

Mixed Yard Waste 92.00 Owens and Chynoweth (1993) 

Grass 85.00 Eleazer et. al. (1997) 

Grass 2 87.80 Eleazer et. al. (1997) 

Leaves 90.20 Eleazer et. al. (1997) 

Branch 96.60 Eleazer et. al. (1997) 
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4.2.4 Biochemical Methane Potential of Waste  

Biochemical Methane Potential (BMP) test was performed on dried and ground waste 

samples collected for all 9 waste combinations (A to I). The BMP test results are indicative of the 

total amount of methane that can be generated from a particular type of waste. Since the 

ultimate methane potential is a property of the waste composition or the degradable organic 

content of the waste, the samples with the same waste combination were mixed together. Thus, 

9 samples corresponding to the 9 blocks (e.g. A to I) were analyzed using BMP. The tests were 

performed in triplicate and the results are represented as mL of CH4 corrected at STP/g of VS. 

Average BMP values are tabulated in Table 4.7 and the BMP exerted is graphically represented 

in Figure 4.3.  

According to the procedure, BMP samples were analyzed every 7-10 days until the 

change in BMP was less than 5%. It was found that the BMP was fully exerted by most samples 

within 60-70 days of operation. However, samples with yard waste were incubated for about 80-

100 days until the change in BMP was less than 5%. A standard of office paper was tested with 

the other samples. The BMP of ground office paper (not shown in the figure) was found to be 

364.7 mL of CH4/g of VS. 

The BMP values were compared with those reported in literature. The BMP values for 

food, paper, yard and textiles wastes are shown in Figure 2.2. Table 4.8 summarizes the BMP 

values from literature, which were compared with the BMP observations from this study. 

Previous studies listed in Table 4.8 studied “pure” waste which was not mixed with other types 

of waste. However, in certain cases the BMP values were grouped to represent the type of 

waste. For example, BMP values for banana peels, fresh cabbage, and mixed cooked meat were 

combined to obtain a BMP range for food waste. 
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Table 4.7: Biochemical Methane Potential Values for Waste Combinations (A to I) 

Biochemical Methane Potential 

Waste 
Combination 

A B C D E F G H I 

Waste 
Composition 

100% Food 100% Paper 100% Textile 100% Yard 
60%Paper 

+ 40% Inorg 

60% Food 
+30% textile 
 +10% Yard 

60%Yard  
+30% Food 

+ 10% Paper 

60% Textile  
+30% Paper 
+ 10% food 

20% each 

Average BMP 
(mL of CH4/g VS) 

389.76 336.18 184.45 188.58 241.58 279.96 276.96 259.68 293.95 

Std. Dev. 29.24 7.165 28.61 17.46 6.758 48.32 20.26 12.57 9.761 

 

 
Figure 4.3: Biochemical Methane Potential (BMP) of Waste Combinations (A to I) 
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Table 4.8: Comparison of Biochemical Methane Potentials Found in this Study with Literature  
 

Waste BMP  range 
(m3 of CH4/kg of VS) 

Authors BMP found in this 
study 

Food Waste 0.292 – 0.54 Gunaseelan (2004) 
Cho et al. (1995) 
Eleazer et al. (1997) 
Jeon et. al (2007) 
Chynoweth et al (1993) 

0.389 (± 0.0292) 

Paper Waste 0.075 – 0.370  Owens and Chynoweth 
(1993) 
Eleazer et al. (1997) 
Jeon et. al (2007) 

0.336 (±0.0071) 

Textile Waste 0.035-0.21  
m3/kg of dry waste 

Jeon et. al (2007) 
Isci and Demirer (2007) 

0.181 (± 0.028) 
m3/kg of dry waste 

Yard Waste 0.014 – 0.283 Owens and Chynoweth 
(1993) 
Eleazer et al. (1997) 
Chynoweth et al. (1993) 
Jeon et. al (2007) 

0.188 (±0.017) 

 

From Table 4.8, it can be observed that the values observed in this study were within 

the range reported in literature. However, the BMP of paper waste appeared to be on the 

higher side. It should be noted that the values from literature were taken from studies 

conducted on individual components of paper waste such as office paper, corrugated paper, 

food board, coated paper. In the present study, all types of paper were mixed together to 

replicate the US paper composition reported in EPA (2007). Hence the BMP values found in this 

study were for the combined waste category, and hence could be directly compared to the 

values listed in Table 4.8, and Figure 2.2 and 2.3.  Overall, the BMP values found in this study 

were consistent with those reported in the literature. 

4.3 Reactor Data 

Gas composition, gas volume and leachate pH act as indicators of microbial activity in 

the reactors. This section discusses the gas composition, volume and pH results from three 
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100% yard waste composition reactors (8, 14, and 19) at varying temperature and rainfall 

conditions as examples. The operating parameters for the reactors are summarized in Table 4.9 

and the results are illustrated in Figure 4.4. The gas composition is shown in %, and the methane 

generation rate is represented in mL of methane at STP/ kg of dry solids/day. 

Table 4.9: Operating Parameters for 100% Yard Reactors no.  8, 14, 19 
 

Reactor no. Waste Composition Ambient Temperature Rainfall 

8 100% Yard 37oC 2 mm/day 

14 100% Yard 30oC 6 mm/day 

19 100% Yard 20oC 12 mm/day 

 

Anaerobic decomposition of solid waste in a typical landfill occurs in four stages: (i) 

aerobic phase, (ii) acidogenesis (acid formation), (ii) methanogenesis (methane formation), (iv) 

decelerating methane phase. From Figure 4.4 it can be observed that initially the percent 

oxygen in the reactors was high (about 20%), and reduced rapidly. This being the aerobic phase, 

gas mainly consisted of carbon dioxide and other gases (H2S, and nitrogen compounds). In this 

phase, methane content in all the reactors was less than 20%.  

In the acidogenic phase, the leachate pH started dropping, typically below 7.0. If the 

leachate pH was found to be below 5.5, potassium hydroxide (KOH) was added to the reactors, 

to avoid excessive acid accumulation. The methane content in gas increased in the third phase, 

methanogenesis, and stabilized around 50-60%. During methanogenesis the leachate pH was 

found to be between 6.0-8.5. 
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Reactor no. 8 - 100% Yard - 37oC - 2 mm/day 
 

  
 

Reactor no. 14 - 100% Yard - 30oC - 6 mm/day 
 

  
     

Reactor no. 19 - 100% Yard - 20oC -12 mm/day 
 

 
 

Figure 4.4: Gas Composition, Methane Generated and Leachate pH in 100% Yard Reactors 
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In the declining methane phase, the volume of gas generation decreased; hence the 

methane generation rate reduced. Similar trends were observed in all other reactors. Methane 

generation graphs and pH observations for all 27 reactors are shown in Appendix B. 

Reactor no. 10, a 100 % food waste reactor, was set up at 20oC, according to the 

experimental design. It was observed that the leachate pH dropped to 4.3 within 24 hours after 

installing the reactor. Shao et. al (2005) reported that excessive volatile fatty acid accumulation 

and sudden pH drop occur when waste with high food waste content is landfilled. Hence to 

neutralize the waste, KOH was dissolved into water and added in the reactor. However, even 

after running the reactor for 80 days, substantial improvement in the leachate pH was not 

observed. Further, the methane content in gas was close to zero. Hence the reactor was 

perceived to have failed and was dismantled. The data for reactor no. 10 is shown in Appendix 

B. 

Subsequently, to avoid excessive acid accumulation, KOH was added in all food waste 

reactors while installing the reactors. Similar observations were reported by Wang et al. (1997) 

where food waste reactors with 30% seed failed due to acid accumulation; however when the 

seed percentage was increased to 70%, the reactors were successful, due to dilution effect. In 

this study additional seed was not added to avoid an increase in methane generation rate (k 

value) due to the presence of additional micro-organisms (seed). The percentage of seed in all 

reactors was maintained between 15-20% by weight to avoid variability. 

4.3.1 Comparison of Methane Generation Rates and Cumulative Methane Generation:  

Comparison of methane generation rates from reactors is presented in this section. 

Since each type of waste was expected to exhibit similar trends for methane generation, these 

results were compiled with respect to waste combinations (A to I). The methane generation rate 
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is expressed in terms of mL of methane at STP/kg of dry waste/ day. The cumulative methane 

generation rate is computed by adding the daily methane generation rate and is expressed in 

terms of liters of methane at STP / kg of dry waste. 

A - 100 % Food Waste:  Operating parameters for waste combination A- 100% food 

waste reactors were as follows. 

Reactor no. Waste Composition Ambient Temperature Rainfall 
4 100% Food 30oC 2 mm/day 

10 100% Food 20oC 6 mm/day 
25 100% Food 37oC 12 mm/day 

 
The methane data from 100% food waste reactors is shown in Figure. 4.5. As mentioned 

earlier, reactor no. 10, at 20oC and 6 mm/day rainfall failed due to excessive acid accumulation; 

hence the data from reactor no. 10 is not included in Figure 4.5. 

 It can be observed that the cumulative methane generation from food reactors is 

significantly influenced by the rainfall. The total amount of methane generated from R25 (37oC, 

12 mm/day) was considerably lower than R4 (30oC, 2 mm/day), indicating that the carbon 

leaching was signifcantly higher in R25 due to the higher rainfall condition. Further, it was 

observed that the duration of the lag phase was longer in case of food waste as compared to 

other 100% reactors operated at similar temperature. A longer lag phase was also observed in 

reactors with higher percentage of food (Waste combination F: 60% food waste). These longer 

lag phases can be attributed to VFA generation in reactors with high food content. Shao et al. 

(2005) conducted studies for solid waste in China, comprised of about 50-60% food waste, 

reported that rapid hydrolysis and volatile fatty acid accumulation in waste with a high 

percentage of food waste caused an increased lag phase before methanogenesis started. It was 

observed on dismantling that food reactors had the maximum amount of settlement, and 
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considerable loss in weight, which could be due to degradation of waste (since food is the most 

easily degraded of the waste categories tested) and high amount of carbon leaching. 

 
(a)                                                                                (b) 

 
(c)   

Figure 4.5: 100% Food Waste Reactors (a) Methane Generation Rate, (b) Cumulative Methane 
Generated (c) Reactor pictures 

 

B- 100 % Paper Reactors: Operating parameters for waste combination B- 100% paper 

waste reactors were as follows: 

Reactor no. Waste Composition Ambient Temperature Rainfall 
1 100% Paper 20oC 2 mm/day 
7 100% Paper 37oC 2 mm/day 

13 100% Paper 30oC 6 mm/day 
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Methane generation data for 100% paper reactors is shown in Figure 4.6. It can be seen 

from the methane generation rate curve that the methanogenesis initiated slowly in the 20oC 

reactor. The 37oC reactor shows the highest initial methane generation rate, which then 

dropped quickly. As the temperature increased, the initiation of methanogenesis was faster in 

case of 100% paper waste reactors.  

  
(a)                                                                                (b) 

 
                                                                                 (c) 
Figure 4.6: 100% Paper Waste Reactors (a) Methane Generation Rate, (b) Cumulative Methane 

Generated (c) Reactor Pictures 
 

It should also be noted that reactor no. 1 and reactor no. 7 – both received the same 

amount of rainfall (2 mm/day); while the former was placed at 20oC, the latter was at 37oC. The 

cumulative methane generated from reactor no. 1 was 50.64 L/kg and reactor no. 7 was 59.94 
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L/kg. It would be safe to say that the total amount of methane generated from these two 

reactors receiving  the same amount rainfall was very close. However, the cumulative methane 

generated from reactor no. 13 was less than that produced from other reactors (R#1 and R#7) 

with lesser rainfall. Thus, an increase in rainfall decreased the total methane generated from the 

100% paper reactors. This could be due to carbon leaching, since the amount of carbon leached 

out of the reactor would be higher at higher rainfall rates.  

Previous studies (Barlaz, 2006; Eleazer et.al., 1997) have mentioned that paper waste 

typically has lesser ammonical-nitrogen content, which serves as a nutrient for methanogens. 

Hence the paper reactor may be nutrient starved and may need additional nutrients for 

complete degradation. However, in this study nutrients were not added to the reactors in order 

to replicate the field conditions in the lab scale reactors.  Thus the lesser amount of methane 

generated from these reactors could also be a result of nutrient deficiency.  

After dismantling the reactors, it was found on visual observation that the paper towels 

and office paper from the paper reactors had mostly degraded. However, the printed paper 

waste was quite legible, while cardboard and milk cartons remained unchanged. 

C- 100% Textile Reactors: Operating parameters for waste combination C- 100% textile 

waste reactors were as follows. 

Reactor no. Waste Composition Ambient Temperature Rainfall 
5 100% Textile 30oC 2 mm/day 

11 100% Textile 20oC 6 mm/day 
16 100% Textile 37oC 6 mm/day 

 
Methane generation rates from 100% textile reactors are shown in Figure 4.7. The 

methane generation data from reactor no. 11- 20oC, 6 mm/day is not shown here, because the 

total amount of methane generated from this reactor was very low. Even after operating the 
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reactor for 352 days, the methane generation rate was not significant. It was observed that 

there was excessive leachate production on the first day of reactor operation, which could have 

caused microbial washout. To confirm this hypothesis, additional sludge was added in R11  on 

day 230, and again on day 234. There were significant increases in methane generation after 

microbe (sludge) addition. Hence it can be concluded that the reactor was microbe deficient for 

the first 230 days. Since the effect of sludge addition on the methane generation rate constant 

(k value) could not be quantified, the data from this reactor was not considered for further 

analysis. 

Mutiple peaks were typically observed in 100% textile waste; this could be due to 

different types of textile wastes degrading at different rates. The textile waste used in this study 

included all types of textiles: cotton, jeans, polyester, spandex, blends, etc. Hence each type of 

waste could be degrading at different rates. Overall, the rate of degradation of textile wastes 

was very slow; hence the reactors were still producing methane after about 300 days. Further, 

textile wastes had relatively lower rates of degradation (as compared to other waste 

categories); hence rainfall and temperature did not seem to substantially impact methane 

generation.  The leachate was often colorful, probably due to to the leaching of dyes used in the 

textiles. 

After dismantling the reactors it was observed that 100% textile reactors had very little 

or no settlement. The colors of some textiles were still intact and identifiable. However, on 

drying, certain types of textiles (jeans and cotton waste) had become brittle and would crumble 

upon touch. Polyester and blended textiles were mostly unchanged. 



 

105 

 

  
 (a)                                                                                 (b) 

 
(c) 

Figure 4.7: 100% Textile Waste Reactors (a) Methane Generation Rate, (b) Cumulative Methane 
Generated (c) Reactor Pictures 

 
D- 100% Yard Reactors:  The comparison between methane generation rates from 

100% yard reactors is shown in Figure 4.8.   The operating parameters for waste combination D: 

100% yard reactors is shown below: 

Reactor no. Waste Composition Ambient Temperature Rainfall 
8 100% Yard 37oC 2 mm/day 

14 100% Yard 30oC 6 mm/day 
19 100% Yard 20oC 12 mm/day 

 

From Figure 4.8, it can be observed that methanogenesis initiated slowly in the 20oC 

reactor. The 37oC reactor showed the highest initial methane generation rate, which then 

dropped quickly. The 30oC reactor had an intermediate methane generation rate, which then 

gradually started decreasing. Thus, methane generation was faster as the temperature 
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increased, even though the rainfall was infact increasing as the temperature decreased. It can 

be seen from the cumulative methane generation graph (Figure 4.8(b)) that the total methane 

generated from reactor no. 19 was significantly less than that from reactor nos. 8 and 14. This 

could be due to higher carbon leached out due to higher rainfall rate. 

Yard waste showed very high peaks, as compared to other reactors. However, visual 

observation of the remaining waste upon dismantling the reactors showed that the grass from 

the yard waste was probably responsible for the higher peaks. The leaves, twigs and branches in 

the yard waste did not show significant degradation.  

                              
(a)                                                            (b) 

 

(c) 
Figure 4.8: 100% Yard Waste Reactors (a) Methane Generation Rate, (b) Cumulative Methane 

Generated (c) Reactor Pictures 
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E: 60% Paper and 40% Inorganic Reactors: The methane generation data from 60% 

paper and 40% inorganic waste reactors is shown in Figure 4.9. The operating parameters for 

waste combination E: 60% paper and 40% inorganic reactors is shown below: 

Reactor no. Waste Composition Ambient Temperature Rainfall 
12 60% Paper + 40% Inorganic 20oC 6 mm/day 
17 60% Paper + 40% Inorganic 37oC 6 mm/day 
22 60% Paper + 40% Inorganic 30oC 12 mm/day 

 

Although inorganic waste does not produce methane, it was important to study the 

effect of inorganics, including plastic, metals, C&D waste, on degradation of waste. Methane 

generation data showed considerable fluctuations in daily methane generation rates. It was 

found that the leachate would often get locked in these reactors, which could be due to the 

presence of plastics. Initiation of methanogenesis was faster as the temperature increased. 

Reactors no. 12 & 17 received same amount of rainfall; however the cumulative 

methane generated from these two reactors had considerable difference. The cumulative 

methane generation was similar for reactors 12 and 22, receiving 6 mm and 12 mm per day 

rainfall, respectively. Thus, these reactors did not follow the trend observed for the 100% paper 

reactors of increased rainfall decreasing cumulative methane generation. 

When the reactors were dismantled, the paper waste from these reactors appeared to 

have degraded more than that from the 100% paper reactors. This could be due to the 

additional water due to the presence of plastics in these reactors. Inorganic waste from these 

reactors was mostly unchanged; however, the plastic bottles had water accumulated inside 

them.  
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(a)                                                                  (b) 

 
(c) 

Figure 4.9: 60% Paper+ 40% Inorganic Waste Reactors (a) Methane Generation Rate, (b) 
Cumulative Methane Generated (c) Reactor Pictures 

 

F: 60% Food + 30% Textile +10% Yard Reactors: The methane generation data and 

cumulative methane generated from 60% food+30% textile +10% yard reactors is shown in 

Figure 4.10. The operating parameters for waste combination F: 60% food + 30% textile +10% 

yard were as follows: 

Reactor 
no. 

Waste Composition Ambient 
Temperature 

Rainfall 

15 60% Food + 30% Textile +10% Yard  30oC 6 mm/day 
20 60% Food + 30% Textile +10% Yard  20oC 12 mm/day 
26 60% Food + 30% Textile +10% Yard  37oC 12 mm/day 
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These reactors displayed more than one peak. This could be due to different types of 

waste degrading at different rates. The overall rate of degradation was slow due to the presence 

of textile waste in the reactors.  Even after operating reactor no. 26 at 37oC for 320 days, it was 

still producing gas, and had not dropped to a low constant value. Similar behavior was found in 

reactors no. 20 and 15, which were operated at lower temperatures.  

Reactors no. 20 and 26 received same amount of rainfall (12 mm/day) and the 

cumulative methane generated from these reactors was comparable. After dismantling it was 

found that the food waste in these reactors had mostly disappeared; however the textile waste 

was mostly unchanged. The settlement in 60% food reactors was also high, second only to the 

100% food reactors.  

