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ABSTRACT 

 
MULTIVARIATE MODELING FOR A MULTIPLE STAGE, MULTIPLE OBJECTIVE GREEN 

BUILDING FRAMEWORK 

 

Pin Kung, PhD 

 

The University of Texas at Arlington, 2012 

 

Supervising Professor: Victoria C. P. Chen 

 Green building is a sustainable concept to reduce environmental impact. Decision-

making for green building is a complex task. A multi-stage green building framework will guide 

future development of a comprehensive multiple stage, multiple objective (MSMO) decision-

making framework. The software eQUEST is utilized in a design and analysis of computer 

experiments (DACE) approach to study building options that potentially impact energy usage 

and cost metrics. The DACE approach uses experimental design and statistical analysis to 

uncover multivariate patterns that will provide guidance for green building decisions. The 

computer experiments execute the green building software tools ATHENA [11] and eQUEST 

[13]. The experiment uses a Latin hypercube design to combine a mixed-level orthogonal array 

for discrete variables with a number-theoretic method for continuous variables. To 

accommodate the mix of discrete and continuous factor variables, the statistical analysis 

method fits treed regression (TreeReg) [51], TreeMARS [52], categorical TreeReg (CATreeReg) 

and categorical TreeMARS (CATreeMARS) models, and uses the method of seemingly 

unrelated regressions (SUR) [26], [27] to estimate the coefficients for a multiple response linear 

statistical model. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Green building has become a popular environmental topic in recent years. It is based 

on the concept of sustainable development to reduce environmental impact. In the past, 

buildings were designed by architects only; however, the concept of environmental protection 

now is promoted to construct “green” buildings. A team which has various experts, such as 

architects, engineers, contractors, designers, consultants and businessmen, is necessary to 

complete a large green building project together. A useful environmental analytical tool, life 

cycle assessment (LCA), is used for the stages of the building cycle which includes material 

exploitation, manufacturing, construction, operation and maintenance, and demolition (Zhang et 

al. [1], Retzlaff [2]). This is called a “cradle to grave” design. The fundamental goal of green 

building is to close the loop on the full life cycle of building construction and operation activities, 

i.e., the “cradle-to-cradle” concept in Figure 1.1.  

There are several main organizations that have develop rules to achieve green 

concepts for any type of building. The United States Environmental Protection Agency (USEPA) 

[3] is a government department concerned with the environmental issues and protecting human 

health. The United States Department of Energy (USDOE) [4] considers energy management, 

focusing on energy efficiency and renewable energy. The main targets for energy efficiency are 

building and vehicles, and the primary renewable energy sources are solar and wind. The 

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) [5] 

considers heating, ventilation, air-conditioning, and refrigeration and publishes a series of 

standards and guidelines to improve energy use in the building.  
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Leadership in Energy and Environmental Design (LEED), which was developed by the 

U.S. Green Building Council (USGBC), provides a building rating system and a set of guidelines 

that is currently used in practice. The LEED rating system now has several versions, including 

LEED for New Construction (LEED-NC), LEED for Existing Buildings (LEED-EB), LEED for 

Commercial Interiors (LEED-CI), LEED for Core and Shell (LEED-CS), LEED for Homes 

(LEED-H), LEED for Neighborhood Development (LEED-ND), LEED for Schools (LEED-S), 

LEED for Healthcare (LEED-HC) and LEED for Retail (LEED-R) [6]. For example, LEED-NC is 

a rating system checklist that includes Sustainable Sites, Water Efficiency, Energy and 

Atmosphere, Materials and Resources, Indoor Environmental Quality, Innovation in Design and 

Regional Priority. In the section on water efficiency, a new strategy is considered for greywater 

and wastewater use. The water reduction in landscaping seeks to improve irrigation efficiency. 

Each LEED version has a different total point’s requirement. In general, LEED certification has 

four levels, namely Certified, Silver, Gold and Platinum. These levels give guidance to builders 

and owners for constructing green buildings. 

Energy Star [7], which is supported by USEPA and USDOE, is a rating system that 

focuses on improving energy efficiency for home, lighting and business. It provides suggestions 

to guide users how to reduce their energy use. NAHBGreen [8] provides another rating system 

only for residential buildings and provides new materials and techniques for improving houses 

every year. It also has a research center to test building materials and improve product quality, 

and experts build sustainable construction using a national green building standard certification 

which was issued by the NAHB research center. 
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Figure 1.1 Green Building Life Cycle 
(Source: http://www.athenasmi.org/wp-content/uploads/ 

2012/01/LCA_summary_of_four_pages.pdf) 
 

1.2 Research Motivation and Goal 

For many complex systems, such as a building, a computer experiment is the only 

means to comprehensively explore the system. In particular, a building is a complex system that 

lies within larger complex systems that constitute the development of an urban region, such as 

the Dallas-Fort Worth metroplex. 

Greater understanding is needed on how building options impact green building 

performance metrics. Operations research focuses on the development of tools for making 

better, ideally optimal, decisions. This research will present multivariate modeling as part of a 

multiple stage, multiple objective (MSMO) green building decision-making framework that 

integrates building expertise with state-of-the-art methods from statistics and operations 

research to explore, evaluate and select among building technologies. Design and analysis of 

computer experiments (DACE) [9] is a useful method for studying complex engineering systems, 

and DACE models will be incorporated into the MSMO framework. The green building design in 
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this research will consider uncertain factors and interactions between the building options 

affecting multiple performance metrics. 

1.3 Organization 

There are five chapters in this dissertation. Chapter 1 describes background of green 

building, motivation and goal. Chapter 2 provides an overview of the previous research, such as 

green building software tools and existing statistical methods. The proposed MSMO framework 

and analyses and results are provided in chapter 3 and chapter 4. Finally, conclusions and 

future work are discussed in chapter 5. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Green Building Software 

Building software [10] is a useful reference tool when constructing a new building. 

Various software tools can assist in studying components of the framework developed in this 

dissertation. Three software tools are available to assess performance of building options, 

specifically ATHENA Impact Estimator for buildings (ATHENA) [11], Building for Environmental 

and Economic Sustainability (BEES) [12], and the QUick Energy Simulation Tool (eQUEST) 

[13]. Discussion on software is provided below. 

2.1.1 ATHENA 

 ATHENA is a life cycle tool that assists with making decisions about the selection of 

material mixes. It is a life cycle tool which provides a cradle-to-grave process for the entire 

building, where the performance of the building is represented by both life cycle cost (LCC) and 

environmental impact. Thus, users can use various design options to determine how to 

decrease environmental impacts and costs. The eight impact measures are fossil fuel 

consumption, acidification potential, global warming potential, human health respiratory effects 

potential, ozone depletion potential, smog potential, eutrophication potential, and weighted 

resource use. Moreover, ATHENA provides inputs for different materials and design options, 

and it allows users to change designs, use different materials, and make side-by-side 

comparisons. ATHENA was previously used in the work of Wang et al. [14]. 

2.1.2 BEES 

BEES is based on a life cycle assessment approach for obtaining economic and 

environmental performance results. It is a free building tool and now provides online web usage 

for users. Economic and environmental performance are combined into an overall performance 
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measure by using the American Society for Testing and Materials (ASTM) standard. BEES 

product data contain raw materials, manufacturing, transportation, installation, use, and end of 

life, and the life cycle cost method covers the costs of initial investment, replacement, operation, 

maintenance and repair, and disposal. BEES was used in the work by Castro-Lacouture et al. 

[15]. 

2.1.3 eQUEST 

The software tool eQUEST is a powerful building tool for energy simulation and 

combines the building energy analysis program DOE-2, graphics and three wizards, namely 

Schematic Design (SD) Wizard, Design Development (DD) Wizard and Energy Efficiency 

Measure (EEM) Wizard (Figure 2.1). It was developed together by Lawrence Berkeley National 

Laboratory and J.J. Hirsch and Associates, under funding from the USDOE and the Electric 

Power Research Institute. It is reliable and affordable for a broader base of design and buildings 

professionals. There are 667 of these long-term average weather files, and about 300 North 

American locations are considered in this software. Heating, Ventilating, and Air Conditioning 

(HVAC) systems can be modeled using eQUEST. eQUEST is designed to study an entire 

building and the concept of integrated energy design to construct energy-efficient buildings. In 

other words, it is designed to provide a whole building analysis to owners, designers or 

operators, and building designers. Whole building energy modeling consists of a computer 

program to analyze the annual energy consumption in the buildings. The building construction 

and operating parameters include building envelope, internal gains, occupancy schedules, and 

building systems to calculate energy consumption. 
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Figure 2.1 eQUEST Software Tool 
 

Figure 2.2 shows the general information. There are 41 screens, including building type, 

building geometry, construction types, window sizes, door sizes, glass types, activity areas, 

building operation schedules, HVAC system types, power and efficiencies, water heating types, 

and so on. Some screens are dependent on previous screen selections. After the 41 screens 

are completed, the Energy Efficiency Measure Wizard Run should be selected to decide 

performance metric categories before the simulation. Finally, the reports of annual building 

summary have three parts. Various energy types, peak, utility cost, and life cycle cost (LCC) 

include total annual results in the upper part, incremental annual savings in the middle part, and 

cumulative annual savings in the bottom part. eQUEST provides many detailed screens for 

builders to input a variety of options, and Design Development Wizard provides more flexible 

options to handle complex buildings. 
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Figure 2.2 eQUEST General Information 
 

2.1.4 Comparison 

Among the three software tools, BEES and ATHENA do not enable study of building 

orientation, which is generally acknowledged to be an important aspect of green building. BEES 

is not as flexible or comprehensive as the other two; however, eQUEST focuses on energy use 

and does not consider environmental impacts like BEES and ATHENA. In Figure 2.3, ATHENA 

and BEES are included within the sustainability circle, where the performance criteria are life 

cycle environmental impact and life cycle cost, and eQUEST is included within the energy 

efficiency circle, where the performance criteria are energy use and life cycle cost. To study the 

intersection of these criteria is the main goal. For the current study, only eQUEST is used in the 

dissertation. 

 
 

Figure 2.3 Green Building Evaluation for Three Software Tools 
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2.2 Green Building Optimization 

The goal of green building is achieving greater energy efficiency and minimizing 

environmental impacts. Several researchers have shown that optimization can be applied in the 

building research. Using LEED goals, Castro-Lacouture et al. [15] used mixed integer 

optimization to select appropriate materials, so as to maximize the points achievable for a 

LEED-based rating system under a given budget. Wang et al. [14] used a multiple objective 

genetic algorithms optimization to study building orientation and aspect ratio, windows, walls, 

and roofs, so as to balance life cycle cost and environmental impact. A genetic algorithms 

optimization appears to provide the ultimate flexibility needed for green building decision-

making, but a genetic algorithm is not guaranteed to yield globally optimal solutions in practice, 

and the algorithm can be very computationally expensive. Nielsen [16] developed a software 

tool to design an entire building, so as to minimize life cycle cost subject to constraints related to 

energy usage and indoor environment. Limitations of the tool include the use of simple 

mathematical models to assess performance objectives and the use of existing optimization 

software. Osman et al. [17] conducted a life cycle analysis using a linear program to separately 

optimize three performance metrics: cost, life cycle global warming potential, and tropospheric 

ozone precursor potential. They also varied the parameters of the linear program to empirically 

draw Pareto frontiers illustrating the trade-offs between the performance metrics. Hasan et al. 

[18] combined the software GenOpt, which minimizes a cost function that is evaluated by an 

external simulation, and the IDA Indoor Climate and Energy program, which calculates heating 

energy consumption, to seek the minimum life cycle cost. BEopt [19] is the other software which 

considers the optimal building design to achieve the goal of zero net energy. The Center for 

Sustainable Systems [20] had similar projects, such as life cycle design and life cycle 

optimization. All above existing methods did not consider uncertainty or dependencies between 

the building decision options and a mix of discrete and continuous decision variables for MSMO 

decisions, and this dissertation will provide useful methods and discuss the results in chapter 3 
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and chapter 4. The further building optimization using MSMO will be described in chapter 5, but 

optimization will not be used for the current study. 

2.3 Statistical Analysis-Existing Methods 

Statistics is a useful analysis tool which provides various methods to solve different 

questions. At first, researchers studied statistical models with single response. Later, 

multivariate analyses handling multiple responses were applied extensively in statistical 

research [21]. Some statistical methods, both single response and multiple responses, are 

described as follows. 

2.3.1 Multiple Linear Regression 

2.3.1.1 Single Response 

Multiple linear regression (MLR) [21] is the most widely used method in engineering 

statistics. It is to discuss the model relationship between predictor variables and a dependent 

variable, and “linear” denotes linear in the unknown model parameters (or coefficients). The 

MLR model is 

           εXβY  ,                                                             (2.1) 

where Y  is a vector of the response variable observations, X  is a matrix of the values of the 

predictor variables, β  is a vector of unknown model parameters, and ε  is a vector of random 

error terms. Thus, the model can be written as 
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There are n  observations and 1p  predictor variables in the MLR model. Using ordinary least 

squares (OLS), the estimator for β  is 

                                                           YXXXβ T1T )(ˆ  ,                                                     (2.3) 
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and error terms are assumed 

                                                    0ε )(E  and Iε 2)( σCov  .                                            (2.4) 

A full analysis, include parameter tests, confidence intervals, analysis of variance, prediction, 

and residual analysis, can be found in [21].  

 Stepwise regression [22] which is an approach for the model selection of predictor 

variables is the most commonly used in single response. Since stepwise variable selection 

produces biased regression coefficients, Copas [23] described a shrinkage method which is to 

shrink estimated coefficients towards 0, and this method can reduce the prediction mean 

squared error. Tibshirani [24] developed a new method, least absolute shrinkage and selection 

operator (lasso), and indicated the coefficients need to be shrunk more to improve the 

performance of subset selection and ridge regression. 

2.3.1.2 Multiple Responses 

2.3.1.2.1 Seemingly Unrelated Regressions 

Zellner [25] developed a new technique, Seemingly Unrelated Regressions (SUR). The 

key point in this technique is that using a method that is designed for multiple responses, 

particularly when the responses are correlated is more efficient than using OLS separately on 

the different responses when predictions have higher standard errors. If the responses are not 

correlated, it is appropriate to use OLS separately. Let the matrix Y consist of M response 

variables each with 1n  vectors of observations, let X  be the block-diagonal matrix for the 

predictors as in (2.1), let β  be a matrix with M  sets of unknown parameters, and let ε  be a 

matrix of M  error terms each with 1n  vectors. Thus, SUR model can be written as 
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The variance-covariance matrix of error terms is 
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where Σ  is a MM   matrix of  . It is desired that the error standard deviation estimator ̂  

be unbiased, so Henningsen and Hamann [26] discussed methods to modify the degrees of 

freedom associated with the errors when each equation has the different number of predictors. 

They provided two approached to compute the residual covariance matrix for response 

variables iY  and jY . The first approach is frequently used in the software and the equation is 

                           
)( )(

])([ ])([
ˆ

T1T
n

T1T
n

T

ji

jjjjjiiiii
ij

knkn 




 YXXXXIXXXXIY
 ,                 (2.7) 

where Mji  , ,2 ,1,  , ik  and jk  are the numbers of predictor variables, the residuals are 

computed by OLS, and   denotes Kronecker product. The SUR model vector of parameter 

estimates is 

                                          YIΣXXIΣXβ )ˆ(])ˆ([ˆ 1T11T
SUR nn   .                           (2.8) 

The SUR’s error terms are correlated across equation, and it is more efficient than OLS when 

the different response variables are correlated. 

Based on the idea of Zellner [25], Shah et al. [27] considered an extension of the SUR 

technique in multiple-response response surface methodology (RSM) problems. In the paper, 

Shah et al. [27] showed SUR and OLS will have the same parameter estimates when the 

models’ forms are the same and when the error terms for the different response variable models 

are uncorrelated. In a numerical example, they showed the parameter estimates of SUR were 

more accurate than OLS when responses were correlated. 
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2.3.1.2.2 Curds and Whey Procedure 

Breiman and Friedman [28] developed a curds and whey (C&W) method which is a 

shrinking method and can be used for multi-response problems to reduce prediction errors 

when there are correlations between responses. They first supposed the error terms are 

independent and identically distributed ) ,0( 2N . The response variables are correlated 

because they use the same predictor variables, so a more accurate predictor Y
~

 is considered 

in place of Ŷ . The multi-response model is written as 

                                          qiYYYY
q

k
kkikii  , ,2 ,1 ;)ˆ(

~

1

 
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 ,                                    (2.9)      
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Thus, the model can be rewritten as 
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If the predictor and response variables are considered to be centered, then equation (2.9) can 

be written as 

                                                                  YBY ˆ~  .                                                             (2.13) 
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The optimal shrinkage matrix *B  is obtained from the estimator B , and *B  is a diagonal 

matrix that can be expressed as 

                                                               DTTB 1*  ,                                                        (2.14) 

where  

                                                         } , ,{diag 1 qdd D                                                   (2.15) 

is composed of the shrinkage factors id  using the squared canonical correlations 2
ic  as follows 

                                                 qi
crc

c
d

ii

i
i  , ,2 ,1 ;

)1( 22

2




 ,                                    (2.16) 

where p  predictor variables and n  observations are 

                                                                  
n

p
r  ,                                                                (2.17) 

so the values of id  are between 0 and 1. 

In Srivastava and Solanky [29], they described the C&W estimator in detail. The OLS 

predictor in C&W is based on equation (2.1), and the formula of the least squares estimator Â  

is the same as equation (2.3); however, Â  now is a qp  matrix of unknown parameters. 

Therefore, the C&W estimator is 

                                                              Tˆˆˆ ABβ CWCW  ,                                                      (2.18)          

where the shrinkage estimator is 

                                                          1T ])([ˆ  MYYSIB rqCW ,                                     (2.19) 

and 

                                                               YMIYS )(T  n ,                                               (2.20) 

and 

                                                              T1T )( XXXXM  .                                              (2.21) 
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Thus, *B  can be estimated by CWB̂  which is a qq  matrix. Moreover, Xu et al. [30] provided 

a new method which combined curds and whey with partial least squares (PLS), called PLS-

C&W. They compared the performance metrics of PLS models with their corresponding C&W 

models, and the results showed the PLS-C&W is the better method. 

2.3.2 Regression Trees 

2.3.2.1 Single Response 

Breiman et al. [31] developed a classification and regression tree (CART) method which 

fits piecewise constant models at each node of the tree. In the software R [32], there are two 

packages, ”tree” [33] for classification and regression trees and “rpart” [34] for recursive 

partitioning and regression trees. In Friedman [35], CART has forward and backward stepwise 

algorithms. The CART forward stepwise algorithm uses recursive partitioning (Algorithm 1). 

Another tree algorithm was developed by Loh [36], using a generalized, unbiased interaction 

detection and estimation (GUIDE) algorithm which is based on a chi-square test for a 

piecewise-constant fit and splitting at each node of the tree, or piecewise linear models which 

use a chi-square test for linear fit and splitting at each node of the tree. Categorical and 

numerical predictor variables are also allowed in GUIDE. Kim et al. [37] developed an algorithm 

which is an extension to GUIDE in which they used stepwise regression to fit a linear model. 

Compared with all GUIDE algorithms in this paper, GUIDE with piecewise stepwise linear model 

had small geometric means of root-mean-square error (RMSE). 

2.3.2.2 Multiple Responses 

De’ath [38] developed a multivariate regression trees (MRT) technique which is an 

extension of univariate regression trees (URT) from Breiman et al. [31]. Although the growing 

and pruning in MRT are more complicated than URT, most the methods of MRT are the same 

as URT. For example, MRT and URT use cross-validation to select tree size and use the same 

method to split at the nodes of the tree. The R package mvpart [39] which is an extension of 

rpart is provided by De’ath. The average response values are shown at each terminal node. 
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GUIDE is the other software tool which can be used in multiple response regression tree 

models, and this algorithm fits piecewise constant models for multi-response data (Loh [40]). In 

the manual, a section is provided for user to do step by step and understand how GUIDE works 

on multiple response data. In general, mvpart is more comprehensive than GUIDE.  

2.3.3 Multivariate Adaptive Regression Splines 

2.3.3.1 Single Response 

Friedman [35] in 1991 proposed multivariate adaptive regression splines (MARS), 

which uses a forward stepwise procedure (Algorithm 2) and a backward stepwise procedure 

(Algorithm 3) to fit a flexible model to predict a single response variables as a function of 

multiple predictor variables (or covariates). The MARS linear approximation can be expressed 

as 

                                                      



M

m
mm Bf

1
0 )()(ˆ xx  ,                                            (2.22) 

where the vector of predictor variables is T
21 ) , , ,( pxxx x , M  is the number of basis 

functions, m  is the unknown coefficient for the m th basis function, and mB  is the m th basis 

function.  A basis function is a product of truncated linear functions, where a single truncated 

linear function is defined as: 
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)(                                       (2.23) 
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)( .                                     (2.24) 

The pair of functions  )( tx ,  )( xt  is called reflected pair, and t  is called a knot of the 

basis functions.  A basis function can then be written as: 
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where mK  is the number of truncated linear functions multiplied in the m th basis function, 

),( mkvx  is the input variable corresponding to the k th truncated linear function in the m th basis 

function, kms  can be +1 or −1, and kmt  is the knot value corresponding to ),( mkvx .  A main effect 

basis function involves only one truncated linear function, while an interaction involves products. 

