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ABSTRACT 

STRESS ANALYSIS IN CURVED COMPOSITES 

 DUE TO THERMAL LOADING 

 

Jared Cornelius Polk, M.S. 

The University of Texas at Arlington, 2012 

Supervising Professor:  Wen Chan 

 Many structures in aircraft, cars, trucks, ships, machines, tools, bridges, and buildings, consist of 

curved sections.  These sections vary from straight line segments that have curvature at either one or both 

ends, segments with compound curvatures, segments with two mutually perpendicular curvatures or 

Gaussian curvatures, and segments with a simple curvature.  With the advancements made in multi-purpose 

composites over the past 60 years, composites slowly but steadily have been appearing in these various 

vehicles, compound structures, and buildings.  These composite sections provide added benefits over 

isotropic, polymeric, and ceramic materials by generally having a higher specific strength, higher specific 

stiffnesses, longer fatigue life, lower density, possibilities in reduction of life cycle and/or acquisition cost, 

and greater adaptability to intended function of structure via material composition and geometry. 

 To be able to design and manufacture a safe composite laminate or structure, it is imperative that 

the stress distributions, their causes, and effects are thoroughly understood in order to successfully 

accomplish mission objectives and manufacture a safe and reliable composite.   The objective of the thesis 

work is to expand upon the knowledge of simply curved composite structures by exploring and ascertaining 

all pertinent parameters, phenomenon, and trends in stress variations in curved laminates due to thermal 
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loading.  The simply curved composites consist of composites with one radius of curvature throughout the 

span of the specimen about only one axis.   

Analytical beam theory, classical lamination theory, and finite element analysis were used to 

ascertain stress variations in a flat, isotropic beam.  An analytical method was developed to ascertain the 

stress variations in an isotropic, simply curved beam under thermal loading that is under both free-free and 

fixed-fixed constraint conditions.  This is the first such solution to Author’s best knowledge of such a 

problem.  It was ascertained and proven that the general, non-modified (original) version of classical 

lamination theory cannot be used for an analytical solution for a simply curved beam or any other structure 

that would require rotations of laminates out their planes in space.  Finite element analysis was used to 

ascertain stress variations in a simply curved beam.  It was verified that these solutions reduce to the flat 

beam solutions as the radius of curvature of the beams tends to infinity.  MATLAB was used to conduct the 

classical lamination theory numerical analysis.  A MATLAB program was written to conduct the finite 

element analysis for the flat and curved beams, isotropic and composite.  It does not require incompatibility 

techniques used in mechanics of isotropic materials for indeterminate structures that are equivalent to 

fixed-beam problems.  Finally, it has the ability to enable the user to define and create unique elements not 

accessible in commercial software, and modify finite element procedures to take advantage of new 

paradigms.  
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CHAPTER 1 

INTRODUCTION 

The purpose of this chapter is to provide a brief history on composites, their unique properties and benefits, 

the importance of simply curved composites, and previous work done on simply curved composites.  The 

objectives and approach of this thesis will be discussed and outlined, respectively. 

1.1 History 

Composites structures have been used for millennium all across the globe.  From the Incans, 

Mayans, Aztecs, Zulus, Egyptians, Sudanese, Kenyans, Libyans, Indians, Thais, and Chinese, composites 

structures have played a pivotal role in these ancient societies.  These composite structures were 

predominantly, if not all, masonry in nature.  Nevertheless, these ancient people thoroughly understood the 

concepts of stress transfer, reinforcement, and reinforcement support.  Many of the historical structures 

found in Egypt (including the pyramids: of which Sudan has by far the most in the world, albeit smaller in 

size than those in Egypt), temples in India and Thailand, etcetera owe much of the strength and design not 

to just solid stone structures but composite structures as well.  To be able to build the many unique and 

magnificent structures that existed in antiquity, it is clear not only from inspection but from common sense 

that a thorough understanding of mechanics of material, architecture, and advanced mathematics had to be 

known thousands of years before the likes of Isaac Newton, Stephen P. Timoshenko, Leonhard Euler, 

etcetera were even born!  It is clear that one cannot not just build the modern day equivalent of the Al 

Khalifa Tower or the Taipei Towers in antiquity with far less tools than exist today and have those 

structures routinely last thousands of years with no upkeep without understanding the latter principles.  

There is no way to simply guess and luck to completion such engineering marvels that rival and exceed 

many engineered structures that exist even to this very day.  Engineering is engineering; it is just as 

difficult if not more in antiquity as it is now.  In fact, in the Holy Bible (Exodus Chapter 1: Verses 8-21) 

[1], the ancient Egyptians decided to punish their ancient Hebrew workers by forcing them to produce 

superior masonry product without a filler (straw) that had a dual use as a fibrous reinforcement.  The 



 
 
2 

ancient Egyptians understood not only the filler role that the straw provided but also the reinforcement role 

in the mud/brick matrix as well- Holy Bible (Exodus Chapter 5: Verses 1-23) [1].  The ancient Egyptians 

(not being a nation of academic light weights), required that the quota be maintained even without the straw 

filler/reinforcement.  From inspection, the quota was not only quantitative but qualitative as well.  They too 

must have understood the logic of testing the strength of a sample of material before a batch was put into 

construction.     

 It is clear the ancient Egyptians understood the significance of a filler and reinforcement in the 

quantity and quality (strength parameters) of a product.  Today, the reinforcement in concrete is primarily 

steel bars.  However, other materials have been used as well.  There are a number of new concrete 

compositions that consists of a multitude of various particulate reinforcements that have significantly 

increased the compressive strength of concrete.  These examples are poster child examples of the two main 

types of reinforcements used in composites, continuous reinforcement and particulate reinforcement.   

1.2   Definitions 

 The primary role of the reinforcement phase of a composite is to bear loads applied to a given 

structure.  Reinforcements can consist of short or long fibers and are uniform and non-uniform in 

distribution.  The fibers are generally very small in diameter, millimeters to nanometers.  However, some 

unique exceptions to this "rule" include steel bars used as reinforcement in concrete.  These reinforcements 

can be layered parallel to each other or can be woven over and under each other.  Reinforcements can also 

consist of particulates of various sizes and shapes.   

 The primary role of the medium that the reinforcement phase exist in (the matrix phase) is to 

protect the reinforcement phase from the environmental elements, physical damage from external contact, 

and transfer loads via stress transfer to the reinforcement phase.  The matrix phase can consist of any 

number of compositions.  Some are very pliable, others are reasonable rigid but elastic, and others are 

brittle.  In contemporary composite construction, a third phase is used to improve the efficiency of the 
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stress transfer to the reinforcement phase and to help protect and strengthen the reinforcement phase.  This 

phase is called the interfacial phase- see Figure 1. 

 

Figure 1.  Representative view of the three phases of a composite [2]. 

 

 The type of reinforcement and matrix used for a given composite has a significant influence on the 

properties of that composite.  Simply changing the reinforcement while maintaining the same matrix or 

changing the matrix while maintaining the same reinforcement can significantly alter the properties of a 

composite.  This variance in properties of composite is not a curse but an asset that is tamed and used to the 

benefit of many engineers.  This is what gives composite their unique capabilities, niche, and their unique 

advantages over monolithic material.   

These advantages include high strength, high stiffness, long fatigue life, low density, and adaptability     

to the intended function of the structures.  Additional improvements are realized in corrosion            

resistance, wear resistance, appearance, temperature-dependent behavior, environment stability,        

thermal insulation and conductivity, and acoustic insulation.  The basis for the superior structural 

performance of composite materials lies in the high specific strength (strength to density ratio) and      

high specific stiffness (modulus to density ratio) and in the anisotropic and heterogeneous character         

of the material.  The latter provides composite with many degrees of freedom for optimum            

configuration of the material system, Daniel and Ishai [2]. 
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1.3   Curved Laminate 

 Structures come in all shape, sizes, weights, and compositions in order to fulfill a given function 

or functions.  One of the key factors in determining a structure’s role (outside material properties) is its 

shape.  In many applications, simply curved structures or simply curved parts are critical to the application 

of a given machine, system, or structure.  These curved shapes range from clamps, stiffeners, and stringers, 

connector assemblies for rotor shaft to gear cases, panels, beams, plates, etcetera.   As with all parts or 

structures, proper design is critical to mission success.  In order to properly design any part or structure, it 

is imperative to understand the way that part or structure responds to various loading conditions and 

environmental conditions, for a given set of boundary conditions.  Understanding the displacements, strains 

& stresses, their variations and magnitudes, throughout that part or structures is imperative to a successful 

design and understanding the complete picture of the mechanical behavior. 

 To facilitate this understanding, many engineers, some scientist, and fewer mathematicians have 

tackled various aspects of a very complicated field, mechanics of composite bodies.  Even with this 

intellectual assault, there is still very little that is known absolutely about the mechanical behavior of a 

composite body without the proper and appropriate usage of time consuming finite element analysis (FEA) 

and expensive (and often destructive) testing.  Necessarily, testing is a key part of design, development, and 

production that is indispensable.  However, FEA is not indispensable, is computationally intensive, is time 

consuming, and sometimes costly.  This thesis will focus on stress analysis of simply curved laminates 

(structures/parts with only one unique radius of curvature) with continuous fibers under uniform thermal 

loading.   

 It was previously mentioned on how little the composites community knows absolutely about the 

mechanical behavior of a composite body without the proper and appropriate usage of time consuming 

finite element analysis (FEA) and expensive (and often destructive) testing.  To complicate matters, even 

less works had been done and less understanding had concerning curved laminates.  This is even more so 
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for curved laminates under thermal loading.  According to Li and Zhao [3], "Relatively little is available for 

analytical displacement formulation of curved beam."  Furthermore, according to Li and Zhao [3]: 

Ribeiro & Monoach [4] utilized p-version hierarchical finite elements to analyze thermoelastic     

geometrically nonlinear vibrations of isotropic straight and curved beams.  Various analytical and 

numerical methods concerning temperature variation have been developed for other structural style.   

The constitutive equation and the numerical procedure proposed by Padovani et. Al. [5] have been  

used in a masonry arch subjected to a uniform temperature distribution.  

 

 As can be seen from this snapshot given by Li and Zhao [3] and the previously mentioned, there is 

very little if any work on curved composite beams under thermal loading that has resulted in an analytical 

formulation for displacements, strains, and/or stresses.  The masonry arch analysis fails significantly to 

account for short or long fiber composites.  The analysis becomes even more complicated for thermal 

loading problems that are statically indeterminate. 

 Work has been done on cylindrical shell composites.  Yet, very little can be applied to the case of 

simply curved laminates which are by definition open sections.  From mechanics of (isotropic) materials, it 

evident that displacement, strain, and stress distributions in open section and close section geometries vary 

appreciably.  This variation varies appreciably if the geometric sections have rectilinear sides or curved 

sides.  These variations are an order of magnitude more complex for anisotropic materials such as 

composite structures and parts.  Therefore, applying results for close circular section for composite 

laminates to open circular section is by far more erroneous than doing the same thing for isotropic 

structures/parts. 

 Nguyen [6] studied a simply curved beam under a bending load on each end of the longitudinal 

span of the beam.  The formulation relied on a geometric relationship between the tangential elongations of 

the curved beam with respect the mid-plane of the beam and the tangential elongations of the curved beam 

with respect to the center of curvature of the beam- see Appendix A.  The resulting relationship is the 

tangential strain.  This tangential strain relationship for a curved beam was shown to reduce to the 

longitudinal strain relationship for a flat beam as the radius of curvature tends to infinity.  This relationship 
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was extended to describe the variations of strains in the other mutually orthogonal directions.  However, 

this relationship cannot be used for the variation of the radial strain for the simply curved beam, the 

variation of the shear strain in the simply curved beam, or the variation of the strain in the axial direction of 

the simply curved beam.  Therefore, only one valid strain relationship was obtained.   

 Furthermore Nguyen [6], attempted to use the functional multiple {R/(R+z)} that goes to one as 

the radius of curvature (R) tends to infinity for the summation of the stiffness of multiple lamina through 

the thickness (z) of the laminate to obtain the laminate stiffness matrix and subsequently the laminate 

compliance matrix.  Even though the tangential strain relationship shows that the tangential strain varies 

through the thickness of the laminate, that does not mean the stiffness or the thickness of the lamina varies 

through the thickness of the laminate.  The stiffness for elastic material would have to be constant.  It is 

nothing more than a relationship between how much force projected on an area will create a unit strain for a 

given material.  For a lamina, that stiffness matrix would be the same for all locations in the lamina since it 

is linearly elastic and quasi-homogeneous.  Also, the lamina thicknesses are constant for every cross-

section.  Therefore, the laminate stiffness matrix and compliance matrix would be erroneous.  The in- and 

out-of-plane loads would likewise be incorrect if the laminate stiffness matrix was used and the in- and out-

of-plane deformations would be incorrect if the laminate compliance matrix was used.  Therefore, even this 

attempt has fallen short to finding an analytical solution to a curved beam.  The bending moment problem 

is at least an order of magnitude easier than the thermal loading problem.   

Even though a term may reduce from the apparent curved beam solution to the apparent flat beam 

solution doesn’t mean that term is correct.  This is a necessary condition for the reduction from the curved 

beam form to the flat beam form.  That is, at the bare minimum the term for the solution form should 

reduced from the curved beam form to the flat beam form as the radius of curvature tends to infinity.  

However, since it fulfills the necessary conditions doesn’t guarantee that it will fulfill the sufficient 

conditions as well.  Due to the extreme difficulty of this problem, the sufficient conditions can only be 

ascertained to have been met concurrently with the necessary conditions or with other factoids of a given 

method only after experimentations have been conducted to verify a given model, solution, and method. 
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Chapter 2 

FINITE ELEMENT MODEL 

The purpose of this chapter is to describe the finite element models used to ascertain pertinent data needed 

to develop an analytical relationship between stresses and thermal loadings for curved laminates that are 

fixed or cantilevered.  From this, the MATLAB finite element code will be validated as program that is 

capable of accurately modeling a simply curved laminate under thermal loading. 

2.1   Development of Finite Element Model 

2.1.1   Assumptions 

 All models have assumptions built into them.  These assumptions have tremendous significance 

on the accuracy of the models, the conditions the model can be used, and the significance of the results 

from the model.  The assumptions used in this model are as follow: 

(a) Each node of every element is connected to and stays connected to its immediate neighbors 

regardless of strain or stress magnitude & direction.  This means the model stays connected at the 

nodes at all times. 

(b) Any deformation is treated as a linearly elastic deformation. There are no plastic 

 deformations, any form of yielding, or strain hardening. 

(c) The models are under uniform temperature.  There are no temperature gradients.  There is no heat 

transfer.  There are no internal sources of heat.  The model is slowly and reversibly loaded 

thermally; that is, there are no stress concentrations or thermal shocks due to the rate of thermal 

loading. 
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(d) There are no body forces acting on the models. 

(e) There are no residual stresses in the model due to any previous conditions.  That is, before thermal 

loading, the model is free of any stress or strain history. 

(f) All models are quasi-homogeneous or homogeneous (for monolithic materials). 

(g) Model is potentially under non-plane strain and non-plane stress conditions. 

2.1.2   Model Creation 

MATLAB was used to develop a three-dimensional (3D) model and conduct the finite element 

analysis (FEA).  A main file calls a number of functions that carry out specific tasks at different times 

throughout the span of the analysis.  Initial data is entered into the main file, and then the analysis program 

runs at the user's command.  The initial data consists of material properties of the laminate, thermal 

conditions, stacking sequence of laminate, model element configuration, model geometry configuration, 

and the boundary conditions- see Table 1. 

Table 1.  Table of data input for creation of model. 

 Input 

Material Properties  

 E1 

 E2 

 E3 

 G23 

 G13 

 G12 

 v23 

 v13 
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Table 1. – Continued 

 v12 

Thermal Conditions 

and Properties  

 T_final 

 T_intial 

 alpha_1 

 alpha_2 

 alpha_3 

Model Element 

Configuration  

 

Number of Elements In Theta 

Direction 

 

Number of Elements In Radial 

Direction 

 

Number of Elements In Z 

Direction 

Model Geometry 

Configuration  

 Plies 

 Radius of Curvature 

 Angle Spanned 

 

Ply Top and Bottom Surface (Z-

Height) 

 Stacking Sequence 
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Table 1. – Continued 

Boundary Condition 

(Binary Boolean)             

1 = apply    0 =  

don't apply  

 Right Face 

 Left Face 

 Front Face 

 Rear Face 

 Top Face 

 Bottom Face 

 

From this initial data, all other pertinent laminate properties are calculated including the stiffnesses and 

Poisson’s ratios.  This data is for three dimensional, orthotropic laminates- Table 2. 

Table 2.  Three dimensional stiffness components and Poisson's ratios. 

  Calculated 

Material 

Constants 

and 

Parameters   

  v21 

  v31 

  v32 

  C11 

  C22 

  C33 

  C12 
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Table 2. – Continued 

  C23 

  C13 

  C21 

  C32 

  C31 

  C44 

  C55 

  C66 

 

 Once the latter data in Table 1 is entered into the program and the data in Table 2 is calculated, the 

program builds a virtual model of the laminate as defined by the said data.  The next steps are to calculate a 

numeric data form that enables the geometry to be discretized in a particular pattern & order and to 

generate symbolic versions of data forms that will be used repetitively.  The type of element used for the 

latter is a tri-linear, isoparametric, 8-node, 24-degree of freedom element- see Figure 2.  The local 

coordinate system is (r,s,t) where r-direction is in the length direction of the element, s-direction is in the 

width direction of the element, and the t-direction is in the thickness direction of the element.  The domain 

for the element in the r-, s-, and t-directions is [-1, 1].  Each node has three degrees of freedom that are 

translational and in the r-, s-, and t-directions. 

 

Figure 2.  Tri-linear, isoparametric, 8-node, 24-degree of freedom element [6]. 
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o Element Connectivity:  The element connectivity function connects each element to its 

neighbors via their mutual nodes.  Once this connection is formed, the elements and their nodes 

cannot be disconnected regardless of the forces or moments applied.  This results in a model 

that does not break or tear.  Since there are no provisions for plastic deformation, the elements 

elastically stretch, twist, and bend to infinity if the loads permit.  Obviously, failure will occur 

long before this limit is reached.   

o Symbolic Stiffness Matrix:  The symbolic stiffness matrix function generates a symbolic 

version of the element stiffness matrix.   

o Symbolic B (FEA) Matrix:  The symbolic operator matrix function generates a symbolic 

version of the operator (partial derivative operator) matrix that operates on the displacements.  

The shape (interpolation) functions are exact at each corresponding node. The shape functions 

are: 
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1
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         ( )( )( )tsrN −+−= 111
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         ( )( )( )tsrN +−−= 111
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1
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         ( )( )( )tsrN +−+= 111
8
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1
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                ( )( )( )tsrN ++−= 111
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 where i = 1, 2, 3, 4, 5, 6, 7, 8            (9) 

o Symbolic Thermal Load Matrix:  The symbolic thermal load matrix function generates a 

symbolic (variable) version of the thermal load matrix that calculates the loads on each node, at 

each given direction, due to temperature changes in the given element.                                 

 The unique numerical value of the stiffness matrices and thermal load matrices for each element 

(depending on its orientation and spatial location in the laminate) is calculated one element at time.  

o C Matrix:  The C matrix is a [6x6] matrix of the stiffnesses Cij listed in Table 2.  This matrix 

becomes the FEA [D] matrix.      

                            [ ] [ ]
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o Jacobian Matrix:  The determinate of the Jacobian matrix for a given element is calculated. 
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o Element Stiffness Matrix:  The numerical version of the general/symbolic stiffness matrix is 

calculated for the given element.  Gaussian quadrature integration is not used.  The primary 

purpose of Gaussian quadrature integration is for a numerically quick way of approximating the 

volume integral at specific points in the element.  The whole purpose of the symbolic matrix is 

for rapid full integration.  There are no approximating integral techniques used.  The indefinite 

integral defined under Symbolic Stiffness Matrix is used.  The indefinite integral of the 

symbolic stiffness matrix does not change from element to element.  The form of the integral is 

the same for all elements.  Once the indefinite integral is obtained under Symbolic Stiffness 

Matrix, it is just a simple exercise in evaluating the stiffness matrix at ( ) ]1,1[,, −∈tsr .       

Only the exact integration is used.  

                                        [ ] [ ][ ][ ]∫∫∫=
V

T dvBDBk                                                  (11) 

o Thermal Strain Matrix:  A numerical thermal strain matrix is generated for the given element 

for thermal strains in three dimensions. 

o Thermal Load Matrix:  The numerical version of the general/symbolic thermal load matrix is 

calculated for the given element in a similar fashion and for identical reason as that done for the 

element stiffness matrices. 

                                                 [ ] [ ][ ]{ }∫∫∫=
V

T

T dvTDBf α                                              (12) 

The upshot of this part of the program is the element stiffness matrix and the thermal load matrix for each 

element is calculated. 

 The next phase of the program assembles the global stiffness matrix based on the model geometry 

configuration and the model element configuration.  The map for this assembly is the element connectivity 

matrix.  Afterwards, the external faces of the model and the nodes on those faces are collected in matrices 

to be utilized once the boundary conditions are applied.  The boundary conditions selected in the initial data 
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phase for each node to be restricted in translation in a given combination of the three orthogonal directions 

(X, Y, Z).  This restriction is set to a displacement of 0.  The boundary conditions are applied when the 

rows and columns of the global stiffness matrix associated with the restricted degree of freedom are 

partitioned.  The resulting global stiffness matrix has the same size as the original global stiffness matrix.  

Instead of deleting columns and rows that are associated with restricted degrees of freedom, those rows and 

columns are replaced with all zeros.  The diagonal terms of the modified global stiffness matrix that were 

replaced with zeros are changed to the numerical value 1.  This last step facilitates the process of solving 

the linear equation shown in Equation (13). 

                                                                   { } [ ]{ }dKF REDUCED=                                                             (13) 

The resulting matrix is now the reduced global stiffness matrix.   

 A function takes each element's thermal load matrix and assembles them into one matrix 

according to the mapping given in the element connectivity matrix.  This new thermal load matrix becomes 

the {F} single column matrix/array.  MATLAB executes a particular linear solver routine that is 

commensurate with the optimum speed & accuracy of the solution to Equation (13) for a [K] matrix with a 

given structure (sparseness, banded nature, etcetera).  The resulting {d} single column matrix/array is the 

jewel of the FEA, the displacement array. 

 From the displacement array, the displacement function, the strains, and the stresses in each 

element can be calculated- see Equation (14), Equation (15), Equation (16), respectively. 

                                                             { } [ ]{ }dN=ψ                                                       (14) 

                                                             { } [ ][ ]{ }dNB=ε                                                   (15) 

                                                             { } [ ]{ }εσ D=                                                       (16)    
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2.1.3   Meshing Generation 

 The according to Chan, Lawrence, et. al. [7], composites modeled with mapped, regular, 

rectangular volume mesh provide the most accurate results.  These results are not significantly more 

accurate than a freely, irregular, non-rectangular volume mesh.  According Logan [8], models with element 

aspect ratios closest to 1 generally provide more accurate solutions than an equivalent model with elements 

having larger aspect ratios.  Most models show that the smaller the aspect ratio of the elements, the faster 

the solutions generally converge.  Due to these facts and the cubic (that is, aspect ratio = 1) nature of the tri-

linear, isoparametric element used, an aspect ratio of 1 is used for all the elements.  Each element 

corresponds to a cubic section in the mesh.  That is the mesh is made up of a series or regular, mapped 

cubes, whose edges coincide with the edges of the elements and whose volume is equivalent to the volume 

of the elements.  Each cubic cell in the mesh represents a finite element- see Figure 3. 

 

Figure 3.  Representative model of a simply curved composite laminate with regular cubic mesh with each 

cubic mesh consisting of a finite element [6]. 
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2.2   Model Validation 

2.2.1   Analytical Solution For Isotropic Flat Model 

 The problem that will be solved is the statically indeterminant fixed structure- see Figure 4.  The 

structure is fixed at both ends A and B.  A uniform thermal load due to ∆T = 100 ºF.  The structure is 

homogenous and made of 6061-T6 aluminum.  Material properties for 6061-T6 aluminum are listed in  

. 

Table 3.  Material properties of 6061-T6 aluminum. 

Material Property Value 

6061-T6 Aluminum alloys   

 E_1 1.00E+07 

 E_2 1.00E+07 

 E_3 1.00E+07 

 G_23 3.80E+06 

 G_13 3.80E+06 

 G_12 3.80E+06 

 v_23 0.33 

 v_13 0.33 

 v_12 0.33 

 alpha_1 1.31E-05 

 alpha_2 1.31E-05 

 alpha_3 1.31E-05 
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Figure 4.  Typical statically indeterminant (fixed) beam problem. 

 

 For the fixed beam problem, the beam is not able to expand in the longitudinal direction.  At the 

fixed ends, there are no expansions in either the thickness direction or the transverse direction.  However, 

as progression occurs from the fixed ends towards the mid-length point along the longitudinal axis, the 

beam does have restricted variances of expansion in the thickness and transverse directions.  The freeness 

of the expansions in the thickness and transverse directions do not vary linearly from zero at the fixed ends 

to some given maximum amount at the mid-span of the beam along its longitudinal axis.     

From inspection, it can be seen that the maximum stresses will be along the longitudinal axis.  The 

maximum stresses in the thickness (z-direction) direction and transverse (x-direction) direction will be at 

the fixed ends and will tend to a minimum value towards the mid-span of the beam along the longitudinal 

axis.  Solving the statically indeterminate problem is more challenging.  The material properties along with 

compatibility relationships are needed to ascertain the stresses.  This is generally done be summing the 

deformations due to thermal loading & reaction forces and equating this with the compatibility relationship.  

Force-displacement, temperature-displacement, and constitutive relationships such as Equation (17), 

Equation (18), and Equation (19), respectively, are then utilized to find the unknown forces.  From these 

forces and strains, the stresses can be ascertained. 
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where ε  = strain, δ  = elongation, L = length of beam, P = longitudinal axis load, E = Young’s 

modulus, A = cross sectional area perpendicular to the longitudinal axis, σ  = stress, Tδ  = 

thermal elongation, Tε  = thermal strain, α = coefficient of linear thermal expansion, T = 

temperature, Tσ  = thermal stress, and υ  = Poisson’s ratio 

 Figure 5 shows the solution for solving the statically indeterminant problem using temperature-

displacement relations, force-displacement relations, and compatibility relations. 

 

 

Figure 5.  Typical statically indeterminant (fixed) beam problem with fixed end remove showing 

displacement potentials. 

 

The equation of equilibrium in the longitudinal direction shows that the reaction from the wall at end A and 

B are equal in magnitude and compressive. 

                                                    BAallongitudin BA RRRRForces =⇒−==∑ 0                              (20) 
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From the compatibility condition 0=+= TRAB B
δδδ , the thermal elongation Tδ  is equal in magnitude 

and opposite in direction to the mechanical elongation
BR

δ . 

                                                                             
( )LTT ∆=αδ

                                                              (21) 

                                                                           
( )LT

BR
∆−= αδ

                                                           (22) 

Using Equation (17), Equation (18), the compatibility condition, and Poisson' ratio effect on the transverse 

and thickness strains due to the longitudinal strain, and Equation (19) , the stresses in the fixed-structure are 

ascertain as: 
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2.2.2   Classical Lamination Theory (CLT) Solution For Isotropic Flat Model 

 Classical lamination theory is the fundamental mechanics environment for ascertaining overall 

behavior of composite laminates.  It predicts the overall behavior of composite laminate (or isotropic 

laminates) when used within the following assumptions [2]: 

(a) Each layer (lamina) of the laminate is quasi-homogeneous and orthotropic. 

(b) The laminate is thin with its lateral dimensions much larger than its thickness and is loaded in its 

plane only, that is, the laminate and its layers (except for their edges) are in a state of plane stress 

( 0=== yzxzz ττσ ). 
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(c) All displacements are small compared with the thickness of the laminate (|u|, |v|, |w| << h). 

(d) Displacements are continuous throughout the laminate. 

(e) In-plane displacements vary linearly through the thickness of the laminate, that is, u and v 

displacements in the x- and y-directions are linear functions of z. 

(f) Straight lines normal to the middle surface remain straight and normal to that surface after 

deformation.  This implies that transverse shear strains xzγ and yzγ are zero. 

(g) Strain-displacement and stress-strain relations are linear. 

(h) Normal distances from the middle surface remain constant, that is, the transverse normal strain 

zε is zero.  This implies that the transverse displacement w is independent of the thickness 

coordinate z. 

As shown in the assumptions above, CLT is a plane stress theory.  All mechanics exist is in a 

family of parallel planes.  By convention, these planes are all parallel to the XY-plane.  All deformations, 

stiffness, strains, stresses, etcetera will be define only in this family of planes.  With CLT, a two-

dimensional material stiffness matrix is developed by assuming plane stress conditions, zσ = 0.  The 

resulting stiffness matrix is defined as the reduced-stiffness matrix.  The stress-strain relationship in a ply is 

given as follows (Figure 6): 

                                                                         

2112

1
11

1 νν−
=

E
Q

                                                               

(23) 

                                                                         

2112

2
22

1 νν−
=

E
Q

                                                              

(24)

 

                                                                        

2112

121

2112

212
12

11 νν
ν

νν
ν

−
=

−
=

EE
Q

                                         

(25)

 



 
 
22 

                                                                        

1266 GQ =

                                                                          

(26) 

                                                                   
































=

















6

2

1

66

2221

1211

6

2

1

00

0

0

γ
ε
ε

τ
σ
σ

Q

QQ

QQ

                                          

(27) 

 

 

 

 

Figure 6.  Representative ply with material (1,2,3) coordinate system and laminate (x,y,z) coordinate 

system. 

 

 Since each ply (lamina) has its own coordinate system, to define the behavior of the laminate 

using n-different coordinates system for an n-layered laminate would be unyielding.  Therefore, a common 

coordinate system is defined at the center of the laminate in the mid-plane.  This common coordinate 

system is conventionally known as the laminate coordinate system.  In order to get each lamina in terms of 
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the laminate coordinate system, the parameters of the lamina in the material coordinate system are 

transformed through rotations to the laminate coordinate system: 
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where ( )θcos=m  and ( )θsin=n  

The stress-strain relationship in a lamina is now definable in terms of the laminate coordinate system: 
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 As stated in the assumptions for CLT, strains vary linearly through the thickness of the laminate.  

However, since the stiffness are different because each ply is potential unique from others due fiber 

orientation and ply material properties, the stress are not continuous through the thickness of the laminate- 

see Figure 7. 
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Figure 7.  Illustration of linear strain variation and discontinuous stress variation in multidirectional 

laminate [2]. 

 

The stress strain relationship for each lamina is now differentiated from other lamina by the index k.  This 

index represents the number of the layer as shown in Figure 7 and as shown below: 
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(32)  

The force and moment resultants are obtained from the laminate constitutive relationship.  This 

relationship is defined by obtaining a stiffness matrix that encapsulates all the directional stiffnesses and 

coupling thereof.  This stiffness matrix is obtained by summing the ply stiffnesses in the laminate 

coordinate system through the thickness with respect to the thickness variations of each ply. 
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Since each lamina stiffness matrix is a 3x3 matrix, the [A], [B], and [D] are 3x3 matrices.  These matrices 

are grouped together according to the order in which they are related to the in-plane and out-of-plane 

deformations (the mid-plane strains and curvatures).  The resulting laminate stiffness matrix is given as 

follows: 
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Taking the inverse of the ABD matrix gives the laminate compliance matrix: 
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The abd matrix is the compliance matrix of the laminate; the superscript T on the [b] matrix at abd(2,1) 

stands for transpose.  From the ABD and abd matrices, the constitutive relationship of the laminate is 

defined with the in-plane and out-of-plane deformations. 
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The numerical routine for CLT was developed and run in MATLAB.  By definition, in order to 

use CLT at least two plies must exist in the laminate.  By using only two plies, none of the assumptions 

listed above are violated.  Thus a two ply laminate is a valid laminate in which overall laminate behavior 

for thin laminates can be ascertained.  There are only a few limiting situations, which will not appear here, 

where using two plies would not be sufficient for the purposes of this analysis.  Two ply laminates will be 
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used for this analysis.  There is no reason to add more plies for a thin laminate case.  Furthermore, using 

only two plies isolates interlaminar effects on the stresses in the laminate.  Having more than two plies 

couples at least one more ply into the overall effect of the interlaminar effects on stresses in the laminate.  

These cases are isotropic so any errors from the model being too thin are negated.   

 For the isotropic case, 6061-T6 Aluminum was used- see  

.  The [ ]20  stacking sequence was run using CLT on a two ply thick laminate.  Each ply had a thickness of 

0.005 inches.  The thermal loading condition is FT o100=∆ .  Since the MATLAB FEA code is the 

ultimate upshot of the verification process and FEA requires sufficient constraints in order for rigid body 

motion not to occur when loaded, the fixed-fixed (fixed-beam) case was analyzed using CLT.  This enables 

a comparison with the FEA code which can be sufficiently constrained for a non-singular reduced global 

stiffness matrix.  The cantilever problem is not evaluated using CLT because the fixed-beam problem 

provides a more rigorous challenge for validation.   

The loading array must have an induced mechanical force Nx.  This induced mechanical force is 

found by setting the mid-plane strain in the X-direction equal to zero (the beam is fixed in the X-direction 

and is not allowed to elongate or contract).  The first row (equation) of the abd matrix is solved for the 

unknown Nx in terms of the compliances and the in- and out-of-plane deformations.  The expression for Nx 

is: 
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Note:  All loads are the total loads due to FT o100=∆ .  Units are standard English units 
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Table 4.  Material properties for all 6061-T6 Aluminum cases from Table 3. 

E1 1.00E+07 

E2 1.00E+07 

G 3.77E+06 

v 0.33 

alpha1 1.31E-05 

alpha2 1.31E-05 

 

abd           

1E-5 -3E-06 0 0 0 0 

-3E-06 1E-5 0 0 0 0 

0 0 2.7E-05 0 0 0 

0 0 0 1.2 -3.96E-1 0 

0 0 0 -3.96E-1 1.2 0 

0 0 0 0 0 3.18302 

 

Table 5.  Total in-plane and out-of-plane loadings on the laminate. 

Loadings     

Nx 64.5224 lb 

Ny 195.522 lb 

Ns 0 lb 

Mx 0 lb*in 

My 0 lb*in 

Ms 0 lb*in 
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Table 6.  In-plane and out-of-plane curvatures of the laminate. 

 Mid-Plane Strains & Curvatures   

o

xε  0 in/in   

o

yε  
0.00174 in/in   

o

sγ  0 in/in   

xκ  0 1/in   

yκ  
0 1/in   

sκ  0 1/in   

 

Table 7.  XY-plane stresses for laminate. 

 Stresses   Units 

 Layer 1 Layer 2 lb/in
2
 

xσ  -13100 -13100   

yσ  
8.5E-13 8.5E-13   

sτ  0 0   

 

2.2.3   Finite Element Method (FEM) Solution For Isotropic Flat Model  

 The MATLAB program was used to conduct the finite element analysis (FEA) for the isotropic 

flat beam.  5,120 elements were used with a laminate made out of 6061-T6 Aluminum with material 

properties given in Table 3.  Each ply had a thickness of 0.005 inches, and an equivalent number of plies 

were used for the finite element (FE) model as was used in the CLT model.  The element stresses (r,s,t) = 

(0,0,0) were collected along the mid-width of the beam for layers 1 and 2.  In order to reduce shear stresses 
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in the beam due to geometry and negate the effect of Saint Venant’s principal on the stresses, the beam’s 

YZ-plane cross-section was chosen to be square; the beam was also chosen to be extremely long with 

respect to the depth and the width of the beam.  The normalized ratio of beam’s geometry was that the 

length to width ratio and the length to depth ratio were both 640 to 1.  This puts the solution set of this 

problem into the assumptions used for beam theory and classical lamination theory.  Without the 

exaggerated length to depth ratio of 640 to 1, the FE model can potential violate the plane stress 

assumption.  The stress results for σx, σy, and τxy. 

 The figures have “spikes” at the fixed ends and at the mid-span of the beam.  The “spikes” at the 

fixed end are due to edge effect and induced three dimensional stresses.  The “spike” at the mid span is due 

to the shear strain not being constant at this point.  It is well known that isoparametric elements notoriously 

develop spurious shear modes and “spikes” if the order of the interpolation function is not one order higher 

than the order variation of a given type of strain, in particular shear strain.  Beams are also known to have 

shear strain that vary through thickness quadratically (order 2).  Since the tri-linear isoparametric element 

used in the MATLAB FE program is of order 1, it would need to be 2 orders higher (or a tri-cubic 

isoparametric element) to sufficiently handle that shear mode.  The consequential coupling of other strain 

modes via element connectivity causes a noticeable bump in the longitudinal stress plots as well. 
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Figure 8.  Stresses in the X-direction for isotropic flat beam, layer 1. 

 

  

Figure 9.  Stresses in the X-direction for isotropic flat beam, layer 2. 
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Figure 10.  Stresses in the Y-direction for isotropic flat beam, layer 1. 

 

  

Figure 11.  Stresses in the Y-direction for isotropic flat beam, layer 2. 
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Figure 12.  Stresses in the XY-direction for isotropic flat beam, layer 1. 

 

  

Figure 13.  Stresses in the XY-direction for isotropic flat beam, layer 2. 
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2.2.4   Validation Of Finite Element Analysis Program For Flat Isotropic Model 

 The analytic beam theory solution, the classical lamination theory solution, and the MATLAB 

FEA program solution showed excellent agreement in the mutually calculated stresses.  That is, the analytic 

beam theory solution does not have the shear stress xyτ  results but does have the zσ .  The classical 

lamination theory solution and the MATLAB FEA program solution do not have the zσ  result but does 

have the xyτ .  Therefore, the comparison is between the stresses that mutually coexist with respect to the 

three methods. 

Table 8.  Stress result comparison for layer 1 of flat isotropic beam. Units: lb/in
2
 

  Analytic Beam Theory Classical Lamination Theory MATLAB Finite Element 

σx -13100 -13100 -13114 

σy 0 8.5E-13 -20.62  (median: 7.267e-12) 

τxy 0 0 2.19e-12  
 

Table 9.  Stress result comparison for layer 2 of flat isotropic beam. Units: lb/in
2 

  Analytic Beam Theory Classical Lamination Theory MATLAB Finite Element 

σx -13100 -13100 -13114 

σy 0 8.50E-13 -20.62  (median: 5.457e-12) 

τxy 0 0 2.19e-12  

 

 It can be seen from Table 8 and Table 9 that the MATLAB FEA program has been validated as 

being capable of providing accurate and precise (see median results of the transverse stresses) stress 

solution for flat isotropic beams. 

2.2.5  Analytical Solution For Isotropic Curved Model 

 An analytical solution for the isotropic, simply curved (arc) beam under thermal loading does not 

exist to the best of the Author's knowledge.  Many different types of curved beam solutions have been 
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developed for various loading conditions.  The most prominent cases are those with bending moments in 

the plane of the curved beam at both ends of the beam.  Fewer cases involve other simplistic schemes such 

as normal stresses to the cross-section of the beam due to hoop (circumferential) tension.  These cases also 

include the bending moment (in the plane of the arc at both ends equal to zero) or shear stresses due to 

radial shear force.  Other developments utilize the Airy stress potentials. 

 Most of these solutions have some type of inherent error in the stress results depending on how 

compact the cross-sections are, the ratio of the radius of curvature to the depth of the beam, the magnitude 

of the radius of curvature of the beam, the shape of the cross-section, the thickness of the webs relative to 

the flanges of the cross-sections, or some simple or complex combination thereof, etcetera.  Other 

derivations leave out key factors such as neglecting the contribution of radial normal stress to the 

circumferential strain.  Deformations due to normal forces and transverse shears have also been neglected 

in some formulations to facilitate easier stress solutions in curved beams.  Others assume straight beam 

formulations for bending stress and shear stresses while neglecting the complex interactions that occur with 

curved beams which lead to minimum errors of four percent to five percent in stress results.  The Airy 

stress formulation for the case of bending moments in the plane of the arc at both ends with equal 

magnitudes can lead to eight percent to nine percent error in stress results.  Even more, some of the more 

demanding derivations require numerical methods for more accurate results (with minimum error) for terms 

of the stress result expressions or correction factors to account for curvature or cross-sections.  Both are a 

sign that the methods do not yield accurate results due to inherent formulation and must be corrected after 

the fact or need additional effort to just ascertained minimum error in terms that compose of the stress 

result expressions.  Even energy based methods for ascertaining stresses in curved beams are relatively (not 

absolutely) accurate if the curved beam is close to straight beam, that is the curved beam has a fairly large 

radius of curvature.  Energy based methods for ascertaining stresses in curved beams that have fairly small 

radii of curvature require coupling terms to improve the accuracy.  This is an implicit statement in the 

inherent inaccuracy of the solution.  Even the more complex formulations require loadings to be 

geometrically simple; that is, all radial loads must be applied at the centroid.   
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 What is meant by geometrically simple loadings is that the loading (for instance, bending moment) 

can be readily related to the geometry of the curved beam through various flexure and curvature 

formulations.  It is natural for polar coordinate systems and can readily accommodate Cartesian coordinate 

systems.  However, having one or more longitudinal loads (note: not an axial load that is perpendicular to a 

given cross-section) at an arbitrary location of the beam cannot be readily related to the beam using flexure 

or curvature formulations.  These relationships are used to facilitate solutions (explicitly or implicitly) to 

beam problems where rectilinear beams are under bending moments in the plane of the beam or curved 

beams are under bending moments in the plane of the beam.  Without geometrically simple loadings, 

ascertaining stress, strain, or displacement solutions for curved beams is extremely difficult if not even 

intractable. 

These conditions are more demanding for thick beams.  Even when a statically equivalent loading 

is applied to compensate for the off-axis loading, the primary loading must only be a bending moment at 

the ends of the beam in the plane of the arch.  For thick beams, ignoring deformations due to axial tensions 

or compressions is not acceptable.  Correction factors must be used again to compensate for inaccuracy 

inherent even in these more complex formulations because they can only be developed for geometrically 

simple loadings.  Furthermore, the effect of radial stresses near concentrated loads is not accounted for.  

These stresses have appreciable effect on the maximum stresses and local deformations. 

 Some of the assumptions or neglected terms do not result in appreciable errors (greater than five 

percent) in the stress results.  When solving a typical rectilinear beam problem, all these complications are 

generally not present for even the most complex combine loading situations.  The greatest effort is usually 

in the time taken to solve the problem for stresses, not the effort required to solve the problem for stresses.  

This is just cursory survey of how difficult these problems become once curvature is added to the beams.  

They all have a similar theme, "Beware of the accuracy of your results"!  Yet, the discussion in the 

previous two paragraphs concerning bending moment and axial force loading pales in comparison to the 

difficulty of the thermal loading problem.  This problem for simply curved beams is deceptively difficult 

for statically determinant situations and seemingly intractably difficult for statically indeterminant 
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situations.  This difficulty in coming up with an accurate formulation that is approximate (much more for a 

formulation that is exact) is the main reason that there is not a readily available close-form solution (exact 

solution) for the simply curved (arc) beam under thermal loading that is either statically determinant (free 

expansion in this case) or statically indeterminant (fixed in this case at the longitudinal ends of the arc-

beam).  As a result, most of these types of problems are solved using some form of numerical methods.  

The most predominant method by far is the finite element method (FEM). 

 Some have attempted to tackle this problem with varying levels of success.  Since this thesis is on 

curved beams under thermal loading and not on curved beams under various axial and/or transverse loads 

with or without various bending moments, the Author will explicitly state these particular formulations by 

name, the assumptions, the pitfalls, and the resulting expressions.   

 Li and Zhao [3] studied a statically indeterminant beam used to model a bridge.  They used the 

principal of thermal expansion and the theory of virtual work.  Their goal was to ascertain the in-plane 

displacement of the beam (bridge) due to thermal loads.  As can be seen from Figure 14, the thermal load 

create by a 0≠∆T . 

 

Figure 14.  Li and Zhao curved beam under thermal loading. 

 

An element of length ds was cut out from the curved beam.  This element’s elongation will rotate dstε  

where ( )Tt ∆=αε .  The element will rotate through an angle dstη , where tη is the curvature of the 
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rotation.  The angle spanned by the element of length ds isδ , where φδθ << .  The cut in the beam 

occurs at the right end of θ .  They calculated the total work done by a thermal load of 0≠∆T by 

calculating the work from the axial force perpendicular to the cross-section of the element through its 

extension of dstε to the left of the cut and to the right of the cut.  This was combined with the work from 

the moments in the plane of the curved beam through its rotation of dstη  to the left of the cut and to the 

right of the cut.  The expression for the total work from the left end of the cut due to axial force and in-

plane moment and from the right end of the cut is given by Equation (41): 

                           
∫ ∫∫∫ +++=∆
θ φ
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ηηεε

0
111

0
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                                (41) 

where N1L = axial force to the left of the cut, N1R = axial force to the right of the cut, M1L = 

moment to the left of the cut, and M1R = moment to the right of the cut. 

 The solution for a number of boundary conditions was calculated using this analytical approach 

and compared with an equivalent FEM model- see Figure 15, Figure 16, and Figure 17. 

 

Figure 15.  Curved beam with pinned-pinned ends. 
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Figure 16.  Curved beam with pinned end on left side and clamped in on right side. 

