

CHARACTERIZATION OF SUB-10 NM PORES

IN SILICON-DIOXIDE

by

JOSEPH A. BILLO

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2012

Copyright © by Joseph A. Billo 2012

All Rights Reserved

iii

ACKNOWLEDGEMENTS

 I would like to give my heartfelt gratitude to Dr. Samir Iqbal for starting me down the

path of research in semiconductors and bio-nano technology, to Dr. John Priest for teaching me

how to solve problems from a manufacturing perspective, and to Dr. Ronald Carter for all his

instruction on how to model devices.

 I would also like to acknowledge Waseem Asghar, whom without his prior work and

instruction I would not have embarked on this goal. Acknowledgements also go to Jacob Jones,

Mohammad Hasan, and Nuzhat Mansur who helped with equations and fabrication.

 Finally, I would like to thank Amanda Theaker for her unwavering outpouring of love,

patience, and support.

 May 10, 2012

iv

ABSTRACT

CHARACTERIZATION OF SUB-10 NM PORES

IN SILICON-DIOXIDE

Joseph Billo, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Ronald Carter

 Solid state nanopores show much promise in the way of functioning as biosensors, But

to do so requires that they be manufactured at sizes of 10 nm or less for sensing of proteins. If

this is to be so, it is imperative that they be characterized for signal analysis and fabrication.

A method for analyzing the recorded current signals of nanopore protein translocation is

presented. The algorithm successfully zero-baselines the unmodified signal to remove

discontinuities and sloping and then performs noise-cancelling based on a moving average

standard deviation of the signal. It then extracts the amplitude and calculates the widths of each

current peak based on threshold detection.

 The process by which nanopores are thermally shrunk is thoroughly examined and a

mathematical model is derived. This model equation describes the shrinking time of the pore as

a function of pore radius for a given temperature. Curve-fitting is performed for this model in

order to extract the self-surface diffusion coefficient of SiO2, which is an important parameter

needed for the model.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ..iii

ABSTRACT ... iv

LIST OF ILLUSTRATIONS..vii

LIST OF TABLES ... viii

Chapter Page

1. INTRODUCTION……………………………………..………..….. 1

1.1 Types of Nanopores ... 1

1.1.1 Protein Nanopores ... 1

1.1.2 Solid State Nanopores ... 2

1.2 Nanopore Applications ... 2

1.2.1 DNA Sequencing .. 2

1.2.2 Biomarker Detection ... 2

2. NOISE CANCELLING AND PEAK DETECTION OF SENSOR SIGNALS 4

 2.1 Zero-Baselining of Signal ... 4

 2.2 Noise Cancelling of Signal ... 5

 2.3 Peak Results .. 6

3. NANOPORE CONSTRUCTION .. 12

3.1 Membrane Formation by Lithography .. 12

3.1.1 Modeling the Etch Process .. 12

3.1.2 Membrane Fabrication Procedure ... 15

3.2 Pore Fabrication ... 20

3.2.1 FIB Drilling .. 20

3.2.2 SEM Shrinking ... 21

vi

3.2.3 Thermal Shrinking .. 21

4. THERMAL SHRINKING MODEL ... 23

4.1 The Volgel-Fulcher-Tammann Equation .. 23

4.2 Surface Free Energy .. 26

4.3 Accounting for Thermal Expansion .. 29

4.4 Negligence of the Loss of Height ... 30

4.5 Deriving the Model ... 31

4.5.1 Derivation Steps ... 31

4.5.2 Application to Previous Data .. 33

4.6 Future Work .. 41

APPENDIX

A. MATLAB PPROGRAM FOR EXTRAPOLATION AND CURVE-FITTING OF
EXPERIMENTAL NANOPORE DATA FOR THE THERMAL HEAT SHRINKING
MODEL .. 42

B. MATLAB FUNCTION FOR REMOVAL OF NOISE AND EXTRACTION OF PEAKS
IN A NANOPORE CURRENT SIGNAL ... 54

REFERENCES ... 76

BIOGRAPHICAL INFORMATION .. 78

vii

LIST OF ILLUSTRATIONS

Figure Page

2.1 Zero Baselining of Signal ... 7

2.2 Unmodified Current Signal ... 8

2.3 Zero Baselined Signal .. 9

2.4 Noise Cancelling of Signal ... 10

2.5 Signal After Noise Cancelling ... 11

3.1 Modeling of TMAH Etching .. 13

3.2 Good SiO2 Membrane Example #1. ... 18

3.3 Good SiO2 Membrane Example #2 .. 18

3.4 Cracked SiO2 Membrane Example #1. .. 19

3.5 Cracked SiO2 Membrane Example #2 ... 19

4.1 Viscosity vs. Temperature Plot ... 25

4.2 Surface Free Energy Plot ... 28

4.3 Surface Free Energy vs. Pore Radius Plot .. 36

4.4 Mass Flow Rate Per Area Plot ... 36

4.5 Self-Surface Diffusion Coefficient Plot ... 37

4.6 Pore Radius vs. Time Plot .. 38

4.7 1075 °C Pore Depth Comparison.................. ... 39

4.8 1150 °C Pore Depth Comparison.................. ... 40

viii

LIST OF TABLES

Table Page

2.1 Detected Peak Data ... 6

3.1 Parameters of Etching Model ... 13

3.2 Required Materials, Chemicals, and Equipment .. 15

4.1 Parameters of VFT Equation .. 24

4.2 Thermally Shrunken Nanopore of Various Average Radii at Two Different Temperatures 34

 1

CHAPTER 1

INTRODUCTION

Solid state nanopore show a lot of promise for advances in medical technology as

biosensors. They can be used to detect for DNA and other biomarkers while being able to be

manufacture in existing micro-electromechanical manufacturing facilities. However, the pores

must consistently and reliably be manufacture to diameters less than 10 nm. This is due to the

size of the biological material that they are being used to detect for. If progress is to be made in

making feasible nanopore biosensors, they must be characterized from the positions of signal

analysis for material detection, lithography and etching for fabrication, and reliably shrinking the

pores to desired sizes below 10 nm.

1.1 Types of Nanopores

1.1.1 Protein Nanopores

Protein nanopores are the oldest type of nanopore, and they are biologically formed

with a protein structure embedded in bi-layer of lipids.[1, 2] The most common protein used is

alpha-hemolysin, a protein formed from bacteria. This type of nanopore is used due to its size

and structure, which is divided into two 5 nm long sections for a total size of a little over 10

nm.[1] Each part of the pore has a different but known molecular structure than the other parts.

This allows one to differentiate between materials that pass through the pore.[1]

Unfortunately, protein nanopores have a few undesirable qualities. For one, their

biological nature makes them difficult to produce. Because they are made of a protein structure,

they will eventually decay and expire. Furthermore, they cannot stand up to extreme changes in

salinity, temperature, and PH.[1, 3]

 2

1.1.2 Solid State Nanopores

Unlike protein nanopores, solid state nanopores are fabricated into thin film membranes

using micro-electromechanical fabrication techniques. SiO2 is a commonly used film, but silicon-

nitride and polymer films have also been used.[4, 5] SiO2 nanopores are usually drilled as a

hole in a membrane of the film using an ion beam, then shrunk down to size. Also unlike protein

nanopores, they have been shown to not be very affected by changes in heat, salinity, and

temperature.[3]

1.2 Nanopore Applications

1.2.1 DNA Sequencing

Nanopores show their greatest promise in the field of rapid DNA sequencing. The

working method behind this is that DNA has a slight negative charge, and so DNA can be

moved with a sufficiently strong enough electric field in a process call electrophoresis.[6] By

placing the pore between two halves on an electrolytic solution and applying a voltage bias, the

ions in the solution will move through the pore. If DNA is placed in the half with the anode, it too

will translocate through the pore but also cause a blocking in doing so. If one monitors the

current through the membrane when this happens, the translocation appears as a sharp

downward spike in the current.[1, 2, 4, 6-11]

The idea behind rapid DNA sequencing is to correlate these current spikes with the

individual base pairs of a strand of DNA. It is thought that, due to their different structures and

sizes, different base pairs will produce different values for the peak amplitudes and peak

widths.[8, 10, 11] The challenge though is to fabricate nanopores with are approximately 4 nm

in diameter, just bigger than the width of a DNA strand.

1.2.2 Biomarker Detection

Nanopores are not limited to detection of just DNA. They can detect for many other

biological structure by functionalizing them to a specific structure.[1, 9]. Functionalization can be

 3

done with many materials dependent on what one is functionalizing for, but the general idea is

to allow for only one specific type of material or molecular structure to pass through the pore. In

this way, one can use electrophoresis to yield a positive/negative test result for a selected

material.

This has many uses in the form of protein detection.[2, 9] If one wants to test for a

specific mutation or other structural change, one could functionalize a nanopore so that only the

modified structure can pass through the pore. If translocations are detected in the form of

current spikes during electrophoresis, then it confirms a positive test. This combined with the

possibility of DNA sequencing shows great promise for advances in medicinal technology.

However, much data will have to be collected and analyzed before concrete medical products

can be made. This then calls for a way to quickly analyze the current signals recorded and to

extract the peak data contained therein.

 4

CHAPTER 2

NOISE CANCELLING AND PEAK DETECTION OF SENSOR SIGNALS

 In this chapter, the current signal recorded from a SiO2 pore translocation experiment is

analyzed for peaks that correspond to biological material translocating through the pore. An

algorithmic model is detailed on how to achieve zero baselining of the signal as well as how to

cancel out the ambient noise inherent when measuring on the nano-Ampere scale. The pore

was 11,000 nm in diameter with a depth of 300 nm. Human EGFR protein in an electrolytic

solution was translocated through the pore. The voltage across the pore was adjusted such that

a current bias of 4 µV was applied across the wafer die containing the pore. The signal was

recorded into a digital text file in ASCII format and delimited with tabs. Loading this text file into

the software package MATLAB 2010b allowed conversion of the text into a numerical matrix.