The generalized cross-validation criterion is used to quantify how well a MARS model 

fits the data: 
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where the complexity cost function is 

                       
2

1
 )(




TermsNumber of 
PenaltyTermsNumber of Mg ,              (2.27) 

and the penalty on complexity is usually 2 or 3 (Friedman [35] and MARS from Wikipedia [41]). 

Based on the MARS algorithm from Friedman [35], Sekulic and Kowalski [42] provided four 

different examples, namely additive model, interaction model, complex model and exponential 

transformation model to show their MARS performance. 

2.3.3.2 Multiple Responses 

Hastie et al. [43] used the method of a flexible discriminant analysis (FDA) in multi-

response MARS. FDA, which can be used in nonlinear classification, is based on the concept of 

Fisher’s linear discriminant analysis (LDA) [44]. The multi-response MARS linear 

approximations can be expressed as 
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where there are q  response variables. In this equation, the responses have the same basis 

functions )(xmB  which are considered to be fixed functions in the FDA procedure after they 

have been chosen by a MARS procedure, but they use the different coefficients 

( mqmm   , , , 21  ) which can be obtained by ordinary least squares, penalized least squares, 

or other methods. Therefore, q  simultaneous models are estimated.  

These models are built and pruned the same way as the single response MARS. The 

only difference is that the residual sum of squares (RSS) and generalized cross validation 

(GCV) criterion involve sums across all q  response variables. In R, the package “earth” 

conducts multi-response MARS, but does not demonstrate as good results as building the 

models independently since the “earth” multi-response version forces the same set of basis 

functions for all q models. 

2.3.4 Projection Pursuit Regression 

2.3.4.1 Single Response 

Projection pursuit, which was develop by Friedman and Tukey [45], seeks to find the 

most useful projections in the multidimensional predictor space and utilize the projection 

direction to pursuit the maximum projection index. They describe a one-dimensional projection 

index )(kI  that has a projection axis k on a one-dimensional line, and a two-dimensional 

projection index ),( lkI  that has two projection axes k  and l  on a two-dimensional plane. 
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Three-dimensional and higher dimensional projection pursuit (PP) are discussed in Friedman 

[46]. The basic linear model estimate is 

                                                       



p

j
jj xfY

1
0)(ˆ x ,                                           (2.29) 

where the vector of predictor variables is ) , , ,( 21 pxxx x , 0  is intercept term and j  is 

slope term. f  is a smooth function based on local averaging and is fitted based on the least 

squares criterion 

                                                       2
02 ]ˆ[)( YYEL p   .                                          (2.30) 

Friedman and Stuetzle [47] used an extension which considered PP for regression problems, 

i.e. PPR. PPR only considers a single response and extends the basic linear model and the 

approximation equation to 
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where )(
1



p

j
jjmm xf   is called a ridge function, mj  is a projection direction, x  is a loading 

vector, and mf  is a smooth transfer function. Friedman [48] described the advantages and 

disadvantages of the PPR algorithm. The least squares criterion for PPR is 

                                           2
112 ]ˆ[) ,( YYEffL M

T
M

T  .                                     (2.32) 

2.3.4.2 Multiple Responses 

SMART is a generalization of PPR to handle q  response variables ( qiYi 1 , ) and 

p  predictor variables ( pjx j 1 , ). The approximation equations can be expressed as 
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where )( ii YEY  , 0)( mfE , 1)( 2 mfE , 



p

j
jm

1

2 1 , and im , jm  and the identical mf  

models are estimated by least squares. In SMART, the q  response variables will share a set of 

functions, so the basis functions  )(xmB  equals )(
1



p

j
jjmm xf   (Hastie et al. [43]). In general, 

when 1q  in SMART, SMART and PPR have the same form. However, SMART and PPR use 

a different way to choose their estimates. If the predictor variables have the high associations, 

SMART and PPR will be different models (Friedman [49] and Frank [50]). The least squares 

criterion for SMART is 
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where iW  is the response weight that provides the balance for the importance of the different 

responses can be specified by the user. Friedman [49] also provided iW  can equal to 1 divided 

by variance )var( iY  or can rescale the response variables iY  to have the same variance if 

each response has the same importance in (2.34). 
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2.3.5 Hybrid Tree Method 

2.3.5.1 Single Response 

2.3.5.1.1 Treed Regression 

The CART model specifies that the regression functions are constants at the terminal 

nodes, and treed regression model [51] considers linear regressions at the terminal nodes 

instead. The tree portion can handle categorical and numerical variables, while the linear 

regression models are applied only to the numerical variables. In the single response case, Loh 

[40] developed a GUIDE algorithm and used piecewise linear models which are identical in 

concept to that of treed regression.  

2.3.5.1.2 Treed Multivariate Adaptive Regression Splines 

Sahu [52] followed the same concept as treed regression, but used MARS at the 

terminal nodes instead of regression. He called his model TreeMARS. Similar to treed 

regression, the tree portion can handle categorical and numerical variables, but the MARS 

portion only handles numerical variables well (there is an option for binary variables in MARS, 

but it does not model well). TreeMARS can be implemented by using only the categorical 

variables in the tree or by using both categorical and continuous variables in the tree. Results 

from Sahu indicate that using only the categorical variables in the tree is preferable since MARS 

is superior at modeling the numerical variables. 

2.3.6 Mahalanobis-Taguchi  

2.3.6.1 Multiple Responses  

Pan et al. [53] described a Mahalanobis-Taguchi system (MTS) [54] that combined the 

method of the scaled Mahalanobis distance in a multidimensional system with the Taguchi 

method. This system can be used to optimize the system and predict performance. Since the 

traditional multidimensional system uses multi-response variables, which are mutually 

independent, mistakes will happen in determining the important factors for response variables. 

Thus, they considered the concept of Mahalanobis-Taguchi-Gram Schmidt (MTGS), which uses 
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the Gram-Schmidt orthonormalization process in MTS to compute the scaled Mahalonobis 

distances. They also provided four steps: (1) perform the standardization, (2) perform the 

orthogonalization, (3) compute the Mahalonobis distance, and (4) perform analysis of variance 

(ANOVA) and regression analysis. When they calculated the Mahalonobis distance, the 

equation  

                                                                   ii MDY                                                         (2.35) 

can be used to convert the multiple response variables into a single response variable (Y ), 

where MD  denotes Mahalonobis distance, and ni  , 2, ,1   denotes the i th run. Therefore, 

the method of MD can be used to convert multiple responses into a single response. 

2.3.7 Partial Least Squares or Projection to Latent Structures 

2.3.7.1 Single Response 

PLS is a correlation-based technique that was originally developed by Hermann Wold. 

Manne [55] described the PLS1 algorithm for predicting a single response variable in 

chemometrics. The PLS2 algorithm allows multiple response variables and is widely used in 

research. 

2.3.7.2 Multiple Responses 

In the PLS2 model, the outer model decomposes the matrix of X variables and the 

matrix of Y variables into the form 

                                                                 EtPX  T ,                                                      (2.36) 

                                                                 FuQY  T ,                                                     (2.37) 

where X  is an KN   matrix, Y is an MN   matrix, P  is a input loading vector, Q  is a 

output loading vector, E  and F  are residual matrices, and t  is a input scores vector 

                                                                       Xwt  ,                                                         (2.38) 
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where w  denotes weight, and u  is output scores vectors. The inner relation contains a linear 

inner model and a nonlinear inner model. The nonlinear inner model between t  and u  is 

                                                                    etu  )(f .                                                    (2.39) 

Wold et al. [56] developed the original quadratic PLS. The nonlinear PLS model with quadratic 

inner relation is 

                                                          2
210)(ˆˆ tttu cccf  ,                                        (2.40) 

where the coefficients 0c , 1c  and 2c  are estimated by least squares. 

Baffi et al. [57] modified the nonlinear quadratic PLS algorithm to handle non-linear 

data. They used three weight updating procedures, namely PLS_A, PLS_B and PLS_C (an 

error based quadratic PLS algorithm). PLS_C was compared with Wold et al. [56] and traditional 

linear PLS. Qin and McAvoy [58] developed a nonlinear PLS with a neural network function. 

Baffi et al. [59] proposed error-based neural network PLS algorithms. They developed neural 

network PLS algorithms with a sigmoid neural network and a radial basis function (RBF) 

network. For example, the nonlinear PLS with a sigmoid neural network calculates the nonlinear 

prediction of u  as: 

                                                          2112 )(ˆ   tu ,                                      (2.41) 

where the weights are 1  and 2 , the biases are 1  and 2 , and the centered sigmoidal 

activation function is  . For a multiple linear regression problem, Wold et al. [60] discussed 

PLS-regression (PLSR) as a generalization of multiple linear regression that can analyze data 

with many noisy, collinear predictor variables, and simultaneously model multiple response 

variables. 

 

 

 



 

24 
 

 

CHAPTER 3 

MSMO FRAMEWORK FOR GREEN BUILDING 

3.1 MSMO Decision-Making Framework 

The ultimate research goal is to develop a comprehensive MSMO green building 

decision-making framework. The multiple objectives correspond to the various performance 

metrics that are needed to assess sustainability. Based on the information from [61] and in 

consultation with Mr. Anthony Robinson for this research, the building options were organized 

into twelve main building categories, shown in Table 3.1: (1) siting options, (2) electrical system, 

(3) wells and septic system, (4) foundation system, (5) plumbing system, (6) wall system, (7) 

window system, (8) door system, (9) roof system, (10) ventilation system, (11) heating and 

cooling system, and (12) landscaping system. These categories constitute the stages of the 

framework, and each stage has unique technology options. Table 3.1 provides an example 

listing of options within each stage, where those options available in ATHENA, BEES, and 

eQUEST are noted in parentheses.  

For siting options (stage 1), electrical (stage 2), foundation (stage 4), wall (stage 6), 

window (stage 7), door (stage 8), roof (stage 9), ventilation (stage 10) and heating and cooling 

(stage 11) systems, most of their options can be modeled using three software tools. For 

example, eQUEST has orientation and footprint options in stage 1. eQUEST has AC system 

option in stage 2, but solar system and both AC and solar system can not be modeled using 

three software tools. The foundation system includes foundation and floor, and only the 

concrete ground floor option can be modeled using eQUEST. For stage 3, stage 5 and stage 12, 

the example options can not be modeled using three software tools. For instance, concrete 

septic tank and fiberglass septic tank options are listed in stage 3, which are not options in three 
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software tools. For the electrical system (stage 2) and the heating and cooling system (stage 

11), options are based on eQUEST defaults. 

In comprehensive MSMO framework, the multiple objectives will involve multiple 

performance metrics quantified by the various software tools, such as life cycle cost, 

environmental impact, utility cost, and total source energy. These objectives also correspond to 

the multiple response variables in multivariate statistical analysis. Multivariate modeling from a 

DACE process will be used to represent relationships between green building options (decision 

variables) and performance metrics (objectives). Representation of uncertainty in these 

statistical models will be used to simulate uncertainty within the decision-making framework, as 

in stochastic optimization [62-63]. The MSMO framework will also handle possible 

dependencies between options in different stages [64]. For example: 

 The choice of a fan system in stage 11 depends on the electrical system selected in 

stage 2.   

 The choice of a sprinkler system in stage 12 may depend on plumbing decisions in 

stage 5. 

Both traditional and green building options are considered in the framework, so as to enable the 

study of the benefit of green building. 

Table 3.1 Stages and Decision Variables for Green Building 
 

Stage Building Stage with Options 
1 Siting Options 

 Orientation and Footprint (eQUEST) 
2 Electrical System 

 AC System (eQUEST) 
 Both AC and Solar System 
 Solar System 

3 Wells and Septic System 
 Concrete Septic Tank 
 Fiberglass Septic Tank 

4 Foundation System 
 Concrete Ground Floor (eQUEST) 
 Concrete Slab on Grade (ATHENA) 
 Generic Portland Cement (BEES) 
 Steel Foundation System 
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5 Plumbing System 
 Freshwater System 
 Greywater System 
 Rainwater Catchment System 

6 Wall System 
 Concrete Wall (ATHENA, BEES, eQUEST) 
 Curtain Wall (ATHENA) 
 Drywall 
 Metal Frame (eQUEST) 
 Straw Bale Walls 
 Wood Frame (eQUEST) 

7 Window System 
 Clear/Tint Windows (eQUEST) 
 Glazed Windows 
 Low-e Windows (eQUEST) 
 Reflective Windows (eQUEST) 
 Wood Frame Windows (ATHENA, eQUEST) 

8 Door System 
 Steel Door (ATHENA, eQUEST) 
 Wood Door (eQUEST) 

9 Roof System 
 Concrete Tile Roof (ATHENA, eQUEST) 
 Generic Fiber Cement Roof (BEES) 
 Roof Surface Materials (eQUEST) 

10 Ventilation System 
 Balanced Ventilation System 
 Exhaust Ventilation System 
 Supply Ventilation System 
 Ventilation-Activity Areas (eQUEST) 

11 Heating and Cooling System 
 Fan System (eQUEST) 
 HVAC System (eQUEST) 

12 Landscaping System 
 Sprinkler System 

 

3.1.1 DACE Exploratory Methodology 

3.1.1.1 Design of Experiments 

In this research, a case study is a single-story residential building. Building options were 

considered for a 2500 square-foot, one-story, single-family residential low-rise building. Table 

3.3 specifies the assumed values for the areas of the residential low-rise building. After carefully 

reviewing the allowable building options in eQUEST, 46 decision variables are identified in 

eQUEST (Table 3.2). These 46 variables correspond to factor variables in the statistical 

analysis. For an exploratory analysis, each factor variable is limited to two settings, specified in 

Table 3.1 – Continued 
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Table 3.4. For example, two footprint dimensions, specifically 100  25 and 50  50, are 

considered. The settings for the other factor variables were selected from eQUEST input 

options. 

In addition, 68 uncontrollable variables are identified in eQUEST. For example, 

Occupied Loads-Lighting-2 specifies the lighting load when activity area 2 (bedroom) is 

occupied. These variables are likely uncontrollable, so they are represented by random 

variables. Table 3.5 specifies the ranges for these variables, based on eQUEST default values. 

A uniform distribution over these ranges was used to sample the values of these random 

variables for the software runs. Note that the indices 1-8 on some variables in Tables 3.3, 3.4 

and 3.5, e.g., “Design Max Occupant Density-4,” correspond to the eight area types specified in 

Table 3.3. The unit of design max occupant density is square feet per person, and the unit of 

design ventilation is cubic feet per minute (CFM) per person. 

Table 3.2 46 Decision Variables 
 

Stage Building Category 46 Factors 
1 Siting Options  Footprint X&Y 

 Orientation 

2 Electrical System Based on Default from eQUEST 
3 Wells and Septic 

System 
No Option in eQUEST 

4 Foundation System  Ground Floor Construction 
   Ground Floor Interior Insulation 
   Ground Floor Cap 
   Ground Floor Exterior/Cavity Insulation 

5 Plumbing System No Option in eQUEST 
6 Wall System  Wall Construction 
   Exterior Wall Finishes 
   Exterior Wall Color 
   Exterior Wall Insulation 
   Additional Wall Insulation 
   Interior Wall Insulation 

7 Window System  Window-Glass Category 
   Windows-Glass Type 
   Windows-Frame Width 
   Window Height 
   Windows-Sill Height 
   Distance from Window-Overhangs 

8 Door System  Doors Construction 
   Door Glass Type 



 

28 
 

 

   Door Dimension-Height&Width 
   Door-Frame Width 

9 Roof System  Roof Construction 
   Exterior Roof Finish 
   Exterior Roof Color 
   Exterior Roof Insulation 
   Additional Roof Insulation 
   Ceiling Interior Finishes 
   Ceiling Batt Insulation 
   Pitched Roof 

10 Ventilation System  Design Max Occupant Density-Residential (General 
Living Space)  

   Design Ventilation-Residential (General Living Space) 
   Design Max Occupant Density-Residential (Bedroom)  
   Design Ventilation- Residential (Bedroom)  
   Design Max Occupant Density-Residential (Garage)  
   Design Ventilation-Residential (Garage)  
   Design Max Occupant Density-Dining Area 
   Design Ventilation-Dining Area 
   Design Max Occupant Density-Kitchen and Food 

Preparation 
   Design Ventilation-Kitchen and Food Preparation 
   Design Max Occupant Density-Corridor 
   Design Ventilation-Corridor 
   Design Max Occupant Density-Laundry 
   Design Ventilation-Laundry 
   Design Max Occupant Density-All Others 
   Design Ventilation-All Others 

11 Heating and 
Cooling System 

Based on Default from eQUEST 

12 Landscaping 
System 

No Option in eQUEST 

 

Table 3.3 Percent Area of Residential Low Rise 
 

Activity Area Type Detailed Items % Area 
1. General   
    Living    
    Space 

Family/Den (300) + Living Room (300) + Bath#1 
(40) + Bath#2 (40) + Bath-Master (70) + Closets 
(122) = 872 

35% 

2. Bedroom 
Bedroom#1 (180) + Bedroom#2 (180) + Bed-
Master (252) = 612 24% 

3. Garage Garage = 528 21% 
4. Dining Area Dining Room = 208 8% 
5. Kitchen and  
    Food Preparation 

Kitchen (96) + Pantry (16) + Breakfast (40) = 152 6% 

6. Corridor Hall = 64 3% 
7. Laundry Laundry = 40 2% 
8. All Others Entry = 24 1% 

Total: 2500 Square Feet
 

Table 3.2 – Continued 
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Table 3.4 Two Settings for 46 Variables 
 

Variable Two Settings 
Wall Construction 16 inch (24) Wood and 24 inch (24) Wood 

Window-Glass Category Double Clear/Tint and Double Low-e (e2 = 0.1) 
Roof Construction 24 inch Wood and >24 inch Wood 

Ground Floor Construction 2 inch Concrete and 4 inch Concrete 
Ground Floor Interior Insulation None and 1 inch Polystyrene 

Ground Floor Cap 1.25 inch Concrete and 2 inch Concrete 
Ground Floor Exterior/Cavity Insulation None and 1 inch Polystyrene 

Exterior Wall Finishes Brick and Concrete 
Exterior Wall Color Light and Dark 

Exterior Wall Insulation None and 1 inch Polystyrene 
Additional Wall Insulation None and R-11 Batt 

Interior Wall Insulation None and 1 inch Polystyrene 
Windows-Glass Type 1/8, 1/4 inch Clear and 1/8, 1/2 inch Clear 

Windows-Frame Width 2 and 3 
Window Height 4 and 6 

Windows-Sill Height 2 and 3 
Distance from Window-Overhangs 1 and 1.5 

Exterior Roof Finish Concrete and Built-up Roof 
Exterior Roof Color Light and Dark 

Exterior Roof Insulation None and 1 inch Polystyrene 
Additional Roof Insulation None and R-3 Batt 
Ceiling Interior Finishes Drywall Finish and Plaster Finish 
Ceiling Batt Insulation R-11 Batt and R-13 Batt 

Pitched Roof 
Standard Wood Framing and 

Advanced Wood Framing 
Footprint X&Y 10025 and 5050 

Orientation 
N/S Component (Face North) and  

E/W Component (Face East) 
Doors-Construction Double Clear/Tint and Double Low-e (e2 = 0.1) 
Door Glass Type 1/8, 1/4 inch Clear and 1/8, 1/2 inch Clear 

Door Dimension-Height&Width 7,3 and 7,6 
Door-Frame Width 2 and 3 

Design Max Occupant Density-1 575 and 675 
Design Ventilation-1 10 and 30 

Design Max Occupant Density-2 575 and 675 
Design Ventilation-2 10 and 30 

Design Max Occupant Density-3 575 and 675 
Design Ventilation-3 10 and 30 

Design Max Occupant Density-4 5 and 105 
Design Ventilation-4 10 and 30 

Design Max Occupant Density-5 250 and 350 
Design Ventilation-5 5 and 25 

Design Max Occupant Density-6 100 and 200 
Design Ventilation-6 5 and 25 

Design Max Occupant Density-7 100 and 200 
Design Ventilation-7 15 and 35 

Design Max Occupant Density-8 100 and 200 
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Design Ventilation-8 5 and 25 
 

Table 3.5 Random Variables 
 

Variable Range 
Occupied Loads-Lighting-1 (0.5,2.5) 

Occupied Loads-Task Lighting-1 (0.5,2.5) 
Occupied Loads-Plug Loads-1 (0.5,2.5) 

Unoccupied Loads-Occupancy-1 (0,2) 
Unoccupied Loads-Lighting-1 (0,2) 

Unoccupied Loads-Task Lighting-1 (0,2) 
Unoccupied Loads-Plug Loads-1 (0,20) 

Occupied Loads-Lighting-2 (0.5,2.5) 
Occupied Loads-Task Lighting-2 (0.5,2.5) 
Occupied Loads-Plug Loads-2 (0.5,2.5) 

Unoccupied Loads-Occupancy-2 (0,2) 
Unoccupied Loads-Lighting-2 (0,2) 

Unoccupied Loads-Task Lighting-2 (0,2) 
Unoccupied Loads-Plug Loads-2 (0,20) 

