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ABSTRACT

ON PRIMITIVITY AND DIMENSION OF FINITE

SEMIFIELDS AND THEIR PLANES

Linlin Chen, Ph.D.

The University of Texas at Arlington, 2012

Supervising Professor: Minerva Cordero

The study of semifields originated from the work of L.E. Dickson in 1905 and

was greatly developed in the 1960s by Albert, Knuth, Walker, and Kleinfeld among

others. Two problems of interest in this area are the primitivity of semifields and the

dimension of semifields over their sub-semifields.

For the first problem, we provide an equivalent condition for the right (or left)

primitivity of finite semifields and with this result, we find that the classical Knuth

binary semifields of order 215, 217 and 219 are all right and left primitive; the Albert

semifields of order 2𝑖, where 𝑖 = 7, 9, 11, 13 are all primitive. Also we prove that

the number of primitive elements in the classical Knuth binary semifields of order 2𝑡,

𝑡 ∈ [5, 19] odd, is a multiple of 𝑡.

For the second problem, we first prove that the classical Knuth binary semifields

can not be fractional dimensional. Then we consider two special classes of generalized

Knuth binary semifields of order 2𝑡, 𝑡 odd. One class is fractional dimensional and
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contains 𝐺𝐹 (22) as a subfield, when 𝑡 ∈ [5, 31]. The other class is commutative and

does not contain the subfields 𝐺𝐹 (22) or 𝐺𝐹 (23). Finally we show that the Albert

semifields 𝐴𝑛(𝑆) do not contain the subfield 𝐺𝐹 (23) when (𝑛, 3) = 1.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

In this work, we present a study of primitivity and fractional dimension of

finite semifields and semifield planes. A finite semifield is an algebraic structure with

two distributive laws, the multiplicative identity, and no zero divisors. If a plane is

coordinatized by a finite semifield, then it is called a semifield plane.

A finite semifield is (left) right primitive if its multiplicative group is “(left)

right cyclic” in a way to be described later. The study of primitivity was initially

raised by G.P. Wene. He provided examples of semifields of order 16, 27, 32, 124, and

343 that have a right primitive element, and according to those sporadic examples,

he made the following conjecture

Conjecture 1.1.1. [16] All finite semifields are right primitive.

Rúa [15] proved that any finite semifield three-dimensional over its center is

both left and right primitive. However, he showed that the classical Knuth binary

semifield of order 32 is neither right nor left primitive. Then in 2006, Hentzel and

Rúa [8] gave another counterexample to Wene’s Conjecture, a semifield of order 64.

Although this conjecture is incorrect, people are still interested in this problem since

for most semifields it is not known if they are right primitive or not.

Let 𝐹 = 𝐺𝐹 (𝑞), where 𝑞 = 𝑝𝑛 for some 𝑛 and 𝑝 is a prime number. Suppose 𝐸

is any subfield of 𝐹 . Then the order of 𝐸 must be 𝑝𝑖 for some 𝑖 that is a divisor of 𝑛.

Hence the dimension of 𝐹 relative to 𝐸 is an integer. We now generalize the definition

of dimension of finite fields relative to subfields to the case of finite semifields.

1



Definition 1.1.1. Let 𝐷 be a finite semifield and 𝐸 a sub-semifield. Then 𝑑𝑖𝑚𝐸𝐷 :=

𝑙𝑜𝑔∣𝐸∣∣𝐷∣(= 𝜆) is the dimension of 𝐷 relative to 𝐸. The semifield 𝐷 has fractional

dimensional, relative to 𝐸, if 𝜆 is not an integer, and now 𝐸 is a fractional dimensional

sub-semifield of 𝐷. In general, 𝐷 is considered fractional (dimensional) if 𝐷 is frac-

tional dimensional relative to at least one sub-semifield 𝐸.

The center of a semifield 𝐷 is a set, composed of all the elements in 𝐷 that

commute with all the elements in 𝐷 and associate with every element in 𝐷 from left,

right and middle. Notice that the center of a finite semifield is a field and we view

the semifield as a vector space over its center. Since the center of a finite semifield is

a finite field, and hence has order a power of a prime. Therefore the dimension of 𝐷

relative to its sub-semifields must be an integer or a proper rational number (not an

integer). People are interested in the second case, i.e., when is the dimension of 𝐷

relative to its sub-semifields a rational number?