 
(a)                                                                                 (b) 

 
(c) 

Figure 4.10: 60% Food + 30% Textile + 10% Yard Waste Reactors (a) Methane Generation Rate, 
(b) Cumulative Methane Generated (c) Reactor pictures 
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G: 60% Yard + 30% Food + 10% Paper: The methane generated rates from 60% 

yard+30% food+ 10% paper reactors are shown in Figure 4.11. The operating parameters are 

summarized below. 

Reactor 
no. 

Waste Composition Ambient 
Temperature 

Rainfall 

2 60% Yard + 30% Food + 10% Paper 20oC 2 mm/day 
18 60% Yard + 30% Food + 10% Paper 37oC 6 mm/day 
23 60% Yard + 30% Food + 10% Paper 30oC 12 mm/day 

 
It can be seen that lag period was longest in 20oC reactor. However, the lag period in 

30oC is observed to be lesser than that for the reactor at 37oC. The smaller lag period for reactor 

no. 23 compared to reactor no. 18 at higher temperature could be because of higher rainfall. 

The total amount of methane generated from reactors no. 2, 23 and 18 was almost similar, 

indicating that the effect of rainfall was not significant on the cumulative methane generated 

from the reactors. This contradicts the observations from other reactors. On dismantling the 

food waste within these reactors was not identifiable. However, the leaves were identifiable, 

but grass had mostly disappeared, or was lumped into an unidentifiable mass.  
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(a)                                                                                   (b) 

 
(c) 

Figure 4.11: 60% Yard + 30% Food + 10% Paper Waste Reactors (a) Methane Generation Rate, 
(b) Cumulative Methane Generated (c) Reactor Pictures 

 
H- 60% Textile + 30 % Paper + 10% Food Reactors: The methane generated from 60% 

textile+30% paper and 10% food reactors is shown in Figure 4.12. The operating parameters are 

listed below. 

Reactor 
no. 

Waste Composition Ambient 
Temperature 

Rainfall 

6 60% Textile + 30 % Paper + 10% Food  30oC  2 mm/day 
21 60% Textile + 30 % Paper + 10% Food 20oC 12 mm/day 
27 60% Textile + 30 % Paper + 10% Food 37oC 12 mm/day 

 

It can be observed that the lower the temperature, the longer was the lag phase in 

these reactors. Multiple peaks were observed due to the presence of a combination of wastes, 

as well as high percentage of textile waste. There was considerable variability in the cumulative 
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methane generated from reactors no. 21 and 27, although both of them received the same 

amount of rainfall, which contradicts the observations from other reactors. The cumulative 

methane generated from reactor no. 27 was lower than reactor no. 6; this could be due to 

higher amount of rainfall in reactor no. 27 is higher than reactor no. 6, which would mean higher 

carbon washout. However, R21 and R6 had almost same amount of total methane generation, 

while the R6 received lesser rainfall than R21. This again contradicts the results from other 

reactors, where increase in rainfall reduced the total amount of methane generated from the 

reactors. 

Upon dismantling, the textile wastes did not appear to have changed much. However, 

after drying it was observed that certain types of textile waste like cotton fabrics had turned 

brittle and would turn into powder on touch. The food waste was not identifiable in these 

reactors. Paper waste was lumped with the textile and was difficult to separate, indicating 

degradation of paper waste.   

  



 

113 

 

 
(a)                                                                                 (b) 

 
                                                                                           (c) 
Figure 4.12: 60% Textile + 30% Paper + 10% Food Waste Reactors (a) Methane Generation Rate, 

(b) Cumulative Methane Generated (c) Reactor pictures 

 

 
I – 20% each: The methane generated from 20% each reactors is shown in Figure 4.13. 

The operating parameters for waste combination I: 20% each are shown below. 

Reactor no. Waste Composition Ambient Temperature Rainfall 
3 20% each 20oC 2 mm/day 
9 20% each 37oC 2 mm/day 

24 20% each 30oC 12 mm/day 

 

The lag phase was longest at 20oC. However, the lag phase in reactor no. 24 at 30oC was 

shorter than that observed in reactor no. 9 at 37oC. This could be due to the presence of a 

higher amount of rainfall in reactor no. 24. Reactor no. 24 showed faster initiation of 

methanogenesis and the methane generation rate dropped gradually. However, reactor no. 9 
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showed the highest peak and the rate dropped rapidly thereafter. Reactor no. 3 was still 

producing considerable amount of gas after 370 days of operation. This behavior could be due 

to interaction effects. 

The cumulative methane generation from reactors no. 9 and 3 was expected to be 

similar. However, since reactor no. 3 was still producing gas when it was dismantled, it is 

possible that amount of methane generated from it would eventually be comparable. 

On dismantling these reactors, it was found that the food waste, tissues, office paper 

and grass had mostly degraded. Textile waste, cardboard, milk cartons, leaves and inorganic 

waste were mostly unchanged on visual examination. 

 
(a)                                                                                 (b) 

 
(c) 

Figure 4.13: 20% Each Waste Reactors (a) Methane Generation Rate, (b) Cumulative Methane 
Generated (c) Reactor Pictures 
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4.3.2 Effect of Waste Composition on Methane Generation Rate 

 To study the effect of waste composition on methane generation rate, the methane 

generated from all reactors was plotted against time at a particular temperature (See Figure 

4.14-4.16). Waste composition affects methane generation rate significantly. From Figures 4.14-

4.16, it can be observed that 100% yard wastes showed a relatively early high peak and 

asymptotic decrease, following classic first-order decay. 60% yard waste reactors followed a 

similar trend. Methane generation curve from paper waste reactors also showed first-order 

decay curve; however, the total amount of methane generated from 100% paper reactors was 

low, compared to the other reactors. This could be due to the nutrient deficiency in paper 

reactors. 100% food reactors showed a late peak, compared to other reactors, which could be 

due to the enhanced lag phase due to rapid hydrolysis. Due to the late peak, the cumulative 

methane generation curve from 100% food waste reactors did not follow exactly a first-order 

curve. Further, 100% textile waste reactors showed the lowest cumulative methane generation, 

with multiple and relatively low peaks. Thus 100% textile waste reactors did not follow the first-

order decay curve. However, for the 20% each reactors, and in cases where there was a mixture 

of different types of wastes, the cumulative methane generation curve generally followed classic 

first-order decay. This behavior could be because the presence of a mixture of wastes 

supplemented nutrients, which enhanced the methane generation rates. The 60% food reactors 

showed a substantial lag phase, similar to the 100% food reactors. 

It should be noted again that in each case the amount of rainfall received was different; 

hence the duration of lag phase and the peak intensity depended on the rainfall. The effect of 

temperature, rainfall and waste composition on rate of degradation can only be quantified using 

a multiple linear regression equation.  
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(b) 
Figure 4.14: Gas Generation Rates for 20oC Reactors (a) Cumulative Methane Generation Curve 

(b) Methane Generation Rate Curve  
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(a) 

(b) 
Figure 4.15: Gas Generation Rates for 30oC Reactors (a) Cumulative Methane Generation Curve 

(b) Methane Generation Rate Curve   
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(a) 

 

 
(b) 

Figure 4.16: Gas Generation Rates for 37oC Reactors (a) Cumulative Methane Generation Curve 
(b) Methane Generation Rate Curve 
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4.3.3 Probable Moisture Content  

The probable moisture content inside the reactor was computed based on the initial 

moisture content, amount of water added and leachate produced. The probable moisture 

content in the reactors was plotted with respect to time to study the variation in moisture 

content within the reactors (See section 3.4.4). The probable moisture content inside the 

reactors is shown in Figure 4.17. 

During the first few days after reactor installation, there was no leachate production 

from reactors until the waste reached its saturation limit. Thereafter, the amount of leachate 

produced was mostly equal to the amount of water added in the reactor. The probable moisture 

content was fairly constant for most reactors. However, there were two exceptions: reactors 

with a high percentage of food waste, and reactors with a high percentage of textile waste. 

100% food waste (reactors no. 4 & 25) reactors typically had very high initial moisture content; 

hence they lost water faster until the waste reached a stable moisture content. This also led to 

faster carbon washout from food reactors. Reactors with a higher percentage of textile waste 

however kept absorbing water; hence the moisture content within reactor no. 11, 16 and 5 kept 

increasing. Inorganic waste, especially plastic waste, obstructed water flow; hence there was 

considerable fluctuation observed in the probable moisture content in reactor no. 12 and 17.  

It must be noted that that the probable moisture content of waste was computed using 

the initial weight of the waste. However, there was considerable weight loss within the reactor 

during its lifetime. The weight loss was especially significant for reactors with high food content. 

Hence this method of computing moisture content is only approximate. 
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Note: The reactor no.s can be found in Table 3.1 and 3.2 

 

Figure 4.17: Probable Moisture Content in (a) 20oC, (b) 30oC and (c) 37oC Reactors 
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4.3.4 Final Moisture Content of Waste 

After dismantling each reactor, degraded waste samples were collected from the top, 

middle and bottom of the reactor. Moisture content was determined for these 3 samples to 

study if there was differential moisture content in the reactor. Observed final moisture contents 

were plotted with respect to depth for every reactor. It was observed that the bottom layer had 

higher moisture content than the rest of the reactor. This explained the variation in saturated 

moisture content of waste with the same waste composition. The moisture variation within 

reactors is shown in Figure 4.18. 

These moisture contents indicate that the reactors were unintentionally operating in 

the moisture content range typical of bioreactor landfills, although leachate was not 

recirculated. This could be due to the rainfall calculations which were done based on the rainfall 

received per surface area. Future studies could consider rainfall per waste volume, rather than 

rainfall per area. This could help reduce the moisture content of waste in the lab, and help 

replicate the typical moisture content in the landfill. 
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Note: The reactor no.s can be found in Table 3.1 and 3.2 

 
Figure 4.18: Moisture Variation Inside (a) 20oC (b) 30oC (c) 37oC  
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Table 4.10: Comparison of Observed and Calculated Moisture Content within the Reactor 
 

Reactor 
 

Observed  
Degraded M.C. 

Calculated Probable 
M.C. 

Difference 
(Observed-Calculated) 

 % Std Dev % 

1 76.70 6.240 78.73 2.03 

2 82.73 4.254 78.78 -3.95 

3 69.76 3.455 58.35 -11.41 

4 88.29 NA 56.52 -31.77 

5 68.20 6.057 59.28 -8.92 

6 70.57 3.902 67.14 -3.43 

7 74.49 2.648 69.94 -4.55 

8 84.15 3.652 77.75 -6.40 

9 66.10 15.884 63.35 -2.75 

12 62.91 5.862 83.12 20.21 

13 66.78 3.722 71.16 4.38 

14 74.67 2.216 75.12 0.45 

15 84.84 3.417 72.71 -12.13 

16 69.96 6.232 58.21 -11.75 

17 65.76 4.000 73.22 7.46 

18 69.86 3.590 65.54 -4.32 

19 79.34 0.974 74.58 -4.76 

20 83.01 1.560 86.97 3.96 

21 75.21 2.353 89.99 14.78 

22 77.03 1.533 80.02 2.99 

23 69.05 2.752 47.37 -21.68 

24 86.05 4.627 72.38 -13.67 

25 75.45 5.015 69.02 -6.43 

26 88.92 NA 79.89 -9.03 

27 72.55 6.185 79.95 7.40 

 

Further, the average observed moisture content was also compared against the 

computed probable moisture content, as shown in Table 4.10. The average observed values and 

probable moisture content values seemed to agree in most cases. The probable moisture 

content values were also within the error range in most cases. However, as mentioned earlier, 
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the change in weight of the reactor affected the probable moisture content significantly; hence 

this method gave an “approximate” estimate of the moisture content. 

4.3.5 Degraded Volatile Solids of Waste 

Volatile solids (VS) of degraded waste were determined to study the effect of 

degradation on volatile solids. The volatile solids content of degraded waste (hereafter called 

“final volatile solids”) are tabulated in Table 4.11. Further, the change in the volatile solids was 

calculated and is shown Figure 4.19. 

 It was found that there was considerable loss in the dry weight of the reactors after 

degradation. However, the volatile solids percent was only reduced from -0.5 to 19%. Since the 

waste studied in this case was “pure” waste, the loss in volatile solids was relatively small. In a 

mixed solid waste sample from a landfill, some portion of the waste is comprised of inorganics 

such as soil. Over time, as the degradation increases, the amount of organic waste decreases, 

while the inorganic portion remains same. Hence, the percent volatile solids decreases. In this 

study, the reactors were filled with organic waste only (except in certain cases where inorganic 

wastes were present). Hence, although the waste was degrading, and recalcitrant carbon 

percentage was increasing, the inorganic portion was not actually increasing; hence, the volatile 

solids did not change much in these reactors. These results are consistent with those observed 

by Wu et al. (2001). The change in volatile solids in a reactor with office paper was found to be 

26.80% and for a newsprint reactor was found to be only 4.40% even after operating the 

reactors for a period of 9 months. 
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Table 4.11: Change in Volatile Solids in Reactors (All Values in Percent) 
 

  

  

  

  

100% 

Food 

100% 

Paper 

100% 

Textile 

100% 

Yard 

60 % Paper 

+40% 

Inorganic 

60% Food + 

30% Textile+ 

10% Yard 

60% Yard 

+30% food 

+10% paper 

60% Textile 

+30% Paper 

+10% Food 

20% 

each 

A B C D E F G H I 

20oC Initial VS 92.61 89.13 97.41 80.67 54.60 93.06 85.12 91.55 68.04 

Final VS   85.43   70.79 50.77 81.00 82.93 91.65 64.88 

Change in VS   3.69   9.88 3.83 12.06 2.19 -0.11 3.16 

30oC Initial VS 90.30 90.48 98.54 87.08 53.78 93.58 88.10 95.88 71.06 

Final VS 87.18 84.74 98.17 80.09 51.43 86.98 80.86 95.67 66.42 

Change in VS 3.12 5.74 0.36 6.99 2.36 6.60 7.24 0.20 4.65 

37oC Initial VS 88.38 88.89 98.98 86.27 55.30 92.37 86.50 96.02 72.49 

Final VS 84.70 82.27 99.48 67.25 52.41 87.98 77.51 89.19 61.12 

Change in VS 3.68 6.62 -0.51 19.02 2.89 4.39 8.99 6.83 11.37 
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Figure 4.19: Change in Volatile Solids after Degradation 

 

4.4 k Computation 

4.4.1 Lag Phase Removal 

The first phase in degradation was the lag phase, during which the microbes become 

acclimatized to the waste, and hydrolyze it into simpler substrates. The lag phase needs to be 

eliminated while curve fitting the data. The amount of methane produced during the lag phase 

was not included when calculating the ultimate methane potential of waste. Faour et al. 

(2007) attempted to model the methane generated during the lag phase for the first time. 

According to the nomenclature used by Faour et al. (2007), the methane produced during the 

lag phase was called “Storage Volume- Vsto”. In the case of actual full-scale landfills, the lag 

phase may extend for several years and Vsto may be significant.  
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The lag phases and Vsto found in this study are tabulated in Table 4.12. The lag phase is 

also plotted with respect to waste combinations in Figure 4.20.  

Table 4.12: Lag Phase and Storage Volume for Each Reactor 
 

Reactor 
no. 

Lag Phase 
(days) 

Vsto 
(m3/kg) 

Reactor 
no. 

Lag 
Phase 
(days) 

Vsto 
(m3/kg) 

Reactor 
no. 

Lag 
Phase 
(days) 

Vsto 
(m3/kg) 

1 79 1.34 9 30 2.51 19 22 1.36 

2 120 2.97 12 58 1.4 20 91 0.97 

3 63 0.79 13 19 0.44 21 45 0.06 

4 47 1.6 14 11 0.56 22 14 0.11 

5 34 0.37 15 60 1.28 23 16 0.53 

6 20 0.39 16 17 0.88 24 24 0.94 

7 21 1.38 17 10 0.11 25 48 0.74 

8 5 0.84 18 30 3.19 26 48 1.79 

      27 12 0.63 

 

 

Figure 4.20: Lag Phase Duration with respect to Time 
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Certain types of waste had shorter lag times compared to other wastes. For example, 

yard waste (D-100% yard) had the shortest lag time. However, temperature had significant 

impact on the duration of the lag phase. For any particular waste combination, the lag phase 

was longest for lower temperature (20oC). Likewise, the lag phase at 30oC was expected to be 

longer than that at 37oC. However, in some cases the duration lag phase was reduced due to 

higher rainfall rates (waste combination G and I).  However, at 20oC, irrespective of the rainfall 

received by the reactor, the lag phase duration was observed to be the longest. 

4.4.2 Non-Linear Regression  

k values were calculated for all reactors using non-linear regression applying the 

Newton-Gauss method.  Statistical software SAS was used for conducting the non-linear 

regression analysis. In most cases the non-linear regression was able to converge using the 

first-order decay equation. However, the residual plot showed a curvature for most reactors, 

which indicates non-constant variance. This could be because in many cases the waste did not 

follow a first-order decay equation properly. Other relationships (second-order or saturation 

kinetics) were not implemented because it was beyond the scope of this study. An example of 

a fitted curve and residual plot is shown in Figure 4.21. 
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(a)                                                                                  (b) 
Figure 4.21: Reactor no. 8 (a) Fitted Curve and (b) Error Plot  

 
However, for some reactors the non- linear regression was not able to converge. The 

data for reactors such as 100% food waste and 100% textile waste typically could not 

converge. Reactors no. 20 and 26 had 60% food waste+30% textile waste+10% yard waste; 

these reactors also could not converge. This could be because these two types of wastes did 

not follow a first-order decay relationship. Food waste for example had a very long lag phase, 

and showed multiple peaks. It was not practical to remove this lag phase for modeling, 

because a considerable amount of gas had been produced in this phase. Secondly, it was 

necessary to have an average k value for the reactor. If a certain portion of the gas production 

was neglected, it would have led to high and unreasonable k values.  

  

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

0 100 200 300 

C
u

m
u

la
ti

ve
 M

e
th

an
e

 P
ro

d
u

ct
io

n
 

(L
/k

g)
 

Time (days) 

Reactor no. 8- 100% Yard-37oC-2 
mm/day 

Fitted Curve 

Observed Data 

Lo = 81.68 L/kg 
 k=9.334 yr-1 

R2=0.995 



 

130 

 

Table 4.13: Lo and k values based on Laboratory Scale Data 
 

Reactor Lo k 

 m3/kg /yr 

1 83.46 1.026 

2 113.6 1.617 

6 89.39 2.602 

7 102.8 1.580 

8 81.68 9.344 

9 118.4 2.409 

12 25.43 2.504 

13 53.40 2.767 

14 93.02 5.731 

15 76.79 1.628 

17 44.92 2.178 

18 75.92 7.811 

19 41.42 3.24 

21 24.70 2.008 

22 78.47 1.033 

23 91.88 5.037 

24 108 2.416 

27 77.59 2.924 

 

Textile wastes showed multiple peaks in the methane generation rate graphs. Further, 

textile waste degraded at a very slow rate and even after monitoring the reactors for 250-400 

days, the reactors were still producing considerable gas. Hence the reactors had not reached 

the final stabilization phase. In such cases the non-linear regression approach did not work. An 

attempt was made to use a simple linear regression equation. This method involved using the 

final observed cumulative methane generation value as Lo. This assumption could be justified, 

because if the reactor had been operated further, the Lo values could have been different. 