Occupied Loads-Lighting-3 (0.5,2.5) 
Occupied Loads-Task Lighting-3 (0.5,2.5) 
Occupied Loads-Plug Loads-3 (0.5,2.5) 

Unoccupied Loads-Occupancy-3 (0,2) 
Unoccupied Loads-Lighting-3 (0,2) 

Unoccupied Loads-Task Lighting-3 (0,2) 
Unoccupied Loads-Plug Loads-3 (0,20) 

Occupied Loads-Lighting-4 (0.5,2.5) 
Occupied Loads-Task Lighting-4 (0.5,2.5) 
Occupied Loads-Plug Loads-4 (0.5,2.5) 

Unoccupied Loads-Occupancy-4 (0,2) 
Unoccupied Loads-Lighting-4 (0,2) 

Unoccupied Loads-Task Lighting-4 (0,2) 
Unoccupied Loads-Plug Loads-4 (0,20) 

Occupied Loads-Lighting-5 (0.5,2.5) 
Occupied Loads-Task Lighting-5 (0.5,2.5) 
Occupied Loads-Plug Loads-5 (0.5,2.5) 

Unoccupied Loads-Occupancy-5 (0,2) 
Unoccupied Loads-Lighting-5 (0,2) 

Unoccupied Loads-Task Lighting-5 (0,2) 
Unoccupied Loads-Plug Loads-5 (0,20) 

Occupied Loads-Lighting-6 (0.5,2.5) 
Occupied Loads-Task Lighting-6 (0.5,2.5) 
Occupied Loads-Plug Loads-6 (0.5,2.5) 

Unoccupied Loads-Occupancy-6 (0,2) 
Unoccupied Loads-Lighting-6 (0,2) 

Unoccupied Loads-Task Lighting-6 (0,2) 
Unoccupied Loads-Plug Loads-6 (0,20) 

Occupied Loads-Lighting-7 (0.5,2.5) 
Occupied Loads-Task Lighting-7 (0.5,2.5) 

Table 3.4 – Continued 
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Occupied Loads-Plug Loads-7 (0.5,2.5) 
Unoccupied Loads-Occupancy-7 (0,2) 

Unoccupied Loads-Lighting-7 (0,2) 
Unoccupied Loads-Task Lighting-7 (0,2) 
Unoccupied Loads-Plug Loads-7 (0,20) 

Occupied Loads-Lighting-8 (0.5,2.5) 
Occupied Loads-Task Lighting-8 (0.5,2.5) 
Occupied Loads-Plug Loads-8 (0.5,2.5) 

Unoccupied Loads-Occupancy-8 (0,2) 
Unoccupied Loads-Lighting-8 (0,2) 

Unoccupied Loads-Task Lighting-8 (0,2) 
Unoccupied Loads-Plug Loads-8 (0,20) 

Thermostat Cooling Setpoints-Occupied (71,81) 
Thermostat Cooling Setpoints-Unoccupied (77,87) 
Thermostat Heating Setpoints-Occupied (65,75) 

Thermostat Heating Setpoints-Unoccupied (59,69) 
Cooling Design Temperature-Indoor (70,80) 
Cooling Design Temperature-Supply (50,60) 
Heating Design Temperature-Indoor (67,77) 
Heating Design Temperature-Supply (115,125) 

Air Flows-Minimum Design Flow (0,1) 
HVAC-Economizer High Limit (65,75) 

Water Temp-Supply Water_NoResDomWH (130,140) 
Water Temp-Supply Water_ResDomWH (105,115) 

 

For the DACE screening analysis, this research employed an orthogonal array (OA) 

[65] experimental design that limited each factor variable to two settings (nominally the high and 

low of the ranges). An OA with 108 runs for up to 107 factors was selected from the R package: 

DoE.base [66]. Each run of the OA design specifies settings for the 46 factor variables for one 

run of eQUEST. In addition, for each run of eQUEST, one instance of the 68 random variables 

was sampled. The output from eQUEST was used to identify response variables for statistical 

analysis. 

For main schedule information and the HVAC fan schedule for system #1, we assume 

everyday has the same schedule. The timeframe of building usage schedule is from 5 pm to 6 

am every day. Other options are based on eQUEST default values. The first cost for a low-rise 

residential building was set as $250,000 with an annual maintenance cost of $1,800. 

Finally, the remaining assumptions in eQUEST are: building type is Unknown, Custom 

or Mixed Use since there was the only option for a residential low rise building. Based on 

Table 3.5 – Continued 
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eQUEST default settings, code analysis is None, jurisdiction is CA Title24, location set is 

California, region is Los Angeles Area, city is Los Angeles AP, electric is SCE (CA), rate is GS-1 

(3) ( < 20 kW, three-phase service), and gas is SCG (CA) and rate is GN-10 (buildings with < 

20800 therms/mo). This building simulation with 108 runs was completed in 2010, so Analysis 

Year in eQUEST is 2010. Ground floor exposure is Over Crawl Space since crawl space 

foundation has some advantages over slab foundation, for example, it is easy to install wiring 

and plumbing for crawl space foundation [67-68]. Moreover, ground floor finish is Carpet (No 

Pad); windows frame type is a fixed Aluminum w/o Brick. No daylighting control is considered 

for this residential building case study, footprint shape is Rectangle, zoning pattern is One per 

Floor; exterior door types is Glass and Opaque (Wood, Solid Core Flush, 1-3/8 inch for the 

garage door, height 7 feet (ft) and width 16 ft), #Doors by Orientation is 2 (front door and back 

door), and doors frame type is Aluminum w/o Brick. Windows area specification method is 

Percent of Gross Wall Area, and typical window width is 3 ft. Window percent glass is assumed 

to first be 25% on all four sides. Since eQUEST Wizard always places doors at the center, the 

front door and garage door are adhered together on the front (North or East) side, this research 

used a custom window option. Three windows are assumed between the front door and the 

garage door. The three windows of X axes are 17 ft, 21 ft and 25 ft. The front side of footprint 

dimension X axes are 100 ft and 50 ft, and floor-to-floor height is 12 ft. When window area that 

is window height of 6 ft multiplied by typical window width of 3 ft is 18 ft2, and there are 11 

windows, the front window side area is 100 ft by 12 ft. When window area that is window height 

of 4 ft multiplied by typical window width of 3 ft is 12 ft2, and there are 15 windows, the front side 

window area is 100 ft by 12 ft. When window area that is window height of 6 ft multiplied by 

typical window width of 3 ft is 18 ft2, and there are 7 windows, the front side window area is 50 ft 

by 12 ft. When window area that is window height of 4 ft multiplied by typical window width of 3 

ft is 12 ft2, and there are 7 windows, the front side window area is 50 ft by 12 ft. Therefore, the 

four actual window percent glass measurements for both the North and East side are equal at 
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16.5% (i.e. 
12100

1118




), 15% (i.e. 
12100

1512




), 21% (i.e. 
1250

718




), and 14% (i.e. 
1250

712




). Thus, 

only the actual value of the designated front side is not 25%. For example, the first eQUEST run 

had the front facing East, so window percent glass factor variables were %Window-North 

(25%), %Window-South (25%), %Window-East (16.5%) and %Window-West (25%). In addition, 

shade depths are all 1 ft, Interior finish is drywall finish, Batt insulation is R-30, Rigid insulation 

is 1 1/2 inch polystyrene (R-6). For performance evaluation, measure type Whole Site/Building 

is selected from EEM Wizard. 

Four response variables (performance metrics) were selected from the eQUEST output: 

annual source energy-total million British thermal unit (Mbtu) ( 1Y ), HVAC energy-total Mbtu 

( 2Y ), annual utility cost-total (
3Y ) and LCC ( 4Y ). For example, the output values of 108 runs 

with pitched roof are shown in Figure 3.1-3.4. The multivariate analysis of these performance 

metrics will guide the development of multi-response models that will be incorporated into an 

MSMO framework to evaluate how building decisions affect the multiple performance 

objectives. 

      

 
 

Figure 3.1 Annual Source Energy-Total Mbtu ( 1Y ) 
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Figure 3.2 HVAC Energy-Total Mbtu ( 2Y ) 

 

 
 

Figure 3.3 Annual Utility Cost-Total (
3Y ) 

 

 
 

Figure 3.4 LCC ( 4Y ) 
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3.1.1.2 Multivariate Analysis 

Multivariate analysis of variance (MANOVA) [21] is used to study the effects of factors 

on multiple response variables. MANOVA is particularly appropriate when the response 

variables are correlated. Using SAS software [69], both ANOVA on individual response 

variables ( 1Y , 2Y ,
3Y , 4Y ) and MANOVA were conducted. MANOVA can be used to calculate p-

values for the four performance metrics (response variables). 

The p-values from the hypothesis tests on the factor effects are shown in Table 3.6 

(108 runs) for the factors that were statistically significant at the 0.10 level (i.e., p-value < 0.10) 

for at least one of the analyses. These 13 factor variables identified were: Ground Floor 

Exterior/Cavity Insulation, Exterior Wall Finishes, Interior Wall Insulation, Windows-Sill Height, 

Distance from Window-Overhangs, Additional Roof Insulation, Ceiling Interior Finishes, 

Footprint X&Y, Orientation, Design Max Occupant Density- Residential (General Living Space), 

Design Max Occupant Density-Dining Area, Design Ventilation-Dining Area, and Design Max 

Occupant Density-Kitchen and Food Preparation. 

The previous method utilized an OA with 108 runs assuming a pitched roof, and then 

this research additionally conducted 108 runs without a pitched roof. Thus, the combined set 

had 216 runs that were analyzed in this research [70-71]. The building simulation with 216 runs 

was completed in 2010, so Analysis Year in eQUEST is 2010. Based on the results in Table 

3.7, factors that may affect the four green building performance metrics were identified as 

having at least one significant p-value (< 0.05) in the row. The following 32 factors were 

identified: Footprint X&Y, Orientation, Ground Floor Interior Insulation, Ground Floor Cap, 

Ground Floor Exterior/Cavity Insulation, Wall Construction, Exterior Wall Finishes, Exterior Wall 

Color, Exterior Wall Insulation, Additional Wall Insulation, Interior Wall Insulation, Window-Glass 

Category, Window Height, Windows-Sill Height, Distance from Window-Overhangs, Doors 

Construction, Door Dimension-Height&Width, Roof Construction, Exterior Roof Finish, Exterior 

Roof Color, Additional Roof Insulation, Ceiling Interior Finishes, Ceiling Batt Insulation, Design 
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Max Occupant Density-Residential (General Living Space), Design Max Occupant Density-

Residential (Bedroom), Design Ventilation-Residential (Bedroom), Design Ventilation-

Residential (Garage), Design Max Occupant Density-Dining Area, Design Ventilation-Dining 

Area, Design Max Occupant Density-Kitchen and Food Preparation, Design Ventilation-

Corridor, Design Max Occupant Density-Laundry. 

3.1.2 Comparison of Several Analyses 

In Tables 3.8-3.10, this research compared the ANOVA on individual response 

variables and a multivariate ANOVA from SAS in Section 3.1.1 with multivariate regression tree 

splitting using mvpart from R, the MD method, which converts multiple responses into a single 

response for ANOVA, and the software CART and MARS from Salford Systems [72]. Almost all 

46 factors were important in at least one analysis. Thus, this research proceeded with all 46 

factors for the additional study in the next chapter. The further eQUEST ideal settings for 46 

factors are discussed in chapter 4.  
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Table 3.6 Stages and P Values for 108 Runs 
 

Stage Building Category 46 Factors 
P Values 

Y1 Y2 Y3 Y4 MANOVA
1 Siting Options  Footprint X&Y 0.8584 0.0159 0.8391 0.8409 0.0543 
   Orientation 0.2060 0.0095 0.2245 0.2238 0.0296 

2 Electrical System Based on Default from eQUEST      
3 Wells and Septic 

System 
No Option in eQUEST 

     

4 Foundation System  Ground Floor Construction 0.7967 0.5807 0.7657 0.7663 0.6856 
   Ground Floor Interior Insulation 0.8085 0.8925 0.8364 0.8369 0.4814 
   Ground Floor Cap 0.5002 0.4693 0.5606 0.5597 0.2358 
   Ground Floor Exterior/Cavity Insulation 0.2585 0.0292 0.2736 0.2727 0.2381 

5 Plumbing System No Option in eQUEST      
6 Wall System  Wall Construction 0.2028 0.5155 0.2048 0.2045 0.6634 
   Exterior Wall Finishes 0.0271 0.0436 0.0229 0.0229 0.0147 
   Exterior Wall Color 0.4755 0.3844 0.4234 0.4258 0.1956 
   Exterior Wall Insulation 0.3333 0.1609 0.3662 0.3650 0.5977 
   Additional Wall Insulation 0.5557 0.1222 0.6231 0.6208 0.4183 
   Interior Wall Insulation 0.0149 0.5155 0.0119 0.0119 0.0570 

7 Window System  Window-Glass Category 0.3112 0.9706 0.2758 0.2769 0.4031 
   Windows-Glass Type 0.7089 0.3978 0.4445 0.4457 0.7568 
   Windows-Frame Width 0.9939 0.5315 0.9807 0.9804 0.8877 
   Window Height 0.5099 0.5315 0.5176 0.5161 0.2304 
   Windows-Sill Height 0.0578 0.4399 0.0586 0.0585 0.4611 
   Distance from Window-Overhangs 0.0215 0.9119 0.0178 0.0180 0.0400 

8 Door System  Doors Construction 0.1344 0.7034 0.1258 0.1263 0.3950 
   Door Glass Type 0.2573 0.4399 0.2519 0.2521 0.6864 
   Door Dimension-Height&Width 0.4425 0.7034 0.4962 0.4957 0.1916 
   Door-Frame Width 0.7157 0.8154 0.7128 0.7127 0.9964 

9 Roof System  Roof Construction 0.7089 0.2265 0.7842 0.7809 0.2516 
   Exterior Roof Finish 0.6999 0.4399 0.8028 0.8002 0.1166 
   Exterior Roof Color 0.3564 0.3335 0.4112 0.4100 0.2745 
   Exterior Roof Insulation 0.9308 0.7775 0.9538 0.9542 0.6998 
   Additional Roof Insulation 0.4335 0.8154 0.4375 0.4364 0.0628 
   Ceiling Interior Finishes 0.1000 0.2764 0.0869 0.0870 0.1455 
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   Ceiling Batt Insulation 0.1834 0.2456 0.2001 0.1993 0.5787 
   Pitched Roof 0.6752 0.4545 0.6004 0.6029 0.3199 

10 Ventilation System  Design Max Occupant Density-Residential 
(General Living Space)  

0.0790 0.0192 0.0941 0.0934 0.1575 

   Design Ventilation-Residential (General 
Living Space)  

0.3333 0.5976 0.3424 0.3427 0.6002 

   Design Max Occupant Density-Residential 
(Bedroom)  

0.4177 0.8345 0.4350 0.4340 0.4683 

   Design Ventilation- Residential (Bedroom)  0.7134 0.6673 0.7782 0.7766 0.5164 
   Design Max Occupant Density-Residential 

(Garage)  
0.5177 0.2764 0.5224 0.5219 0.8078 

   Design Ventilation-Residential (Garage)  0.4533 0.9119 0.4411 0.4424 0.3646 
   Design Max Occupant Density-Dining Area 0.5376 <0.0001 0.6082 0.6019 <0.0001 
   Design Ventilation-Dining Area 0.7780 0.0005 0.6209 0.6273 0.0009 
   Design Max Occupant Density-Kitchen and 

Food Preparation 
0.0469 0.1166 0.0504 0.0504 0.0530 

   Design Ventilation-Kitchen and Food 
Preparation 

0.3084 0.3583 0.3050 0.3047 0.7686 

   Design Max Occupant Density-Corridor 0.4533 0.5155 0.4559 0.4566 0.6962 
   Design Ventilation-Corridor 0.3170 0.9119 0.2789 0.2796 0.3771 
   Design Max Occupant Density-Laundry 0.5177 0.4256 0.5236 0.5246 0.5131 
   Design Ventilation-Laundry 0.7897 0.3583 0.8497 0.8481 0.6610 
   Design Max Occupant Density-All Others 0.3692 0.9314 0.3715 0.3720 0.7634 
   Design Ventilation-All Others 0.3888 0.7587 0.3955 0.3953 0.6399 

11 Heating and 
Cooling System 

Based on Default from eQUEST 
     

12 Landscaping 
System 

No Option in eQUEST 
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Table 3.7 Stages and P Values for 216 Runs 
 

Stage Building Category 46 Factors 
P Values 

Y1 Y2 Y3 Y4 MANOVA
1 Siting Options  Footprint X&Y 0.7702 <0.0001 0.7380 0.7410 <0.0001 
   Orientation 0.0351 <0.0001 0.0442 0.0439 <0.0001 
2 Electrical System Based on Default from eQUEST      
3 Wells and Septic 

System 
No Option in eQUEST 

     

4 Foundation System  Ground Floor Construction 0.6714 0.3474 0.6221 0.6230 0.1662 
   Ground Floor Interior Insulation 0.6788 0.7793 0.7256 0.7265 0.0271 
   Ground Floor Cap 0.2623 0.2466 0.3327 0.3317 0.0027 
   Ground Floor Exterior/Cavity Insulation 0.0614 0.0003 0.0695 0.0690 0.0035 
5 Plumbing System No Option in eQUEST      
6 Wall System  Wall Construction 0.0355 0.3683 0.0356 0.0354 0.1110 
   Exterior Wall Finishes 0.0002 0.0011 0.0002 0.0002 <0.0001 
   Exterior Wall Color 0.2344 0.1452 0.1820 0.1843 0.0037 
   Exterior Wall Insulation 0.1069 0.0147 0.1324 0.1314 0.0922 
   Additional Wall Insulation 0.3212 0.0112 0.4048 0.4018 0.0464 
   Interior Wall Insulation <0.0001 0.2895 <0.0001 <0.0001 <0.0001 
7 Window System  Window-Glass Category 0.0905 1.0000 0.0690 0.0696 0.0316 
   Windows-Glass Type 0.2255 0.1398 0.2049 0.2062 0.2100 
   Windows-Frame Width 0.9939 0.3474 0.9765 0.9763 0.4733 
   Window Height 0.2634 0.2632 0.2747 0.2728 0.0028 
   Windows-Sill Height 0.0015 0.2083 0.0015 0.0015 0.0376 
   Distance from Window-Overhangs 0.0001 0.9203 <0.0001 <0.0001 <0.0001 
8 Door System  Doors Construction 0.0126 0.5618 0.0106 0.0107 0.0249 
   Door Glass Type 0.0584 0.1746 0.0551 0.0552 0.1580 
   Door Dimension-Height&Width 0.2014 0.4964 0.2602 0.2595 0.0013 
   Door-Frame Width 0.5523 0.7488 0.5453 0.5453 0.9734 
9 Roof System  Roof Construction 0.5288 0.0511 0.6523 0.6471 0.0061 
   Exterior Roof Finish 0.5222 0.1565 0.6897 0.6853 0.0004 
   Exterior Roof Color 0.1119 0.0980 0.1532 0.1522 0.0113 
   Exterior Roof Insulation 0.8929 0.5221 0.9283 0.9294 0.1180 
   Additional Roof Insulation 0.1909 0.6169 0.1942 0.1931 <0.0001 
   Ceiling Interior Finishes 0.0059 0.0612 0.0042 0.0042 0.0008 
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   Ceiling Batt Insulation 0.0276 0.0612 0.0339 0.0336 0.1153 
   Pitched Roof 0.8909 0.5092 0.8964 0.8957 0.9627 

10 Ventilation System  Design Max Occupant Density-
Residential (General Living Space)  

0.0034 0.0001 0.0053 0.0052 0.0013 

   Design Ventilation-Residential (General 
Living Space)  

0.1069 0.3683 0.1128 0.1130 0.1030 

   Design Max Occupant Density-
Residential (Bedroom)  

0.1760 0.7038 0.1954 0.1943 0.0353 

   Design Ventilation- Residential 
(Bedroom)  

0.5322 0.4839 0.6397 0.6373 0.0317 

   Design Max Occupant Density-
Residential (Garage)  

0.2788 0.0730 0.2851 0.2844 0.3366 

   Design Ventilation-Residential (Garage) 0.2207 0.7337 0.2045 0.2060 0.0147 
   Design Max Occupant Density-Dining 

Area 
0.2901 <0.0001 0.3875 0.3788 <0.0001 

   Design Ventilation-Dining Area 0.6659 <0.0001 0.4223 0.4316 <0.0001 
   Design Max Occupant Density-Kitchen 

and Food Preparation 
0.0010 0.0125 0.0012 0.0012 <0.0001 

   Design Ventilation-Kitchen and Food 
Preparation 

0.0882 0.1508 0.0880 0.0877 0.3515 

   Design Max Occupant Density-Corridor 0.2114 0.2466 0.2127 0.2134 0.1757 
   Design Ventilation-Corridor 0.0939 0.8102 0.0716 0.0720 0.0406 
   Design Max Occupant Density-Laundry 0.2833 0.1684 0.2923 0.2936 0.0276 
   Design Ventilation-Laundry 0.6677 0.1346 0.7577 0.7550 0.2804 
   Design Max Occupant Density-All 