2.1 Zero-Baselining of Signal

The signal must first be flattened with its horizontal axis baselined at zero. This will

make it easier for the peaks to be distinguished from noise due to the removal of current biases

that make the amplitude distinction between peaks and noise ambiguous. It also allows for the

correct recording of peak amplitudes.

To do this requires the use of a sampling window W cells wide. This sampling window

traverses the entire signal is steps of length W so that no individual steps overlap. At each step,

the arithmetic mean of the signal values in the sample window is calculated. This mean is then

subtracted from every value in the signal for that step. Figure 2.1 illustrates this process.

This method of zero-baselining works on the following presuppositions:

1. Overall non-flatness of the signal is caused by ambient environmental current

noise that biases and distorts the recorded current signal.

 5

2. When recorded as control data without anything translocating through the

pores, the ambient current noise has a flat shape that can be centered on the

horizontal axis.

3. The ambient current noise, when centered on the horizontal axis, has a mean

value of zero.

Since the signal mostly consists of ambient noise, it can be zero-baselined by calculating the

mean of each step of the sample window and subtracting it from the corresponding step in the

signal. Since there are so few real peaks compared to the number of noise samples, the peaks

have little to no effect on the arithmetic mean calculations. So long as the window length is not

too big, the effect of traversing the signal in steps removes non-flatness and discontinuities.

Note that the width must be user-specified for each data set to be worked with, and will

require some calibration on the part of the user to get the best results. Only through prior

experience and forethought of how many peaks are expected and what constitutes a good

result can this calibration be done. For this set of data, W = 100 was used. Figure 2.2 and figure

2.3 show a before and after result of this zero-baselining method.

2.2 Noise Cancelling of Signal

The signal is now ready to have the noise mostly removed from it and the peaks

analyzed. To do noise cancelling, the sampling window is once again used to traverse the enire

signal just as before. However, this time it is the standard deviation of the sampling window σ

that is important rather than the mean. In the first W samples of the signal, σ is set as the initial

value of a moving average standard deviation σAVG. Therefore, it is important that no peaks

occur in this very first window. At a sampling frequency of 100 kHz and a sampling window 100

cells wide, no translocations should be allowed to occur for the first millisecond of data

recording.

 6

After the first window step and all following window steps, the standard deviation is

calculated for the sampling window. This standard deviation is then compared to the moving

average standard deviation. If the standard deviation exceeds the moving average by a certain

user-specified percent threshold, then that signifies the existence of a possible translocation

peak. All values of the signal in the window except the one with the largest magnitude (assumed

to be the peak) are set to zero. For this set of experimental data, the threshold was set to 25%.

If the standard deviation is less than the moving average, then that signifies that there is no

possible peak sample in the window. The standard deviation is rolled into the moving average

and all signal values in the window are set to zero. This method is illustrated in figure 2.5 and

the results can be seen in figure 2.5.

2.3 Peak Results

Now that most of the noise has been removed from the signal, the individual peaks can

be extracted and analyzed. The peaks are detected and the remaining noise discounted

through simple threshold detection; any peak with an amplitude value beyond some threshold is

detected as a true translocation peak. For this set of data, the threshold was set to detect any

peak less than -600 nA.

In order to determine the width of each detected peak, the original zero baselined signal

(before noise cancelling) is needed. A peak is located in the zero baselined signal by matching

the sample numbers for when the peak occurs. This is then traced along both the left and right

sides until the horizontal axis is crossed. The difference between the horizontal intercept points

gives the width of the peak. The peak widths and amplitudes for all detected peaks are recorded

and stored (see Table 2.1).

Table 2.1 Detected Peak Data

Peak Number Amplitude (nA) Width (µs)
1 -1091.4 70
2 -2138.2 140
3 -2334.1 260

7

Figure 2.1 A visualization of how a signal is zero-baselined. The noise readings are represented by a > b > c > d. Peaks are represented
by e << d

c d b a … e a c b d … a

W+1 W+2 W+3 W+4 … 2W 1 2 3 4 … W

a c b d … a

1 2 3 4 … W

Signal

Sample #

Window

Cell #

c d b a … e

1 2 3 4 … W

Mean 1

c –
Mean

2

d –
Mean

2

b –
Mean

2

a –
Mean

2

… e –
Mean

2

a –
Mean

1

c –
Mean

1

b –
Mean

1

d –
Mean

1

… a –
Mean

1

W+1 W+2 W+3 W+4 … 2W 1 2 3 4 … W

Signal
(Base-lined)

Sample #
52.5 µm

5W+2

 8

Figure 2.2 The unmodified current signal recorded from human EGFR protein translocating
through a 11,000 nm diameter pore in a SiO2 membrane at a sampling frequency of 100 kHz for

30 seconds.

 9

Figure 2.3 The same current signal from figure 2.2, but having undergone zero-baselining with a
sampling window of W = 100 cells wide.

10

Figure 2.4 A visualization of how a signal has its noise cancelled. The noise readings are represented by a > b > c > d. Peaks are
represented by e << d

b c a e … d c a d b … b

6W+1 6W+2 6W+3 6W+4 … 7W 5W+1 5W+2 5W+3 5W+4 … 6W

c a d b … b

1 2 3 4 … W

Signal
(Base-lined)

Sample #

Window

Cell #

b c a e … d

1 2 3 4 … W

σ 6 σ 7

0 0 0 e … 0 0 0 0 0 … 0

6W+1 6W+2 6W+3 6W+4 … 7W 5W+1 5W+2 5W+3 5W+4 … 6W

Signal

Sample #

σAVG

Average

 11

Figure 2.5 The same current signal from figure 2.3, but having undergone noise cancelling with
a standard deviation percent threshold of 25%.

 12

CHAPTER 3

NANOPORE CONSTRUCTION

 Creating a solid-state nanopore is a three-step process. Thin film oxide membranes

must first be fabricated on a wafer of silicon. These membranes must then have initial pore

drilled that are larger than what is desired. Once this is accomplished, the pores must be shrunk

to their appropriate size. In this chapter, a simple geometrical model is created that allows for

reliable fabrication of an oxide membrane of a pre-determined size and describes the

photolithography steps involved in an experimental fabrication. It then discusses drilling initial

pores with a Focused Ion Beam. Finally, two methods of shrinking the pore, electron microspore

and thermal shrinking , and discussed.

3.1 Membrane Formation by Lithography

 The first step to fabricating solid state nanopores is to first fabricate the membranes into

which they shall be drilled. To summarize their fabrication, the first step is to open a square

SiO2 etch windows in an oxidized silicon wafer. The wafer is then etched anisotropically through

its bulk using the back oxide as an etch-stop.[12] Once done, the now-exposed back oxide

serves as a square-shaped membrane as thick as the oxide layer into which a nanopore can be

drilled[13, 14].

3.1.1 Modeling the Etch Process

For fabricating the membranes, (100) silicon wafers are used. The etchant used to etch

the bulk silicon is tetramethylammonium hydroxide (TMAH), which etches along the (111) plane

of the wafers. The angle between the (100) and (111) planes is 54.7°. With this information, the

etch process can be modeled as follows in Figure 3.1 with the parameters detailed in Table 3.1.

 13

Figure 3.1 A model of how an oxidized silicon wafer is etched in order to create a SiO2
membrane.

Table 3.1 Parameters of Etching Model

Parameter Description
D Thickness of the silicon wafer (excluding oxide)
W Width of the oxide etch window
A Width of the membrane
Q Distance etched underneath the window due to etching in the (111) direction
X Half the difference in width between W and A
B The base width of the theoretical trapezoid shape made by the anisotropic etch

Si

SiO2 SiO2

SiO2

(100)

(111)

54.7°

Q

D

A

W

X
B

 14

This gives three defining equations for the model in Figure 3.1:

)(2 XQBA +−= (3.1)

QBW 2−= (3.2)

XQ

D
Tan

+
=°)7.54((3.3)

It is assumed that D, and Q are known ahead of time, and A is treated as a user-specified

parameter. The goal then is to determine how wide the etch window W must be in order to

achieve a membrane the size of A. This can be done by rearranging equations 3.2 and 3.3 to

solve for B and Q+X respectively. Substituting these into equation 3.1 and rearranging to solve

for W yields the following equation:

W
Tan

D
QA =

°
+−

)7.54(

2
2 (3.4)

If Q is not known ahead of time, it can be calculated using the following equation:

)7.54(°
=

Sin

R
Q (3.5)

Wherein R is the distance etched in the (111) direction based on the etch rate of the TMAH

solution.