Hence the data from 9 reactors out of 27 could not be used for model development. The 

converged values of Lo and k are presented in Table 4.13. 
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4.4.3 Comparison with Values Presented in Literature 

Eleazer et al. (1997) observed that yard waste and coated paper showed a classic first-

order methane production with a peak followed by asymptotic decline. However, food waste 

showed multiple peaks, which the authors believed could be because of the presence of 

different types of substrates. The authors also reported that office paper exhibited a nearly 

constant methane production for about 300 days, which could be because of its near uniform 

composition. Similar observations were found in the present study.  In this study, yard waste 

and paper waste showed the classic first-order decay. Food waste and textile waste showed 

multiple peaks. The paper waste considered in this study was mixed paper waste, with coated, 

non-coated, office paper mixed together. Hence as a combined effect, the classic first-order 

peak followed by a decline was observed in this study. 

In the present study, it was observed that the k values were considerably higher than 

those observed in the landfills. Typical landfill k values are in the range of 0.02-0.7 yr-1. 

Although this study aimed at recreating landfill like conditions by not adding nutrients and 

using larger reactors (16L instead of the typical 2L), which allowed for not shredding waste, the 

higher k values could be a result of controlled environment and greater microbial access 

compared to the conditions in a landfill.  This observation is consistent with the results 

published in Cruz and Barlaz (2010). The k values found in the lab scale bioreactor study 

published by Cruz and Barlaz (2010) are compared with those found the present study in Table 

4.14. 
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Table 4.14: Comparison of Lo and k values with Literature 
 

Cruz and Barlaz (2010) Present Study 

Waste k 
 (yr-1) 

Lo 

(m3/dry Mg) 
Waste k 

(yr-1) 
Lo 

(m3/dry Mg) 

Food Waste 15.02 300.7 Food Waste NA*1 NA*1 

Office Paper 3.08 217.3 Paper Waste 1.02-2.76*2 53-102.8*2 

Newspaper 3.45 74.3 

Corrugated 
Container 

2.05 152.3 

Coated Paper 12.68 84.4 

Grass 31.13 144.4 Yard Waste 3.24- 9.34*2 45-93.02*2 

Branches 1.56 62.6 

Leaves 17.82 30.6 

NOTE: *1
Non linear regression did not converge for food waste reactors. Hence Lo and k values are not enlisted  

 here. 
                      *2

 Lo and k values are dependent on temperature and rainfall. Hence a range is presented here. 
 

From Table 4.14, it can be seen that there is some variability in the values reported in 

the lab scale studies published by Cruz and Barlaz (2010) and the present study. This could be 

attributed the fact the studies conducted by Cruz and Barlaz (2010) were at ideal conditions 

(shredded waste, with leachate recycle and nutrient addition at 40oC). Further, the effects of 

rainfall and temperature were not considered in the previous studies.  

The curve fitting done by Cruz and Barlaz (2010) is shown in Figure 4.22.  It can be 

observed that the errors were non-constant, which indicates that the waste degradation did 

not exactly follow first-order degradation.  
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Figure 4.22: Curve Fitting plots (Source: Cruz and Barlaz,2010) 
 

 Error plots from the present study also followed similar trend (See Figure 4.21). 

However, since the k values were higher than those found in field-scale landfills, it was 

necessary to use scale-up factors to adapt the model for field scale conditions. 

4.4.4 Lo and Biochemical Methane Potential Comparison 

The modeled ultimate methane potential (Lo) was compared with the Biochemical 

Methane Potential (BMP) found in this study (See Table 4.15). Biochemical Methane Potential 

(BMP) was found to be higher than the ultimate methane potentials computed from the 

laboratory scale data. This could be due to the fact that BMP test involved ideal conditions for 

degradation (ground samples, presence of buffering agent, presence of macro and micro 

nutrients). However, in the lab scale reactors, solid waste was not ground, there were pH 

fluctuations, nutrients to enhance degradation were not added, and carbon lost in leachate 

was not recycled. It was expected that the amount of carbon lost would also increase as the 

rainfall increases. 

 

http://pubs.acs.org/action/showImage?doi=10.1021/es100240r&iName=master.img-000.jpg&type=ma
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Table 4.15: Comparison between BMP and Modeled Lo 
 

Reactor 
Initial 

VS 
BMP Modeled Lo 

 % m3/VS 
m3/kg of 

DS 
m3/kg of 

VS 

1 89.13 334 83.46 93.64 

2 85.12 277 113.60 133.46 

6 96.02 268 89.39 93.10 

7 90.48 390 102.80 113.62 

8 87.08 182 81.68 93.80 

9 71.06 286 118.40 166.62 

12 54.60 236 25.43 46.57 

13 90.48 390 53.40 59.02 

14 87.08 182 93.02 106.82 

15 93.58 280 76.79 82.06 

17 53.78 236 44.92 83.52 

18 88.10 277 75.92 86.18 

19 87.08 182 41.42 47.57 

21 91.55 268 24.70 26.98 

22 53.78 236 78.47 145.91 

23 88.10 276 91.88 104.29 

24 71.06 286 108.00 151.98 

27 96.02 268 77.60 80.81 

 

Figure 4.23 shows the effect of rainfall on the BMP/Lo ratio. On preliminary 

observation, it can be seen that as the rainfall increased, the BMP/Lo values increased, which 

indicates that the Lo values decreased as the rainfall increased. However, it must be noted that 

this was based on the lab scale data where the composition and temperature were different in 

each case. Hence further analysis is necessary to study the effect of rainfall on the ultimate 

methane potentials from landfills. 
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Figure 4.23:  Change in BMP/Lo Ratio with respect to Rainfall 
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CHAPTER 5 

MODEL DEVELOPMENT AND VALIDATION 

5.1 Introduction 

This chapter describes the procedure for developing the proposed Capturing Landfill 

Emissions for Energy Needs (CLEEN) model. This chapter is divided into 2 sections. The first 

section describes the procedure for developing the multiple linear regression (MLR) equation 

for predicting k values using 7 predictor variables: rainfall, temperature, and waste 

composition (% food, % paper,% textile, % yard and % inorganic). The assumptions made for 

developing the CLEEN model are presented in the second section.  

5.2 Multiple Linear Regression Analysis 

This section gives a detailed description of the steps involved in a multiple linear 

regression analysis. Based on the laboratory scale data, a MLR equation was developed to 

predict the first-order decay constant (k) as a function of rainfall, temperature and waste 

composition. As mentioned earlier in Chapter 4, curve fitting using a non-linear regression 

method was successful for 18 reactors out of 27. The data from these 18 reactors was used for 

developing the MLR equation. Statistical software SAS was used for the analysis. The raw data 

used for developing the MLR equation is presented in Table 5.1. The steps followed for 

developing the statistical relationship were: 

1. Studying raw data plots and correlation analyses, 

2. Developing preliminary MLR model and checking model assumptions, 



 

137 

 

3. Conducting remedial actions, such as transformations, until the model assumptions for 

regression analysis were satisfied, 

4. Exploring possible interaction terms, 

5. Searching for good fitted MLR models, 

6. Selecting the best fitted MLR model. 

Table 5.1: Raw Data for Developing the MLR Equation 
 

Rainfall 
Ambient 

Temperature % Food % Paper %Textile %Yard % Inorganic 
Computed 

k value 

mm/day K      yr-1 

2 293 0 100 0 0 0 1.03 

2 293 30 10 0 60 0 1.62 

2 303 10 30 60 0 0 2.60 

2 310 0 100 0 0 0 1.58 

2 310 0 0 0 100 0 9.34 

2 310 20 20 20 20 20 2.41 

6 293 0 60 0 0 40 2.50 

6 303 0 100 0 0 0 2.77 

6 303 0 0 0 100 0 5.73 

6 303 60 0 30 10 0 1.63 

6 310 0 60 0 0 40 2.17 

6 310 30 10 0 60 0 7.81 

12 293 0 0 0 100 0 3.24 

12 293 10 30 60 0 0 2.01 

12 303 0 60 0 0 40 1.03 

12 303 30 10 0 60 0 5.04 

12 303 20 20 20 20 20 2.42 

12 310 10 30 60 0 0 2.92 
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5.2.1 Raw Data Plots and Correlation Analysis 

5.2.1.1 Response vs. Predictor Plots 

The response vs. predictor plots are used for studying if a multiple linear regression 

form would be suitable for fitting the data. The response vs. predictor plots are presented in 

Figure 5.1. 

It was observed that the k vs. rainfall graph showed a decreasing trend, while k vs. 

temperature showed an increasing trend. Thus increase in rainfall decreased the rate of 

degradation, and increase in temperature increased the rate of degradation. An increasing 

trend was also found in the k vs. yard waste plot, indicating that the presence of a higher 

amount of yard waste increased the rate of degradation.  In case of k vs. food, k vs. paper, k vs. 

textile, and k vs. inorganic plots, a slight curved downward trend was observed.   
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Figure 5.1: Response vs. Predictor Plots 
 

5.2.1.2 Predictor vs. Predictor Plots 

The predictor vs. predictor plots; shown in Figure 5.2, helps in exploring if any 

predictors are linearly correlated with each other. Presence of downward or upward trends in 

the plots indicate that the predictors are linearly correlated with each other. A slight 

downward trend was observed in food vs. paper, paper vs. yard, and textile vs. yard, paper vs. 

textile plots. Hence, mullticollinearity was present in the data.  

Complications in the MLR analysis can occur when there is high multicollinearity in the 

relationship. Extremely high multicollinearity indicates that two or more predictors are 

explaining the same variation in the response variable, leading to numerical issues in 
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computing least squares to estimate the parameters for the MLR model. These numerical 

issues correspond to an inability to precisely determine the appropriate estimated parameters, 

i.e., the variance of the least squares estimators is inflated. 

 
 

Figure 5.2: Predictor vs. Predictor Plots 
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5.2.1.3 Correlation Analysis 

Correlation analysis helps in quantifying the linear association between two variables. 

Table 5.2 shows the Pearson’s correlation coefficients computed for all response vs. predictor 

and predictor vs. predictor combinations. Pearson’s correlation coefficient (r) ranges from -1 

to +1. While positive values of r indicate strong positive linear relationship, negative values of r 

indicate a presence of a negative linear relationship. When r = 0, it indicates that there is little 

or no correlation between the variables.  From Table 5.2, it can be observed that k and % yard 

was highly correlated, with a correlation coefficient of 0.721. All other correlation coefficients 

were non-zero, which indicated that there was some correlation between all predictors and 

response variables. 

Presence of a non-zero value in the correlation matrix between predictor variables 

shows multicollinearity. However, if r < 0.7 it can be assumed that the multicollinearity 

problems would not be very serious. Due to the mixture design that was necessary for this 

study, multicollinearity was inherent in the data.  From Table 5.2, it can be observed that 

correlation coefficients for predictors had a non-zero value. However, since the correlation 

coefficients were less than 0.7 in all cases, it was concluded that their correlations were not 

high. However, correlation between paper and yard waste was equal to 0.6804, which was 

close to 0.7 but less than 0.7.  
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Table 5.2: Correlation Analysis for Raw Data 
 

Pearson Correlation Coefficients, N = 18 

Prob > |r| under H0: Rho=0 

 k rainfall temp food paper textile yard inorganic 

k 1 -0.0779 0.39396 -0.0055 -0.5045 -0.2278 0.72102 -0.3077 

rainfall -0.0779 1 -0.1564 0.02785 -0.2199 0.21328 0.00237 0.15381 

temp 0.39396 -0.1564 1 0.06103 -0.0423 0.02662 -0.023 0.05014 

food -0.0055 0.02785 0.06103 1 -0.5148 0.20615 0.02906 -0.2605 

paper -0.5045 -0.2199 -0.0423 -0.5148 1 -0.1915 -0.6804 0.24192 

textile -0.2278 0.21328 0.02662 0.20615 -0.1915 1 -0.4079 -0.2316 

yard 0.72102 0.00237 -0.023 0.02906 -0.6804 -0.4079 1 -0.3746 

inorganic -0.3077 0.15381 0.05014 -0.2605 0.24192 -0.2316 -0.3746 1 

 

5.2.1.4 Evaluating the Impact of Missing Data 

At this point, additional investigation was conducted to explore the high correlation 

between paper and yard waste. Initially, when the original experiment was designed using the 

cyclic incomplete block with mixture design for waste composition, the correlation between 

waste components was not significant (See Table 5.3). 

Table 5.3: Correlation Analysis for the Original Experimental Design 
 

Pearson Correlation Coefficients, N = 27 

Prob > |r| under H0: Rho=0 

  food paper textile yard inorganic 

food 1 -0.45526 -0.17619 -0.12863 -0.23911 

paper -0.45526 1 -0.35063 -0.409 0.26245 

textile -0.17619 -0.35063 1 -0.37169 -0.25 

yard -0.12863 -0.409 -0.37169 1 -0.21571 

inorganic -0.23911 0.26245 -0.25 -0.21571 1 

 

In a mixture design if % food waste was to be increased, other waste components had 

to be reduced. Hence, in most cases, there was a negative correlation between waste 
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components. This negative correlation was unavoidable in a mixture design. Due to this 

correlation, multicollinearity arises in regression analysis resulting from mixture designs. To 

further investigate this multicollinearity effect, variance inflation factors (VIF’s) were 

calculated for the original design of experiments (See Table 5.4). It can be observed that the 

VIF’s were greater than 5 for all waste components, which indicates that there may be serious 

multicollinearity in the data.  

Table 5.4: Variance Inflation Factors for the Original Experimental Design 
 

Variable Variance  Inflation Factors 

food 5.90 

paper 10.11 

textile 7.11 

yard 7.39 

 

 As mentioned earlier, the k values from some reactors could not be calculated in this 

study. 100% food, 100% textile and 60% food + 30% textile + 10% yard reactors typically did 

not converge during the non-linear regression analysis. Hence, these data points were 

omitted. Due to this, the correlation between some waste components (e.g. paper and yard 

waste) was found to be higher than the original design. 

5.2.2 Preliminary Multiple Linear Regression Equation 

Initially an attempt was made to develop a MLR model as follows: 

k = 0 + 1R + 2T+ 3F + 4P + 5TX+ 6Y+ 7I +                      (5-1) 

where,   

k = first-order methane generation rate constant (yr-1),  

s = parameters to be determined through multiple linear regression, using the lab data,  
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R = annual rainfall (mm/day),  

T = average annual temperature (K),  

F= % food, P = % paper, TX= % textile, and Y = % yard in landfilled waste, 

 = error uncertainty, modeled as a random variable. 

After regressing k with all predictor variables, it was observed that the model was not 

appropriate, because the waste composition (% food, % paper, % textile, %yard and % 

inorganic) summed up to 100%. Thus one variable (out of the five) was a linear combination of 

the other 4 variables, such that X5 = 100% -X1-X2-X3-X4. This is again a property of a mixture 

design.  Hence, it was necessary to employ an alternate model form.  It was decided to use 4 

out of the 5 variables for developing the MLR model. Since inorganic waste does not 

contribute to methane production, the effect of inorganic waste on the k values was expected 

to be minimal. Hence, % inorganic waste was not used for building the MLR equation. 

  The preliminary MLR model was developed using SAS, and the estimates for 

the model parameters (β’s) are presented in Table 5.5. 

Table 5.5: Parameter Estimates for the Preliminary MLR Model 
 

Parameter Estimates 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| Type I SS Variance 
Inflation 

Intercept 1 -40.975 17.9921 -2.28 0.0437 185.908 0 

rainfall 1 -0.0115 0.09976 -0.11 0.9106 0.55035 1.22426 

temp 1 0.13992 0.05731 2.44 0.0327 13.5418 1.05061 

food 1 -0.0037 0.03602 -0.1 0.9191 0.07594 2.47363 

paper 1 0.00736 0.03186 0.23 0.8215 33.6252 8.9725 

textile 1 0.0148 0.02857 0.52 0.6145 6.66803 2.98122 

yard 1 0.05124 0.02686 1.91 0.0829 8.99278 7.61798 
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Based on the SAS output (Table 5.5), the preliminary fitted MLR equation is shown in 

Eq. (5-2) 

                                                

                                                                                                                                          (5-2) 

Where,    = predicted rate of degradation (yr-1), R= rainfall (mm/day), T= temperature (K), F= % 

food, P = % paper, TX= % textile, and Y = % yard in landfilled waste. 

5.2.2.1 Checking Assumptions for the MLR Equation 

The following assumptions underlie any multiple linear regression (MLR) analysis:  

1. The MLR model form is reasonable.  

2. The residuals (errors) have constant variance. 

3. The residuals (errors) are normally distributed. 

4. The residuals are not auto-correlated. 

These assumptions can be verified by performing residual analysis. Residuals are the 

errors terms or the difference between the predicted value of k (   ) and the observed k (from 

the lab data). 

5.2.2.2 MLR Model Form Is Reasonable 

The MLR model form is assumed to be adequate when all the residuals versus 

predictor plots have no curvature in them (See Figure 5.3). Curvature was observed in 

residuals vs. rainfall and residuals vs. paper plots. Further, a slight curvature was found in the 

residuals vs. yard plot.  
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Figure 5.3: Residuals vs. Predictor Plots for the Preliminary Model 
 

5.2.2.3 Residuals Have Constant Variance 

A regression based model assumes that the errors have constant variance. This means 

that when the residuals are plotted against the predicted value of k (   , they should be 

randomly scattered. Presence of a funnel shape in the residuals vs.     plot (see Figure 5.4) 

indicates that the residuals have a non-constant variance. A curved funnel shape was observed 

in Figure 5.4. This indicates that the residuals had a non-constant variance in the MLR model.   
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Figure 5.4: Residuals vs. Predicted     Plot for the Preliminary Model 
 

5.2.2.4 Residuals Are Normally Distributed 

The MLR model assumes that the residuals are normally distributed. To check this 

assumption, residuals vs. normal scores were plotted (See Figure 5.5).  A linear trend in 

residuals vs. normal score plot indicates that the residuals are normally distributed. From 

Figure 5.5, the residuals displayed an S-shaped curve, which indicates that the residuals had 

shorter tails relative to the normal distribution. Therefore, it can be concluded that the 

normality assumption was violated in the current MLR model.  

 
 

Figure 5.5: Normal Probability Plot for Preliminary Model 
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5.2.2.5 Residuals Are Not Serially Correlated 

MLR analysis requires that errors are uncorrelated (independent) with each other. The 

time series plot is used to check if the residuals are uncorrelated. If there is an identifiable 

increasing or decreasing trend in the time series plots, it indicates that the errors are 

correlated. In this case all the reactors were operated at the same point of time, and the k 

values were computed from these reactors. Hence, the k values were not expected to be 

correlated and time series plots were not plotted.  

5.2.2.6 Discussion on the Preliminary MLR Model 

From the residual analysis, it was evident that the current model form was not 

adequate, the error variance was not constant, and the errors were not normally distributed. 

The recommended remedial actions to address this violated model assumptions required 

transformations.  Specifically, a variance stabilizing transformation on the response is required 

to stabilize the error variance (i.e., make it constant), and additional transformations on 

predictor variables may be needed to address curvature.  Normality often improves once the 

other assumptions are satisfied, but normality is not a required assumption.  The model 

assumptions were revisited after performing transformations. 