Others 
0.1319 0.8886 0.1376 0.1379 0.2074 

   Design Ventilation-All Others 0.1446 0.6597 0.1522 0.1520 0.1266 
11 Heating and Cooling 

System 
Based on Default from eQUEST 

     

12 Landscaping System No Option in eQUEST      
 

Table 3.7 – Continued 
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Table 3.8 Six Analysis Methods with 216 Runs (Alpha Level 0.01) 
 

Individual 
analyses and 

MANOVA 

MD-Single Y 
Individual 

analyses and 
MANOVA 

MD-Single Y 
MARS-Salford 

MD-Single Y 
CART-Salford 

MVPART-RPART 
Code 

MVPART-MVPART 
Code 

    Wall Construction  
Roof Construction   Roof Construction  Roof Construction  Roof Construction 

    
Ground Floor 
Construction 

 

    
Ground Floor 

Interior Insulation 
Ground Floor 

Interior Insulation 
Ground Floor Cap      

Ground Floor 
Exterior/Cavity 

Insulation 
     

Exterior Wall 
Finishes 

Exterior Wall 
Finishes 

Exterior Wall 
Finishes 

 
Exterior Wall 

Finishes 
Exterior Wall 

Finishes 
Exterior Wall Color      

    
Additional Wall 

Insulation 
Additional Wall 

Insulation 
Interior Wall 
Insulation 

Interior Wall 
Insulation 

Interior Wall 
Insulation 

 
Interior Wall 
Insulation 

Interior Wall 
Insulation 

    
Windows-Glass 

Type 
Windows-Glass 

Type 

    
Windows-Frame 

Width  
Windows-Frame 

Width  
Window Height    Window Height Window Height 

Windows-Sill Height      
Distance from 

Window-Overhangs 
   

Distance from 
Window-Overhangs 

Distance from 
Window-Overhangs 

Exterior Roof Finish    Exterior Roof Finish Exterior Roof Finish 

    
Exterior Roof 

Insulation 
Exterior Roof 

Insulation 
Additional Roof 

Insulation 
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Ceiling Interior 
Finishes 

   
Ceiling Interior 

Finishes 
Ceiling Interior 

Finishes 

 
Ceiling Batt 
Insulation 

Ceiling Batt 
Insulation 

Ceiling Batt 
Insulation 

Ceiling Batt 
Insulation 

 

Footprint X&Y    Footprint X&Y Footprint X&Y 
Orientation      

    Doors-Construction Doors-Construction 
    Doors-Glass Type Doors-Glass Type 

Door Dimension-
Height&Width 

     

Design Max 
Occupant Density-

Residential 
(General Living 

Space) 

  

Design Max 
Occupant Density-

Residential 
(General Living 

Space) 

  

    

Design Ventilation-
Residential 

(General Living 
Space) 

Design Ventilation-
Residential 

(General Living 
Space) 

    

Design Max 
Occupant Density-

Residential 
(Garage) 

Design Max 
Occupant Density-

Residential 
(Garage) 

Design Max 
Occupant Density-

Dining Area 

Design Max 
Occupant Density-

Dining Area 

Design Max 
Occupant Density-

Dining Area 

Design Max 
Occupant Density-

Dining Area 

Design Max 
Occupant Density-

Dining Area 

Design Max 
Occupant Density-

Dining Area 
Design Ventilation-

Dining Area 
Design Ventilation-

Dining Area 
Design Ventilation-

Dining Area 
Design Ventilation-

Dining Area 
Design Ventilation-

Dining Area 
Design Ventilation-

Dining Area 
Design Max 

Occupant Density-
Kitchen and Food 

Preparation 

   

Design Max 
Occupant Density-
Kitchen and Food 

Preparation 

Design Max 
Occupant Density-
Kitchen and Food 

Preparation 

    
Design Ventilation-

Laundry 
Design Ventilation-

Laundry 
 
 

Table 3.8 – Continued 
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Table 3.9 Six Analysis Methods with 216 Runs (Alpha Level 0.05) 
 

Individual 
analyses and 

MANOVA 

MD-Single Y 
Individual 

analyses and 
MANOVA 

MD-Single Y 
MARS-Salford 

MD-Single Y 
CART-Salford 

MVPART-RPART 
Code 

MVPART-MVPART 
Code 

Wall Construction    Wall Construction  
Windows-Glass 

Category 
     

Roof Construction   Roof Construction Roof Construction Roof Construction 

    
Ground Floor 
Construction 

 

Ground Floor 
Interior Insulation 

   
Ground Floor 

Interior Insulation 
Ground Floor 

Interior Insulation 
Ground Floor Cap      

Ground Floor 
Exterior/Cavity 

Insulation 
     

Exterior Wall 
Finishes 

Exterior Wall 
Finishes 

Exterior Wall 
Finishes 

 
Exterior Wall 

Finishes 
Exterior Wall 

Finishes 
Exterior Wall Color      

Exterior Wall 
Insulation 

     

Additional Wall 
Insulation 

   
Additional Wall 

Insulation 
Additional Wall 

Insulation 
Interior Wall 
Insulation 

Interior Wall 
Insulation 

Interior Wall 
Insulation 

 
Interior Wall 
Insulation 

Interior Wall 
Insulation 

 
Windows-Glass 

Type 
  

Windows-Glass 
Type 

Windows-Glass 
Type 

    
Windows-Frame 

Width 
Windows-Frame 

Width 
Window Height    Window Height Window Height 
Windows-Sill 

Height 
     

Distance from 
Window-Overhangs 

   
Distance from 

Window-Overhangs
Distance from 

Window-Overhangs
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Exterior Roof Finish    Exterior Roof Finish Exterior Roof Finish
Exterior Roof Color      

    
Exterior Roof 

Insulation 
Exterior Roof 

Insulation 
Additional Roof 

Insulation 
     

Ceiling Interior 
Finishes 

   
Ceiling Interior 

Finishes 
Ceiling Interior 

Finishes 
Ceiling Batt 
Insulation 

Ceiling Batt 
Insulation 

Ceiling Batt 
Insulation 

Ceiling Batt 
Insulation 

Ceiling Batt 
Insulation 

 

Footprint X&Y    Footprint X&Y Footprint X&Y 
Orientation      

Doors Construction    Doors-Construction Doors-Construction 
    Doors-Glass Type Doors-Glass Type 

Door Dimension-
Height&Width 

     

Design Max 
Occupant Density-

Residential 
(General Living 

Space) 

  

Design Max 
Occupant Density-

Residential 
(General Living 

Space) 

  

    

Design Ventilation-
Residential 

(General Living 
Space) 

Design Ventilation-
Residential 

(General Living 
Space) 

Design Max 
Occupant Density-

Residential 
(Bedroom) 

     

Design Ventilation-
Residential 
(Bedroom) 

     

 

Design Max 
Occupant Density-

Residential 
(Garage) 

  

Design Max 
Occupant Density-

Residential 
(Garage) 

Design Max 
Occupant Density-

Residential 
(Garage) 

Table 3.9 – Continued 
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Design Ventilation-
Residential 
(Garage) 

     

Design Max 
Occupant Density-

Dining Area 

Design Max 
Occupant Density-

Dining Area 

Design Max 
Occupant Density-

Dining Area 

Design Max 
Occupant Density-

Dining Area 

Design Max 
Occupant Density-

Dining Area 

Design Max 
Occupant Density-

Dining Area 
Design Ventilation-

Dining Area 
Design Ventilation- 

Dining Area 
Design Ventilation- 

Dining Area 
Design Ventilation- 

Dining Area 
Design Ventilation-

Dining Area 
Design Ventilation-

Dining Area 
Design Max 

Occupant Density-
Kitchen and Food 

Preparation 

   

Design Max 
Occupant Density-
Kitchen and Food 

Preparation 

Design Max 
Occupant Density-
Kitchen and Food 

Preparation 
Design Ventilation-

Corridor 
     

Design Max 
Occupant Density-

Laundry 
     

    
Design Ventilation-

Laundry 
Design Ventilation-

Laundry 
 

Table 3.10 Six Analysis Methods with 216 Runs (Alpha Level 0.10) 
 

Individual 
analyses and 

MANOVA 

MD-Single Y 
Individual 

analyses and 
MANOVA 

MD-Single Y 
MARS-Salford 

MD-Single Y 
CART-Salford 

MVPART-RPART 
Code 

MVPART-MVPART 
Code 

Wall Construction    Wall Construction  
Windows-Glass 

Category 
     

Roof Construction   Roof Construction Roof Construction Roof Construction 

    
Ground Floor 
Construction 

 

Ground Floor 
Interior Insulation 

   
Ground Floor 

Interior Insulation 
Ground Floor 

Interior Insulation 
Ground Floor Cap      

Table 3.9 – Continued 
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Ground Floor 
Exterior/Cavity 

Insulation 
     

Exterior Wall 
Finishes 

Exterior Wall 
Finishes 

Exterior Wall 
Finishes 

 
Exterior Wall 

Finishes 
Exterior Wall 

Finishes 
Exterior Wall Color      

Exterior Wall 
Insulation 

     

Additional Wall 
Insulation 

   
Additional Wall 

Insulation 
Additional Wall 

Insulation 
Interior Wall 
Insulation 

Interior Wall 
Insulation 

Interior Wall 
Insulation 

 
Interior Wall 
Insulation 

Interior Wall 
Insulation 

 
Windows-Glass 

Type 
  

Windows-Glass 
Type 

Windows-Glass 
Type 

    
Windows-Frame 

Width 
Windows-Frame 

Width 
Window Height    Window Height Window Height 
Windows-Sill 

Height 
     

Distance from 
Window-Overhangs 

   
Distance from 

Window-Overhangs
Distance from 

Window-Overhangs
Exterior Roof Finish    Exterior Roof Finish Exterior Roof Finish
Exterior Roof Color Exterior Roof Color     

    
Exterior Roof 

Insulation 
Exterior Roof 

Insulation 
Additional Roof 

Insulation 
     

Ceiling Interior 
Finishes 

   
Ceiling Interior 

Finishes 
Ceiling Interior 

Finishes 
Ceiling Batt 
Insulation 

Ceiling Batt 
Insulation 

Ceiling Batt 
Insulation 

Ceiling Batt 
Insulation 

Ceiling Batt 
Insulation 

 

Footprint X&Y    Footprint X&Y Footprint X&Y 
Orientation      

Doors Construction    Doors-Construction Doors-Construction 
Door Glass Type    Doors-Glass Type Doors-Glass Type 

Table 3.10 – Continued 
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Door Dimension-
Height&Width 

     

Design Max 
Occupant Density-

Residential 
(General Living 

Space) 

Design Max 
Occupant Density-

Residential 
(General Living 

Space) 

 

Design Max 
Occupant Density-

Residential 
(General Living 

Space) 

  

    

Design Ventilation-
Residential 

(General Living 
Space) 

Design Ventilation-
Residential 

(General Living 
Space) 

Design Max 
Occupant Density-

Residential 
(Bedroom) 

     

Design Ventilation-
Residential 
(Bedroom) 

     

Design Max 
Occupant Density-

Residential 
(Garage) 

Design Max 
Occupant Density-

Residential 
(Garage) 

  

Design Max 
Occupant Density-

Residential 
(Garage) 

Design Max 
Occupant Density-

Residential 
(Garage) 

Design Ventilation-
Residential 
(Garage) 

     

Design Max 
Occupant Density-

Dining Area 

Design Max 
Occupant Density-

Dining Area 

Design Max 
Occupant Density-

Dining Area 

Design Max 
Occupant Density-

Dining Area 

Design Max 
Occupant Density-

Dining Area 

Design Max 
Occupant Density-

Dining Area 
Design Ventilation-

Dining Area 
Design Ventilation-

Dining Area 
Design Ventilation-

Dining Area 
Design Ventilation-

Dining Area 
Design Ventilation-

Dining Area 
Design Ventilation-

Dining Area 
Design Max 

Occupant Density-
Kitchen and Food 

Preparation 

Design Max 
Occupant Density-
Kitchen and Food 

Preparation 

  

Design Max 
Occupant Density-
Kitchen and Food 

Preparation 

Design Max 
Occupant Density-
Kitchen and Food 

Preparation 
Design Ventilation-
Kitchen and Food 

     

Table 3.10 – Continued 
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Preparation 
Design Ventilation-

Corridor 
Design Ventilation-

Corridor 
    

Design Max 
Occupant Density-

Laundry 
     

    
Design Ventilation-

Laundry 
Design Ventilation-

Laundry 
 

Table 3.10 – Continued 
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CHAPTER 4 

MULTI-RESPONSE TREE-BASED MODELS USING THE METHOD OF SEEMINGLY 

UNRELATED REGRESSIONS 

4.1 Second Design of Experiments 

This research modified some previous assumptions and factor variables. For example, 

most residential buildings do not have window overhangs, so Distance from Window-Overhangs 

is not considered to be a factor variable, and shade depths are not represented in the 

assumptions. Each of the four sides of the building has a percent glass variable that is 

considered to be important, and custom window options cannot be used. For the main schedule 

information for building operations, the timeframe is from 5pm to 8am on the weekday with 

occupancy percent 90%, ambient lighting load percent 90%, and equipment load percent 90%. 

On the weekend and holidays, the timeframe is all day with occupancy percent 50%, ambient 

lighting load percent 50%, and equipment load percent 50%. This building simulation with 192 

runs was completed in 2012, so Analysis Year in eQUEST is 2012. Others are the same as the 

previous assumptions in Section 3.1.1.1. 

For this second experimental design, the 46 variables are described by three types: 

discrete-numerical, discrete-categorical, and continuous. In Table 4.1, there are 10 factors with 

two levels, one factor with three levels, and 19 factors with four levels. To accommodate this 

combination of factors, the second design employed a mixed-level orthogonal array 23119 432  

design of strength 2 (DoE.base [66]) that allows 19 factors with 2 levels, one with 3 levels, and 

23 with 4 levels. There are 16 factors that are discrete-numerical type, but only limited 4 levels 

are permitted in eQUEST. Six variables have 4 different levels for inch concretes and 

polystyrenes. There are three variables that have R-values [73-76] using U.S. units for batt 

insulation. The R-value which measures thermal resistance through a given thickness of 
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material is 

                                                                         
Q

T
R


 ,                                                        (4.1) 

where T  is temperature difference, and Q  is heat flux. The unit of R-value is ft2·°F·hour/Btu. 

In R-values, the integer numbers are standard insulation types. For example, R-3 means R-

value per inch of thickness is 3. When the thickness is changed, the R-values are varies. Thus, 

the R-values are numerical. Since the R-value is additive, the total value 3 can be cumulated 

from different R-values of insulation materials. Other values of variables in discrete-numerical 

types have limited specific ranges. There are 14 variables that are discrete-categorical types, 

where 10 each have 2 levels, one has 3 levels, and 3 have 4 levels. Interior wall insulation, 

which is considered a discrete-categorical type, only has two options: none, and 1 inch. 

Moreover, this research also employed a Sobol’ low-discrepancy sequence [77] since eQUEST 

allows 8 continuous factors for maximum occupant density and 8 continuous factors for 

ventilation. In other words, there are 16 factors that are continuous and can be treated 

continuously in eQUEST. These ideal settings are shown in Table 4.1. This research also 

identified 68 uncontrollable variables and sampled the values from uniform distributions. 

Table 4.1 eQUEST Ideal Settings for Training 
 

Variables Settings Types 

Ground Floor Construction ( 1x )  2 inch Concrete 
 4 inch Concrete 
 6 inch Concrete 
 8 inch Concrete 

Discrete- 
Numerical 

Ground Floor Interior Insulation ( 2x )  1 inch Polystyrene 
 1 1/2 inch Polystyrene 
 2 inch Polystyrene 
 3 inch Polystyrene 

Discrete- 
Numerical 

Ground Floor Cap ( 3x )  1.25 inch Lightweight Concrete 
 2 inch Lightweight Concrete 
 3 inch Lightweight Concrete 
 4 inch Lightweight Concrete 

Discrete- 
Numerical 

Ground Floor Exterior/Cavity 

Insulation ( 4x ) 
 1 inch Polystyrene 
 2 inch Polystyrene 
 3 inch Polystyrene 

Discrete- 
Numerical 
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 4 inch Polystyrene 

Exterior Wall Insulation ( 5x )  1 inch Polystyrene 
 1 1/2 inch Polystyrene 
 2 inch Polystyrene 
 3 inch Polystyrene 

Discrete- 
Numerical 

Additional Wall Insulation ( 6x )  R-3 Batt 
 R-7 Batt 
 R-11 Batt 
 R-13 Batt 

Discrete- 
Numerical 

%Window-North ( 7x )  10 
 15 
 20 
 25 

Discrete- 
Numerical 

%Window-South ( 8x )  10 
 15 
 20 
 25 

Discrete- 
Numerical 

%Window-East ( 9x )  10 
 15 
 20 
 25 

Discrete- 
Numerical 

%Window-West ( 10x )  10 
 15 
 20 
 25 

Discrete- 
Numerical 

Additional Roof Insulation ( 11x )  R-7 Batt 
 R-19 Batt 
 R-30 Batt 
 R-49 Batt 

Discrete- 
Numerical 

Ceiling Batt Insulation ( 12x )  R-13 Batt 
 R-19 Batt 
 R-21 Batt 
 R-30 Batt 

Discrete- 
Numerical 

Exterior Roof Insulation ( 13x )  1 inch Polystyrene 
 1 1/2 inch Polystyrene 
 2 inch Polystyrene 
 3 inch Polystyrene 

Discrete- 
Numerical 

Footprint X ( 14x )  100 
 70.7 
 62.5 
 50 

Discrete- 
Numerical 

Door Dimension-Width ( 15x )  3 
 4 
 5 
 6 

Discrete- 
Numerical 

Door-Frame Width ( 16x )  2  
 2.3  
 2.7 
 3 

Discrete- 
Numerical 

Table 4.1 – Continued 
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Design Max Occupant Density-
Residential (General Living Space) 

( 17x ) 

Range: 575 to 675 Continuous 

Design Ventilation-Residential 

(General Living Space) ( 18x ) 

Range: 10 to 30 Continuous 

Design Max Occupant Density-

Residential (Bedroom) ( 19x ) 

Range: 575 to 675 Continuous 

Design Ventilation-Residential 

(Bedroom) ( 20x ) 

Range: 10 to 30 Continuous 

Design Max Occupant Density-

Residential (Garage) ( 21x ) 

Range: 575 to 675 Continuous 

Design Ventilation-Residential 

(Garage) ( 22x ) 

Range: 10 to 30 Continuous 

Design Max Occupant Density-

Dining Area ( 23x ) 

Range: 5 to 105 Continuous 

Design Ventilation-Dining Area ( 24x ) Range: 10 to 30 Continuous 

Design Max Occupant Density-

Kitchen and Food Preparation ( 25x ) 

Range: 250 to 350 Continuous 

Design Ventilation-Kitchen and Food 

Preparation ( 26x ) 

Range: 5 to 25 Continuous 

Design Max Occupant Density-

Corridor ( 27x ) 

Range: 100 to 200 Continuous 

Design Ventilation-Corridor ( 28x ) Range: 5 to 25 Continuous 

Design Max Occupant Density-

Laundry ( 29x ) 

Range: 100 to 200 Continuous 

Design Ventilation-Laundry ( 30x ) Range: 15 to 35 Continuous 

Design Max Occupant Density-All 

Others ( 31x ) 

Range: 100 to 200 Continuous 

Design Ventilation-All Others ( 32x ) Range: 5 to 25 Continuous 

Wall Construction ( 33x )  Wood Frame, 24, 16 inch o.c. (a) 
 Wood Frame, 24, 24 inch o.c. (b) 

Discrete- 
Categorical 

Windows-Glass Category ( 34x )  Double Clear/Tint (a) 
 Double Low-e (e2 = 0.1) (b) 

Discrete- 
Categorical 

Roof Construction ( 35x )  Wood Advanced Frame, 24 inch 
o.c. (a) 

 Wood Advanced Frame, >24 inch 
o.c. (b) 

Discrete- 
Categorical 

Exterior Wall Finishes ( 36x )  Brick (a) 
 Concrete (b) 

Discrete- 
Categorical 

Exterior Wall Color ( 37x )  Light (a) 
 Dark (b) 

Discrete- 
Categorical 

Table 4.1 – Continued 
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Interior Wall Insulation ( 38x )  None (a) 
 1 inch Polystyrene (b) 

Discrete- 
Categorical 

Exterior Roof Finish ( 39x )  Concrete (a) 
 Built-up Roof (b) 

Discrete- 
Categorical 

Exterior Roof Color ( 40x )  Light (a) 
 Dark (b) 

Discrete- 
Categorical 

Doors-Construction ( 41x )  Double Clear/Tint (a) 
 Double Low-e (e2 = 0.1) (b) 

Discrete- 
Categorical 

Pitched Roof ( 42x )  Without Pitched Roof (a) 
 With Pitched Roof (b) 

Discrete- 
Categorical 

Ceiling Interior Finishes ( 43x )  Lay-In Acoustic Tile (a) 
 Drywall Finish (b) 
 Plaster Finish (c) 

Discrete- 
Categorical 

Windows-Glass Type ( 44x )  Clear 1/8, 1/4 inch Air (a) 
 Clear 1/8, 1/2 inch Air (b) 
 Clear 1/4, 1/4 inch Air (c) 
 Clear 1/4, 1/2 inch Air (d) 

Discrete- 
Categorical 

Orientation ( 45x )  N/S Component (Face North) (a) 
 N/S Component (Face South) (b) 
 E/W Component (Face East) (c) 
 E/W Component (Face West) (d) 

Discrete- 
Categorical 

Doors-Glass Type ( 46x )  Clear 1/8, 1/4 inch Air (a) 
 Clear 1/8, 1/2 inch Air (b) 
 Clear 1/4, 1/4 inch Air (c) 
 Clear 1/4, 1/2 inch Air (d) 

Discrete- 
Categorical 

 

In Figure 4.1, the 96-point mixed array and a 96-point Sobol' sequence were combined 

into a single design using a two-factor Latin hypercube. The purpose of this design approach 

was to create to a single design that handled both discrete and continuous variables. Column 1 

of the Latin hypercube selected rows (points) from the mixed array, and column 2 of the Latin 

hypercube selected rows (points) from the Sobol’ sequence. Hence, each row of the Latin 

hypercube chooses one point from the mixed array and one point from the Sobol’ sequence to 

create a combination that specifies all 46 factors. For example, the first run of the combined 

design uses the 65th row of the mixed array and the 37th row of the Sobol’ sequence. This 

specifies all 46 factors for conducting one run of eQUEST. A 96-point Latin hypercube would 

select each point from the mixed array and each point from the Sobol’ sequence exactly once. 