Jha and Johnson [9] found that the generalized Knuth binary semifields of order

2𝑡, where 𝑡 is divisible by 5 or 7, admit the subfield 𝐺𝐹 (22), so the dimension of those

semifields over 𝐺𝐹 (22) is fractional. They also made the following conjectures:

Conjecture 1.1.2. [9] 1. There exist semifield planes of order 2𝑟, for any odd integer

𝑟 that admit Desarguesian subplanes of order 22.

2. There exist semifield planes of order 2𝑡, for any integers 𝑡 relatively prime to 3

that admit semifield subplanes of order 23.

The first part of Conjecture 1.1.2 was completely solved by V. Jha [19]. How-

ever, for the second part of Conjecture 1.1.2, no examples to support it have been

found.
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This thesis is divided into four chapters. Chapter I contains some basic defini-

tions and results on projective planes and finite semifields. Also, the three types of

finite semifields that we are working with will be introduced in this chapter.

In Chapter II, after providing the basic definition of primitivity of finite semi-

fields, we prove the following theorems concerning primitivity.

Theorem 2.2.2 Suppose 𝒮 = (𝐷,+, ∗) is a semifield of order 𝑞𝑛, with center

𝐾 = 𝐺𝐹 (𝑞). Let 𝑑 be a non-zero element in 𝒮 and 𝑓(𝑥) be its right characteristic

polynomial. Then 𝑑 is a right primitive element if and only if 𝑜𝑟𝑑(𝑓(𝑥)) = 𝑞𝑛 − 1.

With this result, we show that

Theorem 2.3.1 The classical Knuth binary semifields of order 2𝑡, where 𝑡 = 15, 17, 19,

are all left and right primitive.

Theorem 2.4.3 For any odd integer 𝑡 ∈ [5, 19], if the classical Knuth binary semifield

ℱ=(𝐺𝐹 (2𝑡),+, ∗) is primitive, then the number of primitive elements, 𝑁𝑡 of ℱ , is a

multiple of 𝑡.

Theorem 2.5.1 The Albert Semifields 𝐴𝑛(𝑆) of order 2
𝑛, where 𝑛 = 7, 9, 11, 13, are

all right and left primitive.

On Chapter III we provide the results of our study of the dimension of certain

finite semifields. In particular, we prove the following theorems.

Corollary 3.2.1 The generalized Knuth binary semifields of order 2𝑟, for any

odd integer 𝑟 ∈ [5, 31], contains 𝐺𝐹 (4). Hence these semifields are fractional dimen-

sional.

Theorem 3.3.1 The classical Knuth binary semifields do not contain any sub-

semifields.

The generalized Knuth binary semifields and the classical Knuth binary semi-

fields are isotopic, (Lemma 3.3.3), so by Albert’s Theorem [1], they coordinatize
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isomorphic planes. The above two theorems provide evidence that isomorphic semi-

field planes may have different coordinatizing theorem.

Definition 1.1.2. Let 𝜋1 and 𝜋2 be two isomorphic projective planes with bijection

𝛼. Let 𝜋
(1)
0 be any subplane of 𝜋1. If there exists 𝜋

(2)
0 in 𝜋2 of the same order as

𝜋
(1)
0 and 𝛼 preserves incidence in 𝜋

(1)
0 and 𝜋

(2)
0 , then 𝜋1 and 𝜋2 are called absolutely

isomorphic.

As we just point out, there exist semifield planes which are isomorphic but not

absolutely isomorphic. However, two isomorphic Desarguesian planes are absolutely

isomorphic, since they are coordinatized by finite fields and there exists a unique

finite field for each order up to isomorphism. We raise the question “when are two

projective planes absolutely isomorphic?”.

On Chapter IV we prove some conclusions that follow from our research and

we list two open problems concerning non-associative algebras.

Notice: All the semifields and semifield planes considered in this thesis are

finite.
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1.2 Preliminaries

1.2.1 Projective Planes and Affine Planes

Definition 1.2.1. A projective plane is a nonempty set 𝜋 whose elements are called

points and a collection of subsets of 𝜋 called lines satisfying the following:

(1) Any two distinct points are contained in one and only one line.

(2) The intersection of two distinct lines contain one and only one point.

(3) There exists four points no three of which are contained in the same line.

If 𝑃 and 𝑄 are two distinct points of a projective plane 𝜋, then the line con-

taining 𝑃 and 𝑄 will be denoted by 𝑃𝑄. If the point 𝑃 is contained in the line ℓ,

then 𝑃 is said to be incident with ℓ.