5.2.3 Transformations 

5.2.3.1 Transformations on the Response Variable (k) 

A variance stabilizing transformation, such as square root or logarithm, compresses 

high response variable values. Slight curvature in the response-predictor plots also indicated a 

need to compress high k values to linearize the relationships. To explore the possibility of using 

a transformation on the response variable (k value), three different compression 

transformations were tested in the sequence mentioned below. 



 

149 

 

1. Square-root transformation      

2. Log transformation (log10 k) 

3. Inverse square-root transformation (1/  ) 

The comparative analysis for these three transformations is shown in Table 5.6. The 

SAS outputs with all residual plots are shown in Appendix D. It was evident from Table 5.6 that 

the log transformation on k performed better than other two transformations in terms of the 

response vs. predictor plots, residuals vs. predicted (    plots and normal probability plots. 

Hence, it was decided to use the log transformation on the response variable. However, there 

was some curvature observed in the residuals vs. rainfall and residuals vs. temperature plots 

even after the log transformation was conducted. Hence, it was necessary to explore some 

additional transformations on the predictors for this MLR model. 
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Table 5.6: Comparison of Different Y- Transformations 
 

 
Preliminary  

Model 
   

Transformation 

Log k 
Transformation 

1/   
Transformation 

Response 
Variable 

k Sqrt (k) Log10(k) 1/sqrt (k) 

Predictor 
variables 

rainfall, temp, 
food, paper, 
textile, yard 

rainfall, temp, 
food, paper, 
textile, yard 

rainfall, temp, 
food, paper, 
textile, yard 

rainfall, temp, 
food, paper, 
textile, yard 

Y vs X 
Curvature with 
temp and paper 

Curvature with 
rainfall, 

temperature, 
textile and 

paper 

Slight curvature 
with rainfall. 

Others mostly 
had  linear 

trends  

Curvature with 
rainfall, 

temperature, 
paper, textile, yard 

R2 0.6986 0.7087 0.6879 0.634 

Adj. R2 0.5342 0.5498 0.5176 0.4358 

VIF 

paper=8.96 paper = 8.97 paper = 8.97 paper = 8.97 

yard=7.61 yard = 7.62 yard =7.62 yard = 7.61 

all others < 5 others <5 others <5 others<5 

e vs. yhat 
Slight curvature 
(curved funnel) 

Curved funnel No funnel Funnel Shape 

e vs. x 

Curvature in 
residuals vs. 

rainfall, paper and 
yard 

Curvature in 
residuals vs. 

rainfall, 
temperature 
and textile 

Curvature in 
residuals vs. 
rainfall and 

temp 

Curvature in 
residual vs rainfall 
and residuals vs. 

temperature 

Normality 
Shorter tails than 

normal probability 
plots 

S shaped- 
shorter tails 
than normal 

probability plot 

Almost normal 
Longer left tail. 

Not normal 

 

5.2.3.2 Transformations on X- Variables  

From the log10k transformation plots (see Appendix D), it was observed that the 

residuals vs. rainfall and residuals vs. temperature plots showed curvature. Based on the raw 

data plots and residual plots, it was necessary to use transformations on rainfall and 

temperature terms. First, quadratic transformations were used on rainfall and temperature. 
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The squared terms were added in the model only after standardizing them. Standardization is 

a procedure where the mean is centered by assigning it to zero, and the variance is scaled to 

one. Standardization helps in understanding a model which has predictors with different 

scales. The variables were standardized using Eq. (5-3). 

  
   

       

                  
 
 
                                                                                                              (5-3) 

After adding the quadratic terms for rainfall and temperature it was observed that the 

residuals vs. textile and yard showed some curvature. Hence, quadratic terms were added for 

textile and yard waste, and the residual analysis were repeated in each case. Comparisons of 

the X-transformations performed in this study are shown in Table 5.7.  The SAS outputs along 

with raw data plots and residual plots are shown in Appendix D.  

From Table 5.7, it was observed that as the number of variables increased, the R2 

value of the model improved. However, the VIF’s were also increasing, indicating problems of 

variance inflation due to the multicollinearity among the predictors. Further, the residual 

analysis showed curvature in the residuals vs. predictor plots. After conducting the correlation 

analysis, it was found that some of the squared terms had very high correlation with the 

original predictors, despite the standardization; e.g. correlation between textile and the 

square of textile standardized was equal to 0.90. This induced high multicollinearity in the 

model. It must also be noted that the residuals vs. textile plot had one single point which gave 

the plot the appearance of curvature, and hence, it was decided that curvature was not 

present in that plot. As mentioned earlier, the observations for 60% food + 30% textile + 10% 

yard and 100% textile reactors were omitted. If the complete data for textile waste were 

available, such anomalies would have been avoided.  
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Further, it was observed that the curvature in residuals vs. yard waste plot grew worse 

as the quadratic terms for textile and yard waste were added. Hence it was concluded that the 

model with quadratic terms for rainfall and temperature terms did an overall better job than 

the other MLR models. 

Table 5.7: Comparison of X- Transformations 
 

 

Without 
Quadratic 

Transformation 
on X 

Quadratic 
Transformations 
on Rainfall and 

Temp 

Quadratic 
Transformations 

for Rainfall, 
Temp and Textile 

Quadratic 
Transformations for 

Rainfall, Temp, Textile 
and Yard 

Response 
Variable 

Log10k Log10k Log10k Log10k 

Predictor 
Variables 

ainfall, temp, 
food, paper, 
textile, yard 

rainfall, temp, 
food, paper, 
textile, yard 

rainfall, temp, 
food, paper, 
textile, yard 

rainfall, temp, food, 
paper, textile, yard 

Quadratic 
Terms 

None rainfall2, temp2 
rainfall2, temp2, 

textile2 
rainfall2, temp2, 
textile2, yard2 

Y vs X 

Slight curvature 
with rainfall. 

Others mostly 
had  linear 

trends  

Mostly Linear 
Curvature with   

temp2 

Curvature with 
rainfall, temp2, 

paper and textile 

Mostly linear. 
Curvature with temp2 

and paper 

R2 0.6879 0.7778 0.7881 0.8417 

Adj. R2 0.5176 0.5803 0.5497 0.6155 

VIF paper = 8.96 paper =9.22 paper=10.85 paper = 11.27 
 yard =7.61 yard =7.95 textile=19.31 textile=22.78 
 Others <5  textile2=11.59 textile2=12.25 
   yard=9.75 yard=22.81 
    yard2=10.22 

e vs. yhat No funnel No funnel Funnel Shape No Funnel 

e vs. x 

Curvature in 
residuals vs. 
rainfall and 

temp 

Slight curvature 
in residuals vs. 

textile 

Curvature in 
residuals vs. 

temp2, textile 
and yard 

Curvature temp, temp2 
and yard 

NPP Almost normal 
S shaped 

Shorter Tails 
than NPP 

S shaped 
(shorter tails 

than NPP) 

S shaped 
Not normally 
distributed 
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5.2.3.3 MLR Model after Transformations 

Since a log transformation was conducted on the rate of decomposition (k value), the 

transformation was expected to affect all the response-predictor trends. Hence, the response 

vs. predictor plots were reviewed again (See Figure 5.6). 

 From Figure 5.6, temperature and yard showed an increasing linear trend with 

the logarithm of rate of decomposition (k); which indicated that, as temperature and % yard 

was increased, the rate at which waste degraded in the landfill also increased. Rainfall showed 

a decreasing trend. No other trends were obvious in the response vs. predictor plots. It 

appeared that high response values in the raw data plots were compressed and linearized due 

to the log transformation on the response variable. 
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Figure 5.6: Response vs. Predictor Plots for the Transformed Model 
 

The MLR model after performing the necessary transformations was as follows. 

          = 0 + 1R + 2R
2+ 3T + 4T

2 + 5F+ 6P+ 7TX +8Y +                                (5-4) 

The estimates of the model parameters (s) calculated by SAS are shown in Table 5.8. 
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Table 5.8: Parameter Estimates for the Transformed MLR Model 
 

Parameter Estimates 

Variable DF Parameter  
Estimate 

Standard 
Error 

t Value Pr > |t| Type I SS Variance 
Inflation 

Intercept 1 -4.6731 2.28151 -2.05 0.0708 3.21284 0 
rainfall 1 0.01096 0.01217 0.9 0.3913 0.00069 1.49 
rainfall2 1 -0.1375 0.07205 -1.91 0.0886 0.06616 1.38 
temp 1 0.01593 0.00717 2.22 0.0535 0.16363 1.34 
temp2 1 0.02053 0.06107 0.34 0.7445 0.01163 1.45 
food 1 -0.0008 0.00409 -0.2 0.8456 0.00029 2.60 
paper 1 0.00149 0.00357 0.42 0.6869 0.535 9.22 
textile 1 0.00476 0.00336 1.42 0.1897 0.01499 3.36 
yard 1 0.00698 0.00303 2.3 0.047 0.15987 7.95 
 

5.2.4 Rechecking Model Assumptions for the Transformed Model 

5.2.4.1 MLR Model Form is Reasonable 

The MLR model form is assumed to be adequate when all the residual versus predictor 

plots have no curvature in them. This assumption was rechecked by plotting the residuals vs. 

predictor plots for the transformed model (See Figure 5.7). The appearance of slight curvature 

was seen in the residuals vs. textile plot, as mentioned earlier, due to a single point. Hence it 

was decided that curvature was not genuinely present in this plot. No other residuals vs. 

predictor plots showed curvature. Hence it was concluded that the transformed MLR model 

form was adequate. 
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Figure 5.7: Residuals vs. Predictor Plots for the Transformed MLR Model 
 

5.2.4.2 Residuals Have Constant Variance 

 For a MLR model to be satisfactory, it has to satisfy the assumption that its residuals 

have constant variance. This assumption was rechecked for the transformed MLR model using 

residuals vs. predicted value of log10k           plot (See Figure 5.8). A funnel shape was not 
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observed in this plot. This indicates that the residuals had a constant variance. This assumption 

was re-verified later using the Modified-Levene test. 

 
 

Figure 5.8: Residuals vs. Predicted Response Plot for the Transformed MLR Model 
 

5.2.4.3 Residuals Are Normally Distributed 

 This assumption was re-verified for the transformed MLR model using the normal 

probability plot (See Figure 5.9). The residuals vs. normal scores plot showed an ‘S” shaped 

curve. This indicated that the residuals followed a distribution with shorter tails than the 

normal distribution. Hence, the assumption that the errors are normally distributed was 

violated. This conclusion was verified using the normality test. 

 
Figure 5.9: Residuals vs. Normal Scores Plot for the Transformed MLR Model 
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5.2.4.4 Modified-Levene Test for Checking Constant Variance 

This test is performed to detect non-constant variance even when there is serious 

departure from normality. In order to conduct the test, the dataset is divided into two groups 

based on the fitted values, such that the number of observations in both the groups were 

approximately equal.  In this case, the dividing point was chosen to be         = 0.37. This 

value was chosen as a dividing value because the numbers of observations in each group were 

equal to nine. The absolute deviations (          of residuals around the medians were 

calculated for each group The SAS output for the conducting the Modified–Levene test, which 

uses the two sample t-test, is shown in Table 5.9. 

Table 5.9: SAS Output for the Modified-Levene Test for the Transformed MLR Model 
 

Obs group meand 

1 1 0.08835 

2 2 0.1155 

The TTEST Procedure 

Group N Mean Std Dev Std Err Minimum Maximum 

1 9 0.0883 0.0643 0.0214 0 0.1792 

2 9 0.1155 0.0895 0.0298 0 0.2851 

Diff (1-2) -0.0272 0.0779 0.0367 
  

Method Variances DF t Value Pr > |t| 

Pooled Equal 16 -0.74 0.4706 

Satterthwaite Unequal 14.525 -0.74 0.4717 

Equality of Variances 

Method Num DF Den DF F Value Pr > F 

Folded F 8 8 1.94 0.3695 

 

The following hypotheses are considered for the Modified-Levene test. 

F- test- Hypothesis 

H0: Variances of the two populations (       are equal 

H1: Variances of the two populations (        are unequal 
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Considering α = 0.05 

From Table 5.9, p-value from f-test = 0.3695 > α. Hence, we fail to reject H0, which 

means that the variances of d1 and d2 are equal. Hence the “equal” variance output from the t-

test was referred for further analysis. 

T-test- Hypothesis 

H0: Means of d1 and d2 populations are equal- Hence the constant error variance 

assumption is satisfied. 

H1: Means of d1 and d2 populations are not equal- Hence the constant error variance 

assumption is violated. 

From Table 5.9, p- value = 0.4706 > α. Hence we fail to reject H0. Given that this 

verified the conclusion from the residuals vs. predicted values plot, we can say that the 

constant variance assumption was satisfied by the transformed MLR model. The same 

conclusion was reached when α = 0.01, and 0.1. 

5.2.4.5 Test for Normality 

For testing normality, the following hypotheses are considered. 

H0 : Normality is satisfied. 

H1 : Normality is not satisfied. 

The SAS output for correlation between residuals and normal scores is shown in Table 5.10.  

From Table 5.10, ρ  (e,z) = 0.97571 

Considering α = 0.1, c (α, n) = c (0.1, 18) = 0.957 

According to the decision rule, if ρ  < c (α, n), then reject H0.  

From Table 5.10,  ρ  =0.97571 > c (α, n) = 0.957; hence, we fail to reject Ho. In this case, 

the test was unable to detect nonnormality, although deviation from normality was visible in 
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the normal probability plot. Usually in practice the normal probability plots are considered 

more reliable than the normality test. Hence, we can conclude that the normality was not 

satisfied by the transformed MLR model. However, normality is not a required assumption of 

the MLR model. 

Table 5.10: SAS Output for Testing Normality in the Transformed MLR Model 
 

Pearson Correlation Coefficients, N = 18 

Prob > |r| under H0: Rho=0 

  e enrm 

e 1 0.97571 

enrm 0.97571 1 

 

5.2.4.6 Variance Inflation Factor (VIF) 

This factor is used to assess if there is serious multicollinearity between predictors. 

The VIF value identifies cases of high variance inflation due to the complications caused by 

high multicollinearity. If a VIF value is more than one, that means that multicollinearity exists; 

however, the multicollinearity may not be serious. As a guideline, if a VIF value exceeds 5, it 

means serious multicollinearity exists between the predictors. More directly, it means that the 

variance for that estimated model parameter is inflated more than 5 times. In this case, from 

SAS output shown in Table 5.8, the VIF’s for paper and yard waste were greater than 5; 

therefore, there was serious multicollinearity between predictors. However, this could be due 

to the correlation between yard and paper waste (See Section 5.2.1.4). The issue of high 

multicollinearity often resolves itself in when considering subset models during the model 

search task. 
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5.2.4.7 Outliers 

These are single data points that affect the trend of grouped data by pulling it toward 

its position. The SAS output for checking outliers is shown in Table 5.11. 

Table 5.11: SAS Output for Checking Outliers in the Transformed MLR Model 
 

Obs Residual RStudent 
Hat 

Diag Hii 
Cov 

Ratio 
DFFITS 

1 -0.0257 -0.1926 0.4745 5.2689 -0.183 

2 -0.0884 -0.6766 0.4697 3.2989 -0.6368 

3 0.0863 0.8589 0.6755 4.0214 1.2393 

4 -0.0928 -0.722 0.4824 3.16 -0.6971 

5 0.1297 1.0258 0.4679 1.7839 0.962 

6 -0.0092 -0.0633 0.3791 4.6282 -0.0495 

7 0.2135 2.2246 0.5615 0.0863 2.5172 

8 0.0783 0.6492 0.5493 4.0347 0.7167 

9 -0.1547 -1.4847 0.5928 0.793 -1.7912 

10 -0.1668 -1.7927 0.6432 0.3872 -2.4067 

11 -0.1032 -0.7843 0.4516 2.7023 -0.7116 

12 0.1328 1.0173 0.4336 1.7052 0.89 

13 -0.1337 -1.0947 0.4952 1.6281 -1.0843 

14 0.0343 0.27 0.5218 5.5627 0.2821 

15 -0.1405 -1.2194 0.5368 1.3438 -1.3128 

16 0.2277 1.9868 0.423 0.1354 1.7011 

17 0.0696 0.453 0.2877 3.2262 0.2879 

18 -0.0574 -0.4724 0.5544 5.0569 -0.5269 

 

Outliers may be X-outliers or Y-outliers. The X-outliers are identified by assessing the 

diagonal elements of the Hat-matrix (hii), which are also called leverage values. The cut-off 

point for hii is 2p/n, where p = number of parameters in the model and n = total number of 

observations. In this MLR model, the hii > 0.888 meant that the observation ‘i’ was X-outlying. 

Based on the cut-off point and the SAS output shown in Table 5.11, there were no X-outliers 

detected in the transformed MLR model. 



 

162 

 

The Y-outliers are identified by assessing the studentized deleted residuals, ti, and the 

cut-off are calculated based on the Bonferroni Outlier test at α =0.1,0.05 .  According to the 

Bonferroni outlier test, the cut-off points for Y outliers were |ti|> t(1-α/2n, n-p-1) = 3.690 and 

4.29005 at α = 0.1 and 0.05, respectively. Based on the cut-off points and the SAS output 

shown in Table 5.11 , no Y-outliers were detected. 

5.2.5 Exploring Possible Interaction Terms 

Interaction terms arise due to a combined effect of two predictor variables on the 

response. 15 possible interaction terms were considered in this study to explore the 

interactions between the 6 predictor variables. However, only a few interaction terms may be 

helpful for the model performance, by explaining any of the variability in the response that 

remained unexplained by the current MLR model. Hence to explore if an interaction term may 

help the model, partial regression plots are used. Alternately, the standardized interaction 

term is plotted against the residuals to detect if any interaction terms can help the model. For 

this the predictors must first be standardized. As mentioned earlier, standardization is a 

procedure where the mean is centered by assigning it to zero, and the variance is scaled to 

one. Standardization helps in understanding a model which has predictors with different 

scales. 

If a linear trend is observed in residuals vs. standardized interaction term plot, then 

that interaction term is considered to be helpful to the MLR model. However, if the points are 

randomly scattered in the residuals vs. standardized interaction plots, then the interaction 

term may not be helpful. Figure 5.10- 5.12 shows the residuals vs. interaction plots. 

From Figure 5.10-5.12, it was observed that the interaction terms stdx1x3 

(standardized rainfall x food) and stdx2x6 (standardized temperature x yard) showed an 
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upward linear trend with the residuals. Further, variable stdx2x4 (standardized temperature x 

paper) showed a downward linear trend with the residuals. Other than these, the other 

interaction terms did not exhibit any trends. Hence these three interaction terms (stdx1x3, 

stdx2x4 and stdx2x6) were included in the MLR model.  

 

 

Figure 5.10: Interaction Plots for the Transformed MLR Model 
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Figure 5.11: Interaction Plots for the Transformed MLR Model 



 

165 

 

 

 

 

Figure 5.12: Interaction Plots for the Transformed MLR Model 
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The presence of interaction terms in a model typically induces high multicollinearity, 

because the interaction terms may be correlated with the original predictors. Hence it was 

necessary to check the correlation matrix (see Table 5.12). If the correlation coefficient (r) had 

a value greater than 0.7, it meant that the variables were highly correlated and could induce 

high multicollinearity. From Table 5.12, it can be observed that the following predictors were 

highly correlated with the interaction terms added. 