In this research, 192-point Latin hypercube selects each point twice, specified in Table 4.2 (M: 

MA, S: Sobol'). 
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Figure 4.1 Latin Hypercube Design 
 

Table 4.2 Latin Hypercube Design for 192 Runs 
 

Runs M S Runs M S Runs M S Runs M S Runs M S 
1 65 37 40 58 23 79 73 2 118 82 73 157 65 64
2 7 57 41 77 86 80 89 24 119 9 30 158 53 66
3 87 73 42 21 56 81 96 95 120 28 59 159 84 78
4 69 71 43 86 64 82 72 11 121 44 7 160 34 79
5 29 1 44 54 90 83 42 63 122 67 75 161 33 86
6 91 62 45 16 93 84 68 58 123 17 60 162 41 68
7 57 38 46 11 70 85 19 40 124 40 56 163 87 49
8 61 21 47 84 41 86 70 45 125 10 85 164 2 82
9 51 44 48 44 49 87 47 6 126 92 6 165 56 90
10 40 33 49 35 43 88 74 76 127 95 40 166 90 93
11 5 10 50 76 36 89 43 52 128 96 70 167 46 45
12 10 69 51 48 7 90 28 4 129 51 87 168 60 43
13 71 5 52 92 77 91 22 74 130 12 65 169 22 84
14 75 89 53 41 16 92 25 35 131 8 83 170 66 77
15 6 30 54 2 61 93 8 27 132 6 89 171 61 32
16 64 84 55 82 65 94 9 17 133 71 22 172 7 63
17 78 34 56 95 42 95 49 81 134 36 17 173 93 62
18 50 92 57 24 66 96 83 15 135 75 20 174 68 95
19 32 39 58 67 48 97 49 13 136 64 50 175 91 33
20 81 12 59 15 85 98 55 35 137 43 3 176 24 36
21 38 60 60 79 59 99 94 54 138 52 52 177 85 91
22 27 55 61 31 8 100 27 11 139 79 48 178 86 25
23 23 18 62 62 53 101 69 72 140 73 53 179 77 18
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24 17 78 63 39 14 102 48 51 141 29 12 180 1 24
25 26 79 64 80 32 103 47 39 142 42 67 181 23 74
26 45 88 65 33 91 104 35 76 143 25 21 182 45 94
27 63 47 66 1 94 105 39 23 144 30 15 183 72 31
28 66 54 67 36 51 106 54 16 145 57 14 184 21 37
29 13 46 68 46 3 107 59 46 146 70 71 185 50 57
30 88 96 69 12 67 108 58 61 147 13 47 186 32 42
31 59 9 70 4 20 109 83 34 148 78 38 187 11 69
32 52 26 71 56 28 110 16 81 149 20 4 188 37 80
33 30 82 72 85 87 111 38 44 150 19 26 189 74 88
34 60 50 73 20 31 112 4 10 151 63 19 190 89 5 
35 55 13 74 94 72 113 26 96 152 15 28 191 31 58
36 3 68 75 18 75 114 14 1 153 18 55 192 88 41
37 90 25 76 14 22 115 76 92 154 62 27  
38 93 19 77 37 83 116 3 2 155 5 29 
39 53 29 78 34 80 117 81 9 156 80 8 

 

4.2 Fitting Treed Regression and TreeMARS 

In this dissertation, four models, treed regression (TreeReg), treed multivariate adaptive 

regression splines (TreeMARS), categorical TreeReg (CATreeReg) and categorical TreeMARS 

(CATreeMARS), are described. For regression modeling, there are two stepwise regression 

methods that were employed, Akaike's Information Criterion (AIC) [78-79] and p-values. This 

research employed the R package “step” to choose the predictive variables by an automatic 

procedure for model selection using minimum AIC, and the mean model is the initial input for 

variable selection for each performance metric. SAS utilizes p-values to yield different variable 

sets. 

4.2.1 Tree Models 

The tree model can be written as 

                                                  }{)(ˆ)(ˆ
1

j

J

j
Tree RIfg  



xxx ,                                          (4.2) 

where the regression function )(ˆ xf  is constant, I  is an indicator function, x  is the vector of 

predictor variables, R  represents disjoint regions, and J  denotes the number of terminal 

nodes. There are two useful software tools, Salford Systems “CART” and the R package “tree.” 

These two tools include a k -fold cross-validation (CV) technique. While the use of CV with a 
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designed experiment alters the designed structure, the CV approach has been found useful by 

[80], which used 10-fold CV with a designed experiment. This dissertation also used 10-fold CV. 

Using only the 192 runs from the second design, CART using CV gave the following message 

for all four responses: “The optimal tree has no splits.” To remedy this, the 192 design was 

combined with the 216 initial runs. However, the four factor variables are different between 216 

runs and 192 runs. In the 216 runs, there are the four variables Windows-Frame Width, Window 

Height, Windows-Sill Height and Distance from Window-Overhangs. In the 192 runs, these were 

replaced by the four variables %Window-North, %Window-South, %Window-East and 

%Window-West. Since the 216 runs also specified the percent glass for the four sides of the 

building, the 216 runs and 192 runs could be combined together. In the software CART, the 

minimum node sizes are 35.  

CART Regression tree models with all variables in the tree for four responses with 408 

runs are shown in Figures 4.2-4.5, where response 1 is annual source energy, response 2 is 

HVAC total energy, response 3 is annual total utility cost, and response 4 is life cycle cost. In 

CART, when only categorical variables are considered in the tree (CATree), the regression tree 

models show fewer splits in Figures 4.6-4.9. 
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Figure 4.2 CART. (a) Regression Tree Model for Response 1, (b) Tree Splits 
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Figure 4.3 CART. (a) Regression Tree Model for Response 2, (b) Tree Splits 
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Figure 4.4 CART. (a) Regression Tree Model for Response 3, (b) Tree Splits 
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Figure 4.5 CART. (a) Regression Tree Model for Response 4, (b) Tree Splits 
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Figure 4.6 CART. (a) Regression CATree Model for Response 1, (b) CATree Splits 
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Figure 4.7 CART. (a) Regression CATree Model for Response 2, (b) CATree Splits 
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Figure 4.8 CART. (a) Regression CATree Model for Response 3, (b) CATree Splits 
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Figure 4.9 CART. (a) Regression CATree Model for Response 4, (b) CATree Splits 

 

Using the R package “tree” [33], the minimum number of observations for each child 

node (i.e. mincut) is 35. When all variables are considered in the tree model, there are 8 

terminal nodes in response 1, there are 7 terminal nodes in response 2, there are 8 terminal 

nodes in response 3, and there are 8 terminal nodes in response 4. These regression tree 

models are shown in Figure 4.10. For CATree models, there are 8 terminal nodes in response 

1, there are 5 terminal nodes in response 2, there are 8 terminal nodes in response 3, and there 

are 8 terminal nodes in response 4. These regression CATrees models are shown in Figure 

4.11. Obviously, these two figures using R have some similar splits like the previous CART 

figures. The results of Tables 4.3-4.6 (TN: Terminal Node) are arranged from Figure 4.10 (a), 

(b), (c) and (d), the results of Tables 4.7-4.10 (TN: Terminal Node) are arranged from Figure 

4.11 (a), (b), (c) and (d), and responses 1, 2 and 3 had the same tree splits and observations 

when mincut is 35. 
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Figure 4.10 Regression Tree Models. (a) Response 1, (b) Response 2,  

(c) Response 3, (d) Response 4 
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Figure 4.11 Regression CATree Models. (a) Response 1, (b) Response 2,  

(c) Response 3, (d) Response 4 
 

Table 4.3 Tree Model for Response 1 
 

TN 11x  38x  19x  18x  36x 29x  30x  Mean Observations 

1 < 5 a  < 20    604.8 54 
2 < 5 a  > 20    570.7 54 
3 < 5 b   a   594.8 54 
4 < 5 b   b   641.5 54 
5 > 5  < 651.2   < 144.55  682.4 68 
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6 > 5  < 651.2   > 144.55 < 23.985 632.3 38 
7 > 5  < 651.2   > 144.55 > 23.985 666.3 42 
8 > 5  > 651.2     624.5 44 

 

Table 4.4 Tree Model for Response 2 
 

TN 23x  24x  25x  19x  32x  Mean Observations

1 < 104.6 < 29.61 < 255.9   24.90 42 
2 < 104.6, < 29.6 < 29.61 > 255.9 < 654.3  33.20 46 
3 < 104.6, > 29.6 < 29.61 > 255.9 < 654.3 < 12.575 27.87 38 
4 < 104.6, > 29.6 < 29.61 > 255.9 < 654.3 > 12.575 31.41 68 
5 < 104.6 < 29.61 > 255.9 > 654.3  27.96 50 
6 < 104.6 > 29.61    37.29 56 
7 > 104.6     22.44 108 

 

Table 4.5 Tree Model for Response 3 
 

TN 11x  38x  19x  18x  36x 29x  30x  Mean Observations 

1 < 5 a  < 20    10320 54 
2 < 5 a  > 20    9754 54 
3 < 5 b   a   10160 54 
4 < 5 b   b   10950 54 
5 > 5  < 651.2   < 144.55  11650 68 
6 > 5  < 651.2   > 144.55 < 23.985 10820 38 
7 > 5  < 651.2   > 144.55 > 23.985 11390 42 
8 > 5  > 651.2     10690 44 

 

Table 4.6 Tree Model for Response 4 
 

TN 11x  38x  19x  18x  36x 29x  30x  Mean Observations

1 < 5 a  < 20    65630 54 
2 < 5 a  > 20    62010 54 
3 < 5 b   a   64580 54 
4 < 5 b   b   69590 54 
5 > 5  < 651.2   < 144.55  74040 68 
6 > 5  < 651.2   > 144.55 < 23.985 68780 38 
7 > 5  < 651.2   > 144.55 > 23.985 72400 42 
8 > 5  > 651.2     67970 44 

 

Table 4.7 CATree Model for Response 1 
 

TN 43x  38x  39x  36x  40x  Mean Observations 

1 b, c a a   594.7 86 
2 b, c a b a  597.8 40 

Table 4.3 – Continued 
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3 b, c a b b  639.2 46 
4 b, c b a a  636.2 40 
5 b, c b b a  601.3 46 
6 b, c b  b a 632.1 46 
7 b, c b  b b 669.1 40 
8 a     667.5 64 

 

Table 4.8 CATree Model for Response 2 
 

TN 45x  46x  40x  44x  Mean Observations 

1 a a   24.27 66 
2 a b, c, d  b 26.02 40 
3 a b, c, d  a, c, d 29.74 50 
4 b, c, d  a  28.86 126 
5 b, c, d  b  31.04 126 

 

Table 4.9 CATree Model for Response 3 
 

TN 43x  38x  39x  36x  40x  Mean Observations 

1 b, c a a   10180 86 
2 b, c a b a  10210 40 
3 b, c a b b  10900 46 
4 b, c b a a  10870 40 
5 b, c b b a  10280 46 
6 b, c b  b a 10790 46 
7 b, c b  b b 11420 40 
8 a     11410 64 

 

Table 4.10 CATree Model for Response 4 
 

TN 43x  38x  39x  36x  40x  Mean Observations 

1 b, c a a   64720 86 
2 b, c a b a  64930 40 
3 b, c a b b  69270 46 
4 b, c b a a  69090 40 
5 b, c b b a  65350 46 
6 b, c b  b a 68610 46 
7 b, c b  b b 72550 40 
8 a     72490 64 

 

4.2.2 Treed Regression Models 

The tree model is shown in equation (4.2). Instead of averaging response values 

(constants) at the terminal nodes of the tree, TreeReg uses the linear regression model 

Table 4.7 – Continued 
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                                                  xx 



J

j
jf

1
0)(ˆ                                                              (4.3) 

to handle the mix of discrete and continuous factor variables, where   is the vector of model 

coefficients, which are estimated by ̂ , and J  denotes the number of terminal nodes. The 

detailed TreeReg approach is described in Alexander and Grimshaw [51]. 

4.2.3 TreeMARS Models 

When curvilinearity is present in the relationships between the continuous factor 

variables, multivariate adaptive regression splines (MARS) may be a better alternative to 

regression. This research employed a TreeMARS modeling developed by Sahu [52] in 2011 

(Figure 4.12). The TreeMARS model can be written as 

                                                  }{)()(ˆ
1

j

J

j
jjTreeMARS RIBg  



xxx  ,                              (4.4) 

where   is the vector of model coefficients, which are estimated by ̂ , B  functions are basis 

functions, I  is an indicator function, x  is the vector of predictor variables, R  represents 

disjoint regions, J  denotes the number of terminal nodes, and the MARS model is 

                                                  )()(ˆ
1

0 xx 



J

j
jjMARS Bg  .                                            (4.5) 

The MARS model is described in Section 2.3.3.1, and the detailed TreeMARS approach is 

described in Sahu’s dissertation. This is an extension of TreeReg. Instead of fitting linear 

regression models at the terminal nodes of the tree, TreeMARS uses MARS. MARS is more 

flexible than linear regression for modeling continuous relationships, and categorical factors are 

handled only by tree modeling.  
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Figure 4.12 Schematic Illustration of TreeMARS Methodology 

(Source: Sahu’s Dissertation, 2011) 
 

4.3 Handling Multiple Responses 

This study has four performance metrics that are potentially correlated. SUR achieves 

more precise parameter estimates than traditional ordinary least square (OLS) when responses 

are correlated (Shah et al. [27]). SUR uses the relationships between multiple responses to 

reduce variances. TreeMARS and TreeReg are statistical linear models, so SUR [27] is 

applicable. This research fit TreeMARS, TreeReg, CATreeMARS and CATreeReg models for 

each performance metric to handle mix of discrete and continuous factors, and identify 

appropriate model forms for each performance metric. The SUR procedure (Shah et al. [27]) is 

used to generate new parameters, and then re-estimate model parameters using SUR for 

multiple response variables. For example, Tables 4.11-4.14 (TN: Terminal Node, B: Basis 

Function) show the parts of coefficients using OLS separately and SUR for four models. 

For obtaining important factors, the following 33 factors were identified the TreeMARS 

models as impacting the green building performance metrics: Ground Floor Construction ( 1x ), 
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Ground Floor Interior Insulation ( 2x ), Ground Floor Cap ( 3x ), Ground Floor Exterior/Cavity 

Insulation ( 4x ), Exterior Wall Insulation ( 5x ), Additional Wall Insulation ( 6x ), %Window-North 

( 7x ), %Window-South ( 8x ), %Window-East ( 9x ), Additional Roof Insulation ( 11x ), Ceiling Batt 

Insulation ( 12x ), Exterior Roof Insulation ( 13x ), Footprint X ( 14x ), Door Dimension-Width ( 15x ), 

Door-Frame Width ( 16x ), Design Max Occupant Density-Residential (General Living Space) 

( 17x ), Design Ventilation-Residential (General Living Space) ( 18x ), Design Max Occupant 

Density-Residential (Bedroom) ( 19x ), Design Ventilation-Residential (Bedroom) ( 20x ), Design 

Max Occupant Density-Residential (Garage) ( 21x ), Design Ventilation-Residential (Garage) 

( 22x ), Design Max Occupant Density-Dining Area ( 23x ), Design Ventilation-Dining Area ( 24x ), 

Design Max Occupant Density-Kitchen and Food Preparation ( 25x ), Design Ventilation-Kitchen 

and Food Preparation ( 26x ), Design Max Occupant Density-Corridor ( 27x ), Design Ventilation-

Corridor ( 28x ), Design Max Occupant Density-Laundry ( 29x ), Design Ventilation-Laundry ( 30x ), 

Design Max Occupant Density-All Others ( 31x ), Design Ventilation-All Others ( 32x ), Exterior 

Wall Finishes ( 36x ), and Interior Wall Insulation ( 38x ). 

In the TreeReg models using R, the following 34 factors were identified as impacting 

the green building performance metrics: Ground Floor Construction ( 1x ), Ground Floor Interior 

Insulation ( 2x ), Ground Floor Cap ( 3x ), Ground Floor Exterior/Cavity Insulation ( 4x ), Exterior 

Wall Insulation ( 5x ), Additional Wall Insulation ( 6x ), %Window-North ( 7x ), %Window-South 

( 8x ), %Window-East ( 9x ), %Window-West ( 10x ), Additional Roof Insulation ( 11x ), Ceiling Batt 

Insulation ( 12x ), Exterior Roof Insulation ( 13x ), Footprint X ( 14x ), Door Dimension-Width ( 15x ), 

Door-Frame Width ( 16x ), Design Max Occupant Density-Residential (General Living Space) 
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( 17x ), Design Ventilation-Residential (General Living Space) ( 18x ), Design Max Occupant 

Density-Residential (Bedroom) ( 19x ), Design Ventilation-Residential (Bedroom) ( 20x ), Design 

Max Occupant Density-Residential (Garage) ( 21x ), Design Ventilation-Residential (Garage) 

( 22x ), Design Max Occupant Density-Dining Area ( 23x ), Design Ventilation-Dining Area ( 24x ), 

Design Max Occupant Density-Kitchen and Food Preparation ( 25x ), Design Ventilation-Kitchen 

and Food Preparation ( 26x ), Design Max Occupant Density-Corridor ( 27x ), Design Ventilation-

Corridor ( 28x ), Design Max Occupant Density-Laundry ( 29x ), Design Ventilation-Laundry ( 30x ), 

Design Max Occupant Density-All Others ( 31x ), Design Ventilation-All Others ( 32x ), Exterior 

Wall Finishes ( 36x ), and Interior Wall Insulation ( 38x ). The only difference between TreeMARS 

and TreeReg is that TreeReg has one more important factor, %Window-West ( 10x ).   

In the CATreeMARS models, the following 39 factors were identified as impacting the 

four green building performance metrics: Ground Floor Construction ( 1x ), Ground Floor Interior 

Insulation ( 2x ), Ground Floor Cap ( 3x ), Ground Floor Exterior/Cavity Insulation ( 4x ), Exterior 

Wall Insulation ( 5x ), Additional Wall Insulation ( 6x ), %Window-North ( 7x ), %Window-South 

( 8x ), %Window-East ( 9x ), Additional Roof Insulation ( 11x ), Ceiling Batt Insulation ( 12x ), 

Exterior Roof Insulation ( 13x ), Footprint X ( 14x ), Door Dimension-Width ( 15x ), Door-Frame 

Width ( 16x ), Design Max Occupant Density-Residential (General Living Space) ( 17x ), Design 

Ventilation-Residential (General Living Space) ( 18x ), Design Max Occupant Density-Residential 

(Bedroom) ( 19x ), Design Ventilation-Residential (Bedroom) ( 20x ), Design Max Occupant 

Density-Residential (Garage) ( 21x ), Design Ventilation-Residential (Garage) ( 22x ), Design Max 

Occupant Density-Dining Area ( 23x ), Design Ventilation-Dining Area ( 24x ), Design Max 
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Occupant Density-Kitchen and Food Preparation ( 25x ), Design Ventilation-Kitchen and Food 

Preparation ( 26x ), Design Max Occupant Density-Corridor ( 27x ), Design Ventilation-Corridor 

( 28x ), Design Max Occupant Density-Laundry ( 29x ), Design Ventilation-Laundry ( 30x ), Design 

Max Occupant Density-All Others ( 31x ), Design Ventilation-All Others ( 32x ), Exterior Wall 

Finishes ( 36x ), Interior Wall Insulation ( 38x ), Exterior Roof Finish ( 39x ), Exterior Roof Color 

( 40x ), Ceiling Interior Finishes ( 43x ), Windows-Glass Type ( 44x ), Orientation ( 45x ), and Doors-

Glass Type ( 46x ).  