 

 

 

Figure 17.  Curved beam with clamped-clamped ends. 

 

 The first thing that stands out about Li and Zhao results is the remarkable coincident in analytical 

results with FEM results.  FEM results are trivially known to be a close approximation to the real (exact) 

solution if modeled properly.  For the analytical results to match exactly with the FEM results leads to one 

of two conclusions: 
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(1)  The analytical solution coincides with a remarkably accurate finite element (FE) model.  The 

FE model is able to very accurately represent the problem. 

(2)  There are sufficient errors in either the FE model and/or the analytical solution for such a 

convergence to occur without consequences of uniquely and severely flawed data and analysis.  If 

there are errors, this would imply that the analytical solution is not exact.  The lack of exactness or 

precision in the results would be eerily similar to a completely different method (FE model)- an 

unusual coincidence. 

The Author has no way of examining the FE code and model used to verify the analytical solution 

given by Li and Zhao.  Nevertheless, the goal of their work was to calculate the in-plane displacement in 

the direction of the shear force V.  Yet their analytical solution only takes into account axial forces 

perpendicular to the cross-sections of the beam and the moments in the plane of the beam.  No shear forces 

are accounted for.  Furthermore, the model does not account for the fact that the axial force at each 

differential segment of the arc of the beam will be different in magnitude and direction relative to its 

neighbors as this is not a straight beam but a curved beam.  The same goes for the in-plane moment.  Such 

can be assumed for a straight beam.  However, for a curved beam, even though the cross-sections of the 

beam remain perpendicular to the centroidal axis of a given differential segment, it is not plane to the other 

differential segments to it respective left or right.  This must be accounted for and is not in Li’s and Zhao’s 

analysis.  With these glaring omissions and the eerily coincidental nature of the FE results and the 

analytical solution leads the Author to conclude that these results are not as good as Li and Zhao claimed 

and their plots are suspect.  Li and Zhao claimed that their displacement converge to the straight beam 

problem displacements as the radius of curvature tends to infinity, a must.  This is a necessary condition, 

but it is not a sufficient condition. 

Hetnarski, Noda, and Tanigawa [9] also tackled stresses in a curved beam due to thermal loading.  

This curved beam is not a simply curved beam whose span can be defined as an arc.  It is more of a straight 

beam that has been curved.  In other words, it is not an arc beam with simple curvature that is symmetric 
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about its mid-span but a beam that is curved.  Li and Zhao used a minimum potential energy based method 

to develop their analytical model.  Hetnarski, Noda, and Tanigawa used the same assumptions of the theory 

of straight beams and basic geometric relationship between line segments with respect to a given radius of 

curvature of a beam with curvature before thermal loading and a new radius of curvature after thermal 

loading- see Appendix B.  They also use basic thermal strain and constitutive relationships.  Equation (42), 

Equation (43), Equation (44), and Equation (45) is the result for the tangential stresses: 
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where y = distance above the center line, α = coefficient of linear thermal expansion, T∆ = 

change in temperature, A = cross sectional area, R = initial radius of curvature before thermal 

loading  

 

However, this method is not sufficient for the purposes of this thesis.  First, this method only 

allows the definition of tangential stresses.  There is no definition for the radial stresses.  In a beam with 

curvature under thermal loading, the material in the beam is not free to fully expand and will develop 

stresses.  This is not accounted for in the model.  Furthermore, the beam does not experience expansion in 

the radial direction.  Only the tangential location of the outside face of the curved beam is altered by the 

thermal loading.  In essence, the beam modeled is a beam with curvature whose thickness dimensions does 

not change.  Only the curvature of the beam changes along with the angle of the cross-sectional areas, 

while a straight line segments perpendicular to the centerline remain straight and perpendicular to the 

center line.  This is best used for smart materials whose dimensional changes under thermal loading are 
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small or negligible but the curvature changes aren’t.  For these reasons, this model is not sufficient to use 

nor its paradigms useful in model simply curved beams under thermal loading. 

As previously stated, there are no readily available analytical solutions for a simply curved beam 

that is statically determinant (and much less statically indeterminant) under thermal loading- concerning 

stresses.  Therefore, the Author developed a completely unique analytical solution for a simply curved 

beam that is statically determinant and statically indeterminant.  

To solve the statically determinant problem, the Author developed the free-free case for the simply 

curved beam.  That is, the statically determinant problem is a free expansion problem.  To develop the 

solution to this problem, the beam is partitioned into infinitesimal segments along the length.  Two cases 

are solved independently.  The first case is the expansion through the thickness direction.  The second case 

is the expansion through the longitudinal direction. 

For the first case, the segments are virtually separated to show how they elongate through the 

thickness direction- see Figure 18.  At the top and bottom surfaces of the beam, it is trivially known that the 

free surfaces of the beam will expand without any restriction- see Figure 19.  However, the internal 

boundaries between two segments will not be allowed to expand freely.  Yet, since both sections A and B 

(see Figure 20) expand the same amount, there are no mechanical forces caused by the boundary of 

sections A or B to enforce equal displacement at their mutual boundary.  As the differential segments’ 

length tend to zero, the two segments can be defined as super infinitesimally small single segment whose 

length is sufficiently large to define an interface but small enough to no longer be considered two separate 

segments or even one union segment- see Figure 20.   
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Figure 18.  Representative flat beam model separated into differential segments with expansion in the 

thickness direction. 

 

 

Figure 19.  Representative flat beam model separated into differential segments with expansion in the 

thickness direction.  The overall elongation in the thickness direction for differential sections is shown. 

 



 
 
43 

 

Figure 20.  Two differential segments are shown only with the expansion from the top half of the surface. 

 

For the second case, the segments are virtually separated to show how they elongate through the 

longitudinal direction- see Figure 21.  At the left and right ends of the beam, it is trivially known that the 

free ends of the beam will expand without any restriction- see Figure 22.  However, the internal boundaries 

between two segments will not be allowed to expand freely.  Yet, since both sections A and B (see Figure 

23) expand the same amount but in different directions at their mutual boundary, their mutual expansions 

cancel each other out.  As a result, no mechanical loads are generated at the interface of the boundary of 

sections A and B.  No mechanical loads are generated at the left and right ends of sections A and B- see 

Figure 21, Figure 22, and Figure 23.  As the differential segments’ length tend to zero, the two segments 

can be defined as super infinitesimally small single segment whose length is sufficiently large to define an 

interface but small enough to no longer be considered two separate segments or even one union segment- 

see Figure 23.  It can be seen that for straight beams, elongation under a thermal loading occurs only at the 

ends of the beam.  There are no elongations from the internal sections of the beam because each 

infinitesimal segment’s elongation cancels out its neighbors’ elongation.   
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Figure 21.  Representative flat beam model separated into differential segments with expansion in the 

longitudinal direction. 

 

 

 

Figure 22.  Representative flat beam model separated into differential segments with expansion in the 

thickness direction.  The overall elongation in the longitudinal direction for differential sections is shown. 
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Figure 23.  Two differential segments are shown only with the expansion from the right half segment B and 

the internal deformations. 

 

The straight beam was expanded to the curved beam case.  A free body diagram equivalent for 

each segment was developed to relate the coefficients of linear thermal expansion in the local longitudinal 

and thickness directions to that in the global Cartesian coordinate system.  These coefficients of linear 

thermal expansion in the global Cartesian coordinate system become effective coefficients of linear thermal 

expansion for those two segments as the limit of the length of each segment tends to zero.  This is not an 

actual coefficient of linear thermal expansion but an equivalent coefficient of linear thermal expansion. 

Two consecutive infinitesimal elements were taken from the right hand side from Figure 24 and Figure 25.  

By definition any curve, whether a path, trajectory, shape, etcetera, is composed of elementary straight line 

segments.  This is by the definition of a line segment, the straight line between two points.  That is every 

curved shape consists of a series of extremely small infinitesimal straight line segments.  Any curved 

segment, no matter how small, can be resolved into even smaller straight line segments.  Therefore, by the 

fundamental definitions of geometry Figure 24 and Figure 25 as straight line segments accurately 

represents extremely infinitesimal segments of a curve such that the curved segments are now straight line 

segments.  As the segments become even smaller, the straight lines segments collapse to the minimum 

length straight line segments such that the boundaries between two segments becomes an interface region.  
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A series of these interfacial regions that are equidistance from some reference point (the center of 

curvature) form the simply curved beam. 

 

 

Figure 24.  Representative curved beam model separated into differential segments with expansion in the 

thickness direction. 

 

 

 

Figure 25.  Representative curved beam model separated into differential segments with expansion in the 

longitudinal direction. 
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 A free body diagram equivalent for each segment is that which relates the coefficients of linear 

thermal expansion in the local longitudinal and thickness directions to that in the global Cartesian 

coordinate system is shown in Figure 26. 

 

 

Figure 26.  Free body diagram equivalent for two consecutive elements that relates the coefficients of linear 

thermal expansion.  Upper half of segments A and B. 

 

The angles Bφ  and Aφ are the angles of segments B and A, respectively, with respect to the global Cartesian 

coordinate system (X, Z).  On the right side of the arc, it is apparent that segment B is always at a larger 

angle than segment A.  This diagram is for the upper half of both segments A and B.  As the segments 

length tends to zero, the segments become extremely small, and are approximated as interfaces.  The 

coefficients of linear thermal expansion from each segment coalesce into an effective coefficient of linear 

thermal expansion. 

The effective coefficient of linear thermal expansion in the X-direction is given by the following 

expression: 
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The effective coefficient of linear thermal expansion in the Z-direction is given by the following 

expression: 
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Grouping terms and expressing the above expression in the form of two equations gives: 
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Note: the additional one-half term in the above equations is for the effective coefficient of linear thermal 

expansion because the expansion from segments A and B are being summed.  Hence, the average is the 

expression divided by two. 

In matrix form:  
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A free body diagram equivalent for each segment is that which relates the coefficients of linear 

thermal expansion in the local longitudinal and thickness directions to that in the global Cartesian 

coordinate system for the first case is shown in Figure 27. 
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Figure 27.  Free body diagram equivalent for two consecutive elements that relates the coefficients of linear 

thermal expansion.  Lower half of segments A and B. 

 

The angles Bφ  and Aφ are the angles of segments B and A, respectively, with respect to the global 

Cartesian coordinate system (X, Z).  On the right side of the arc, it is apparent that segment B is always at a 

larger angle than segment A.  This diagram is for the lower half of both segments A and B.  As the 

segments length tends to zero, the segments become extremely small, and are approximated as interfaces.  

The coefficients of linear thermal expansion from each segment coalesce into an effective coefficient of 

linear thermal expansion. 

The effective coefficient of linear thermal expansion in the X-direction is given by the following 

expression: 
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The effective coefficient of linear thermal expansion in the Z-direction is given by the following 

expression: 
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Grouping terms and expressing the above expression in the form of two equations gives: 
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Note: the additional one-half term in the above equations is for the effective coefficient of linear thermal 

expansion because the expansion from segments A and B are being summed.  Hence, the average is the 

expression divided by two. 

In matrix form: 
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 The next step is to ascertain how these effective coefficients of linear thermal expansion and 

elongations vary with a beam that is simply curved.  MATLAB is used again for the numerical calculation 

of the effective coefficients of linear thermal expansion and elongations with a beam that is simply curved.  

For this situation the simply curved beam sweeps an angle of 180 degrees, 90 degrees on either side of the 

midsection of the beam.  The test material was 6061-T6 Aluminum- see  

, Figure 28,  

Figure 29, Figure 30, and Figure 31. 
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Figure 28.  Effective coefficient of linear thermal expansion for internal segments for the top section of 

consecutive segments. 

 

 

Figure 29.  Effective coefficient of linear thermal expansion for internal segments for the bottom section of 

consecutive segments. 
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Figure 30.  Effective elongation for internal segments for the bottom and top surfaces using a unit change in 

temperature and a unit reference dimension.  Z-Direction. 

 

 

Figure 31.  Effective elongation for internal segments for the bottom and top surfaces using a unit change in 

temperature and a unit reference dimension.  X-Direction. 
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 From Figure 28 and  

Figure 29, take the starting point as the midsection of the simply curved beam.  Progressing in the positive 

phi direction, the effective coefficient of linear thermal expansion in the Z-direction for every segment A is 

higher in absolute magnitude than the subsequent segment B.  Flipping this relationship across the 0 degree 

(midsection) of the simply curved beam shows the same trend.  That is, there is an effective non-uniform 

variation in the coefficient of linear thermal expansion the Z-direction for the simply curved beam.  Even 

though the heating in the beam is uniform, it has a non-uniform heating like effect.  Taking the starting 

points as the midsection of the simply curved beam again shows interesting results for the effective 

coefficient of linear thermal expansion in the X-direction too.  Progressing in the positive phi direction, the 

effective coefficient of linear thermal expansion in the X-direction for every segment A is lower in absolute 

magnitude than the subsequent segment B.  Flipping this relationship across the 0 degree (midsection) of 

the simply curved beam shows the same trend.  That is, there is an effective non-uniform variation in the 

coefficient of linear thermal expansion in the X-direction for the simply curved beam.  

Timoshenko [10] states that expansions and contraction under these types of conditions (in this 

case a pseudo non-uniform heating effect) does not allow the expansion or contraction to proceed freely in 

a continuous body.  This results in the generation of stresses.  Looking at Figure 28,  

Figure 29, Figure 30, Figure 31 in the manner as previously discussed, shows that the simply 

curved, free-free beam will generate stress under thermal loading.  For a flat, free-free beam under thermal 

loading, there would be no stresses. 

The next step is to derive an expression for the stresses in the global Cartesian coordinate system 

(X, Z).  The first case will be that of effective expansion through thickness direction.  As shown by Figure 

28,  

Figure 29, Figure 30, segment A will have a higher effective expansion than segment B- see 

Figure 32 and Figure 33.  Now, we began to take the infinitesimal segments A and B as ds1 and ds2 tend to 
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zero such that the combined lengths of both segments form an effective interface but still have an extremely 

small, infinitesimal length.  With this configuration, the common nodes shared by segments A and B aren’t 

compatible.  That is, the common node has been separated as can be seen by the difference in height of the 

dashed lines.  For this to happen in a real structure or part, the interface between segments A and B would 

have to break and tear in shear under an infinitesimally small thermal loading.  Therefore, this 

incompatibility problem must be solved using temperature-displacement relationships, force-displacement 

relationships, compatibility equations, and equilibrium equation- see Equation (52), Equation (53), 

Equation (54), Equation (55), Equation (56), and Equation (57). 

 

 

Figure 32.  Representative model of two consecutive segment experiencing differential expansion due to 

variance in effective coefficient of linear thermal expansion in the Z-direction. 

 

Temperature-displacement: 

( )tTA ∆=αδ1      (52)                                             

( )tTB ∆=αδ2                                                                          (53)                                        
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Force-displacement: 

AA

A

AE

tP
=3δ        (54)                                               

BB

B

AE

tP
=4δ                                                                              (55)                                              

Compatibility equation: 

                                                          ( ) ( )
BB

B
B

AA

A
A

AE

tP
tT

AE

tP
tT +∆=−∆

+=−=

αα

δδδδδ 4231

                                 (56)                         

Equation of equilibrium: 

                                                               PPPPP BABA ==→=− 0                                                    (57) 

 

Figure 33.  Representative model of two consecutive segment experiencing mechanical loads in order to 

enforce compatibility. 
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Taking Equation (56), the thickness of the beam can be cancelled out of the compatibility equation 

since it is common in all terms on both sides of the equality.  Using Equation (56), the mechanical loads 

induced to enforce compatibility in the geometry of the beam at the interface of segments A and B (PA and 

PB) can be replaced by an equivalent load P.  Since the beam is homogeneous and isotropic, the Young’s 

modulus EB and EA for segments B and A respectively, can be replace by an equivalent Young’s modulus 

E.  The areas AB and AA that the mechanical loads P act on for both segments A and B are equal and can be 

replaced by an equivalent area A.  After the latter changes, Equation (56) reduces to: 

                                         ( ) ( )
EA

P
T

EA

P
T BA +∆=−∆ αα                                                      (58) 

Rearranging terms… 

                                                        ( ) ( )
E

T
E

T BA

σ
α

σ
α +∆=−∆                                                           (59) 

Solving for the stressσ … 

                                                             ( )( )TE BAZ ∆−= αασ
2

1
                                                         (60) 

The Aα  and Bα  in Equation (60) are the effective coefficients of linear thermal expansion in the Z-

direction for segments A and B, respectively.  These coefficients are defined by Equation (48) and 

Equation (51). 

The second case will be that of effective expansion through the longitudinal direction.  As shown 

by Figure 28,  

Figure 29, and Figure 31, segment A will have a lower effective expansion than segment B- see 

Figure 34.  Now, we began to take the infinitesimal segments A and B as ds1 and ds2 tend to zero such that 

the combined lengths of both segments form an effective interface but still have an extremely small, 
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infinitesimal length.  The structural shape of the beam at the very small level is equivalent to that shown in 

Figure 32 and Figure 33.  However, graphical or pictorial representations are chosen based not how much 

they are to scale or visually show the actual interest but how they best portray the given information.  With 

this in mind, the curved beam section is shown as two straight line segments that are parallel to each other.  

The effective difference in elongation for each segment is represented not by geometry but by a color 

shaded region.  The red section of segment B is a particular way of showing the magnitude of the 

expansion of that segment.  The orange section of segment A is another particular way of showing the 

magnitude of the expansion of that segment.  Since the interest is on the internal interactions at interfaces of 

two segments at a time, elongations on the far left side of segment A and far right side of segment B are 

omitted. 

 

 

Figure 34.  Representative model of two consecutive segment experiencing differential expansion due to 

variance in effective coefficient of linear thermal expansion in the Z-direction. 
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As previously mentioned, segment B has a higher expansion magnitude as that of segment A.  

Therefore, the right side of segment A tends to be compressed and the left side of segment B tends to be 

elongated.  That is the interface boundary between segment A and B tends to move in the left direction on 

the right side of the curved beam.  On the left side of the curved beam, it would tend to move in the right 

direction.  The movement to the left is shown by the yellow shaded region. 

As the arc of the beam is spanned, there is internal strain in the beam in the X-direction.   Figure 

21 and Figure 22 show that there will be no internal strain in the X-direction in a straight beam under 

thermal loading.  However, Figure 25 and Figure 34 show that there will be internal strain in the X-

direction in a curved beam under thermal loading.  This residual strain due to thermal loading cannot be 

relieved due to the geometry of the beam.  Due to the nature of the effective coefficients of linear thermal 

expansion, even though the beam is under uniform thermal loading, the effective coefficients of linear 

thermal expansion create a pseudo non-uniform thermal loading equivalent situation.  In this case it is non-

uniform deformations due to thermal loading.  Therefore, stresses are induced.  Unlike the through 

thickness expansion case, there are no incompatibility issues to address in the longitudinal expansion case 

(however the compatibility relation will be used to help solve for the X-direction stresses). 

To ascertain the stresses in the X-direction in the curved beam utilizing the two segments and their 

internal boundary interface interactions, a pseudo mechanical load is created- see Figure 35.  This pseudo 

mechanical load is exactly its namesake, a mechanical load that does not exist in reality.  However, it 

would emulate the effect that the variances in the coefficients of linear thermal expansion have concerning 

the non-uniform deformations in the X-direction with respect to the boundary interface between two 

adjacent segments.  Therefore, this pseudo-mechanical load will be statically equivalent to the actual 

system.  This is a technique that is readily and often used in mechanics and will equally be valid in its 

application here.   
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Figure 35.  Representative model of two consecutive segment experiencing differential expansion due to 

variance in effective coefficient of linear thermal expansion in the Z-direction and a statically equivalent 

system using a pseudo mechanical load P. 

 

The pseudo mechanical load is defined as P.  Since it is used, a pseudo force-displacement 

relationship is needed to relate this force to the displacements that it causes.  Of course, this displacement 

would be the cumulative displacement due to the non-uniform deformations due to the thermal loadings.  

Therefore, the temperature-displacement relations will be used to relate the thermal load to the real 

displacements.  For congruency, the real displacement from the temperature-displacement relationship has 

to be equal to the pseudo displacement from the force-displacement relationship.  By defining a pseudo 

load P that could independently create the deformation created by the thermal loading in the curved beam, 

the stress in the beam can be ascertain indirectly by using a statically equivalent pseudo system.  

 For a statically equivalent system to be a valid system, it must be compatible system and in 

equilibrium.  By arranging the loading correctly (a trivial job) and assuming displacements are very small 

for each extremely infinitesimal interface region (inherently so by definition of these segments as defined 
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earlier and for small deformation theory which would apply here), any potential incompatibility issues that 

could arise are bounded and eliminated- see Figure 35.  Equilibrium is not established locally.  However, 

equilibrium is established globally for the whole beam.  As mentioned earlier, the loading conditions, 

deformations, and effective coefficients of thermal expansion are antisymmetrical about the mid span of the 

curved beam- see Figure 28,  

Figure 29, and Figure 31.  Hence the pseudo loads will cancel themselves out and the sum of the 

forces in the X-direction will be zero.  Furthermore, this equilibrium necessarily has the pseudo loads 

vanishing from the system globally.  Hence, the non-uniform deformations due to the variances of the 

effective coefficients of linear thermal expansion are left. 

Temperature-displacement: 

                                                                          ( )dsTAORANGE ∆=αδ                                                     (61) 

                                                                          ( )dsTBRED ∆=αδ                                                           (62) 

Force-displacement: 

                                                                          
EA

Pds
YELLOW =δ                                                                (63) 

Compatibility equation: 
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−=

αα

δδδ
                                                  (64) 

Taking Equation (64), the characteristic length ds of the segments of the beam can be cancelled 

out of the compatibility equation since it is common in all terms on both sides of the equality.  Since the 

beam is homogeneous and isotropic, the Young’s modulus EB and EA for segments B and A respectively, 

was replaced by an equivalent Young’s modulus E in Equation (63) as a matter of fact.  The areas AB and 
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AA that the mechanical load P acts on for both segments A and B are equal and were replaced by an 

equivalent area A in Equation (63).  After the latter changes, Equation (64) reduces to: 

                                                  ( ) ( )TT
EA

P
BA ∆−∆= αα                                                        (65) 

Rearranging terms… 

                                                                  ( )( )T
E

BA ∆−= αα
σ

                                                               (66) 

Solving for the stressσ … 

                                                                ( )( )TE BAX ∆−= αασ                                                           (67) 

The Aα  and Bα  in Equation (67) are the effective coefficients of linear thermal expansion in the X-

direction for segments A and B, respectively.  These coefficients are defined by Equation (48) and 

Equation (51).  

 MATLAB was used to calculate the stress variations in the X and Z directions for a simply curved 

beam that swept 180 degrees.  The material used was 6061-T6 Aluminum- see  

.  The thermal loading condition was FT o100=∆ .  The stresses were plotted and shown in Figure 36 

and Figure 37. 
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Figure 36.  Z-direction stresses for a curved beam under a temperature change of 100 degrees Fahrenheit. 

 

 

Figure 37.  X-direction stresses for a curved beam under a temperature change of 100 degrees Fahrenheit. 

 

 The net result of adding curvature into a beam is that a free-free beam (free to expand) will 

generate stresses under thermal loading.  For flat beams that are free-free (free to expand), it is well known 

that no stresses are generated.  The magnitude of the stresses that are generated are small compared to 
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stresses that generally develop in constrain structures of the same material under the same thermal loading 

conditions.  It should be noted that the stresses that show up as negative or positive in Figure 36 and Figure 

37 aren’t necessarily compressive or tensile, respectively.  The sign of these stresses aren’t calculated using 

the sign convention of compressive stress is negative and tensile stress is positive.  They are based on the 

coordinate systems define in Figure 26 and Figure 27. 

 From Figure 36, it can be seen that the stresses in the Z-direction on the top surface are all 

positive.  The stresses in the Z-direction on the bottom surface are all negative.  With the top surface under 

positive stresses and the bottom surface under negative stresses of equal magnitude for every segmental 

span of the curved beam, the Z-direction thermal stresses do not deform the shape of the simply curved 

beam.  The deflections caused by the positive stresses (forces) above the midline of the simply curved 

beam are cancelled out by equal magnitude but opposite direction negative stresses (forces) below the 

midline at the same X-point in the beam.   The midline of the simply curved beam is stress free.  In terms of 

the conventional nomenclature and sign convention for stresses, the simply curved beam is under tensile 

stresses of equal magnitude for both its top and bottom surfaces for every X-point in the beam. 

 From Figure 37, it can be seen that the stresses in the X-direction on the top surface on the left 

side of the curved beam are all positive.  The stresses in the X-direction on the top surface on the right side 

of the curved beam are all negative.  The stresses in the X-direction on the bottom surface on the left side 

of the curved beam are all negative.  The stresses in the X-direction on the bottom surface on the right side 

of the curved beam are all positive.  The effect of the stresses on the top surface of the curved beam is to 

cause the curved beam to spring-in.  The effect of the stresses on the bottom surface of the curved beam is 

to cause the curved beam to spring-out.  However, the stresses on the top surface of the beam are slightly 

higher than those on the bottom surface.  Therefore, the net effect on the beam is a spring-in effect due to 

the thermal stresses in the simply curved beam in the X-direction.  At the midline of the beam, the stresses 

in the X-direction are non-zero.  They tend to cause the simply curved beam’s shape to collapse on itself or 

spring-in. 
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 The spring-in effect is a well documented phenomenon in beams with appreciably curved sections 

that are thermally loaded.  This effect is rarely noticed in isotropic, homogeneous metals because the 

stresses are so small that the specimen experience negligible, reversible deformation that is hardly 

noticeable during a given thermal loading process.  Hence, after reverse the cooling, the deformation 

reverses as well and the original shape is recovered.  However, for composite materials, the mismatch in 

thermal expansion coefficient, anisotropic material properties in stiffnesses, Poisson’s ratio mismatches, 

and particular stacking sequences leads to readily noticeable spring-in effects that are sometimes 

irreversible. 

 It should be noted that this spring-in effect is extremely small.  First, in Figure 38 the sum of the 

stresses (the stress resultant at the mid-arc of the simply curved beam) in the global Cartesian coordinate 

system are shown.  As mentioned earlier, the stress resultant in the Z-direction is zero throughout the span 

of the arc.  The stress resultant in the X-direction is non-zero throughout the span of the arc except at the 

part of the beam where the segment is at a zero angle.  Note:  The abscissa is slightly shifted to the right.  

This is due to the nature of the MATLAB code used to numerically calculate the stress resultants.  The X-

direction stress resultants are extremely small in magnitude.  Hence, the spring-in effect is hardly 

noticeable for isotropic material metals such as aluminum. 

 

Figure 38.  Stress resultants for simply curved beam in the global Cartesian Coordinate system. 
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To solve the statically indeterminant problem, the Author developed the fixed-fixed case for the 

simply curved beam.  That is, the statically indeterminant problem is a fixed beam problem where the beam 

is simply curved.  However, the reaction forces from the fixed ends are added to the solution.   The stress 

resultants for the free-free case at the mid-arc of the beam are zero or negligible, these will be neglected in 

this derivation.   

This solution is a variation in the fixed-fixed case for a flat beam, see Section 2.2.1.  In this case 

the end of the beam is at an angle.  The wall is still parallel to the face of the beam; yet, this surface (the 

wall and the face of the beam) is at an angle to the global Cartesian coordinate system.  This means there is 

a reaction from the wall perpendicular to the face of the beam in contact with the wall.  This face is at an 

angle lying in the XZ-plane.  Therefore, there is a reaction from the wall in both the X- and Z-directions.  

However, to facilitate the solution, the original reference frame will be that local to the differential segment 

that is adjacent to the wall.  This reference frame will change for each differential segment because each 

segment is oriented at a slightly different angle than the previous and seceding segment- see Figure 24 and 

Figure 25.  As a result, the reaction force from the wall (whose orientation does not and cannot change) has 

a different effect on each segment- see Figure 39. 

 

Figure 39.  Representative section of one end of a simply curved beam that is fixed. 
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 If the wall is removed from Figure 39 and the reaction due the thermal expansion (contraction), 

the reaction force from the wall will be perpendicular to the segment of the curved beam that is adjacent to 

the wall- see Figure 40. 

 

Figure 40.  Representative reaction on curved beam section adjacent to wall. 

 

The next infinitesimally small segment of the curved beam to the left of the section of the curved beam 

adjacent to the wall is at a slightly different angle with respect to the wall.  Figure 39 gives a representative 

view of this where the dotted line represents the next infinitesimally small segment of the curved beam.  Of 

course, Figure 39 is not to scale and is exaggerated to make it easier to visualize.  Since the wall doesn’t 

change it orientation and the section of the curved beam adjacent to the wall doesn’t change its orientation, 

the next infinitesimally small segment will be at an angle to the reaction force.  That is the reaction force 

will no longer be perpendicular to the face of that segment as the adjacent face is in Figure 40.   

 With straight, fixed-beams, the beam can be cut along any section and the internal force resultant 

due to the reaction from a wall will be equal in magnitude to the reaction and equivalent in direction.  This 

is gained by using a free-body diagram of the overall beam (Figure 41) and the cut-section beam (Figure 

42). 
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Figure 41.  Representative view of a flat, fixed-beam. 

 

 

 

Figure 42.  Representative view of flat, fixed beam with a section cut at beam length x.  The internal force 

resultant (R) from the reaction force is shown. 

 

With the curved beam the orientation of the exposed face with respect to the internal force resultant shown 

in Figure 40 will not be the same for every section cut as it would be for the case shown in Figure 42.  The 

internal force resultant will have two components; one component perpendicular to the exposed face and 

one component tangential to the exposed face- see Figure 43. 
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Figure 43.  Representative view of a section of the curved beam with internal stress resultants. 

 

 For this schematic’s purpose, the angle θ  is the angle spanned by the simply curved beam.  

Therefore, the section shown in Figure 43 is the right half of the curved beam.  The sectioning of the beam 

goes from left to right.  The angle formed by this section with respect to the section of the beam that is 

always horizontal (like a flat beam), the mid-span section, isα .  σN is the internal stress for a flat beam.  

This solution must be ascertained first just as was shown in Section 2.2.1.  σT is the tangential component of 

σN along the face of the given section.  σL is the longitudinal component of σN along the face of the given 

section.  As the section increments from the mid-span of the simply curved beam to the end of the beam, 

the tangential and normal stress on the exposed face of a given section varies trigonometrically with the 

given arc location. 

 From Figure 43, the relationship for σL and σT  are as follow:  








 −= α
θ

σσ
2

cosNL            






 −= α
θ

σσ
2

sinNT  
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A model of a simply curved beam was used that was fixed on either longitudinal end.  That material was 

6061-T6 Aluminum- see  

.  It was subjected to a thermal loading of ∆T=100 
o
F.  The above equations for the segment longitudinal 

and tangential stresses were numerically calculated in MATLAB.  The length of the model was 1.5 inches.  

The angle spanned of the model was 120
o
.  The following plots are the tangential and longitudinal stresses 

throughout the internal segments of the simply curved, fixed-fixed beam. 

 

 

Figure 44.  Global Cartesian X-stresses for the isotropic curved beam with a 120
o
 arc for top and bottom 

surfaces under free-free expansion. 
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Figure 45.  Global Cartesian Z-stresses for the isotropic curved beam with a 120
o
 arc for top and bottom 

surfaces under free-free expansion. 

 

 

Figure 46.  Global Cartesian total stresses for the isotropic curved beam with a 120
o
 arc for top and bottom 

surfaces under free-free expansion. 
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 It can be seen from Figure 44 and Figure 45 that the X-stresses and the Z-stresses follow the same 

trend as discussed earlier.  The overall result of this stresses, the sum at each given segment, is shown in 

Figure 46.  As previously stated, the Z-stresses are zero at the mid arc surface (the mid-plane equivalent for 

curved surfaces). However, the X-stresses are non-zero.  The stresses at the mid-arc surface are small, yet 

they would generate some very small deflections in the simply curved beam.  On the left side of the curved 

beam, the X-stress resultants are in the positive (rightward) direction.  On the right side of the curved beam, 

the X-stress resultants are in the negative (leftward) direction.  The result is the beam is pushed inward.  

This inward motion is generally referred to as the spring-in effect.  It is mainly characterized for 

composites since the anisotropic nature of the material and the unique stresses that generate in curved 

specimen amplifies the spring-in effect to a point where it is readily noticeable to a careful discerning eye.  

However, as this analytical solution shows, this is not readily noticeable for isotropic material because of 

the extremely small forces and the resulting extremely small deformation.  Hence, it is not often recognized 

or discussed.  These deformations are negligible in magnitude.   

Figure 47 shows the local stresses for each differential segment of the beam in that segment’s 

longitudinal and tangential direction.  These stresses are in the general sign convention for stresses, that is 

negative stress is compressive and positive stresses is tensile.  The longitudinal stresses at the face adjacent 

to the wall are equivalent to that in a flat fixed-fixed beam under similar thermal loadings that is isotropic 

and of the same material.  These stresses decrease in magnitude at an increasing rate until they reach a 

minimum at the mid-span of the simply curved beam.  The rate is non-linear.  The tangential stresses at the 

face adjacent to the wall are equivalent to that in a fixed-fixed beam under similar thermal loadings that is 

isotropic and of the same material.  These stresses increase in magnitude until they reach a maximum at the 

mid-span of the simply curved beam.  The stresses increase in magnitude at decreasing rate.  The rate is 

non-linear but is extremely close to a linear rate. 
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Figure 47.  Global Cartesian curved stresses for the isotropic curved beam with a 120
o
 arc for top and 

bottom surfaces under fixed-fixed constraint. 

 

2.2.6   Classical Lamination Theory (CLT) Solution For Curved Model 

 CLT has been used to take laminate level analysis to the structural level.  This is done by shifting 

and rotating a number of laminates in space such that a structure consisting of a finite number of laminates 

is formed.  Behind this physical action, there is a mechanical (solid mechanics) action as well.  This 

requires the shifting and rotating of a number of stiffness matrices of the laminates in space such that the 

overall stiffness for the structures is emulated.  For curved structures, the physical action consists of 

bending the laminate into an arc section, circular section, or an elliptical section.  For curved structures, the 

mechanical action consists of laminate stiffnesses that are continuously rotated and shifted in space to form 

an effective curve section where the overall stiffness for that structure is emulated.  Of course for this to be 

exact, an infinite number of laminates that are truly continuously rotated in space would have to be used.  

However, the laminates are shrunk in width to a sufficient size and rotated in space to a sufficient fineness 

such that a smooth curved structure can be approximated to a high degree of accuracy.  Geometrically, this 

is a sound principal and is valid.  
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 A number of students, engineers, and researchers have used this method to define composite 

structures with laminates of different orientations and locations that define a given structural shape.  

However, the results of this work are erroneous.  The reason is because the basic, traditional, non-modified 

classical lamination theory is incapable of representing stiffnesses and compliances in directions 

perpendicular to the XY-plane (where the XY-plane is where the laminate stiffness and compliances are 

defined).  This is necessary to represent these types of structures that are no longer plane.  

 The key to understanding this is rudimentary.  The first problem arises in how traditional one-

dimensional beam problems are solved for displacements, strains, forces, moments, and stresses in the 

plane of the beam (or in the plane of the paper upon which the given solution is ascertained).  At the 

beginning of mechanics of material and deformable-bodies books, the problems are stated to be three-

dimensional.  However, to facilitate solutions using one-dimensional formulations for parameters in the 

plane of the structure (or paper), it is assumed that the problem has unit depth.  This allows the whole 

problem to be drawn in a plane (which would be a piece of paper).  Yet assuming unit depth into or out of 

the plane (paper) does not collapse the problem geometry from three-dimensional to two-dimensional.  It 

basically allows representation (not actuation) of the problem two-dimensionally to facilitate solving the 

problem by hand on paper.  Of course, the mechanics are still one-dimensional.  This assumes variations of 

parameters into or out of the plane are zero or the parameters are constant through the depth of the plane.  

Therefore, the one-dimensional beam mechanics is often used on a two-dimensional representation that 

applies to a three-dimensional problem (assuming no variation through the depth of the plane- into or out 

of). 

 Thus, when beam is rotated or shifted in space with these problems, using traditional displacement 

relationships and rotation matrices suffices to accurately describe these problems.  The rotations are always 

three-dimensional (geometrically).  However, all the parameters for a problem as defined in the previous 

paragraph have no variation through the depth are zero.  This allows the collapsing of the rotation matrices 

for these problems to 3x3 and 2x2 matrices depending on the particular type of formulation, parameter 

being modified, and type of problem.  Yet, these problems are still geometrically three-dimensional.  For 
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solving by hand, the method existing when the solutions for these problems were formulated before the age 

of the digital computer, the two-dimensional representation of the problem was sufficient assuming no 

variation through the depth (into or out of the paper).  For isotropic problems, in light of the previous two 

sentences and based on the assumptions found in almost all mechanics of deformable bodies and mechanics 

of material textbook, the one-dimensional mechanics to ascertain parameters in two dimensions (in the 

plane of the paper) was sufficient.  That is, all parameters (with appropriate reservations) in the plane of the 

problem could be defined using one-dimensional mechanics.  The solution was visibly assisted by taking 

two-dimensional representations of the problem on paper, assuming unit depth for a three-dimensional 

geometry. 

 The key fact here is that rotations out of the plane are equally valid for these problems because the 

one-dimensional mechanics and the parameters that are a function of it will not change.  The three-

dimensional nature of the problem doesn’t change either.  That is, rotating the geometry about three axes 

and translating in three directions doesn’t change the shape of the specimen being examined.  The only 

difficulty comes in visual picturing of the problem on paper (two-dimensional) to facilitate the solution of 

the problem for complex geometries under a complex set of rotations and translations.  Because of this and 

confusing transformations vectors or matrices with getting components of vectors (two completely different 

things that utilize trigonometric functions), many have also applied three-dimensional rotations to plane 

problems too. 

 This is where the first problem arises.  It is easiest to think of a two dimension problem (not one 

that is a three-dimensional problem that has been characterized with unit depth, it is still three-dimensional 

and not two dimensional) as a system like planet earth that is flat, a plane.  This plane is so because in the 

plane of the two dimensional problem, the two orthogonal directions extend to infinity.   Therefore, no 

matter how thick the domain is, relative to infinity it will always be a plane.  Everywhere outside this 

system is empty space like outer space, the environment.  Both the environment and the system exist in a 

volumetric realm that is infinite in length, width, and height.  The entities can only exist in the system (flat-

earth).  Outside this system they are not define and cannot exist (outer space/the environment).   When the 
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system is rotated in its plane, its entities have not transcended to a realm where they aren’t defined and 

where they cannot exist.  Remember, this domain is infinite in length and width inside a volumetric realm 

that is infinite in length, size, and height.  However, when the system is rotated outside of its plane, its 

entities now exist in a realm (the environment) where they are not define and cannot exist- see Figure 48. 

 

 

Figure 48.  XY-plane and a plane rotated about the X-direction. 

 

 The black plane is the XY-plane and is defined as the system; this is where all the entities are 

defined and exists.  Take the ply stiffness matrix in the laminate coordinate system defined in Section 2.2.2 

as an example.  By its derivation and essence, it is only defined in the XY-plane. Its components are all in 

terms of X and/or Y.  Nothing is defined for any other plane, and nothing is in terms of Z.  The red plane is 

some plane that exists once the XY-plane has been rotated by some angle Xθ about the X-axis.  It can be 

readily seen from inspection that some of the parameters defined in the XY-plane will now have 

components in the Z-direction whereas before they didn’t.  This is what happens when a plane stress, plane 

strain, etc. problem is rotated out of its plane.  It is a two-dimensional problem that is rotated in-part into a 

third dimension where its parameters don’t exist.  Once defined explicitly in terms of two-dimensions, the 
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definition is set.  They cannot be defined in terms of the third dimension.  This is the case for the whole 

plane.  This isn’t mathematically sound or mechanically sound.  Hence, it is not valid and not possible.  All 

results gained from this process are erroneous. 

 Another example whose trivial nature leads to errors in its use is the vector and its components.  

Take a vector 1F  that is defined in three-space.  This vector is shown to be ktjsirF ++=1 .  The 

components (r,s,t) of the vector 1F are some arbitrary values that can be either zero or non-zero.  This 

vector can be rotated about any axis or set of axes for more than rotation in any combination.  The resulting 

vector would be a valid vector, its components would be defined in third-space, and that vector would exist.  

Take a vector 2F that is defined in two-space.  This vector is shown to be jsirF +=2 .  The components 

(r,s) of the vector 2F are some arbitrary values that can be either zero or non-zero.  This vector can be 

rotated about the axis that is perpendicular to this particular two-space only.  The resulting vector would be 

a valid vector, its components would be defined in two-space, and that vector would exist.  Now take the 

vector 1F and set the k component coefficient to 0.  Now 1F  is defined as kjsirF 01 ++= .  Here is 

where the errors began to occur.  At face value it would seem from inspection that the new 1F is the exact 

same as 2F : jsirFkjsirF +=≡++= 21 0 .  This is assumed because traditionally 

jsirkjsirF +=++= 01 is taken as fact.  This is sort of correct but with a two important caveats. 

 First, new 1F is not the exact same as 2F .  The first reason is the first caveat.  1F exists only in 

three-space, and 2F exists only in two-space.  These spaces are different dimensional essences.  They can 

share all the same properties and characteristics save that those concerning the missing dimension in two-

space with respect to three-space.  Imagine trying to fit the Al-Khalifa Tower into an urban car garage of at 

least the same width and length but obviously different height.  The Al-Khalifa Tower’s  size relative to an 

urban car garage can be assumed to be three-dimensional (in three-space), and the typical urban car garage 
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can be assumed to be two-dimensional (in two-space, plane) relative to the Al-Khalifa Tower.  If one were 

to try to fit the Al-Khalifa Tower building into car garage, it would be an utter failure.  It would be 

ludicrous to even think about such much less try it.  Likewise for trying to fit ktjsirF ++=1  

into jsirF +=2 , even though r and s are the same for both vectors.  There are no mechanisms to enable 

such to happen without absolutely destroying the three-space entity, in this case the Al-Khalifa Tower.  

After such destruction, it would not be possible to reverse the process and recover the three-space entity- 

the Al-Khalifa Tower.  Even though the new 1F has the same image and span as 2F , they exist in different 

systems.  Each system is an environment relative to the other system where that system’s entities aren’t 

defined and cannot exist.  This leads to the second caveat. 

 At face value jsirkjsirF +=++= 01 appears to be identical to jsirF +=2 .   They have 

the same image and span.  In part, they are identical.  However, they exist in different realms.  For an entity 

to exist, it must be defined first.  However it is defined determines its essence and its behavior.  1F  was 

define in three-space, and 2F was defined in two-space.  So even though they may be identical in 

appearance, they are in two incompatible spaces.  This fundamental definition of vectors and spaces can be 

(and generally is… out of ignorance) ignored.  For problems that are inherently three-dimensional but use 

unit depth concepts, etc. to resolve the problem into a visually two-dimensional problem to facilitate the 

solution process, this equating of the two is inconsequential.  This is because the new 1F  and 2F  have the 

same image and space; but, the problem hasn’t actually changed from three-space to two-space.  Its 

appearance for the solutions sake (appearance as one writes on paper, a two-space too) is two-dimensional 

because the writing on paper and visualizing what is own paper is a mapping to a two-space system, the 

paper.  However, this is often incorrectly seen as a two-dimensional (two-space) problem.  But unless 

explicitly defined as such, it generally isn’t two-dimensional but three-dimensional.  This error is 

exacerbated because for simplicity, jsirkjsirF +=++= 01 .   
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This expression for 1F  is wrong.  This is actually saying that the third component and its 

direction have vanished.  Does a three dimensional coordinate system lose one of its axes if the coefficient 

of a vector that exists in that three-space goes to zero?  Of course not!  So jsirkjsirF +=++= 01 is 

technically wrong.   When this is done, the three-space entity is defined as a two-space entity because one 

of the coefficients along a given direction is zero.  This is as ludicrous as defining a three-space vector as a 

vector that exists in infinite-space because one of its coefficients has a magnitude that approaches infinity.  

An infinite number of components cannot be added to the vector F since one of the coefficients of a given 

component is near or at infinity.  Likewise, the deletion of one of the components of a vector since one of 

the coefficients of a given component along a given direction is zero is incorrect and impermissible:  The 

upshot → jsirFjsirkjsirF +=≠+=++= 21 0 . 

 Refer back to Figure 48:  The problems shown with the vector example are exacerbated by 

transforming a plane problem (two-dimensional) in such a way that it is transformed out of its plane.  No 

problems exist if the plane problem is translated in its plane or translated perpendicular to its plane as long 

as it stays parallel to the plane in which it was defined.  This condition is satisfied for only one rotation for 

a plane problem, rotation about the axis perpendicular to the plane that the problem is defined in. 

 The Author derived a relationship for displacements in three-space- see Appendix C.  Interpreting 

the derivation process and the results thereof shows something that is generally ignored but is self-evident.  