1.  food with x1x3 (temperature x food),  

2. paper with x2x4 (temperature x paper), and  

3. yard waste with x2x6 ( temperature x yard).  

Table 5.12: Correlation Analysis for the Added Interaction Terms before Standardization 
 

Pearson Correlation Coefficients, N = 18 

Prob > |r| under H0: Rho=0 

  Log10k rainfall rainfall2 temp temp2 food paper textile yard x1x3 x2x4 x2x6 

Log10k 1 0.0237 -0.2108 0.3790 -0.1289 0.0132 -0.5588 -0.1230 0.7030 0.1355 -0.5540 0.7166 

rainfall 0.0237 1 0.3381 -0.1564 -0.1769 0.0279 -0.2199 0.2133 0.0024 0.4015 -0.2196 -0.0055 

rainfall2 -0.2108 0.3381 1 -0.1482 0.1399 -0.1086 -0.1039 0.3148 0.0201 0.0549 -0.1044 0.0132 

temp 0.3790 -0.1564 -0.1482 1 -0.4210 0.0610 -0.0423 0.0266 -0.0230 0.0872 -0.0180 -0.0051 

temp2 -0.1289 -0.1769 0.1399 -0.4210 1 -0.2431 0.1016 -0.0690 0.0524 -0.3751 0.0911 0.0446 

food 0.0132 0.0279 -0.1086 0.0610 -0.2431 1 -0.5148 0.2062 0.0291 0.8442 -0.5143 0.0296 

paper -0.5588 -0.2199 -0.1039 -0.0423 0.1016 -0.5148 1 -0.1915 -0.6804 -0.4515 0.9995 -0.6807 

textile -0.1230 0.2133 0.3148 0.0266 -0.0690 0.2062 -0.1915 1 -0.4079 0.2311 -0.1912 -0.4076 

yard 0.7030 0.0024 0.0201 -0.0230 0.0524 0.0291 -0.6804 -0.4079 1 0.0126 -0.6806 0.9996 

x1x3 0.1355 0.4015 0.0549 0.0872 -0.3751 0.8442 -0.4515 0.2311 0.0126 1 -0.4512 0.0156 

x2x4 -0.5540 -0.2196 -0.1044 -0.0180 0.0911 -0.5143 0.9995 -0.1912 -0.6806 -0.4512 1 -0.6808 

x2x6 0.7166 -0.0055 0.0132 -0.0051 0.0446 0.0296 -0.6807 -0.4076 0.9996 0.0156 -0.6808 1 

 

Further, the correlation between the interaction terms x2x4 (temperature*paper) and 

x2x6 (temperature*yard) was also high. This could be due to correlation between paper and 

yard waste. The correlations can be reduced if the interaction terms are calculated using 



 

167 

 

standardized predictors. Table 5.13 shows the correlation matrix with standardized interaction 

terms.  

From Table 5.13, it can be observed that the correlation coefficients decreased in 

most cases. Since the correlation coefficients are non-zero, it means that the predictors are 

still correlated with each other, but not highly correlated. However, the correlation between 

stdx2x6 and stdx2x4 was still higher than 0.7. This indicated that there may be serious 

multicollinearity if all these terms are included in the MLR model. 

Table 5.13: Correlation Analysis for the Added Interaction Terms after Standardization 
 

Pearson Correlation Coefficients, N = 18 

Prob > |r| under H0: Rho=0 

  Log10k rainfall rainfall2 temp temp2 food paper textile yard stdx1x3 stdx2x4 stdx2x6 

Log10k 1 0.0237 -0.2108 0.3790 -0.1289 0.0132 -0.5588 -0.1230 0.7030 0.2932 -0.1204 0.2616 

rainfall 0.0237 1 0.3381 -0.1564 -0.1769 0.0279 -0.2199 0.2133 0.0024 -0.1098 0.1885 -0.2290 

rainfall2 -0.2108 0.3381 1 -0.1482 0.1399 -0.1086 -0.1039 0.3148 0.0201 0.0282 0.1317 -0.1938 

temp 0.3790 -0.1564 -0.1482 1 -0.4210 0.0610 -0.0423 0.0266 -0.0230 0.2522 0.0853 0.0428 

temp2 -0.1289 -0.1769 0.1399 -0.4210 1 -0.2431 0.1016 -0.0690 0.0524 -0.2118 -0.0562 -0.0291 

food 0.0132 0.0279 -0.1086 0.0610 -0.2431 1 -0.5148 0.2062 0.0291 -0.1734 0.0017 -0.0230 

paper -0.5588 -0.2199 -0.1039 -0.0423 0.1016 -0.5148 1 -0.1915 -0.6804 0.2678 -0.0589 0.0667 

textile -0.1230 0.2133 0.3148 0.0266 -0.0690 0.2062 -0.1915 1 -0.4079 -0.1128 0.0007 0.0249 

yard 0.7030 0.0024 0.0201 -0.0230 0.0524 0.0291 -0.6804 -0.4079 1 -0.0375 0.0685 -0.0736 

stdx1x3 0.2932 -0.1098 0.0282 0.2522 -0.2118 -0.1734 0.2678 -0.1128 -0.0375 1 -0.3074 0.4694 

stdx2x4 -0.1204 0.1885 0.1317 0.0853 -0.0562 0.0017 -0.0589 0.0007 0.0685 -0.3074 1 -0.7481 

stdx2x6 0.2616 -0.2290 -0.1938 0.0428 -0.0291 -0.0230 0.0667 0.0249 -0.0736 0.4694 -0.7481 1 

 

5.2.6 MLR Model Search 

MLR model search is the step where potential good models are identified. Parameters 

which have insignificant effect on the model are removed in this step. Three methods, 

backwards deletion, best subsets and stepwise regression, were used for the MLR model 

search. The best MLR model was identified based on the results from all three methods.  
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Based on the previous analysis, eleven predictor variables (Rainfall, Rainfall2, 

Temperature, Temperature2, Food, Paper, Textile, Yard, StdX1X3, StdX2X4, and StdX2X6) were 

considered to find the good models for predicting the rate of degradation (Log10 k) for any 

landfill.  

5.2.6.1 Backward Elimination Method for MLR Model Search 

Backward elimination method for MLR model search uses an iterative process, where 

regression is conducted by including all possible variables in the model and the predictor 

variables are eliminated (one by one) if they are not significant at the specified confidence 

level. A potential good model is the one in which all remaining predictor variables are 

statistically significant. 

In this study, a cutoff α value of 0.1 was chosen for the backward elimination method. 

Eleven predictor variables were considered in the model initially. From the regression equation 

obtained from the full model, p-values were calculated for testing the following hypotheses: 

H0 : βk = 0, H1 : βk ≠ 0 

The predictor variable with largest p-value (if p was greater than α = 0.1) was 

removed. The remaining parameters were regressed again, until all the remaining predictor 

variables were significant at α = 0.1. The SAS output for last two iterations using the backward 

elimination method and the summary are shown in Table 5.14. A model with 5 predictor 

variables (highlighted in yellow) was chosen by the backward elimination method.  
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Table 5.14: SAS output for Backward Elimination Method for MLR Model Search 
 

Backward Elimination: Step 6 

Variable rainfall Removed: R-Square = 0.8262 and C(p) = 3.1211 

Analysis of Variance 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 5 1.01147 0.20229 11.41 0.0003 

Error 12 0.21278 0.01773     

Corr. Total 17 1.22425       

Variable 
Parameter 

Estimate 
Standard Error Type II SS F Value Pr > F 

Intercept -2.86596 1.51834 0.06318 3.56 0.0835 

rainfall2 -0.12125 0.05142 0.09859 5.56 0.0362 

temp 0.01046 0.005 0.07771 4.38 0.0582 

textile 0.00418 0.00168 0.11008 6.21 0.0284 

yard 0.00598 0.00092255 0.74519 42.03 <.0001 

stdx1x3 0.12165 0.05014 0.10436 5.89 0.032 

Backward Elimination: Step 7 

Variable temp Removed: R-Square = 0.7627 and C(p) = 4.4523 

Analysis of Variance 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 4 0.93376 0.23344 10.45 0.0005 

Error 13 0.29049 0.02235     

Correct Total 17 1.22425       

Variable 
Parameter 

Estimate 
Standard Error Type II SS F Value Pr > F 

Intercept 0.30999 0.0695 0.44459 19.9 0.0006 

rainfall2 -0.14215 0.05662 0.14083 6.3 0.0261 

textile 0.00461 0.00187 0.13642 6.11 0.0281 

yard 0.00607 0.00103 0.76921 34.42 <.0001 

stdx1x3 0.15058 0.05411 0.17303 7.74 0.0155 

All variables left in the model are significant at the 0.0500 level. 

Summary of Backward Elimination 

Step 
Variable 
Removed 

No. 
Vars In 

Partial 
R-Square 

Model 
R-Square 

C(p) F Value Pr > F 

1 paper 10 0 0.8857 10.000 0 0.9772 

2 stdx2x4 9 0.0001 0.8856 8.0036 0 0.9565 

3 food 8 0.0041 0.8815 6.2206 0.29 0.6054 

4 temp2 7 0.0152 0.8663 5.0177 1.15 0.3108 

5 stdx2x6 6 0.0216 0.8447 4.1505 1.61 0.2327 

6 rainfall 5 0.0185 0.8262 3.1211 1.31 0.2767 

7 temp 4 0.0635 0.7627 4.4523 4.38 0.0582 
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5.2.6.2 Stepwise Regression Method for MLR Model Search 

The stepwise regression method uses backward elimination and forward selection 

methods for evaluating best MLR model. This method also uses an iterative approach, starting 

with no variables in the model. The variables are added or deleted using the p-value to test the 

hypothesis: H0: βk= 0. With a step by step approach the predictors in the model are removed, 

beginning with the predictor with largest p value, if p> αout. If no predictors are removed, the 

predictors which are not in the model are added, starting from the predictor with the smallest 

p-value, if p < αin. This procedure is repeated until no predictor variables can be added or 

removed from the model yielding one potentially good model. The SAS output for stepwise 

regression is shown in Table 5.15. In this case, the αin and αout were set at 0.1. The best model 

suggested by stepwise regression method had three variables (highlighted in green).  However, 

the selected model was not the same as with the one selected by the backward elimination 

method. Hence this model (with three variables) was also short-listed for further comparison. 

Table 5.15: SAS Stepwise Regression Method for MLR Model Search 
 

Stepwise Selection: Step 1 

Variable yard Entered: R-Square = 0.4941 and C(p) = 12.5470 

Analysis of Variance 

Source DF Sum of Squares 
Mean 

Square 
F Value Pr > F 

Model 1 0.60496 0.60496 15.63 0.0011 

Error 16 0.6193 0.03871     

Corrected Total 17 1.22425       

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F 

Intercept 0.28071 0.05862 0.88756 22.93 0.0002 

yard 0.00481 0.00122 0.60496 15.63 0.0011 
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Table 5.15- Continued 
 

Stepwise Selection: Step 2 

Variable temp Entered: R-Square = 0.6504 and C(p) = 6.3465 

Analysis of Variance 

Source DF Sum of Squares 
Mean 

Square 
F Value Pr > F 

Model 2 0.79626 0.39813 13.95 0.0004 

Error 15 0.42799 0.02853 
  

Corrected Total 17 1.22425 
   

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F 

Intercept -4.42925 1.81967 0.16905 5.92 0.0279 

temp 0.01556 0.00601 0.19131 6.7 0.0205 

yard 0.00488 0.00105 0.62038 21.74 0.0003 

 

Stepwise Selection: Step 3 

Variable stdx2x6 Entered: R-Square = 0.7393 and C(p) = 3.6813 

Analysis of Variance 

Source DF 
Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 3 0.90509 0.3017 13.23 0.0002 

Error 14 0.31916 0.0228 
  

Corrected Total 17 1.22425 
   

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F 

Intercept -4.28537 1.62786 0.15799 6.93 0.0197 

temp 0.01508 0.00538 0.17928 7.86 0.0141 

yard 0.00503 0.000937 0.65535 28.75 0.0001 

stdx2x6 0.07895 0.03613 0.10883 4.77 0.0464 

 

All variables left in the model are significant at the 0.1000 level 

No other variable met the 0.1000 significance level for entry into the model. 

Summary of Stepwise Selection 

Step 
Variable 
Entered 

Variable 
Removed 

Number 
Var In 

Partial 
R-Sq 

Model 
R-Sq 

C(p) F Value Pr > F 

1 yard 
 

1 0.4941 0.4941 12.547 15.63 0.0011 

2 temp 
 

2 0.1563 0.6504 6.3465 6.7 0.0205 

3 stdx2x6 
 

3 0.0889 0.7393 3.6813 4.77 0.0464 
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5.2.6.3 Best Subset Method for MLR Model Search 

The best subsets method helps to evaluate which predictor variables should be 

included in the MLR model. This method provides the specified number of best models with 

one or more variables. In this case, the best subsets method was run several times, starting 

from one predictor variable until all eleven variables were included in the MLR model.  

The following criteria were used for selecting the best models: 

1. R2 should be high. The coefficient of determination (R2) is a measure used to describe 

how well a particular model fits the data. Usually, R2 never decreases as the number of 

predictors in the MLR model increases, giving a potentially false impression that one 

should have as many predictors in the model as possible. In practice, the smallest 

model that yields a high R2 is desired. 

2. Adjusted R2 should be high. Adjusted coefficient of determination (Radj
2) penalizes the 

addition of useless variables. Again, in practice, the smallest model that yields a high 

adjusted R2 is desired.  

3. Mallows Cp value should be small or close to the number of parameters in the model. 

If it has no bias, or if the model has all the significant parameters included in it, then 

the Cp value is small; hence it is used as a criterion for best MLR model selection. 

4. Akaike Information Criterion (AIC) or Schwarz Bayesian Criterion (SBC) should be 

minimized. AIC and SBC are the measures of relative goodness of fit for any MLR 

model. Hence, AIC and SBC are considered for model selection. 

Table 5.16 shows the output for the best subsets method for MLR model selection. 

The models selected by backward elimination method and stepwise regression method are 

highlighted in yellow and green, respectively.  
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Table 5.16: SAS Output for Best Subsets Method for MLR Model Selection 
 

No. of 
Var  

Radj
2 R2 Cp AIC SBC Variables in Model 

1 0.4625 0.4941 12.547 -56.652 -54.871 yard 

1 0.2693 0.3123 22.0896 -51.124 -49.343 paper 

2 0.6038 0.6504 6.3465 -61.302 -58.631 temp yard 

2 0.5426 0.5964 9.1811 -58.716 -56.045 yard stdx1x3 

3 0.6834 0.7393 3.6813 -64.584 -61.022 temp yard stdx2x6 

3 0.6384 0.7022 5.6267 -62.191 -58.629 temp yard stdx1x3 

4 0.6986 0.7695 4.0958 -64.801 -60.349 temp textile yard stdx2x6 

4 0.691 0.7637 4.3998 -64.354 -59.902 rainfall temp yard stdx2x6 

5 0.7538 0.8262 3.1211 -67.882 -62.539 rainfall2 temp textile yard stdx1x3 

5 0.7251 0.806 4.1823 -65.901 -60.558 rainfall2 temp textile yard 
stdx2x6 

6 0.76 0.8447 4.1505 -67.907 -61.674 rainfall rainfall2 temp textile yard 
stdx1x3 

6 0.754 0.8408 4.3548 -67.461 -61.229 rainfall2 temp textile yard stdx1x3 
stdx2x6 

7 0.7727 0.8663 5.0177 -68.6 -61.477 rainfall rainfall2 temp textile yard 
stdx1x3 stdx2x6 

7 0.765 0.8618 5.2542 -68.004 -60.881 rainfall rainfall2 temp temp2 
textile yard stdx1x3 

8 0.7761 0.8815 6.2206 -68.771 -60.757 rainfall rainfall2 temp temp2 
textile yard stdx1x3 stdx2x6 

8 0.7639 0.875 6.56 -67.814 -59.801 rainfall rainfall2 temp food textile 
yard stdx1x3 stdx2x6 

9 0.7569 0.8856 8.0036 -67.41 -58.506 rainfall rainfall2 temp temp2 food 
textile yard stdx1x3 stdx2x6 

9 0.7525 0.8835 8.1113 -67.09 -58.186 rainfall rainfall2 temp temp2 
paper textile yard stdx1x3 
stdx2x6 

10 0.7223 0.8857 10.001 -65.418 -55.624 rainfall rainfall2 temp temp2 food 
textile yard stdx1x3 stdx2x4 
stdx2x6 

10 0.7222 0.8856 10.002 -65.412 -55.618 rainfall rainfall2 temp temp2 food 
paper textile yard stdx1x3 
stdx2x6 

11 0.6761 0.8857 12 -63.421 -52.736 rainfall rainfall2 temp temp2 food 
paper textile yard stdx1x3 
stdx2x4 stdx2x6 
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It was found that the R2 and Cp kept improving as the number of variables was 

increased in the model. On the contrary, Radj
2 increased initially and reached a maximum value 

of 0.7728 (for model with 8 variables), and then dropped thereafter. The AIC decreased 

initially, reached a minimum of -68.505 (for model with 8 variables), and increased thereafter. 

The lowest SBC value was found for the model with maximum number of variables. It was 

difficult to find a model which fits all the criteria; hence the models selected by the two other 

methods (Stepwise regression and Backward Elimination) were short-listed and checked for all 

the criteria mentioned above.  

5.2.6.4 Best MLR Model Selection 

Based on all three methods mentioned above, the MLR models in Table 5.17 were 

short-listed. The model with 5 variables, selected by the backward elimination method, had 

much better R2 and adjusted R2 values than the three variable model selected by the stepwise 

regression method.  Further, the C, AIC and SBC values were lower in case of the 5-variable 

model. Hence, the model with 5 variables was selected as the best MLR model.  

Table 5.17: Shortlisted Models for MLR Model Selection 
 

No. of Var. Radj
2 R2 Cp AIC SBC Variables in Model 

3 0.6834 0.7393 3.6813 -64.584 -61.022 temp yard stdx2x6 

5 0.7538 0.8262 3.1211 -67.882 -62.539 rainfall2 temp textile yard 
stdx1x3 

 

5.2.7 Re-verifying Assumptions for the Selected MLR Model 

The selected MLR model is shown below:  

        = -2.866 – 0.1212*Std. Rainfall2 +0.01046*Temp + 0.00418*Textile + 0.00598*Yard + 

                      0.12165*Std. (Rainfall*Food)                                                                                      (5-5)                
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The parameter estimates for the selected MLR model (Eq. 5-5) are shown in Table 

5.18. All variables were significant at α = 0.1. The Variance Inflation Factors (VIF’s) were less 

than five, which indicates that this model likely did not have serious multicollinearity. 