 15

3.1.2 Membrane Fabrication Procedure

Table 3.2 Required Materials, Chemicals, and Equipment

1 3” (100) Si wafer pre-oxidized 1µm
2 DI water
3 Methanol
4 Acetone
5 Teflon Wafer Tweezers
6 Stainless Steel Wafer Tweezers
7 Glass Bowl for Developer
8 Teflon Bowl for BHF
9 MF-319 Developer
10 Buffered Hydrofluoric Acid 60% Solution (BHF)
11 Microposit HMDS
12 Shipley S1813 Photoresist
13 Spin-Coater
14 OAI806MBA Backside Aligner
15 Pressurized N2 Gas
16 Tetramethylammonium Hydroxide (TMAH)
17 4 Liter Capacity Glass Beaker
18 Thermometer
19 Hot Plate with Magnetic Stirring Function
20 Teflon Wafer Holder

 The first step in the procedure is to perform a RCA clean on a 3” (100) Si wafer that as

been pre-oxidized with 1µm of SiO2. The wafer is cleaned with acetone for 10 minutes followed

by a de-ionized (DI) water rinse for 5 minutes. Then the wafer is cleaned with methanol for 10

minutes before again being rinsed with DI water for 5 minutes. Finally, a 1:1 Piranha solution is

made by adding 50mL of H2O2 to 50mL of H2SO4. The wafer is bathed in this solution for 10

minutes, and then it is removed and rinsed with DI water for 5 minutes. The wafer is then blown

dry with N2. In order to remove any remaining moisture from the wafer, it is baked on a hot plate

at 200°C for 5 minutes.

The next step is to coat the unpolished side of the wafer with photoresist. In order to

make the resist adhere to the unpolished side, it is first coated with Microposit

Hexamethyldisilazane (HMDS) Primer. The wafer is placed onto a spin coater and its

unpolished surface is covered approximately 50% with HMDS. It is then spun at 3000 rpm for

30 seconds with a 500 rpm/second ramp-up. It is then baked on a hot plate for 90 seconds at

 16

150°C and left to cool. Once cooled, the wafer is t hen again placed onto the spin coater. This

time is coated approximately 2/3rds with Shipley S1813 Photoresist. It is then spun at 2000 rpm

for 20 seconds with a 500 rpm/second ramp-up. The wafer then undergoes a soft bake on a hot

plate at 115°C for 1 minute and left to cool.

After cooling, the wafer is ready to be exposed and developed. The wafer was loaded

into an OAI806MBA Backside Aligner with a mask designed to define the etch windows. For the

3” wafer, the mask opens up square etch windows 500µm on a side. The aligner dosage setting

of 20 mW/cm2 gives an exposure time of approximately 7 seconds. Once exposed, the wafer is

developed in MF-319 developer for 35 to 40 seconds with light agitation every 10 seconds. After

developing, the wafer is rinsed in DI water for 5 minutes and blown dry with N2.

The next step is to coat the polished side of the wafer with photoresist. This side, due to

its uniformity, will be the side to contain the membranes. It is coated with photoresist to protect

the oxide layer from future steps. Once again it is first coated with HMDS. The wafer is placed

onto a spin coater and its polished surface is covered approximately 50% with HMDS. It is then

spun at 3000 rpm for 30 seconds with a 500 rpm/second ramp-up. It is then baked on a hot

plate for 90 seconds at 150°C and left to cool. Onc e cooled, the wafer is then again placed onto

the spin coater. This time is again coated approximately 2/3rds with S1813. It is then spun at

2000 rpm for 20 seconds with a 500 rpm/second ramp-up. The wafer then undergoes a hard

bake on a hot plate at 115°C for 2 minutes and left to cool.

A 60% buffered hydrofluoric acid (BHF) solution is poured into a Teflon bowl at room

temperature, and the wafer is submerged in the BHF for 11 to 12 minutes. This isotropically

etches the oxide in the exposed and developed sections of the unpolished side of the wafer and

creates the etch windows. At the same time, the photoresist coating on the polished side of the

wafer keeps the oxide layer that will define the membranes intact and unaffected by the BHF.

Once the submersion time has been reached, the wafer is again rinsed with DI water for 5

minutes and blown dry with N2.

 17

The wafer is now ready for anisotropic bulk etching with TMAH. The etching solution is

prepared by adding 2400 mL of TMAH to 1100 mL of DI water in a 4 L beaker. It is placed atop

a magnetic stirring hot plate and the stirrer is dropped into the beaker. The temperature is set to

90°C and the stirring to 200 rpm before the beaker is covered with aluminum foil; a small hole is

made in the top for ventilation. Finally, a thermometer is lowered through the ventilation hole in

order to verify the temperature of the solution.

While the TMAH solution is heating, another RCA clean is performed on the wafer to

remove the photoresist. The wafer is cleaned with acetone for 10 minutes followed by a de-

ionized (DI) water rinse for 5 minutes. Then the wafer is cleaned with methanol for 10 minutes

before again being rinsed with DI water for 5 minutes. Finally, a 1:1 Piranha solution is made by

adding 50mL of H2O2 to 50mL of H2SO4. The wafer is bathed in this solution for 10 minutes, and

then it is removed and rinsed with DI water for 5 minutes. The wafer is then blown dry with N2.

When the TMAH has heated to 90°C, the wafer is load ed into a Teflon wafer holder.

The wafer is then dipped in BHF for approximately 5 seconds; this is to remove any native oxide

layer in the etch windows. The foil covering of the beaker is carefully lifted up and the wafer

holder slipped into the beaker. The wafer is then left to etch for 6 hours, checking the

temperature every hour or so to keep it at 90°C. Af ter this time has passed, the stirring is

reduced to 100 rpm to avoid damage to the forming membranes. After another 1 hour, the wafer

is removed from the beaker and is ever so carefully rinsed with DI water for 5 minutes. It is then

blown dry with N2 using the absolute lowest and gentlest amount of pressure possible. The

membranes are now complete and are ready for nanopores to be drilled in them. Such a

membrane is shown in Figure 3.2 and Figure 3.3. However, the membranes are fragile. Figures

3.4 and 3.5 are examples of membranes which have been cracked and broken.

 18

Figure 3.2 A SiO2 membrane 60 µm wide with a 1 µm thickness after TMAH etching. The point
of view is looking down through the etch window.

Figure 3.3 A SiO2 membrane 83.75 µm wide with a 1 µm thickness after TMAH etching.
The point of view is looking down through the etch window.

60 µm

83.75 µm

 19

Figure 3.4 A SiO2 membrane 52.5 µm wide with a 1 µm thickness after TMAH etching. This
membrane has been cracked.

Figure 3.5 A SiO2 membrane 50 µm wide with a 1 µm thickness after TMAH etching.
This membrane has been cracked.

50 µm

 20

It is important to note that the aluminum foil covering has a unique reaction with TMAH

that must be taken into account should the TMAH-filled beaker ever be left idle. The TMAH

vapors will react with the aluminum to form aluminum hydroxide.[15] If left to condense, it will

form a gel a drip back into the beaker solution. If further left to sit in the beaker, it will crystallize

into a solid form that sticks to the inside of the beaker and is not soluble in water. Any acid can

be used to remove the aluminum hydroxide in an acid-base reaction. Specifically, using nitric

acid will react with the aluminum hydroxide to produce water and aluminum nitrate. To prevent

the formation of aluminum hydroxide, it is recommended that a non-reactive covering be used

(such as glass) or to replace the aluminum covering approximately every hour during etching.

3.2 Pore Fabrication

3.2.1 FIB Drilling

With the membranes complete, fabrication can be continued by opening up the initial

pores. To do this, a Focused Ion Beam (FIB) is used to drill a pore directly through each

membrane.[12, 16, 17] The beam drills each pore by sputtering ions against the surfaces of the

membranes. Though this is a destructive process, it will reliably create initial pores to work with.

Fabricated pores have a target goal diameter of 300 nm.[13] These are fairly large

pores that the FIB should be able to easily create. However, it is not possible to get this exact

size with every pore drilled. As a compromise, a mean radius of 150 nm is set as the

experimental goal when drilling a sample set of membranes. A 30 kV acceleration voltage is

used when drilling these pores.[13] The FIB’s view screen is used to monitor the sizes of the

pores in real time to allow for manual drilling.

Though the pores, in a laboratory setting, are drilled in each membrane one-by-one, it

would be possible for FIB drilling to be programmed and implemented in a mass-production

setting. This is due to the fact that the membrane thickness, chemical composition, ambient

 21

environment, acceleration voltage, and drilling time can all be controlled ahead of time. By

keeping these known parameters constant, drilled pore sizes can be manufactured reliably in

pre-determined sizes.[16, 17]

3.2.2 SEM Shrinking

Now that the pores are in their membranes, they will have to be shrunken down to size

for their appropriate application. For example, pores meant for DNA detection should be slightly

bigger than the diameter of DNA, or about 4 nm.[6-8, 13] One way to do this is with a Scanning

Electron Microscope (SEM).

Normally, users are warned not to set the current of the SEM too high when taking

measurements. Doing so will damage the specimen being observed as it is bombarded by the

SEM’s electron beam. For shrinking nanopores, this very thing will be done on purpose in order

to reduce the pores to their desired sizes. Either a field-emission or transmission SEM can be

used. The high current beam, when focused on a pore, damages the perimeter in the SiO2

membrane. This causes the oxide to flow inward to fill the damaged sections, thereby shrinking

the pore in the process.[13, 16] A setting of 300 kV has been used to achieve this, using the

SEM’s view screen to monitor the sizes of the pores in real time.

While this does allow for accurate pore shrinking, sub-10 nm pore diameters are rather

difficult to achieve. Their small size is very hard to image and controllably shrink with the SEM.

Furthermore, it has been shown that this process depletes oxygen from the SiO2 membrane

and changes its chemical properties.[13] Finally, this process weakens the structural integrity of

the pore. It becomes much easier for the pore to be come irreparably damaged after SEM

shrinking.