Displacements in the X-direction can only exist in planes for which X is defined; that is, displacements in 

the X-direction can only exist in the XY- and XZ-planes.  Displacements in the Y-direction can only exist 

in planes for which Y is defined; that is, displacements in the Y-direction can only exist in the XY- and 

YZ-planes.  Displacements in the Z-direction can only exist in planes for which Z is defined; that is, 

displacements in the Z-direction can only exist in the XZ- and YZ-planes.  This hearkens back to the 

essence of what was stated earlier.  This means displacements fundamentally exist in a plane (two-space), 

not in volume (three-space).   
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For a displacement to occur in volume (three-space), it must be defined by two mutually 

orthogonal planes both independently and mutually at the same time and space.  This allows the 

displacements to occur in the planes (a fundamental must) and for the displacement that exist in one plane 

to be coupled to another mutually perpendicular plane without violating the latter arguments concerning the 

connection between two-space and three-space. 
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 It can be seen in Equation (68), Equation (69), and Equation (70) that displacement u = u(x,y) = 

u(x,z), v = v(x,y) = v(y,z), w = w(y,z) = w(x,z).  Inside the brackets the later functional dependence is 

obvious.  Outside the second bracket for each displacement there is a variable distributed against the 

bracket that is not in the plane that the given displacement is defined in.  That is that variable is in a 
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direction perpendicular to the plane defined by the variables in the brackets.  This variable is the conduit 

that allows the displacement to be realized in three-space even though it is defined in two-space (on a 

plane).  This can happen because each displacement is defined by two mutually perpendicular planes.  

These two two-space systems are unionized by the variable that is in a direction perpendicular to those 

variables.  That variable in one equation for a given displacement on a plane is the conduit to the other 

equation for the same displacement direction on the second plane.  This is the case for the second variable 

in the counterpart equation. 

 Since each displacement is defined on a plane and each plane is define within itself in the infinite 

volumetric space, it is permissible for these planes to be shifted such that they intersect each other.  The 

points in this union of planes where (x,y,z) are defined are the permissible locations for the displacement to 

be realized in three-space even though it is defined in two separate two-space systems.  Looking at 

Equation (68), Equation (69), and Equation (70), the mid-plane strains are equivalent for each expression 

for a given displacement.  This is a must.  If they were different, it would be self-evident that there would 

be two different locations for a given displacement; this, of course, is not possible and is an incompatible 

deformation.   These mid-plane displacements are about a mutually common direction for two mutually 

orthogonal planes.  This is the second mechanism (besides the distributed variable in the direction that is 

perpendicular to the plane upon which the displacement is defined).  As it is with the mid-plane strains, so 

it is with the out of plane deformations- the curvatures.   

Note: Even though the curvatures are out-of-plane, the latter arguments aren’t violated since CLT is also 

compatible with small strain theory.  These curvatures are thus still in a space that is defined as the plane 

because the deformations are assumed to be very small.  For very large strains or large deformations, a 

completely different set of relationships exist while still maintaining the latter arguments. 

 For these displacements to be potentially permissible displacement, strain-displacement 

compatibility relationships must be satisfied.  These were shown to be satisfied by using MATLAB- see 

Appendix D.  The following relationships that were satisfied are: 
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Strain-displacement compatibility: 
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Second order (curvature) compatibility between normal strains and shear strains: 
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By showing compatibility of Equation (68), Equation (69), and Equation (70), these deformations are 

compatible and permissible.  No other caveats or assumptions were used in the derivation of these three 

equations.  Hence, it is valid for all materials and material compositions.  No gaps, wholes, etc. will 

develop in the structure due to any type of loading because of the deformations save such situations were 

failure due to material strength is concerned. 

 What the derivation of Equation (68), Equation (69), and Equation (70) and the previous 

arguments shows is that a rotation of a plane system (in this case a problem developed from CLT) out of its 

plane is not permissible and all deformations, strains, stiffness, etc., defined after such a process are invalid 

and erroneous.  Vishal Sanghavi (my lab partner under Dr. Wen Chan) examined this problem with a 
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composite I-beam.  The parameter that was being analyzed was the shear center for Vishal’s Thesis [12].  

Below is the result he formulated which provides an example to show all above latter assertions and 

arguments (the following is the verbatim argument): 

Reasons for the failure of complete/overall ABD matrix approach to predict shear center: 

It was observed that the shear center predicted by complete or overall ABD matrix approach 

presented by Syed [11] failed to predict the shear center for the I beam (isotropic and composite) and the 

error was huge. According to Syed [11], the overall ABD for the I-Beam structure is calculated by the 

following method: 
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Thus, for web the ABD matrix will have only 4 non-zero terms and will be as follows: 
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On investigating, the following reasons were found because of which the overall ABD matrix theory fails 

to predict the correct or comparable shear center: 

Reason 1:  

In I-Beam the bending loads are resisted by the flanges and the shear loads by the web. Thus web 

contributes for the major percentage of the shear stiffness while the flanges contribute for the major part of 

the bending stiffness. In composites the different stiffness are given by the following elements of the ABD 

matrix; 

A11 = Axial Stiffness per unit width;             A66 = Shear Stiffness per unit width;  

D11 = Bending Stiffness per unit width;             D66 = Twisting Stiffness per unit width;  
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From the rotated laminate stiffness of the web [ABD]W we observe that the web has only axial stiffness and 

bending stiffness while the shear stiffness and twisting stiffness are equal to zero.  Thus there are some 

major errors in the method proposed by Syed [11]. 

Reason 2:  

 When the web ABD matrix is rotated by (-90)
o
  with respect to x-axis, the original (un-rotated) 

ABD matrix of the laminate should be achieved, but that is not the case with this method. 

Reason 3: 

 As proposed the shear center depends on b66 and d66 elements but as the web does not contribute to 

the b66 and d66 element, the shear center predicted is not correct. 
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zcentershear sc −=≡  

But centroid depends on the b11 and d11 elements of the overall ABD matrix, and web and flanges both are 

contributing for the b11 and d11 elements and hence the overall ABD matrix approach gives comparable 

centroid location with centroid location equation shown below. Also as the logic of shifting the ABD 

matrix of flanges are correct and as flanges contribute the major percentage of the bending stiffness and the 

axial stiffness, the overall ABD matrix approach gives comparable results for both of them too.  
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Reason 4: 

 If we carefully observe [ABD]w  for the rotated laminate stiffness matrix for the web we can 

deduce that the matrix is a singular matrix and hence we cannot have the constitutive relationship shown 

below: 
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Reason 5: 

 Web should possess plane stress properties i.e. 2D properties as CLT is based on plane stress 

assumption. But looking at the [ABD]w  we derive that web only has properties in global x-direction. Even 

though the web laminate is made of composite material, it losses all its coupling effects with the other 

direction which in our case is global z- axis. 

End of Vishal Sanghavi’s argument. 

 From the examples, arguments, and assertions the Author listed and the example provided by 

Vishal Sanghavi, it is now self-evident that the previous methods of taking the standard, non-modified, 

CLT from the laminate level to the structural level by rotating laminates out of their planes is incorrect and 

would provide incorrect results.  A simply curved beam would require shifting the laminates in space and 

continuously rotating them along an arc (which would require rotating the laminates out of their planes) to 

appropriately alter their stiffnesses and compliances in a way that is commensurate with the given 

geometry; CLT cannot be used to evaluate such structures.  Therefore, there is no CLT formulation for a 

simply curved beam whose curvature requires extension of the laminates into a plane perpendicular to the 

plane in which the laminate is defined.  This is the case for the standard CLT without extensive alterations 

in both the shear, stiffness, and compliance terms. 

 Furthermore, for each per unit length segment of the simply curved beam, the axial, bending and 

twisting stiffness will change continuously throughout the structure.  These stiffnesses at each unit span of 

the curved beam would be inherently coupled to the stiffnesses of the other unit spans.  Since the traditional 

methods of developing a structural stiffness (and compliance) matrix requires stiffnesses for a laminate to 
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be constant throughout the span and the width of the said laminate, it is not possible to express an ABD or 

abd matrix for a simply curved beam and be mechanically and mathematically correct using standard 

classical lamination theory. 

2.2.7  Finite Element Method Solution For Isotropic Curved Model 

 In order to develop a comparable finite element method solution for the isotropic curved model, 

particular care must be taken.  The first reason for this is that with all comparisons in mechanics, the most 

relevant, meaningful, and accurate comparisons are those in which the systems have equivalent geometry, 

equivalent material properties, equivalent loading conditions, and equivalent states.  One of the key 

comparisons that aren’t readily obvious if equivalency is met is the state comparison.  The analytical 

solution derived by the Author is a solution in which the simply curved, isotropic beam is in a state of plane 

stress.  The plane that the plane stress condition exists in is the XZ-plane.  It is not possible or mechanically 

correct to compare a plane stress problem with a non-plane stress problem in order to validate mechanical 

behavior or methods.  The material response, stress and strain results, will be different. 

 For instance, take a beam that is fixed at each longitudinal end, is isotropic, and under thermal 

loading.  There is a need to validate a given method for a flat beam.  One method of verification is to use a 

plane stress method (2D), such as CLT.  Another method of verification is to use a method that is not a 

plane stress method but one that has the potential to express stresses out of the given plane (3D), such as 

finite element method programs.  If the given loading conditions are such that the finite element model 

shows 3D stresses, those results that are in the plane of interest of (for instance the XY-plane) CLT will not 

match.  The only way those stresses would match is if the loading conditions are such that the finite 

element model shows 2D stresses in the plane of interest of CLT.  That is both problems must be XY-plane 

stress problems.  This is quite different from taking the solutions from a 1D analytical beam problem and 

using the knowledge of the Poisson’s ratio effect on the strains due to mechanical loads to utilize a 3D 

stress solution as was done in Section 2.2.1. 
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 Furthermore, take two models.  One model doesn’t account for some given type of shear.  The 

second model does.  These models are being used to ascertain a given stiffness parameter for a structure.  If 

the shear is not present in the structure being modeled, both models (assuming all else was derived and 

built correctly) should give equivalent or very near comparable stiffnesses.  This is because the shear term 

in the second model goes to zero, and the model then reduces to a form that is equal or equivalent to the 

first model.  However, if the shear is present (especially if it is significantly present), the second model will 

generally give stiffnesses that are lower than the first model that doesn’t account for shear.  Therefore, it is 

important to have problems of the same state and correct model (all other things being equal) in order to 

correctly ascertain the behavior a structure.  It is very easy to use a model and get results.  However, even 

though the solution form may be correct, its ignorant usage can lead to erroneous results.  When comparing 

distinct models of different natures, this equivalency is a must or the results will diverge.  With this 

divergence, it is nearly impossible to ascertain which model is giving the correct results without some 

reference solution. 

 The same situation occurs for the finite element method solution for the curved beam.  The 

purpose is to validate the MATLAB finite element code and verify that it produces correct results.  It will 

then be used for further analysis with the confidence that it is robust.  This is done by comparing its results 

with existing analytical theory, ANSYS, and personally developed analytical solutions.   However, there 

must be a known solution that can serve as the reference point that is generic and can be applied to a 

number of cases successfully.  As stated in the introduction, no such solution is known to exist to the 

Author or any professors to whom the Author has spoken to concerning such.  There isn’t an analytical 

isotropic solution that is free-expansion or fixed-fixed for simply curved beams under thermal loadings.  

Hence, the Author derived a form of an analytical solution for the isotropic, simply curved beam under 

free-expansion and under fixed-fixed constraint; but, this solution is a plane (XZ) stress solution.  Any 

isotropic curved beam under any type of load will experience some type of uniform or non-uniform 

bending that will create appreciable 3D stresses once that beam is under a statically indeterminate 

configuration.  The situation is even worse for composite, simply curved beams.   
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 When researchers approach this problem, they have tried to develop analytical solutions but have 

failed to completely encapsulate all the necessary mechanics and give accurate solutions.  The solution 

developed by the Author is the most involved solution to His best knowledge put can only handle isotropic 

cases that are in simple XZ-plane stress conditions.  The unique thermal loading condition for a statically 

indeterminate (isotropic or composite) structure that results in only plane (XZ) stresses would have to be 

that which is non-uniform.  That is, since this thesis is on uniform thermal loading of a simply curved 

composite, it is not possible to compare any finite element results from the MATLAB program to that of 

the analytical solution.   This will be explored further during the composite flat beam validation process.  

Therefore, most researchers resort to finite element analysis from commercial software or use modified 

shape functions, stiffness and compliance parameters, functional multiples against strains and stresses, etc. 

to model isotropic and composite simply curved beams.  However, all results must be verified by some 

known solution (either analytical or experimental).   Also, finite element programs and models are only as 

accurate as the type and validity of the model built. 

2.2.8  Validation Of Finite Element Analysis Program For Isotropic Curved Model 

It suffices at this point to say that any curved specimen under any type of loading at any location 

of that specimen will experience bending and shear.  These two will undoubtedly lead to stress conditions 

that are not XZ-plane as the analytical solution derived by the Author.  This situation is even more 

complicated if the specimen is statically indeterminate.  Therefore, it is not possible to use the finite 

element analysis (either from MATLAB, ANSYS, or any other program) to verify the validity of the 

analytical solution developed by the Author.  The analytical solution meets the necessary conditions for 

validity but it can’t be verified whether it meets the sufficient conditions.  This is doable only with 

experimentation which can create a solution baseline that can be used as a reference point.  These results 

are repeatable, and sufficient conditions can be define explicitly in term of stress, strain, or displacement 

results for a given configuration under a certain type of loading condition.  This situation arises for 

composite structures as well and will be visited in detail in Section 2.2.11 and Section 2.2.12. 
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2.2.9  Proof of Isotropic Curved Model Reducing To Isotropic Flat Model As Radius Of     

 Curvature Goes To Infinity 

 For the simply curved beam formulation for the effective coefficient of linear thermal expansion, 

the elongations, and the stresses, they must reduce to the flat beam solution as the radius of curvature goes 

to infinity.  This condition is necessary for having a correct simply curved beam parameter formulation but 

is not sufficient.  That is reducing to the flat beam solution as the radius of curvature goes to infinity is 

mandatory but not necessarily all that is required.  In order to see if this minimum, mandatory standard is 

reached Equation (48) and Equation (51) have the arguments modified to reflect a radius of curvature that 

tends to infinity.  This is done by setting the phi angles to zero.  That is, as the radius of curvature tends to 

infinity, each segment is parallel to its neighbors- flat beam. 

It can be seen that the effective coefficient of linear thermal expansion for the upper and lower 

halves of the segments reduces to that for a flat beam when the angles Bφ  and Aφ go to zero. 
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These results coincide exactly with what Figure 19 and Figure 22 show should occur for the flat beam.  For 

the elongation, it is a rudimentary exercise in finding the product between the coefficient of linear thermal 

expansion, the change in temperature, and the reference dimension.  This shows that there are no internal 

expansions in the longitudinal direction in a flat beam.  Hence, there are no internal strains or stresses.  This 

also shows that all internal expansions in the thickness direction above the midline of the segments of a flat 

beam are positive and below the midline of the segments of a flat beam are negative.  Note the sign of the 

effective coefficient of linear thermal expansion are not with respect to the traditional sign convention 
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where positive expands and negative contracts.  It is with respect to the global Cartesian system coordinates 

defined in Figure 26 and Figure 27. 

 This derivation was based on the fundamental geometry of a curved section, a one-dimensional 

isotropic beam that has free-free ends, and fundamental thermal expansion principals.  Hence, there is no 

need for any special type of verification of this method since it fall within all the norms typically used in 

mechanics of materials that have already been proven and verified.  The effective coefficient of thermal 

expansion reduces correctly to the case of a flat beam as the angle between consecutive segments/elements 

goes to zero.  This derivation fulfills the necessary conditions for a curved beam under thermal loading. 

 MATLAB was used to verify analytically the method developed for ascertaining the effective 

coefficient of thermal expansion in curved beams- see Appendix E.  The test material was 6061-T6 

Aluminum- see  

 and Figure 49, Figure 50, Figure 51, and Figure 52.  In Figure 52, it may originally appear that X-direction 

elongations aren’t zero.  However, they are to the power of -15.  That is six orders of magnitude smaller 

than that of the Z-direction elongations.  Hence, due to the numerical precision in MATLAB these are 

shown as non-zero but are practically zero. 
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Figure 49.  Effective coefficient of linear thermal expansion for internal segments for the top section of 

consecutive segments. 

 

 

Figure 50. Effective coefficient of linear thermal expansion for internal segments for the bottom section of 

consecutive segments. 
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Figure 51.  Effective elongation for internal segments for the bottom and top surfaces using a unit change in 

temperature and a unit reference dimension.  Z-Direction. 

 

 

Figure 52.  Effective elongation for internal segments for the bottom and top surfaces using a unit change in 

temperature and a unit reference dimension.  X-Direction. 

 

 The stresses for the approximately flat beam in the Z-direction are shown by Figure 53.  Looking 

at Figure 53, it can be seen that the bottom surface stresses are zero.  The top surface stresses don’t appear 

on the graph because they are plotted first.  Since they are the exact same value throughout the domain, the 

bottom surface stresses cover them up since they are plotted last.  Therefore, the top surface stresses are 

also zero throughout the domain.  This confirms the case for flat beams under thermal loading.  There are 

no stresses in the Z-direction.  These stresses were calculated using Equation (60). 
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Figure 53.  Stresses in the flat beam due to thermal loading for the top and bottom surfaces.  Z-Direction. 

 

The stresses for the approximately flat beam in the X-direction are shown by Figure 54.  Looking 

at Figure 54, it can be seen that the bottom surface stresses on the left side of the approximately flat beam 

are approximately zero and positive.  The bottom surface stresses on the right side of the approximately flat 

beam are approximately zero and negative.  The top surface stresses on the left side of the approximately 

flat beam are approximately zero and negative.  The top surface stresses on the right side of the 

approximately flat beam are approximately zero and positive.  The situation here parallels that shown and 

explained earlier in Figure 44.  The major difference is that the stresses are approximately zero (to the 

hundred-millionths place).  This evidently means that the approximately flat beam, the radius of curvature 

isn’t at infinity but tends to infinity for this beam, has zero stresses in the X-direction.  This is what is 

exactly to be expected for a very well known and understood case of a flat, free-free beam that is under 

uniform thermal loading.  It is also interesting to note that in Figure 44, the top surface stresses where 

similarly distributed but of slightly higher magnitude than the bottom surface stresses.  This resulted in a 

spring-in effect.  However, for the approximately flat beam the X-direction stresses for the top and bottom 
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surface are of identical magnitude.  That is as the radius of curvature tends to infinity, the spring-in effect 

vanishes.  These stresses were calculated using Equation (67). 

 

Figure 54.  Stresses in the flat beam due to thermal loading for the top and bottom surfaces.  X-Direction. 

 

2.2.10  Proof of Finite Element Method Solution Reducing To Isotropic Flat Model As Radius Of  

Curvatures Goes to Infinity  

 The curved geometry of the laminate is achieved by orienting the elements in space along an arc.  

This is achieved not by physically rotating the element but its representative.  This representative is not a 

physical quantity but a parameter of mechanics of solids, the stiffness matrix.  This parameter’s orientation 

and location in space defines where the physical construct (the differential segment) is oriented and located 

in space, and the physical construct’s (the differential segment) orientation and location in space defines 

where the parameter is oriented and located in space.  Therefore, by rotating the stiffness matrix about the 

Y-axis in a continuous, regular manner such that a simply curved arc is formed effectively achieves a 
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simply curved beam- see Figure 3, Figure 24, and Figure 25.  The transformation matrix for the rotation 

about the Y-axis is given below:  
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Yφ  is the rotated angle of a given element about its local Y-axis.  The inverse of [Tij] is achieved by taking 

the inverse of [Tij] or changing the sign of the angle argument.   

 For this transformation to give the pattern of orientations that would occur for a flat beam, [Tij]’s 

argument should be zero: Yφ =0.  Evaluating [Tij] at Yφ =0 yields: 

[ ]



























=

100000

010000

001000

000100

000010

000001 1

YijT  

where m1 = 0, m2 = π/2, m3 = -π/2, n1 = -π/2, n2 = 0, n3 = π/2, p1 = π/2, p2 = -π/2, p3 = 0 

The inverse of [Tij] is the identity matrix as well.  Therefore, the stiffness matrix is multiplied by the [Tij] 

matrix with the [Tij] on the right hand side.  The resulting matrix is multiplied by the inverse of [Tij] with 
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the inverse of [Tij] on the left hand side.  The identity matrix multiplied by any matrix [R] yields the same 

matrix, [R].  This is the case no matter the combination multiplication.  This is synonymous with 

multiplying any given scalar by 1.  Therefore, as Yφ goes to zero, the modification of the stiffness matrix 

by transformation vanishes and the flat beam case with only a rotation of the stiffness matrix in the XY-

plane is obtained. 

2.2.11  Classical Lamination Theory Solution For Flat Composite Model 

In Section 2.2.2, the assumptions for CLT were listed.  The Author has found from personal 

experience that the accuracy of the results gained from CLT are highly sensitive to how faithful a model is 

to the given assumptions.  In order to build a CLT model (2D) model that would be equivalent to the 

MATLAB FE (3D) model and the ANSYS FE (3D) model, the three-dimensional models must have the 

following: 

(a)  same stacking sequence 

(b)  width and length must be sufficiently larger than the thickness of the beam 

(c)  plane stress conditions: σz = τxz = τyz = 0 

(d)  near to fully uniform stress distribution through the width and length of the beam, save those  

areas where Saint Venant’s principle dominates. 

Simply taking a 3D model with the same stacking sequence as the 2D CLT model, same loading 

conditions, and the same boundary conditions is not sufficient to produce accurate results from the 3D 

models.  Because CLT is inherently two-dimensional, it has no way to account for non-plane stress 

conditions.  Therefore, when comparing models for verification purposes, CLT becomes the limiting factor. 

It is the limiting factor to which the other two models must conform to in order to provide consistent, 

repeatable, and accurate results that can be used for verification purposes.   
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Various stacking sequences produce different results.  For the statically indeterminate problem 

under thermal loading, only a few set of stacking sequences will produce results that satisfy plane stress 

conditions.  All other stacking sequences will produce some combination of 0≠zσ , 0≠yzτ , and/or 

0≠xzτ .  The stacking sequences that produce a plane stress condition for flat, fixed beam under uniform 

thermal loading are those that are symmetric and balanced that consist of only 0
o
 and/or 90

o
 : [0

o
]n, [90

o
]n, 

and [(0
o
/90

o
)n]s where n = some positive integer.  This family of stacking sequences is called the specially 

orthotropic family.  Any other combination of plies and stacking sequences will produce out-of-plane loads 

(which CLT assumes will not occur, hence giving results that diverge from CLT).  For these select few 

cases the Ais (where i = x, y) {extensional-shear coupling stiffness}, [B] = [b] = [b
T
] {the coupling 

stiffnesses for in-plane/flexure and coupling compliances for in-plane/flexure, respectively}, and Dis (where 

i = x, y) {bending or flexural/twisting stiffness} are all zero. 

If the width of the beam is equivalent to the thickness, the conditions for the width and length of 

the beam being sufficiently larger than the thickness of the beam for CLT is violated.  When this is the 

case, significant shear stresses (in- and out-of-plane) occur.  The plane stress condition is clearly violated 

by having out-of-plane stresses.  Also, the additional in-plane shear stresses aren’t present with the CLT 

formulation.  If the width of the beam and the length is too large compared to the thickness of the beam, the 

shear stresses (in- and out-of-plane) will tend to zero; however the longitudinal, transverse, and through 

thickness stresses will appreciably increase in magnitude versus that for a traditional beam- whether it is 

isotropic or composite.  This too, leads to errors with respect to a beam. 

The stress distributions must not only be in the XY-plane, but uniform in that plane (except where 

Saint Venant’s principle applies).  Classical lamination theory (implicitly) assumes uniform stress 

distributions.  As a matter of fact, it cannot calculate stresses that aren’t uniform.  Therefore, any stress 

distributions that aren’t uniform (as ascertained from ANSYS and MATLAB FE three-dimensional) will 

not be compatible with CLT.  It would also result in stresses that diverge from CLT.  ANSYS FE is less 

sensitive than MATLAB FE for statically indeterminate problems.  This is because ANSYS departs from 
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the traditional methods of FE analysis for statically indeterminate problems.  The standard solution method 

of isotropic beams that are fixed (statically indeterminate) that was used in Section 2.2.1., is used by 

ANSYS.  This tends to smooth out the results and make it more stable when analyzing laminates that have 

a high degree of anisotropy due to stacking sequence geometry and stacking sequence material properties.  

All of the above cases are satisfied from using stacking sequences that are specially orthotropic.  The width 

to thickness ratio for the beam used for validation was 10 to 1.  The length to width ratio for the beam was 

10 to 1. 

The loading array must have an induced mechanical force Nx.  This induced mechanical force is 

found by setting the mid-plane strain in the X-direction equal to zero (the beam is fixed in the X-direction 

and is not allowed to elongate or contract).  The first row (equation) of the abd matrix is solved for the 

unknown Nx in terms of the compliances and the in- and out-of-plane deformations.  The expression for Nx 

is: 
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The material used for this test was AS4/3501-6 Carbon Epoxy- see Table 10.  The thermal loading 

is FT o100=∆ .  The stacking sequence is [0/90/0]. 

Table 10.  Material properties of AS4/3501-6 Carbon Epoxy. 

Material Property Value 

AS4/3501-6 Carbon Epoxy   

 E_1 2.13E+07 

 E_2 1.50+06 

 E_3 1.50E+06 

 G_23 0.54E+06 

 G_13 1.00E+06 
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Table 10. – Continued 

 G_12 1.00E+06 

 v_23 0.54 

 v_13 0.27 

 v_12 0.27 

 alpha_1 -0.05E-05 

 alpha_2 1.50E-05 

 alpha_3 1.50E-05 

 

 

ABD           

2.2164E5 6.106E3 0 0 0 0 

6.106E3 1.2213E5 0 0 0 0 

0 0 1.5E4 0 0 0 

0 0 0 5.8412 1.145E-1 0 

0 0 0 1.145E-1 6.314E-1 0 

0 0 0 0 0 2.812E-1 

 

 

abd           

4.52E-06 -2.26E-07 0 0 0 0 

-2.26E-07 8.20E-06 0 0 0 0 

0 0 6.67E-05 0 0 0 

0 0 0 1.726E-1 -3.13E-2 0 

0 0 0 -3.13E-2 1.5895 0 

0 0 0 0 0 3.5556 
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Table 11.  In- and out-of-plane loads. 

Loadings     

Nx 1.0057 lb 

Ny 20.1133 lb 

Ns 0 lb 

Mx 0 lb*in 

My 0 lb*in 

Ms 0 lb*in 

 

Table 12.  In- and out-of-plane deformations 

Mid-Plane Strains & 

Curvatures   

0 in/in   

0.000165 in/in   

0 in/in   

0 1/in   

0 1/in   

0 1/in   

 

Table 13.  Stress results from CLT 

 Stresses     Units 

 
Layer 1 Layer 2 Layer 3 lb/in

2
 

σx 527 -2174 527   

σy -1993 3986 -1993   

τs 0 0 0   

 

2.2.12  Finite Element Method Solution For Flat Composite Model 

ANSYS was used to provide another check, along with CLT, of the MATLAB finite element 

analysis program developed by the Author.  A flat beam model under the same loading conditions of the 

problem solved in Section 2.2.12 is analyzed.  The following stresses were ascertained: 



 
 

101 

Table 14.  Stress results from ANSYS. 

 Stresses     Units 

 
Layer 1 Layer 2 Layer 3 lb/in

2
 

σx 513 -2174 546   

σy -1993 3988 -1993   

τs 3.00E-03 3.00E-03 3.00E-03   

 

The following figures visually confirm the uniform nature of the stress distributions that are required for 

this model to match with CLT.  The first figure is the deformations of the fixed, flat composite beam under 

the given thermal loading conditions- see Figure 55.  Observe Figure 56, Figure 57, Figure 58, Figure 59, 

and Figure 60.  

 

Figure 55.  An exaggerated scale of the deformations of the given fixed, flat composite beam under thermal 

loading. 
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Figure 56.  An exaggerated scale of the deformations of the given fixed, flat composite beam under thermal 

loading with an overlap of the Xσ stresses. 

 

 

Figure 57.   An exaggerated scale of the deformations of the given fixed, flat composite beam under 

thermal loading with an overlap of the Yσ stresses. 
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Figure 58.  An exaggerated scale of the deformations of the given fixed, flat composite beam under thermal 

loading with an overlap of the Zσ stresses. 

 

 

Figure 59.  An exaggerated scale of the deformations of the given fixed, flat composite beam under thermal 

loading with an overlap of the YZτ stresses. 
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Figure 60.   An exaggerated scale of the deformations of the given fixed, flat composite beam under 

thermal loading with an overlap of the XZτ stresses. 

 

 

Figure 61. An exaggerated scale of the deformations of the given fixed, flat composite beam under thermal 

loading with an overlap of the XYτ stresses. 
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 It can be seen in Figure 55, Figure 56, Figure 57, Figure 58, Figure 59, Figure 60 and Figure 61, 

that the stresses are in fact fairly uniform throughout the beam.  It can also be seen that the out-of-plane 

stresses are necessarily zero so that comparison of stress results with CLT would be possible and valid. 

 The MATLAB finite element analysis program used the same loading conditions, stacking 

sequence, material, etc. as the ANSYS finite element model and the CLT model.  As mentioned in Section 

2.1, the finite element analysis program in MATLAB uses a tri-linear, isoparametric element.  This element 

and the MATLAB FE program are very sensitive to strains of an order higher than the interpolation 

functions of the element.  The magnitude of the strains only exacerbates this sensitivity.  If the variation of 

the strains is of a higher order than the interpolation functions of the element, then the elements would 

generate spurious strain modes.  Isoparametric elements are notorious for this behavior.  Nevertheless, 

these modes negligibly affect the accuracy of the solutions for this case.  The variations are due to the fact 

that the Saint Venant’s stresses aren’t smoothed out as they are in ANSYS by treating the statically 

indeterminant problem similar to that shown in Section 2.2.1 and previously discussed.  This problem is 

generally solved by making the beam very long so that Saint Venant’s stresses don’t come into play.  That 

is with this particular program, the MATLAB FE analysis smoothes the strains to a linear order so that the 

spurious strain modes are suppressed if the length to width ratio of the beam is sufficiently high.  This 

generally takes noticeable effect when this ratio is at least 30 to 1.  Nevertheless, the mean of the stresses 

are slightly affected by these modes (since this beam has a length to width ratio of 10 to 1).  Nevertheless, 

the most accurate representative of these stresses is the mode (not the mean) of the stresses.  Therefore, the 

mode (which is very near the mean value) of the stresses is shown in the table below. 

Table 15.  Stress results from MATLAB. 

 Stresses     Units 

 
Layer 1 Layer 2 Layer 3 lb/in

2
 

σx 508 -2176 508   

σy -1993 3987 -1993   

τs -5.70E-13 2.71E-14 5.42E-13   
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The latter detailed effects combined with the anisotropic nature of the laminate gave final results showing 

spurious stresses. 

The first check show that the beam is in fact in plane (XY-plane) stress conditions.  For plane 

stress conditions, σz, τxz, and τyz are all equal to zero (that is the mean and mode are zero).  This can be seen 

in Figure 62, Figure 63, Figure 64, Figure 65, Figure 66, Figure 67, Figure 68, Figure 69, and Figure 70: 

 

Figure 62. Stress σz plot for layer 1 (bottom layer). 
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Figure 63.  Stress σz plot for layer 2 (middle layer). 

 

 

 

Figure 64.  Stress σz plot for layer 3 (top layer). 
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Figure 65.  Stress τxz plot for layer 1 (bottom layer). 

 

 

 

Figure 66.  Stress τxz plot for layer 2 (middle layer). 
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Figure 67.  Stress τxz plot for layer 3 (top layer). 

 

 

 

Figure 68.  Stress τyz a plot for layer 1 (bottom layer). 
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Figure 69.  Stress τyz a plot for layer 2 (middle layer). 

 

 

 

Figure 70.  Stress τyz a plot for layer 3 (top layer). 
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 The stress results for σx, σy, and τxy are in Figure 71, Figure 72, Figure 73, Figure 74, Figure 75, 

Figure 76, Figure 77, Figure 78, and Figure 79.  For these stresses, spurious modes are more prevalent.  

Therefore, the median is plotted as a red-dotted line.  This value is extremely close to the mean but tends to 

negate the spurious stresses that are generated. 

 

Figure 71.  Stress σx a plot for layer 1 (bottom layer). 

 

Figure 72.   Stress σx a plot for layer 2 (middle layer). 
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Figure 73.  Stress σx a plot for layer 3 (top layer). 

 

 

Figure 74.  Stress σy a plot for layer 1 (bottom layer). 
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Figure 75.  Stress σy a plot for layer 2 (middle layer). 

 

 

 

Figure 76.  Stress σy a plot for layer 3 (top layer). 
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Figure 77.  Stress τxy a plot for layer 1 (bottom layer). 

 

 

 

Figure 78.  Stress τxy a plot for layer 2 (middle layer). 
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Figure 79.  Stress τxy a plot for layer 3 (top player). 

 

 

 

2.2.13  Model Validation Conclusions 

The results from CLT (2D) analytical, ANSYS (3D) finite element, and MATLAB program (3D) 

finite element are shown in the following table: 

Table 16.  Stress results from CLT, ANSYS (FE), and MATLAB (FE). 

[0 90 0]T         

  Layer CLT 

ANSYS 

(FE) 

MATLAB 

(FE) 

  3 527 546 508 

σx 2 -2174 -2174 -2176 

  1 527 513 508 

  3 -1993 -1993 -1993 

σy 2 3986 3988 3987 

  1 -1993 -1993 -1993 

  3 0 3.00E-03 5.42E-13 

τxy 2 0 3.00E-03 2.71E-14 

  1 0 3.00E-03 -5.70E-13 
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From Section 2.2.11 and 2.2.12 and Table 16, it can be seen that the MATLAB program is successful in 

accurately modeling a composite laminate that is anisotropic in geometric stacking sequence and 

anisotropic in material stacking sequence.  With all finite element analysis programs, careful modeling is 

the key to correct solutions.  Verification of the model must occur with a known solution serving as a 

reference point.  All verifications must be with parallel counterparts.  After correctly verifying (to the 

fullest extent possible, that is without experimentation) and developing the MATLAB finite element 

program, it will now be used to model simply curved composite laminates that are fixed on either 

longitudinal end. 
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CHAPTER 3 

CURVATURE AND STACKING SEQUENCE EFFECT ON STRESSES 

The purpose of this chapter is to ascertain the relationship between the curvature of a laminate under 

thermal loading and the resulting stresses and how these stresses vary with a particular family of stacking 

sequences. 

3.1  Geometry and Material Used 

3.1.1   Geometry of Curved Laminates 

 Four unique geometries were chosen for modeling the curved laminates.  The thickness and arc- 

length of the geometries are the same.  The distinguishing parameters were the radius of curvature or 

curvature of the geometries.  The five different radii of curvature were chosen to represent a zero curvature 

(flat), distinguishably small curvatures, moderately curved laminates, and distinctly large curvature beams.  

These curved laminates were simply curved laminates; they have a unique curvature (semi-circular).  A 

representative model of the curved beam is shown in Figure 3.   

Table 17.  Geometrical configurations for trade study. 

  
Arc 

Length Thickness Width 

Radius of 

Curvature Curvature 

Angle 

Spanned  

Model 1 0.9 in 0.030 in 0.12 in Infinity 0 0
o
 

Model 2 0.9 in 0.030 in 0.12 in 1.72 in 0.58 1/in. 30
o
 

Model 3 0.9 in 0.030 in 0.12 in 1.15 in 0.87 1/in. 45
o
 

Model 4 0.9 in 0.030 in 0.12 in 0.86 in 1.16  1/in. 60
o
 

Model 5 0.9 in 0.030 in 0.12 in 0.57 in 1.75 1/in. 90
o
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3.1.2   Material of Curve Laminates  

 See Table 18 for material properties the E-Glass/Epoxy that was used in the models for the trade 

study. 

Table 18.  Material properties of E-Glass/Epoxy. 

Material Property Value 

E-Glass/Epoxy     

  E_1 6.00E+06 

  E_2 1.50E+06 

  E_3 1.50E+06 

  G_23 5.00E+05 

  G_13 6.20E+05 

  G_12 6.20E+05 

  v_23 0.5 

  v_13 0.28 

  v_12 0.28 

  alpha_1 3.90E-06 

  alpha_2 1.44E-05 

  alpha_3 1.44E-05 

 

3.2  Curvature Effect 

3.2.1  General Curvature Effect 

 For a flat beam, there are many coupling behaviors that can be ignored because the infinite radius 

of curvature (zero curvature) decouples the normal loading & shear deformation and shear loading & 

normal deformation coupling that exist in materials.  This coupling behavior is generally ignored for most 

mechanics problems because those problems concern flat beams.  Even for some variously curved beam, 

this stiffness coupling behavior is generally ignored.  Most of analytical solutions for the variously curved 

beam under certain types of loadings and boundary conditions have errors in the results with respect to 

experimental observations.  Those analytical solutions generally involve derivations that are analogs to the 
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geometry of the beam and whether an internal shear may or may not exist, whether an internal moment may 

or may not exist, etcetera.  However, these analytical solutions generally leave out the extremely important 

effect of the coupling of the stiffnesses due to the geometry of the problem.  These couplings are through 

the off-diagonal terms that are zero for flat beams as shown in Equation (10).  As curvature is added to 

these beams, depending on their anisotropic nature, these zero terms become non-zero.  Also the other 

traditionally non-zero terms that are diagonal and off diagonal will change with curvature and anisotropic 

character of the beam. 

 The ignorance of these couplings that exist for curved beam (and for this thesis’ purpose: simply 

curved beams) and the lack of accounting for these effect, is the main reason all of the analytical solutions 

discussed in Section 2.2.5 have some type of inherent error in their results.  Regardless of how faithful 

various internal normal or shear forces and bending moments are accounted for, if the stiffness are 

unaccounted for completely or completely disregarded, error will result just as those analytical solutions 

show.  These solutions are well known to have error that tends to zero as the beam’s radius of curvature 

tends to infinity.  These solutions are also well known to have error that tends to larger and larger values as 

the beam’s radius of curvature tends to zero.  Interestingly, the stiffness couplings that are traditionally zero 

(as discussed earlier) for beams that are flat goes to zero and hence the major source of error goes to zero.  

The stiffness couplings that are traditionally zero but become non-zero to increasing extents as the radius of 

curvature of the beam reduces (the beam acquires more curvature).  Since these analytical models don’t 

account for these couplings, the error likewise increases as these coupling terms become larger as the 

curvature increases.  Furthermore, more coupling stiffnesses go from zero to non-zero values depending on 

the anisotropic character of the laminate.  This effect is then exacerbated by the extent of the curvature in 

the beam.  The following sections will examine the effect that the curvature has (via these stiffnesses) on 

the finite elements’ x- and z-directions (globally: tangential and radial directions, respectively) with 

stacking sequences.   

6061-T6 Aluminum is used as a baseline for the results.  All of the following laminates consist of 

6 plies, are under a thermal loading of ∆T = 100 
o
F, and are fixed along each longitudinal end as a fixed-
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fixed (statically indeterminate) beam.  That is, they are fixed along the X-direction- see Figure 6.  The other 

three laminates are as follows: 

Balanced and symmetrical laminate:  [+45/-45/0]S 

Antisymmetrical (balanced and unsymmetrical) laminate:  [+45/-45/0/0/45/-45]T   

Unbalanced and unsymmetrical laminate:  [+45/+45/0]S 

It should also be noted that the length to width ratio of the beams are 7.5.  Generally for beams, if the 

length to width ratio is less than 10, internal shear will exist in the beams.  The variations of these shears 

are generally of a quadratic order or higher.  Since the MATLAB finite element program uses tri-linear 

isoparametric elements (whose notorious spurious strain modes issues were addressed earlier), spurious 

shear and consequently spurious normal stresses will exist. 

 The average stress for the beam on layer 4 (0
o
 ply) of each laminate for each Model case- see 

Table 17- was ascertained.  This stress was at the mid-width (Y-direction) of each laminate and was the 

element stress.  Therefore, the following analysis is based on the average effect in the beam.  Since every 

point in the beam has its own stress for each stress component and that stress varies according to stacking 

sequence, geometry, etc., it is best to use some overall result (the mean) to compare the mean behaviors of 

different geometries.   

3.2.2  Detail Curvature And Stacking Sequence Effect For Mean Stress At (Near) Mid-Point Of Laminate 

 It can be seen from Figure 80 that the curvature of a beam has appreciable effects on the finite 

element longitudinal stresses σx.  This stress is the local x-direction stress for each finite element.  Hence, it 

is the global tangential stress for the curved beam at each differential segment (finite element).  For the 

isotropic aluminum laminate all the tangential stresses are negative (note: the traditional stress sign 

convention is used here) for all five curvature cases.  Hence, the curved laminate is tangentially under 

compression.  However, for the glass/epoxy laminates this is not the case. 
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Figure 80.  Stacking sequence trade study on σx as the curvature varies increasingly from 0. 

The laminates initially have a similar compressive tangential stresses for the zero curvature case, 

Model 1 (see Table 17).  This is due to the close similarity between the stacking sequences.  For the Model 

2 case, the laminates still have similar compressive tangential stresses; however, the unsymmetrical & 

unbalanced laminate begins to diverge from the symmetrical & balanced laminate and the antisymmetrical 

laminate.  For the Model 2 cases, all of the laminates have a compressive tangential stress that is slightly 

higher in magnitude than that for the Model 1 case.  For the Model 3 case, the unsymmetrical & unbalanced 

laminate completely diverges from the symmetrical & balanced laminate and the antisymmetrical laminate.  

The unsymmetrical & unbalanced laminate is now under tensile tangential stress.  The symmetrical & 

balanced laminate and the antisymmetrical laminate still have similar compressive tangential stresses.  For 

the Model 4 case, the symmetrical & balanced laminate and the antisymmetrical laminate tangential stress 

values diverge.  However, the antisymmetrical and unsymmetrical & unbalanced laminates converge to a 

similar tensile tangential stress.  For the Model 5 case, the balanced & symmetric and the antisymmetrical 

laminates converge to a similar tensile tangential stress.  The unbalanced & unsymmetrical laminate 
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diverges from the balanced & symmetric and the antisymmetrical laminates to a unique tensile tangential 

stress. 

It can be seen from Figure 81 that the curvature of a beam has appreciable effects on the finite 

element longitudinal stresses σz.  This stress is the local z-direction stress for each finite element.  Hence, it 

is the global radial stress for the curved beam at each differential segment (finite element).  For the isotropic 

aluminum laminate all the radial stresses are negative (note: the traditional stress sign convention is used 

here) for all five curvature cases.  Hence, the curved laminate is under compression in the radial direction.  

However, for the glass/epoxy laminates this is not the case. 

 

Figure 81.  Stacking sequence trade study on σz as the curvature varies increasingly from 0. 

 The laminates initially have a similar compressive radial stresses for the zero curvature case, 

Model 1 (see Table 17).  This is due to the close similarity between the stacking sequences.  For the Model 

2 case, the laminates still have similar compressive tangential stresses; however, the symmetrical & 

balanced laminate begins to diverge from the unsymmetrical & unbalanced laminate and the 

antisymmetrical laminate.  For the Model 2 cases, all of the laminates have a compressive radial stress that 

is slightly higher in magnitude than that for the Model 1 case.  For the Model 3 case, the unsymmetrical & 
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unbalanced laminate completely diverges from the symmetrical & balanced laminate and the 

antisymmetrical laminate.  The unsymmetrical & unbalanced laminate is now under tensile radial stress.  

The symmetrical & balanced laminate and the antisymmetrical laminate still have similar approximately 

zero radial stresses.  For the Model 4 case, the symmetrical & balanced laminate and the antisymmetrical 

laminate radial stress values diverge.  However, the antisymmetrical and unsymmetrical & unbalanced 

laminates converge to a similar tensile tangential stress.  All stresses are now tensile radial stresses.  For the 

Model 5 case, the balanced & symmetric and the antisymmetrical laminates converge to a similar tensile 

radial stress.  The unbalanced & unsymmetrical laminate diverges from the balanced & symmetric and the 

antisymmetrical laminates to a unique tensile radial stress. 

3.2.3  Curvature And Stacking Sequence Effect For Mean Stress At (Near) Mid-Point Of Laminate 

Conclusions 

 The pattern of laminates diverging and converging in groups of two is the exact same pattern (not 

necessarily magnitude) for the radial stresses as it is for the tangential stresses.  That is, the only difference 

in Figure 80 and Figure 81 is the magnitude of the stresses and similarity of the pattern of stresses.  

However, the trend between groups of two laminates for all the model cases is the same.  Furthermore, only 

for the isotropic aluminum laminate does the radial and tangential stresses remain compressive for all five 

curvature cases. 

 The reason for the variations in the stresses from compressive to tensile in both the radial and 

tangential directions for the composite laminates while the isotropic aluminum laminate maintains 

compressive radial and tangential stresses is shown in Appendix G.  The coupling stiffnesses that are 

normally zero for a flat beam (as discussed in Section 3.2.1) become non-zero for curved beams.  The 

magnitude and the type of coupling stiffness that becomes non-zero vary with the radius of curvature and 

the anisotropic nature of the laminate.  These coupling stiffness manifest because the finite element is 

rotated about the laminate Y-direction (see Figure 6) with the transformation matrix shown in Section 

2.2.10.  When these coupling stiffnesses come into effect, they effectively transfer the stresses in the beam 
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to other directions.  That is, the stresses are redistributed from normal stresses to shear stresses.  This 

redistribution of stresses is what causes the changes in the radial and tangential stresses in Figure 80 and 

Figure 81.   