Table 5.18: Parameter Estimates for the Selected MLR Model 
 

Parameter Estimates 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| Type I SS Inflation 

Intercept 1 -2.86596 1.51834 -1.89 0.0835 3.21284 0 

rainfall2 1 -0.12125 0.05142 -2.36 0.0362 0.05439 1.19706 

temp 1 0.01046 0.005 2.09 0.0582 0.15141 1.11354 

textile 1 0.00418 0.00168 2.49 0.0284 0.00936 1.43008 

yard 1 0.00598 0.000923 6.48 <.0001 0.69196 1.2525 

stdx1x3 1 0.12165 0.05014 2.43 0.032 0.10436 1.11355 

 

5.2.7.1 Checking the MLR Model Form  

The SAS output for residuals vs. predictors is shown in Figure 5.13. It was observed 

that residuals vs. rainfall2 showed possible curvature. An attempt was made to add the rainfall 

term in the model to check whether it would help eliminate the possible curvature in the plots. 

However, adding rainfall in the model adversely affected the curvature in residuals vs. 

temperature and yard waste plots; hence, it was removed. Since the curvature is not clear and 

possible not genuine, it was concluded that the current MLR model form is acceptable. 
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Figure 5.13: Residuals vs. Predictor Plots for the Selected MLR Model 
 

5.2.7.2 Checking Constant Variance Assumption 

The SAS output for residuals vs. predicted response variable (     ) is shown in Figure 

5.14. A funnel shape was not observed in this plot. Hence it can be concluded that the current 

MLR model satisfied the constant variance assumption. This conclusion was re-verified using 

the Modified-Levene test. 
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Figure 5.14: Residuals vs. Predicted Response Plot for the Selected MLR Model 
 

5.2.7.3 Checking If Residuals Are Normally Distributed 

Figure 5.15 shows the SAS output for residuals vs. normal scores plot. Longer or 

shorter tails were not observed in Figure 5.15. It can be concluded that the residuals followed 

a distribution close to the normal distribution. This assumption was re-verified using the test 

for normality, 

 

Figure 5.15: Residual vs. Normal Score Plot for the Selected MLR Model 
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5.2.7.4 Test for Normality 

For checking normality the following hypotheses are considered. 

H0 : Normality is satisfied. 

H1 : Normality is not satisfied. 

The SAS output for the correlation between the residuals and normal scores is shown 

in Table 5.19. 

Table 5.19: SAS Output for Testing Normality for the Selected MLR Model 
 

Pearson Correlation Coefficients, N = 18 

Prob > |r| under H0: Rho=0 

  e enrm 

e 1 0.98639 

enrm 0.98639 1 

 

From Table 5.19, ρ  (e,z) = 0.98639 

Considering α = 0.1, c (α, n) = c (0.1, 18) = 0.957 

According to the decision rule, if ρ  < c (α, n), then reject H0. In this case ρ  =0.986 > c (α, 

n) = 0.957, hence we fail to reject Ho. Therefore it can be concluded that normality was not 

violated by the current MLR model, which verifies the observations from the normal 

probability plot. 

5.2.7.5 Test for Constant Variance Assumption 

The Modified Levene’s test was used for testing non-constant variance. According to 

the procedure, the dataset it divided into two groups, based on         such that each group 

had the same number of observations. The absolute deviations (          of residuals around 

the medians were calculated for each group (See Table 5.20). 
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Table 5.20: SAS output for Modified Levene Test for the Selected MLR Model 
 

Obs group meand 

1 1 0.08074 

2 2 0.086615 

The TTEST Procedure 

Variable: d 

group N Mean Std Dev Std Err Minimum Maximum 

1 9 0.0807 0.0676 0.0225 0 0.1763 

2 9 0.0866 0.0831 0.0277 0 0.238 

Diff (1-2)   -0.00588 0.0757 0.0357     

group Method Mean 95% CL Mean Std Dev 95% CL Std Dev 

1   0.0807 0.0288 0.1327 0.0676 0.0457 0.1295 

2   0.0866 0.0227 0.1505 0.0831 0.0561 0.1592 

Diff (1-2) Pooled -0.00588 -0.0816 0.0698 0.0757 0.0564 0.1153 

Diff (1-2) Satterthwaite -0.00588 -0.0818 0.0701       

Method Variances DF t Value Pr > |t| 

Pooled Equal 16 -0.16 0.8714 

Satterthwaite Unequal 15.363 -0.16 0.8715 

Equality of Variances 

Method Num DF Den DF F Value Pr > F 

Folded F 8 8 1.51 0.5725 

 

Two sample t-tests were conducted on     and     of observations as follows. The 

following hypotheses were considered for the Modified-Levene test: 

F- test- Hypothesis 

H0: Variances of the two populations (        were equal 

H1: Variances of the two populations (        were unequal 

Considering α = 0.05 
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Considering α = 0.05, from Table 5.20, p-value from f test = 0.5725 > α. Hence, we 

failed to reject H0, which indicates that the variances of d1 and d2 were equal. Hence the 

“equal” variance output from the t-test was used.  

T-test- Hypothesis 

H0: Means of d1 and d2 populations are equal- Hence the constant error variance 

assumption is satisfied. 

H1: Means of d1 and d2 populations are not equal- Hence the constant error variance 

assumption is violated. 

From Table 5.20, p- value = 0.8716 > α. Hence, we failed to reject H0. Therefore, the 

constant variance assumption was satisfied. The same conclusion was reached when α = 0.01, 

and 0.1. Hence, it can be concluded that the constant error variance assumption was satisfied 

by the selected model. 

5.2.7.6 Checking for Outliers 

The X-outliers are identified by assessing the diagonal elements of the Hat-matrix (hii), 

which are also called leverage values. The cut-off point for hii is 2p/n, where p = number of 

parameters in the model and n = total number of observations. In this MLR model, if hii > 0.555 

meant that the observation ‘i’ was X-outlying. Based on the cut-off point and the SAS output 

(see Table 5.21), X-outliers were not detected in the current MLR model. 

The Y-outliers are identified by assessing the studentized deleted residuals, ti, and the 

cut-off was calculated based on the Bonferroni Outlier test at α =0.1,0.05 .  According to the 

Bonferroni’s outlier tests, the cut-off points for Y outliers were |ti|> t(1-α/2n, n-p-1) = 3.428 

and 3.9175 at α = 0.1 and 0.05, respectively. Based on cut-off points and the SAS output (see 

Table 5.21), no Y-outliers were detected. 
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Table 5.21: SAS Output for Checking Outliers in the Selected MLR Model 
 

Obs e tres cook id hii dffitsi 

1 -0.1396 -1.3405 0.19001 0.38818 -1.1087 

2 -0.0588 -0.551 0.02807 0.35683 -0.398 

3 -0.0098 -0.0882 0.00058 0.30813 -0.0564 

4 -0.1297 -1.1641 0.09667 0.29975 -0.7742 

5 0.04397 0.42302 0.01911 0.39058 0.32668 

6 0.0115 0.09845 0.00048 0.23066 0.05163 

7 0.18783 1.78463 0.31888 0.37528 1.54515 

8 0.12655 1.07027 0.05124 0.2116 0.55817 

9 -0.1553 -1.4999 0.24526 0.39546 -1.2885 

10 -0.2198 -1.9174 0.21442 0.25923 -1.3039 

11 -0.0519 -0.4541 0.01237 0.26466 -0.2631 

12 0.17977 1.57162 0.14624 0.26213 1.00638 

13 0.01826 0.18638 0.0049 0.45845 0.16442 

14 0.06573 0.64945 0.05138 0.42226 0.54118 

15 0.01523 0.15751 0.0037 0.47244 0.14286 

16 0.068 0.6468 0.04213 0.37662 0.48996 

17 -0.0032 -0.0256 0.00002 0.14859 -0.0102 

18 0.05113 0.48732 0.02417 0.37914 0.36827 

 
5.2.8 Selected MLR Equation 

The complete ANOVA table, including parameter estimates for the selected model, is 

shown in Table 5.22.  

It can be observed that all predictor terms included in the MLR model were significant 

at α=0.1 level. % paper was dropped from the model because the effect of paper waste on the 

rate of degradation constant (k values) was not found to be significant at α =0.1. This can be 

confirmed from the raw data plots (See Figure 5.6). The k value did not change much as the % 

paper in the waste was increased. The parameter estimates show that k values increase when 

the % textile and % yard waste increase in the landfilled waste. % Food waste was not 
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significant for predicting the logarithm of k value at α=0.1 level. However, the interaction term 

of food and rainfall was found to be significant. This indicates that the impact of food was 

enhanced when % food was combined with rainfall. The impact of this interaction term will be 

explained in the section 5.2.9. The intercept β0 = -2.8658, was the estimated logarithm of k 

value when rainfall was equal to 0 mm/day, temperature was equal to 0 K, and all waste 

components in the landfilled waste were also assigned to 0. This value is irrelevant in this case, 

since the data did not extend to zero, and methane generation cannot be expected from a 

landfill if there were no biodegradable waste in it.  

Table 5.22: ANOVA Table for the Selected MLR Model 
 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 5 1.01147 0.20229 11.41 0.0003 

Error 12 0.21278 0.01773   

Corrected Total 17 1.22425    

Root MSE 0.13316 R-Square 0.8262 

Dependent Mean 0.42248 Adj R-Sq 0.7538 

Coeff Var 31.5187  

Parameter Estimates 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| Type I SS Variance 
Inflation 

Intercept 1 -2.866 1.51834 -1.89 0.0835 3.21284 0 

rainfall2 1 -0.1213 0.05142 -2.36 0.0362 0.05439 1.19706 

temp 1 0.01046 0.005 2.09 0.0582 0.15141 1.11354 

textile 1 0.00418 0.00168 2.49 0.0284 0.00936 1.43008 

yard 1 0.00598 0.00092 6.48 <.0001 0.69196 1.2525 

stdx1x3 1 0.12165 0.05014 2.43 0.032 0.10436 1.11355 
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It can be observed that the coefficient of determination R2 for predicting logarithm of 

the rate of degradation k value was 0.8262. This means that 82.6% of the variability of the 

logarithm of k value was explained by the predictors in the selected MLR model. From Table 

5.22, it can be observed that the VIF’s were less than 5; hence, it can be concluded that the 

multicollinearity was not serious for this model. Based on the residual analysis, it can be 

concluded that the model form was reasonable; residuals had constant variance and were 

almost normally distributed. Further, there were no outliers detected by the model. Hence the 

selected MLR model is hereafter used for building the CLEEN model. 

5.2.9 Final MLR Model 

The final MLR equation is as follows: 

                                                           

                                                                                                                                            (5-6) 

Where,  

k = Rate of degradation in terms of first order decay constant (yr-1), 

R = Average annual rainfall (standardized) (mm/day), 

T= Ambient temperature (K), 

TX = % Textile in landfilled waste, 

Y= % Yard in landfilled waste, 

F = % Food in landfilled waste (standardized). 

As mentioned earlier, the squared terms and interaction terms were standardized to 

minimize multicollinearity. Standardization was conducted by subtracting the mean and 

scaling the variance to one. In the final MLR model, the squared term rainfall2 and the 

interaction term rainfall*food was standardized as follows: 
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                                                                                           (5-7) 

               
              

       
   

           

        
                                                   (5-8) 

Substituting the standardized terms, the final MLR equation (Eq. 5-6) can be expressed 

as follows: 

                                                       

                                                                                          (5-9) 

Thus it can be concluded that the logarithm of k can be predicted using the average 

annual rainfall, ambient temperature, and %food, % textile, and % yard of the landfilled waste. 

3D plots were generated to further study the effect of rainfall and temperature on the 

estimated k values using the comprehensive regression equation (Eq. 5-9). Figure 5.16 shows 

the 3D plots depicting the effect of rainfall and temperature on k values for a constant waste 

composition. EPA’s national average waste composition was used for generating the 3D plot 

(USEPA, 2007). Similar plots can be generated for any other waste composition. The 3D plots 

can help to visualize the effect of change in atmospheric conditions on the rate of degradation, 

even if the biodegradable portion of the waste is exactly the same.  

 The waste composition found in Mexico was very different compared to that found in 

the United States. Typically, the % food waste in Mexican waste was higher than that found in 

the United States. Hence, a 3D plot was also generated for studying the effect of rainfall and 

temperature on Mexican waste composition (See Figure 5.17). It can be observed that due to 

the presence of a higher amount of food waste, the surface plot for Mexican waste was 

considerably different as compared to the surface plot made for US waste composition.  
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Figure 5.16: 3D Plots Showing Effect of Rainfall and Temperature on k Values for Typical Waste Composition Found in the United States 
(EPA, 2007) 
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Figure 5.17: 3D Plots Showing Effect of Rainfall and Temperature on k Values for Typical Waste Composition Found in Mexico 
(Hernandez-Berriel, 2008) 
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 Further, 2D plots were generated to study the effect of change in % food and rainfall on 

the rate of degradation (k) (See Figure 5.18). It must be noted that increasing the % food in 

waste would mean that % textile and % yard were reduced, such that the sum of all waste 

components would be equal to 100%. This would mean that the effect of change in % food 

should be plotted on a 4D plot, which is difficult to visualize. Hence, Figure 5.18 was generated 

by assuming the % textile and % yard components to be 10% each and the rest of the waste was 

assumed to be comprised of inorganic waste. A change in rainfall and % food in the waste seems 

to affect the k values significantly.   

 

Figure 5.18: Effect of Change in % Food Waste and Rainfall on k value 
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5.2.10 Limiting Conditions for the Comprehensive Regression Equation 

The MLR equation can be used for predicting methane generation rate from landfills 

receiving rainfall between 2 and 12 mm/day and annual ambient temperature from 20oC to 

37oC. According to the design of experiments the equation would have been applicable for food, 

paper, textile and yard waste from 0-100%. However, as mentioned earlier some reactors with 

60% and higher percentage of food waste and textile waste were not able to converge using 

non-linear regression. Hence, this data was not used for developing the comprehensive MLR 

equation. Thus, the applicability of the comprehensive MLR equation for predicting methane 

generation from waste is limited to 0-60% of food waste, and 0-60% of textile waste. The MLR 

equation can be used for waste with paper and yard waste between 0-100%. Further research is 

necessary to study the performance of the MLR equation for predicting methane generation 

beyond the limiting conditions. 

5.3 CLEEN Model Development 

5.3.1 Assumptions for CLEEN Model 

The Capturing Landfill Emissions for Energy Needs (CLEEN) model is an Excel-based 

model using a simple first-order decay equation for predicting methane generation rates from 

landfills. The assumptions involved in the CLEEN model are briefly discussed in this section. The 

following information is required as inputs to the CLEEN model:  

1. Starting year of waste acceptance 

2. Yearly Waste tonnage  

3. Waste Composition 

4. Average Annual Ambient Temperature  

5. Average Annual Rainfall 
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5.3.1.1 First-Order Decay Equation 

The first-order decay equation recommended by LandGEM (2005) for estimating 

methane generation from landfills is shown below: 

    
    

  

  
   

     

  

   

 

   

 

where 

Q = Methane recovered from landfills (m3/yr), 

M= Mass of waste deposited in the year “i” within the landfill (Mg), 

k= First-order decay constant (yr-1), 

L0 = Ultimate methane generation potential (m3/Mg), 

tij = Age of the jth section of waste mass Mi, accepted in the ith year (decimal years) 

 The modification of using 1/10th of the mass for finding the methane generation was 

incorporated into LandGEM in 2005. This modification helped in dividing the integral division 

into several small parts, helping to lower the methane estimates by 1-25% (LandGEM, 2005).  

CLEEN model proposed using the 1/12th of the mass instead of 1/10th as shown in the 

equation above. This will enable user to input monthly waste accepted if available. In addition, 

dividing the integral division can further improve the estimation efficiency. Hence the first order 

decay equation used in the CLEEN models is as follows 

    
    

  

  
   

     

  

   

 

   

 

where 

Q = Methane recovered from landfills (m3/yr), 

M= Mass of waste deposited in the year “i” within the landfill (Mg), 
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k= First-order decay constant (yr-1), 

L0 = Ultimate methane generation potential (m3/Mg), 

tij = Age of the jth section of waste mass Mi, accepted in the ith year  

5.3.1.2 Methane Recovery and Oxidation 

Typically in a landfill, it is assumed that out of the total amount of methane generated in 

the landfill, only a certain portion is recovered via the methane recovery system. The remaining 

methane migrates to the surface and may be emitted from the surface of the landfill. However, 

some portion of the methane is oxidized due to presence of methane-oxidizing bacteria in the 

cover soil. The CLEEN model being a generation based model, it was necessary to account for 

the losses due to recovery and oxidation. LandGEM (2005) does not account for the losses 

occurring due to the recovery and oxidation. IPCC (2006) uses 10% oxidation losses for managed 

landfills with oxidizing cover material. However, IPCC (2006) is a model estimating methane 

emissions from the landfill surface; hence, the amount of methane recovered needs to be input 

into the model.  

In this study, an attempt was made to account for the recovery and oxidation losses, 

using the equation suggested by IPCC (2006). 

Methane Generated = Methane Recovered + Methane Emitted + Methane Oxidized       (5-12) 

Methane Emissions = (Methane Generated – Methane Recovered)* (1 - % oxidized)        (5-13) 

In the CLEEN model, the amount of methane generated from the landfill can be 

calculated using a first-order decay equation. Further, methane recovered and methane surface 

emissions can be computed by providing % recovered and % oxidized in the model. However, it 

must be noted that the factors % methane recovered and % methane oxidized are sources of 

uncertainty in the model.  
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In case % recovered and % oxidized is not available, IPCC’s default value of 10% 

oxidation has been adopted in the CLEEN model (IPCC, 2006). However, recent studies have 

however found that % methane oxidized ranges between 11 to 89 % with a mean value of 36 ± 

6% (Chanton, 2009). The amount of methane oxidized is a function of type of cover soil, 

temperature of cover soil, moisture content of the cover soil, and amount of methane 

generated. CLEEN model allows the user to input site specific oxidation rates if available.  

Percent methane recovered from a landfill, or methane recovery (% R), depends on 

several factors such as landfill cover (final, intermediate, daily), gas fluxes, permeability of 

covers and the operating vacuum pressures used while recovering gas from landfills. 

Researchers have reported % recovery (%R) to be in the range of 10-90% (IPCC, 2006). USEPA’s 

AP-42 draft section 2.4 for Municipal Solid Waste suggested a modification to LandGEM by 

incorporating a default value for % recovery as 75%. This section is currently under review (as of 

May 2012). Using this guideline, 75% recovery was used as a recommended value in the CLEEN 

model (USEPA, 2006), however, users are allowed to input site specific % recovery if available. 

5.3.1.3 Lag Period 

 Typically lag time is the time required for the methane to be generated from the solid 

waste after being deposited in the landfill. Barlaz (2004) reported the typical lag time in a landfill 

to be about 1 year. However, the lag time also depends on waste composition and climatic 

conditions of the landfill. IPCC (2006) suggested using 0-6 months as lag time as a good 

engineering practice.  LandGEM (2005) does not specify the typical lag time considered in the 

model. However, LandGEM assumes that the waste deposited in a particular year starts 

producing methane in the following year, irrespective of the month in which the waste was 

deposited. Thus, the waste deposited from January 2010 to December 2010 is assumed to start 
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producing gas in January 2011. Hence it can be concluded that LandGEM assumes an average lag 

time of 6 months.  

The structure of CLEEN model is similar to that of LandGEM; hence the average lag time 

was assumed to be 6 months. However, additional research is needed to identify the effect of 

waste composition and climatic conditions on the lag time, which will give an accurate estimate 

of the time required for methane to be generated from a landfill. 