3.2.3 Thermal Shrinking

A different method of shrinking is to use thermal heat shrinking to reduce the size of a

nanopore.[13] This method involves shrinking the initial pores through the use of a furnace. The

 22

SiO2 pore membranes are heated to their solidus temperature, causing them to take on a semi-

liquid phase. A pore then shrinks as the membrane oxide flows inward towards the pore.[18, 19]

The true solidus temperature of SiO2 begins somewhere between 800 °C and 900 °C,

but no shrinking has been observed over a 20 minute trial at temperatures of 900 °C or less; the

ideal temperature range seems to be between 1000 °C and 1200 °C.[13] When pores ranging in

size from 100 nm to 300 nm wide were placed in a furnace at these temperatures and in a

nitrogen ambient atmosphere, they have been shown to shrink in size proportional to the time

spent in the furnace. Sub-10 nm sizes have been achieved using this method as well, and tests

have shown that there is no depletion of oxygen.[13]

There are three main advantages that thermal shrinking provides over SEM shrinking.

The first is that thermal shrinking involves only a physical change in the pore. No oxygen is

depleted, so the inner pore wall retains any chemical and electromagnetic properties. Thermal

shrinking can also be used to process an entire sample set of pores by hand in a laboratory

setting all at once rather than one-by-one. The pores also strengthened by thermal annealing

with this process.[13, 20, 21] With all these advantages over SEM shrinking, the next step

would be to model this process so that one could achieve predictability of pore size results.

 23

CHAPTER 4

THERMAL SHRINKING MODEL

 If thermal heat shrinking is to be a viable process for shrinking SiO2 nanopores, then it

is imperative that one be able to control the process and get predictable results. In this chapter,

a mathematical model is created that describes how a pore shrinks with respect to time given a

certain temperature. The model takes into account many factors such as viscosity, surface free

energy, thermal expansion, dimensional changes due to viscous flow, and self-surface diffusion.

Using data from previous works, the model undergoes curve-fitting in order to give an accurate

result. Finally, changes in temperature and pore depth are examined for how they change the

rate of shrinking.

4.1 The Volgel-Fulcher-Tammann Equation

In order to model how a pore in a SiO2 behaves during thermal shrinking, one must first

have some knowledge about its viscosity at various temperatures. Unfortunately, there is sparse

literature for predicting the viscosity of SiO2 based on a given temperature. It is advantageous

then to utilize the Volgel-Fulcher-Tammann (VFT) equation in making such a prediction for a

SiO2 membrane. The VFT is a simple equation for modeling the viscosity of various types of

glass at given temperatures.[20] To use it as a model equation for viscosity, a SiO2 membrane

is simply treated as a small-scale adaptation for a pane of 100% amorphous SiO2 fused-silica

glass. The VFT equation is shown as equation 4.1.Its parameters, and their values for pure

SiO2 glass, are listed in table 4.1 [20]

()
0

10 TT

B
ALog

−
+=η (4.1)

 24

Table 4.1 Parameters of VFT Equation

Parameter Value Units
η dPa-s
T °C
A -7.9250 No Unit
B -31282.9 °C
T0 -415 °C

The parameter η is the calculated viscosity of the glass at temperature T. This holds

true for the model so long as T is greater than the experimental glass transition temperature.[22]

This is particularly advantageous as the VFT equation is accurate in the temperature range for

which pores in SiO2 shrink, which is between 100 and 1200 °C.[13] It i s also good to keep in

mind that the VFT equation does not model lower temperatures well.[19, 20] Temperatures of a

few hundred °C do not curve-fit well, and it is bet ter to use a modified form of the Arrhenius

equation instead. Figure 4.1 shows a theoretical plot of viscosity vs. temperature for the given

SiO2 parameters.

Parameters A and B are curve-fitting parameters extracted from prior experimental

results. The parameter T0 is the temperature for which configurational entropy disappears in the

Gibbs-DiMarzio model for predicting the glass transition temperature.[23] Note that T0 is simply

a theoretical parameter based on the entropy approximations of the Gibbs-Dimarzio theory, and

it is not a real temperature one would expect to attain in a laboratory environment. Thus, it is not

out of place for this parameter to be lower than absolute zero. Its purpose in the VFT equation is

that of a fitting parameter used to account for the inconsistent nature of the activation energy for

viscous flow.[19]

 25

Figure 4.1 Plot of SiO2 viscosity vs. temperature using the VFT equation and given parameters
in table 4.1.

 26

4.2 Surface Free Energy

The idea of thermally shrinking a nanopore comes from a phenomenon observed in

liquid thin films. If a hole exists in a liquid thin film, it will either shrink or expand in order to

minimize the overall surface free energy in the film.[24] By heating up the SiO2 membrane with

a pore in it, the membrane becomes a semi-solid with the same properties as a liquid thin film.

As such, the pore will shrink or expand in order to minimize the overall surface free energy.[13,

18]

To determine if the pore will shrink or expand, it is necessary to see how the surface

free energy changes with respect to the surface area of the film. The act of shrinking or

expanding adjusts the surface area of the film localized at the pore in an attempt to minimize the

overall surface tension. This is the mechanism by which the pore changes size. Surface tension

is a ratio of the change in surface free energy over an area, and it is proportional to the film’s

viscosity.[18, 24] Knowing this information results in the following equation:

AE γ=∆ (4.2)

In equation 4.2, γ is the viscosity of the film (in Pa-s), A is the surface area, and ∆E is the

change in surface free energy.

The parameter γ can be obtained via the VFT equation in equation 4.1, albeit with a

slight conversion of units needed. For the surface area, the pore is modeled as a cylindrical

tube with no top or bottom. Substituting this model in to get the surface area yields:

)(2 2rrhE −=∆ πγ (4.3)

In equation 4.3, r is the pore radius and h is the pore depth or film thickness. With this equation,

it is now possible to plot the change in surface free energy with respect to pore radius. A

 27

hypothetical baseline of h = 300 nm, T = 1000 to 1200 °C, and r = 0 to 300 nm is chosen in

order to examine the shape of the plot (Figure 4.2).

Immediately it is seen that the change in surface free energy is zero at both pore radii of

0 nm and 300 nm. In the instance of 0 nm, the pore has shrunk to be completely closed and the

surface free energy cannot minimize any more. It is the same in the case of 300 nm, but the

pore has expanded to its maximum stable size. This is agreeable because equation 4.3 states

that dE is always zero when r = 0 or r = h.

There is a maximum at r = 150 nm, corresponding to the maximum in equation 4.3

where r = 0.5h. It is about this maximum that the determination of shrinking or expanding is

made. A pore radius to the left of this point will shrink in accordance with the slope. To the right,

and the pore will instead expand. Initial pore radius is the only variable in determining which will

occur. The maximum itself is theoretically a stable point where no shrinking or expanding will

occur. However, it is expected that the slight environmental disturbances in real-world scenarios

will cause the pore to lose this stability and either shrink or expand. One can then define a

criterion for predicting whether a pore will shrink or expand based on the initial radius of the

pore. The pore will shrink if its diameter is less than the film thickness, and it will expand if it’s

diameter is greater than the film thickness.[13, 24, 25]

 It is also shown in figure 4.2 that as temperature decreases, there is an exponential

increase in the amplitude of the maxima. Thusly, there is an exponential increase in how much

change dE undergoes as it approaches zero. This is due to the fact that lower temperatures will

yield a higher viscosity value from the VFT equation, and this will increase all values of dE in

proportion to the increase. It can be extrapolated from this that the surface tension to be

overcome in order to shrink the pore also increases exponentially as temperature decreases.

This gives a limited window of usable temperatures. Too low and the surface tension will be too

great to shrink the pore in a reasonable amount of time. Too high and the pore will be too

viscous to shrink it to a predictable size.

28

Figure 4.2 Plot of the change in surface free energy dE with respect to pore radius and temperature. Calculated using equations
4.1 and 4.3 and an assumption of film thickness h = 300 nm.

 29

4.3 Accounting for Thermal Expansion

 One parameter that will become important is the number of SiO2 molecules per volume

are involved in the system of shrinking the nanopore. This number is described by the variable

N. This parameter can be easily calculated from the density, d, of SiO2 at room temperature, but

one must account for the fact that the high temperatures involved in shrinking will affect the

density through thermal expansion. The parameter dT, which is the density at temperature T,

must be calculated. This begins with the thermal expansion equation below:

()TVV ∆=∆ 0β (4.4)

It is here that ∆V is the change in the film’s volume, V0 is the initial film volume, β is the

volumetric thermal expansion coefficient for SiO2, and ∆T is the change in temperature. This is

further broken up into the following:

()000 TTVVV −=− β (4.5)

It is here that T0 is room temperature and V is the volume of the film at temperature T. The

volume parameters are then written as their density equivalents:

()0TT
d

m

d

m

d

m

T

−=− β (4.6)

Cancelling out the mass m and solving for dT gives the final form of the equation:

() 10 +−
=

TT

d
dT β

 (4.7)

 30

Given that T0 = 20 °C, β is approximately 15x10-7 per ºC , and d for SiO2 is 2,648,000 g/m3, dT

can be calculated for any value of T. This can be taken further in order to calculate the value of

N by dividing dT by the molar mass of SiO2 then multiplying by Avogadro’s number.

4.4 Negligence of the Loss of Height

 As the pore shrinks, the SiO2 film in which it is made undoubtedly decreases in

thickness in order to fill the pore space. This decreases the height h of the pore which impacts

the modeling of the shrinking process. It must be known then if this is something that must be

accounted for or can be ignored. To do this requires the volume equations of the film both

before and after shrinking. It is assumed that the film has a square shape with a side length s, a

height of h, and a cylindrical pore in the middle. This yields the following two volume equations

for both before shrinking and after shrinking respectively:

0
2

00
2

0 hrhsV π−= (4.8)

hrhsV 22 π−= (4.9)

It is assumed that both mass of the film and temperature are kept constant during the shrinking

process. This allows for equations 4.8 and 4.9 to be set equal to each other:

() ()2
0

2
0

22 rshrsh ππ −=− (4.9)

Solve for h in order to find the decreased height after shrinking:

 31

()
()22

2
0

2
0

rs

rsh
h

π
π

−

−
= (4.10)

Notice the form of this equation. If s2 is far greater than both r0
2 and r2, then h will be

approximately equal to h0.