 As the curvature increases, the stresses redistribute from the Model 1 case as is shown in Figure 

80, Figure 81, and Appendix G.  The magnitude and direction of the other four stresses other than the 

tangential and radial stresses are modified significantly so that the behavior of the laminate under thermal 

loading changes.  For the glass/epoxy laminates, under a positive thermal loading, the material should 

expand in the longitudinal, transverse, and thickness directions.  The fixed ends of the wall should react by 

pushing against the laminate created compressive stresses.  However, as the curvature increases, the 

changes in the other stress components mentioned earlier begins to actually pull the laminate away from the 

wall.  This can be easily imagine by visualizing a sufficient curved beam.  Imagine the top of the arc of the 

beam expanding in the positive thickness direction.  This would have a tendency to pull the fixed-ends of 

the beam away from the wall.  The wall would tend to pull back on the beam creating tensile (positive) 

stresses in the longitudinal direction.  As the curvature becomes more pronounced, this effect becomes 

more pronounced.  As the curvature becomes less pronounced, this effect becomes less pronounced.  There 

is a certain point where the curvature reaches a sufficient magnitude such that the combined effect of all the 

stresses result in a normal compressive effect from the wall becoming a tensile effect.  This is caused by the 

shear-normal coupling stiffness becoming non-zero with a curved beam.  This is the effect shown in Figure 

80, Figure 81, and Appendix G.  Each stress component has its own unique coupled behavior similar to the 

explanation above due to curvature.  For the aluminum beam, this effect is not pronounced.  Hence, it is 

shown that this is both an effect of the geometry of the beam and the anisotropic character of the beam as 

well. 

 If the goal is to reduce the tangential stresses in a beam, it is advantageous to use a composite 

beam rather than in isotropic beam.  The curvature effect with a composite beam would redistribute the 

tangential stresses to other stress components and result in an overall smaller magnitude tangential stress- 

see Appendix G.  If the curvature of the beam is further increased, the magnitude grows but is still less than 



 
 

125 

that of an isotropic beam (such as 6061-T6 aluminum in this case) for all cases except for the Model 5 case.  

For this case, all the composite laminates have higher magnitude tangential stresses than the isotropic 

laminate.  The tangential stresses also change from compressive to tensile as the curvature increases for the 

composite laminates. 

If the goal is to reduce the radial stresses in a beam, it is advantageous to use an isotropic beam 

rather than a composite beam.  The curvature effect with a composite beam would redistribute the stresses  

such that the radial stresses have an overall larger magnitude- see Appendix G.  If the curvature of the 

beam is further increased, the magnitude grows significantly larger than that of an isotropic beam (such as 

6061-T6 aluminum in this case) for Models 4 and 5.  This trend begins with the Model 3 for the unbalanced 

and unsymmetrical laminate.  The tangential stresses also change from compressive to tensile as the 

curvature increases for the composite laminates. 

The design of a curved beam must iteratively and concurrently take into account both the 

geometry of the beam (in particular the curvature) and the anisotropic character of the beam.  Changes in 

the material properties of a beam can significantly effect not only the stress distribution, but also the stress 

magnitude and direction.  Changes in the curvature of a beam can significantly effect not only the stress 

distribution, but also the magnitude and direction.  These two parameter sets (curvature and anisotropic 

character) have a coupled relationship that determines the stress distribution, stress magnitude, and stress 

direction for a given curvature and given set of material properties. 

3.2.4  Detail Curvature And Stacking Sequence Effect For Actual Stress Along Longitudinal Span Of 

Laminate 

 The tangential stresses along layer 4 (0
0
) of the symmetrical and balanced laminate were plotted 

along the mid-width of the laminate with respect to its longitudinal (arc) span.  These stresses are the 

element stresses.  As mentioned before, the X-direction stresses are with respect to the finite elements.  

Hence, they are the global tangential stresses.  Two model cases are analyzed, Model 3 and Model 5.  The 

isotropic aluminum laminate is used as a baseline comparison for the symmetrical and balanced laminate.  
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The first case analyzed is the Model 3 case for the isotropic aluminum and the composite glass/epoxy 

beams.  The second case analyzed is the Model 5 case for the isotropic aluminum and the composite 

glass/epoxy beams. 

  From Figure 82, it can be seen that the tri-linear, isoparametric elements are experiencing non-

constant strains (in particular shear).  This propagates to the tangential and radial stresses as "spikes."  

Beyond these spikes it can be seen that the curved beam doesn't have significant variances in tangential 

stresses with respect to the longitudinal (arc) span of the beam.   

 

Figure 82.  Longitudinal span of tangential stresses (local X-direction for finite elements) for isotropic 

aluminum laminate with Model 3 geometry.  Element stresses. 

 

 This is primarily due to the type of loading the simply curved beam is experiencing.  The beam is 

under an uniform thermal loading.  That is the thermal load at every point of the beam is the same.  The 

coupling stiffnesses effectively redistributes the tangential stresses at each point in the beam to other stress 

components, in particular the shear components.  Each span of the beam has a particular orientation due to 

the rotation of a given finite element about the laminate's Y-direction.  The magnitude of this rotation 

determines the amount of redistributing of the tangential stresses that occur.  Hence, for a given flat beam 
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solution, the internal tangential (normal) stresses in the beam are all within a similar, small range for a 

fixed-fixed constrained beam.  With curvature, this tangential stress is altered an amount commensurate 

with the rotation of the given segment about the laminate's Y-direction.  This redistribution of the flat beam 

tangential stress result with the segment rotation tends to deliver fairly similar stress results through the 

longitudinal (arc) span of the isotropic aluminum beam.  

 This is not in line with the trend of the results shown in the analytical derivation of Section 2.2.5.  

This is because the analytical solution of Section 2.2.5 is a plane stress (XZ-plane) solution and the solution 

from the MATLAB FEA code (see Appendix F) is a three-dimension stress solution- see Appendix G.  The 

importance of this commonality was previously discussed.  Furthermore, the analytical solution of Section 

2.2.5 did not account for the three-dimensional shear-normal coupling stiffness that are non-zero for curved 

beams and varies for every segment of the beam along the curve.  Hence, the importance of stiffness 

couplings and stress conditions are highlighted.  

 From Figure 83, it can be seen that the tri-linear, isoparametric elements are experience non-

constant strains of a higher order than those experience by the isotropic aluminum beam.  This can be seen 

through the more spurious nature of the tangential stress plots.  The variances of the stresses along the  

longitudinal (arc) span of the beam do not vary significantly either.  The stresses don't vary significantly 

from the mean at the near mid-point of the beam either, as was noticed for the case of the mean stress at the 

near mid-point of the laminates in Sections 3.2.2 and 3.2.3.  The reasons for this are the same as was listed 

for the isotropic aluminum beam.  The stress magnitudes are lower as was discussed in Sections 3.2.2 and 

3.2.3. 
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Figure 83.  Longitudinal span of tangential stresses (local X-direction for finite elements) for glass/epoxy  

laminate with Model 3 geometry.  Element stresses. 

 

 From Figure 84, the magnitude of the variations of the tangential stresses are much larger for the 

Model 5 case than for the Model 3 case for the isotropic aluminum beam.  The spurious strain modes 

combined with the greater degree of coupling for the Model 5 case leads to the results shown in Figure 84.  

For the Model 5 case, only the tangential stresses reduce in magnitude.  All other stress components 

increase in magnitude.  The amount of coupling due to the highly curved geometry is significant- see 

Appendix G.  Yet, if one cancels out the effect of the spurious strain modes due solely to the type of 

element used, then it can be readily seen that the tangential stresses actually vary very little with respect to 

the longitudinal (arc) span.  
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Figure 84.  Longitudinal span of tangential stresses (local X-direction for finite elements) for isotropic 

aluminum laminate with Model 5 geometry.  Element stresses. 

 

 From Figure 85, the magnitude of the variations of the tangential stresses are much larger for the 

Model 5 case than for the Model 3 case for the composite glass/epoxy beam.  The spurious strain modes 

combined with the greater degree of coupling for the Model 5 case leads to the results shown in Figure 85.  

For the Model 5 case, the tangential stresses have an increasing trend in magnitude.  All other stress 

components generally increase in magnitude.  The amount of coupling due to the highly curved geometry is 

significant- see Appendix G.  Yet, if one cancels out the effect of the spurious strain modes due solely to 

the type of element used, then it can be readily seen that the tangential stresses actually vary somewhat 

more than the isotropic aluminum beam with respect to the longitudinal (arc) span. 
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Figure 85.  Longitudinal span of tangential stresses (local X-direction for finite elements) for glass/epoxy  

laminate with Model 5 geometry.  Element stresses. 

 

 The nodal stresses for these 4 cases were calculated as well.  Since these stresses are calculated at 

the nodes and the interpolation functions for the tri-linear, isoparametric element are defined at the nodes, 

these stresses are exact.  The element stresses are the interpolated result of setting (r,s,t) = (0,0,0).  The 

following four nodal plots show the tangential stresses (local X-direction for the finite elements) for the top 

and bottom surfaces only for each layer.  The space in between each surface represents the thickness of 

each layer.  The plots are not to geometric scale.  That is, they will appear thicker and shorter than the 

actual geometry.  This is to facilitate the ease of viewing of the nodal, tangential stress results.  Unlike 

ANSYS and other FEA software, this MATLAB FEA program written by the Author assigns each stress 

value a unique RGB color from the Jet color map.  Therefore, the stresses may seem to have more gradients 

and variation in them than normal.  However, it is just each stress value has its own unique color.  ANSYS 

would generally blend a range of stresses into one color- see Figure 56, Figure 57, Figure 58, Figure 59, 
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Figure 60, and Figure 61.  This technique adopted by ANSYS and other programs can actually be a 

detriment if care isn't taken.   

 The nodal stresses are defined at the intersection of line segments in the following four plots.  

These intersections are the nodes.  The line segments are the nodal connectivity lines that form the 

boundary for each single element as described in Section 2.1.3.  The exact colors for the exact nodal 

stresses are assign to each node.  The interpolation of the faces (surface area between the nodes) is based on 

an color interpolation scheme defined by the MATLAB function patch.  That is, the face color is the 

interpolated result of the surrounding four nodes.  The internal elements share the same surfaces at all times 

as described in Section 2.1.2.  The nodal stress results for two surfaces that are adjacent are numerically 

averaged and the result becomes the nodal stress for mutually shared nodes between elements.  Note:  The 

element stresses that were previous calculated exist in the white space in between the colored surfaces.  The 

element stresses are the interpolated results between two surfaces, the one directly above and the one 

directly below.  Furthermore, due to the spurious strains modes in the results due to the inability of the 

linear elements to successfully map the non-linear strains (characteristic of sub-order isoparametric 

elements), the nodal stress results are "spiked" in magnitude.  However, this "spiking" is smoothed and 

cancelled out by the nature of the interpolation functions for the element stress calculated at (r,s,t) = (0,0,0) 

for each element.  Hence, they (the element stresses) generally are smaller in magnitude because it is the 

average effect of generally different magnitude and direction nodal stresses.  Finally, the nodal stresses are 

plotted on the non-deformed view of the laminate to facilitate viewing nodal stress variations. 
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Figure 86.  Longitudinal span of tangential stresses (local X-direction for finite elements) for isotropic 

aluminum laminate with Model 3 geometry. Nodal stresses. 

 

 

 

Figure 87.  Longitudinal span of tangential stresses (local X-direction for finite elements) for glass/epoxy  

laminate with Model 3 geometry.  Nodal stresses. 
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Figure 88.  Longitudinal span of tangential stresses (local X-direction for finite elements) for isotropic 

aluminum laminate with Model 5 geometry. Nodal stresses. 

 

 

Figure 89.  Longitudinal span of tangential stresses (local X-direction for finite elements) for glass/epoxy  

laminate with Model 5 geometry.  Nodal stresses. 
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 It can be seen from Figure 86, Figure 87, Figure 88, and Figure 89 that the stress distributions are 

far smoother and regular for the isotropic aluminum beams.  The stress distributions are far more rougher 

and irregular for the composite glass/epoxy beams.  The effect of the shear stress and their antisymmetrical 

effect on the stress distributions through the thickness (Radial) and transverse (Z) directions of the laminate 

can bee seen in all four plots.  The edge effect and Saint Venant's stresses can also be readily seen.  

However, it must be noted again that they do not propagate as far into the middle of the beams as shown in 

the plots.  This is so because the plots are not to scale.   

 The fourth surface of each plot is the representative behavior of the laminates where the shear 

effects cancel each other out.  The previous element stress plots were about the Z-coordinate Z = 0.  

However, looking at the nodal surface plots shows that the stress distributions also vary in the Z-coordinate 

direction (transverse direction).  The complex stress variations reveal the difficulty in stress analysis of 

composite beams.  Nevertheless, looking at the fourth surface of each plot using nodal plots doesn't provide 

acceptably precise information on stress values.  Take for instance the fourth surface of Figure 89.  If one 

looks towards the middle of the surface, it cannot be ascertained whether the stresses are positive or 

negative.  This is the downfall of such plots, especially if the stresses vary through the thickness of the 

element.  However, useful information can be gained on the stress variation behavior from these plots. 

3.2.5  Detail Curvature And Stacking Sequence Effect For Actual Stress Along Longitudinal Span Of 

Laminate Conclusions 

 According to material science mechanics, when a specimen is thermally loaded, approximately 

half the energy from the thermal load goes into increasing the temperature of the specimen- generally.  The 

other half of the energy goes into deforming the specimen.  All the conclusions observed from Section 

3.2.3 are the same here.  However, this trend varies through the transverse direction of the laminates.  That 

is, for each transverse slice of the laminate, the trends of Section 3.2.3 have the same behavior but are of a 

different magnitude.  Section 3.2.3 results are the average laminate results.  Sometimes the average result 

can be extremely useful.  Sometimes the average result can be extremely deceptive.  Take for instance the 
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stress range of 495 psi to 505 psi.  The average stress is 500 psi.  Now take the stress range of 50 psi to 950 

psi.  The average stress is 500 psi.  Care should be taken in using either average results from element 

stresses alone or nodal stress results in surface plots.  Both must be used to gain a more complete 

understanding in the complex, non-linear stress variation in statically indeterminant, composite, simply 

curved beams. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

The purpose of this chapter is to discuss the conclusions of the work conducted in this thesis and to discuss 

future work.  

Conclusions 

 Curved beams results in numerous coupling behaviors between shear deformations & normal 

stresses, normal deformation & shear stresses, and complex in-plane & out-of-plane cross coupling 

between deformations and stresses that vary continually and uniquely in the radial and tangential directions 

for differential segments that aren't in the same plane in space.  These couplings vary continuously 

throughout the beam.  There is no one coupling behavior that can describe the whole beam.  As the radius 

of curvature changes, so does the extent of coupling behavior changes.  As the material properties of the 

beam changes so does type of coupling behavior changes.  This coupling behavior results in highly 

complex and irregular stress variations depending on the radius of curvature, that family of stacking 

sequences, and the anisotropic material properties.  If the material properties are isotropic, the variation of 

the stresses are smoother and more regular.  

 For isotropic, simply curved beams, compressive stresses will still be compressive stresses for arc 

spans of up to 90
o
.  Tensile stresses will also stay tensile.  For composite, simply curved beams, 

compressive stresses can become tensile stresses and tensile stresses can become compressive stresses 

depending on the stacking sequence and most important the radius of curvature.  Care must be taken in 

designing curved composite parts that will experience appreciable thermal loading.  If a part is not to 

experience significant tensile stresses under positive thermal loading (assuming the material properties 

have all positive thermal expansion coefficients), having too much curvature in the part can result in failure 
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in that part or even the system that the part is a component of.  Composite, simply curved beams can 

reverse the state (compressive or tensile) of the stress direction depending on the curvature of the beam.  

How much curvature is required for this reversal depends overall on the amount of thermal loading, the 

family of stacking sequence that the laminate is in, and specifically to the actual stacking sequence within a 

family of laminates.  Uniquely, these types of beams will also have a curvature of a given stacking 

sequence where the stresses will transition from compressive (negative) to tensile (positive).  This 

transition must by definition pass through the zero stress mark.  Hence, a composite curved beam of a 

particular radius of curvature will have an average element stress of zero for a given thermal loading 

condition.  Therefore, if an engineer knows that a given stress component is most important and knows the 

thermal loading conditions typical for that given part, that engineer can potentially design a simply curved 

laminate that will experience zero average stress for that given component of stress under those given 

thermal loading conditions. 

 Curvature in a composite laminate results in redistribution of stresses in the laminate.  For a fixed-

fixed constraint beam where the constraints are on the longitudinal ends, this redistribution can be used to 

reduce the magnitude of stresses in the laminate for a direction(s) or interest.  This can be done by varying 

the curvature of the laminate.  However, care must be taken as some stress components will have higher 

stresses if the curvature is too pronounced.  Furthermore, curved laminates must be able to handle very 

complex, three-dimensional states of shear stress.  The curvature has a tendency to redistribute the normal 

stresses to shear stresses.  Generally, this redistribution of stresses results in the magnitude of the traction at 

any given point in a simply, curved composite laminate being lower than that of an isotropic homogenous 

metal (e.g. aluminum)- see Appendix G.   

 The results from Section 3.2.3 combined with the nodal surface plots of Section 3.2.4 shows that 

complex behavior of simply curved composite beams that are statically indeterminant varies in very 

complex manners not only in overall behavior but in magnitude and direction as well.  It is not advisable to 

utilize only the average stresses at the mid-point of the beam alone or just the surface nodal stresses of the 
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beam alone.  Both must be used in a trade study with material properties and curvature for the most 

successful design experience. 

 In simply curved, composite beams, stresses vary non-linearly in the radial, tangential, and 

transverse directions in different orders.  Each point in the laminate is generally in some varying degree 

three dimensional state of stress.   

Future Work 

 Simply curved, composite beams that are statically indeterminate are very well understudied.  

Much work needs to be done in order to gather a fuller understanding of the complex mechanical behavior 

of these beams.  Trade studies on how the normal and shear strains vary in the radial, tangential, and 

transverse directions need to be conducted.  Any trends or patterns can be useful in understanding how the 

beams deform and how they spring-in while in surface life conditions. 

 Most work on these types of beams is done using finite element analysis.  This is a great tool but 

can be costly in terms of capital and time.  An analytical solution or set of solutions needs to be developed 

that can reduced to the flat beam case as the radius of curvature tends to infinity.  It must be able to handle 

both isotropic and anisotropic laminates.  Error cannot be induced in the solution due to the extent of the 

curvature or the ratio of key geometric parameters.  Hence, all coupling behaviors due to geometry, 

orientation, and material properties must be accounted for.  This can be done explicitly or using some 

average factor (not correction factor).  Invariably, the solutions will most likely have to be broken down 

into tangential stress solution or solution sets, radial stress solution or solutions sets, and transverse solution 

or solutions sets.  
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APPENDIX A 

DERIVATION OF THE TANGENTIAL STRAIN DUE TO A SIMPLE CURVATURE 
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Figure 90.  Representative view of a simply curved beam. 

 

From the standard arc length relationship: 

                                                                    

θθ RddSRS =→=
                                               

(A-1)

 

where S = arc length, dS = infinitesimal arc length, R = radius of curvature, θ = angle spanned by 

arc length S, dθ = infinitesimal angle spanned by dS. 

From the standard strain relationship: 

                                                                 ε
δ

ε
δ d

dLL =→=
                                                     (A-2) 

where L = characteristic length, dL = infinitesimal characteristic length, ε = stain, δ = elongation, 

dδ = infinitesimal elongation. 

Combining Equation (A-1) and Equation (A-2) yields: 

                                                              

θ
ε
δ

ε
δ

θ

θ rd
d

dS
d

dL ==→=
                                              (A-3) 



 
 

141 

where r = radius of curvature from a given reference, δθ = tangential elongation, dδθ = 

infinitesimal tangential elongation, εθ = tangential strain. 

The infinitesimal tangential elongation (dδθ), with respect to the center of curvature is as follow: 

r = R+z    z = height above/below the mid plane of the laminate. 

substituting the expression for r  into Equation (A-3) yields: 

                                        

( ) θ
ε
δ

θ
ε
δ

θ

θ

θ

θ dzR
d

rd
d

dS +=⇒==
                                       (A-4) 

solving for the infinitesimal elongation… 

( ) θεδ θθ dzRd +=
                                                    (A-5) 

The infinitesimal tangential elongation (dδθ), with respect to the mid plane of the laminate is as follow: 

r = R 

strains with respect to the mid plane are  

x

o

x zκεεθ +=
 

where κx = curvature along x-direction about the y-axis, εx
o = mid plane strain in the x-

direction 

substituting the expression for r  and the expression for εθ into Equation (A-3) yields: 

                                     ( ) θ
κε

δ
θ

ε
δ θ

θ

θ Rd
z

d
rd

d
dS

x

o

x

=
+

⇒==
                                        (A-6) 
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solving for the infinitesimal elongation… 

( ) θκεδθ Rdzd x

o

x +=
                                                 (A-7) 

The infinitesimal tangential elongation (dδθ) must be equal whether with respect to the center of curvature 

or with respect to the mid plane of the laminate.  Therefore, equating Equation (A-5) and Equation (A-7) 

yields: 

                                                            

( ) ( ) θκεθεθ RdzdzR x

o

x +=+
                                             (A-8) 

Solving for the tangential strain. 

                                                               

( )xo

x z
zR

R
κεεθ +

+
=

                                                   (A-9) 

factoring the thermal strain ex into the tangential strain yields: 

                                                           

( )xx

o

x ez
zR

R
−+

+
= κεεθ

                                             (A-10) 
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APPENDIX B 

DERIVATION OF THE TANGENTIAL STRESS FOR A BEAM WITH SOME CURVATURE BY 

HETNARSKI, NODA, AND TANIGAWA DUE TO A THERMAL LOADING 
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The center line lies in one of the centroidal principal planes.  If the element of the curved beam with 

curvature 
R

1
 and angle θd before thermal loading deforms to the curvature 

ρ
1

and angle θθ dd ∆+ after 

the temperature change T∆ , the strain 0ε at the center line is given by 

                
( )

0

''

0 ω
ρρ

θ
θρρ

θ
θθθρ

ε
RR

R

d

d

RR

R

Rd

Rddd

nm

nmmn
+

−
=

∆
+

−
=

−∆+
=

−
=            (B-1) 

 where 
θ
θ

ω
d

d∆
=0 . 

The strainε  at a distance y from the center line is given by  
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ε

 (B-2) 

In the last expression, the term ( )dyT
y

∫ ∆
0

0 αω was neglected as being small compared to ( )dyT
y

∫ ∆
0
α .  

The final strainε in the beam is expressed as the sum of the free thermal strain and the strain due to 

stress θθσ : 

                                               ( ) ( ) 



 ∆++

+
=+∆= ∫ dyTyR

yRE
T

y

0
00

1
αωε
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                   (B-3) 

The stress can, therefore, be expressed by 

                                                   ( ) ( ) 



 ∆++

+
+∆−= ∫ dyTyR

yR

E
TE

y

0
00 αωεασθθ                  (B-4) 

Since the curved beam is not subjected to external forces and moments, we have 
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0=∫A dAθθσ  

0=∫A ydAθθσ  

We can obtain the normal strain 0ε  and the curvature 0ω at the center surface y = 0 as follows: 
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The curvature is obtained after thermal loading at the center surface y=0 from the following two sets of 

equations: 
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As… 
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Substituting of 
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APPENDIX C 

THREE-DIMENSIONAL DISPLACEMENT DERIVATION 
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The origin is equidistant from the top and bottom surfaces, the left and right surfaces, and front and rear 

surfaces.  It is referred to as the reference point. 

Displacements and strains parallel to a given direction, normal actions, are referenced as (*)0 and (*)
0
 

respectively. 

It is assumed that the displacements that are through normal actions are a function of (x,y,z).  That is, each 

point in the volume can potentially have its own unique displacement.  Since the displacements are 

functions of (x,y,z), the corresponding normal strains are also functions of (x,y,z). 
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*To define displacements on the xy-plane or planes parallel to the xy-plane, set z to a constant 

value as (x,y) is varied. 
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*To define displacements on the yz-plane or planes parallel to the yz-plane, set x to a constant 

value as (y,z) is varied. 

*To define displacements on the zx-plane or planes parallel to the zx-plane, set y to a constant 

value as (x,z) is varied. 

This forces a reduction to a given plane instead of a volume. 

________________________________________________________________________ 

●  Rigid body motion:  0===≡ xyzrotation ωωω  
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APPENDIX D 

MATLAB CODE FOR COMPATIBILITY VERIFICATION OF DISPLACEMENTS DERIVED IN 

APPENDIX C 
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%Jared C. Polk 

%Master's Thesis 

%Compatibility 

  

clc 

clear 

  

  

syms x y z epsilon_x0 epsilon_y0 epsilon_z0 gamma_xy0_z gamma_zx0_y gamma_yz0_x kappa_x_z 

kappa_x_y  kappa_y_z kappa_y_x kappa_z_x kappa_z_y kappa_xy_z kappa_zx_y kappa_yz_x 

  

u_xy = ((epsilon_x0*x)+(0.5*gamma_xy0_z*y))+(((kappa_x_z*x)+(0.5*kappa_xy_z*y))*z); 

u_zx = ((epsilon_x0*x)+(0.5*gamma_zx0_y*z))+(((kappa_x_y*x)+(0.5*kappa_zx_y*z))*y); 

  

v_xy = ((epsilon_y0*y)+(0.5*gamma_xy0_z*x))+(((kappa_y_z*y)+(0.5*kappa_xy_z*x))*z); 

v_yz = ((epsilon_y0*y)+(0.5*gamma_yz0_x*z))+(((kappa_y_x*y)+(0.5*kappa_yz_x*z))*x); 

  

w_zx = ((epsilon_z0*z)+(0.5*gamma_zx0_y*x))+(((kappa_z_y*z)+(0.5*kappa_zx_y*x))*y); 

w_yz = ((epsilon_z0*z)+(0.5*gamma_yz0_x*y))+(((kappa_z_x*z)+(0.5*kappa_yz_x*y))*x); 

  

  

%Strain displacement compatibility: 

epsilon_x1 = diff(u_xy,x); 

epsilon_x2 = diff(u_zx,x); 

  

epsilon_y1 = diff(v_xy,y); 

epsilon_y2 = diff(v_yz,y); 

  

epsilon_z1 = diff(w_zx,z);   

epsilon_z2 = diff(w_yz,z); 

  

gamma_xy1 = diff(u_xy,y)+diff(v_xy,x); 

  

gamma_yz1 = diff(v_yz,z)+diff(w_yz,y); 

  

gamma_zx1 = diff(u_zx,z)+diff(w_zx,x); 

  

  

%Second order (curvature) compatibility between normal and shear strains 

  

%A1=A2 

A1 = diff(epsilon_x1,y,2)+diff(epsilon_y1,x,2); 

A2 = diff(diff(gamma_xy1,y),x); 

  

if A1-A2 == 0 

    disp('XY Second order (curvature) IS compatibility between normal and shear strains') 

else 

    disp('XY Second order (curvature) NOT compatibility between normal and shear strains') 

end 

  

%B1=B2 

B1 = diff(epsilon_y2,z,2)+diff(epsilon_z2,y,2); 

B2 = diff(diff(gamma_yz1,z),y); 
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if B1-B2 == 0 

    disp('YZ Second order (curvature) IS compatibility between normal and shear strains') 

else 

    disp('YZ Second order (curvature) NOT compatibility between normal and shear strains') 

end 

  

%C1=C2 

C1 = diff(epsilon_z1,x,2)+diff(epsilon_x2,z,2); 

C2 = diff(diff(gamma_zx1,x),z); 

  

if C1-C2 == 0 

    disp('ZX Second order (curvature) IS compatibility between normal and shear strains') 

else 

    disp('ZX Second order (curvature) NOT compatibility between normal and shear strains') 
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APPENDIX E 

MATLAB CODE FOR CLASSICAL LAMINATION THEORY ANALYSIS 
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%Jared Polk 

%Master Thesis 

%Classical Lamination Theory (CLT) 

  

clc 

clear 

  

  

%%% Input %%% 

plies = 6; 

Theta = [45 45 0 45 45 0];   %top -> bottom   

z = [0.015 0.010 0.005 0.000 -0.005 -0.010 -0.015];   %top -> bottom 

z_bar = [0.0125 0.0075 0.0025 -0.0025 -0.0075 -0.0125];       %above -> below 

%%% Glass Epoxy 

E_1 = 6.00e6;  

E_2 = 1.50e6;       

G_12 = 0.62e6;   

v_12 = 0.28;  

delta_T = 100; 

alpha_1 = 3.9e-6;   

alpha_2 = 14.4e-6; 

  

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

v_21 = (E_2/E_1)*v_12; 

Q_11 = E_1/(1-(v_12*v_21)); 

Q_22 = E_2/(1-(v_12*v_21)); 

Q_12 = (v_12*E_2)/(1-(v_12*v_21));   

Q_66 = G_12; 

  

   

A=zeros(3,3);   

B=zeros(3,3);  

D=zeros(3,3);    

alphas=zeros(3,1,plies); 

THERMAL_LOADINGS_CLT_IP=zeros(3,1);    

THERMAL_LOADINGS_CLT_OP=zeros(3,1); 

count=0;    

for i=1:plies  

    count=count+1;     

    theta = Theta(count); 

     m = cos(theta*(pi/180));  %material coordinate rotation 

     n = sin(theta*(pi/180));  %material coordinate rotation 

             

    Q_xx = (Q_11*m^4)+(Q_22*n^4)+(2*Q_12*m^2*n^2)+(4*Q_66*m^2*n^2); 

    Q_yy = (Q_11*n^4)+(Q_22*m^4)+(2*Q_12*m^2*n^2)+(4*Q_66*m^2*n^2); 

    Q_xy = (Q_11*m^2*n^2)+(Q_22*m^2*n^2)+(Q_12*(m^4+n^4))-(4*Q_66*m^2*n^2); 

    Q_xs = (Q_11*m^3*n^1)-(Q_22*m^1*n^3)-(Q_12*(m^2-n^2)*m*n)-(2*Q_66*(m^2-n^2)*m*n); 

    Q_ys = (Q_11*m^1*n^3)-(Q_22*m^3*n^1)+(Q_12*(m^2-n^2)*m*n)+(2*Q_66*(m^2-n^2)*m*n); 

    Q_ss = (Q_11*m^2*n^2)+(Q_22*m^2*n^2)-(2*Q_12*m^2*n^2)+(Q_66*(m^2-n^2)^2); 
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    Q_yx = Q_xy;  

    Q_sx = Q_xs;  

    Q_sy = Q_ys; 

    Q_XY(:,:,count) = [Q_xx  Q_xy  Q_xs 

                       Q_yx  Q_yy  Q_ys  

                       Q_sx  Q_sy  Q_ss]; 

  

        %Rotating laminate about y-axis 

        

    A = A+(Q_XY(:,:,count)*(z(count)-z(count+1))); 

    B = B+(Q_XY(:,:,count)*(z(count)^2-z(count+1)^2));  

    D = D+(Q_XY(:,:,count)*(z(count)^3-z(count+1)^3));  

     

    alpha_x = ((alpha_1*m^2)+(alpha_2*n^2)); 

    alpha_y = ((alpha_1*n^2)+(alpha_2*m^2)); 

    alpha_s = (2*(alpha_1-alpha_2)*m*n); 

    alphas(:,:,count) = [alpha_x;alpha_y;alpha_s]; 

     

    thermal_loading_CLT_IP(:,:,count) = Q_XY(:,:,count)*alphas(:,:,count)*delta_T*0.005; 

    THERMAL_LOADINGS_CLT_IP = 

THERMAL_LOADINGS_CLT_IP+thermal_loading_CLT_IP(:,:,count); 

    thermal_loading_CLT_OP(:,:,count) = Q_XY(:,:,count)*alphas(:,:,count)*delta_T*0.005*z_bar(count); 

    THERMAL_LOADINGS_CLT_OP = 

THERMAL_LOADINGS_CLT_OP+thermal_loading_CLT_OP(:,:,count);         

end 

  

B = (1/2)*B;  

D = (1/3)*D;    

         

ABD = [A B     

       B D];      

abd = inv(ABD); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%% Input %%%% 

    %solve for:  Input 

    Nx_induced = -

(abd(1,1)*THERMAL_LOADINGS_CLT_IP(1)+abd(1,2)*THERMAL_LOADINGS_CLT_IP(2)+abd(1,3

)*THERMAL_LOADINGS_CLT_IP(3)+abd(1,4)*THERMAL_LOADINGS_CLT_OP(1)+abd(1,5)*THE

RMAL_LOADINGS_CLT_OP(2)+abd(1,6)*THERMAL_LOADINGS_CLT_OP(3))/abd(1,1)  ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

LOADINGS = 

[THERMAL_LOADINGS_CLT_IP(1)+Nx_induced;THERMAL_LOADINGS_CLT_IP(2);THERMAL_L

OADINGS_CLT_IP(3)+Ns_induced;THERMAL_LOADINGS_CLT_OP(1);THERMAL_LOADINGS_C

LT_OP(2);THERMAL_LOADINGS_CLT_OP(3)]; 

strain_curvatures = abd*LOADINGS; 

  

count=0; 

stress_induced_strains=zeros(3,1,plies); 

stresses_xy=zeros(3,1,plies); 
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for i=1:plies 

    count=count+1; 

    

    stress_induced_strains(:,:,count) = strain_curvatures(1:3)+z_bar(count)*strain_curvatures(4:6)-

alphas(:,:,count)*delta_T;    %calculates strain at mid-plane of each ply 

    stresses_xy(:,:,count) = Q_XY(:,:,count)*stress_induced_strains(:,:,count);     

end 

  

  

    

%%% AS4/3501-6 Carbon Epoxy 

%E_1 = 21.3e6;  

%E_2 = 1.5e6;     

%G_12 = 1.00e6;   

%v_12 = 0.27;   

%delta_T = 100; 

%alpha_1 = -0.5e-6; 

%alpha_2 = 15.0e-6; 

  

%%% Aluminum %%%% 

%E_1 = 10e6;  

%E_2 = 10e6;   

%G_12 = 3.77e6;   

%v_12 = 0.33;   

%delta_T = 100; 

%alpha_1 = 13.1e-6;  

%alpha_2 = 13.1e-6; 

  

%%% Glass Epoxy 

%E_1 = 6.00e6;  

%E_2 = 1.50e6;       

%G_12 = 0.62e6;   

%v_12 = 0.28;  

%delta_T = 100; 

%alpha_1 = 3.9e-6;   

%alpha_2 = 14.4e-6; 

  

  

%%% Nx_induced for different family of stacking sequences %%% 

%symmetric and balanced:       Nx_induced = -

(abd(1,1)*THERMAL_LOADINGS_CLT_IP(1)+abd(1,2)*THERMAL_LOADINGS_CLT_IP(2))/abd(1,1

) 

%unsymmetric and balanced:     Nx_induced = -

(abd(1,1)*THERMAL_LOADINGS_CLT_IP(1)+abd(1,2)*THERMAL_LOADINGS_CLT_IP(2)+abd(1,4

)*THERMAL_LOADINGS_CLT_OP(1)+abd(1,5)*THERMAL_LOADINGS_CLT_OP(2)+abd(1,6)*THE

RMAL_LOADINGS_CLT_OP(3))/abd(1,1) 

%symmetric and unbalanced:     Nx_induced = -

(abd(1,1)*THERMAL_LOADINGS_CLT_IP(1)+abd(1,2)*THERMAL_LOADINGS_CLT_IP(2)+abd(1,3

)*THERMAL_LOADINGS_CLT_IP(3))/abd(1,1) 

%unsymmetric and unbalanced:   Nx_induced = -

(abd(1,1)*THERMAL_LOADINGS_CLT_IP(1)+abd(1,2)*THERMAL_LOADINGS_CLT_IP(2)+abd(1,3

)*THERMAL_LOADINGS_CLT_IP(3)+abd(1,4)*THERMAL_LOADINGS_CLT_OP(1)+abd(1,5)*THE

RMAL_LOADINGS_CLT_OP(2)+abd(1,6)*THERMAL_LOADINGS_CLT_OP(3))/abd(1,1)   
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Main File: filename:  TCLAP_8nodeISO 

%Jared C. Polk 

%Master Thesis 

%Thermal Curved Laminate Analysis Program (TCLAP) 

  

%%%%%%%%%%%%%%%%%%%%%%%%   PURPOSE   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Stress analysis on thermally loaded, axi-symmetric, simple curvature 

%  laminates 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%  

  

   

tic %%%''' T I M E R '''%%% 

%----------------------------Inputs---------------------------------------% 

%%%     Aluminum       %%%% 

%*** Material Properties *** 

E1 = 10e6;  

E2 = 10e6;       

E3 = 10e6; 

G13 = 3.77e6; 

G23 = 3.77e6; 

G12 = 3.77e6; 

v12 = 0.33;  

v13 = 0.33; 

v23 = 0.33; 

%.......................................................................... 

%*** Thermal Conditions and Properties *** 

T_final = 100; 

T_initial = 0;    

alpha_1 = 13.1e-6;   

alpha_2 = 13.1e-6; 

alpha_3 = 13.1e-6; 

%.......................................................................... 

%*** Laminate Stacking Sequence Data *** 

plies = 6; 

Theta = [0 0 0 0 0 0];  %list direction: Theta = [bottom laminate -> top laminate]        

z = linspace(-0.5*plies*0.005,0.5*plies*0.005,plies+1);  %list direction: z = [bottom laminate -> top 

laminate] 

laminate_Z = [-0.015 -0.010 -0.005 0 0.005 0.010 0.015];   %list direction:  laminate_Z = [bottom laminate 

-> top laminate] 

   

%.......................................................................... 

%*** Model Element Configuration ***    

Number_Of_Elements__THETA = 180;    

Number_Of_Elements__Z = 24;             

Number_Of_Elements__RADIAL = plies;        

%.......................................................................... 

%*** Model Geometry Configuration *** 

thickness_ply = 0.005;    

  

Angle_Spanned = (30)*(pi/180);  %Angle_Spanned = Angle{degrees}*{conversion to radians}     
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Arc_Length = Number_Of_Elements__THETA*thickness_ply; 

if Angle_Spanned == 0   

    Radius_Of_Curvature = 0;   

else 

    Radius_Of_Curvature = Arc_Length/Angle_Spanned;  % Radius_Of_Curvature = Arc 

Length/Angle_Spanned 

end 

    

%.......................................................................... 

%*** Boundary Conditions *** 

Right_Boundary = 1;  

Left_Boundary = 1; 

Top_Boundary = 0;           

Bottom_Boundary = 0;          

Front_Boundary = 0; 

Rear_Boundary = 0;  

%.......................................................................... 

  

%-------------------------------------------------------------------------% 

    

   

  

  

  

%-------------------Material Constants and Parameters---------------------% 

v21 = (E2/E1)*v12; 

v31 = (E3/E1)*v13; 

v32 = (E3/E2)*v23; 

triangle = 1/E1/E2/E3*(1-v32*v23-v12*v21-v12*v31*v23-v13*v21*v32-v13*v31); 

C11 = (1-(v23*v32))/(E2*E3*triangle); 

C22 = (1-(v13*v31))/(E1*E3*triangle); 

C33 = (1-(v12*v21))/(E1*E2*triangle); 

C12 = (v21+(v31*v23))/(E2*E3*triangle); 

C23 = (v32+(v12*v31))/(E1*E3*triangle); 

C13 = (v13+(v12*v23))/(E1*E2*triangle); 

C21 = C12; 

C32 = C23; 

C31 = C13; 

C44 = G23; 

C55 = G13; 

C66 = G12; 

delta_T = T_final-T_initial; 

alpha_12 = transpose([alpha_1 alpha_2 alpha_3 0 0 0]); 

%.......................................................................... 

ne = Number_Of_Elements__THETA*Number_Of_Elements__RADIAL*Number_Of_Elements__Z; 

nn_THETA = Number_Of_Elements__THETA+1; 

nn_RADIAL = Number_Of_Elements__RADIAL+1; 

nn_Z = Number_Of_Elements__Z+1; 

nn = nn_RADIAL*nn_Z*nn_THETA; 

ndof=3*nn; 

%.......................................................................... 

%.......................................................................... 

%-------------------------------------------------------------------------% 
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%------------------Laminate Rotation--------------------------------------% 

Phi = linspace(-0.5*Angle_Spanned,0.5*Angle_Spanned,(2*Number_Of_Elements__THETA)+1); 

i_master=0; 

i_servant=0; 

for RADIAL_master = 1:Number_Of_Elements__RADIAL 

     

    for Z_master = 1:Number_Of_Elements__Z 

  

        for THETA_master = 1:Number_Of_Elements__THETA 

            i_master = i_master+1;    

            i_servant = i_servant+1; 

            phi_y(i_servant) = Phi(i_master*2);    %#ok<AGROW> 

        end 

        i_master=0; 

         

    end 

     

end     

%-------------------------------------------------------------------------% 

%_________________________________________________________________________% 

t_input_initialization=toc   %#ok<NOPTS>  %%%''' T I M E R '''%%% 

                 

   

tic   %%%''' T I M E R '''%%% 

[elements] = 

funct_element_connectivity_8nodeISO(Number_Of_Elements__THETA,Number_Of_Elements__RADIA

L,Number_Of_Elements__Z,ne,nn_THETA,nn_Z); 

[k_element_sym] = funct_symbolic_stiffness_matrix_8nodeISO();  

[B_FEA_SYM,N] = funct_b_matrix_integral_8nodeISO(); 

[thermal_load_sym] = funct_symbolic_thermal_load_matrix_8nodeISO(); 

t_symbolic_set_up=toc %#ok<NOPTS>   %%%''' T I M E R '''%%% 

  

tic   %%%''' T I M E R '''%%% 

fid = fopen('k_element_symbolic_2_numeric.m','w'); 

  

 fprintf(fid,'k_element_numeric = [ ');  

    SIZE_k_element_sym = size(k_element_sym); 

    for row = 1:SIZE_k_element_sym(1) 

        for col = 1:SIZE_k_element_sym(2) 

            fprintf(fid,'%s',char(k_element_sym(row,col)),','); 

        end 

        fprintf(fid,';...\n'); 

    end  

    fprintf(fid,' ];'); 

t_function_for_k_element=toc %#ok<NOPTS>   %%%''' T I M E R '''%%% 

  

tic   %%%''' T I M E R '''%%% 

fid = fopen('thermal_strain_symbolic_2_numeric.m','w'); 

  

 fprintf(fid,'thermal_load_numeric = [ ');  

    SIZE_thermal_load_sym = size(thermal_load_sym); 

    for row = 1:SIZE_thermal_load_sym(1)   
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        for col = 1:SIZE_thermal_load_sym(2) 

            fprintf(fid,'%s',char(thermal_load_sym(row,col)),','); 

        end 

        fprintf(fid,';...\n'); 

    end  

    fprintf(fid,' ];'); 

t_function_for_thermal_load=toc %#ok<NOPTS>   %%%''' T I M E R '''%%% 

   

tic   %%%''' T I M E R '''%%% 

%Calculation of element stiffness matrices and thermal nodal forces 

layer_check=1; 

layer_check_index=1; 

i_master=0; 

for I_master = 1:ne      

    i_master=i_master+1; 

        PHI_Y = phi_y(i_master);   

     

[C] = 

funct_C_matrices_8nodeISO(layer_check,Theta,PHI_Y,C11,C12,C13,C21,C22,C23,C31,C32,C33,C44,C5

5,C66); 

        D_FEA(:,:,i_master) = C; %#ok<AGROW> 

        A11=C(1,1); 

        A12=C(1,2); 

        A16=C(1,3); 

        B11=C(1,4); 

        B12=C(1,5); 

        B16=C(1,6);    

        A21=C(2,1); 

        A22=C(2,2); 

        A26=C(2,3); 

        B21=C(2,4); 

        B22=C(2,5); 

        B26=C(2,6); 

        A61=C(3,1);   

        A62=C(3,2); 

        A66=C(3,3); 

        B61=C(3,4);  

        B62=C(3,5); 

        B66=C(3,6); 

        D11=C(4,4); 

        D12=C(4,5); 

        D16=C(4,6); 

        D21=C(5,4); 

        D22=C(5,5); 

        D26=C(5,6);  

        D61=C(6,4); 

        D62=C(6,5); 

        D66=C(6,6);         

   [Determinant_Jacobian] = funct_jacobian_8nodeISO(PHI_Y);    

   run('k_element_symbolic_2_numeric') 

   k_element_num = Determinant_Jacobian*k_element_numeric; 

   k_element(:,:,i_master) = k_element_numeric; %#ok<AGROW> 
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   [THERMAL_STRAIN] = 

funct_thermal_strains_8nodeISO(layer_check,Theta,PHI_Y,delta_T,alpha_12); 

        THERMAL_STRAIN_FEA(:,:,i_master) = THERMAL_STRAIN;  %#ok<AGROW> 

        thermal_strain_r = THERMAL_STRAIN(1,1); 

        thermal_strain_s = THERMAL_STRAIN(2,1); 

        thermal_strain_t = THERMAL_STRAIN(3,1);  

        thermal_strain_st = THERMAL_STRAIN(4,1); 

        thermal_strain_rt = THERMAL_STRAIN(5,1); 

        thermal_strain_rs = THERMAL_STRAIN(6,1); 

   run('thermal_strain_symbolic_2_numeric') 

    

   thermal_load(:,:,i_master) = thermal_load_numeric; %#ok<AGROW> 

    

   if i_master == layer_check_index*Number_Of_Elements__THETA*Number_Of_Elements__Z; 

    layer_check = layer_check+1; 

    layer_check_index = layer_check_index+1; 

   end 

end   

t_processing=toc %#ok<NOPTS>   %%%''' T I M E R '''%%% 

  

  

tic   %%%''' T I M E R '''%%% 

[K_global] = funct_global_stiffness_matrix_8nodeISO(ne,elements,k_element,ndof); 

[bottom_face_nodes,top_face_nodes,right_face_nodes,left_face_nodes,front_face_nodes,rear_face_nodes] 

= 

funct_boundary_conditions_8nodeISO(elements,Number_Of_Elements__THETA,Number_Of_Elements_

_RADIAL,Number_Of_Elements__Z,ne,nn_THETA,nn_Z);     

[K_global_reduced] = 

funct_reduced_stiffness_matrix_8nodeISO(bottom_face_nodes,top_face_nodes,right_face_nodes,left_face

_nodes,front_face_nodes,rear_face_nodes,K_global,Right_Boundary,Left_Boundary,Top_Boundary,Botto

m_Boundary,Front_Boundary,Rear_Boundary,ndof); 

[thermal_load_Array,thermal_load_Array_Reduced] = 

funct_nodal_force_array_8nodeISO(thermal_load,elements,ne,ndof,bottom_face_nodes,top_face_nodes,rig

ht_face_nodes,left_face_nodes,front_face_nodes,rear_face_nodes,Right_Boundary,Left_Boundary,Top_Bo

undary,Bottom_Boundary,Front_Boundary,Rear_Boundary); 

  

[Reduced_Displacement_Array] = 

funct_reduced_displacement_array_8nodeISO(K_global_reduced,thermal_load_Array_Reduced); 

  

[Displacements] = funct_displacements_8nodeISO(elements,ne,Reduced_Displacement_Array);     

    

[Displacement_Function] = funct_displacement_function_8nodeISO(ne,Displacements,N); 

t_solving1=toc %#ok<NOPTS>   %%%''' T I M E R '''%%% 

  

  

  

  

  

  

tic   %%%''' T I M E R '''%%% 

[Element_Strain,Nodal_Strain] = 

funct_strain_8nodeISO(Displacements,B_FEA_SYM,ne,Radius_Of_Curvature,laminate_Z,Number_Of_El

ements__THETA,Number_Of_Elements__Z,Number_Of_Elements__RADIAL,plies);  
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[Element_Stress,Nodal_Stress] = 

funct_stress_8nodeISO(Element_Strain,Nodal_Strain,ne,D_FEA,THERMAL_STRAIN_FEA);   

  

[Forces,FORCES] = funct_forces_8nodeISO(Displacements,k_element,ne,thermal_load);   

t_solving2=toc   %#ok<NOPTS>   %%%''' T I M E R '''%%% 

  

  

t_total_seconds=t_solving2+t_solving1+t_processing+t_function_for_k_element+t_symbolic_set_up+t_inp

ut_initialization %#ok<NOPTS> 

t_total_minutes=t_total_seconds/60 %#ok<NOPTS> 

   

           

%%%     Aluminum       %%%% 

%*** Material Properties *** 

%E1 = 10e6;  

%E2 = 10e6;       

%E3 = 10e6; 

%G13 = 3.77e6; 

%G23 = 3.77e6; 

%G12 = 3.77e6; 

%v12 = 0.33;  

%v13 = 0.33; 

%v23 = 0.33; 

%.......................................................................... 