5.3.1.4 Ultimate Methane Potential (L0) 

 The Biochemical Methane Potential (BMP) values were used for finding the ultimate 

methane potential in the CLEEN model. Chapter 2 gives a detailed literature review of the L0 

used in LandGEM and IPCC’s models. In this study, it was found that the BMP values were larger 

than the cumulative methane produced in the lab scale reactors. This was primarily because the 

conditions in the BMP test were close to ideal conditions for degradation. Further, the 

cumulative methane generated from the reactors was influenced by the rainfall and waste 

composition. Theoretically, given enough time, the microbes should convert the organic matter 

in the waste to methane, if it is convertible, even if conditions are not ideal. Hence the BMP 

values were considered as reasonable estimates of L0 in the CLEEN model.  

 The ultimate methane potential in the CLEEN model can be computed using an average 

of the BMP values weighted according to the waste composition. Thus, the L0 value can be 

adjusted if the waste composition changes due to changes in the waste management practices 

such as recycling and composting. Table 5.24 shows the BMP values incorporated into the CLEEN 

model based on the observations in this study.  
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Table 5.24: BMP, Volatile Solids and Moisture Content values for Waste Components Found in 
this Research 

 

Type of Waste BMP VS BMP Moisture  
Content 

BMP 

m3/Mg of 
Volatile  

Solids (VS) in 
waste 

g of VS/100 
g of dry 
solids 

m3/Mg of 
dry solids 
in waste 

kg of water/  
100 kg of 

wet waste 

m3/Mg of 
wet waste 

Food 389.8 90.16 351.4 82.87 60.19 

Paper 336.2 89.34 300.3 8.456 274.9 

Textile 184.5 98.31 181.3 4.367 173.4 

Yard 188.6 85.02 160.3 56.91 69.08 

Non- Biodegradables 0 0 0  0 

 

Alternatively, the users can calculate L0 values based on the BMP and moisture contents 

reported in the literature. The typical values of BMP and moisture content reported in the 

literature are summarized in Table 5.25. 

Table 5.25: BMP and Moisture Content values for Waste Components Reported in Literature 
 

Type of 
Waste 

Biochemical Methane Potential (BMP) 
Moisture 
Content* 

m3/kg of VS in 
waste 

Source % 

Food 292-540 
Gunaseelan (2004), Cho et al. (1995), 

Eleazer et al. (1997), Jeon et. al 
(2007), Chynoweth et al (1993 

50-80 

Paper 75-370 
Owens and Chynoweth (1993), 

Eleazer et al. (1997) 
Jeon et. al (2007) 

4-8 

Textile 
35-210 

m3/kg of dry waste 
Jeon et. al (2007), Isci and Demirer 

(2007) 
6-15 

Yard 14 – 283 
Owens and Chynoweth (1993), 

Eleazer et al. (1997), Chynoweth et al 
(1993), Jeon et. al (2007) 

30-80 

Plastics   1-4 
NOTE: * The moisture content values were adopted from Tchobanoglous et al. (1993) 
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5.3.1.5 k value 

In the CLEEN model, k values were computed using the comprehensive regression 

equation Eq. 5-9.  

                                                                

                                                                                                                           

Where 

R = Annual Rainfall (mm/day),  

T = Annual ambient temperature (oK), 

F = % Food in landfilled waste, 

TX = % Textile in landfilled waste, 

Y = % Yard in landfilled waste 

 The CLEEN model was setup in such a way that k values could be computed for each 

year depending on the waste composition and climatic conditions.  However, as mentioned 

above, the k values computed using the MLR equation were found to be higher than those 

typically found in the landfills. Hence a scale up factor ‘f’ was computed to adjust the k values 

for the actual landfill conditions. 

5.3.2 Computing Scale-up Factor (f)  

The scale-up factor can be defined as the ratio of the actual k value found in the landfill 

to the k value computed using the comprehensive regression equation. 

                    
      

           
                                                                                     (5-14) 

Where, 

Kfield = k value estimated using curve fitting for actual scale landfill data (yr-1),  

kcalculated = k value calculated using the comprehensive MLR equation (yr-1). 
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As an example, methane recovery data from the City of Denton’s landfill was used for 

computing a scale up factor for the k values. The City of Denton’s landfill started accepting 

waste in 1984. The landfill was divided into three cells. Cell 0, the oldest cell in the landfill, was 

accepting waste from 1984 to 1998; thereafter, the waste was diverted to Cell 1, which 

accepted waste until 2009. Currently, all the waste is being diverted to Cell 3. Final cover has not 

been installed on any of the three cells. The gas recovery system was installed at the landfill in 

2008, and the gas flow rate is being measured at the outlet header. This gas flow rate combined 

with the gas composition data from the landfill, were used for estimating the kactual value.   

As mentioned earlier, the input parameters required for the CLEEN model were waste 

tonnage, waste composition, annual ambient temperature and annual average rainfall. The 

detailed description of these parameters is included in the following sections. 

5.3.2.1 Waste Tonnage  

The amount of waste accepted (or waste tonnage) in the City of Denton’s landfill from 

1984 to 2010 is shown in Table 5.26.  

5.3.2.2 Waste Composition 

The composition of fresh municipal solid waste was studied at the University of Texas at 

Arlington in 2009-2010. The waste composition was determined by collecting waste samples on 

site, and hand sorting each MSW component into the following categories: paper, plastic, food 

waste, leather and textile, wood & yard waste, metals, glass, Styrofoam and sponge, 

construction and demolition (C&D) waste and others (soils and fines) (Taufiq, 2010). The waste 

composition changes monthly and with seasons; hence a yearly average was used in the CLEEN 

model (See Figure 5.19). Further, the waste composition was not available from 1984 to 2009. 

Hence, the waste composition was assumed to be the same as that found in 2009. 
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Table 5.26: Waste Accepted in the City of Denton’s Landfill 

Year Waste Accepted Year Waste Accepted 

 Metric Tons  Metric Tons 

1984 79792 1998 92019 

1985 87053 1999 101241 

1986 95584 2000 102536 

1987 140641 2001 100080 

1988 105139 2002 97295 

1989 77999 2003 96635 

1990 50860 2004 109436 

1991 58764 2005 112933 

1992 68717 2006 103049 

1993 75061 2007 115933 

1994 103370 2008 119084 

1995 91083 2009 160596 

1996 78797 2010 160580 

1997 103406   

 

 

Figure 5.19: City of Denton Landfill Fresh Municipal Solid Waste Composition found in  
(a)2009 (b) 2010 (Source: Taufiq, 2010) 
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5.3.2.3 Annual Ambient Temperature 

The average annual ambient temperature for the year 2010 was reported as 63.9oF 

(17.72oC) at the nearest weather station from Denton, TX (www.usclimatedata.org ). This value 

was used for computing the k values in the CLEEN model, although the comprehensive 

regression equation only allowed interpolation of ambient temperatures between 20oC to 37oC.  

5.3.2.4 Average Annual Rainfall. 

The annual average rainfall recorded at the nearest weather station from the Denton, 

TX was found to be 34.34 inches (2.366 mm/day) (www.noaa.gov). According to NOAA, the 

average rainfall was computed based on the rainfall recorded from 1954 to 2010. Hence this 

value was used for computing the k value in the CLEEN model. However, since 2009, the City of 

Denton’s landfill was operated as a bioreactor landfill, by reintroducing leachate/ stormwater in 

the waste. The water addition was done only in Cell 2 and Cell 3. Hence, it was necessary to 

apply a correction to the rainfall data, by adding the amount of leachate/ stormwater 

reintroduced into the landfill. Based on the recirculation data and the dimensions of the cells, it 

was found that 0.04 and 0.11 mm/day additional rainfall infiltrated into the waste due to the 

leachate recirculation in 2009 and 2010, respectively.   

5.3.2.5 Ultimate Methane Potential 

The ultimate methane potential was computed using a weighted average of the waste 

composition. Table 5.27 shows the sample calculations for computing the ultimate methane 

potential value. 

 

 

 

http://www.usclimatedata.org/
http://www.noaa.gov/
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Table 5.27: Ultimate Methane Potential Calculation for the City of Denton Landfill 

Type of Waste 
BMP % in Denton Waste Weighted Avg for BMP 

m3/Mg of wet waste on wet weight basis m3/Mg of wet waste 

Food 60.19 2 1.204 

Paper 274.9 40 109.9 

Textile 173.4 4 6.936 

Yard 69.08 9 6.218 

Others 0 45 0 

SUM 124.330 

 

5.3.2.6 Estimating kcalculated  

The k value was computed in the CLEEN model using the comprehensive MLR equation 

(Eq. 5-9).  

                                                                

                              

Where, 

R = Annual Rainfall (mm/day) =34.34 mm/day 

T = Annual ambient temperature (K) = 290.7 K 

F = % Food in landfilled waste = 2 % 

TX = % Textile in landfilled waste = 4 % 

Y = % Yard in landfilled waste = 9 % 

Using the above relationship, the kcalculated was found to be 1.5835 yr-1.  

5.3.2.7 Estimating kfield 

The monthly gas flow rate was obtained from the gas header for a period of three years 

from 2009 to 2011. The gas composition data was also obtained from the gas wells as well as 

the header line. It was found that the methane content was between 50-54% in the landfill gas. 
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The observed average methane flow rate recovered from the landfill was plotted along with the 

methane recovery curve computed from the CLEEN model. Trial and error was used to 

determine the k value which best-fit the methane recovery curve to the field scale data (See 

Figure 5.20).  This resulted in a scale-up factor of 0.0121, and a kfield of 0.019 yr-1.  

 

Figure 5.20: Graphical Representation of Methane Recovered from City of Denton Landfill 
  

 Cruz and Barlaz (2010) used lab scale bioreactor data to find the scale up factors for 2 

conditions, first considering the bulk decay rates, kactual = 0.04 for traditional landfills and kactual = 

0.12  for bioreactor landfills. Scale-up factors reported by Cruz and Barlaz (2010) were 0.064 for 

traditional landfills and 0.0192 for bioreactor landfills. The scale up factor computed in this 

study falls within the range reported by Cruz and Barlaz (2010). However, further research is 

necessary to study the impact of conditions such as rainfall and temperature on the scale-up 

factor found in this study. Methane recovery data from additional landfills should be studied. 
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5.3.3 Uncertainties in the CLEEN Model 
 

The CLEEN model uses a first-order decay equation for computing the amount of 

methane generated from landfills. The comprehensive equation for k value was developed from 

lab scale data. Hence, it holds for conditions in the range studied in the lab: temperatures from 

20 to 37oC, and rainfall between 2 to 12 mm/day. Using the relationship beyond the 

temperature or rainfall range mentioned above would lead to extrapolation. Further studies are 

required for verify whether k behaves linearly beyond the range mentioned above. 

The applicability of the comprehensive MLR equation for predicting methane generation 

from waste is limited to 0-60% of food waste, and 0-60% of textile waste. The MLR equation can 

be used for waste with paper and yard waste between 0-100%. Further research is necessary to 

study the performance of the MLR equation for predicting methane generation beyond the 

limiting conditions. 

The methane recovered from the gas collection system depends on several factors such 

as landfill cover, permeability of cover soils, presence of preferential pathways and the 

operating parameters of landfill gas collection system. These factors affect the estimation of the 

% recovery in the landfills. Hence the variability in the amount of methane recovered from a 

landfill induces uncertainty in the estimation efficiency of the CLEEN model. Similarly, the % 

oxidation value affects the estimates of methane surface emissions from the CLEEN model.   The 

scale-up factor was developed using the methane recovery data from the City of Denton landfill. 

The estimation of the scale-up factor depends on the % recovery assumed in the model. Further, 

the scale up factor may vary from landfill to landfill. Factors such as rainfall and temperature 

may also affect the scale-up factor, thus introducing an interaction between the scale-up factor 

and the predictor variables. A comprehensive study with landfill scale emission data from 
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landfills located worldwide with diverse climatic conditions must be conducted to study these 

interaction effects. Further, additional modifications can be done in the CLEEN model to 

incorporate monthly waste acceptance and monthly rainfall- temperature via computer 

software programming which can analyze such complex computation. 

The estimation efficiency is also a function of the lag time considered in the model. It 

was observed in the lab scale reactor study that the lag-time was longest at the lowest 

temperature. Such effects must be quantified to improve the estimation efficiency. Further, the 

exact waste composition data for landfills is often not available. In addition, the sampling 

methodology for finding waste composition varies significantly. Hence a uniform sampling 

methodology needs to be implemented for overcoming the uncertainty in the model 

performance. Some of these uncertainties listed above such as lag time and waste composition 

data affect all other models. Hence additional research in this field can improve the overall 

estimations of methane emissions from landfills, irrespective of the models used. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

Accurately estimating methane generation from landfills has always been a challenge 

for the solid waste industry. Current models use a first-order decay equation for estimating 

methane generated from landfills. The major limitation of the current models is their inability to 

adapt to the varying waste compositions and climatic conditions found worldwide. The main 

objective of this research was to study the effect of waste composition and climatic factors such 

as rainfall and ambient temperature on the overall rate of waste degradation.  

The main thrust of this research was to develop a methodology through which the 

factors rainfall, ambient temperature and waste composition could be varied simultaneously in 

a laboratory-scale setup. An incomplete block design was used with rainfall and temperature as 

main predictor variables and waste composition as a blocking variable for the laboratory scale 

setup. The results from the laboratory scale setup were used for developing a comprehensive 

regression equation for estimating the rate of waste degradation. Further, an attempt was made 

to develop an improved model for predicting methane generation from landfills based on basic 

information about the waste composition, rainfall and ambient temperature. 

6.1 Summary and Conclusions  

The following results and conclusions are based on the findings from this study: 

1. Reactors with yard waste (grass and leaves) showed classic first-order decay curves, with the 

shortest lag period and faster rate of degradation than the other types of waste. Further, 
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methane generation curves from yard waste reactors showed a relatively higher peak and 

asymptotic decrease, following a classic first-order decay curve. Currently, most countries 

prefer composting for yard waste rather than landfilling. Based on the short lag periods 

observed for reactors with higher amounts of yard waste (60% and above), it is likely that 

yard waste may start producing methane before the landfill gas collection system is 

installed. Hence diverting yard waste from landfills can help reduce the methane emissions 

from landfill surfaces.  

2. The reactors with high amounts of food waste (60% and above) had longer lag periods 

compared to all other types of waste. In addition, methane generation curves from food 

waste reactors showed multiple peaks and did not follow a typical first-order degradation 

curve. The longer lag periods could be due to the accumulation of carboxylic acids in the 

acidogenesis phase, and the presence of multiple peaks could be due to different types of 

food waste degrading at different rates. The total amount of methane generated from food 

waste reactors depended on the rainfall, because the amount of carbon washed out 

increased with the rainfall. 

3. Paper waste reactors degraded at a moderate rate. Typically, methane generation from 

paper reactors followed a first-order decay curve; however, the total amount of methane 

generated from 100% paper reactors was low, compared to other reactors.  This could be 

due to the nutrient deficiency in paper reactors. 

4. Reactors with higher amounts of textile wastes (60% and above) degraded at very slow 

rates, often displaying multiple and relatively low peaks in the methane generation curves. 

The presence of multiple peaks could be due to different types of textile wastes degrading 
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at different rates.  Overall, textile waste reactors showed the minimum cumulative methane 

generation compared to other reactors. 

5. Overall, reactors with high amounts of textile waste and food waste did not follow a typical 

first-order decay curve. However, in cases where the waste components were mixed 

together and in reactors with waste combination I-20% each waste, it was observed that the 

methane generation curve followed a first-order decay curve. This behavior could be 

because the waste mixture supplemented nutrients which enhanced the methane 

generation rates. 

6. Overall, it was observed that an increase in temperature increased the rate of degradation. 

In most cases, the peaks in the methane generation rate curves were higher at higher 

temperatures.  

7. After dismantling the reactors, it was found that the reactors with 100% food waste had 

maximum settlement (30-33 cm) as compared to 0-16 cm in other reactors. Food waste 

typically had higher initial moisture content as compared to other waste. Over the period of 

time of the study, the waste kept losing water until it reached a constant moisture content 

value. Hence a considerable amount of carbon leached out, thereby increasing the 

settlement in the reactor. 

8. The lag period (time required for the methane generation to begin) was mostly dependent 

on the waste composition. Since the lag period is the time required for the microorganisms 

to hydrolyze the substrates, it makes sense that it was affected by the waste composition. 

For example, yard waste had the shortest lag period, while textile and food waste required a 

longer lag period. 
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9. For a particular waste composition, the lag period was found to be longest at the lowest 

temperature, 20oC. Likewise, the lag period at 30oC was expected to be longer than that at 

37oC. However, in some cases the lag period was reduced due to higher rainfall rates (waste 

composition G and I).  However, irrespective of the rainfall, the lag period was found to be 

longest at 20oC. 

10. In all reactors it was found that the Biochemical Methane Potential (BMP) value was higher 

than then cumulative methane generated from the reactors. It was also observed that the 

difference between BMP and ultimate methane generated from reactors was larger as the 

rainfall was increased. This was because the amount of carbon washed out from the 

reactors increased as the rainfall was increased.  

11. The probable moisture content in the reactor was estimated by performing a water balance. 

After dismantling the reactors, the average observed moisture content was compared with 

the probable moisture content. The calculated probable moisture content gave an 

approximate estimate (± 20%) of the moisture content within the reactor. The probable 

moisture content calculations were based on the initial dry weight of the waste; which 

decreased with degradation. Hence, it was found that the change in weight of the reactor 

due to degradation affected the probable moisture content significantly.  

12. The volatile solids content of raw waste was compared with that of the degraded waste. It 

was found that the change in volatile solids content due to degradation was between -0.5 to 

19%. Since the waste used in this study was “pure” waste, the loss in volatile solids was 

relatively small. While the waste was degrading in the reactor, the recalcitrant carbon 

percentage was increasing. However, the inorganic portion was not actually increasing; 

hence, the volatile solids did not change significantly in these reactors. 
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13. Multiple Linear Regression (MLR) analysis was used on the lab scale data to quantify the 

effect of waste composition, rainfall and ambient temperature on the first-order decay 

constant (k). The best model was selected using the backward elimination method, best 

subsets method and stepwise regression method, such that all parameter were significant at 

α =0.1. The best model was found to have an adjusted R2 of 0.7538, and is given by: 

                                                                

                             

where k = rate of degradation in terms of first order decay constant (yr-1), R = Average 

annual rainfall (mm/day), T= ambient temperature (K), TX = % textile in landfilled waste, Y= 

% yard in landfilled waste, F = % food in landfilled waste.  