In the CATreeReg modes using R, the following 40 factors were identified as impacting 

the four green building performance metrics: Ground Floor Construction ( 1x ), Ground Floor 

Interior Insulation ( 2x ), Ground Floor Cap ( 3x ), Ground Floor Exterior/Cavity Insulation ( 4x ), 

Exterior Wall Insulation ( 5x ), Additional Wall Insulation ( 6x ), %Window-North ( 7x ), %Window-

South ( 8x ), %Window-East ( 9x ), %Window-West ( 10x ), Additional Roof Insulation ( 11x ), 

Ceiling Batt Insulation ( 12x ), Exterior Roof Insulation ( 13x ), Footprint X ( 14x ), Door Dimension-

Width ( 15x ), Door-Frame Width ( 16x ), Design Max Occupant Density-Residential (General 

Living Space) ( 17x ), Design Ventilation-Residential (General Living Space) ( 18x ), Design Max 

Occupant Density-Residential (Bedroom) ( 19x ), Design Ventilation-Residential (Bedroom) 

( 20x ), Design Max Occupant Density-Residential (Garage) ( 21x ), Design Ventilation-Residential 

(Garage) ( 22x ), Design Max Occupant Density-Dining Area ( 23x ), Design Ventilation-Dining 

Area ( 24x ), Design Max Occupant Density-Kitchen and Food Preparation ( 25x ), Design 

Ventilation-Kitchen and Food Preparation ( 26x ), Design Max Occupant Density-Corridor ( 27x ), 

Design Ventilation-Corridor ( 28x ), Design Max Occupant Density-Laundry ( 29x ), Design 
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Ventilation-Laundry ( 30x ), Design Max Occupant Density-All Others ( 31x ), Design Ventilation-

All Others ( 32x ), Exterior Wall Finishes ( 36x ), Interior Wall Insulation ( 38x ), Exterior Roof Finish 

( 39x ), Exterior Roof Color ( 40x ), Ceiling Interior Finishes ( 43x ), Windows-Glass Type ( 44x ), 

Orientation ( 45x ), and Doors-Glass Type ( 46x ). The only difference between CATreeMARS and 

CATreeReg is that CATreeReg has one more important factor, %Window-West ( 10x ). 

Table 4.11 Part of Coefficients for TreeMARS 
 

TreeMARS Coefficient-OLS Coefficient-SUR 
Response 1   

Part of TN 1 
[1009.362-71.13585 2x ] 

·I{ 11x <5}·I{ 38x :a}·I{ 18x <20} 

[1038.696-70.75312 2x ] 

·I{ 11x <5}·I{ 38x :a}·I{ 18x <20} 

      

Part of TN 8 
[-8.257779 )28.23(B 24  x ] 

·I{ 11x >5}·I{ 19x >651.2} 

[-1.609473 )28.23(B 24  x ] 

·I{ 11x >5}·I{ 19x >651.2} 

Response 2   

Part of TN 1 

[34.9367-4.809841 )2(B 3x ] 

·I{ 23x <104.6}·I{ 24x <29.61} 

·I{ 25x <255.9} 

[34.97099-5.13517 )2(B 3x ] 

·I{ 23x <104.6}·I{ 24x <29.61} 

·I{ 25x <255.9} 

      

Part of TN 7 
[0.03030643 )100(B 31  x ] 

·I{ 23x >104.6} 

[0.0289356 )100(B 31  x ] 

·I{ 23x >104.6} 

Response 3   

Part of TN 1 
[12988.78+132.3844 )2(B 1  x ] 

·I{ 11x <5}·I{ 38x :a}·I{ 18x <20} 

[13036.4+175.8621 )2(B 1  x ] 

·I{ 11x <5}·I{ 38x :a}·I{ 18x <20} 

      

Part of TN 8 
[199.5124 )20(B 7  x ] 

·I{ 11x >5}·I{ 19x >651.2} 

[175.5161 )20(B 7  x ] 

·I{ 11x >5}·I{ 19x >651.2} 

Response 4   

Part of TN 1 
[82557.21+838.9951 )2(B 1  x ] 

·I{ 11x <5}·I{ 38x :a}·I{ 18x <20} 

[82861.62+1115.851 )2(B 1  x ] 

·I{ 11x <5}·I{ 38x :a}·I{ 18x <20} 

      

Part of TN 8 
[1266.996 )20(B 7  x ] 

·I{ 11x >5}·I{ 19x >651.2} 

[1114.493 )20(B 7  x ] 

·I{ 11x >5}·I{ 19x >651.2} 
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Table 4.12 Part of Coefficients for TreeReg 
 

TreeReg Coefficient-OLS Coefficient-SUR 
Response 1   

Part of TN 1 
[229.64984-0.10581 23x ] 

·I{ 11x <5}·I{ 38x :a}·I{ 18x <20} 

[285.7-0.02122 23x ] 

·I{ 11x <5}·I{ 38x :a}·I{ 18x <20} 

      

Part of TN 8 
[-10.0732 4x ] 

·I{ 11x >5}·I{ 19x >651.2} 

[-5.3784 4x ] 

·I{ 11x >5}·I{ 19x >651.2} 

Response 2   

Part of TN 1 

[1799.73157-0.79010 32x ] 

·I{ 23x <104.6}·I{ 24x <29.61} 

·I{ 25x <255.9} 

[1186.64380-0.67960 32x ] 

·I{ 23x <104.6}·I{ 24x <29.61} 

·I{ 25x <255.9} 

      

Part of TN 7 
[-0.29235 15x ] 

·I{ 23x >104.6} 

[-0.28404 15x ] 

·I{ 23x >104.6} 

Response 3   

Part of TN 1 
[5862.910-1.354 23x ] 

·I{ 11x <5}·I{ 38x :a}·I{ 18x <20} 

[6303+0.08236 23x ] 

·I{ 11x <5}·I{ 38x :a}·I{ 18x <20} 

      

Part of TN 8 
[-172.889 4x ] 

·I{ 11x >5}·I{ 19x >651.2} 

[-93.03 4x ] 

·I{ 11x >5}·I{ 19x >651.2} 

Response 4   

Part of TN 1 
[9640.054+7.322 23x ] 

·I{ 11x <5}·I{ 38x :a}·I{ 18x <20} 

[10888.0397+14.9736 23x ] 

·I{ 11x <5}·I{ 38x :a}·I{ 18x <20} 

      

Part of TN 8 
[-1097.91 4x ] 

·I{ 11x >5}·I{ 19x >651.2} 

[-590.75 4x ] 

·I{ 11x >5}·I{ 19x >651.2} 

 

Table 4.13 Part of Coefficients for CATreeMARS 
 

CATreeMARS Coefficient-OLS Coefficient-SUR 
Response 1   

Part of TN 1 
[754.5789+30.18362 )2(B 2x ]

·I{ 43x :bc}·I{ 38x :a}·I{ 39x :a} 

[754.9652+27.42108 )2(B 2x ]

·I{ 43x :bc}·I{ 38x :a}·I{ 39x :a} 

      

Part of TN 8 
[1.41281 )4.166(B 29x ] 

·I{ 43x :a} 

[0.6248472 )4.166(B 29x ] 

·I{ 43x :a} 
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Response 2   

Part of TN 1 
[42.64101-2.84277 )4(B 1  x ] 

·I{ 45x :a}·I{ 46x :a} 

[41.40222-2.448417 )4(B 1  x ] 

·I{ 45x :a}·I{ 46x :a} 

      

Part of TN 5 
[-0.3657441 )22.14(B 32x ] 

·I{ 45x :bcd}·I{ 40x :b} 

[-0.3565829 )22.14(B 32x ] 

·I{ 45x :bcd}·I{ 40x :b} 

Response 3   

Part of TN 1 
[11858.49+1329.673 )2(B 2  x ]

·I{ 43x :bc}·I{ 38x :a}·I{ 39x :a} 

[12216.81+1053.734 )2(B 2  x ]

·I{ 43x :bc}·I{ 38x :a}·I{ 39x :a} 

      

Part of TN 8 
[67.50631 )5.655(B 21  x ] 

·I{ 43x :a} 

[59.47099 )5.655(B 21  x ] 

·I{ 43x :a} 

Response 4   

Part of TN 1 
[75367.26+8440.36 )2(B 2  x ] 

·I{ 43x :bc}·I{ 38x :a}·I{ 39x :a} 

[77643.25+6687.274 )2(B 2  x ]

·I{ 43x :bc}·I{ 38x :a}·I{ 39x :a} 

      

Part of TN 8 
[428.6871 )5.655(B 21  x ] 

·I{ 43x :a} 

[377.629 )5.655(B 21  x ] 

·I{ 43x :a} 

 

Table 4.14 Part of Coefficients for CATreeReg 
 

CATreeReg Coefficient-OLS Coefficient-SUR 
Response 1   

Part of TN 1 
[768.1223+7.7361 11x ] 

·I{ 43x :bc}·I{ 38x :a}·I{ 39x :a} 

[787.4037+6.9235 11x ] 

·I{ 43x :bc}·I{ 38x :a}·I{ 39x :a} 

      

Part of TN 8 [-2.3763 24x ]·I{ 43x :a} [-1.5277 24x ]·I{ 43x :a} 

Response 2   

Part of TN 1 
[37.63718-0.05336 23x ] 

·I{ 45x :a}·I{ 46x :a} 

[36.88695-0.05276 23x ] 

·I{ 45x :a}·I{ 46x :a} 

      

Part of TN 5 
[0.07035 14x ] 

·I{ 45x :bcd}·I{ 40x :b} 

[0.06031 14x ] 

·I{ 45x :bcd}·I{ 40x :b} 

Response 3   

Part of TN 1 
[13051.878+128.419 11x ] 

·I{ 43x :bc}·I{ 38x :a}·I{ 39x :a} 

[13320.837+117.083 11x ] 

·I{ 43x :bc}·I{ 38x :a}·I{ 39x :a} 

      

Part of TN 8 [57.867 10x ]·I{ 43x :a} [10.345 10x ]·I{ 43x :a} 

Table 4.13 – Continued 
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Response 4   

Part of TN 1 
[82978.35+815.60 11x ] 

·I{ 43x :bc}·I{ 38x :a}·I{ 39x :a} 

[84726.63+741.92 11x ] 

·I{ 43x :bc}·I{ 38x :a}·I{ 39x :a} 

      

Part of TN 8 [367.47 10x ]·I{ 43x :a} [62.81 10x ]·I{ 43x :a} 

 

4.4 Interpreting the Models 

The regression models are used to interpret the impact of the identified factors on the 

four responses. First of all, the larger number for insulation indicates greater resistance to heat. 

When builders increase the insulation in the buildings, the four responses, annual source 

energy (response 1), HVAC energy (response 2), annual utility cost (response 3) and life cycle 

cost (response 4), decrease for practical sense. There are seven variables for insulation, 

Ground Floor Interior Insulation ( 2x ), Ground Floor Exterior/Cavity Insulation ( 4x ), Exterior 

Wall Insulation ( 5x ), Additional Wall Insulation ( 6x ), Additional Roof Insulation ( 11x ), Ceiling 

Batt Insulation ( 12x ) and Exterior Roof Insulation ( 13x ). In TreeReg (Tables 4.15-4.22), there 

are three reasonable cases: 2x  that has all negative signs for response 1, and 6x  and 12x  that 

have all negative signs for response 2. Other insulation variables which have both negative and 

positive signs for each response do not make practical sense. In CATreeReg (Tables 4.23-

4.30), there are four reasonable cases: 2x  that has all negative signs for responses 1, 3 and 4, 

5x  that has all negative signs for responses 1 and 2, 11x  that has all negative signs for 

response 2, and 12x  that has all negative signs for response 2. Other insulation variables which 

have both positive and negative signs for each response do not make practical sense. 

Moreover, using OLS and SUR has different signs in CATreeReg. For example, 4x , 5x  and 

12x  in terminal node 6 of responses 3 and 4. The signs of 4x  using SUR, 5x  using OLS and 

12x  using SUR which have negative coefficients make practical sense. 

Table 4.14 – Continued 
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When builders increase the inches or widths in Ground Floor Construction ( 1x ), Ground 

Floor Cap ( 3x ), Footprint X ( 14x ), Door Dimension-Width ( 15x ) and Door-Frame Width ( 16x ), 

these materials may absorb the heat, then the four responses increase. In TreeReg, both 

positive and negative signs appear in different terminal nodes for each response, and the signs 

do not have any reasonable cases. In CATreeReg, there are two reasonable cases: 14x  and 

15x  that have positive signs for response 2, other variables which have both positive and 

negative signs for each response do not make practical sense. Moreover, in CATreeReg, 15x  in 

terminal node 6 of responses 3 and 4 using OLS and SUR has different signs. The sign of 15x  

using SUR which has a positive coefficient makes practical sense. 16x  in terminal node 7 of 

response 1 using OLS and SUR has different signs. The sign of 16x  using SUR which has a 

positive coefficient makes practical sense. 

Many windows which are put on East and West facing will cause higher energy use and 

cost. For example, people may pay more bills for utilities in summer, so windows on North and 

South facing may reduce energy use and cost. In TreeReg, when the variable %Window-West 

( 10x ) increases, responses 1, 3 and 4 increase. Therefore, 10x  is the only one reasonable case 

for responses 1, 3 and 4. Others do not make sense, for example, %Window-West ( 10x ) that 

has a negative coefficient for response 2, and %Window-North ( 7x ), %Window-South ( 8x ) and 

%Window-East ( 9x ) that have both positive and negative signs that appear in different terminal 

nodes for each response. In CATreeReg, there are three reasonable cases: 7x  that has 

negative signs for response 2, 8x  that has negative signs for responses 1, 3 and 4, and 10x  

that has positive signs for responses 1, 3 and 4. 9x  has both positive and negative signs for 

each response that do not make sense. Moreover, in CATreeReg, 7x  in terminal node 6 of 
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responses 3 and 4 using OLS and SUR has different signs. The sign of 7x  using OLS which 

has a negative coefficient makes practical sense. 

When builders increase occupant density in the buildings, the energy use and cost will 

increase. In TreeReg, there are two reasonable cases for occupant density: Occupant Density-

Dining Area ( 23x ) and Design Max Occupant Density-All Others ( 31x ) have all positive signs for 

response 2, other design max occupant density variables have both positive and negative signs 

for each response that do not make practical sense. However, when builders increase 

ventilation in the buildings, the energy use and cost will decrease. For example, people do not 

turn on the air conditioner systems. There are three reasonable cases for ventilation, Design 

Ventilation-Residential (Garage) ( 22x ) that has all negative signs for response 1, and Design 

Ventilation-Residential (Bedroom) ( 20x ) and Design Ventilation-All Others ( 32x ) that have all 

negative signs for response 2. Other ventilation variables that have both positive and negative 

signs for each response do not make practical sense. In TreeReg, Design Ventilation-Laundry 

( 30x ) that has different signs in terminal node 1 for response 1 using OLS and SUR. The sign of  

30x  using SUR which has a negative coefficient makes practical sense. In CATreeReg, there 

are seven reasonable cases: Design Max Occupant Density-Residential (Garage) ( 21x ), Design 

Max Occupant Density-Kitchen and Food Preparation ( 25x ), Design Max Occupant Density-

Corridor ( 27x ) and Design Max Occupant Density-Laundry ( 29x ) that have positive signs for 

response 2. Design Ventilation-Residential (Garage) ( 22x ) and Design Ventilation-Laundry 

( 30x ) that have negative signs for response 2, and Design Ventilation-All Others ( 32x ) that has 

negative signs for response 1. In CATreeReg, some variables, 17x , 20x , 21x , 23x , 28x  and 

29x , have different signs using OLS and SUR. The signs of 17x  using SUR, and 21x , 23x , 29x  
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using OLS which have positive coefficients make practical sense. The signs of 20x  and 28x  

using OLS which have negative coefficients make practical sense. 

 As a whole, there are many reasonable relationships between predictor and response 

2, and CATreeReg provided more beneficial relationships than TreeReg. 

Table 4.15 Sign of TreeReg for Response 1-OLS 
 

TN Sign Variable 
1 Positive 

1x , 3x
, 5x

, 7x
, 9x

, 14x , 17x
, 21x , 27x

, 29x
, 30x

, 31x
, 32x  

Negative 
2x , 4x , 6x

, 11x , 12x , 13x
, 16x

, 20x
, 23x

, 24x , 25x
, 26x

, 28x  

2 Positive 
7x

, 9x
, 12x , 13x

, 16x
, 17x

, 20x
, 23x

, 25x
, 28x

, 29x
, 32x  

Negative 
4x , 5x

, 11x , 14x , 19x
, 21x , 22x , 24x , 26x

, 27x
, 30x

, 31x  

3 Positive 
3x
, 7x

, 9x
, 11x , 12x , 14x , 15x

, 20x
, 21x , 26x  

Negative 
1x , 2x , 4x , 5x

, 6x
, 13x

, 17x
, 18x

, 19x
, 22x , 24x , 28x

, 29x
, 30x

, 31x
, 32x  

4 Positive 
1x , 3x

, 4x , 6x
, 18x

, 19x
, 21x , 23x

, 25x
, 26x

, 27x
, 28x

, 29x  

Negative 
2x , 5x

, 11x , 12x , 14x , 15x
, 16x

, 22x , 24x , 30x
, 31x  

5 Positive 
6x

, 11x , 18x
, 25x

, 26x  

Negative 
4x , 12x , 19x

, 20x
, 24x , 32x  

6 Positive 
6x

, 8x
, 10x

, 23x  

Negative 
7x

, 9x
, 14x  

7 Positive 
6x

, 11x  

Negative 
1x , 2x , 4x , 14x , 23x  

8 Positive 
1x , 7x

, 29x  

Negative 
2x , 3x

, 4x , 19x
, 24x  

 

Table 4.16 Sign of TreeReg for Response 1-SUR 
 

TN Sign Variable 
1 Positive 

1x , 3x
, 5x

, 7x
, 9x

, 14x , 17x
, 21x , 27x

, 29x
, 31x

, 32x  

Negative 
2x , 4x , 6x

, 11x , 12x , 13x
, 16x

, 20x
, 23x

, 24x , 25x
, 26x

, 28x
, 30x  

2 Positive 
7x

, 9x
, 12x , 13x

, 16x
, 17x

, 20x
, 23x

, 25x
, 28x

, 29x
, 32x  
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Negative 
4x , 5x

, 11x , 14x , 19x
, 21x , 22x , 24x , 26x

, 27x
, 30x

, 31x  

3 Positive 
3x
, 7x

, 9x
, 11x , 12x , 14x , 15x

, 20x
, 21x , 26x  

Negative 
1x , 2x , 4x , 5x

, 6x
, 13x

, 17x
, 18x

, 19x
, 22x , 24x , 28x

, 29x
, 30x

, 31x
, 32x  

4 Positive 
1x , 3x

, 4x , 6x
, 18x

, 19x
, 21x , 23x

, 25x
, 26x

, 27x
, 28x

, 29x  

Negative 
2x , 5x

, 11x , 12x , 14x , 15x
, 16x

, 22x , 24x , 30x
, 31x  

5 Positive 
6x

, 11x , 18x
, 25x

, 26x  

Negative 
4x , 12x , 19x

, 20x
, 24x , 32x  

6 Positive 
6x

, 8x
, 10x

, 23x  

Negative 
7x

, 9x
, 14x  

7 Positive 
6x

, 11x  

Negative 
1x , 2x , 4x , 14x , 23x  

8 Positive 
1x , 7x

, 29x  

Negative 
2x , 3x

, 4x , 19x
, 24x  

 

Table 4.17 Sign of TreeReg for Response 2-OLS 
 

TN Sign Variable 
1 Positive 

2x , 4x , 5x
, 9x

, 10x
, 13x

, 14x , 16x
, 18x

, 21x , 23x
, 24x , 26x

, 31x  

Negative 
3x
, 7x

, 8x
, 11x , 15x

, 19x
, 20x

, 25x
, 29x

, 32x  

2 Positive 
5x
, 14x , 23x

, 26x  

Negative 
3x
, 11x , 18x

, 21x , 24x  

3 Positive 
8x  

Negative 
4x , 9x

, 16x
, 18x

, 26x  

4 Positive 
4x , 8x

, 11x , 14x , 18x
, 23x

, 27x
, 28x  

Negative 
1x , 12x , 13x

, 20x
, 21x  

5 Positive 
21x , 29x

, 30x  

Negative 
3x  

6 Positive 
3x
, 17x

, 18x
, 21x , 22x , 26x

, 31x  

Negative 
4x , 6x

, 10x
, 11x , 14x , 16x

, 20x
, 29x

, 30x  

7 Positive 
16x

, 24x , 25x
, 28x

, 30x
, 31x  

Table 4.16 – Continued 
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Negative 
1x , 4x , 6x

, 9x
, 13x

, 14x , 15x
, 17x

, 18x
, 27x

, 29x  

 