%*** Thermal Conditions and Properties *** 

%T_final = 100; 

%T_initial = 0;    

%alpha_1 = 13.1e-6;   

%alpha_2 = 13.1e-6; 

%alpha_3 = 13.1e-6; 

  

  

  

%%%     AS4/3501-6 Carbon Epoxy       %%%% 

%*** Material Properties *** 

%E1 = 21.3e6;  

%E2 = 1.50e6;       

%E3 = 1.50e6; 

%G13 = 1.00e6; 

%G23 = 0.54e6; 

%G12 = 1.00e6; 

%v12 = 0.27;  

%v13 = 0.27; 

%v23 = 0.54; 

%.......................................................................... 

%*** Thermal Conditions and Properties *** 

%T_final = 100; 

%T_initial = 0;    

%alpha_1 = -0.5e-6;   

%alpha_2 = 15.0e-6; 

%alpha_3 = 15.0e-6; 
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%%%     E-Glass/Epoxy       %%%% 

%*** Material Properties *** 

%E1 = 6.00e6;  

%E2 = 1.50e6;       

%E3 = 1.50e6; 

%G13 = 0.62e6; 

%G23 = 0.50e6; 

%G12 = 0.62e6; 

%v12 = 0.28;  

%v13 = 0.28; 

%v23 = 0.50; 

%.......................................................................... 

%*** Thermal Conditions and Properties *** 

%T_final = 100; 

%T_initial = 0;    

%alpha_1 = 3.9e-6;   

%alpha_2 = 14.4e-6; 

%alpha_3 = 14.4e-6; 
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Element Connectivity File: filename:  funct_element_connectivity_8nodeISO 

function    [elements] = 

funct_element_connectivity_8nodeISO(Number_Of_Elements__THETA,Number_Of_Elements__RADIA

L,Number_Of_Elements__Z,ne,nn_THETA,nn_Z) 

   

%%%%%%%%%%%%%%%%%%%%%%%%   PURPOSE   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Defines element connectivity.  Definition of connectivity is done one 

%  element at a time.  The sequence in which the elements are addressed is 

%  at a given Theta & R, elements are addressed from Z=0 to Z=Z_final.  The 

%  indexing progresses to a new Theta with the same R until the domain of 

%  Theta is transversed.  Then the indexing cycles to a new R position and 

%  the latter processes repeat until all elements have been addressed. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

          

  

elements = zeros(ne,8);   

      

 ii=1:1:nn_THETA; 

 iii=0; 

jj=linspace(1,Number_Of_Elements__THETA,Number_Of_Elements__THETA); 

 j=1; %#ok<NASGU> 

 jjj=0;    

k=0;          

 kk=0;  

  

         

for J=1:Number_Of_Elements__THETA  

    iii=iii+1;   

    i=ii(iii); 

    jjj=jjj+1;        

    j=jj(jjj);         

  

    for I=1:Number_Of_Elements__Z 

  

        elements(j,1:2) = [i i+1]; 

        elements(j,3:4) = [i+nn_THETA+1 i+nn_THETA]; 

        elements(j,5:6) = [i+(nn_THETA*nn_Z) i+(nn_THETA*nn_Z)+1]; 

        elements(j,7:8) = [i+(nn_THETA*nn_Z)+nn_THETA+1 i+(nn_THETA*nn_Z)+nn_THETA]; 

  

        i=i+nn_THETA;   

        j=j+Number_Of_Elements__THETA; 

    end  

  

end 

  

if Number_Of_Elements__RADIAL > 1 

  

    k=0; 
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    for K=2:Number_Of_Elements__RADIAL 

        k=k+1; 

        

elements((((Number_Of_Elements__THETA*Number_Of_Elements__Z)*k)+1):((Number_Of_Elements_

_THETA*Number_Of_Elements__Z)*(k+1)),:) = 

[elements(1:(Number_Of_Elements__THETA*Number_Of_Elements__Z),1:4)+(k*nn_THETA*nn_Z)  

elements(1:(Number_Of_Elements__THETA*Number_Of_Elements__Z),5:8)+(k*nn_THETA*nn_Z)]; 

    end 

     

end 
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Symbolic Stiffness Matrix File:           filename:  funct_symbolic_stiffness_matrix_8nodeISO 

function      [k_element_sym] = funct_symbolic_stiffness_matrix_8nodeISO() 
  
%%%%%%%%%%%%%%%%%%%%%%%%   PURPOSE   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Generates the symbolic element stiffness matrix (with respect to) the 
% laminates constitutive relationship 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 
  
syms A11 A12 A16 B11 B12 B16 A21 A22 A26 B21 B22 B26 A61 A62 A66 B61 B62 B66 B11 B12 B16 

D11 D12 D16 B21 B22 B26 D21 D22 D26 B61 B62 B66 D61 D62 D66  
    

  
k_element_sym =  [      [           

2/9*A11+2/9*D66+1/6*B61+1/6*B16+2/9*D22+1/6*B21+1/6*D26+1/6*B12+1/6*D62,           

2/9*B62+1/6*A12+2/9*B16+1/6*D66+1/6*D26+1/6*B22+2/9*D21+1/6*B11+1/6*D61,           

2/9*D61+1/6*B11+2/9*B12+1/6*D62+1/6*D22+1/6*D21+1/6*A16+2/9*B26+1/6*B66,         1/9*D66-

2/9*A11-1/6*B61+1/6*B16+1/9*D22-1/6*B21+1/12*D62+1/12*D26+1/6*B12,         1/9*B62+1/6*A12-

2/9*B16-1/6*D66-1/6*D26+1/12*D61+1/9*D21+1/6*B11+1/12*B22,         1/9*D61+1/6*B11-2/9*B12-

1/6*D62-1/6*D22+1/12*D21+1/6*A16+1/9*B26+1/12*B66,     -1/9*A11-1/9*D66-1/6*B61-

1/6*B16+1/18*D22-1/12*B21-1/12*D26+1/12*B12+1/12*D62,     -1/9*B62-1/6*A12-1/9*B16-1/6*D66-

1/12*D26-1/12*B22+1/18*D21+1/12*B11+1/12*D61,     -1/9*D61-1/6*B11-1/9*B12-1/6*D62-

1/12*D22-1/12*D21+1/12*A16+1/18*B26+1/12*B66,        -2/9*D66+1/9*A11+1/6*B61-

1/6*B16+1/9*D22+1/12*B21+1/6*D62-1/6*D26+1/12*B12,        -2/9*B62-

1/6*A12+1/9*B16+1/6*D66+1/12*D26-1/6*B22+1/9*D21+1/12*B11+1/6*D61,        -2/9*D61-

1/6*B11+1/9*B12+1/6*D62+1/12*D22-1/6*D21+1/12*A16+1/9*B26+1/6*B66,         

1/9*D66+1/9*A11+1/12*B61+1/12*B16-2/9*D22+1/6*B21-1/6*D62+1/6*D26-1/6*B12,         

1/9*B62+1/12*A12+1/9*B16+1/12*D66+1/6*D26-1/6*D61-2/9*D21-1/6*B11+1/6*B22,         

1/9*D61+1/12*B11+1/9*B12+1/12*D62+1/6*D22-2/9*B26+1/6*D21-1/6*A16-1/6*B66,     -

1/9*A11+1/18*D66-1/12*B61+1/12*B16-1/9*D22-1/6*B21+1/12*D26-1/6*B12-1/12*D62,      

1/18*B62+1/12*A12-1/9*B16-1/12*D66-1/6*D26-1/12*D61-1/9*D21-1/6*B11+1/12*B22,      

1/18*D61+1/12*B11-1/9*B12-1/12*D62-1/6*D22+1/12*D21-1/6*A16-1/9*B26-1/12*B66, -1/18*D66-

1/18*A11-1/12*B61-1/12*B16-1/18*D22-1/12*B21-1/12*D62-1/12*D26-1/12*B12, -1/18*B62-

1/12*A12-1/18*B16-1/12*D66-1/12*D26-1/12*D61-1/18*D21-1/12*B11-1/12*B22, -1/18*D61-

1/12*B11-1/18*B12-1/12*D62-1/12*D22-1/18*B26-1/12*D21-1/12*A16-1/12*B66,      1/18*A11-

1/9*D66+1/12*B61-1/12*B16-1/9*D22+1/12*B21-1/6*D26-1/12*B12-1/6*D62,     -1/9*B62-

1/12*A12+1/18*B16+1/12*D66+1/12*D26-1/6*B22-1/9*D21-1/12*B11-1/6*D61,     -1/9*D61-

1/12*B11+1/18*B12+1/12*D62+1/12*D22-1/9*B26-1/6*D21-1/12*A16-1/6*B66] 
                        [           

2/9*B61+2/9*B26+1/6*A21+1/6*D66+2/9*D12+1/6*B11+1/6*D16+1/6*B22+1/6*D62,           

2/9*A22+1/6*B62+2/9*D66+1/6*B26+1/6*D16+1/6*B12+2/9*D11+1/6*D61+1/6*B21,           

2/9*B21+1/6*D61+2/9*D62+1/6*B22+1/6*D12+1/6*D11+2/9*B16+1/6*B66+1/6*A26,         1/9*B26-

1/6*A21-2/9*B61+1/6*D66+1/9*D12-1/6*B11+1/12*B22+1/12*D16+1/6*D62,         1/9*A22+1/6*B62-

2/9*D66-1/6*B26-1/6*D16+1/12*B21+1/9*D11+1/6*D61+1/12*B12,         1/9*B21+1/6*D61-2/9*D62-

1/6*B22-1/6*D12+1/12*D11+1/9*B16+1/6*B66+1/12*A26,     -1/9*B61-1/9*B26-1/6*A21-

1/6*D66+1/18*D12-1/12*B11-1/12*D16+1/12*B22+1/12*D62,     -1/9*A22-1/6*B62-1/9*D66-1/6*B26-

1/12*D16-1/12*B12+1/18*D11+1/12*D61+1/12*B21,     -1/9*B21-1/6*D61-1/9*D62-1/6*B22-

1/12*D12-1/12*D11+1/18*B16+1/12*B66+1/12*A26,        -2/9*B26+1/6*A21+1/9*B61-

1/6*D66+1/9*D12+1/12*B11+1/6*B22-1/6*D16+1/12*D62,        -2/9*A22-

1/6*B62+1/9*D66+1/6*B26+1/12*D16-1/6*B12+1/9*D11+1/12*D61+1/6*B21,        -2/9*B21-
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1/6*D61+1/9*D62+1/6*B22+1/12*D12-1/6*D11+1/9*B16+1/12*B66+1/6*A26,         

1/9*B61+1/9*B26+1/12*A21+1/12*D66-2/9*D12+1/6*B11-1/6*B22+1/6*D16-1/6*D62,         

1/9*A22+1/12*B62+1/9*D66+1/12*B26+1/6*D16-1/6*B21-2/9*D11-1/6*D61+1/6*B12,         

1/9*B21+1/12*D61+1/9*D62+1/12*B22+1/6*D12+1/6*D11-2/9*B16-1/6*B66-1/6*A26,     -

1/9*B61+1/18*B26-1/12*A21+1/12*D66-1/9*D12-1/6*B11+1/12*D16-1/12*B22-1/6*D62,      

1/18*A22+1/12*B62-1/9*D66-1/12*B26-1/6*D16-1/12*B21-1/9*D11-1/6*D61+1/12*B12,      

1/18*B21+1/12*D61-1/9*D62-1/12*B22-1/6*D12+1/12*D11-1/9*B16-1/6*B66-1/12*A26, -1/18*B26-

1/12*A21-1/18*B61-1/12*D66-1/18*D12-1/12*B11-1/12*B22-1/12*D16-1/12*D62, -1/18*A22-

1/12*B62-1/18*D66-1/12*B26-1/12*D16-1/12*B21-1/18*D11-1/12*D61-1/12*B12, -1/18*B21-

1/12*D61-1/18*D62-1/12*B22-1/12*D12-1/12*D11-1/18*B16-1/12*B66-1/12*A26,      1/18*B61-

1/9*B26+1/12*A21-1/12*D66-1/9*D12+1/12*B11-1/6*D16-1/6*B22-1/12*D62,     -1/9*A22-

1/12*B62+1/18*D66+1/12*B26+1/12*D16-1/6*B12-1/9*D11-1/12*D61-1/6*B21,     -1/9*B21-

1/12*D61+1/18*D62+1/12*B22+1/12*D12-1/6*D11-1/9*B16-1/12*B66-1/6*A26] 
                        [           

2/9*B21+2/9*D16+1/6*B11+1/6*D26+2/9*B62+1/6*A61+1/6*B66+1/6*D12+1/6*D22,           

2/9*B12+1/6*B22+2/9*D26+1/6*D16+1/6*B66+1/6*A62+2/9*B61+1/6*D21+1/6*D11,           

2/9*D11+1/6*D21+2/9*D22+1/6*D12+1/6*B62+1/6*B61+2/9*A66+1/6*B26+1/6*B16,         1/9*D16-

1/6*B11-2/9*B21+1/6*D26+1/9*B62-1/6*A61+1/12*D12+1/12*B66+1/6*D22,         1/9*B12+1/6*B22-

2/9*D26-1/6*D16-1/6*B66+1/12*D11+1/9*B61+1/6*D21+1/12*A62,         1/9*D11+1/6*D21-2/9*D22-

1/6*D12-1/6*B62+1/12*B61+1/9*A66+1/6*B26+1/12*B16,     -1/9*B21-1/9*D16-1/6*B11-

1/6*D26+1/18*B62-1/12*A61-1/12*B66+1/12*D12+1/12*D22,     -1/9*B12-1/6*B22-1/9*D26-1/6*D16-

1/12*B66-1/12*A62+1/18*B61+1/12*D21+1/12*D11,     -1/9*D11-1/6*D21-1/9*D22-1/6*D12-

1/12*B62-1/12*B61+1/18*A66+1/12*B26+1/12*B16,        -2/9*D16+1/6*B11+1/9*B21-

1/6*D26+1/9*B62+1/12*A61+1/6*D12-1/6*B66+1/12*D22,        -2/9*B12-

1/6*B22+1/9*D26+1/6*D16+1/12*B66-1/6*A62+1/9*B61+1/12*D21+1/6*D11,        -2/9*D11-

1/6*D21+1/9*D22+1/6*D12+1/12*B62-1/6*B61+1/9*A66+1/12*B26+1/6*B16,         

1/9*B21+1/9*D16+1/12*B11+1/12*D26-2/9*B62+1/6*A61-1/6*D12+1/6*B66-1/6*D22,         

1/9*B12+1/12*B22+1/9*D26+1/12*D16+1/6*B66-1/6*D11-2/9*B61-1/6*D21+1/6*A62,         

1/9*D11+1/12*D21+1/9*D22+1/12*D12+1/6*B62+1/6*B61-2/9*A66-1/6*B26-1/6*B16,     -

1/9*B21+1/18*D16-1/12*B11+1/12*D26-1/9*B62-1/6*A61+1/12*B66-1/12*D12-1/6*D22,      

1/18*B12+1/12*B22-1/9*D26-1/12*D16-1/6*B66-1/12*D11-1/9*B61-1/6*D21+1/12*A62,      

1/18*D11+1/12*D21-1/9*D22-1/12*D12-1/6*B62+1/12*B61-1/9*A66-1/6*B26-1/12*B16, -1/18*D16-

1/12*B11-1/18*B21-1/12*D26-1/18*B62-1/12*A61-1/12*D12-1/12*B66-1/12*D22, -1/18*B12-

1/12*B22-1/18*D26-1/12*D16-1/12*B66-1/12*D11-1/18*B61-1/12*D21-1/12*A62, -1/18*D11-

1/12*D21-1/18*D22-1/12*D12-1/12*B62-1/12*B61-1/18*A66-1/12*B26-1/12*B16,      1/18*B21-

1/9*D16+1/12*B11-1/12*D26-1/9*B62+1/12*A61-1/6*B66-1/6*D12-1/12*D22,     -1/9*B12-

1/12*B22+1/18*D26+1/12*D16+1/12*B66-1/6*A62-1/9*B61-1/12*D21-1/6*D11,     -1/9*D11-

1/12*D21+1/18*D22+1/12*D12+1/12*B62-1/6*B61-1/9*A66-1/12*B26-1/6*B16] 
                        [        -2/9*A11+1/6*B61+1/9*D66-1/6*B16+1/9*D22+1/6*B21+1/12*D62+1/12*D26-

1/6*B12,        -2/9*B16-1/6*A12+1/9*B62+1/6*D66+1/6*D26+1/12*B22+1/12*D61+1/9*D21-1/6*B11,        

-2/9*B12-1/6*B11+1/9*D61+1/6*D62+1/6*D22+1/9*B26+1/12*D21-1/6*A16+1/12*B66,           

2/9*A11-1/6*B61+2/9*D66-1/6*B16+2/9*D22-1/6*B21+1/6*D62+1/6*D26-1/6*B12,           2/9*B16-

1/6*A12+2/9*B62-1/6*D66-1/6*D26+1/6*B22+1/6*D61+2/9*D21-1/6*B11,           2/9*B12-

1/6*B11+2/9*D61-1/6*D62-1/6*D22+2/9*B26+1/6*D21-1/6*A16+1/6*B66,         1/9*A11-1/6*B61-

2/9*D66+1/6*B16+1/9*D22-1/12*B21+1/6*D62-1/6*D26-1/12*B12,         1/9*B16+1/6*A12-2/9*B62-

1/6*D66-1/12*D26-1/6*B22+1/6*D61+1/9*D21-1/12*B11,         1/9*B12+1/6*B11-2/9*D61-1/6*D62-

1/12*D22+1/9*B26-1/6*D21-1/12*A16+1/6*B66,     -1/9*A11+1/6*B61-

1/9*D66+1/6*B16+1/18*D22+1/12*B21+1/12*D62-1/12*D26-1/12*B12,     -1/9*B16+1/6*A12-

1/9*B62+1/6*D66+1/12*D26-1/12*B22+1/12*D61+1/18*D21-1/12*B11,     -1/9*B12+1/6*B11-

1/9*D61+1/6*D62+1/12*D22+1/18*B26-1/12*D21-1/12*A16+1/12*B66,     -

1/9*A11+1/12*B61+1/18*D66-1/12*B16-1/9*D22+1/6*B21-1/12*D62+1/12*D26+1/6*B12,     -

1/9*B16-1/12*A12+1/18*B62+1/12*D66+1/6*D26+1/12*B22-1/12*D61-1/9*D21+1/6*B11,     -

1/9*B12-1/12*B11+1/18*D61+1/12*D62+1/6*D22-1/9*B26+1/12*D21+1/6*A16-1/12*B66,         
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1/9*A11-1/12*B61+1/9*D66-1/12*B16-2/9*D22-1/6*B21-1/6*D62+1/6*D26+1/6*B12,         1/9*B16-

1/12*A12+1/9*B62-1/12*D66-1/6*D26+1/6*B22-1/6*D61-2/9*D21+1/6*B11,         1/9*B12-

1/12*B11+1/9*D61-1/12*D62-1/6*D22-2/9*B26+1/6*D21+1/6*A16-1/6*B66,      1/18*A11-1/12*B61-

1/9*D66+1/12*B16-1/9*D22-1/12*B21-1/6*D62-1/6*D26+1/12*B12,      1/18*B16+1/12*A12-1/9*B62-

1/12*D66-1/12*D26-1/6*B22-1/6*D61-1/9*D21+1/12*B11,      1/18*B12+1/12*B11-1/9*D61-1/12*D62-

1/12*D22-1/9*B26-1/6*D21+1/12*A16-1/6*B66, -1/18*A11+1/12*B61-1/18*D66+1/12*B16-

1/18*D22+1/12*B21-1/12*D62-1/12*D26+1/12*B12, -1/18*B16+1/12*A12-

1/18*B62+1/12*D66+1/12*D26-1/12*B22-1/12*D61-1/18*D21+1/12*B11, -1/18*B12+1/12*B11-

1/18*D61+1/12*D62+1/12*D22-1/18*B26-1/12*D21+1/12*A16-1/12*B66] 
                        [         1/6*A21-2/9*B61+1/9*B26-1/6*D66+1/9*D12+1/6*B11+1/12*B22+1/12*D16-

1/6*D62,        -2/9*D66+1/9*A22-1/6*B62+1/6*B26+1/6*D16+1/12*B12+1/12*B21+1/9*D11-1/6*D61,        

-2/9*D62+1/9*B21-1/6*D61+1/6*B22+1/6*D12+1/12*A26+1/12*D11+1/9*B16-1/6*B66,          -

1/6*A21+2/9*B61+2/9*B26-1/6*D66+2/9*D12-1/6*B11+1/6*B22+1/6*D16-1/6*D62,           

2/9*D66+2/9*A22-1/6*B62-1/6*B26-1/6*D16+1/6*B12+1/6*B21+2/9*D11-1/6*D61,           

2/9*D62+2/9*B21-1/6*D61-1/6*B22-1/6*D12+1/6*A26+1/6*D11+2/9*B16-1/6*B66,        -

1/6*A21+1/9*B61-2/9*B26+1/6*D66+1/9*D12-1/12*B11+1/6*B22-1/6*D16-1/12*D62,         1/9*D66-

2/9*A22+1/6*B62-1/6*B26-1/12*D16-1/6*B12+1/6*B21+1/9*D11-1/12*D61,         1/9*D62-

2/9*B21+1/6*D61-1/6*B22-1/12*D12+1/6*A26-1/6*D11+1/9*B16-1/12*B66,      1/6*A21-1/9*B61-

1/9*B26+1/6*D66+1/18*D12+1/12*B11+1/12*B22-1/12*D16-1/12*D62,     -1/9*D66-

1/9*A22+1/6*B62+1/6*B26+1/12*D16-1/12*B12+1/12*B21+1/18*D11-1/12*D61,     -1/9*D62-

1/9*B21+1/6*D61+1/6*B22+1/12*D12+1/12*A26-1/12*D11+1/18*B16-1/12*B66,      1/12*A21-

1/9*B61+1/18*B26-1/12*D66-1/9*D12+1/6*B11-1/12*B22+1/12*D16+1/6*D62,     -

1/9*D66+1/18*A22-1/12*B62+1/12*B26+1/6*D16+1/12*B12-1/12*B21-1/9*D11+1/6*D61,     -

1/9*D62+1/18*B21-1/12*D61+1/12*B22+1/6*D12-1/12*A26+1/12*D11-1/9*B16+1/6*B66,        -

1/12*A21+1/9*B61+1/9*B26-1/12*D66-2/9*D12-1/6*B11-1/6*B22+1/6*D16+1/6*D62,         

1/9*D66+1/9*A22-1/12*B62-1/12*B26-1/6*D16+1/6*B12-1/6*B21-2/9*D11+1/6*D61,         

1/9*D62+1/9*B21-1/12*D61-1/12*B22-1/6*D12-1/6*A26+1/6*D11-2/9*B16+1/6*B66,     -

1/12*A21+1/18*B61-1/9*B26+1/12*D66-1/9*D12-1/12*B11-1/6*B22-1/6*D16+1/12*D62,      

1/18*D66-1/9*A22+1/12*B62-1/12*B26-1/12*D16-1/6*B12-1/6*B21-1/9*D11+1/12*D61,      1/18*D62-

1/9*B21+1/12*D61-1/12*B22-1/12*D12-1/6*A26-1/6*D11-1/9*B16+1/12*B66,  1/12*A21-1/18*B61-

1/18*B26+1/12*D66-1/18*D12+1/12*B11-1/12*B22-1/12*D16+1/12*D62, -1/18*D66-

1/18*A22+1/12*B62+1/12*B26+1/12*D16-1/12*B12-1/12*B21-1/18*D11+1/12*D61, -1/18*D62-

1/18*B21+1/12*D61+1/12*B22+1/12*D12-1/12*A26-1/12*D11-1/18*B16+1/12*B66] 
                        [         1/6*B11-2/9*B21+1/9*D16-1/6*D26+1/9*B62+1/6*A61+1/12*D12+1/12*B66-

1/6*D22,        -2/9*D26+1/9*B12-1/6*B22+1/6*D16+1/6*B66+1/12*A62+1/12*D11+1/9*B61-1/6*D21,        

-2/9*D22+1/9*D11-1/6*D21+1/6*D12+1/6*B62+1/12*B16+1/12*B61+1/9*A66-1/6*B26,          -

1/6*B11+2/9*B21+2/9*D16-1/6*D26+2/9*B62-1/6*A61+1/6*D12+1/6*B66-1/6*D22,           

2/9*D26+2/9*B12-1/6*B22-1/6*D16-1/6*B66+1/6*A62+1/6*D11+2/9*B61-1/6*D21,           

2/9*D22+2/9*D11-1/6*D21-1/6*D12-1/6*B62+1/6*B16+1/6*B61+2/9*A66-1/6*B26,        -

1/6*B11+1/9*B21-2/9*D16+1/6*D26+1/9*B62-1/12*A61+1/6*D12-1/6*B66-1/12*D22,         1/9*D26-

2/9*B12+1/6*B22-1/6*D16-1/12*B66-1/6*A62+1/6*D11+1/9*B61-1/12*D21,         1/9*D22-

2/9*D11+1/6*D21-1/6*D12-1/12*B62+1/6*B16-1/6*B61+1/9*A66-1/12*B26,      1/6*B11-1/9*B21-

1/9*D16+1/6*D26+1/18*B62+1/12*A61+1/12*D12-1/12*B66-1/12*D22,     -1/9*D26-

1/9*B12+1/6*B22+1/6*D16+1/12*B66-1/12*A62+1/12*D11+1/18*B61-1/12*D21,     -1/9*D22-

1/9*D11+1/6*D21+1/6*D12+1/12*B62+1/12*B16-1/12*B61+1/18*A66-1/12*B26,      1/12*B11-

1/9*B21+1/18*D16-1/12*D26-1/9*B62+1/6*A61-1/12*D12+1/12*B66+1/6*D22,     -

1/9*D26+1/18*B12-1/12*B22+1/12*D16+1/6*B66+1/12*A62-1/12*D11-1/9*B61+1/6*D21,     -

1/9*D22+1/18*D11-1/12*D21+1/12*D12+1/6*B62-1/12*B16+1/12*B61-1/9*A66+1/6*B26,        -

1/12*B11+1/9*B21+1/9*D16-1/12*D26-2/9*B62-1/6*A61-1/6*D12+1/6*B66+1/6*D22,         

1/9*D26+1/9*B12-1/12*B22-1/12*D16-1/6*B66+1/6*A62-1/6*D11-2/9*B61+1/6*D21,         

1/9*D22+1/9*D11-1/12*D21-1/12*D12-1/6*B62-1/6*B16+1/6*B61-2/9*A66+1/6*B26,     -

1/12*B11+1/18*B21-1/9*D16+1/12*D26-1/9*B62-1/12*A61-1/6*D12-1/6*B66+1/12*D22,      

1/18*D26-1/9*B12+1/12*B22-1/12*D16-1/12*B66-1/6*A62-1/6*D11-1/9*B61+1/12*D21,      1/18*D22-
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1/9*D11+1/12*D21-1/12*D12-1/12*B62-1/6*B16-1/6*B61-1/9*A66+1/12*B26,  1/12*B11-1/18*B21-

1/18*D16+1/12*D26-1/18*B62+1/12*A61-1/12*D12-1/12*B66+1/12*D22, -1/18*D26-

1/18*B12+1/12*B22+1/12*D16+1/12*B66-1/12*A62-1/12*D11-1/18*B61+1/12*D21, -1/18*D22-

1/18*D11+1/12*D21+1/12*D12+1/12*B62-1/12*B16-1/12*B61-1/18*A66+1/12*B26] 
                        [     -1/9*D66-1/9*A11-1/6*B61-1/6*B16+1/18*D22+1/12*B21-1/12*D62+1/12*D26-

1/12*B12,     -1/9*B62-1/6*A12-1/9*B16-1/6*D66+1/12*D26-1/12*D61+1/18*D21-1/12*B11+1/12*B22,     

-1/9*D61-1/6*B11-1/9*B12-1/6*D62+1/12*D22+1/18*B26+1/12*D21-1/12*A16-1/12*B66,         

1/9*A11-2/9*D66+1/6*B61-1/6*B16+1/9*D22-1/12*B21+1/6*D26-1/12*B12-1/6*D62,        -2/9*B62-

1/6*A12+1/9*B16+1/6*D66-1/12*D26+1/6*B22+1/9*D21-1/12*B11-1/6*D61,        -2/9*D61-

1/6*B11+1/9*B12+1/6*D62-1/12*D22+1/9*B26+1/6*D21-1/12*A16-1/6*B66,           

2/9*D66+2/9*A11+1/6*B61+1/6*B16+2/9*D22-1/6*B21-1/6*D62-1/6*D26-1/6*B12,           

2/9*B62+1/6*A12+2/9*B16+1/6*D66-1/6*D26-1/6*D61+2/9*D21-1/6*B11-1/6*B22,           

2/9*D61+1/6*B11+2/9*B12+1/6*D62-1/6*D22+2/9*B26-1/6*D21-1/6*A16-1/6*B66,        -

2/9*A11+1/9*D66-1/6*B61+1/6*B16+1/9*D22+1/6*B21-1/12*D26-1/6*B12-1/12*D62,         

1/9*B62+1/6*A12-2/9*B16-1/6*D66+1/6*D26-1/12*D61+1/9*D21-1/6*B11-1/12*B22,         

1/9*D61+1/6*B11-2/9*B12-1/6*D62+1/6*D22-1/12*D21-1/6*A16+1/9*B26-1/12*B66, -1/18*A11-

1/18*D66-1/12*B61-1/12*B16-1/18*D22+1/12*B21+1/12*D26+1/12*B12+1/12*D62, -1/18*B62-

1/12*A12-1/18*B16-1/12*D66+1/12*D26+1/12*B22-1/18*D21+1/12*B11+1/12*D61, -1/18*D61-

1/12*B11-1/18*B12-1/12*D62+1/12*D22+1/12*D21+1/12*A16-1/18*B26+1/12*B66,     -

1/9*D66+1/18*A11+1/12*B61-1/12*B16-1/9*D22-1/12*B21+1/6*D62+1/6*D26+1/12*B12,     -

1/9*B62-1/12*A12+1/18*B16+1/12*D66-1/12*D26+1/6*B22-1/9*D21+1/12*B11+1/6*D61,     -

1/9*D61-1/12*B11+1/18*B12+1/12*D62-1/12*D22-1/9*B26+1/6*D21+1/12*A16+1/6*B66,         

1/9*A11+1/9*D66+1/12*B61+1/12*B16-2/9*D22-1/6*B21-1/6*D26+1/6*B12+1/6*D62,         

1/9*B62+1/12*A12+1/9*B16+1/12*D66-1/6*D26-1/6*B22-2/9*D21+1/6*B11+1/6*D61,         

1/9*D61+1/12*B11+1/9*B12+1/12*D62-1/6*D22-1/6*D21+1/6*A16-2/9*B26+1/6*B66,      1/18*D66-

1/9*A11-1/12*B61+1/12*B16-1/9*D22+1/6*B21+1/12*D62-1/12*D26+1/6*B12,      

1/18*B62+1/12*A12-1/9*B16-1/12*D66+1/6*D26+1/12*D61-1/9*D21+1/6*B11-1/12*B22,      

1/18*D61+1/12*B11-1/9*B12-1/12*D62+1/6*D22-1/12*D21+1/6*A16-1/9*B26+1/12*B66] 
                        [     -1/9*B26-1/6*A21-1/9*B61-1/6*D66+1/18*D12+1/12*B11-1/12*B22+1/12*D16-

1/12*D62,     -1/9*A22-1/6*B62-1/9*D66-1/6*B26+1/12*D16+1/12*B12+1/18*D11-1/12*D61-

1/12*B21,     -1/9*B21-1/6*D61-1/9*D62-1/6*B22+1/12*D12+1/12*D11+1/18*B16-1/12*B66-1/12*A26,         

1/9*B61-2/9*B26+1/6*A21-1/6*D66+1/9*D12-1/12*B11+1/6*D16-1/6*B22-1/12*D62,        -2/9*A22-

1/6*B62+1/9*D66+1/6*B26-1/12*D16+1/6*B12+1/9*D11-1/12*D61-1/6*B21,        -2/9*B21-

1/6*D61+1/9*D62+1/6*B22-1/12*D12+1/6*D11+1/9*B16-1/12*B66-1/6*A26,           

2/9*B26+1/6*A21+2/9*B61+1/6*D66+2/9*D12-1/6*B11-1/6*B22-1/6*D16-1/6*D62,           

2/9*A22+1/6*B62+2/9*D66+1/6*B26-1/6*D16-1/6*B12+2/9*D11-1/6*D61-1/6*B21,           

2/9*B21+1/6*D61+2/9*D62+1/6*B22-1/6*D12-1/6*D11+2/9*B16-1/6*B66-1/6*A26,        -

2/9*B61+1/9*B26-1/6*A21+1/6*D66+1/9*D12+1/6*B11-1/12*D16-1/12*B22-1/6*D62,         

1/9*A22+1/6*B62-2/9*D66-1/6*B26+1/6*D16-1/12*B21+1/9*D11-1/6*D61-1/12*B12,         

1/9*B21+1/6*D61-2/9*D62-1/6*B22+1/6*D12-1/12*D11+1/9*B16-1/6*B66-1/12*A26, -1/18*B61-

1/18*B26-1/12*A21-1/12*D66-1/18*D12+1/12*B11+1/12*D16+1/12*B22+1/12*D62, -1/18*A22-

1/12*B62-1/18*D66-1/12*B26+1/12*D16+1/12*B21-1/18*D11+1/12*D61+1/12*B12, -1/18*B21-

1/12*D61-1/18*D62-1/12*B22+1/12*D12+1/12*D11-1/18*B16+1/12*B66+1/12*A26,     -

1/9*B26+1/12*A21+1/18*B61-1/12*D66-1/9*D12-1/12*B11+1/6*B22+1/6*D16+1/12*D62,     -

1/9*A22-1/12*B62+1/18*D66+1/12*B26-1/12*D16+1/6*B12-1/9*D11+1/12*D61+1/6*B21,     -

1/9*B21-1/12*D61+1/18*D62+1/12*B22-1/12*D12+1/6*D11-1/9*B16+1/12*B66+1/6*A26,         

1/9*B61+1/9*B26+1/12*A21+1/12*D66-2/9*D12-1/6*B11-1/6*D16+1/6*B22+1/6*D62,         

1/9*A22+1/12*B62+1/9*D66+1/12*B26-1/6*D16+1/6*B21-2/9*D11+1/6*D61-1/6*B12,         

1/9*B21+1/12*D61+1/9*D62+1/12*B22-1/6*D12-1/6*D11-2/9*B16+1/6*B66+1/6*A26,      1/18*B26-

1/12*A21-1/9*B61+1/12*D66-1/9*D12+1/6*B11+1/12*B22-1/12*D16+1/6*D62,      

1/18*A22+1/12*B62-1/9*D66-1/12*B26+1/6*D16+1/12*B21-1/9*D11+1/6*D61-1/12*B12,      

1/18*B21+1/12*D61-1/9*D62-1/12*B22+1/6*D12-1/12*D11-1/9*B16+1/6*B66+1/12*A26] 
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                        [     -1/9*D16-1/6*B11-1/9*B21-1/6*D26+1/18*B62+1/12*A61-1/12*D12+1/12*B66-

1/12*D22,     -1/9*B12-1/6*B22-1/9*D26-1/6*D16+1/12*B66+1/12*A62+1/18*B61-1/12*D21-

1/12*D11,     -1/9*D11-1/6*D21-1/9*D22-1/6*D12+1/12*B62+1/12*B61+1/18*A66-1/12*B26-

1/12*B16,         1/9*B21-2/9*D16+1/6*B11-1/6*D26+1/9*B62-1/12*A61+1/6*B66-1/6*D12-1/12*D22,        

-2/9*B12-1/6*B22+1/9*D26+1/6*D16-1/12*B66+1/6*A62+1/9*B61-1/12*D21-1/6*D11,        -2/9*D11-

1/6*D21+1/9*D22+1/6*D12-1/12*B62+1/6*B61+1/9*A66-1/12*B26-1/6*B16,           

2/9*D16+1/6*B11+2/9*B21+1/6*D26+2/9*B62-1/6*A61-1/6*D12-1/6*B66-1/6*D22,           

2/9*B12+1/6*B22+2/9*D26+1/6*D16-1/6*B66-1/6*A62+2/9*B61-1/6*D21-1/6*D11,           

2/9*D11+1/6*D21+2/9*D22+1/6*D12-1/6*B62-1/6*B61+2/9*A66-1/6*B26-1/6*B16,        -

2/9*B21+1/9*D16-1/6*B11+1/6*D26+1/9*B62+1/6*A61-1/12*B66-1/12*D12-1/6*D22,         

1/9*B12+1/6*B22-2/9*D26-1/6*D16+1/6*B66-1/12*D11+1/9*B61-1/6*D21-1/12*A62,         

1/9*D11+1/6*D21-2/9*D22-1/6*D12+1/6*B62-1/12*B61+1/9*A66-1/6*B26-1/12*B16, -1/18*B21-

1/18*D16-1/12*B11-1/12*D26-1/18*B62+1/12*A61+1/12*B66+1/12*D12+1/12*D22, -1/18*B12-

1/12*B22-1/18*D26-1/12*D16+1/12*B66+1/12*D11-1/18*B61+1/12*D21+1/12*A62, -1/18*D11-

1/12*D21-1/18*D22-1/12*D12+1/12*B62+1/12*B61-1/18*A66+1/12*B26+1/12*B16,     -

1/9*D16+1/12*B11+1/18*B21-1/12*D26-1/9*B62-1/12*A61+1/6*D12+1/6*B66+1/12*D22,     -

1/9*B12-1/12*B22+1/18*D26+1/12*D16-1/12*B66+1/6*A62-1/9*B61+1/12*D21+1/6*D11,     -

1/9*D11-1/12*D21+1/18*D22+1/12*D12-1/12*B62+1/6*B61-1/9*A66+1/12*B26+1/6*B16,         

1/9*B21+1/9*D16+1/12*B11+1/12*D26-2/9*B62-1/6*A61-1/6*B66+1/6*D12+1/6*D22,         

1/9*B12+1/12*B22+1/9*D26+1/12*D16-1/6*B66+1/6*D11-2/9*B61+1/6*D21-1/6*A62,         

1/9*D11+1/12*D21+1/9*D22+1/12*D12-1/6*B62-1/6*B61-2/9*A66+1/6*B26+1/6*B16,      1/18*D16-

1/12*B11-1/9*B21+1/12*D26-1/9*B62+1/6*A61+1/12*D12-1/12*B66+1/6*D22,      

1/18*B12+1/12*B22-1/9*D26-1/12*D16+1/6*B66+1/12*D11-1/9*B61+1/6*D21-1/12*A62,      

1/18*D11+1/12*D21-1/9*D22-1/12*D12+1/6*B62-1/12*B61-1/9*A66+1/6*B26+1/12*B16] 
                        [         1/9*A11-1/6*B61-2/9*D66+1/6*B16+1/9*D22+1/12*B21-

1/6*D62+1/6*D26+1/12*B12,         1/9*B16+1/6*A12-2/9*B62-1/6*D66+1/12*D26+1/6*B22-

1/6*D61+1/9*D21+1/12*B11,         1/9*B12+1/6*B11-2/9*D61-

1/6*D62+1/12*D22+1/9*B26+1/6*D21+1/12*A16-1/6*B66,     -1/9*A11+1/6*B61-

1/9*D66+1/6*B16+1/18*D22-1/12*B21-1/12*D62+1/12*D26+1/12*B12,     -1/9*B16+1/6*A12-

1/9*B62+1/6*D66-1/12*D26+1/12*B22-1/12*D61+1/18*D21+1/12*B11,     -1/9*B12+1/6*B11-

1/9*D61+1/6*D62-1/12*D22+1/18*B26+1/12*D21+1/12*A16-1/12*B66,        -

2/9*A11+1/6*B61+1/9*D66-1/6*B16+1/9*D22-1/6*B21-1/12*D62-1/12*D26+1/6*B12,        -2/9*B16-

1/6*A12+1/9*B62+1/6*D66-1/6*D26-1/12*B22-1/12*D61+1/9*D21+1/6*B11,        -2/9*B12-

1/6*B11+1/9*D61+1/6*D62-1/6*D22+1/9*B26-1/12*D21+1/6*A16-1/12*B66,           2/9*A11-

1/6*B61+2/9*D66-1/6*B16+2/9*D22+1/6*B21-1/6*D62-1/6*D26+1/6*B12,           2/9*B16-

1/6*A12+2/9*B62-1/6*D66+1/6*D26-1/6*B22-1/6*D61+2/9*D21+1/6*B11,           2/9*B12-

1/6*B11+2/9*D61-1/6*D62+1/6*D22+2/9*B26-1/6*D21+1/6*A16-1/6*B66,      1/18*A11-1/12*B61-

1/9*D66+1/12*B16-1/9*D22+1/12*B21+1/6*D62+1/6*D26-1/12*B12,      1/18*B16+1/12*A12-1/9*B62-

1/12*D66+1/12*D26+1/6*B22+1/6*D61-1/9*D21-1/12*B11,      1/18*B12+1/12*B11-1/9*D61-

1/12*D62+1/12*D22-1/9*B26+1/6*D21-1/12*A16+1/6*B66, -1/18*A11+1/12*B61-

1/18*D66+1/12*B16-1/18*D22-1/12*B21+1/12*D62+1/12*D26-1/12*B12, -1/18*B16+1/12*A12-

1/18*B62+1/12*D66-1/12*D26+1/12*B22+1/12*D61-1/18*D21-1/12*B11, -1/18*B12+1/12*B11-

1/18*D61+1/12*D62-1/12*D22-1/18*B26+1/12*D21-1/12*A16+1/12*B66,     -

1/9*A11+1/12*B61+1/18*D66-1/12*B16-1/9*D22-1/6*B21+1/12*D62-1/12*D26-1/6*B12,     -1/9*B16-

1/12*A12+1/18*B62+1/12*D66-1/6*D26-1/12*B22+1/12*D61-1/9*D21-1/6*B11,     -1/9*B12-

1/12*B11+1/18*D61+1/12*D62-1/6*D22-1/9*B26-1/12*D21-1/6*A16+1/12*B66,         1/9*A11-

1/12*B61+1/9*D66-1/12*B16-2/9*D22+1/6*B21+1/6*D62-1/6*D26-1/6*B12,         1/9*B16-

1/12*A12+1/9*B62-1/12*D66+1/6*D26-1/6*B22+1/6*D61-2/9*D21-1/6*B11,         1/9*B12-

1/12*B11+1/9*D61-1/12*D62+1/6*D22-2/9*B26-1/6*D21-1/6*A16+1/6*B66] 
                        [        -1/6*A21+1/9*B61-2/9*B26+1/6*D66+1/9*D12+1/12*B11-