14. It can be observed from the MLR model that increasing the ambient temperature increases 

the rate of degradation. Likewise, increasing the amount of textile waste and yard waste can 

also help in increasing the rate of degradation. Textile wastes typically have higher moisture 

absorption capacity; hence, the presence of high amounts of textile waste can aid faster and 

uniform distribution of nutrients and microbes due to higher moisture content. The 

presence of high amount of yard wastes, especially grass and leaves which are easily 

degradable, help in hydrolysis of waste which aids microbial growth, thereby increasing the 

overall rate of degradation. It was observed that the rate of degradation was affected by the 

combined effect of food waste and rainfall since they interact with each other. Paper waste 

did not affect the rate of degradation. Overall, paper waste degrades at a moderate rate, as 

compared to other organics considered in this study. A change in the amount of paper 

waste affected the overall rate of degradation; however, that effect was not significant at 

90% confidence level.  
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15. The MLR equation can be used for predicting methane generation rate from landfills 

receiving rainfall between 2 and 12 mm/day and annual ambient temperature from 20oC to 

37oC. The applicability of the comprehensive MLR equation for predicting methane 

generation from waste is limited to 0-60% of food waste, 0-60% of textile waste, 0-100% of 

paper waste and 0-100% of yard waste. 

16. The k values observed in the lab-scale study were higher than those observed in the 

landfills. Although this study aimed at recreating landfill like conditions by not adding 

nutrients and using larger reactors (16L instead of the typical 2L), which allowed for not 

shredding waste, the higher k values could be a result of a controlled environment and 

greater microbial access compared to the conditions in a landfill.  Hence it was necessary to 

develop scale-up factors to adjust the model to field-scale conditions. 

17. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by 

incorporating the comprehensive regression equation into first-order decay based model for 

estimating methane generation rates from landfills. In addition, the CLEEN model can be 

used to predict methane emissions from landfill surface by incorporating methane recovery 

and methane oxidation rates.  

18. A scale-up factor for the CLEEN model was computed to adapt the model for field scale 

emissions using the City of Denton’s landfill emissions data as follows:  

                    
       

           
 

Where, kactual = k value estimated using curve fitting for actual scale landfill data (yr-1), 

kcalculated = k value calculated using the comprehensive MLR equation (yr-1). Using the field 

scale data, the scale-up factor for the Denton Landfill was found to be 0.012. 
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6.2 Recommendations for Future Studies 

The following recommendations are suggested for future studies: 

1. Further research needs to be done to validate CLEEN’s effectiveness in predicting 

methane generation rates from landfills compared to the current models (LandGEM and 

IPCC). A dataset with varying climatic conditions and waste compositions should be used 

for the validation. There should be additional research to identify the interaction (if any) 

between the scale-up factor (f) and the predictors. 

2. Running experiments for temperature and rainfall ranges beyond the range used in this 

study can help towards improving the prediction efficiency of models. In addition, 

running laboratory scale landfill reactors longer so convergence may be achieved for 

some waste combinations for which it was not achieved in this work can help in 

overcoming the limiting conditions of the current model. 

3. It was observed in this research that the methane generation curve from reactors with 

higher amount of food waste does not follow a first-order decay curve. Additional 

research is necessary to identify the kinetic model that fits the methane curves for 

waste streams with higher percentages of food waste. This research will particularly 

benefit countries like China, India, Bangladesh, and Mexico, which have about 50% or 

more food waste in their waste streams. Alternatively, exploring different rates of 

degradation for different types of food waste (cooked vs. uncooked, fruits and 

vegetables vs. meat) can further help future prediction models. 

4.  The model developed in this research can be used for life cycle analysis of municipal 

solid waste landfills. It may give a better picture of how long the carbon may stay in the 

landfills until it is completely degraded or removed. 
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5.  Further research is necessary to understand the impact of actual temperatures within 

the landfill on waste degradation. Researchers have reported elevated temperatures 

inside the landfills higher than the ambient temperatures. As of now, it is difficult to 

predict the actual temperature inside the landfill. Further research is necessary to 

correlate the actual temperatures within the landfill with ambient temperatures, and 

the CLEEN model needs to be modified accordingly. 

6. Additional research is necessary to identify the effect of cover material on methane 

emissions, recovery and oxidation. 

7. Developing methods to better capture methane released early in the landfill, while 

waste is just being placed and studying factors affecting the lag duration before 

methane generation begins is necessary for improving the prediction efficiency of the 

current models. 

8. Current research mainly focused on conventional landfills. The technology of operating 

landfills as “bioreactors” through leachate recirculation is currently being used more 

widely. In a bioreactor, landfill nutrients and carbon lost in leachate are reintroduced in 

the waste which enhances degradation rates. Hence, accounting for enhanced moisture 

content in a bioreactor landfill by adjusting rainfall rates for calculating k values may not 

be sufficient. Hence, additional research is necessary to identify the effect of operating 

landfills as bioreactors on the k values. 

9. Adding rainfall at intervals other than daily may impact the k values. Hence further 

research is required to identify the impact of rainfall intervals on k. Further, a study of 

whether rainfall per waste volume rather than rainfall per landfill area may improve the 

prediction efficiency of the model.  
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APPENDIX A 
 

COMPARATIVE ANALYSIS OF METHODS FOR FINDING k VALUES 
 



 

 

2
1

1
 

A.1 Comparative Analysis of Methods for Finding k Values 

 
 

Reactor Simple Linear Regression Thomas Method Non Linear Regression 

  Lo k Error  C.D. Lo k Error  C.D. Lo k Error  C.D. 

8 85.23 7.34 1217.00 0.98 96.44 6.59 3589.00 0.93 81.68 9.33 238.15 0.995 

9 84.09 4.38 2814.90 0.95 296.80 0.74 2078.00 0.96 118.40 2.41 990.45 0.98 

17 39.83 3.21 393.90 0.96 42.98 2.47 89.92 0.99 44.92 2.17 55.92 0.99 

18 69.43 13.46 4467.28 0.85 98.03 4.41 2425.51 0.92 78.92 7.81 657.30 0.98 

27 65.94 4.93 1831.29 0.94 94.69 2.17 282.83 0.99 77.60 2.92 25.81 0.999 
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APPENDIX B 
 

pH and GAS GENERATION RATES FOR REACTORS 
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(a) 

 

 
(b) 

Figure B1: Gas generation rate and pH at 20oC from Reactor 1 
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(a) 

 

 
(b) 

Figure B2: Gas generation rate and pH at 20oC from Reactor 2 
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(a) 

 

 
(b) 

Figure B3: Gas generation rate and pH at 20oC from Reactor 3 
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(a) 

 
 

(b) 
Figure B4: Gas generation rate and pH at 30oC from Reactor 4 
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(a) 

 

 
(b) 

Figure B5: Gas generation rate and pH at 30oC from Reactor 5 
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(a) 

 

 
(b) 

Figure B6: Gas generation rate and pH at 30oC from Reactor 6 
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(a) 

 

 
(b) 

Figure B7: Gas generation rate and pH at 37oC from Reactor 7 
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(a) 

 

 
(b) 

Figure B8: Gas generation rate and pH at 37oC from Reactor 8 
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(a) 

 

 
(b) 

Figure B9: Gas generation rate and pH at 37oC from Reactor 9 
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(a) 

 

 
(b) 

 
Figure B10: Gas generation rate and pH at 20oC from Reactor 10 
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(a) 

 

 
(b) 

Figure B11: Gas generation rate and pH at 20oC from Reactor 11 
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(a) 

 

 
(b) 

Figure B12: Gas generation rate and pH at 20oC from Reactor 12 
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(a) 

 

 
(b) 

Figure B13: Gas generation rate and pH at 30oC from Reactor 13 
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(a) 

 

 
(b) 

Figure B14: Gas generation rate and pH at 30oC from Reactor 14 
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(a) 

 

 
(b) 

Figure B15: Gas generation rate and pH at 30oC from Reactor 15 
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(a) 

 

 
(b) 

Figure B16: Gas generation rate and pH at 37oC from Reactor 16 
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(a) 

 

 
(b) 

Figure B17: Gas generation rate and pH at 37oC from Reactor 17 
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(a) 

 

 
(b) 

Figure B18: Gas generation rate and pH at 37oC from Reactor 18 
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(a) 

 

 
(b) 

Figure B19: Gas generation rate and pH at 20oC from Reactor 19 
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(a) 

 

 
(b) 

Figure B20: Gas generation rate and pH at 20oC from Reactor 20 
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(a) 

 

 
(b) 

Figure B21: Gas generation rate and pH at 20oC from Reactor 21 
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(a) 

 

 
(b) 

Figure B22: Gas generation rate and pH at 30oC from Reactor 22 
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(a) 

 

 
(b) 

Figure B23: Gas generation rate and pH at 30oC from Reactor 23 



 

 236 

 
(a) 

 

 
(b) 

Figure B24: Gas generation rate and pH at 30oC from Reactor 24 
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(a) 

 

 
(b) 

Figure B25: Gas generation rate and pH at 37oC from Reactor 25 
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(a) 

 

 
(b) 

Figure B26: Gas generation rate and pH at 37oC from Reactor 26 
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(a) 

 

 
(b) 

Figure B27: Gas generation rate and pH at 37oC from Reactor 27 
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CUMULATIVE METHANE GENERATION 
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Figure C-1: Cumulative methane production rate for Reactor 1 

 

 
Figure C-2: Cumulative methane production rate for Reactor 2 
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Figure C-3: Cumulative methane production rate for Reactor 3 

 

 
Figure C-4: Cumulative methane production rate for Reactor 4 
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Figure C-5: Cumulative methane production rate for Reactor 5 

 

 
Figure C-6: Cumulative methane production rate for Reactor 6 
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Figure C-7: Cumulative methane production rate for Reactor 7 

 

 
Figure C-8: Cumulative methane production rate for Reactor 8 
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Figure C-9: Cumulative methane production rate for Reactor 9 

 

 
Figure C-10: Cumulative methane production rate for Reactor 12 
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Figure C-11: Cumulative methane production rate for Reactor 13 

 

 
Figure C-12: Cumulative methane production rate for Reactor 14 
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Figure C-13: Cumulative methane production rate for Reactor 15 

 

 
Figure C-14: Cumulative methane production rate for Reactor 16 
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Figure C-15: Cumulative methane production rate for Reactor 17 

 

 
Figure C-16: Cumulative methane production rate for Reactor 18 
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Figure C-17: Cumulative methane production rate for Reactor 19 

 

 
Figure C-18: Cumulative methane production rate for Reactor 20 
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Figure C-19: Cumulative methane production rate for Reactor 21 

 

 
Figure C-20: Cumulative methane production rate for Reactor 22 
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Figure C-21: Cumulative methane production rate for Reactor 23 

 

 
Figure C-22: Cumulative methane production rate for Reactor 24 
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Figure C-23: Cumulative methane production rate for Reactor 25 

 

 
Figure C-24: Cumulative methane production rate for Reactor 26 
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Figure C-25: Cumulative methane production rate for Reactor 27 

  

0 

10 

20 

30 

40 

50 

60 

70 

0 50 100 150 200 250 

C
u

m
u

la
ti

ve
 M

e
th

an
e

 P
ro

d
u

ct
io

n
 (

L/
kg

) 

Time, (days) 

R#27 - Cumulative Methane Generation 

Fitted Curve 

Observed Data 



 

 254 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX D 
 

MODEL DEVELOPMENT: SAS OUTPUTS 
  



 

 255 

D-1: SAS Output for Square Root k Transformation 

 

 
  

r ai nf al l

s

q

r

t

k

t emp

s

q

r

t

k

f ood

s

q

r

t

k

paper

s

q

r

t

k

t ext i l e

s

q

r

t

k

yar d

s

q

r

t

k



 

 256 

 

The SAS System 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: sqrtk  

Number of Observations Read 18 

Number of Observations Used 18 

 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 6 3.91417 0.65236 4.46 0.0157 

Error 11 1.60909 0.14628     

Corrected Total 17 5.52326       

 

Root MSE 0.38247 R-Square 0.7087 

Dependent Mean 1.70497 Adj R-Sq 0.5498 

Coeff Var 22.43254     

 

Parameter Estimates 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| Type I SS Variance 
Inflation 

Intercept 1 -9.27320 4.37758 -2.12 0.0577 52.32439 0 

rainfall 1 0.00281 0.02427 0.12 0.9098 0.00372 1.22426 

temp 1 0.03462 0.01394 2.48 0.0304 0.83976 1.05061 

food 1 -0.00119 0.00876 -0.14 0.8941 0.00298 2.47363 

paper 1 0.00163 0.00775 0.21 0.8376 2.18588 8.97250 

textile 1 0.00457 0.00695 0.66 0.5247 0.32075 2.98122 

yard 1 0.01280 0.00653 1.96 0.0760 0.56108 7.61798 
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The SAS System 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: sqrtk  
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D-2: SAS Output for Log K Transformation 
 

 
 

The SAS System 

The REG Procedure 
Model: MODEL1 

Dependent Variable: logtenk  

Number of Observations Read 18 

Number of Observations Used 18 

 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 6 0.84213 0.14035 4.04 0.0219 

Error 11 0.38213 0.03474     

Corrected Total 17 1.22425       

 

Root MSE 0.18638 R-Square 0.6879 

Dependent Mean 0.42248 Adj R-Sq 0.5176 

Coeff Var 44.11631     
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Parameter Estimates 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| Type I SS Variance 
Inflation 

Intercept 1 -4.65561 2.13328 -2.18 0.0517 3.21284 0 

rainfall 1 0.00336 0.01183 0.28 0.7818 0.00068542 1.22426 

temp 1 0.01600 0.00680 2.36 0.0381 0.18383 1.05061 

food 1 -0.00082859 0.00427 -0.19 0.8497 0.00021338 2.47363 

paper 1 0.00047127 0.00378 0.12 0.9030 0.49828 8.97250 

textile 1 0.00260 0.00339 0.77 0.4589 0.04367 2.98122 

yard 1 0.00581 0.00318 1.82 0.0956 0.11545 7.61798 
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The SAS System 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: logtenk  
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D-3: SAS Output for Inverse Square Root K Transformation  
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The SAS System 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: invsqrtk  

Number of Observations Read 18 

Number of Observations Used 18 

 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 6 0.37327 0.06221 3.19 0.0458 

Error 11 0.21464 0.01951     

Corrected Total 17 0.58791       

 

Root MSE 0.13969 R-Square 0.6349 

Dependent Mean 0.64170 Adj R-Sq 0.4358 

Coeff Var 21.76856     

 

Parameter Estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Type I SS Variance 

Inflation 

Intercept 1 3.99704 1.59883 2.50 0.0295 7.41204 0 

rainfall 1 -0.00301 0.00886 -0.34 0.7402 0.00226 1.22426 

temp 1 -0.01060 0.00509 -2.08 0.0615 0.08362 1.05061 

food 1 0.00077871 0.00320 0.24 0.8123 0.00000791 2.47363 

paper 1 -0.00000943 0.00283 -0.00 0.9974 0.23287 8.97250 

textile 1 -0.00207 0.00254 -0.82 0.4316 0.00858 2.98122 

yard 1 -0.00366 0.00239 -1.53 0.1532 0.04593 7.61798 
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The SAS System 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: invsqrtk  
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 267 

D-4 SAS Output for Log K with Quadratic Transformation for Rainfall and Temperature 
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The SAS System 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: logtenk  

Number of Observations Read 18 

Number of Observations Used 18 

 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 8 0.95226 0.11903 3.94 0.0283 

Error 9 0.27200 0.03022     

Corrected Total 17 1.22425       

 

Root MSE 0.17384 R-Square 0.7778 

Dependent Mean 0.42248 Adj R-Sq 0.5803 

Coeff Var 41.14841     

 

Parameter Estimates 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| Type I SS Variance 
Inflation 

Intercept 1 -4.67309 2.28151 -2.05 0.0708 3.21284 0 

rainfall 1 0.01096 0.01217 0.90 0.3913 0.00068542 1.49095 

rainfall2 1 -0.13752 0.07205 -1.91 0.0886 0.06616 1.37895 

temp 1 0.01593 0.00717 2.22 0.0535 0.16363 1.34455 

temp2 1 0.02053 0.06107 0.34 0.7445 0.01163 1.44999 

food 1 -0.00081868 0.00409 -0.20 0.8456 0.00029020 2.60160 

paper 1 0.00149 0.00357 0.42 0.6869 0.53500 9.22357 

textile 1 0.00476 0.00336 1.42 0.1897 0.01499 3.36389 

yard 1 0.00698 0.00303 2.30 0.0470 0.15987 7.95142 
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The SAS System 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: logtenk  
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D-5: SAS Output For Log K with Quadratic Transformation for Rainfall, Temperature and Textile 
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The SAS System 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: logtenk  

Number of Observations Read 18 

Number of Observations Used 18 

 
 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 9 0.96483 0.10720 3.31 0.0533 

Error 8 0.25942 0.03243     

Corrected Total 17 1.22425       

 

Root MSE 0.18008 R-Square 0.7881 

Dependent Mean 0.42248 Adj R-Sq 0.5497 

Coeff Var 42.62352     

 

Parameter Estimates 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| Type I SS Variance 
Inflation 

Intercept 1 -4.66735 2.36332 -1.97 0.0837 3.21284 0 

rainfall 1 0.00919 0.01293 0.71 0.4976 0.00068542 1.56727 

rainfall2 1 -0.12836 0.07607 -1.69 0.1300 0.06616 1.43253 

temp 1 0.01614 0.00743 2.17 0.0618 0.16363 1.34733 

temp2 1 0.01192 0.06475 0.18 0.8585 0.01163 1.51921 

food 1 -0.00022138 0.00434 -0.05 0.9606 0.00029020 2.73524 

paper 1 0.00051871 0.00401 0.13 0.9004 0.53500 10.85255 

textile 1 0.00004697 0.00833 0.01 0.9956 0.01499 19.31128 

textile2 1 0.06563 0.10538 0.62 0.5508 0.07464 11.59881 

yard 1 0.00605 0.00348 1.74 0.1206 0.09781 9.75577 
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The SAS System 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: logtenk  
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D-6: SAS Output for Log K with Quadratic Transformation for Rainfall, Temperature, Textile, and 
Yard 
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The SAS System 
 

The REG Procedure 
Model: MODEL1 

Dependent Variable: logtenk  

Number of Observations Read 18 

Number of Observations Used 18 

 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 10 1.03040 0.10304 3.72 0.0472 

Error 7 0.19385 0.02769     

Corrected Total 17 1.22425       

 

Root MSE 0.16641 R-Square 0.8417 

Dependent Mean 0.42248 Adj R-Sq 0.6155 

Coeff Var 39.38941     

 

Parameter Estimates 
 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| Type I SS Variance 
Inflation 

Intercept 1 -3.96527 2.23115 -1.78 0.1188 3.21284 0 

rainfall 1 0.01045 0.01198 0.87 0.4118 0.00068542 1.57470 

rainfall2 1 -0.18162 0.07836 -2.32 0.0536 0.06616 1.77983 

temp 1 0.01398 0.00701 1.99 0.0863 0.16363 1.40320 

temp2 1 0.00252 0.06015 0.04 0.9677 0.01163 1.53504 

food 1 -0.00596 0.00547 -1.09 0.3126 0.00029020 5.09868 

paper 1 0.00165 0.00378 0.44 0.6764 0.53500 11.27598 

textile 1 0.00507 0.00836 0.61 0.5632 0.01499 22.78983 

textile2 1 0.03005 0.10009 0.30 0.7727 0.07464 12.25247 

yard 1 0.01178 0.00492 2.39 0.0480 0.09781 22.81809 

yard2 1 -0.18523 0.12038 -1.54 0.1678 0.06557 10.22801 
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The SAS System 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: logtenk  
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