While solely looking at the SiO2 membrane in which the pore lies, which may be only

tens of microns on one side, it is easy to quickly conclude that yes the height changes

significantly. However, to do so is to ignore one vital fact. The oxide of thin film membrane is not

isolated to its own borders, but is connected to the oxide of the wafer die in which it is fabricated

on. As the membrane loses thickness due to oxide flow, oxide from the die flows in to replace it.

The length s extends far beyond the borders of the membrane, making it many magnitudes of

order larger than the r values. This makes the difference in thickness negligible.

4.5 Deriving the Model

4.5.1 Derivation Steps

With the information from previous sections, it is now possible to derive a full predictive

model for thermal nanopore shrinking. As the pore shrinks, the surface tension in the membrane

film acts as a normalizing force that resists the shrinking. This normalizing force caused by the

surface tension acts as a pressure P all along the inner surface area of the pore. This can be

modeled by the following equation:[25]

)2(rrh

E
P

∆−
∆

=
π

 (4.11)

 32

Notice how equation 4.11 shows the change in surface free energy with respect to the change

in radius. This establishes P as the mass flow rate of the oxide molecules per area, and has

units of kg/s per square-meter.[25] With this, equation 4.3 can be substituted in:

)2(

)(2 2

rrh

rrh
P

∆−
−

=
π

πγ
 (4.12)

And this is then further reduced to the following equation:

)
12

(
rh

P −= γ (4.13)

The next needed piece of information is the oxide mobility coefficient M provided by Lanxner et

al.[25] This coefficient is used for determining the flux of the SiO2, and is calculated via the

following equation:

kTh
M 2

s
4-1/3 D)4(N

= (4.14)

The two new parameters in equation 4.14 are k, which is Boltzmann’s constant, and Ds, which is

the self-surface diffusion coefficient of SiO2. According to Lanxner et al, multiplying P and M

gives the rate of change of the pore radius with respect to the rate of change in time (equation

4.15).

kThrh
PM

dt

dr
2

s
4-1/3 D)4(N12 γ





 −== (4.15)

 33

This can be rearranged into an equation that can be integrated (equation 4.16). With the

knowledge of the initial pore radius r0, the desired pore radius r, and initial t = 0 seconds, this

can be integrated over r to get a general equation relating pore size to time (equation 4.17).

dtdr

rh

kTh
=






 −
×

12
1

D)4(N s
41/3-

2

γ
 (4.16)

() 
















−
−

+−=
− |2|

|2|
2

16 3

4

3

hr

hr
hLogrr

ND

kTh
t

o
eo

sγ
 (4.17)

4.5.2 Application to Previous Data

The self-surface diffusion coefficient of SiO2 is the last parameter for which information

is needed before equation 4.17 can be used to make predictions of pore size based on time.

The only way to obtain this information is to use existing experimental results of thermal pore

shrinking trials in order to extract the value of Ds. By placing all the experimental results along

with the other known parameters into equation 4.17 and solving for Ds, a theoretical curve fit

can be made in order to get accurate theoretical values of Ds for different pore radii.

Previous work by Asghar et al[13] have yielded experimental results of thermally

shrunken nanopores. These pores were made in SiO2 membranes 300 nm thick and were

shrunk in a furnace with a nitrogen ambient at four different temperatures: 900 °C, 1075 °C,

1150 °C, and 1250 °C. The 900 °C temperature produc ed no noticeable shrinkage over the time

they were in the furnace. On the other hand, the 1250 °C temperature produced excessive

thermal stresses that shrank the pore far too quickly to be controlled and risked destroying the

membranes. The results of the 1075 °C and 1150 °C t emperatures are shown in table 4.2

below.

 34

Table 4.2 Thermally Shrunken Nanopore of Various Average Radii at Two Different

Temperatures[13]

Temperature (°C) Furnace Time (s) Final Average Rad ius (nm)
1075 0 115
1075 300 90
1075 600 52.5
1075 900 17.5
1075 1020 0
1150 0 127
1150 300 75
1150 600 10
1150 642 1.5

Using this information from Table 4.2, it is possible to use the VFT equation (equation

4.3) to calculate the viscosity for the two given temperatures. The values are 1.176x1014 Pa-s at

1075 ºC and 1.159x1013 Pa-s at 1150 ºC. This is then used to plot the change is surface free

energy (figure 4.3) and the mass flow rate per area (Figure 4.4) with respect to the pore radius.

At sub-10 nm pore radii, the mass flow rate per area decreases very sharply. This indicates that

it the pores at these sizes shrink very quickly and are very difficult to control. The fact that the

curve for the lower temperature has a much less steep drop-off indicates that lower temperature

allows for a slower rate of shrinking and better size control. This also indicates that expansion of

the pore, should one have use for such a thing, would be easier to control as the pores increase

in radius.

It is believed that Ds is not a constant value throughout the shrinking process. As the

oxide flows, it has a natural inclination to minimize its surface free energy. This has a potential

energy gradient associated with it that gives a different value depending on the size of the pore

radius. In reality, Ds is a function of such a gradient. As such, points of its curve must be

extracted from Table 4.2 using equation 4.17 (r = r0 cannot be used). This is shown in Figure

4.5. The results were then curve-fitted with a linear curve fit in order to get a theoretical function

of Ds with respect to pore radius for each temperature. Using the extracted and curve-fitted

functions of Ds with equation 4.17 allows for theoretical curves of pore radius vs. time to be

 35

plotted against the data in Table 4.2. Due to the curve-fitting done with Ds, these theoretical

curves are already fitted (Figure 4.6). The mean-square-errors were calculated for each curve.

There is a noticeable flaw in the mean-square-error for the 1075 ºC curve. This is due

to the fact that the final data point, where the radius has shrunk to zero, was not used for curve-

fitting to Ds. To do so would have been inappropriate. This is because the pore had already

closed prior to observation, and there is no way to know the exact point which it closed.

Figures 4.7 and 4.8 repeat the theoretical curves from Figure 4.6, but they have one

major difference. They use hypothetical values for the pore membrane thickness in order to

show how the radius vs. time relation is affected by different pore depths. It would seem that

equation 4.17 predicts that increasing the pore depth flattens the slopes of the curves and

increases the time it takes to shrink the pores. This makes sense because by increasing the

pore depths one is also increasing the amount of mass that must flow in order to shrink the

pore. Naturally, this will require a higher temperature in order for it to flow at the same rate.

This phenomenon is also shown in Figures 4.5 and 4.6 but with temperature. As the

temperature increases, the slopes of the curves become sharper and they shrink must faster.

This is primarily due to the decreased viscosity caused by the higher temperature. Decreasing

the viscosity reduces the surface tension and creates a much higher rate of flow.

This allows for two methods of control for the rate of pore shrinkage: pore depth and

temperature. Increasing the pore depth will slow the rate of shrinking to allow for a more tightly-

controlled furnace recipe. It also has the added benefit of making the pore membrane more

resilient to damage and cracking. Decreasing the temperature has the same effect with the

added advantage of being able to adjust the temperature throughout certain points of the

shrinking process. It would be feasible to craft a furnace recipe whereby the temperature ramps

down when the pore shrinks near sub-10 nm diameters. However, tradeoff for these is time.

Slowing the process too much could result in the pores requiring several hours in order to shrink

to their desired sizes.

 36

Figure 4.3 Plot of the change in surface free energy dE with respect to pore radius and
temperature for the data in Table 4.2. The viscosity values are 1.176x1014 Pa-s at 1075 ºC and

1.159x1013 Pa-s at 1150 ºC. The film thickness is h = 300 nm.

 Figure 4.4 Plot of the mass flow rate per area with respect to pore radius.

37

Figure 4.5 Plot of the self-surface diffusion coefficient with respect to average nanopore radius for the 1075 °C and 1150 °C
experimental data points. The theoretical curves have been fitted and their linear fits displayed.

38

Figure 4.6 Plot of the average pore radius vs. time for the 1075 °C and 1150 °C experimental data poin ts. The theoretical curves
have been plotted over them in comparison and their mean-square-errors displayed.

39

Figure 4.7 Average pore radius vs. time at 1075 °C for several hypothetical pore membrane thicknesses h alongside the original
cure with pore thickness h = 300 nm.

40

Figure 4.8 Average pore radius vs. time at 1150 °C for several hypothetical pore membrane thicknesses h alongside the original
cure with pore thickness h = 300 nm.

 41

4.6 Future Work

The biggest weakness that must be contended with the thermal shrinking model

presented is the requirement to extract new theoretical curves for the self-surface diffusion

coefficient. Unfortunately, these will be different for each individual temperature. If one desires

to use the model for a process at a certain temperature for which there is no known Ds data, the

only option is to first complete a set of trial experiments at that temperature and extract for

oneself the Ds curve data.

There is the need then for a vast amount of experimental data points on pore shrinking

at various temperatures to be accessible. Unfortunately seems to not exist in vast quantities.

The primary goal of future work on this model should consist of aggregating theoretical curves

of Ds for reference. This is especially so due to the need for curve-fitting. The more data points

there are to fit to, the more accurate the fit. The experimental Ds curve that’s been extracted

discretely will always have one less point than the number of data points used to calculate it.