1/6*B22+1/6*D16+1/12*D62,         1/9*D66-2/9*A22+1/6*B62-1/6*B26+1/12*D16+1/6*B12-

1/6*B21+1/9*D11+1/12*D61,         1/9*D62-2/9*B21+1/6*D61-1/6*B22+1/12*D12-

1/6*A26+1/6*D11+1/9*B16+1/12*B66,      1/6*A21-1/9*B61-1/9*B26+1/6*D66+1/18*D12-1/12*B11-
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1/12*B22+1/12*D16+1/12*D62,     -1/9*D66-1/9*A22+1/6*B62+1/6*B26-1/12*D16+1/12*B12-

1/12*B21+1/18*D11+1/12*D61,     -1/9*D62-1/9*B21+1/6*D61+1/6*B22-1/12*D12-

1/12*A26+1/12*D11+1/18*B16+1/12*B66,         1/6*A21-2/9*B61+1/9*B26-1/6*D66+1/9*D12-

1/6*B11-1/12*B22-1/12*D16+1/6*D62,        -2/9*D66+1/9*A22-1/6*B62+1/6*B26-1/6*D16-1/12*B12-

1/12*B21+1/9*D11+1/6*D61,        -2/9*D62+1/9*B21-1/6*D61+1/6*B22-1/6*D12-1/12*A26-

1/12*D11+1/9*B16+1/6*B66,          -1/6*A21+2/9*B61+2/9*B26-1/6*D66+2/9*D12+1/6*B11-1/6*B22-

1/6*D16+1/6*D62,           2/9*D66+2/9*A22-1/6*B62-1/6*B26+1/6*D16-1/6*B12-

1/6*B21+2/9*D11+1/6*D61,           2/9*D62+2/9*B21-1/6*D61-1/6*B22+1/6*D12-1/6*A26-

1/6*D11+2/9*B16+1/6*B66,     -1/12*A21+1/18*B61-1/9*B26+1/12*D66-

1/9*D12+1/12*B11+1/6*B22+1/6*D16-1/12*D62,      1/18*D66-1/9*A22+1/12*B62-

1/12*B26+1/12*D16+1/6*B12+1/6*B21-1/9*D11-1/12*D61,      1/18*D62-1/9*B21+1/12*D61-

1/12*B22+1/12*D12+1/6*A26+1/6*D11-1/9*B16-1/12*B66,  1/12*A21-1/18*B61-1/18*B26+1/12*D66-

1/18*D12-1/12*B11+1/12*B22+1/12*D16-1/12*D62, -1/18*D66-1/18*A22+1/12*B62+1/12*B26-

1/12*D16+1/12*B12+1/12*B21-1/18*D11-1/12*D61, -1/18*D62-1/18*B21+1/12*D61+1/12*B22-

1/12*D12+1/12*A26+1/12*D11-1/18*B16-1/12*B66,      1/12*A21-1/9*B61+1/18*B26-1/12*D66-

1/9*D12-1/6*B11+1/12*B22-1/12*D16-1/6*D62,     -1/9*D66+1/18*A22-1/12*B62+1/12*B26-1/6*D16-

1/12*B12+1/12*B21-1/9*D11-1/6*D61,     -1/9*D62+1/18*B21-1/12*D61+1/12*B22-

1/6*D12+1/12*A26-1/12*D11-1/9*B16-1/6*B66,        -1/12*A21+1/9*B61+1/9*B26-1/12*D66-

2/9*D12+1/6*B11+1/6*B22-1/6*D16-1/6*D62,         1/9*D66+1/9*A22-1/12*B62-1/12*B26+1/6*D16-

1/6*B12+1/6*B21-2/9*D11-1/6*D61,         1/9*D62+1/9*B21-1/12*D61-1/12*B22+1/6*D12+1/6*A26-

1/6*D11-2/9*B16-1/6*B66] 
                        [        -1/6*B11+1/9*B21-2/9*D16+1/6*D26+1/9*B62+1/12*A61-

1/6*D12+1/6*B66+1/12*D22,         1/9*D26-2/9*B12+1/6*B22-1/6*D16+1/12*B66+1/6*A62-

1/6*D11+1/9*B61+1/12*D21,         1/9*D22-2/9*D11+1/6*D21-1/6*D12+1/12*B62-

1/6*B16+1/6*B61+1/9*A66+1/12*B26,      1/6*B11-1/9*B21-1/9*D16+1/6*D26+1/18*B62-1/12*A61-

1/12*D12+1/12*B66+1/12*D22,     -1/9*D26-1/9*B12+1/6*B22+1/6*D16-1/12*B66+1/12*A62-

1/12*D11+1/18*B61+1/12*D21,     -1/9*D22-1/9*D11+1/6*D21+1/6*D12-1/12*B62-

1/12*B16+1/12*B61+1/18*A66+1/12*B26,         1/6*B11-2/9*B21+1/9*D16-1/6*D26+1/9*B62-

1/6*A61-1/12*D12-1/12*B66+1/6*D22,        -2/9*D26+1/9*B12-1/6*B22+1/6*D16-1/6*B66-1/12*A62-

1/12*D11+1/9*B61+1/6*D21,        -2/9*D22+1/9*D11-1/6*D21+1/6*D12-1/6*B62-1/12*B16-

1/12*B61+1/9*A66+1/6*B26,          -1/6*B11+2/9*B21+2/9*D16-1/6*D26+2/9*B62+1/6*A61-1/6*D12-

1/6*B66+1/6*D22,           2/9*D26+2/9*B12-1/6*B22-1/6*D16+1/6*B66-1/6*A62-

1/6*D11+2/9*B61+1/6*D21,           2/9*D22+2/9*D11-1/6*D21-1/6*D12+1/6*B62-1/6*B16-

1/6*B61+2/9*A66+1/6*B26,     -1/12*B11+1/18*B21-1/9*D16+1/12*D26-

1/9*B62+1/12*A61+1/6*D12+1/6*B66-1/12*D22,      1/18*D26-1/9*B12+1/12*B22-

1/12*D16+1/12*B66+1/6*A62+1/6*D11-1/9*B61-1/12*D21,      1/18*D22-1/9*D11+1/12*D21-

1/12*D12+1/12*B62+1/6*B16+1/6*B61-1/9*A66-1/12*B26,  1/12*B11-1/18*B21-1/18*D16+1/12*D26-

1/18*B62-1/12*A61+1/12*D12+1/12*B66-1/12*D22, -1/18*D26-1/18*B12+1/12*B22+1/12*D16-

1/12*B66+1/12*A62+1/12*D11-1/18*B61-1/12*D21, -1/18*D22-1/18*D11+1/12*D21+1/12*D12-

1/12*B62+1/12*B16+1/12*B61-1/18*A66-1/12*B26,      1/12*B11-1/9*B21+1/18*D16-1/12*D26-

1/9*B62-1/6*A61+1/12*D12-1/12*B66-1/6*D22,     -1/9*D26+1/18*B12-1/12*B22+1/12*D16-1/6*B66-

1/12*A62+1/12*D11-1/9*B61-1/6*D21,     -1/9*D22+1/18*D11-1/12*D21+1/12*D12-

1/6*B62+1/12*B16-1/12*B61-1/9*A66-1/6*B26,        -1/12*B11+1/9*B21+1/9*D16-1/12*D26-

2/9*B62+1/6*A61+1/6*D12-1/6*B66-1/6*D22,         1/9*D26+1/9*B12-1/12*B22-1/12*D16+1/6*B66-

1/6*A62+1/6*D11-2/9*B61-1/6*D21,         1/9*D22+1/9*D11-1/12*D21-1/12*D12+1/6*B62+1/6*B16-

1/6*B61-2/9*A66-1/6*B26] 
                        [         1/9*A11+1/9*D66+1/12*B61+1/12*B16-2/9*D22-1/6*B21-

1/6*D26+1/6*B12+1/6*D62,         1/9*B62+1/12*A12+1/9*B16+1/12*D66-1/6*D26-1/6*B22-

2/9*D21+1/6*B11+1/6*D61,         1/9*D61+1/12*B11+1/9*B12+1/12*D62-1/6*D22-1/6*D21+1/6*A16-

2/9*B26+1/6*B66,      1/18*D66-1/9*A11-1/12*B61+1/12*B16-1/9*D22+1/6*B21+1/12*D62-

1/12*D26+1/6*B12,      1/18*B62+1/12*A12-1/9*B16-1/12*D66+1/6*D26+1/12*D61-1/9*D21+1/6*B11-

1/12*B22,      1/18*D61+1/12*B11-1/9*B12-1/12*D62+1/6*D22-1/12*D21+1/6*A16-

1/9*B26+1/12*B66, -1/18*A11-1/18*D66-1/12*B61-1/12*B16-
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1/18*D22+1/12*B21+1/12*D26+1/12*B12+1/12*D62, -1/18*B62-1/12*A12-1/18*B16-

1/12*D66+1/12*D26+1/12*B22-1/18*D21+1/12*B11+1/12*D61, -1/18*D61-1/12*B11-1/18*B12-

1/12*D62+1/12*D22+1/12*D21+1/12*A16-1/18*B26+1/12*B66,     -1/9*D66+1/18*A11+1/12*B61-

1/12*B16-1/9*D22-1/12*B21+1/6*D62+1/6*D26+1/12*B12,     -1/9*B62-

1/12*A12+1/18*B16+1/12*D66-1/12*D26+1/6*B22-1/9*D21+1/12*B11+1/6*D61,     -1/9*D61-

1/12*B11+1/18*B12+1/12*D62-1/12*D22-1/9*B26+1/6*D21+1/12*A16+1/6*B66,           

2/9*D66+2/9*A11+1/6*B61+1/6*B16+2/9*D22-1/6*B21-1/6*D62-1/6*D26-1/6*B12,           

2/9*B62+1/6*A12+2/9*B16+1/6*D66-1/6*D26-1/6*D61+2/9*D21-1/6*B11-1/6*B22,           

2/9*D61+1/6*B11+2/9*B12+1/6*D62-1/6*D22+2/9*B26-1/6*D21-1/6*A16-1/6*B66,        -

2/9*A11+1/9*D66-1/6*B61+1/6*B16+1/9*D22+1/6*B21-1/12*D26-1/6*B12-1/12*D62,         

1/9*B62+1/6*A12-2/9*B16-1/6*D66+1/6*D26-1/12*D61+1/9*D21-1/6*B11-1/12*B22,         

1/9*D61+1/6*B11-2/9*B12-1/6*D62+1/6*D22-1/12*D21-1/6*A16+1/9*B26-1/12*B66,     -1/9*D66-

1/9*A11-1/6*B61-1/6*B16+1/18*D22+1/12*B21-1/12*D62+1/12*D26-1/12*B12,     -1/9*B62-1/6*A12-

1/9*B16-1/6*D66+1/12*D26-1/12*D61+1/18*D21-1/12*B11+1/12*B22,     -1/9*D61-1/6*B11-1/9*B12-

1/6*D62+1/12*D22+1/18*B26+1/12*D21-1/12*A16-1/12*B66,         1/9*A11-2/9*D66+1/6*B61-

1/6*B16+1/9*D22-1/12*B21+1/6*D26-1/12*B12-1/6*D62,        -2/9*B62-1/6*A12+1/9*B16+1/6*D66-

1/12*D26+1/6*B22+1/9*D21-1/12*B11-1/6*D61,        -2/9*D61-1/6*B11+1/9*B12+1/6*D62-

1/12*D22+1/9*B26+1/6*D21-1/12*A16-1/6*B66] 
                        [         1/9*B61+1/9*B26+1/12*A21+1/12*D66-2/9*D12-1/6*B11-

1/6*D16+1/6*B22+1/6*D62,         1/9*A22+1/12*B62+1/9*D66+1/12*B26-1/6*D16+1/6*B21-

2/9*D11+1/6*D61-1/6*B12,         1/9*B21+1/12*D61+1/9*D62+1/12*B22-1/6*D12-1/6*D11-

2/9*B16+1/6*B66+1/6*A26,      1/18*B26-1/12*A21-1/9*B61+1/12*D66-1/9*D12+1/6*B11+1/12*B22-

1/12*D16+1/6*D62,      1/18*A22+1/12*B62-1/9*D66-1/12*B26+1/6*D16+1/12*B21-

1/9*D11+1/6*D61-1/12*B12,      1/18*B21+1/12*D61-1/9*D62-1/12*B22+1/6*D12-1/12*D11-

1/9*B16+1/6*B66+1/12*A26, -1/18*B61-1/18*B26-1/12*A21-1/12*D66-

1/18*D12+1/12*B11+1/12*D16+1/12*B22+1/12*D62, -1/18*A22-1/12*B62-1/18*D66-

1/12*B26+1/12*D16+1/12*B21-1/18*D11+1/12*D61+1/12*B12, -1/18*B21-1/12*D61-1/18*D62-

1/12*B22+1/12*D12+1/12*D11-1/18*B16+1/12*B66+1/12*A26,     -1/9*B26+1/12*A21+1/18*B61-

1/12*D66-1/9*D12-1/12*B11+1/6*B22+1/6*D16+1/12*D62,     -1/9*A22-

1/12*B62+1/18*D66+1/12*B26-1/12*D16+1/6*B12-1/9*D11+1/12*D61+1/6*B21,     -1/9*B21-

1/12*D61+1/18*D62+1/12*B22-1/12*D12+1/6*D11-1/9*B16+1/12*B66+1/6*A26,           

2/9*B26+1/6*A21+2/9*B61+1/6*D66+2/9*D12-1/6*B11-1/6*B22-1/6*D16-1/6*D62,           

2/9*A22+1/6*B62+2/9*D66+1/6*B26-1/6*D16-1/6*B12+2/9*D11-1/6*D61-1/6*B21,           

2/9*B21+1/6*D61+2/9*D62+1/6*B22-1/6*D12-1/6*D11+2/9*B16-1/6*B66-1/6*A26,        -

2/9*B61+1/9*B26-1/6*A21+1/6*D66+1/9*D12+1/6*B11-1/12*D16-1/12*B22-1/6*D62,         

1/9*A22+1/6*B62-2/9*D66-1/6*B26+1/6*D16-1/12*B21+1/9*D11-1/6*D61-1/12*B12,         

1/9*B21+1/6*D61-2/9*D62-1/6*B22+1/6*D12-1/12*D11+1/9*B16-1/6*B66-1/12*A26,     -1/9*B26-

1/6*A21-1/9*B61-1/6*D66+1/18*D12+1/12*B11-1/12*B22+1/12*D16-1/12*D62,     -1/9*A22-1/6*B62-

1/9*D66-1/6*B26+1/12*D16+1/12*B12+1/18*D11-1/12*D61-1/12*B21,     -1/9*B21-1/6*D61-1/9*D62-

1/6*B22+1/12*D12+1/12*D11+1/18*B16-1/12*B66-1/12*A26,         1/9*B61-2/9*B26+1/6*A21-

1/6*D66+1/9*D12-1/12*B11+1/6*D16-1/6*B22-1/12*D62,        -2/9*A22-1/6*B62+1/9*D66+1/6*B26-

1/12*D16+1/6*B12+1/9*D11-1/12*D61-1/6*B21,        -2/9*B21-1/6*D61+1/9*D62+1/6*B22-

1/12*D12+1/6*D11+1/9*B16-1/12*B66-1/6*A26] 
                        [         1/9*B21+1/9*D16+1/12*B11+1/12*D26-2/9*B62-1/6*A61-

1/6*B66+1/6*D12+1/6*D22,         1/9*B12+1/12*B22+1/9*D26+1/12*D16-1/6*B66+1/6*D11-

2/9*B61+1/6*D21-1/6*A62,         1/9*D11+1/12*D21+1/9*D22+1/12*D12-1/6*B62-1/6*B61-

2/9*A66+1/6*B26+1/6*B16,      1/18*D16-1/12*B11-1/9*B21+1/12*D26-1/9*B62+1/6*A61+1/12*D12-

1/12*B66+1/6*D22,      1/18*B12+1/12*B22-1/9*D26-1/12*D16+1/6*B66+1/12*D11-1/9*B61+1/6*D21-

1/12*A62,      1/18*D11+1/12*D21-1/9*D22-1/12*D12+1/6*B62-1/12*B61-

1/9*A66+1/6*B26+1/12*B16, -1/18*B21-1/18*D16-1/12*B11-1/12*D26-

1/18*B62+1/12*A61+1/12*B66+1/12*D12+1/12*D22, -1/18*B12-1/12*B22-1/18*D26-

1/12*D16+1/12*B66+1/12*D11-1/18*B61+1/12*D21+1/12*A62, -1/18*D11-1/12*D21-1/18*D22-

1/12*D12+1/12*B62+1/12*B61-1/18*A66+1/12*B26+1/12*B16,     -1/9*D16+1/12*B11+1/18*B21-
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1/12*D26-1/9*B62-1/12*A61+1/6*D12+1/6*B66+1/12*D22,     -1/9*B12-

1/12*B22+1/18*D26+1/12*D16-1/12*B66+1/6*A62-1/9*B61+1/12*D21+1/6*D11,     -1/9*D11-

1/12*D21+1/18*D22+1/12*D12-1/12*B62+1/6*B61-1/9*A66+1/12*B26+1/6*B16,           

2/9*D16+1/6*B11+2/9*B21+1/6*D26+2/9*B62-1/6*A61-1/6*D12-1/6*B66-1/6*D22,           

2/9*B12+1/6*B22+2/9*D26+1/6*D16-1/6*B66-1/6*A62+2/9*B61-1/6*D21-1/6*D11,           

2/9*D11+1/6*D21+2/9*D22+1/6*D12-1/6*B62-1/6*B61+2/9*A66-1/6*B26-1/6*B16,        -

2/9*B21+1/9*D16-1/6*B11+1/6*D26+1/9*B62+1/6*A61-1/12*B66-1/12*D12-1/6*D22,         

1/9*B12+1/6*B22-2/9*D26-1/6*D16+1/6*B66-1/12*D11+1/9*B61-1/6*D21-1/12*A62,         

1/9*D11+1/6*D21-2/9*D22-1/6*D12+1/6*B62-1/12*B61+1/9*A66-1/6*B26-1/12*B16,     -1/9*D16-

1/6*B11-1/9*B21-1/6*D26+1/18*B62+1/12*A61-1/12*D12+1/12*B66-1/12*D22,     -1/9*B12-1/6*B22-

1/9*D26-1/6*D16+1/12*B66+1/12*A62+1/18*B61-1/12*D21-1/12*D11,     -1/9*D11-1/6*D21-1/9*D22-

1/6*D12+1/12*B62+1/12*B61+1/18*A66-1/12*B26-1/12*B16,         1/9*B21-2/9*D16+1/6*B11-

1/6*D26+1/9*B62-1/12*A61+1/6*B66-1/6*D12-1/12*D22,        -2/9*B12-1/6*B22+1/9*D26+1/6*D16-

1/12*B66+1/6*A62+1/9*B61-1/12*D21-1/6*D11,        -2/9*D11-1/6*D21+1/9*D22+1/6*D12-

1/12*B62+1/6*B61+1/9*A66-1/12*B26-1/6*B16] 
                        [     -1/9*A11+1/12*B61+1/18*D66-1/12*B16-1/9*D22-1/6*B21+1/12*D62-1/12*D26-

1/6*B12,     -1/9*B16-1/12*A12+1/18*B62+1/12*D66-1/6*D26-1/12*B22+1/12*D61-1/9*D21-1/6*B11,     

-1/9*B12-1/12*B11+1/18*D61+1/12*D62-1/6*D22-1/9*B26-1/12*D21-1/6*A16+1/12*B66,         

1/9*A11-1/12*B61+1/9*D66-1/12*B16-2/9*D22+1/6*B21+1/6*D62-1/6*D26-1/6*B12,         1/9*B16-

1/12*A12+1/9*B62-1/12*D66+1/6*D26-1/6*B22+1/6*D61-2/9*D21-1/6*B11,         1/9*B12-

1/12*B11+1/9*D61-1/12*D62+1/6*D22-2/9*B26-1/6*D21-1/6*A16+1/6*B66,      1/18*A11-1/12*B61-

1/9*D66+1/12*B16-1/9*D22+1/12*B21+1/6*D62+1/6*D26-1/12*B12,      1/18*B16+1/12*A12-1/9*B62-

1/12*D66+1/12*D26+1/6*B22+1/6*D61-1/9*D21-1/12*B11,      1/18*B12+1/12*B11-1/9*D61-

1/12*D62+1/12*D22-1/9*B26+1/6*D21-1/12*A16+1/6*B66, -1/18*A11+1/12*B61-

1/18*D66+1/12*B16-1/18*D22-1/12*B21+1/12*D62+1/12*D26-1/12*B12, -1/18*B16+1/12*A12-

1/18*B62+1/12*D66-1/12*D26+1/12*B22+1/12*D61-1/18*D21-1/12*B11, -1/18*B12+1/12*B11-

1/18*D61+1/12*D62-1/12*D22-1/18*B26+1/12*D21-1/12*A16+1/12*B66,        -

2/9*A11+1/6*B61+1/9*D66-1/6*B16+1/9*D22-1/6*B21-1/12*D62-1/12*D26+1/6*B12,        -2/9*B16-

1/6*A12+1/9*B62+1/6*D66-1/6*D26-1/12*B22-1/12*D61+1/9*D21+1/6*B11,        -2/9*B12-

1/6*B11+1/9*D61+1/6*D62-1/6*D22+1/9*B26-1/12*D21+1/6*A16-1/12*B66,           2/9*A11-

1/6*B61+2/9*D66-1/6*B16+2/9*D22+1/6*B21-1/6*D62-1/6*D26+1/6*B12,           2/9*B16-

1/6*A12+2/9*B62-1/6*D66+1/6*D26-1/6*B22-1/6*D61+2/9*D21+1/6*B11,           2/9*B12-

1/6*B11+2/9*D61-1/6*D62+1/6*D22+2/9*B26-1/6*D21+1/6*A16-1/6*B66,         1/9*A11-1/6*B61-

2/9*D66+1/6*B16+1/9*D22+1/12*B21-1/6*D62+1/6*D26+1/12*B12,         1/9*B16+1/6*A12-2/9*B62-

1/6*D66+1/12*D26+1/6*B22-1/6*D61+1/9*D21+1/12*B11,         1/9*B12+1/6*B11-2/9*D61-

1/6*D62+1/12*D22+1/9*B26+1/6*D21+1/12*A16-1/6*B66,     -1/9*A11+1/6*B61-

1/9*D66+1/6*B16+1/18*D22-1/12*B21-1/12*D62+1/12*D26+1/12*B12,     -1/9*B16+1/6*A12-

1/9*B62+1/6*D66-1/12*D26+1/12*B22-1/12*D61+1/18*D21+1/12*B11,     -1/9*B12+1/6*B11-

1/9*D61+1/6*D62-1/12*D22+1/18*B26+1/12*D21+1/12*A16-1/12*B66] 
                        [      1/12*A21-1/9*B61+1/18*B26-1/12*D66-1/9*D12-1/6*B11+1/12*B22-1/12*D16-

1/6*D62,     -1/9*D66+1/18*A22-1/12*B62+1/12*B26-1/6*D16-1/12*B12+1/12*B21-1/9*D11-1/6*D61,     

-1/9*D62+1/18*B21-1/12*D61+1/12*B22-1/6*D12+1/12*A26-1/12*D11-1/9*B16-1/6*B66,        -

1/12*A21+1/9*B61+1/9*B26-1/12*D66-2/9*D12+1/6*B11+1/6*B22-1/6*D16-1/6*D62,         

1/9*D66+1/9*A22-1/12*B62-1/12*B26+1/6*D16-1/6*B12+1/6*B21-2/9*D11-1/6*D61,         

1/9*D62+1/9*B21-1/12*D61-1/12*B22+1/6*D12+1/6*A26-1/6*D11-2/9*B16-1/6*B66,     -

1/12*A21+1/18*B61-1/9*B26+1/12*D66-1/9*D12+1/12*B11+1/6*B22+1/6*D16-1/12*D62,      

1/18*D66-1/9*A22+1/12*B62-1/12*B26+1/12*D16+1/6*B12+1/6*B21-1/9*D11-1/12*D61,      

1/18*D62-1/9*B21+1/12*D61-1/12*B22+1/12*D12+1/6*A26+1/6*D11-1/9*B16-1/12*B66,  1/12*A21-

1/18*B61-1/18*B26+1/12*D66-1/18*D12-1/12*B11+1/12*B22+1/12*D16-1/12*D62, -1/18*D66-

1/18*A22+1/12*B62+1/12*B26-1/12*D16+1/12*B12+1/12*B21-1/18*D11-1/12*D61, -1/18*D62-

1/18*B21+1/12*D61+1/12*B22-1/12*D12+1/12*A26+1/12*D11-1/18*B16-1/12*B66,         1/6*A21-

2/9*B61+1/9*B26-1/6*D66+1/9*D12-1/6*B11-1/12*B22-1/12*D16+1/6*D62,        -2/9*D66+1/9*A22-

1/6*B62+1/6*B26-1/6*D16-1/12*B12-1/12*B21+1/9*D11+1/6*D61,        -2/9*D62+1/9*B21-
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1/6*D61+1/6*B22-1/6*D12-1/12*A26-1/12*D11+1/9*B16+1/6*B66,          -1/6*A21+2/9*B61+2/9*B26-

1/6*D66+2/9*D12+1/6*B11-1/6*B22-1/6*D16+1/6*D62,           2/9*D66+2/9*A22-1/6*B62-

1/6*B26+1/6*D16-1/6*B12-1/6*B21+2/9*D11+1/6*D61,           2/9*D62+2/9*B21-1/6*D61-

1/6*B22+1/6*D12-1/6*A26-1/6*D11+2/9*B16+1/6*B66,        -1/6*A21+1/9*B61-

2/9*B26+1/6*D66+1/9*D12+1/12*B11-1/6*B22+1/6*D16+1/12*D62,         1/9*D66-2/9*A22+1/6*B62-

1/6*B26+1/12*D16+1/6*B12-1/6*B21+1/9*D11+1/12*D61,         1/9*D62-2/9*B21+1/6*D61-

1/6*B22+1/12*D12-1/6*A26+1/6*D11+1/9*B16+1/12*B66,      1/6*A21-1/9*B61-

1/9*B26+1/6*D66+1/18*D12-1/12*B11-1/12*B22+1/12*D16+1/12*D62,     -1/9*D66-

1/9*A22+1/6*B62+1/6*B26-1/12*D16+1/12*B12-1/12*B21+1/18*D11+1/12*D61,     -1/9*D62-

1/9*B21+1/6*D61+1/6*B22-1/12*D12-1/12*A26+1/12*D11+1/18*B16+1/12*B66] 
                        [      1/12*B11-1/9*B21+1/18*D16-1/12*D26-1/9*B62-1/6*A61+1/12*D12-1/12*B66-

1/6*D22,     -1/9*D26+1/18*B12-1/12*B22+1/12*D16-1/6*B66-1/12*A62+1/12*D11-1/9*B61-1/6*D21,     

-1/9*D22+1/18*D11-1/12*D21+1/12*D12-1/6*B62+1/12*B16-1/12*B61-1/9*A66-1/6*B26,        -

1/12*B11+1/9*B21+1/9*D16-1/12*D26-2/9*B62+1/6*A61+1/6*D12-1/6*B66-1/6*D22,         

1/9*D26+1/9*B12-1/12*B22-1/12*D16+1/6*B66-1/6*A62+1/6*D11-2/9*B61-1/6*D21,         

1/9*D22+1/9*D11-1/12*D21-1/12*D12+1/6*B62+1/6*B16-1/6*B61-2/9*A66-1/6*B26,     -

1/12*B11+1/18*B21-1/9*D16+1/12*D26-1/9*B62+1/12*A61+1/6*D12+1/6*B66-1/12*D22,      

1/18*D26-1/9*B12+1/12*B22-1/12*D16+1/12*B66+1/6*A62+1/6*D11-1/9*B61-1/12*D21,      

1/18*D22-1/9*D11+1/12*D21-1/12*D12+1/12*B62+1/6*B16+1/6*B61-1/9*A66-1/12*B26,  1/12*B11-

1/18*B21-1/18*D16+1/12*D26-1/18*B62-1/12*A61+1/12*D12+1/12*B66-1/12*D22, -1/18*D26-

1/18*B12+1/12*B22+1/12*D16-1/12*B66+1/12*A62+1/12*D11-1/18*B61-1/12*D21, -1/18*D22-

1/18*D11+1/12*D21+1/12*D12-1/12*B62+1/12*B16+1/12*B61-1/18*A66-1/12*B26,         1/6*B11-

2/9*B21+1/9*D16-1/6*D26+1/9*B62-1/6*A61-1/12*D12-1/12*B66+1/6*D22,        -2/9*D26+1/9*B12-

1/6*B22+1/6*D16-1/6*B66-1/12*A62-1/12*D11+1/9*B61+1/6*D21,        -2/9*D22+1/9*D11-

1/6*D21+1/6*D12-1/6*B62-1/12*B16-1/12*B61+1/9*A66+1/6*B26,          -1/6*B11+2/9*B21+2/9*D16-

1/6*D26+2/9*B62+1/6*A61-1/6*D12-1/6*B66+1/6*D22,           2/9*D26+2/9*B12-1/6*B22-

1/6*D16+1/6*B66-1/6*A62-1/6*D11+2/9*B61+1/6*D21,           2/9*D22+2/9*D11-1/6*D21-

1/6*D12+1/6*B62-1/6*B16-1/6*B61+2/9*A66+1/6*B26,        -1/6*B11+1/9*B21-

2/9*D16+1/6*D26+1/9*B62+1/12*A61-1/6*D12+1/6*B66+1/12*D22,         1/9*D26-2/9*B12+1/6*B22-

1/6*D16+1/12*B66+1/6*A62-1/6*D11+1/9*B61+1/12*D21,         1/9*D22-2/9*D11+1/6*D21-

1/6*D12+1/12*B62-1/6*B16+1/6*B61+1/9*A66+1/12*B26,      1/6*B11-1/9*B21-

1/9*D16+1/6*D26+1/18*B62-1/12*A61-1/12*D12+1/12*B66+1/12*D22,     -1/9*D26-

1/9*B12+1/6*B22+1/6*D16-1/12*B66+1/12*A62-1/12*D11+1/18*B61+1/12*D21,     -1/9*D22-

1/9*D11+1/6*D21+1/6*D12-1/12*B62-1/12*B16+1/12*B61+1/18*A66+1/12*B26] 
                        [ -1/18*D66-1/18*A11-1/12*B61-1/12*B16-1/18*D22-1/12*B21-1/12*D62-1/12*D26-

1/12*B12, -1/18*B62-1/12*A12-1/18*B16-1/12*D66-1/12*D26-1/12*D61-1/18*D21-1/12*B11-

1/12*B22, -1/18*D61-1/12*B11-1/18*B12-1/12*D62-1/12*D22-1/18*B26-1/12*D21-1/12*A16-

1/12*B66,      1/18*A11-1/9*D66+1/12*B61-1/12*B16-1/9*D22+1/12*B21-1/6*D26-1/12*B12-1/6*D62,     

-1/9*B62-1/12*A12+1/18*B16+1/12*D66+1/12*D26-1/6*B22-1/9*D21-1/12*B11-1/6*D61,     -1/9*D61-

1/12*B11+1/18*B12+1/12*D62+1/12*D22-1/9*B26-1/6*D21-1/12*A16-1/6*B66,         

1/9*D66+1/9*A11+1/12*B61+1/12*B16-2/9*D22+1/6*B21-1/6*D62+1/6*D26-1/6*B12,         

1/9*B62+1/12*A12+1/9*B16+1/12*D66+1/6*D26-1/6*D61-2/9*D21-1/6*B11+1/6*B22,         

1/9*D61+1/12*B11+1/9*B12+1/12*D62+1/6*D22-2/9*B26+1/6*D21-1/6*A16-1/6*B66,     -

1/9*A11+1/18*D66-1/12*B61+1/12*B16-1/9*D22-1/6*B21+1/12*D26-1/6*B12-1/12*D62,      

1/18*B62+1/12*A12-1/9*B16-1/12*D66-1/6*D26-1/12*D61-1/9*D21-1/6*B11+1/12*B22,      

1/18*D61+1/12*B11-1/9*B12-1/12*D62-1/6*D22+1/12*D21-1/6*A16-1/9*B26-1/12*B66,     -1/9*A11-

1/9*D66-1/6*B61-1/6*B16+1/18*D22-1/12*B21-1/12*D26+1/12*B12+1/12*D62,     -1/9*B62-1/6*A12-

1/9*B16-1/6*D66-1/12*D26-1/12*B22+1/18*D21+1/12*B11+1/12*D61,     -1/9*D61-1/6*B11-1/9*B12-

1/6*D62-1/12*D22-1/12*D21+1/12*A16+1/18*B26+1/12*B66,        -2/9*D66+1/9*A11+1/6*B61-

1/6*B16+1/9*D22+1/12*B21+1/6*D62-1/6*D26+1/12*B12,        -2/9*B62-

1/6*A12+1/9*B16+1/6*D66+1/12*D26-1/6*B22+1/9*D21+1/12*B11+1/6*D61,        -2/9*D61-

1/6*B11+1/9*B12+1/6*D62+1/12*D22-1/6*D21+1/12*A16+1/9*B26+1/6*B66,           

2/9*A11+2/9*D66+1/6*B61+1/6*B16+2/9*D22+1/6*B21+1/6*D26+1/6*B12+1/6*D62,           
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2/9*B62+1/6*A12+2/9*B16+1/6*D66+1/6*D26+1/6*B22+2/9*D21+1/6*B11+1/6*D61,           

2/9*D61+1/6*B11+2/9*B12+1/6*D62+1/6*D22+1/6*D21+1/6*A16+2/9*B26+1/6*B66,         1/9*D66-

2/9*A11-1/6*B61+1/6*B16+1/9*D22-1/6*B21+1/12*D62+1/12*D26+1/6*B12,         1/9*B62+1/6*A12-

2/9*B16-1/6*D66-1/6*D26+1/12*D61+1/9*D21+1/6*B11+1/12*B22,         1/9*D61+1/6*B11-2/9*B12-

1/6*D62-1/6*D22+1/12*D21+1/6*A16+1/9*B26+1/12*B66] 
                        [ -1/18*B26-1/12*A21-1/18*B61-1/12*D66-1/18*D12-1/12*B11-1/12*B22-1/12*D16-

1/12*D62, -1/18*A22-1/12*B62-1/18*D66-1/12*B26-1/12*D16-1/12*B21-1/18*D11-1/12*D61-

1/12*B12, -1/18*B21-1/12*D61-1/18*D62-1/12*B22-1/12*D12-1/12*D11-1/18*B16-1/12*B66-

1/12*A26,      1/18*B61-1/9*B26+1/12*A21-1/12*D66-1/9*D12+1/12*B11-1/6*D16-1/6*B22-1/12*D62,     

-1/9*A22-1/12*B62+1/18*D66+1/12*B26+1/12*D16-1/6*B12-1/9*D11-1/12*D61-1/6*B21,     -1/9*B21-

1/12*D61+1/18*D62+1/12*B22+1/12*D12-1/6*D11-1/9*B16-1/12*B66-1/6*A26,         

1/9*B61+1/9*B26+1/12*A21+1/12*D66-2/9*D12+1/6*B11-1/6*B22+1/6*D16-1/6*D62,         

1/9*A22+1/12*B62+1/9*D66+1/12*B26+1/6*D16-1/6*B21-2/9*D11-1/6*D61+1/6*B12,         

1/9*B21+1/12*D61+1/9*D62+1/12*B22+1/6*D12+1/6*D11-2/9*B16-1/6*B66-1/6*A26,     -

1/9*B61+1/18*B26-1/12*A21+1/12*D66-1/9*D12-1/6*B11+1/12*D16-1/12*B22-1/6*D62,      

1/18*A22+1/12*B62-1/9*D66-1/12*B26-1/6*D16-1/12*B21-1/9*D11-1/6*D61+1/12*B12,      

1/18*B21+1/12*D61-1/9*D62-1/12*B22-1/6*D12+1/12*D11-1/9*B16-1/6*B66-1/12*A26,     -1/9*B61-

1/9*B26-1/6*A21-1/6*D66+1/18*D12-1/12*B11-1/12*D16+1/12*B22+1/12*D62,     -1/9*A22-1/6*B62-

1/9*D66-1/6*B26-1/12*D16-1/12*B12+1/18*D11+1/12*D61+1/12*B21,     -1/9*B21-1/6*D61-1/9*D62-

1/6*B22-1/12*D12-1/12*D11+1/18*B16+1/12*B66+1/12*A26,        -2/9*B26+1/6*A21+1/9*B61-

1/6*D66+1/9*D12+1/12*B11+1/6*B22-1/6*D16+1/12*D62,        -2/9*A22-

1/6*B62+1/9*D66+1/6*B26+1/12*D16-1/6*B12+1/9*D11+1/12*D61+1/6*B21,        -2/9*B21-

1/6*D61+1/9*D62+1/6*B22+1/12*D12-1/6*D11+1/9*B16+1/12*B66+1/6*A26,           

2/9*B61+2/9*B26+1/6*A21+1/6*D66+2/9*D12+1/6*B11+1/6*D16+1/6*B22+1/6*D62,           

2/9*A22+1/6*B62+2/9*D66+1/6*B26+1/6*D16+1/6*B12+2/9*D11+1/6*D61+1/6*B21,           

2/9*B21+1/6*D61+2/9*D62+1/6*B22+1/6*D12+1/6*D11+2/9*B16+1/6*B66+1/6*A26,         1/9*B26-

1/6*A21-2/9*B61+1/6*D66+1/9*D12-1/6*B11+1/12*B22+1/12*D16+1/6*D62,         1/9*A22+1/6*B62-

2/9*D66-1/6*B26-1/6*D16+1/12*B21+1/9*D11+1/6*D61+1/12*B12,         1/9*B21+1/6*D61-2/9*D62-

1/6*B22-1/6*D12+1/12*D11+1/9*B16+1/6*B66+1/12*A26] 
                        [ -1/18*D16-1/12*B11-1/18*B21-1/12*D26-1/18*B62-1/12*A61-1/12*D12-1/12*B66-

1/12*D22, -1/18*B12-1/12*B22-1/18*D26-1/12*D16-1/12*B66-1/12*D11-1/18*B61-1/12*D21-

1/12*A62, -1/18*D11-1/12*D21-1/18*D22-1/12*D12-1/12*B62-1/12*B61-1/18*A66-1/12*B26-

1/12*B16,      1/18*B21-1/9*D16+1/12*B11-1/12*D26-1/9*B62+1/12*A61-1/6*B66-1/6*D12-1/12*D22,     

-1/9*B12-1/12*B22+1/18*D26+1/12*D16+1/12*B66-1/6*A62-1/9*B61-1/12*D21-1/6*D11,     -1/9*D11-

1/12*D21+1/18*D22+1/12*D12+1/12*B62-1/6*B61-1/9*A66-1/12*B26-1/6*B16,         

1/9*B21+1/9*D16+1/12*B11+1/12*D26-2/9*B62+1/6*A61-1/6*D12+1/6*B66-1/6*D22,         

1/9*B12+1/12*B22+1/9*D26+1/12*D16+1/6*B66-1/6*D11-2/9*B61-1/6*D21+1/6*A62,         

1/9*D11+1/12*D21+1/9*D22+1/12*D12+1/6*B62+1/6*B61-2/9*A66-1/6*B26-1/6*B16,     -

1/9*B21+1/18*D16-1/12*B11+1/12*D26-1/9*B62-1/6*A61+1/12*B66-1/12*D12-1/6*D22,      

1/18*B12+1/12*B22-1/9*D26-1/12*D16-1/6*B66-1/12*D11-1/9*B61-1/6*D21+1/12*A62,      

1/18*D11+1/12*D21-1/9*D22-1/12*D12-1/6*B62+1/12*B61-1/9*A66-1/6*B26-1/12*B16,     -1/9*B21-

1/9*D16-1/6*B11-1/6*D26+1/18*B62-1/12*A61-1/12*B66+1/12*D12+1/12*D22,     -1/9*B12-1/6*B22-

1/9*D26-1/6*D16-1/12*B66-1/12*A62+1/18*B61+1/12*D21+1/12*D11,     -1/9*D11-1/6*D21-1/9*D22-

1/6*D12-1/12*B62-1/12*B61+1/18*A66+1/12*B26+1/12*B16,        -2/9*D16+1/6*B11+1/9*B21-

1/6*D26+1/9*B62+1/12*A61+1/6*D12-1/6*B66+1/12*D22,        -2/9*B12-

1/6*B22+1/9*D26+1/6*D16+1/12*B66-1/6*A62+1/9*B61+1/12*D21+1/6*D11,        -2/9*D11-

1/6*D21+1/9*D22+1/6*D12+1/12*B62-1/6*B61+1/9*A66+1/12*B26+1/6*B16,           

2/9*B21+2/9*D16+1/6*B11+1/6*D26+2/9*B62+1/6*A61+1/6*B66+1/6*D12+1/6*D22,           

2/9*B12+1/6*B22+2/9*D26+1/6*D16+1/6*B66+1/6*A62+2/9*B61+1/6*D21+1/6*D11,           

2/9*D11+1/6*D21+2/9*D22+1/6*D12+1/6*B62+1/6*B61+2/9*A66+1/6*B26+1/6*B16,         1/9*D16-

1/6*B11-2/9*B21+1/6*D26+1/9*B62-1/6*A61+1/12*D12+1/12*B66+1/6*D22,         1/9*B12+1/6*B22-

2/9*D26-1/6*D16-1/6*B66+1/12*D11+1/9*B61+1/6*D21+1/12*A62,         1/9*D11+1/6*D21-2/9*D22-

1/6*D12-1/6*B62+1/12*B61+1/9*A66+1/6*B26+1/12*B16] 
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                        [      1/18*A11-1/12*B61-1/9*D66+1/12*B16-1/9*D22-1/12*B21-1/6*D62-

1/6*D26+1/12*B12,      1/18*B16+1/12*A12-1/9*B62-1/12*D66-1/12*D26-1/6*B22-1/6*D61-

1/9*D21+1/12*B11,      1/18*B12+1/12*B11-1/9*D61-1/12*D62-1/12*D22-1/9*B26-

1/6*D21+1/12*A16-1/6*B66, -1/18*A11+1/12*B61-1/18*D66+1/12*B16-1/18*D22+1/12*B21-

1/12*D62-1/12*D26+1/12*B12, -1/18*B16+1/12*A12-1/18*B62+1/12*D66+1/12*D26-1/12*B22-

1/12*D61-1/18*D21+1/12*B11, -1/18*B12+1/12*B11-1/18*D61+1/12*D62+1/12*D22-1/18*B26-

1/12*D21+1/12*A16-1/12*B66,     -1/9*A11+1/12*B61+1/18*D66-1/12*B16-1/9*D22+1/6*B21-

1/12*D62+1/12*D26+1/6*B12,     -1/9*B16-1/12*A12+1/18*B62+1/12*D66+1/6*D26+1/12*B22-

1/12*D61-1/9*D21+1/6*B11,     -1/9*B12-1/12*B11+1/18*D61+1/12*D62+1/6*D22-

1/9*B26+1/12*D21+1/6*A16-1/12*B66,         1/9*A11-1/12*B61+1/9*D66-1/12*B16-2/9*D22-1/6*B21-

1/6*D62+1/6*D26+1/6*B12,         1/9*B16-1/12*A12+1/9*B62-1/12*D66-1/6*D26+1/6*B22-1/6*D61-

2/9*D21+1/6*B11,         1/9*B12-1/12*B11+1/9*D61-1/12*D62-1/6*D22-2/9*B26+1/6*D21+1/6*A16-

1/6*B66,         1/9*A11-1/6*B61-2/9*D66+1/6*B16+1/9*D22-1/12*B21+1/6*D62-1/6*D26-1/12*B12,         

1/9*B16+1/6*A12-2/9*B62-1/6*D66-1/12*D26-1/6*B22+1/6*D61+1/9*D21-1/12*B11,         

1/9*B12+1/6*B11-2/9*D61-1/6*D62-1/12*D22+1/9*B26-1/6*D21-1/12*A16+1/6*B66,     -

1/9*A11+1/6*B61-1/9*D66+1/6*B16+1/18*D22+1/12*B21+1/12*D62-1/12*D26-1/12*B12,     -

1/9*B16+1/6*A12-1/9*B62+1/6*D66+1/12*D26-1/12*B22+1/12*D61+1/18*D21-1/12*B11,     -

1/9*B12+1/6*B11-1/9*D61+1/6*D62+1/12*D22+1/18*B26-1/12*D21-1/12*A16+1/12*B66,        -

2/9*A11+1/6*B61+1/9*D66-1/6*B16+1/9*D22+1/6*B21+1/12*D62+1/12*D26-1/6*B12,        -2/9*B16-

1/6*A12+1/9*B62+1/6*D66+1/6*D26+1/12*B22+1/12*D61+1/9*D21-1/6*B11,        -2/9*B12-

1/6*B11+1/9*D61+1/6*D62+1/6*D22+1/9*B26+1/12*D21-1/6*A16+1/12*B66,           2/9*A11-

1/6*B61+2/9*D66-1/6*B16+2/9*D22-1/6*B21+1/6*D62+1/6*D26-1/6*B12,           2/9*B16-

1/6*A12+2/9*B62-1/6*D66-1/6*D26+1/6*B22+1/6*D61+2/9*D21-1/6*B11,           2/9*B12-

1/6*B11+2/9*D61-1/6*D62-1/6*D22+2/9*B26+1/6*D21-1/6*A16+1/6*B66] 
                        [     -1/12*A21+1/18*B61-1/9*B26+1/12*D66-1/9*D12-1/12*B11-1/6*B22-