Table 4.18 Sign of TreeReg for Response 2-SUR 
 

TN Sign Variable 
1 Positive 

2x , 4x , 5x
, 9x

, 10x
, 14x , 16x

, 18x
, 21x , 23x

, 24x , 26x
, 31x  

Negative 
3x
, 7x

, 8x
, 11x , 13x

, 15x
, 19x

, 20x
, 25x

, 29x
, 32x  

2 Positive 
5x
, 14x , 23x

, 26x  

Negative 
3x
, 11x , 18x

, 21x , 24x  

3 Positive 
8x  

Negative 
4x , 9x

, 16x
, 18x

, 26x  

4 Positive 
4x , 8x

, 11x , 14x , 18x
, 23x

, 27x
, 28x  

Negative 
1x , 12x , 13x

, 20x
, 21x  

5 Positive 
21x , 29x

, 30x  

Negative 
3x  

6 Positive 
3x
, 17x

, 18x
, 21x , 22x , 26x

, 31x  

Negative 
4x , 6x

, 10x
, 11x , 14x , 16x

, 20x
, 29x

, 30x  

7 Positive 
16x

, 24x , 25x
, 28x

, 30x
, 31x  

Negative 
1x , 4x , 6x

, 9x
, 13x

, 14x , 15x
, 17x

, 18x
, 27x

, 29x  

 

Table 4.19 Sign of TreeReg for Response 3-OLS 
 

TN Sign Variable 
1 Positive 

1x , 3x
, 5x

, 9x
, 14x , 17x

, 21x , 29x
, 30x

, 31x
, 32x  

Negative 
2x

, 4x , 6x
, 11x , 12x

, 13x , 15x
, 16x

, 20x
, 22x

, 23x , 24x , 25x
, 26x

, 28x  

2 Positive 
3x
, 6x

, 11x , 13x , 14x , 17x
, 20x

, 23x , 25x
, 28x

, 29x
, 31x

, 32x  

Negative 
1x , 2x

, 4x , 5x
, 9x

, 19x
, 21x , 22x

, 24x , 26x
, 27x

, 30x  

3 Positive 
2x , 3x

, 7x
, 9x

, 11x , 12x
, 14x , 15x

, 20x
, 21x , 22x

, 26x   

Negative 
1x , 4x , 5x

, 13x , 16x
, 17x

, 19x
, 23x , 24x , 28x

, 29x
, 30x

, 31x
, 32x  

4 Positive 
1x , 2x , 3x

, 4x , 7x
, 9x

, 11x , 12x
, 15x

, 18x
, 19x

, 20x
, 22x

, 25x
, 28x

, 29x  

Negative 
5x
, 6x

, 14x , 16x
, 17x

, 21x , 24x , 26x
, 30x

, 31x  

Table 4.17 – Continued 
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5 Positive 
3x
, 6x

, 11x , 16x
, 25x

, 26x  

Negative 
4x , 12x

, 19x
, 20x  

6 Positive 
6x

, 8x
, 10x

, 23x  

Negative 
7x

, 9x
, 14x  

7 Positive 
6x

, 11x  

Negative 
1x , 2x , 4x

, 14x , 23x  

8 Positive 
1x , 7x

, 29x  

Negative 
2x , 3x

, 4x , 19x
, 24x  

 

Table 4.20 Sign of TreeReg for Response 3-SUR 
 

TN Sign Variable 
1 Positive 

1x , 3x
, 5x

, 9x
, 14x , 17x

, 21x , 23x
, 29x

, 31x
, 32x  

Negative 
2x

, 4x , 6x
, 11x , 12x

, 13x , 15x
, 16x

, 20x
, 22x

, 24x , 25x
, 26x

, 28x
, 30x  

2 Positive 
3x
, 6x

, 11x , 13x , 14x , 17x
, 20x

, 23x , 25x
, 28x

, 29x
, 31x

, 32x  

Negative 
1x , 2x

, 4x , 5x
, 9x

, 19x
, 21x , 22x

, 24x , 26x
, 27x

, 30x  

3 Positive 
2x , 3x

, 7x
, 9x

, 11x , 12x
, 14x , 15x

, 20x
, 21x , 22x

, 26x   

Negative 
1x , 4x , 5x

, 13x , 16x
, 17x

, 19x
, 23x , 24x , 28x

, 29x
, 30x

, 31x
, 32x  

4 Positive 
1x , 2x , 3x

, 4x , 7x
, 9x

, 11x , 12x
, 15x

, 18x
, 19x

, 20x
, 22x

, 25x
, 28x

, 29x  

Negative 
5x
, 6x

, 14x , 16x
, 17x

, 21x , 24x , 26x
, 30x

, 31x  

5 Positive 
3x
, 6x

, 11x , 16x
, 25x

, 26x  

Negative 
4x , 12x

, 19x
, 20x  

6 Positive 
6x

, 8x
, 10x

, 23x  

Negative 
7x

, 9x
, 14x  

7 Positive 
6x

, 11x  

Negative 
1x , 2x , 4x

, 14x , 23x  

8 Positive 
1x , 7x

, 29x  

Negative 
2x , 3x

, 4x , 19x
, 24x  

 

 

Table 4.19 – Continued 
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Table 4.21 Sign of TreeReg for Response 4-OLS 
 

TN Sign Variable 
1 Positive 

3x
, 5x

, 7x
, 9x

, 14x , 16x
, 17x

, 19x
, 21x , 23x

, 29x
, 30x

, 31x
, 32x  

Negative 
1x , 2x

, 6x
, 11x , 12x

, 13x , 20x
, 22x

, 24x , 25x
, 26x

, 28x  

2 Positive 
3x
, 6x

, 11x , 13x , 14x , 17x
, 20x

, 23x , 25x
, 28x

, 29x
, 31x

, 32x  

Negative 
1x , 2x

, 4x , 5x
, 9x

, 19x
, 21x , 22x

, 24x , 26x
, 27x

, 30x  

3 Positive 
2x , 3x

, 7x
, 9x

, 11x , 12x
, 14x , 15x

, 20x
, 21x , 22x

, 26x   

Negative 
1x , 4x , 5x

, 13x , 16x
, 17x

, 19x
, 23x , 24x , 28x

, 29x
, 30x

, 31x
, 32x  

4 Positive 
1x , 2x , 3x

, 4x , 7x
, 9x

, 11x , 12x
, 15x

, 18x
, 19x

, 20x
, 22x

, 25x
, 28x

, 29x  

Negative 
5x
, 6x

, 14x , 16x
, 17x

, 21x , 24x , 26x
, 30x

, 31x  

5 Positive 
3x
, 6x

, 11x , 16x
, 25x

, 26x  

Negative 
4x , 12x

, 19x
, 20x  

6 Positive 
6x

, 8x
, 10x

, 23x  

Negative 
7x

, 9x
, 14x  

7 Positive 
6x

, 11x  

Negative 
1x , 2x , 4x

, 14x , 23x  

8 Positive 
1x , 7x

, 29x  

Negative 
2x , 3x

, 4x , 19x
, 24x  

 

Table 4.22 Sign of TreeReg for Response 4-SUR 
 

TN Sign Variable 
1 Positive 

1x , 3x
, 5x

, 7x
, 9x

, 14x , 16x
, 17x

, 21x , 23x
, 29x

, 31x
, 32x  

Negative 
2x

, 6x
, 11x , 12x

, 13x , 19x
, 20x

, 22x
, 24x , 25x

, 26x
, 28x

, 30x  

2 Positive 
3x
, 6x

, 11x , 13x , 14x , 17x
, 20x

, 23x , 25x
, 28x

, 29x
, 31x

, 32x  

Negative 
1x , 2x

, 4x , 5x
, 9x

, 19x
, 21x , 22x

, 24x , 26x
, 27x

, 30x  

3 Positive 
2x , 3x

, 7x
, 9x

, 11x , 12x
, 14x , 15x

, 20x
, 21x , 22x

, 26x   

Negative 
1x , 4x , 5x

, 13x , 16x
, 17x

, 19x
, 23x , 24x , 28x

, 29x
, 30x

, 31x
, 32x  

4 Positive 
1x , 2x , 3x

, 4x , 7x
, 9x

, 11x , 12x
, 15x

, 18x
, 19x

, 20x
, 22x

, 25x
, 28x

, 29x  

Negative 
5x
, 6x

, 14x , 16x
, 17x

, 21x , 24x , 26x
, 30x

, 31x  
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5 Positive 
3x
, 6x

, 11x , 16x
, 25x

, 26x  

Negative 
4x , 12x

, 19x
, 20x  

6 Positive 
6x

, 8x
, 10x

, 23x  

Negative 
7x

, 9x
, 14x  

7 Positive 
6x

, 11x  

Negative 
1x , 2x , 4x

, 14x , 23x  

8 Positive 
1x , 7x

, 29x  

Negative 
2x , 3x

, 4x , 19x
, 24x  

 

Table 4.23 Sign of CATreeReg for Response 1-OLS 
 

TN Sign Variable 
1 Positive 

3x
, 6x

, 7x
, 10x

, 11x , 19x
, 24x , 29x  

Negative 
2x , 4x , 8x

, 12x
, 15x

, 17x
, 18x

, 22x
, 23x , 25x

, 32x  

2 Positive 
4x , 15x

, 20x
, 22x

, 23x , 24x , 26x
, 30x

 
 

Negative 
7x

, 12x
, 19x  

3 Positive 
4x

, 11x , 22x
, 25x

, 30x  

Negative 
9x

, 16x
, 17x

, 18x
, 27x  

4 Positive 
1x , 11x , 14x

, 23x  

Negative 
6x

, 22x  

5 Positive 
1x , 22x

, 24x , 27x  

Negative 
8x
, 9x

, 19x
, 25x

, 30x  

6 Positive 
3x
, 6x

, 17x
, 18x

, 23x , 25x
, 26x

, 27x  

Negative 
5x
, 9x

, 14x , 29x  

7 Positive 
1x , 6x

, 7x
, 13x , 14x , 15x

, 22x
, 23x , 28x

, 29x
, 30x  

Negative 
2x , 3x

, 11x , 16x
, 17x

, 19x
, 20x

, 24x , 26x
, 27x

, 31x
, 32x  

8 Positive None
 

Negative 
1x , 4x , 24x , 29x  

 

 
 

Table 4.22 – Continued 
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Table 4.24 Sign of CATreeReg for Response 1-SUR 
 

TN Sign Variable 
1 Positive 

3x
, 6x

, 7x
, 10x

, 11x , 19x
, 24x , 29x  

Negative 
2x , 4x , 8x

, 12x
, 15x

, 17x
, 18x

, 22x
, 23x , 25x

, 32x  

2 Positive 
4x , 15x

, 20x
, 22x

, 23x , 24x , 26x
, 30x

 
 

Negative 
7x

, 12x
, 19x  

3 Positive 
11x , 22x

, 25x
, 30x  

Negative 
4x , 9x

, 16x
, 17x

, 18x
, 27x  

4 Positive 
1x , 11x , 14x

, 23x  

Negative 
6x

, 22x  

5 Positive 
1x , 22x

, 24x , 27x  

Negative 
8x
, 9x

, 19x
, 25x

, 30x  

6 Positive 
3x
, 6x

, 17x
, 18x

, 23x , 25x
, 26x

, 27x  

Negative 
5x
, 9x

, 14x , 29x  

7 Positive 
1x , 6x

, 7x
, 13x , 14x , 15x

, 16x
, 20x

, 22x
, 28x

, 29x
, 30x  

Negative 
2x , 3x

, 11x , 17x
, 19x

, 23x
, 24x , 26x

, 27x
, 31x

, 32x  

8 Positive None
 

Negative 
1x , 4x , 24x , 29x  

 

Table 4.25 Sign of CATreeReg for Response 2-OLS 
 

TN Sign Variable 
1 Positive 

25x
, 28x  

Negative 
1x , 9x

, 22x
, 23x  

2 Positive 
6x

, 15x
, 25x

, 29x
, 32x  

Negative 
5x
, 10x

, 11x , 28x  

3 Positive 
1x , 4x , 8x

, 13x , 15x
, 16x

, 21x , 24x , 26x
, 27x  

Negative 
3x
, 5x

, 7x
, 19x

, 22x
, 28x

, 30x  

4 Positive 
13x  

Negative 
7x

, 23x  
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5 Positive 
8x
, 12x

, 14x , 24x , 25x
, 29x  

Negative 
6x

, 16x
, 19x

, 23x , 31x  

 

Table 4.26 Sign of CATreeReg for Response 2-SUR 
 

TN Sign Variable 
1 Positive 

25x
, 28x  

Negative 
1x , 9x

, 22x
, 23x  

2 Positive 
6x

, 15x
, 25x

, 29x
, 32x  

Negative 
5x
, 10x

, 11x , 28x  

3 Positive 
1x , 4x , 8x

, 13x , 15x
, 16x

, 21x , 24x , 26x
, 27x  

Negative 
3x
, 5x

, 7x
, 19x

, 22x
, 28x

, 30x  

4 Positive 
13x  

Negative 
7x

, 23x  

5 Positive 
8x
, 12x

, 14x , 24x , 25x
, 29x  

Negative 
6x

, 16x
, 19x

, 23x , 31x  

 

Table 4.27 Sign of CATreeReg for Response 3-OLS 
 

TN Sign Variable 
1 Positive 

3x
, 6x

, 7x
, 10x

, 11x , 19x
, 24x , 29x  

Negative 
2x , 4x , 8x

, 12x , 15x
, 17x

, 18x , 22x
, 23x , 25x

, 32x  

2 Positive 
4x , 15x

, 16x
, 20x

, 23x , 24x , 26x
, 30x  

Negative 
7x

, 9x
, 19x

, 27x
, 32x  

3 Positive 
11x , 12x

, 22x
, 25x

, 30x  

Negative 
5x
, 9x

, 16x
, 17x

, 18x
, 27x  

4 Positive 
1x , 11x , 14x , 23x  

Negative 
6x

, 22x  

5 Positive 
1x , 22x

, 24x , 27x  

Negative 
8x
, 9x

, 19x
, 25x

, 30x  

6 Positive 
4x , 6x

, 9x
, 10x

, 12x
, 13x , 18x

, 19x
, 21x , 25x

, 26x
, 27x

, 29x
, 31x

, 32x  

Table 4.25 – Continued 
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Negative 
1x , 2x , 5x

, 7x
, 8x

, 14x , 15x
, 16x

, 17x
, 20x

, 22x
, 24x , 28x

, 30x  

7 Positive 
3x
, 13x , 15x

, 16x
, 29x

, 30x  

Negative 
2x , 7x

, 11x , 18x
, 19x

, 21x , 24x , 27x
, 31x  

8 Positive 
10x  

Negative 
1x , 3x

, 12x
, 24x , 29x  

 

Table 4.28 Sign of CATreeReg for Response 3-SUR 
 

TN Sign Variable 
1 Positive 

3x
, 6x

, 7x
, 10x

, 11x , 19x
, 24x , 29x  

Negative 
2x , 4x , 8x

, 12x , 15x
, 17x

, 18x , 22x
, 23x , 25x

, 32x  

2 Positive 
4x , 15x

, 16x
, 20x

, 23x , 24x , 26x
, 30x  

Negative 
7x

, 9x
, 19x

, 27x
, 32x  

3 Positive 
11x , 12x

, 22x
, 25x

, 30x  

Negative 
5x
, 9x

, 16x
, 17x

, 18x
, 27x  

4 Positive 
1x , 11x , 14x , 23x  

Negative 
6x

, 22x  

5 Positive 
1x , 22x

, 24x , 27x  

Negative 
8x
, 9x

, 19x
, 25x

, 30x  

6 Positive 
1x , 5x

, 6x
, 7x

, 9x
, 10x

, 13x , 15x
, 17x

, 18x
, 19x

, 25x
, 26x

, 27x
, 28x

, 31x
, 32x

Negative 
2x , 4x

, 8x
, 12x , 14x , 16x

, 20x
, 21x , 22x

, 24x , 29x
, 30x  

7 Positive 
3x
, 13x , 15x

, 16x
, 29x

, 30x  

Negative 
2x , 7x

, 11x , 18x
, 19x

, 21x , 24x , 27x
, 31x  

8 Positive 
10x  

Negative 
1x , 3x

, 12x
, 24x , 29x  

 

Table 4.29 Sign of CATreeReg for Response 4-OLS 
 

TN Sign Variable 
1 Positive 

3x
, 6x

, 7x
, 10x

, 11x , 19x
, 24x , 29x  

Negative 
2x , 4x , 8x

, 12x , 15x
, 17x

, 18x , 22x
, 23x , 25x

, 32x  

Table 4.27 – Continued 
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2 Positive 
4x , 15x

, 16x
, 20x

, 23x , 24x , 26x
, 30x  

Negative 
7x

, 9x
, 19x

, 27x
, 32x  

3 Positive 
4x , 11x

, 22x
, 25x

, 30x  

Negative 
9x

, 16x
, 17x

, 18x
, 27x  

4 Positive 
1x , 11x , 14x , 23x  

Negative 
6x

, 22x  

5 Positive 
1x , 22x

, 24x , 27x  

Negative 
8x
, 9x

, 19x
, 25x

, 30x  

6 Positive 
4x , 6x

, 9x
, 10x

, 12x
, 13x , 18x

, 19x
, 21x , 25x

, 26x
, 27x

, 29x
, 31x

, 32x  

Negative 
1x , 2x , 5x

, 7x
, 8x

, 14x , 15x
, 16x

, 17x
, 20x

, 22x
, 24x , 28x

, 30x  

7 Positive 
3x
, 13x , 15x

, 16x
, 29x

, 30x  

Negative 
2x , 7x

, 11x , 18x
, 19x

, 21x , 24x , 27x
, 31x  

8 Positive 
10x  

Negative 
1x , 3x

, 12x
, 24x , 29x  

 

Table 4.30 Sign of CATreeReg for Response 4-SUR 
 

TN Sign Variable 
1 Positive 

3x
, 6x

, 7x
, 10x

, 11x , 19x
, 24x , 29x  

Negative 
2x , 4x , 8x

, 12x , 15x
, 17x

, 18x , 22x
, 23x , 25x

, 32x  

2 Positive 
4x , 15x

, 16x
, 20x

, 23x , 24x , 26x
, 30x  

Negative 
7x

, 9x
, 19x

, 27x
, 32x  

3 Positive 
4x , 11x , 22x

, 25x
, 30x  

Negative 
9x

, 16x
, 17x

, 18x
, 27x  

4 Positive 
1x , 11x , 14x , 23x  

Negative 
6x

, 22x  

5 Positive 
1x , 22x

, 24x , 27x  

Negative 
8x
, 9x

, 19x
, 25x

, 30x  

6 Positive 
1x , 5x

, 6x
, 7x

, 9x
, 10x

, 13x , 15x
, 17x

, 18x
, 19x

, 25x
, 26x

, 27x
, 28x

 , 31x
, 32x

Negative 
2x , 4x , 8x

, 12x , 14x , 16x
, 20x

, 21x , 22x
, 24x , 29x

, 30x  
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7 Positive 
3x
, 13x , 15x

, 16x
, 29x

, 30x  

Negative 
2x , 7x

, 11x , 18x
, 19x

, 21x , 24x , 27x
, 31x  

8 Positive 
10x  

Negative 
1x , 3x

, 12x
, 24x , 29x  

 

4.5 Comparing Standard Errors 

To compute the standard errors, Shah et al. [27] described two equations. First, the 

variance of the predicted value of the i th response using OLS is  

                                    )()()()](ˆ[Var 1TT2 xfXXxfxy iiiiii
  , 4 ,3 ,2 ,1i ,                      (4.6) 

where 2
i is the unknown variance of the random error term. In TreeMARS, the estimator 2ˆ i  

can be obtained by OLS, the point of interest )(T xf i , which is a vector that plugs in the model 

form at the point x , denotes each row value of basis functions of each performance metric, and 

iX  denotes each combination of basis functions for each performance metric. In TreeReg, the 

estimator 2ˆ i  also can be obtained by OLS, )(T xf i denotes each row value of the regression 

models for each performance metric, and iX  denotes each combination of regression models 

for each performance metric. 