Therefore, a minimum of three acceptable pore radius vs. time data points are needed in order

to fit a theoretical Ds curve. This is not encouraged for accuracy reasons, and a minimum of five

acceptable data points would be preferable.

Another weakness to contend with is the fact that pinpointing the exact time at which a

pore closes completely is incredibly difficult. Visual observation is not possible and most

sensing equipment will not be able to withstand the temperatures involved. As a workaround, it

would perhaps be better to record data points ever so increasingly nearer to the point where the

pore shrinks closed. This way the data points are close enough to zero for an approximation,

but one does not risk shrinking them closed without observation.

 42

APPENDIX A

MATLAB PPROGRAM FOR EXTRAPOLATION AND CURVE-FITTING
OF EXPERIMENTAL NANOPORE DATA FOR THE

THERMAL HEAT SHRINKING MODEL

 43

%%%

% Program: heatshrink4.m

% by: Joseph Billo

% Copyright 2012 University of Texas at Arlington

%

% Description: This MATLAB program extracts the self-surface diffusion

% coefficient and viscosity of SiO2 from shrunken pore data. It utilizes

% the VFT equation as well as the extrapolated model for pore shrinking.

%%%

clear all;

clc;

%Choose data set based on its temperature during shrinking.

datasel = 1075;

deg = 1; %Ds polynomial fit degree

name = int2str(datasel);

%Pure SiO2 VFT equation parameters.

%Springer handbook of condensed matter and materials data, Volume 1

%By Hans Warlimont

 44

A = -7.9250;

B = 31282.9;

T0 = -415.00;

T = datasel;

y = 10 * (10^(A + B/(datasel - T0))) %VFT equation

%Experimental pore shrink data sets

if (datasel == 1150)

 r_exp = [250,150,20,3] * 0.5 * 10^-9

 t_exp = [0,5,10,10.7] * 60

 lastiszero = 0;

elseif (datasel == 1075)

 r_exp = [230,180,105,35,0] * 0.5 * 10^-9

 t_exp = [0,5,10,15,17] * 60

 lastiszero = 1;

end

h = 300 * 10^-9; %Pore depth

N = 2648000 / (60.08*(1.602*10^23)*(1 + (15*10^-7)*(T - 20)));

k = 1.3806488 * 10^-23; %Boltzmann's constant

r0 = r_exp(1);

 45

figure (1)

plot(t_exp,r_exp,'ro')

title([name, ' C experimental pore data']);

xlabel('time (s)')

ylabel('avg radius (m)')

%Extracting self-surface diffusion coefficient from experimental results

i = 1;

while (i <= length(r_exp))

 ds_exp(i) = ((2*r_exp(i) - 2*r0 + h*log(abs(2*r_exp(i)-h)) - h*log(abs(2*r0-h))) *

((k*T*h^3)/(16*t_exp(i)*N^(-4/3))))/y ;

 i = i + 1;

end

figure (2)

plot(r_exp,ds_exp,'ro')

title([name,' C experimental Ds']);

xlabel('avg pore radius (m)')

ylabel('Ds (m^2 / s)')

%Do curve fitting for Ds

r_th = r0:-0.5*10^-9:0;

temp_r = r_exp;

temp_ds = ds_exp;

 46

temp_r(1) = []

temp_ds(1) = []

if (lastiszero == 1)

 temp_r(length(temp_r)) = []

 temp_ds(length(temp_ds)) = []

end

temp = polyfit(temp_r, temp_ds, deg);

polyn = temp;

clear 'temp';

clear 'temp_ds';

clear 'temp_r';

%obsolete code

%slope = (ds_exp(3) - ds_exp(2)) / (r_exp(3) - r_exp(2));

%C = ds_exp(2) - slope*r_exp(2);

%Do curve fitting for experimental Ds

i = 1;

while (i <= length(r_th))

 %ds_th(i) = slope*r_th(i) + C; %obsolete%

 ds_th(i) = polyval(polyn, r_th(i));

 i = i + 1;

end

z_radius = r_th;

figure (3)

 47

plot(r_th*10^9,ds_th,'-',r_exp*10^9,ds_exp,'ro')

title([name, ' C Ds linear fit']);

xlabel('avg pore radius (nm)')

ylabel('Ds (m^2 / s)')

zfig3X1 = r_th*10^9;

zfig3Y1 = ds_th;

zfig3X2 = r_exp*10^9;

zfig3Y2 = ds_exp;

%Use all known parameters to get the theoretical model

i = 1;

while (i <= length(r_th))

 t_th(i) = (2*r_th(i) - 2*r0 + h*log(abs(2*r_th(i)-h)) - h*log(abs(2*r0-h))) *

((k*T*h^3)/(16*y*ds_th(i)*N^(-4/3))) ;

 i = i + 1;

end

figure (4)

plot(t_th,r_th*10^9,'-',t_exp,r_exp*10^9,'ro')

title([name, ' C predictive pore fit']);

xlabel('time (s)')

ylabel('avg radius (nm)')

zfig4X1 = t_th;

 48

zfig4Y1 = r_th*10^9;

zfig4X2 = t_exp;

zfig4Y2 = r_exp*10^9;

%Calculate surface free energy

i = 1;

r_th2 = h:-0.5*10^-9:0; %dE = 0 at r = 0 and r = h

while (i <= length(r_th2))

 dE(i) = y*2*pi*(r_th2(i)*h - (r_th2(i))^2);

 P(i) = ((2/h)-(1/r_th2(i))) * y;

 i = i + 1;

end

r_th2 = r_th2*10^9;

figure (5)

plot(r_th2,dE,'-')

title([name,' C change in surface free energy']);

xlabel('pore radius (nm)');

ylabel('dE (N * s)');

xlim([0, r_th2(1)]);

%Calculate mass flow rate

figure (6)

plot(r_th2,P,'-')

title([name,' C change in mass flow rate per area']);

 49

xlabel('pore radius (nm)');

ylabel('P (kg/s per m^2)');

xlim([0, r_th2(1)]);

%obsolete

%{

for each r_exp value

 get corresponding ds_exp value

 get cell# of matching r_th value

 use cell# to get corresponding ds_th value

MSE_ds = (ds_th - ds_exp)^2

%}

%Calculate Mean Square Error

i = 2;

while (i <= length(r_exp))

 r = r_exp(i);

 [num,cellnum] = min(abs(r_th-r));

 clear 'num';

 d1 = ds_exp(i);

 d2 = ds_th(cellnum);

 Error(i-1) = (d1-d2)^2;

 50

 i = i + 1;

end

MSE_ds = mean(Error)

r_exp = r_exp*10^9;

r_th=r_th*10^9;

i = 1;

while (i <= length(t_exp))

 t = t_exp(i);

 [num,cellnum] = min(abs(t_th-t));

 clear 'num';

 r1 = r_exp(i);

 r2 = r_th(cellnum);

 Error2(i) = (r1-r2)^2;

 i = i + 1;

end

MSE_r = mean(Error2)

%zbigarray1 = theoretical radius

% experimental radius

% theoretical Ds

% experimental Ds

% theoretical time

% experimental time

i = 1;

while (i <= length(zfig3X1))

 51

 zbigarray1(1,i) = zfig3X1(i);

 i = i + 1;

end

i = 1;

while (i <= length(zfig3X1))

 a = zfig3X1(i);

 j = 1;

 zbigarray1(2,i) = NaN;

 %zbigarray1(4,i) = NaN;

 zbigarray1(3,i) = zfig3Y1(i);

 while (j <= length(zfig3X2))

 b = zfig3X2(j);

 if(abs(a-b) < 0.1)

 zbigarray1(2,i) = b;

 %zbigarray1(4,i) = zfig3Y2(j)

 end

 j = j + 1;

 end

 i = i + 1;

end

clear 'a';

clear 'b';

i = 1;

j = 1;

while (i <= length(zfig3X1))

 if (zbigarray1(2,i) >= 0)

 52

 %ans = zbigarray1(2,i)

 zbigarray1(4,i) = zfig3Y2(j);

 j = j + 1;

 else

 %ans = zbigarray1(2,i)

 zbigarray1(4,i) = NaN;

 end

 %ans = zbigarray1(2,i)

 i = i + 1;

end

i = 1;

j = 1;

while (i <= length(zfig3X1))

 zbigarray1(5,i) = zfig4X1(i);

 if (zbigarray1(2,i) >= 0)

 %ans = zbigarray1(2,i)

 zbigarray1(6,i) = zfig4X2(j);

 j = j + 1;

 else

 %ans = zbigarray1(2,i)

 zbigarray1(6,i) = NaN;

 end

 i = i + 1;

end

 53

zbigarray1 = fliplr(zbigarray1);

z_h = 400 * 10^-9;

i = 1;

while (i <= length(r_th))

 z_time(i) = (2*z_radius(i) - 2*r0 + z_h*log(abs(2*z_radius(i)-z_h)) - z_h*log(abs(2*r0-z_h))) *

((k*T*z_h^3)/(16*y*ds_th(i)*N^(-4/3))) ;

 i = i + 1;

end

z_radius = z_radius * 10^9;

trans_rth2 = r_th2.';

trans_dE = dE.';

trans_P = P.';

 54

APPENDIX B

MATLAB FUNCTION FOR REMOVAL OF NOISE AND EXTRACTION OF PEAKS IN A
NANOPORE CURRENT SIGNAL

 55

Nanopore Current Signal Noise Filter and Peak Analyzer

V. R-1.1

by Joe Billo

1/31/2011

Made with Matlab R2010a

Copyright 2010, 2011

Department of Electrical Engineering

University of Texas at Arlington

This program will read a raw data file that contains the

negative-peak-containing sampled current signal of a nanopore.