1/6*D16+1/12*D62,      1/18*D66-1/9*A22+1/12*B62-1/12*B26-1/12*D16-1/6*B12-1/6*B21-

1/9*D11+1/12*D61,      1/18*D62-1/9*B21+1/12*D61-1/12*B22-1/12*D12-1/6*A26-1/6*D11-

1/9*B16+1/12*B66,  1/12*A21-1/18*B61-1/18*B26+1/12*D66-1/18*D12+1/12*B11-1/12*B22-

1/12*D16+1/12*D62, -1/18*D66-1/18*A22+1/12*B62+1/12*B26+1/12*D16-1/12*B12-1/12*B21-

1/18*D11+1/12*D61, -1/18*D62-1/18*B21+1/12*D61+1/12*B22+1/12*D12-1/12*A26-1/12*D11-

1/18*B16+1/12*B66,      1/12*A21-1/9*B61+1/18*B26-1/12*D66-1/9*D12+1/6*B11-

1/12*B22+1/12*D16+1/6*D62,     -1/9*D66+1/18*A22-1/12*B62+1/12*B26+1/6*D16+1/12*B12-

1/12*B21-1/9*D11+1/6*D61,     -1/9*D62+1/18*B21-1/12*D61+1/12*B22+1/6*D12-

1/12*A26+1/12*D11-1/9*B16+1/6*B66,        -1/12*A21+1/9*B61+1/9*B26-1/12*D66-2/9*D12-

1/6*B11-1/6*B22+1/6*D16+1/6*D62,         1/9*D66+1/9*A22-1/12*B62-1/12*B26-1/6*D16+1/6*B12-

1/6*B21-2/9*D11+1/6*D61,         1/9*D62+1/9*B21-1/12*D61-1/12*B22-1/6*D12-1/6*A26+1/6*D11-

2/9*B16+1/6*B66,        -1/6*A21+1/9*B61-2/9*B26+1/6*D66+1/9*D12-1/12*B11+1/6*B22-1/6*D16-

1/12*D62,         1/9*D66-2/9*A22+1/6*B62-1/6*B26-1/12*D16-1/6*B12+1/6*B21+1/9*D11-1/12*D61,         

1/9*D62-2/9*B21+1/6*D61-1/6*B22-1/12*D12+1/6*A26-1/6*D11+1/9*B16-1/12*B66,      1/6*A21-

1/9*B61-1/9*B26+1/6*D66+1/18*D12+1/12*B11+1/12*B22-1/12*D16-1/12*D62,     -1/9*D66-

1/9*A22+1/6*B62+1/6*B26+1/12*D16-1/12*B12+1/12*B21+1/18*D11-1/12*D61,     -1/9*D62-

1/9*B21+1/6*D61+1/6*B22+1/12*D12+1/12*A26-1/12*D11+1/18*B16-1/12*B66,         1/6*A21-

2/9*B61+1/9*B26-1/6*D66+1/9*D12+1/6*B11+1/12*B22+1/12*D16-1/6*D62,        -2/9*D66+1/9*A22-

1/6*B62+1/6*B26+1/6*D16+1/12*B12+1/12*B21+1/9*D11-1/6*D61,        -2/9*D62+1/9*B21-

1/6*D61+1/6*B22+1/6*D12+1/12*A26+1/12*D11+1/9*B16-1/6*B66,          -

1/6*A21+2/9*B61+2/9*B26-1/6*D66+2/9*D12-1/6*B11+1/6*B22+1/6*D16-1/6*D62,           

2/9*D66+2/9*A22-1/6*B62-1/6*B26-1/6*D16+1/6*B12+1/6*B21+2/9*D11-1/6*D61,           

2/9*D62+2/9*B21-1/6*D61-1/6*B22-1/6*D12+1/6*A26+1/6*D11+2/9*B16-1/6*B66] 
                        [     -1/12*B11+1/18*B21-1/9*D16+1/12*D26-1/9*B62-1/12*A61-1/6*D12-

1/6*B66+1/12*D22,      1/18*D26-1/9*B12+1/12*B22-1/12*D16-1/12*B66-1/6*A62-1/6*D11-

1/9*B61+1/12*D21,      1/18*D22-1/9*D11+1/12*D21-1/12*D12-1/12*B62-1/6*B16-1/6*B61-

1/9*A66+1/12*B26,  1/12*B11-1/18*B21-1/18*D16+1/12*D26-1/18*B62+1/12*A61-1/12*D12-

1/12*B66+1/12*D22, -1/18*D26-1/18*B12+1/12*B22+1/12*D16+1/12*B66-1/12*A62-1/12*D11-
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1/18*B61+1/12*D21, -1/18*D22-1/18*D11+1/12*D21+1/12*D12+1/12*B62-1/12*B16-1/12*B61-

1/18*A66+1/12*B26,      1/12*B11-1/9*B21+1/18*D16-1/12*D26-1/9*B62+1/6*A61-

1/12*D12+1/12*B66+1/6*D22,     -1/9*D26+1/18*B12-1/12*B22+1/12*D16+1/6*B66+1/12*A62-

1/12*D11-1/9*B61+1/6*D21,     -1/9*D22+1/18*D11-1/12*D21+1/12*D12+1/6*B62-

1/12*B16+1/12*B61-1/9*A66+1/6*B26,        -1/12*B11+1/9*B21+1/9*D16-1/12*D26-2/9*B62-1/6*A61-

1/6*D12+1/6*B66+1/6*D22,         1/9*D26+1/9*B12-1/12*B22-1/12*D16-1/6*B66+1/6*A62-1/6*D11-

2/9*B61+1/6*D21,         1/9*D22+1/9*D11-1/12*D21-1/12*D12-1/6*B62-1/6*B16+1/6*B61-

2/9*A66+1/6*B26,        -1/6*B11+1/9*B21-2/9*D16+1/6*D26+1/9*B62-1/12*A61+1/6*D12-1/6*B66-

1/12*D22,         1/9*D26-2/9*B12+1/6*B22-1/6*D16-1/12*B66-1/6*A62+1/6*D11+1/9*B61-1/12*D21,         

1/9*D22-2/9*D11+1/6*D21-1/6*D12-1/12*B62+1/6*B16-1/6*B61+1/9*A66-1/12*B26,      1/6*B11-

1/9*B21-1/9*D16+1/6*D26+1/18*B62+1/12*A61+1/12*D12-1/12*B66-1/12*D22,     -1/9*D26-

1/9*B12+1/6*B22+1/6*D16+1/12*B66-1/12*A62+1/12*D11+1/18*B61-1/12*D21,     -1/9*D22-

1/9*D11+1/6*D21+1/6*D12+1/12*B62+1/12*B16-1/12*B61+1/18*A66-1/12*B26,         1/6*B11-

2/9*B21+1/9*D16-1/6*D26+1/9*B62+1/6*A61+1/12*D12+1/12*B66-1/6*D22,        -2/9*D26+1/9*B12-

1/6*B22+1/6*D16+1/6*B66+1/12*A62+1/12*D11+1/9*B61-1/6*D21,        -2/9*D22+1/9*D11-

1/6*D21+1/6*D12+1/6*B62+1/12*B16+1/12*B61+1/9*A66-1/6*B26,          -

1/6*B11+2/9*B21+2/9*D16-1/6*D26+2/9*B62-1/6*A61+1/6*D12+1/6*B66-1/6*D22,           

2/9*D26+2/9*B12-1/6*B22-1/6*D16-1/6*B66+1/6*A62+1/6*D11+2/9*B61-1/6*D21,           

2/9*D22+2/9*D11-1/6*D21-1/6*D12-1/6*B62+1/6*B16+1/6*B61+2/9*A66-1/6*B26]       ]; 
                     

  

 
 

 

 

 

 

 

 

 

 

 

 



 
 

186 

Strain-Displacement Symbolic Operator Matrix File:     filename:  funct_b_matrix_integral_8nodeISO 

function    [B_FEA_SYM,N] = funct_b_matrix_integral_8nodeISO() 

%%%%%%%%%%%%%%%%%%%%%%%%   PURPOSE   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Calculation of the strain-displacment matrix (operator) that is symbolic 

%  in variables r, s, and t 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

syms r s t 

  

  

N1 = (1/8)*(1-r)*(1-s)*(1-t); 

N2 = (1/8)*(1+r)*(1-s)*(1-t); 

N3 = (1/8)*(1+r)*(1+s)*(1-t); 

N4 = (1/8)*(1-r)*(1+s)*(1-t); 

N5 = (1/8)*(1-r)*(1-s)*(1+t); 

N6 = (1/8)*(1+r)*(1-s)*(1+t); 

N7 = (1/8)*(1+r)*(1+s)*(1+t); 

N8 = (1/8)*(1-r)*(1+s)*(1+t); 

  

N = [N1*eye(3)   N2*eye(3)   N3*eye(3)   N4*eye(3)   N5*eye(3)   N6*eye(3)   N7*eye(3)   N8*eye(3)]; 

  

  

B1 = [diff(N1,r)        0                0 

      0                 diff(N1,s)       0 

      0                 0                diff(N1,t) 

      0                 diff(N1,t)       diff(N1,s) 

      diff(N1,t)        0                diff(N1,r) 

      diff(N1,s)        diff(N1,r)       0         ]; 

   

B2 = [diff(N2,r)        0                0 

      0                 diff(N2,s)       0 

      0                 0                diff(N2,t) 

      0                 diff(N2,t)       diff(N2,s) 

      diff(N2,t)        0                diff(N2,r) 

      diff(N2,s)        diff(N2,r)       0         ]; 

   

B3 = [diff(N3,r)        0                0 

      0                 diff(N3,s)       0 

      0                 0                diff(N3,t) 

      0                 diff(N3,t)       diff(N3,s) 

      diff(N3,t)        0                diff(N3,r) 

      diff(N3,s)        diff(N3,r)       0         ];   

  

B4 = [diff(N4,r)        0                0 

      0                 diff(N4,s)       0 

      0                 0                diff(N4,t) 

      0                 diff(N4,t)       diff(N4,s) 

      diff(N4,t)        0                diff(N4,r) 

      diff(N4,s)        diff(N4,r)       0         ]; 
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B5 = [diff(N5,r)        0                0 

      0                 diff(N5,s)       0 

      0                 0                diff(N5,t) 

      0                 diff(N5,t)       diff(N5,s) 

      diff(N5,t)        0                diff(N5,r) 

      diff(N5,s)        diff(N5,r)       0         ]; 

  

B6 = [diff(N6,r)        0                0 

      0                 diff(N6,s)       0 

      0                 0                diff(N6,t) 

      0                 diff(N6,t)       diff(N6,s) 

      diff(N6,t)        0                diff(N6,r) 

      diff(N6,s)        diff(N6,r)       0         ]; 

   

B7 = [diff(N7,r)        0                0 

      0                 diff(N7,s)       0 

      0                 0                diff(N7,t) 

      0                 diff(N7,t)       diff(N7,s) 

      diff(N7,t)        0                diff(N7,r) 

      diff(N7,s)        diff(N7,r)       0         ]; 

   

B8 = [diff(N8,r)        0                0 

      0                 diff(N8,s)       0 

      0                 0                diff(N8,t) 

      0                 diff(N8,t)       diff(N8,s) 

      diff(N8,t)        0                diff(N8,r) 

      diff(N8,s)        diff(N8,r)       0         ]; 

   

  

B_FEA_SYM = [B1 B2 B3 B4 B5 B6 B7 B8]; 
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Symbolic Thermal Load Matrix File:     filename:  funct_symbolic_thermal_load_matrix_8nodeISO 

function      [thermal_load_sym] = funct_symbolic_thermal_load_matrix_8nodeISO() 
  

  
%%%%%%%%%%%%%%%%%%%%%%%%   PURPOSE   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Generates the symbolic element thermal load matrix (with respect to) the 
% laminates constitutive relationship 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 
  

  
syms A11 A12 A16 B11 B12 B16 A21 A22 A26 B21 B22 B26 A61 A62 A66 B61 B62 B66 B11 B12 B16 

D11 D12 D16 B21 B22 B26 D21 D22 D26 B61 B62 B66 D61 D62 D66 thermal_strain_r thermal_strain_s 

thermal_strain_t thermal_strain_st thermal_strain_rt thermal_strain_rs  
  

  

  
  thermal_load_sym =         [   8*(-1/8*A11-1/8*B21-1/8*B61)*thermal_strain_r+8*(-1/8*A12-1/8*B22-

1/8*B62)*thermal_strain_s+8*(-1/8*A16-1/8*B26-1/8*B66)*thermal_strain_t+8*(-1/8*B11-1/8*D21-

1/8*D61)*thermal_strain_st+8*(-1/8*B12-1/8*D22-1/8*D62)*thermal_strain_rt+8*(-1/8*B16-1/8*D26-

1/8*D66)*thermal_strain_rs 
                                 8*(-1/8*A21-1/8*B11-1/8*B61)*thermal_strain_r+8*(-1/8*A22-1/8*B12-

1/8*B62)*thermal_strain_s+8*(-1/8*A26-1/8*B16-1/8*B66)*thermal_strain_t+8*(-1/8*B21-1/8*D11-

1/8*D61)*thermal_strain_st+8*(-1/8*B22-1/8*D12-1/8*D62)*thermal_strain_rt+8*(-1/8*B26-1/8*D16-

1/8*D66)*thermal_strain_rs 
                                 8*(-1/8*A61-1/8*B11-1/8*B21)*thermal_strain_r+8*(-1/8*A62-1/8*B12-

1/8*B22)*thermal_strain_s+8*(-1/8*A66-1/8*B16-1/8*B26)*thermal_strain_t+8*(-1/8*B61-1/8*D11-

1/8*D21)*thermal_strain_st+8*(-1/8*B62-1/8*D12-1/8*D22)*thermal_strain_rt+8*(-1/8*B66-1/8*D16-

1/8*D26)*thermal_strain_rs 
                                       8*(1/8*A11-1/8*B21-1/8*B61)*thermal_strain_r+8*(1/8*A12-1/8*B22-

1/8*B62)*thermal_strain_s+8*(1/8*A16-1/8*B26-1/8*B66)*thermal_strain_t+8*(1/8*B11-1/8*D21-

1/8*D61)*thermal_strain_st+8*(1/8*B12-1/8*D22-1/8*D62)*thermal_strain_rt+8*(1/8*B16-1/8*D26-

1/8*D66)*thermal_strain_rs 
                                 8*(-1/8*A21-1/8*B11+1/8*B61)*thermal_strain_r+8*(-1/8*A22-

1/8*B12+1/8*B62)*thermal_strain_s+8*(-1/8*A26-1/8*B16+1/8*B66)*thermal_strain_t+8*(-1/8*B21-

1/8*D11+1/8*D61)*thermal_strain_st+8*(-1/8*B22-1/8*D12+1/8*D62)*thermal_strain_rt+8*(-1/8*B26-

1/8*D16+1/8*D66)*thermal_strain_rs 
                                 8*(-1/8*A61-1/8*B11+1/8*B21)*thermal_strain_r+8*(-1/8*A62-

1/8*B12+1/8*B22)*thermal_strain_s+8*(-1/8*A66-1/8*B16+1/8*B26)*thermal_strain_t+8*(-1/8*B61-

1/8*D11+1/8*D21)*thermal_strain_st+8*(-1/8*B62-1/8*D12+1/8*D22)*thermal_strain_rt+8*(-1/8*B66-

1/8*D16+1/8*D26)*thermal_strain_rs 
                                       8*(1/8*A11-1/8*B21+1/8*B61)*thermal_strain_r+8*(1/8*A12-

1/8*B22+1/8*B62)*thermal_strain_s+8*(1/8*A16-1/8*B26+1/8*B66)*thermal_strain_t+8*(1/8*B11-

1/8*D21+1/8*D61)*thermal_strain_st+8*(1/8*B12-1/8*D22+1/8*D62)*thermal_strain_rt+8*(1/8*B16-

1/8*D26+1/8*D66)*thermal_strain_rs 
                                       8*(1/8*A21-1/8*B11+1/8*B61)*thermal_strain_r+8*(1/8*A22-

1/8*B12+1/8*B62)*thermal_strain_s+8*(1/8*A26-1/8*B16+1/8*B66)*thermal_strain_t+8*(1/8*B21-

1/8*D11+1/8*D61)*thermal_strain_st+8*(1/8*B22-1/8*D12+1/8*D62)*thermal_strain_rt+8*(1/8*B26-

1/8*D16+1/8*D66)*thermal_strain_rs 
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                                 8*(-1/8*A61+1/8*B11+1/8*B21)*thermal_strain_r+8*(-

1/8*A62+1/8*B12+1/8*B22)*thermal_strain_s+8*(-1/8*A66+1/8*B16+1/8*B26)*thermal_strain_t+8*(-

1/8*B61+1/8*D11+1/8*D21)*thermal_strain_st+8*(-1/8*B62+1/8*D12+1/8*D22)*thermal_strain_rt+8*(-

1/8*B66+1/8*D16+1/8*D26)*thermal_strain_rs 
                                 8*(-1/8*A11-1/8*B21+1/8*B61)*thermal_strain_r+8*(-1/8*A12-

1/8*B22+1/8*B62)*thermal_strain_s+8*(-1/8*A16-1/8*B26+1/8*B66)*thermal_strain_t+8*(-1/8*B11-

1/8*D21+1/8*D61)*thermal_strain_st+8*(-1/8*B12-1/8*D22+1/8*D62)*thermal_strain_rt+8*(-1/8*B16-

1/8*D26+1/8*D66)*thermal_strain_rs 
                                       8*(1/8*A21-1/8*B11-1/8*B61)*thermal_strain_r+8*(1/8*A22-1/8*B12-

1/8*B62)*thermal_strain_s+8*(1/8*A26-1/8*B16-1/8*B66)*thermal_strain_t+8*(1/8*B21-1/8*D11-

1/8*D61)*thermal_strain_st+8*(1/8*B22-1/8*D12-1/8*D62)*thermal_strain_rt+8*(1/8*B26-1/8*D16-

1/8*D66)*thermal_strain_rs 
                                 8*(-1/8*A61+1/8*B11-1/8*B21)*thermal_strain_r+8*(-1/8*A62+1/8*B12-

1/8*B22)*thermal_strain_s+8*(-1/8*A66+1/8*B16-1/8*B26)*thermal_strain_t+8*(-1/8*B61+1/8*D11-

1/8*D21)*thermal_strain_st+8*(-1/8*B62+1/8*D12-1/8*D22)*thermal_strain_rt+8*(-1/8*B66+1/8*D16-

1/8*D26)*thermal_strain_rs 
                                 8*(-1/8*A11+1/8*B21-1/8*B61)*thermal_strain_r+8*(-1/8*A12+1/8*B22-

1/8*B62)*thermal_strain_s+8*(-1/8*A16+1/8*B26-1/8*B66)*thermal_strain_t+8*(-1/8*B11+1/8*D21-

1/8*D61)*thermal_strain_st+8*(-1/8*B12+1/8*D22-1/8*D62)*thermal_strain_rt+8*(-1/8*B16+1/8*D26-

1/8*D66)*thermal_strain_rs 
                                 8*(-1/8*A21+1/8*B11-1/8*B61)*thermal_strain_r+8*(-1/8*A22+1/8*B12-

1/8*B62)*thermal_strain_s+8*(-1/8*A26+1/8*B16-1/8*B66)*thermal_strain_t+8*(-1/8*B21+1/8*D11-

1/8*D61)*thermal_strain_st+8*(-1/8*B22+1/8*D12-1/8*D62)*thermal_strain_rt+8*(-1/8*B26+1/8*D16-

1/8*D66)*thermal_strain_rs 
                                       8*(1/8*A61-1/8*B11-1/8*B21)*thermal_strain_r+8*(1/8*A62-1/8*B12-

1/8*B22)*thermal_strain_s+8*(1/8*A66-1/8*B16-1/8*B26)*thermal_strain_t+8*(1/8*B61-1/8*D11-

1/8*D21)*thermal_strain_st+8*(1/8*B62-1/8*D12-1/8*D22)*thermal_strain_rt+8*(1/8*B66-1/8*D16-

1/8*D26)*thermal_strain_rs 
                                       8*(1/8*A11+1/8*B21-1/8*B61)*thermal_strain_r+8*(1/8*A12+1/8*B22-

1/8*B62)*thermal_strain_s+8*(1/8*A16+1/8*B26-1/8*B66)*thermal_strain_t+8*(1/8*B11+1/8*D21-

1/8*D61)*thermal_strain_st+8*(1/8*B12+1/8*D22-1/8*D62)*thermal_strain_rt+8*(1/8*B16+1/8*D26-

1/8*D66)*thermal_strain_rs 
                                 8*(-1/8*A21+1/8*B11+1/8*B61)*thermal_strain_r+8*(-

1/8*A22+1/8*B12+1/8*B62)*thermal_strain_s+8*(-1/8*A26+1/8*B16+1/8*B66)*thermal_strain_t+8*(-

1/8*B21+1/8*D11+1/8*D61)*thermal_strain_st+8*(-1/8*B22+1/8*D12+1/8*D62)*thermal_strain_rt+8*(-

1/8*B26+1/8*D16+1/8*D66)*thermal_strain_rs 
                                       8*(1/8*A61-1/8*B11+1/8*B21)*thermal_strain_r+8*(1/8*A62-

1/8*B12+1/8*B22)*thermal_strain_s+8*(1/8*A66-1/8*B16+1/8*B26)*thermal_strain_t+8*(1/8*B61-

1/8*D11+1/8*D21)*thermal_strain_st+8*(1/8*B62-1/8*D12+1/8*D22)*thermal_strain_rt+8*(1/8*B66-

1/8*D16+1/8*D26)*thermal_strain_rs 
                                       

8*(1/8*A11+1/8*B21+1/8*B61)*thermal_strain_r+8*(1/8*A12+1/8*B22+1/8*B62)*thermal_strain_s+8*(

1/8*A16+1/8*B26+1/8*B66)*thermal_strain_t+8*(1/8*B11+1/8*D21+1/8*D61)*thermal_strain_st+8*(1/

8*B12+1/8*D22+1/8*D62)*thermal_strain_rt+8*(1/8*B16+1/8*D26+1/8*D66)*thermal_strain_rs 
                                       

8*(1/8*A21+1/8*B11+1/8*B61)*thermal_strain_r+8*(1/8*A22+1/8*B12+1/8*B62)*thermal_strain_s+8*(

1/8*A26+1/8*B16+1/8*B66)*thermal_strain_t+8*(1/8*B21+1/8*D11+1/8*D61)*thermal_strain_st+8*(1/

8*B22+1/8*D12+1/8*D62)*thermal_strain_rt+8*(1/8*B26+1/8*D16+1/8*D66)*thermal_strain_rs 
                                       

8*(1/8*A61+1/8*B11+1/8*B21)*thermal_strain_r+8*(1/8*A62+1/8*B12+1/8*B22)*thermal_strain_s+8*(

1/8*A66+1/8*B16+1/8*B26)*thermal_strain_t+8*(1/8*B61+1/8*D11+1/8*D21)*thermal_strain_st+8*(1/

8*B62+1/8*D12+1/8*D22)*thermal_strain_rt+8*(1/8*B66+1/8*D16+1/8*D26)*thermal_strain_rs 
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                                 8*(-1/8*A11+1/8*B21+1/8*B61)*thermal_strain_r+8*(-

1/8*A12+1/8*B22+1/8*B62)*thermal_strain_s+8*(-1/8*A16+1/8*B26+1/8*B66)*thermal_strain_t+8*(-

1/8*B11+1/8*D21+1/8*D61)*thermal_strain_st+8*(-1/8*B12+1/8*D22+1/8*D62)*thermal_strain_rt+8*(-

1/8*B16+1/8*D26+1/8*D66)*thermal_strain_rs 
                                       8*(1/8*A21+1/8*B11-1/8*B61)*thermal_strain_r+8*(1/8*A22+1/8*B12-

1/8*B62)*thermal_strain_s+8*(1/8*A26+1/8*B16-1/8*B66)*thermal_strain_t+8*(1/8*B21+1/8*D11-

1/8*D61)*thermal_strain_st+8*(1/8*B22+1/8*D12-1/8*D62)*thermal_strain_rt+8*(1/8*B26+1/8*D16-

1/8*D66)*thermal_strain_rs 
                                       8*(1/8*A61+1/8*B11-1/8*B21)*thermal_strain_r+8*(1/8*A62+1/8*B12-

1/8*B22)*thermal_strain_s+8*(1/8*A66+1/8*B16-1/8*B26)*thermal_strain_t+8*(1/8*B61+1/8*D11-

1/8*D21)*thermal_strain_st+8*(1/8*B62+1/8*D12-1/8*D22)*thermal_strain_rt+8*(1/8*B66+1/8*D16-

1/8*D26)*thermal_strain_rs   ]; 
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Element Stiffness Matrix File:      filename:  funct_C_matrices_8nodeISO 

function    [C] = 

funct_C_matrices_8nodeISO(layer_check,Theta,PHI_Y,C11,C12,C13,C21,C22,C23,C31,C32,C33,C44,C5

5,C66) 

  

%%%%%%%%%%%%%%%%%%%%%%%%   PURPOSE   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Calculates the Stiffness matrix of each element 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%  

       

%Rotation about the Z-axis: 

theta = Theta(layer_check); 

  

Theta_X1 = -1*(theta*(pi/180)); 

Theta_X2 = -1*((90+theta)*(pi/180)); 

Theta_X3 = -1*(-90*(pi/180)); 

Theta_Y1 = -1*(-(90-theta)*(pi/180)); 

Theta_Y2 = -1*(theta*(pi/180)); 

Theta_Y3 = -1*(90*(pi/180)); 

Theta_Z1 = -1*(90*(pi/180)); 

Theta_Z2 = -1*(-90*(pi/180)); 

Theta_Z3 = -1*(0*(pi/180)); 

  

T_ij_inverse = [(cos(Theta_X1)^2)                       (cos(Theta_Y1)^2)                       (cos(Theta_Z1)^2)                       

2*(cos(Theta_Y1)^2)*(cos(Theta_Z1)^2)                                           

2*(cos(Theta_Z1)^2)*(cos(Theta_X1)^2)                                           

2*(cos(Theta_X1)^2)*(cos(Theta_Y1)^2) 

                (cos(Theta_X2)^2)                       (cos(Theta_Y2)^2)                       (cos(Theta_Z2)^2)                       

2*(cos(Theta_Y2)^2)*(cos(Theta_Z2)^2)                                           

2*(cos(Theta_Z2)^2)*(cos(Theta_X2)^2)                                           

2*(cos(Theta_X2)^2)*(cos(Theta_Y2)^2) 

                (cos(Theta_X3)^2)                       (cos(Theta_Y3)^2)                       (cos(Theta_Z3)^2)                       

2*(cos(Theta_Y3)^2)*(cos(Theta_Z3)^2)                                           

2*(cos(Theta_Z3)^2)*(cos(Theta_X3)^2)                                           

2*(cos(Theta_X3)^2)*(cos(Theta_Y3)^2) 

                (cos(Theta_X2)^2)*(cos(Theta_X3)^2)     (cos(Theta_Y2)^2)*(cos(Theta_Y3)^2)     

(cos(Theta_Z2)^2)*(cos(Theta_Z3)^2)     

((cos(Theta_Y2)^2)*(cos(Theta_Z3)^2))+((cos(Theta_Y3)^2)*(cos(Theta_Z2)^2))     

((cos(Theta_Z2)^2)*(cos(Theta_X3)^2))+((cos(Theta_Z3)^2)*(cos(Theta_X2)^2))     

((cos(Theta_X2)^2)*(cos(Theta_Y3)^2))+((cos(Theta_X3)^2)*(cos(Theta_Y2)^2))    

                (cos(Theta_X3)^2)*(cos(Theta_X1)^2)     (cos(Theta_Y3)^2)*(cos(Theta_Y1)^2)     

(cos(Theta_Z3)^2)*(cos(Theta_Z1)^2)     

((cos(Theta_Y3)^2)*(cos(Theta_Z1)^2))+((cos(Theta_Y1)^2)*(cos(Theta_Z3)^2))     

((cos(Theta_Z3)^2)*(cos(Theta_X1)^2))+((cos(Theta_Z1)^2)*(cos(Theta_X3)^2))     

((cos(Theta_X3)^2)*(cos(Theta_Y1)^2))+((cos(Theta_X1)^2)*(cos(Theta_Y3)^2)) 

                (cos(Theta_X1)^2)*(cos(Theta_X2)^2)     (cos(Theta_Y1)^2)*(cos(Theta_Y2)^2)     

(cos(Theta_Z1)^2)*(cos(Theta_Z2)^2)     

((cos(Theta_Y1)^2)*(cos(Theta_Z2)^2))+((cos(Theta_Y2)^2)*(cos(Theta_Z1)^2))     

((cos(Theta_Z1)^2)*(cos(Theta_X2)^2))+((cos(Theta_Z2)^2)*(cos(Theta_X1)^2))     

((cos(Theta_X1)^2)*(cos(Theta_Y2)^2))+((cos(Theta_X2)^2)*(cos(Theta_Y1)^2))]; 
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%Rotation about the Z-axis: 

Theta_X1 = (theta*(pi/180)); 

Theta_X2 = ((90+theta)*(pi/180)); 

Theta_X3 = (-90*(pi/180)); 

Theta_Y1 = (-(90-theta)*(pi/180)); 

Theta_Y2 = (theta*(pi/180)); 

Theta_Y3 = (90*(pi/180)); 

Theta_Z1 = (90*(pi/180)); 

Theta_Z2 = (-90*(pi/180)); 

Theta_Z3 = (0*(pi/180)); 

  

T_ij = [(cos(Theta_X1)^2)                       (cos(Theta_Y1)^2)                       (cos(Theta_Z1)^2)                       

2*(cos(Theta_Y1)^2)*(cos(Theta_Z1)^2)                                           

2*(cos(Theta_Z1)^2)*(cos(Theta_X1)^2)                                           

2*(cos(Theta_X1)^2)*(cos(Theta_Y1)^2) 

        (cos(Theta_X2)^2)                       (cos(Theta_Y2)^2)                       (cos(Theta_Z2)^2)                       

2*(cos(Theta_Y2)^2)*(cos(Theta_Z2)^2)                                           

2*(cos(Theta_Z2)^2)*(cos(Theta_X2)^2)                                           

2*(cos(Theta_X2)^2)*(cos(Theta_Y2)^2) 

        (cos(Theta_X3)^2)                       (cos(Theta_Y3)^2)                       (cos(Theta_Z3)^2)                       

2*(cos(Theta_Y3)^2)*(cos(Theta_Z3)^2)                                           

2*(cos(Theta_Z3)^2)*(cos(Theta_X3)^2)                                           

2*(cos(Theta_X3)^2)*(cos(Theta_Y3)^2) 

        (cos(Theta_X2)^2)*(cos(Theta_X3)^2)     (cos(Theta_Y2)^2)*(cos(Theta_Y3)^2)     

(cos(Theta_Z2)^2)*(cos(Theta_Z3)^2)     

((cos(Theta_Y2)^2)*(cos(Theta_Z3)^2))+((cos(Theta_Y3)^2)*(cos(Theta_Z2)^2))     

((cos(Theta_Z2)^2)*(cos(Theta_X3)^2))+((cos(Theta_Z3)^2)*(cos(Theta_X2)^2))     

((cos(Theta_X2)^2)*(cos(Theta_Y3)^2))+((cos(Theta_X3)^2)*(cos(Theta_Y2)^2))    

        (cos(Theta_X3)^2)*(cos(Theta_X1)^2)     (cos(Theta_Y3)^2)*(cos(Theta_Y1)^2)     

(cos(Theta_Z3)^2)*(cos(Theta_Z1)^2)     

((cos(Theta_Y3)^2)*(cos(Theta_Z1)^2))+((cos(Theta_Y1)^2)*(cos(Theta_Z3)^2))     

((cos(Theta_Z3)^2)*(cos(Theta_X1)^2))+((cos(Theta_Z1)^2)*(cos(Theta_X3)^2))     

((cos(Theta_X3)^2)*(cos(Theta_Y1)^2))+((cos(Theta_X1)^2)*(cos(Theta_Y3)^2)) 

        (cos(Theta_X1)^2)*(cos(Theta_X2)^2)     (cos(Theta_Y1)^2)*(cos(Theta_Y2)^2)     

(cos(Theta_Z1)^2)*(cos(Theta_Z2)^2)     

((cos(Theta_Y1)^2)*(cos(Theta_Z2)^2))+((cos(Theta_Y2)^2)*(cos(Theta_Z1)^2))     

((cos(Theta_Z1)^2)*(cos(Theta_X2)^2))+((cos(Theta_Z2)^2)*(cos(Theta_X1)^2))     

((cos(Theta_X1)^2)*(cos(Theta_Y2)^2))+((cos(Theta_X2)^2)*(cos(Theta_Y1)^2))]; 

  

  

  

     

  

%Rotation about the Y-axis 

Phi_X1 = -1*(PHI_Y); 

Phi_X2 = -1*(pi/2); 

Phi_X3 = -1*(-((pi/2)-PHI_Y)); 

Phi_Y1 = -1*(-(pi/2)); 

Phi_Y2 = -1*(0); 

Phi_Y3 = -1*((pi/2)); 

Phi_Z1 = -1*(((pi/2)+PHI_Y)); 

Phi_Z2 = -1*(-(pi/2)); 
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Phi_Z3 = -1*(PHI_Y); 

T_ij_Y_inverse = [(cos(Phi_X1)^2)                       (cos(Phi_Y1)^2)                       (cos(Phi_Z1)^2)                       

2*(cos(Phi_Y1)^2)*(cos(Phi_Z1)^2)                                           2*(cos(Phi_Z1)^2)*(cos(Phi_X1)^2)                                           

2*(cos(Phi_X1)^2)*(cos(Phi_Y1)^2) 

                  (cos(Phi_X2)^2)                       (cos(Phi_Y2)^2)                       (cos(Phi_Z2)^2)                       

2*(cos(Phi_Y2)^2)*(cos(Phi_Z2)^2)                                           2*(cos(Phi_Z2)^2)*(cos(Phi_X2)^2)                                           

2*(cos(Phi_X2)^2)*(cos(Phi_Y2)^2) 

                  (cos(Phi_X3)^2)                       (cos(Phi_Y3)^2)                       (cos(Phi_Z3)^2)                       

2*(cos(Phi_Y3)^2)*(cos(Phi_Z3)^2)                                           2*(cos(Phi_Z3)^2)*(cos(Phi_X3)^2)                                           

2*(cos(Phi_X3)^2)*(cos(Phi_Y3)^2) 

                  (cos(Phi_X2)^2)*(cos(Phi_X3)^2)     (cos(Phi_Y2)^2)*(cos(Phi_Y3)^2)     

(cos(Phi_Z2)^2)*(cos(Phi_Z3)^2)     

((cos(Phi_Y2)^2)*(cos(Phi_Z3)^2))+((cos(Phi_Y3)^2)*(cos(Phi_Z2)^2))     

((cos(Phi_Z2)^2)*(cos(Phi_X3)^2))+((cos(Phi_Z3)^2)*(cos(Phi_X2)^2))     

((cos(Phi_X2)^2)*(cos(Phi_Y3)^2))+((cos(Phi_X3)^2)*(cos(Phi_Y2)^2))    

                  (cos(Phi_X3)^2)*(cos(Phi_X1)^2)     (cos(Phi_Y3)^2)*(cos(Phi_Y1)^2)     

(cos(Phi_Z3)^2)*(cos(Phi_Z1)^2)     

((cos(Phi_Y3)^2)*(cos(Phi_Z1)^2))+((cos(Phi_Y1)^2)*(cos(Phi_Z3)^2))     

((cos(Phi_Z3)^2)*(cos(Phi_X1)^2))+((cos(Phi_Z1)^2)*(cos(Phi_X3)^2))     

((cos(Phi_X3)^2)*(cos(Phi_Y1)^2))+((cos(Phi_X1)^2)*(cos(Phi_Y3)^2)) 

                  (cos(Phi_X1)^2)*(cos(Phi_X2)^2)     (cos(Phi_Y1)^2)*(cos(Phi_Y2)^2)     

(cos(Phi_Z1)^2)*(cos(Phi_Z2)^2)     

((cos(Phi_Y1)^2)*(cos(Phi_Z2)^2))+((cos(Phi_Y2)^2)*(cos(Phi_Z1)^2))     

((cos(Phi_Z1)^2)*(cos(Phi_X2)^2))+((cos(Phi_Z2)^2)*(cos(Phi_X1)^2))     

((cos(Phi_X1)^2)*(cos(Phi_Y2)^2))+((cos(Phi_X2)^2)*(cos(Phi_Y1)^2))]; 

             

  

%Rotation about the Y-axis 

Phi_X1 = (PHI_Y); 

Phi_X2 = ((pi/2)); 

Phi_X3 = (-((pi/2)-PHI_Y)); 

Phi_Y1 = (-(pi/2)); 

Phi_Y2 = (0); 

Phi_Y3 = ((pi/2)); 

Phi_Z1 = (((pi/2)+PHI_Y)); 

Phi_Z2 = (-(pi/2)); 

Phi_Z3 = (PHI_Y); 

     

T_ij_Y = [(cos(Phi_X1)^2)                       (cos(Phi_Y1)^2)                       (cos(Phi_Z1)^2)                       

2*(cos(Phi_Y1)^2)*(cos(Phi_Z1)^2)                                           2*(cos(Phi_Z1)^2)*(cos(Phi_X1)^2)                                           

2*(cos(Phi_X1)^2)*(cos(Phi_Y1)^2) 

          (cos(Phi_X2)^2)                       (cos(Phi_Y2)^2)                       (cos(Phi_Z2)^2)                       

2*(cos(Phi_Y2)^2)*(cos(Phi_Z2)^2)                                           2*(cos(Phi_Z2)^2)*(cos(Phi_X2)^2)                                           

2*(cos(Phi_X2)^2)*(cos(Phi_Y2)^2) 

          (cos(Phi_X3)^2)                       (cos(Phi_Y3)^2)                       (cos(Phi_Z3)^2)                       

2*(cos(Phi_Y3)^2)*(cos(Phi_Z3)^2)                                           2*(cos(Phi_Z3)^2)*(cos(Phi_X3)^2)                                           

2*(cos(Phi_X3)^2)*(cos(Phi_Y3)^2) 

          (cos(Phi_X2)^2)*(cos(Phi_X3)^2)     (cos(Phi_Y2)^2)*(cos(Phi_Y3)^2)     

(cos(Phi_Z2)^2)*(cos(Phi_Z3)^2)     

((cos(Phi_Y2)^2)*(cos(Phi_Z3)^2))+((cos(Phi_Y3)^2)*(cos(Phi_Z2)^2))     

((cos(Phi_Z2)^2)*(cos(Phi_X3)^2))+((cos(Phi_Z3)^2)*(cos(Phi_X2)^2))     

((cos(Phi_X2)^2)*(cos(Phi_Y3)^2))+((cos(Phi_X3)^2)*(cos(Phi_Y2)^2))    
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          (cos(Phi_X3)^2)*(cos(Phi_X1)^2)     (cos(Phi_Y3)^2)*(cos(Phi_Y1)^2)     

(cos(Phi_Z3)^2)*(cos(Phi_Z1)^2)     

((cos(Phi_Y3)^2)*(cos(Phi_Z1)^2))+((cos(Phi_Y1)^2)*(cos(Phi_Z3)^2))     

((cos(Phi_Z3)^2)*(cos(Phi_X1)^2))+((cos(Phi_Z1)^2)*(cos(Phi_X3)^2))     

((cos(Phi_X3)^2)*(cos(Phi_Y1)^2))+((cos(Phi_X1)^2)*(cos(Phi_Y3)^2)) 

          (cos(Phi_X1)^2)*(cos(Phi_X2)^2)     (cos(Phi_Y1)^2)*(cos(Phi_Y2)^2)     

(cos(Phi_Z1)^2)*(cos(Phi_Z2)^2)     

((cos(Phi_Y1)^2)*(cos(Phi_Z2)^2))+((cos(Phi_Y2)^2)*(cos(Phi_Z1)^2))     

((cos(Phi_Z1)^2)*(cos(Phi_X2)^2))+((cos(Phi_Z2)^2)*(cos(Phi_X1)^2))     

((cos(Phi_X1)^2)*(cos(Phi_Y2)^2))+((cos(Phi_X2)^2)*(cos(Phi_Y1)^2))]; 

  

     

  

     

C_rot=zeros(6,6); 

         

C_12 = [C11 C12 C13   0     0     0 

        C21 C22 C23   0     0     0 

        C31 C32 C33   0     0     0 

         0   0   0  2*C44   0     0 

         0   0   0    0   2*C55   0 

         0   0   0    0     0   2*C66];    

     

C_XY = T_ij_inverse*C_12*T_ij; 

  

C_XY_Y = T_ij_Y_inverse*C_XY*T_ij_Y; 

  

  

  

  

  

  

C = C_XY_Y; 
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Jacobian File:      filename:  funct_jacobian_8nodeISO 

function    [Determinant_Jacobian] = funct_jacobian_8nodeISO(PHI_Y) 
  
%%%%%%%%%%%%%%%%%%%%%%%%   PURPOSE   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Calculates the Jacobian matrix and its determinant. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%  
  

    
Jacobian = [cos(PHI_Y)      0      -sin(PHI_Y) 
               0            1          0 
            sin(PHI_Y)      0       cos(PHI_Y)]; 
Determinant_Jacobian = det(Jacobian);    
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

196 

Thermal Strain File:       filename:  funct_thermal_strains_8nodeISO 

function    [THERMAL_STRAIN] = 

funct_thermal_strains_8nodeISO(layer_check,Theta,PHI_Y,delta_T,alpha_12) 

  

%%%%%%%%%%%%%%%%%%%%%%%%   PURPOSE   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Calculates the thermal stains in each element 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%  

  

%Rotation about the Z-axis:  

theta = Theta(layer_check);     

  

%Transformation matrix is for laminate coordinate system to material 

% coordinate system;  Hence, the inverse of the transformation matrix has 

% the cos arguments multiplied by negative one. 