Second, the variance-covariance matrix of predicted response )(ˆ xy  using SUR is 

                                          )(])ˆ([)()](ˆ[Var 1TT xΛXIΣXxΛxy 1   n .                          (4.7) 

In TreeMARS, )(T xΛ  which is a block-diagonal matrix ) )( , )( , )( ),( (diag 4321 xfxfxfxf  

which denotes each row value of basis functions for four performance metrics, and X  denotes 

a combination of basis functions for four performance metrics. In TreeReg, )(T xΛ  denotes 

each row value of the regression models for four performance metrics, and X  denotes a 

combination of regression models for four performance metrics. Other notation was described in 

Table 4.30 – Continued 
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the literature review of SUR. The standard error results for TreeMARS and TreeReg are shown 

in Figures 4.13-4.16, where it is seen that SUR has consistently smaller standard error values 

than OLS. The standard error results for CATreeMARS and CATreeReg are shown in Figures 

4.17-4.20, and SUR again has smaller standard errors than OLS. This dissertation also 

compared the standard errors using paired t-tests, and the results are shown in Tables 4.31-

4.34. The p-values of paired t-tests are all statistically significant, so TreeMARS, TreeReg, 

CATreeMARS and CATreeReg models with SUR have smaller standard errors. 
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  (a) 

 

 
  (b) 

 
Figure 4.13 Standard Errors for Response 1 (a) TreeMARS (b) TreeReg 
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  (a) 

 

 
  (b) 

 
Figure 4.14 Standard Errors for Response 2 (a) TreeMARS (b) TreeReg 
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  (a) 

 

 
  (b) 

 
Figure 4.15 Standard Errors for Response 3 (a) TreeMARS (b) TreeReg 
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  (a) 

 

 
  (b) 

 
Figure 4.16 Standard Errors for Response 4 (a) TreeMARS (b) TreeReg 
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  (a) 

 

 
  (b) 

 
Figure 4.17 Standard Errors for Response 1 (a) CATreeMARS (b) CATreeReg 
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  (a) 

 

 
  (b) 

 
Figure 4.18 Standard Errors for Response 2 (a) CATreeMARS (b) CATreeReg 
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   (a) 

 

 
  (b) 

 
Figure 4.19 Standard Errors for Response 3 (a) CATreeMARS (b) CATreeReg 
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  (a) 

 

 
 (b) 

 
Figure 4.20 Standard Errors for Response 4 (a) CATreeMARS (b) CATreeReg 

 

Table 4.31 Paired T-Test of Standard Errors for TreeMARS 
 

Response Mean of Differences 
Paired t-test 

Value 
P-Value 

1 1.469508 30.4498 < 2.2e-16 
2 0.05676378 26.6243 < 2.2e-16 
3 28.79566 36.3103 < 2.2e-16 
4 183.2271 36.3898 < 2.2e-16 



 

95 
 

 

Table 4.32 Paired T-Test of Standard Errors for TreeReg Using R 
 

Response Mean of Differences 
Paired t-test 

Value 
P-Value 

1 0.9349627 21.8861 < 2.2e-16 
2 0.02833271 17.9946 < 2.2e-16 
3 17.49267 23.0846 < 2.2e-16 
4 110.9108 23.0508 < 2.2e-16 

 

Table 4.33 Paired T-Test of Standard Errors for CATreeMARS 
 

Response Mean of Differences 
Paired t-test 

Value 
P-Value 

1 1.018493 19.7406 < 2.2e-16 
2 0.03630752 63.5774 < 2.2e-16 
3 24.36132 24.5632 < 2.2e-16 
4 155.1313 24.6121 < 2.2e-16 

 

Table 4.34 Paired T-Test of Standard Errors for CATreeReg Using R 
 

Response Mean of Differences 
Paired t-test 

Value 
P-Value 

1 1.532993 13.5307 < 2.2e-16 
2 0.03834461 34.3509 < 2.2e-16 
3 41.65577 14.2308 < 2.2e-16 
4 258.3892 13.9235 < 2.2e-16 

 

4.6 Comparing Test Errors 

The training models were obtained from the previous 408 runs. To calculate test errors, 

this research employed an OA 352  design that only has 2 settings and a Sobol’ sequence. A 

36-point Latin hypercube was used to select each point from the OA and from the Sobol’ 

sequence exactly once, using the same procedure as that described in Section 4.1. These 

settings and design are shown in Table 4.35 and Table 4.36 (O: OA, and S: Sobol'). 

Table 4.35 Two Settings for Testing 
 

Variables Settings Types 

Ground Floor Construction ( 1x )  2 inch Concrete 
 4 inch Concrete 

Discrete- 
Numerical 

Ground Floor Interior Insulation 

( 2x ) 
 1 inch Polystyrene 
 1 1/2 inch Polystyrene 

Discrete- 
Numerical 
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Ground Floor Cap ( 3x )  1.25 inch Lightweight Concrete 
 2 inch Lightweight Concrete 

Discrete- 
Numerical 

Ground Floor Exterior/Cavity 

Insulation ( 4x ) 
 1 inch Polystyrene 
 2 inch Polystyrene 

Discrete- 
Numerical 

Exterior Wall Insulation ( 5x )  1 inch Polystyrene 
 1 1/2 inch Polystyrene 

Discrete- 
Numerical 

Additional Wall Insulation ( 6x )  R-3 Batt 
 R-7 Batt 

Discrete- 
Numerical 

%Window-North ( 7x )  10 
 25 

Discrete- 
Numerical 

%Window-South ( 8x )  10 
 25 

Discrete- 
Numerical 

%Window-East ( 9x )  10 
 25 

Discrete- 
Numerical 

%Window-West ( 10x )  10 
 25 

Discrete- 
Numerical 

Additional Roof Insulation ( 11x )  R-7 Batt 
 R-19 Batt 

Discrete- 
Numerical 

Ceiling Batt Insulation ( 12x )  R-13 Batt 
 R-19 Batt 

Discrete- 
Numerical 

Exterior Roof Insulation ( 13x )  1 inch Polystyrene 
 1 1/2 inch Polystyrene 

Discrete- 
Numerical 

Footprint X ( 14x )  100 
 50 

Discrete- 
Numerical 

Door Dimension-Width ( 15x )  3  
 6 

Discrete- 
Numerical 

Door-Frame Width ( 16x )  2 
 3 

Discrete- 
Numerical 

Design Max Occupant Density-
Residential (General Living Space) 

( 17x ) 

Range: 575 to 675 Continuous 

Design Ventilation-Residential 

(General Living Space) ( 18x ) 

Range: 10 to 30 Continuous 

Design Max Occupant Density-

Residential (Bedroom) ( 19x ) 

Range: 575 to 675 Continuous 

Design Ventilation-Residential 

(Bedroom) ( 20x ) 

Range: 10 to 30 Continuous 

Design Max Occupant Density-

Residential (Garage) ( 21x ) 

Range: 575 to 675 Continuous 

Design Ventilation-Residential 

(Garage) ( 22x ) 

Range: 10 to 30 Continuous 

Design Max Occupant Density-

Dining Area ( 23x ) 

Range: 5 to 105 Continuous 

Design Ventilation-Dining Area 

( 24x ) 

Range: 10 to 30 Continuous 

Table 4.35 – Continued 
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Design Max Occupant Density-
Kitchen and Food Preparation 

( 25x ) 

Range: 250 to 350 Continuous 

Design Ventilation-Kitchen and 

Food Preparation ( 26x ) 

Range: 5 to 25 Continuous 

Design Max Occupant Density-

Corridor ( 27x ) 

Range: 100 to 200 Continuous 

Design Ventilation-Corridor ( 28x ) Range: 5 to 25 Continuous 

Design Max Occupant Density-

Laundry ( 29x ) 

Range: 100 to 200 Continuous 

Design Ventilation-Laundry ( 30x )  Range: 15 to 35 Continuous 

Design Max Occupant Density-All 

Others ( 31x ) 

Range: 100 to 200 Continuous 

Design Ventilation-All Others ( 32x ) Range: 5 to 25 Continuous 

Wall Construction ( 33x )  Wood Frame, 24, 16 inch o.c. (a) 
 Wood Frame, 24, 24 inch o.c. (b) 

Discrete- 
Categorical 

Windows-Glass Category ( 34x )   Double Clear/Tint (a) 
 Double Low-e (e2 = 0.1) (b) 

Discrete- 
Categorical 

Roof Construction ( 35x )  Wood Advanced Frame, 24 inch 
o.c. (a) 

 Wood Advanced Frame, >24 inch 
o.c. (b) 

Discrete- 
Categorical 

Exterior Wall Finishes ( 36x )  Brick (a) 
 Concrete (b) 

Discrete- 
Categorical 

Exterior Wall Color ( 37x )  Light (a) 
 Dark (b) 

Discrete- 
Categorical 

Interior Wall Insulation ( 38x )  None (a) 
 1 inch Polystyrene (b) 

Discrete- 
Categorical 

Exterior Roof Finish ( 39x )  Concrete (a) 
 Built-up Roof (b) 

Discrete- 
Categorical 

Exterior Roof Color ( 40x )  Light (a) 
 Dark (b) 

Discrete- 
Categorical 

Doors-Construction ( 41x )  Double Clear/Tint (a) 
 Double Low-e (e2 = 0.1) (b) 

Discrete- 
Categorical 

Pitched Roof ( 42x )  Without Pitched Roof (a) 
 With Pitched Roof (b) 

Discrete- 
Categorical 

Ceiling Interior Finishes ( 43x )  Drywall Finish (b) 
 Plaster Finish (c) 

Discrete- 
Categorical 

Windows-Glass Type ( 44x )  Clear 1/8, 1/4 inch Air (a) 
 Clear 1/8, 1/2 inch Air (b) 

Discrete- 
Categorical 

Orientation ( 45x )  N/S Component (Face North) (a) 
 E/W Component (Face East) (c) 

Discrete- 
Categorical 

Doors-Glass Type ( 46x )  Clear 1/8, 1/4 inch Air (a) 
 Clear 1/8, 1/2 inch Air (b) 

Discrete- 
Categorical 
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Table 4.36 Latin Hypercube Design for 36 Runs 
 

Runs O S Runs O S 
1 33 28 19 29 19 
2 21 26 20 4 2 
3 26 30 21 8 21 
4 11 3 22 32 7 
5 16 17 23 9 35 
6 15 33 24 3 23 
7 2 11 25 14 6 
8 10 9 26 12 15 
9 31 12 27 20 32 
10 34 36 28 25 24 
11 13 31 29 18 34 
12 5 22 30 17 14 
13 30 8 31 35 1 
14 7 18 32 28 13 
15 6 29 33 1 20 
16 24 4 34 27 27 
17 22 10 35 23 16 
18 36 25 36 19 5 

                        

For the current study, the scales of the response Y values are different, so absolute 

relative error is calculated as (ARE)  

                                                                  
Y

|ŶY|
ARE


                                                   (4.8) 

to compare the performance of TreeMARS, TreeReg, CATreeMARS and CATreeReg without 

SUR and with SUR models, where Ŷ is the values of the predicted response. For example, Ŷ  

is )(ˆ xTreeMARSg  for TreeMARS. TreeReg and CATreeReg discussed above use the AIC 

algorithm from R. This dissertation also implements a stepwise regression method from the 

software SAS. The value of alpha-to-enter is 0.1, and the value of alpha-to-remove is 0.1. 

For the models that use all the variables in the trees, the values of means, standard 

errors, and maximum of AREs are shown in Tables 4.37-4.40 (R: Response, TM: TreeMARS, 

TR: TreeReg, and RB: Both forward selection and backward elimination using R), and boxplots 

are shown in Figures 4.21-4.24. The means and standard deviations of ARE for TreeMARS with 
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SUR are smaller than TreeMARS without SUR. The maximum AREs for TreeMARS with SUR 

are also smaller than TreeMARS without SUR. 

Using R and SAS, comparing the means of ARE of TreeReg with SUR and without 

SUR shows that the values are consistently smaller with SUR. Using R, the standard deviations 

of TreeReg with SUR for the first and second responses are smaller than TreeReg. Using SAS, 

the four standard deviations of TreeReg with SUR are smaller than TreeReg. TreeMARS has 

the maximum AREs except response 2. These boxplots shows all TreeMARS and TreeReg 

predictions are not significantly different. Many large outliers are shown for response 2 in Figure 

4.22.  

Table 4.37 Comparison of AREs for Six TM&TR Models for Response 1 
 

 
R1 
TM 

R1 
TM&SUR 

R1 
TR (RB) 

R1 
TR&SUR 

(RB)

R1 
TR (SAS) 

R1 
TR&SUR 

(SAS)
Mean 0.1177 0.1077 0.1326 0.1276 0.1307 0.1268 

Standard 
Deviation 

0.1160 0.1108 0.1141 0.1110 0.1064 0.1059 

Maximum 0.4938 0.4869 0.4630 0.4619 0.4617 0.4571 
 

 
 

Figure 4.21 Comparison of Boxplots for Six TM&TR Models for Response 1 
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Table 4.38 Comparison of AREs for Six TM&TR Models for Response 2 
 

 
R2 
TM 

R2 
TM&SUR 

R2 
TR (RB) 

R2 
TR&SUR 

(RB) 

R2 
TR (SAS) 

R2 
TR&SUR 

(SAS) 
Mean 0.1734 0.1638 0.2597 0.2359 0.1992 0.1925 

Standard 
Deviation 

0.1662 0.1536 0.2547 0.2045 0.1828 0.1766 

Maximum 0.9222 0.8550 1.1594 0.9250 0.8695 0.8692 
 

 
 

Figure 4.22 Comparison of Boxplots for Six TM&TR Models for Response 2 
 

Table 4.39 Comparison of AREs for Six TM&TR Models for Response 3 
 

 
R3 
TM 

R3 
TM&SUR 

R3 
TR (RB) 

R3 
TR&SUR 

(RB)

R3 
TR (SAS) 

R3 
TR&SUR 

(SAS)
Mean 0.1139 0.1023 0.1244 0.1226 0.1257 0.1220 

Standard 
Deviation 

0.1120 0.1066 0.1009 0.1066 0.1023 0.1017 

Maximum 0.4849 0.4631 0.3915 0.4373 0.4398 0.4353 
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Figure 4.23 Comparison of Boxplots for Six TM&TR Models for Response 3 
 

Table 4.40 Comparison of AREs for Six TM&TR Models for Response 4 
 

 
R4 
TM 

R4 
TM&SUR 

R4 
TR (RB) 

R4 
TR&SUR 

(RB) 

R4 
TR (SAS) 

R4 
TR&SUR 

(SAS) 
Mean 0.1138 0.1022 0.1243 0.1224 0.1256 0.1219 

Standard 
Deviation 

0.1119 0.1065 0.1008 0.1065 0.1022 0.1016 

Maximum 0.4843 0.4625 0.3911 0.4368 0.4393 0.4347 
 

 
 

Figure 4.24 Comparison of Boxplots for Six TM&TR Models for Response 4 
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For the models that use all only the categorical variables in the trees, the values of 

means, standard errors, and maximum of AREs are shown in Tables 4.41-4.44 (CA: Categorical 

variables in tree model, TM: TreeMARS, and TR: TreeReg), and boxplots are shown in Figures 

4.25-4.28. The means and standard errors of ARE for TreeMARS with SUR are smaller than 

TreeMARS without SUR. The maximum AREs occur for CATreeMARS. Moreover, CATreeReg 

with SUR using R has worse results for the third and fourth responses. CATreeReg with SUR 

using SAS has small mean and standard error values for all four responses. The boxplots show 

that all CATreeMARS and CATreeReg predictions are still not significantly different. Many large 

outliers are shown for response 2 in Figure 4.26. 

Table 4.41 Comparison of AREs for Six CATM&CATR Models for Response 1 
 

 
R1 

CATM 

R1 
CATM 
&SUR

R1 
CATR 
(RB)

R1 
CATR 

&SUR (RB)

R1 
CATR  
(SAS)

R1 
CATR 

&SUR (SAS)
Mean 0.2251 0.2181 0.1878 0.1580 0.1504 0.1423 

Standard 
Deviation 

0.1917 0.1785 0.1578 0.1197 0.1169 0.1124 

Maximum 0.8700 0.7697 0.5595 0.4673 0.4397 0.4340 
 

 

 
Figure 4.25 Comparison of Boxplots for Six CATM&CATR Models for Response 1 
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Table 4.42 Comparison of AREs for Six CATM&CATR Models for Response 2 
 

 
R2 

CATM 

R2 
CATM 
&SUR 

R2 
CATR 
(RB) 

R2 
CATR 

&SUR (RB) 

R2 
CATR 
(SAS) 

R2 
CATR 

&SUR (SAS) 
Mean 0.2814 0.2694 0.3071 0.3014 0.2518 0.2335 

Standard 
Deviation 

0.3239 0.3047 0.2473 0.2507 0.2151 0.1976 

Maximum 1.3667 1.2828 1.0039 1.0376 1.0526 0.9217 
 

 
 

Figure 4.26 Comparison of Boxplots for Six CATM&CATR Models for Response 2 
 
 

Table 4.43 Comparison of AREs for Six CATM&CATR Models for Response 3 
 

 
R3 

CATM 

R3 
CATM 
&SUR 

R3 
CATR 
(RB) 

R3 
CATR 

&SUR (RB) 

R3 
CATR 
(SAS) 

R3 
CATR 

&SUR (SAS) 
Mean 0.2025 0.1859 0.1671 0.1723 0.1594 0.1412 

Standard 
Deviation 

0.1700 0.1583 0.1362 0.1395 0.1285 0.1124 

Maximum 0.6269 0.6090 0.5207 0.5803 0.5535 0.4176 
 



 

104 
 

 

 
 

Figure 4.27 Comparison of Boxplots for Six CATM&CATR Models for Response 3 
 

Table 4.44 Comparison of AREs for Six CATM&CATR Models for Response 4 
 

 
R4 

CATM 

R4 
CATM 
&SUR

R4 
CATR 
(RB)

R4 
CATR 

&SUR (RB)

R4 
CATR 
(SAS)

R4 
CATR 

&SUR (SAS)
Mean 0.2022 0.1857 0.1659 0.1721 0.1593 0.1411 

Standard 
Deviation 

0.1699 0.1582 0.1365 0.1394 0.1284 0.1122 

Maximum 0.6262 0.6083 0.5194 0.5799 0.5529 0.4171 
 

 
 

Figure 4.28 Comparison of Boxplots for Six CATM&CATR Models for Response 4 
 



 

105 
 

 

CHAPTER 5 

CONCLUSIONS AND FUTURE WORK  

5.1 Conclusions 

Green building enhances the quality and protection of the environment in which people 

work and live, and the MSMO decision-making framework is proposed to enable more 

comprehensive guidance for builders. This dissertation employed the software eQUEST, which 

provides enough building options and materials to evaluate building performance from an 

energy standpoint, and design of experiments is used to organize a set of eQUEST runs. In the 

first study, the eQUEST output using a two-level experimental design with 216 runs was 

analyzed using various multivariate (multi-response) methods, and most factor variables were 

identified as important.  

This dissertation describes the green building case study and the framework, developed 

in collaboration with the green building expert, Anthony Robinson. The discussions included 

activity percent area specifications, first building cost and annual maintenance cost in the 

residential low-rise building using eQUEST simulation, and the order of twelve stages that was 

organized for decision-making framework. 

In the second study, an experimental design method was developed for a mix of 

discrete-categorical, discrete-numerical, and continuous factor variables. This second design 

was combined with the first design, and both TreeReg and TreeMARS models were 

constructed. In Sahu (2011), TreeMARS was shown to have better prediction accuracy than 

TreeReg with single response. Because green building research involves multiple performance 

metrics, this dissertation extended TreeReg and TreeMARS to the multiple response case by 

using SUR. Since green building performance metrics are likely correlated, SUR is more 

appropriate than OLS that processes the responses separately. In the green building case 
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study, SUR demonstrates consistently lower standard errors, but the predictor errors for 

TreeMARS, TreeReg, CATreeMARS and CATreeReg are not significantly different, but 

TreeMARS and TreeReg perform better than CATreeMARS and CATreeReg. Overall, 

TreeMARS with SUR shows the smallest mean for AREs. 

5.2 Future Work 

In future work, other multi-response methodologies, such as C&W and MD, will be 

compared. Additional analyses using statistical data mining methods [81] and larger 

experimental designs should be conducted, including further study of the combined design 

approach in Section 4.1. The resulting models need to be analyzed for practical relevance, as 

attempted in Section 4.4. To supplement eQUEST, computer runs of ATHENA will be used to 

quantify environmental impact. Finally, there are other building types, including commercial low 

rise, commercial multi-story, industrial low rise, and office building. To accommodate more 

general building structures, a modified version of Table 3.1 is shown in Table 5.1, based the 

suggestions by green building expert, Anthony Robinson. 

Table 5.1 Revised Stages and Decision Variables for Green Building 
 

Stage Building Stage with Options 
1 Siting Options 

 Orientation and Footprint (eQUEST) 
2 Foundation System 

 Concrete Ground Floor (eQUEST) 
 Concrete Slab on Grade (ATHENA) 
 Generic Portland Cement (BEES) 
 Steel Foundation System 

3 Wells and Septic System 
 Concrete Septic Tank 
 Fiberglass Septic Tank 

4 Wall System 
 Concrete Wall (ATHENA, BEES, eQUEST) 
 Curtain Wall (ATHENA) 
 Drywall 
 Metal Frame (eQUEST) 
 Straw Bale Walls 
 Wood Frame (eQUEST) 

5 Roof System 
 Concrete Tile Roof (ATHENA, eQUEST) 
 Generic Fiber Cement Roof (BEES) 
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 Roof Surface Materials (eQUEST) 
6 Window System 

 Clear/Tint Windows (eQUEST) 
 Glazed Windows 
 Low-e Windows (eQUEST) 
 Reflective Windows (eQUEST) 
 Wood Frame Windows (ATHENA, eQUEST) 

7 Door System 
 Steel Door (ATHENA, eQUEST) 
 Wood Door (eQUEST) 

8 Plumbing System 
 Freshwater System 
 Greywater System 
 Rainwater Catchment System 

9 Electrical System 
 AC System (eQUEST) 
 Both AC and Solar System 
 Solar System 

10 Ventilation System 
 Balanced Ventilation System 
 Exhaust Ventilation System 
 Supply Ventilation System 
 Ventilation-Activity Areas (eQUEST) 

11 Heating and Cooling System 
 Fan System (eQUEST) 
 HVAC System (eQUEST) 

12 Landscaping System 
 Sprinkler System 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.1 – Continued 
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