The file can be in .txt format. It then takes the signal

and automatically zero-baselines it. From there, it attempts to

remove noise from the signal whilst leaving the peak magnitudes intact.

After this, the program will use negative thresholding to detect the peaks.

The depth of the peaks, sample numbers, start times, and end times are

store in a matrix called "peaks".

 56

peaks:

 depth(nA) sample# start time(µs) end time(µ s)

 __

peak 1| | | | |

 |_______|__________|_____________|________|

peak 2| | | | |

 |_______|__________|_____________|________|

peak 3| | | | |

 |_______|__________|_____________|________|

...

%}

% --- Executes on button press in StartButton.

function StartButton_Callback(hObject, eventdata, handles)

% hObject handle to StartButton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%clear all;

clc;

STRCurrentFileName = '';

STRCurrentFilePath = '';

 57

set(handles.StartButton,'Enable','off');

set(handles.PeakClear,'Enable','off');

set(handles.TabDelimRow,'Enable','off');

set(handles.TabDelimCol,'Enable','off');

set(handles.SampFreq,'Enable','off');

set(handles.WindSize,'Enable','off');

set(handles.StanDev,'Enable','off');

set(handles.PeakThresh,'Enable','off');

set(handles.PeakNumthresh,'Enable','off');

set(handles.autoloadLastFileBox,'Enable','off');

guidata(hObject, handles);

drawnow();

%last file to autoload

autoloadLastFileNum = str2double(get(handles.autoloadLastFileBox,'String'));

%sample size of averaging window (recommend 100)

h = str2double(get(handles.WindSize,'String'));

%filepath to load

[b , a] = uigetfile('.txt');

%!!start the autoloading loop here

autoloadCurrentNum = 0;

autoloadLoopFlag = 1;

autoloadLoopCount = 0;

 58

while (autoloadLoopFlag == 1)

 %update the file name to grab the next file

 if (autoloadLoopCount >= 1)

 numupdate = str2num(strtok(STRCurrentFileName, '.'));

 autoloadCurrentNum = numupdate + 1;

 numupdate = num2str(autoloadCurrentNum);

 b = [numupdate, '.txt'];

 a = STRCurrentFilePath;

 clear 'numupdate';

 end

path = strcat(a,b);

%!check if the path exists. progress to next file if not valid

 while((exist(path) ~= 2) && (autoloadCurrentNum <= autoloadLastFileNum))

 numupdate = str2num(strtok(STRCurrentFileName, '.'));

 autoloadCurrentNum = numupdate + 1;

 numupdate = num2str(autoloadCurrentNum);

 b = [numupdate, '.txt'];

 STRCurrentFileName = b;

 a = STRCurrentFilePath;

 clear 'numupdate';

 path = strcat(a,b);

 end

 if (autoloadCurrentNum > autoloadLastFileNum)

 59

 set(handles.StartButton,'Enable','on');

 set(handles.PeakClear,'Enable','on');

 set(handles.TabDelimRow,'Enable','on');

 set(handles.TabDelimCol,'Enable','on');

 set(handles.SampFreq,'Enable','on');

 set(handles.WindSize,'Enable','on');

 set(handles.StanDev,'Enable','on');

 set(handles.PeakThresh,'Enable','on');

 set(handles.PeakNumthresh,'Enable','on');

 set(handles.autoloadLastFileBox,'Enable','on');

 guidata(hObject, handles);

 drawnow();

 beep;

 return;

 end

%set file as the last file loaded

set(handles.LastFileTXT,'String',b);

guidata(hObject, handles);

drawnow();

STRCurrentFileName = b;

STRCurrentFilePath = a;

clear 'a';

clear 'b';

 60

%path = 'C:\Users\JAB\Documents\MATLAB\test_sample.abf';

if (size(path) == [1 0])

 set(handles.StartButton,'Enable','on');

 set(handles.PeakClear,'Enable','on');

 set(handles.TabDelimRow,'Enable','on');

 set(handles.TabDelimCol,'Enable','on');

 set(handles.SampFreq,'Enable','on');

 set(handles.WindSize,'Enable','on');

 set(handles.StanDev,'Enable','on');

 set(handles.PeakThresh,'Enable','on');

 set(handles.PeakNumthresh,'Enable','on');

 set(handles.autoloadLastFileBox,'Enable','on');

 guidata(hObject, handles);

 drawnow();

 beep;

 return;

end

%standard deviation threshold (recommend 1.25)

stdnum = str2double(get(handles.StanDev,'String'));

%peak scanning threshold (recommend -600)

threshold = str2double(get(handles.PeakThresh,'String'));

%sampling frequency

Hz = str2double(get(handles.SampFreq,'String'));

 61

%tab delimited section to import

delimrow = str2double(get(handles.TabDelimRow,'String'));

delimcol = str2double(get(handles.TabDelimCol,'String'));

%status strings

message = '';

percent = 0;

%loading 0 for .abf or 1 for .txt?

extbool = 1;

percheck = 1;

%{

%load the data file

if (extbool == 0)

 y = abfload(path);

 x = 0:1:length(y)-1;

end

%}

if (extbool == 1)

 message = 'Currently loading file';

 set(handles.MssgBox,'String',message);

 guidata(hObject, handles);

 drawnow();

 62

 w = dlmread(path,'\t', delimrow, delimcol);

 message = 'File loaded';

 set(handles.MssgBox,'String',message);

 guidata(hObject, handles);

 drawnow();

 y = w(:,2);

 x = w(:,1);

 clear('w');

else

 message = 'No file specified.';

 set(handles.MssgBox,'String',message);

 guidata(hObject, handles);

 drawnow();

 beep;

 return;

end

%plot of raw input signal

figure(1);

plot(x,y);

hold on;

 63

xlabel('sec');

ylabel('nA');

title('Original Sampled Signal');

hold off;

%figure(1);

%freqz(y);

message = 'Filtering noise.';

set(handles.MssgBox,'String',message);

guidata(hObject, handles);

drawnow();

%calculate intitial average standard deviation

i = 0;

while (i < h)

 j(i+1) = y(i+1);

 i = i + 1;

end

standev = std(j);

clear('i');

clear('j');

j=1;

i = h + 0;

z = zeros(1, length(y)); %initialize z array

 64

while(i <= length(x))

 avg = 0;

 arrChecker = zeros(1,h);

 counter = 0;

 k = 0;

 while(k < h)

 arrChecker(k+1) = y(i-k); %arrChecker holds the sample window

 k = k + 1;

 end

 standev2 = std(arrChecker); %find standard deviation of the window

 %avg holds window average of non-peak values

 if (standev2 > stdnum*standev) %if out of sigma on top side (peaks detected)

 %average only the non-peaks

 k = 0;

 while (k < h)

 if (min(arrChecker) ~= arrChecker(k+1))

 avg = avg + arrChecker(k+1);

 counter = counter + 1;

 end

 k = k + 1;

 end

 avg = avg / counter;

 else %otherwise

 avg = mean(arrChecker); %just get the average of the whole thing

 end

 65

 %attempt to zero the baseline of the output signal

 %subtract the average from the z values that correspond to the window.

 k = 0;

 while(k < h)

 z(i-k) = arrChecker(k+1) - avg;

 y(i-k) = arrChecker(k+1) - avg;

 k = k + 1;

 end

 y(length(y)) = 0;

 z(length(z)) = 0;

 avg = 0;

 arrChecker = zeros(1,h);

 counter = 0;

 k = 0;

 while(k < h)

 arrChecker(k+1) = y(i-k); %arrChecker holds the sample window

 k = k + 1;

 end

 standev2 = std(arrChecker); %find standard deviation of the window

 %avg holds window average of non-peak values

 66

 if (standev2 > stdnum*standev) %if out of sigma on top side (peaks detected)

 %average only the non-peaks

 k = 0;

 while (k < h)

 if (min(arrChecker) ~= arrChecker(k+1))

 avg = avg + arrChecker(k+1);

 counter = counter + 1;

 end

 k = k + 1;

 end

 avg = avg / counter;

 else %otherwise

 avg = mean(arrChecker); %just get the average of the whole thing

 end

 if (standev2 > stdnum*standev) %if out of sigma on top side (peaks detected)

 k = 0;

 while (k < h)

 if (min(arrChecker) == arrChecker(k+1))

 z(i-k) = arrChecker(k+1); %pick the lowest value of the set

 else

 z(i-k) = avg; %average the rest

 end

 k = k + 1;

 end

 else %otherwise

 67

 k = 0;

 while (k < h)

 z(i-k) = avg; %average as normal

 k = k + 1;

 end

 standev = (standev2+standev)/2; %and readjust standev

 end

 i = i + h;

 percent = 100 * h * j / (length(x)-1);

 if (percent >= percheck);

 set(handles.PcntBox,'String',num2str(percent));

 guidata(hObject, handles);

 drawnow();

 percheck = percheck + 1;

 end

 j = j + 1;

end

percheck = 1;

%transpose output z into coulmns and plot

z = transpose(z);

%plot of input signal after baselining

 68

figure(2);

plot(x,y);

hold on;

yl = ylim;

xlabel('sec');

ylabel('nA');

title('Zero-Baselined Sampled Signal');

hold off;

%plot of output after filtering out noise

figure(3);

plot(x,z);

hold on;

ylim(yl);

xlabel('sec');

ylabel('nA');

title('Zero-Baselined and Noise-Cancelled Sampled Signal');

hold off;

message = 'Processing is complete.';

set(handles.MssgBox,'String',message);

guidata(hObject, handles);

drawnow();

message = 'Now aggregating peaks and corresponding widths.';

set(handles.MssgBox,'String',message);