  

Theta_X1 = -1*(theta*(pi/180)); 

Theta_X2 = -1*((90+theta)*(pi/180)); 

Theta_X3 = -1*(-90*(pi/180)); 

Theta_Y1 = -1*(-(90-theta)*(pi/180)); 

Theta_Y2 = -1*(theta*(pi/180)); 

Theta_Y3 = -1*(90*(pi/180)); 

Theta_Z1 = -1*(90*(pi/180)); 

Theta_Z2 = -1*(-90*(pi/180)); 

Theta_Z3 = -1*(0*(pi/180));  

  

  

T_ij_inverse = [(cos(Theta_X1)^2)                       (cos(Theta_Y1)^2)                       (cos(Theta_Z1)^2)                       

2*(cos(Theta_Y1)^2)*(cos(Theta_Z1)^2)                                           

2*(cos(Theta_Z1)^2)*(cos(Theta_X1)^2)                                           

2*(cos(Theta_X1)^2)*(cos(Theta_Y1)^2) 

                (cos(Theta_X2)^2)                       (cos(Theta_Y2)^2)                       (cos(Theta_Z2)^2)                       

2*(cos(Theta_Y2)^2)*(cos(Theta_Z2)^2)                                           

2*(cos(Theta_Z2)^2)*(cos(Theta_X2)^2)                                           

2*(cos(Theta_X2)^2)*(cos(Theta_Y2)^2) 

                (cos(Theta_X3)^2)                       (cos(Theta_Y3)^2)                       (cos(Theta_Z3)^2)                       

2*(cos(Theta_Y3)^2)*(cos(Theta_Z3)^2)                                           

2*(cos(Theta_Z3)^2)*(cos(Theta_X3)^2)                                           

2*(cos(Theta_X3)^2)*(cos(Theta_Y3)^2) 

                (cos(Theta_X2)^2)*(cos(Theta_X3)^2)     (cos(Theta_Y2)^2)*(cos(Theta_Y3)^2)     

(cos(Theta_Z2)^2)*(cos(Theta_Z3)^2)     

((cos(Theta_Y2)^2)*(cos(Theta_Z3)^2))+((cos(Theta_Y3)^2)*(cos(Theta_Z2)^2))     

((cos(Theta_Z2)^2)*(cos(Theta_X3)^2))+((cos(Theta_Z3)^2)*(cos(Theta_X2)^2))     

((cos(Theta_X2)^2)*(cos(Theta_Y3)^2))+((cos(Theta_X3)^2)*(cos(Theta_Y2)^2))    

                (cos(Theta_X3)^2)*(cos(Theta_X1)^2)     (cos(Theta_Y3)^2)*(cos(Theta_Y1)^2)     

(cos(Theta_Z3)^2)*(cos(Theta_Z1)^2)     

((cos(Theta_Y3)^2)*(cos(Theta_Z1)^2))+((cos(Theta_Y1)^2)*(cos(Theta_Z3)^2))     

((cos(Theta_Z3)^2)*(cos(Theta_X1)^2))+((cos(Theta_Z1)^2)*(cos(Theta_X3)^2))     

((cos(Theta_X3)^2)*(cos(Theta_Y1)^2))+((cos(Theta_X1)^2)*(cos(Theta_Y3)^2)) 

                (cos(Theta_X1)^2)*(cos(Theta_X2)^2)     (cos(Theta_Y1)^2)*(cos(Theta_Y2)^2)     

(cos(Theta_Z1)^2)*(cos(Theta_Z2)^2)     
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((cos(Theta_Y1)^2)*(cos(Theta_Z2)^2))+((cos(Theta_Y2)^2)*(cos(Theta_Z1)^2))     

((cos(Theta_Z1)^2)*(cos(Theta_X2)^2))+((cos(Theta_Z2)^2)*(cos(Theta_X1)^2))     

((cos(Theta_X1)^2)*(cos(Theta_Y2)^2))+((cos(Theta_X2)^2)*(cos(Theta_Y1)^2))]; 

  

  

alpha_xy = T_ij_inverse*alpha_12; 

THERMAL_STRAIN_xy = alpha_xy*delta_T; 

  

  

%Rotation about the Y-axis 

Phi_X1 = -1*(PHI_Y); 

Phi_X2 = -1*(pi/2); 

Phi_X3 = -1*(-((pi/2)-PHI_Y)); 

Phi_Y1 = -1*(-(pi/2)); 

Phi_Y2 = -1*(0); 

Phi_Y3 = -1*((pi/2)); 

Phi_Z1 = -1*(((pi/2)+PHI_Y)); 

Phi_Z2 = -1*(-(pi/2)); 

Phi_Z3 = -1*(PHI_Y); 

T_ij_Y_inverse = [(cos(Phi_X1)^2)                       (cos(Phi_Y1)^2)                       (cos(Phi_Z1)^2)                       

2*(cos(Phi_Y1)^2)*(cos(Phi_Z1)^2)                                           2*(cos(Phi_Z1)^2)*(cos(Phi_X1)^2)                                           

2*(cos(Phi_X1)^2)*(cos(Phi_Y1)^2) 

                  (cos(Phi_X2)^2)                       (cos(Phi_Y2)^2)                       (cos(Phi_Z2)^2)                       

2*(cos(Phi_Y2)^2)*(cos(Phi_Z2)^2)                                           2*(cos(Phi_Z2)^2)*(cos(Phi_X2)^2)                                           

2*(cos(Phi_X2)^2)*(cos(Phi_Y2)^2) 

                  (cos(Phi_X3)^2)                       (cos(Phi_Y3)^2)                       (cos(Phi_Z3)^2)                       

2*(cos(Phi_Y3)^2)*(cos(Phi_Z3)^2)                                           2*(cos(Phi_Z3)^2)*(cos(Phi_X3)^2)                                           

2*(cos(Phi_X3)^2)*(cos(Phi_Y3)^2) 

                  (cos(Phi_X2)^2)*(cos(Phi_X3)^2)     (cos(Phi_Y2)^2)*(cos(Phi_Y3)^2)     

(cos(Phi_Z2)^2)*(cos(Phi_Z3)^2)     

((cos(Phi_Y2)^2)*(cos(Phi_Z3)^2))+((cos(Phi_Y3)^2)*(cos(Phi_Z2)^2))     

((cos(Phi_Z2)^2)*(cos(Phi_X3)^2))+((cos(Phi_Z3)^2)*(cos(Phi_X2)^2))     

((cos(Phi_X2)^2)*(cos(Phi_Y3)^2))+((cos(Phi_X3)^2)*(cos(Phi_Y2)^2))    

                  (cos(Phi_X3)^2)*(cos(Phi_X1)^2)     (cos(Phi_Y3)^2)*(cos(Phi_Y1)^2)     

(cos(Phi_Z3)^2)*(cos(Phi_Z1)^2)     

((cos(Phi_Y3)^2)*(cos(Phi_Z1)^2))+((cos(Phi_Y1)^2)*(cos(Phi_Z3)^2))     

((cos(Phi_Z3)^2)*(cos(Phi_X1)^2))+((cos(Phi_Z1)^2)*(cos(Phi_X3)^2))     

((cos(Phi_X3)^2)*(cos(Phi_Y1)^2))+((cos(Phi_X1)^2)*(cos(Phi_Y3)^2)) 

                  (cos(Phi_X1)^2)*(cos(Phi_X2)^2)     (cos(Phi_Y1)^2)*(cos(Phi_Y2)^2)     

(cos(Phi_Z1)^2)*(cos(Phi_Z2)^2)     

((cos(Phi_Y1)^2)*(cos(Phi_Z2)^2))+((cos(Phi_Y2)^2)*(cos(Phi_Z1)^2))     

((cos(Phi_Z1)^2)*(cos(Phi_X2)^2))+((cos(Phi_Z2)^2)*(cos(Phi_X1)^2))     

((cos(Phi_X1)^2)*(cos(Phi_Y2)^2))+((cos(Phi_X2)^2)*(cos(Phi_Y1)^2))]; 

             

THERMAL_STRAIN = T_ij_Y_inverse*THERMAL_STRAIN_xy; 
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Global Stiffness Matrix File:    filename:  funct_global_stiffness_matrix_8nodeISO 

function    [K_global] = funct_global_stiffness_matrix_8nodeISO(ne,elements,k_element,ndof) 

  

%%%%%%%%%%%%%%%%%%%%%%%%   PURPOSE   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Assembles global stiffness matrix. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

  

  

ntriplets=ne*24^2;  

I_SPARSE = (zeros(ntriplets,1)); 

J_SPARSE = (zeros(ntriplets,1)); 

X_SPARSE = (zeros(ntriplets,1)); 

ntriplets=0;      

   

  

       

i=0; 

j=0;    

jj=0; 

count=0; 

krow=0; 

kcol=0; 

for II=1:ne  

    i=i+1; 

    count(i)=i;  %#ok<AGROW> 

    sctr = elements(i,:); 

     

    for JJ=1:8 

        j=j+1;    

        jj=jj+1;  

        %Addresses DOFs as r_1,s_1,t_1,r_2,s_2,t_2,.......,r_nn,s_nn,t_nn 

        %  where nn equals the total number of nodes in the model 

        sctrVec(jj) = (sctr(j)*3)-2; %#ok<AGROW>    %r-DOF 

        sctrVec(jj+1) = (sctr(j)*3)-1; %#ok<AGROW>  %s-DOF 

        sctrVec(jj+2) = (sctr(j)*3); %#ok<AGROW>    %t-DOF 

        jj=jj+2; 

    end 

  

            for KROW=1:24 

                krow=krow+1;  

                    

                    for KCOL=1:24 

                        kcol=kcol+1; 

                        ntriplets = ntriplets + 1 ; 

                        I_SPARSE(ntriplets) = sctrVec(krow); 

                        J_SPARSE(ntriplets) = sctrVec(kcol); 

                        X_SPARSE(ntriplets) = k_element(krow,kcol,count(i)); 

                    end 



 
 

199 

                    kcol=0; 

            end 

            krow=0;     

    j=0;  

    jj=0; 

  

     

end 

         

K_global = sparse(I_SPARSE,J_SPARSE,X_SPARSE,ndof,ndof); 
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Boundary Condition File:   filename:  funct_boundary_conditions_8nodeISO 

function    

[bottom_face_nodes,top_face_nodes,right_face_nodes,left_face_nodes,front_face_nodes,rear_face_nodes] 

= 

funct_boundary_conditions_8nodeISO(elements,Number_Of_Elements__THETA,Number_Of_Elements_

_RADIAL,Number_Of_Elements__Z,ne,nn_THETA,nn_Z) 
  
%%%%%%%%%%%%%%%%%%%%%%%%   PURPOSE   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Defines element connectivity for boundary condtions.  Definition of  
%  connectivity is done one element at a time.  Listing of all the unique 
%  nodes on a given boundary face is created. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 
    

  

   

  
bottom_face = elements(1:Number_Of_Elements__THETA*Number_Of_Elements__Z,1:4);                      
top_face = 

elements((((Number_Of_Elements__THETA*Number_Of_Elements__Z)*(Number_Of_Elements__RADI

AL-1))+1):ne,5:8);                                                                   
  
i=0; 
ii=0;           
iii=0; 
for J=1:Number_Of_Elements__RADIAL  
     
    for I=1:Number_Of_Elements__THETA 
        i=i+1; 
        iii=iii+1; 
        front_face(iii,:) = [elements(i,1:2) elements(i,5:6)]; %#ok<AGROW> 
        rear_face(iii,:) = [elements(i,1:2) elements(i,5:6)] + nn_THETA*(nn_Z-1); %#ok<AGROW> 
    end 
    ii=ii+1; 
    i=ii*Number_Of_Elements__THETA*Number_Of_Elements__Z; 
        if Number_Of_Elements__RADIAL == 1 
            break 
        end 
end           
  
i=1:Number_Of_Elements__THETA:ne-(Number_Of_Elements__THETA-1); 
j=i+(Number_Of_Elements__THETA-1); 
ii=0; 
for I=1:Number_Of_Elements__RADIAL*Number_Of_Elements__Z 
    ii=ii+1;         
    left_face(ii,:) = [elements(i(ii),1) elements(i(ii),4) elements(i(ii),5) elements(i(ii),8)]; %#ok<AGROW> 
    right_face(ii,:) = [elements(j(ii),2) elements(j(ii),3) elements(j(ii),6) elements(j(ii),7)]; %#ok<AGROW> 
end 
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bottom_face_nodes = unique(bottom_face); 
top_face_nodes = unique(top_face); 
front_face_nodes = unique(front_face);    
rear_face_nodes = unique(rear_face); 
left_face_nodes = unique(left_face); 
right_face_nodes = unique(right_face); 
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Reduced Stiffness Matrix File:  filename:  funct_reduced_stiffness_matrix_8nodeISO 

function    [K_global_reduced] = 

funct_reduced_stiffness_matrix_8nodeISO(bottom_face_nodes,top_face_nodes,right_face_nodes,left_face

_nodes,front_face_nodes,rear_face_nodes,K_global,Right_Boundary,Left_Boundary,Top_Boundary,Botto

m_Boundary,Front_Boundary,Rear_Boundary,ndof) 

  

%%%%%%%%%%%%%%%%%%%%%%%%   PURPOSE   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Reduction of the global stiffness matrix for removing the singularity  

%  utilizing the boundary conditions to set all rows and columns that  

%  correspond to zero displacement equal to zero except where it is on the  

%  diagonal. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

   

K_global_reduced = K_global; 

     

if Right_Boundary == 1 

   i=0; 

    for I=1:length(right_face_nodes) 

        i=i+1; 

        K_global_reduced(:,(right_face_nodes(i)*3)-2) = 0; 

        K_global_reduced(:,(right_face_nodes(i)*3)-1) = 0; 

        K_global_reduced(:,(right_face_nodes(i)*3)) = 0; 

        K_global_reduced((right_face_nodes(i)*3)-2,:) = 0; 

        K_global_reduced((right_face_nodes(i)*3)-1,:) = 0; 

        K_global_reduced((right_face_nodes(i)*3),:) = 0; 

    end    

         

end 

     

if Left_Boundary == 1     

    i=0; 

    for I=1:length(left_face_nodes) 

        i=i+1; 

        K_global_reduced(:,(left_face_nodes(i)*3)-2) = 0; 

        K_global_reduced(:,(left_face_nodes(i)*3)-1) = 0; 

        K_global_reduced(:,(left_face_nodes(i)*3)) = 0;         

        K_global_reduced((left_face_nodes(i)*3)-2,:) = 0;    

        K_global_reduced((left_face_nodes(i)*3)-1,:) = 0; 

        K_global_reduced((left_face_nodes(i)*3),:) = 0; 

    end     

         

end 

  

if Top_Boundary == 1 

    i=0; 

    for I=1:length(top_face_nodes) 

        i=i+1; 

        K_global_reduced(:,(top_face_nodes(i)*3)-2) = 0; 



 
 

203 

        K_global_reduced(:,(top_face_nodes(i)*3)-1) = 0; 

        K_global_reduced(:,(top_face_nodes(i)*3)) = 0;         

        K_global_reduced((top_face_nodes(i)*3)-2,:) = 0; 

        K_global_reduced((top_face_nodes(i)*3)-1,:) = 0; 

        K_global_reduced((top_face_nodes(i)*3),:) = 0; 

    end     

end 

  

if Bottom_Boundary == 1 

    i=0; 

    for I=1:length(bottom_face_nodes) 

        i=i+1;  

        K_global_reduced(:,(bottom_face_nodes(i)*3)-2) = 0; 

        K_global_reduced(:,(bottom_face_nodes(i)*3)-1) = 0; 

        K_global_reduced(:,(bottom_face_nodes(i)*3)) = 0;         

        K_global_reduced((bottom_face_nodes(i)*3)-2,:) = 0;  

        K_global_reduced((bottom_face_nodes(i)*3)-1,:) = 0;  

        K_global_reduced((bottom_face_nodes(i)*3),:) = 0; 

    end     

end 

  

if Front_Boundary == 1 

    i=0; 

    for I=1:length(front_face_nodes) 

        i=i+1; 

        K_global_reduced(:,(front_face_nodes(i)*3)-2) = 0; 

        K_global_reduced(:,(front_face_nodes(i)*3)-1) = 0; 

        K_global_reduced(:,(front_face_nodes(i)*3)) = 0;         

        K_global_reduced((front_face_nodes(i)*3)-2,:) = 0; 

        K_global_reduced((front_face_nodes(i)*3)-1,:) = 0; 

        K_global_reduced((front_face_nodes(i)*3),:) = 0; 

    end    

end 

  

if Rear_Boundary == 1 

    i=0;  

    for I=1:length(rear_face_nodes) 

        i=i+1;  

        K_global_reduced(:,(rear_face_nodes(i)*3)-2) = 0; 

        K_global_reduced(:,(rear_face_nodes(i)*3)-1) = 0; 

        K_global_reduced(:,(rear_face_nodes(i)*3)) = 0;         

        K_global_reduced((rear_face_nodes(i)*3)-2,:) = 0; 

        K_global_reduced((rear_face_nodes(i)*3)-1,:) = 0; 

        K_global_reduced((rear_face_nodes(i)*3),:) = 0; 

    end           

end    

  

  

i=0; 

for I=1:ndof 

    i=i+1; 

     

     if K_global_reduced(i,i) == 0 
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            K_global_reduced(i,i) = 1; 

     end 

end 
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Nodal Force File:   filename:  funct_nodal_force_array_8nodeISO 

function    [thermal_load_Array,thermal_load_Array_Reduced] = 

funct_nodal_force_array_8nodeISO(thermal_load,elements,ne,ndof,bottom_face_nodes,top_face_nodes,rig

ht_face_nodes,left_face_nodes,front_face_nodes,rear_face_nodes,Right_Boundary,Left_Boundary,Top_Bo

undary,Bottom_Boundary,Front_Boundary,Rear_Boundary) 

  

%%%%%%%%%%%%%%%%%%%%%%%%   PURPOSE   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Assembles nodal force array in global coordinates 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 

     

  

ntriplets=ne*24;  

I_SPARSE = (zeros(ntriplets,1)); 

J_SPARSE = (zeros(ntriplets,1)); 

X_SPARSE = (zeros(ntriplets,1));  

ntriplets=0;      

  

      

      

i=0; 

j=0;       

jj=0;       

count=0;      

krow=0; 

kcol=1;  

for II=1:ne   

    i=i+1; 

    count(i)=i;  

    sctr = elements(i,:);  

     

    for JJ=1:8    

        j=j+1; 

        jj=jj+1;  

        %Addresses DOFs as r_1,s_1,t_1,r_2,s_2,t_2,.......,r_nn,s_nn,t_nn 

        %  where nn equals the total number of nodes in the model 

        sctrVec(jj) = (sctr(j)*3)-2;    %r-DOF 

        sctrVec(jj+1) = (sctr(j)*3)-1;  %s-DOF 

        sctrVec(jj+2) = (sctr(j)*3);    %t-DOF 

        jj=jj+2; 

    end 

    j=0;  

    jj=0; 

     

    for KROW=1:24 

        krow=krow+1;   

        ntriplets = ntriplets + 1 ; 

        I_SPARSE(ntriplets) = sctrVec(krow); 

        J_SPARSE(ntriplets) = 1; 

        X_SPARSE(ntriplets) = thermal_load(krow,kcol,count(i)); 

    end 
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    krow=0;  

    

end 

  

thermal_load_Array_full_matrix = sparse(I_SPARSE,J_SPARSE,X_SPARSE,ndof,ndof); 

thermal_load_Array = thermal_load_Array_full_matrix(:,1); 

  

   

  

thermal_load_Array_Reduced =  thermal_load_Array; 

  

if Right_Boundary == 1 

   i=0; 

    for I=1:length(right_face_nodes) 

        i=i+1; 

        thermal_load_Array_Reduced((right_face_nodes(i)*3)-2,1) = 0; 

        thermal_load_Array_Reduced((right_face_nodes(i)*3)-1,1) = 0; 

        thermal_load_Array_Reduced((right_face_nodes(i)*3),1) = 0; 

    end     

end 

     

if Left_Boundary == 1 

    i=0; 

    for I=1:length(left_face_nodes) 

        i=i+1; 

        thermal_load_Array_Reduced((left_face_nodes(i)*3)-2,1) = 0;    

        thermal_load_Array_Reduced((left_face_nodes(i)*3)-1,1) = 0; 

        thermal_load_Array_Reduced((left_face_nodes(i)*3),1) = 0; 

    end     

end 

  

if Top_Boundary == 1 

    i=0; 

    for I=1:length(top_face_nodes) 

        i=i+1; 

        thermal_load_Array_Reduced((top_face_nodes(i)*3)-2,1) = 0; 

        thermal_load_Array_Reduced((top_face_nodes(i)*3)-1,1) = 0; 

        thermal_load_Array_Reduced((top_face_nodes(i)*3),1) = 0; 

    end     

end 

  

if Bottom_Boundary == 1  

    i=0; 

    for I=1:length(bottom_face_nodes) 

        i=i+1;  

        thermal_load_Array_Reduced((bottom_face_nodes(i)*3)-2,1) = 0; 

        thermal_load_Array_Reduced((bottom_face_nodes(i)*3)-1,1) = 0;  

        thermal_load_Array_Reduced((bottom_face_nodes(i)*3),1) = 0; 

    end     

end 

  

if Front_Boundary == 1   

    i=0; 
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    for I=1:length(front_face_nodes) 

        i=i+1; 

        thermal_load_Array_Reduced((front_face_nodes(i)*3)-2,1) = 0; 

        thermal_load_Array_Reduced((front_face_nodes(i)*3)-1,1) = 0; 

        thermal_load_Array_Reduced((front_face_nodes(i)*3),1) = 0; 

    end     

end 

  

if Rear_Boundary == 1 

    i=0;  

    for I=1:length(rear_face_nodes) 

        i=i+1; 

        thermal_load_Array_Reduced((rear_face_nodes(i)*3)-2,1) = 0; 

        thermal_load_Array_Reduced((rear_face_nodes(i)*3)-1,1) = 0; 

        thermal_load_Array_Reduced((rear_face_nodes(i)*3),1) = 0; 

    end      

end    
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Displacement File:      filename:  funct_reduced_displacement_array_8nodeISO 

function    [Reduced_Displacement_Array] = 

funct_reduced_displacement_array_8nodeISO(K_global_reduced,thermal_load_Array_Reduced) 
   

  
%%%%%%%%%%%%%%%%%%%%%%%%   PURPOSE   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Calculates global displacements in model at the nodes 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 
  

  
Reduced_Displacement_Array = K_global_reduced\thermal_load_Array_Reduced;             
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Element Displacement Collection File:  filename:  funct_displacements_8nodeISO 

function    [Displacements] = funct_displacements_8nodeISO(elements,ne,Reduced_Displacement_Array) 

  

%%%%%%%%%%%%%%%%%%%%%%%%   PURPOSE   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Collects the Displacements for each element  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

  

i=0; 

j=0;       

jj=0; 

for II=1:ne  

    i=i+1; 

    sctr = elements(i,:); 

     

    for JJ=1:8 

        j=j+1; 

        jj=jj+1;      

        sctrVec(jj) = (sctr(j)*3)-2; %#ok<AGROW>     %r-DOF 

        sctrVec(jj+1) = (sctr(j)*3)-1; %#ok<AGROW>   %s-DOF 

        sctrVec(jj+2) = (sctr(j)*3); %#ok<AGROW>     %t-DOF 

        jj=jj+2; 

    end    

    j=0;  

    jj=0;  

     

     

     

     

    Displacements(i,1) = Reduced_Displacement_Array(sctrVec(1)); 

    Displacements(i,2) = Reduced_Displacement_Array(sctrVec(2)); 

    Displacements(i,3) = Reduced_Displacement_Array(sctrVec(3)); 

    Displacements(i,4) = Reduced_Displacement_Array(sctrVec(4)); 

    Displacements(i,5) = Reduced_Displacement_Array(sctrVec(5)); 

    Displacements(i,6) = Reduced_Displacement_Array(sctrVec(6)); 

    Displacements(i,7) = Reduced_Displacement_Array(sctrVec(7)); 

    Displacements(i,8) = Reduced_Displacement_Array(sctrVec(8)); 

    Displacements(i,9) = Reduced_Displacement_Array(sctrVec(9)); 

    Displacements(i,10) = Reduced_Displacement_Array(sctrVec(10)); 

    Displacements(i,11) = Reduced_Displacement_Array(sctrVec(11)); 

    Displacements(i,12) = Reduced_Displacement_Array(sctrVec(12)); 

    Displacements(i,13) = Reduced_Displacement_Array(sctrVec(13)); 

    Displacements(i,14) = Reduced_Displacement_Array(sctrVec(14)); 

    Displacements(i,15) = Reduced_Displacement_Array(sctrVec(15)); 

    Displacements(i,16) = Reduced_Displacement_Array(sctrVec(16)); 

    Displacements(i,17) = Reduced_Displacement_Array(sctrVec(17)); 

    Displacements(i,18) = Reduced_Displacement_Array(sctrVec(18)); 

    Displacements(i,19) = Reduced_Displacement_Array(sctrVec(19)); 

    Displacements(i,20) = Reduced_Displacement_Array(sctrVec(20)); 
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    Displacements(i,21) = Reduced_Displacement_Array(sctrVec(21)); 

    Displacements(i,22) = Reduced_Displacement_Array(sctrVec(22)); 

    Displacements(i,23) = Reduced_Displacement_Array(sctrVec(23)); 

    Displacements(i,24) = Reduced_Displacement_Array(sctrVec(24)); 

     

  

end 
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Displacement Function File:   filename:  funct_displacement_function_8nodeISO 

function    [Displacement_Function] = funct_displacement_function_8nodeISO(ne,Displacements,N) 

  

%%%%%%%%%%%%%%%%%%%%%%%%   PURPOSE   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Calculates the Displacements for each element as a function of 

%  the element's local coordinate system (r,s,t) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

  

i=0; 

for I=1:ne 

    i=i+1; 

    Displacement_Function(:,i) = N*transpose(Displacements(i,:));      

end 
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Element and Nodal Strain File:  filename:  funct_strain_8nodeISO 

function    [Element_Strain,Nodal_Strain] = 

funct_strain_8nodeISO(Displacements,B_FEA_SYM,ne,Radius_Of_Curvature,laminate_Z,Number_Of_El

ements__THETA,Number_Of_Elements__Z,Number_Of_Elements__RADIAL,plies) 

  

%%%%%%%%%%%%%%%%%%%%%%%%   PURPOSE   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Calculates the strains for each element and node 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 

fid = fopen('B_FEA_symbolic_2_numeric.m','w'); 

  

 fprintf(fid,'B_FEA_numeric = [ ');  

    SIZE_B_FEA_SYM = size(B_FEA_SYM); 

    for row = 1:SIZE_B_FEA_SYM(1) 

        for col = 1:SIZE_B_FEA_SYM(2) 

            fprintf(fid,'%s',char(B_FEA_SYM(row,col)),','); 

        end 

        fprintf(fid,';...\n'); 

    end  

    fprintf(fid,' ];'); 

     

     

element_Z = zeros(ne,1); 

  

k=0; 

for K=1:plies 

    k=k+1; 

     

    if laminate_Z(k) < 0 

        Plus_Minus_1 = 1; 

    else   

        Plus_Minus_1 = -1; 

    end 

    element_Z(1+(Number_Of_Elements__THETA*Number_Of_Elements__Z*(k-

1)):(Number_Of_Elements__THETA*Number_Of_Elements__Z)+(Number_Of_Elements__THETA*Nu

mber_Of_Elements__Z*(k-1)),1) = laminate_Z(k)+(Plus_Minus_1*0.0025); 

  

end   

  

     

Element_Strain = zeros(6,ne);  

Element_Strain_curved = zeros(6,ne); 

Nodal_Strain = zeros(6,8,ne); 

Nodal_Strain_curved = zeros(6,8,ne); 

i=0;   

j=0; 

for I=1:Number_Of_Elements__RADIAL 

    j=j+1; 

     

    for J=1:(Number_Of_Elements__THETA*Number_Of_Elements__Z) 

        i=i+1; 
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        %Element (at center) 

        r=0;s=0;t=0; 

        run('B_FEA_symbolic_2_numeric')         

        Element_Strain(:,i) = (B_FEA_numeric*transpose(Displacements(i,:))).*[1;1;1;0.5;0.5;0.5]; 

  

         

        %Node 1 

        r=-1;s=-1;t=-1; 

        run('B_FEA_symbolic_2_numeric')         

        Nodal_Strain(:,1,i) = (B_FEA_numeric*transpose(Displacements(i,:))).*[1;1;1;0.5;0.5;0.5]; 

  

  

        %Node 2 

        r=1;s=-1;t=-1; 

        run('B_FEA_symbolic_2_numeric')   

        Nodal_Strain(:,2,i) = (B_FEA_numeric*transpose(Displacements(i,:))).*[1;1;1;0.5;0.5;0.5]; 

  

  

        %Node 3 

        r=1;s=1;t=-1; 

        run('B_FEA_symbolic_2_numeric')   

        Nodal_Strain(:,3,i) = (B_FEA_numeric*transpose(Displacements(i,:))).*[1;1;1;0.5;0.5;0.5]; 

  

  

        %Node 4 

        r=-1;s=1;t=-1; 

        run('B_FEA_symbolic_2_numeric')   

        Nodal_Strain(:,4,i) = (B_FEA_numeric*transpose(Displacements(i,:))).*[1;1;1;0.5;0.5;0.5]; 

  

  

        %Node 5  

        r=-1;s=-1;t=1; 

        run('B_FEA_symbolic_2_numeric')   

        Nodal_Strain(:,5,i) = (B_FEA_numeric*transpose(Displacements(i,:))).*[1;1;1;0.5;0.5;0.5]; 

  

  

        %Node 6 

        r=1;s=-1;t=1; 

        run('B_FEA_symbolic_2_numeric')   

        Nodal_Strain(:,6,i) = (B_FEA_numeric*transpose(Displacements(i,:))).*[1;1;1;0.5;0.5;0.5]; 

  

  

        %Node 7 

        r=1;s=1;t=1; 

        run('B_FEA_symbolic_2_numeric')   

        Nodal_Strain(:,7,i) = (B_FEA_numeric*transpose(Displacements(i,:))).*[1;1;1;0.5;0.5;0.5]; 

  

  

        %Node 8 

        r=-1;s=1;t=1; 

        run('B_FEA_symbolic_2_numeric')   

        Nodal_Strain(:,8,i) = (B_FEA_numeric*transpose(Displacements(i,:))).*[1;1;1;0.5;0.5;0.5]; 
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    end     

     

end     
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Element and Nodal Stress File:  filename:  funct_stress_8nodeISO 

 

function    [Element_Stress,Nodal_Stress] = 

funct_stress_8nodeISO(Element_Strain,Nodal_Strain,ne,D_FEA,THERMAL_STRAIN_FEA) 

  

%%%%%%%%%%%%%%%%%%%%%%%%   PURPOSE   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Calculates the stresses for each element and node 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 

  

   

  

Element_Stress = zeros(6,ne);     

Element_Stress_curved = zeros(6,ne); 

Nodal_Stress = zeros(6,8,ne); 

Nodal_Stress_curved = zeros(6,8,ne); 

i=0; 

for I=1:ne 

    i=i+1;    

     

    %Element (at center) 

    Element_Stress(:,i) = (D_FEA(:,:,i)*Element_Strain(:,i)) - 

(D_FEA(:,:,i)*THERMAL_STRAIN_FEA(:,:,i));    

  

     

    %Node 1         

    Nodal_Stress(:,1,i) = (D_FEA(:,:,i)*Nodal_Strain(:,1,i)) - 

(D_FEA(:,:,i)*THERMAL_STRAIN_FEA(:,:,i)); 

  

     

    %Node 2 

    Nodal_Stress(:,2,i) = (D_FEA(:,:,i)*Nodal_Strain(:,2,i)) - 

(D_FEA(:,:,i)*THERMAL_STRAIN_FEA(:,:,i)); 

  

     

    %Node 3 

    Nodal_Stress(:,3,i) = (D_FEA(:,:,i)*Nodal_Strain(:,3,i)) - 

(D_FEA(:,:,i)*THERMAL_STRAIN_FEA(:,:,i)); 

  

     

    %Node 4 

    Nodal_Stress(:,4,i) = (D_FEA(:,:,i)*Nodal_Strain(:,4,i)) - 

(D_FEA(:,:,i)*THERMAL_STRAIN_FEA(:,:,i)); 

  

     

    %Node 5 

    Nodal_Stress(:,5,i) = (D_FEA(:,:,i)*Nodal_Strain(:,5,i)) - 

(D_FEA(:,:,i)*THERMAL_STRAIN_FEA(:,:,i)); 

  

     

    %Node 6 
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    Nodal_Stress(:,6,i) = (D_FEA(:,:,i)*Nodal_Strain(:,6,i)) - 

(D_FEA(:,:,i)*THERMAL_STRAIN_FEA(:,:,i)); 

  

     

    %Node 7 

    Nodal_Stress(:,7,i) = (D_FEA(:,:,i)*Nodal_Strain(:,7,i)) - 

(D_FEA(:,:,i)*THERMAL_STRAIN_FEA(:,:,i)); 

  

     

    %Node 8 

    Nodal_Stress(:,8,i) = (D_FEA(:,:,i)*Nodal_Strain(:,8,i)) - 

(D_FEA(:,:,i)*THERMAL_STRAIN_FEA(:,:,i)); 

  

end 

     

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

217 

Mechanical Forces File:  filename:  funct_forces_8nodeISO 

function    [Forces,FORCES] = funct_forces_8nodeISO(Displacements,k_element,ne,thermal_load) 
  
%%%%%%%%%%%%%%%%%%%%%%%%   PURPOSE   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Calculates global forces in model at the nodes 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 
  

  
Stiffness_Forces = zeros(ne,24);     
i=0;   
for I=1:ne  
    i=i+1; 
    Forces(:,:,i) = (k_element(:,:,i)*transpose(Displacements(i,:)))-(thermal_load(:,:,i));   
    FORCES(:,i) = (k_element(:,:,i)*transpose(Displacements(i,:)))-(thermal_load(:,:,i)); 
end 
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APPENDIX G 

DATA FROM TRADE STUDY FOR STRESSES IN LAMINATES FOR STACKING SEQUENCES AS 

A FUNCTION OF RADIUS OF CURVATURE:  RESULTS FROM MATLAB FINITE ELEMENT 

ANALYSIS PROGRAM 
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Table 19.  Stresses for aluminum as the angle spanned by the simply curved beam (arc) goes from 0
o
 to 90

o
.  

Stacking sequence: [0]6 → isotropic 

               

  Layer σx σy σz τyz τxz τxy 

  6 -13958.083 -1652.3447 -1204.5417 2.633E-13 -4.916E-13 31.464018 

  5 -13319.443 -1460.0172 -1247.6639 2.914E-13 -4.205E-13 32.339104 

0
o
 4 -13214.951 -1439.7632 -1285.4729 -1.764E-13 -6.086E-13 32.883874 

  3 -13214.951 -1439.7632 -1285.4729 -1.324E-13 -6.342E-13 32.883874 

  2 -13319.443 -1460.0172 -1247.6639 2.238E-13 -5.327E-13 32.339104 

  1 -13958.083 -1652.3447 -1204.5417 2.593E-14 -2.123E-13 31.464018 

  6 -13172.645 -1603.7143 -1174.6813 -149.94498 -752.96814 -45.265053 

  5 -12613.524 -1418.4405 -1149.2205 -168.97851 -680.59352 -42.322931 

30
o
 4 -12532.501 -1404.9128 -1178.5999 -172.45959 -659.66046 -41.694372 

  3 -12532.501 -1404.9128 -1178.5999 -172.45959 -659.66046 -41.694372 

  2 -12613.524 -1418.4405 -1149.2205 -168.97851 -680.59352 -42.322931 

  1 -13172.645 -1603.7143 -1174.6813 -149.94498 -752.96814 -45.265053 

  6 -12258.062 -1632.4567 -1271.7396 -252.40312 -1412.602 -110.20491 

  5 -11760.178 -1450.4966 -1167.4102 -277.9631 -1290.3015 -105.13753 

45
o
 4 -11690.04 -1439.3323 -1179.0927 -282.9801 -1259.1339 -104.93797 

  3 -11690.04 -1439.3323 -1179.0927 -282.9801 -1259.1339 -104.93797 

  2 -11760.178 -1450.4966 -1167.4102 -277.9631 -1290.3015 -105.13753 

  1 -12258.062 -1632.4567 -1271.7396 -252.40312 -1412.602 -110.20491 

  6 -10841.064 -1749.9388 -1560.0784 -260.3841 -1960.5129 -130.175 

  5 -10355.361 -1545.8944 -1338.3694 -274.30446 -1792.3157 -124.508 

60
o
 4 -10266.887 -1522.0839 -1312.8707 -278.38235 -1753.1228 -125.22873 

  3 -10266.887 -1522.0839 -1312.8707 -278.38235 -1753.1228 -125.22873 

  2 -10355.361 -1545.8944 -1338.3694 -274.30446 -1792.3157 -124.508 

  1 -10841.064 -1749.9388 -1560.0784 -260.3841 -1960.5129 -130.175 

  6 -4867.2931 -2233.1093 -2545.211 283.52985 -1927.3424 283.36139 

  5 -4194.8264 -1876.9407 -1911.718 283.40184 -1578.522 283.082 

90
o
 4 -3990.4901 -1777.0394 -1727.7978 289.7864 -1472.348 289.30256 

  3 -3990.4901 -1777.0394 -1727.7978 289.7864 -1472.348 289.30256 

  2 -4194.8264 -1876.9407 -1911.718 283.40184 -1578.522 283.082 

  1 -4867.2931 -2233.1093 -2545.211 283.52985 -1927.3424 283.36139 
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Table 20.  Stresses for glass/epoxy as the angle spanned by the simply curved beam (arc) goes from 0
o
 to 

90
o
.Stacking sequence:  [(+/-) 45/ 0 ]s → balanced and symmetric 

               

  Layer σx σy σz τyz τxz τxy 

  6 -691.67611 -691.67611 -242.42157 -11.518623 -11.518623 -390.12438 

  5 -775.29718 -775.29718 -305.97416 -15.998009 -15.998009 -429.64078 

0
o
 4 -2243.3284 171.804 -211.05131 -7.0459904 64.92118 271.02863 

  3 -2243.3284 171.804 -211.05131 -7.0459904 64.92118 271.02863 

  2 -775.29718 -775.29718 -305.97416 -15.998009 -15.998009 -429.64078 

  1 -691.67611 -691.67611 -242.42157 -11.518623 -11.518623 -390.12438 

  6 -2457.5675 -2637.5852 -2666.954 2488.0731 2246.57 -1211.7289 

  5 -2202.2529 -2300.2921 -1196.3034 759.20934 649.58382 -1165.9538 

30
o
 4 -2571.4877 -23.899459 -182.13182 -78.296844 -32.595931 -277.03994 

  3 -2571.4877 -23.899459 -182.13182 -78.296844 -32.595931 -277.03994 

  2 -2202.2529 -2300.2921 -1196.3034 759.20934 649.58382 -1165.9538 

  1 -2457.5675 -2637.5852 -2666.954 2488.0731 2246.57 -1211.7289 

  6 -630.07878 -668.0594 -236.21887 -288.68818 -351.91711 -336.62549 

  5 -514.87035 -491.98516 34.320997 -339.20492 -286.83254 -323.10525 

45
o
 4 -1884.4865 234.03648 36.757536 26.16304 -171.79703 168.827 

  3 -1884.4865 234.03648 36.757536 26.16304 -171.79703 168.827 

  2 -514.87035 -491.98516 34.320997 -339.20492 -286.83254 -323.10525 

  1 -630.07878 -668.0594 -236.21887 -288.68818 -351.91711 -336.62549 

  6 7240.4641 7524.3909 9165.5011 -6471.7293 -5024.0851 2962.1211 

  5 6449.2701 7729.0181 8275.6306 918.19358 4869.8874 1498.115 

60
o
 4 7789.5167 590.81224 3009.4851 2403.0062 -743.98838 350.47354 

  3 7789.5167 590.81224 3009.4851 2403.0062 -743.98838 350.47354 

  2 6449.2701 7729.0181 8275.6306 918.19358 4869.8874 1498.115 

  1 7240.4641 7524.3909 9165.5011 -6471.7293 -5024.0851 2962.1211 

  6 -3394.166 -3978.526 -5163.7426 2468.6518 1597.5002 -927.45014 

  5 7749.6896 7363.4314 10794.311 -4489.374 -1572.7552 1263.9562 

90
o
 4 5558.2868 3121.6203 3549.4004 -139.6498 1195.1231 -556.5531 

  3 5558.2868 3121.6203 3549.4004 -139.6498 1195.1231 -556.5531 

  2 7749.6896 7363.4314 10794.311 -4489.374 -1572.7552 1263.9562 

  1 -3394.166 -3978.526 -5163.7426 2468.6518 1597.5002 -927.45014 
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Table 21.  Stresses for glass/epoxy as the angle spanned by the simply curved beam (arc) goes from 0
o
 to 

90
o
.  Stacking sequence:  [+45/-45/0/0/45/-45]T  → antisymmetrical (balanced and unsymmetrical) 

               

  Layer σx σy σz τyz τxz τxy 

  6 -691.67611 -691.67611 -242.42157 -11.518623 -11.518623 -390.12438 

  5 -775.29718 -775.29718 -305.97416 -15.998009 -15.998009 -429.64078 

0
o
 4 -2243.3284 171.804 -211.05131 -7.0459904 64.92118 271.02863 

  3 -2243.3284 171.804 -211.05131 -7.0459904 64.92118 271.02863 

  2 -775.29718 -775.29718 -305.97416 -15.998009 -15.998009 -429.64078 

  1 -691.67611 -691.67611 -242.42157 -11.518623 -11.518623 -390.12438 

  6 151.45475 208.73958 947.34392 -1149.0274 -1050.6163 -0.5726182 

  5 -1191.684 -1249.5272 -692.35665 174.32817 95.081058 -583.09834 

30
o
 4 -2449.4143 174.94638 -244.77387 -110.99457 -19.542882 148.96651 

  3 -858.66717 -898.79031 -724.34255 396.35655 329.58225 -466.76016 

  2 -1003.2193 -1048.11 -808.7118 589.82368 521.94461 -549.19736 

  1 -2175.4964 -36.777583 -172.80545 17.715975 -30.437531 169.64183 

  6 -630.07878 -668.0594 -236.21887 -288.68818 -351.91711 -336.62549 

  5 -514.87035 -491.98516 34.320997 -339.20492 -286.83254 -323.10525 

45
o
 4 -1884.4865 234.03648 36.757536 26.16304 -171.79703 168.827 

  3 -1884.4865 234.03648 36.757536 26.16304 -171.79703 168.827 

  2 -514.87035 -491.98516 34.320997 -339.20492 -286.83254 -323.10525 

  1 -630.07878 -668.0594 -236.21887 -288.68818 -351.91711 -336.62549 

  6 -8632.5501 -9446.488 -8201.4345 -851.18314 -3435.1782 -3087.3492 

  5 -11438.649 -13555.976 -7587.655 -122.67401 -2960.7598 -4520.0151 

60
o
 4 4427.9233 1898.5137 5445.0068 78.886784 1724.179 831.99584 

  3 -2419.2064 -3813.0724 -1028.1147 160.62699 -987.86592 -838.96042 

  2 -4476.6377 -6186.2585 1171.2516 -2694.9945 -2876.2905 -2817.6262 

  1 -4105.3991 -462.71374 -264.9589 1447.0122 40.763775 1143.8821 

  6 -3394.166 -3978.526 -5163.7426 2468.6518 1597.5002 -927.45014 

  5 7749.6896 7363.4314 10794.311 -4489.374 -1572.7552 1263.9562 

90
o
 4 5558.2868 3121.6203 3549.4004 -139.6498 1195.1231 -556.5531 

  3 5558.2868 3121.6203 3549.4004 -139.6498 1195.1231 -556.5531 

  2 7749.6896 7363.4314 10794.311 -4489.374 -1572.7552 1263.9562 

  1 -3394.166 -3978.526 -5163.7426 2468.6518 1597.5002 -927.45014 
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Table 22.  Stresses for glass/epoxy as the angle spanned by the simply curved beam (arc) goes from 0
o
 to 

90
o
.  Stacking sequence:  [452/ 0 /452/ 0]T → unbalanced and unsymmetrical 

               

  Layer σx σy σz τyz τxz τxy 

  6 -712.05789 -712.05789 -330.59493 55.273241 55.273241 -392.37155 

  5 -755.29988 -755.29988 -344.66323 30.563276 30.563276 -415.2338 

0
o
 4 -2240.0588 208.12769 -203.25389 -10.368876 85.918021 284.79149 

  3 -765.66091 -765.66091 -291.14793 -27.085423 -27.085423 -428.15147 

  2 -788.37049 -788.37049 -246.76194 -67.273907 -67.273907 -443.70542 

  1 -2304.149 126.25512 -166.7532 -3.9775689 65.78702 177.36876 

  6 151.45475 208.73958 947.34392 -1149.0274 -1050.6163 -0.5726182 

  5 -1191.684 -1249.5272 -692.35665 174.32817 95.081058 -583.09834 

30
o
 4 -2449.4143 174.94638 -244.77387 -110.99457 -19.542882 148.96651 

  3 -858.66717 -898.79031 -724.34255 396.35655 329.58225 -466.76016 

  2 -1003.2193 -1048.11 -808.7118 589.82368 521.94461 -549.19736 

  1 -2175.4964 -36.777583 -172.80545 17.715975 -30.437531 169.64183 

  6 678.09253 950.51009 2116.5742 -3626.7938 -4054.1608 371.64196 

  5 -4219.4699 -4262.7125 -7184.2157 8706.5559 8907.7468 -2324.466 

45
o
 4 2539.6664 2024.4283 2124.7674 -169.86677 770.88732 662.55553 

  3 204.20071 -402.7287 -1430.7924 2889.1633 1939.6776 496.9256 

  2 -7368.7393 -8955.5112 -7837.0643 3660.3994 1260.5393 -2989.4387 

  1 -291.70295 -497.77936 159.26187 526.73684 794.69012 -1678.9675 

  6 -8632.5501 -9446.488 -8201.4345 -851.18314 -3435.1782 -3087.3492 

  5 -11438.649 -13555.976 -7587.655 -122.67401 -2960.7598 -4520.0151 

60
o
 4 4427.9233 1898.5137 5445.0068 78.886784 1724.179 831.99584 

  3 -2419.2064 -3813.0724 -1028.1147 160.62699 -987.86592 -838.96042 

  2 -4476.6377 -6186.2585 1171.2516 -2694.9945 -2876.2905 -2817.6262 

  1 -4105.3991 -462.71374 -264.9589 1447.0122 40.763775 1143.8821 

  6 -35531.819 -44807.876 -28066.827 -4606.3254 -11763.363 -14705.457 

  5 10533.987 8545.7319 14265.015 -3723.6145 1797.6155 1373.7384 

90
o
 4 8321.2718 758.41266 4976.4748 1974.1839 2270.0436 2410.2876 

  3 -2961.8092 -2822.2259 -760.53817 -983.22661 -1495.5788 -1366.6648 

  2 2699.6212 3164.9007 3921.6467 1490.1767 2626.4458 551.26144 

  1 1321.8315 -783.49371 542.72809 466.30815 576.94013 268.56045 
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