 69

guidata(hObject, handles);

drawnow();

peaks = get(handles.PeakTable,'Data');

peaksName = get(handles.PeakTableFilename,'Data');

if (sum(peaks) == 0)

 counter = 0;

 peaks = [0,0,0,0];

 peaksName = {'n/a'};

else

 [pk1,pk2] = size(peaks);

 counter = pk1;

 clear 'pk1';

 clear 'pk2';

end

i = 0;

CurrentPeakCount = 0;

while (i < length(z))

 if(z(i+1) <= threshold)

 counter = counter + 1;

 CurrentPeakCount = CurrentPeakCount + 1;

 peaks(counter,1) = z(i+1); %peak depth

 peaks(counter,2) = i+1; %the sample number the peak is at max depth

 70

 k = 0;

 while(y(i+1 - k) <= 0)

 k = k + 1;

 end

 peaks(counter,3) = (i-k) / Hz * 1000000;

 k = 0;

 while(y(i+1 + k) <= 0)

 k = k + 1;

 end

 peaks(counter,4) = (i+k) / Hz * 1000000;

 peaksName(counter,1) = {STRCurrentFileName};

 %delete rows where peaks are accidentally repeated

 %counter = counter

 testcounter = 1;

 while (CurrentPeakCount - testcounter > 0)

 %debugrow = counter - testcounter

 if (peaks(counter,3) == peaks(counter - testcounter,3))

 %debugmessage = 'error'

 peaks (counter,:) = [];

 peaksName (counter,:) = [];

 71

 counter = counter - 1;

 testcounter = testcounter - 1;

 CurrentPeakCount = CurrentPeakCount - 1;

 end

 testcounter = testcounter + 1;

 end

 %Delete row if end time comes before start time

 if (peaks(counter,3) > peaks(counter,4))

 peaks (counter,:) = [];

 peaksName (counter,:) = [];

 counter = counter - 1;

 CurrentPeakCount = CurrentPeakCount - 1;

 end

 end

 i = i + 1;

 percent = 100 * i / length(z);

 if (percent >= percheck);

 set(handles.PcntBox,'String',num2str(percent));

 guidata(hObject, handles);

 drawnow();

 percheck = percheck + 1;

 end

end

 72

percheck = 1;

%flag peaks if there are too many from a file

%CurrentPeakCount = CurrentPeakCount

%counter = counter

if (CurrentPeakCount >= str2double(get(handles.PeakNumthresh,'String')))

 while (CurrentPeakCount >= 1)

 peaksName(counter,2) = {'flagged'};

 counter = counter - 1;

 CurrentPeakCount = CurrentPeakCount - 1;

 end

end

set(handles.PeakTable,'Data',peaks);

set(handles.PeakTableFilename,'Data',peaksName);

 guidata(hObject, handles);

 drawnow();

message = 'Program complete.';

set(handles.MssgBox,'String',message);

guidata(hObject, handles);

drawnow();

%clean up variables to free memory

 73

clear 'Hz';

clear 'ans';

clear 'arrChecker';

clear 'avg';

clear 'counter';

clear 'extbool';

clear 'i';

clear 'j';

clear 'k';

clear 'message';

clear 'path';

clear 'peakbool';

clear 'percent';

clear 'standev';

clear 'standev2';

clear 'stdnum';

clear 'threshold';

clear 'x';

clear 'delimrow';

clear 'delimcol';

clear 'yl';

clear 'percheck';

clear 'testcounter';

clear 'CurrentPeakCount';

clear 'peaks';

clear 'peaksName';

 74

%!!end the autoloading loop here

autoloadLoopFlag = 0;

if ((autoloadCurrentNum < autoloadLastFileNum) && (get(handles.autoloadCheckBox,'Value')

== 1.0))

 autoloadLoopFlag = 1;

end

autoloadLoopCount = autoloadLoopCount + 1;

end

clear 'autoloadLoopFlag';

clear 'autoloadLoopCount';

clear 'autoloadLastFileNum';

clear 'autoloadCurrentNum';

set(handles.StartButton,'Enable','on');

set(handles.PeakClear,'Enable','on');

set(handles.TabDelimRow,'Enable','on');

set(handles.TabDelimCol,'Enable','on');

set(handles.SampFreq,'Enable','on');

set(handles.WindSize,'Enable','on');

set(handles.StanDev,'Enable','on');

set(handles.PeakThresh,'Enable','on');

set(handles.PeakNumthresh,'Enable','on');

set(handles.autoloadLastFileBox,'Enable','on');

 75

guidata(hObject, handles);

drawnow();

clear 'STRCurrentFileName';

clear 'STRCurrentFilePath';

clear 'h';

beep;

return;

 76

REFERENCES

[1] S. M. Iqbal and R. Bashir, Nanopores: Sensing and Fundamental Biological
Interactions: Springer, 2011.

[2] B. M. Venkatesan and R. Bashir, "Nanopore sensors for nucleic acid analysis," Nat
Nano, vol. 6, pp. 615-624, 2011.

[3] R. M. M. Smeets, et al., "Salt dependence of ion transport and DNA translocation
through solid-state nanopores," Nano Lett, vol. 6, pp. 89-95, 2006.

[4] M. Firnkes, et al., "Electrically Facilitated Translocations of Proteins through Silicon
Nitride Nanopores: Conjoint and Competitive Action of Diffusion, Electrophoresis, and
Electroosmosis," Nano Letters, vol. 10, pp. 2162-2167, 2010/06/09 2010.

[5] S. Wu, et al., "Lithography-Free Formation of Nanopores in Plastic Membranes Using
Laser Heating," Nano Letters, vol. 6, pp. 2571-2576, 2006/11/01 2006.

[6] H. Chang, et al., "DNA-Mediated Fluctuations in Ionic Current through Silicon Oxide
Nanopore Channels," Nano Letters, vol. 4, pp. 1551-1556, 2004/08/01 2004.

[7] H. Chang, et al., "DNA counterion current and saturation examined by a MEMS-based
solid state nanopore sensor," Biomedical Microdevices, vol. 8, pp. 263-269, 2006.

[8] D. Fologea, et al., "Detecting single stranded DNA with a solid state nanopore," Nano
Lett, vol. 5, pp. 1905-1909, 2005.

[9] S. M. Iqbal, et al., "Solid-state nanopore channels with DNA selectivity," Nat Nano, vol.
2, pp. 243-248, 2007.

[10] A. Ramachandran, et al., "Characterization of DNA-Nanopore Interactions by Molecular
Dynamics," American Journal of Biomedical Sciences, vol. 1, pp. 344-351, 2009.

[11] A. Singer, et al., "Nanopore Based Sequence Specific Detection of Duplex DNA for
Genomic Profiling," Nano Letters, vol. 10, pp. 738-742, 2010/02/10 2010.

[12] S. R. Park, et al., "Fabrication of nanopores in silicon chips using feedback chemical
etching," Small, vol. 3, pp. 116-119, 2007.

[13] I. A. Asghar W, Billo JA, Iqbal SM., "Shrinking of Solid-state Nanopores by Direct
Thermal Heating.," Nanoscale Res Lett., May 4, 2011 2011.

[14] A. J. Storm, et al., "Fabrication of solid-state nanopores with single-nanometre
precision," Nature materials, vol. 2, pp. 537-540, 2003.

[15] G. Yan, et al., "An improved TMAH Si-etching solution without attacking exposed
aluminum," Sensors and Actuators A: Physical, vol. 89, pp. 135-141, 2001.

[16] H. Chang, et al., "Fabrication and characterization of solid-state nanopores using a field
emission scanning electron microscope," Applied Physics Letters, vol. 88, p. 103109,
2006.

[17] C. J. Lo, et al., "Fabrication of symmetric sub-5 nm nanopores using focused ion and
electron beams," Nanotechnology, vol. 17, p. 3264, 2006.

[18] G. I. Taylor and D. H. Michael, "On making holes in a sheet of fluid," Journal of Fluid
Mechanics, vol. 58, pp. 625-639, 1973.

[19] J. E. Shelby, Introduction to Glass Science and Technology: Royal Society of
Chemistry, 2005.

[20] W. Martienssen and H. Warlimont, Springer handbook of condensed matter and
materials data: Springer, 2005.

[21] H. Mehrer, Diffusion in solids: fundamentals, methods, materials, diffusion-controlled
processes: Springer, 2007.

 77

[22] L. S. Garca-Coln, et al., "Theoretical basis for the Vogel-Fulcher-Tammann equation,"
Physical Review B (Condensed Matter), vol. 40, p. 5, 1989.

[23] U. W. Gedde, Polymer Physics: Chapman & Hall, 1995.
[24] F. Behroozi, "Surface tension in soap films: revisiting a classic demonstration,"

European Journal of Physics, vol. 31, p. L31, 2010.
[25] M. Lanxner, et al., "Summary Abstract: Evolution of hole shape in {100}, {110}, and

{111} monocrystalline thin films of gold," Journal of Vacuum Science & Technology A:
Vacuum, Surfaces, and Films, vol. 5, pp. 1748-1749, 1987.

 78

BIOGRAPHICAL INFORMATION

Joseph Billo earned his B.S. in electrical engineering at Southern Methodist University

in Dallas, TX in the year of 2009. In January of 2010 he enrolled at the University of Texas at

Arlington and joined Dr. Samir Iqbal’s Nano Bio Lab. There, he found an interest in

semiconductors and nanotechnology. Joseph takes great pride in his research, which he has

presented in Applied Physics Letters and at SPIE.