If one line of a projective plane 𝜋 contains 𝑛 + 1 points, then every line of 𝜋

contains 𝑛+ 1 points and every point of 𝜋 is incident with 𝑛+ 1 lines. Furthermore,

𝜋 contains 𝑛2 + 𝑛+ 1 points and 𝑛2 + 𝑛+ 1 lines [10]. In this case, 𝜋 is said to have

order 𝑛, denoted by ∣𝜋∣ = 𝑛.

Definition 1.2.2. Let 𝜋 be a projective plane and 𝜋′ be the incidence structure whose

points (lines) are the lines (points) of 𝜋 and incidence in 𝜋′ is given by incidence in

𝜋, then 𝜋′ is a projective plane called the dual plane of 𝜋.

The geometric structure obtained from a projective plane by removing one line

and all the points on that line is called an affine plane.

Definition 1.2.3. An affine plane 𝐺 is a nonempty set of points and lines together

with an incidence relation between the points and lines such that

(1) Any two distinct points are contained in one and only one line.

(2) Given a point 𝑃 and a line ℓ with 𝑃 /∈ ℓ, there exists a unique line 𝑚 with 𝑃 ∈ 𝑚

and ℓ ∩𝑚 = ∅.
(3) There are three points not on the same line
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Two lines of an affine plane are parallel if they are equal or if they do not inter-

sect. Parallelism of lines of an affine plane is an equivalence relation; the equivalence

classes are called parallel classes.

If an affine plane 𝐺 is obtained from a projective plane 𝜋 by deleting a line ℓ

of 𝜋 and all the points of ℓ, then 𝐺 will be denoted by 𝜋ℓ. Conversely, a projective

plane can be obtained from an affine plane 𝐺 by adjoining an additional point to each

parallel class such that the lines of that parallel class intersect in the new point, and

adjoining an additional line, denoted by ℓ∞, consisting precisely of the new points.

The projective plane obtained from 𝐺 in this way will be denoted by 𝐺 ∪ ℓ∞. The

extension of an affine plane to a projective plane is unique, but the affine plane

obtained from a projective plane by removing a line is not necessarily unique.

The affine plane 𝐺 is said to have order 𝑛, denoted by ∣𝐺∣ = 𝑛, if one (and

hence every) line of 𝐺 has 𝑛 points.

Coordinates can be introduced in a projective plane 𝜋 of order 𝑛 as follows.

Choose four points 𝑈 , 𝑉 , 𝑂, 𝐼 of 𝜋, no three of which are collinear. Let 𝑅 be a set

of 𝑛 symbols with the two properties:

(1) 0, 1 ∈ 𝑅;

(2) There exists a 1-1 correspondence 𝛼 between 𝑅 and the points in 𝑂𝐼− (𝑈𝑉 ∩𝑂𝐼)

such that 0𝛼 = 𝑂 and 1𝛼 = 𝐼.

Using the set 𝑅, the plane 𝜋 is coordinatized as follows. (See Figure 1.1)

(a) To a point 𝑃 ∈ 𝑂𝐼 − (𝑈𝑉 ∩ 𝑂𝐼), assign the coordinates (𝑎, 𝑎), where 𝑎 ∈ 𝑅 and

𝑎𝛼 = 𝑃 .

(b) If 𝑃 /∈ 𝑂𝐼 and 𝑃 /∈ 𝑈𝑉 , assign to 𝑃 the coordinates (𝑎, 𝑏), where 𝑃𝑉 ∩𝑂𝐼 = (𝑎, 𝑎)

and 𝑃𝑈 ∩𝑂𝐼 = (𝑏, 𝑏).

(c) If 𝑃 ∈ 𝑈𝑉 and 𝑃 ∕= 𝑉 , assign to 𝑃 the coordinates (𝑚), where 𝑂𝑃 ∩𝐼𝑉 = (1,𝑚).

(d) If 𝑃 = 𝑉 , assign to to 𝑃 the coordinate (∞), where ∞ is a symbol not in 𝑅.
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Figure 1.1. Coordinatization of the projective plane 𝜋.

Definition 1.2.4. Let 𝜋 be a projective plane and 𝑅 be a set coordinatizing 𝜋 with

respect to the points 𝑈 , 𝑉 , 𝑂, 𝐼. A ternary function 𝐹 is defined on 𝑅 as follows:

if 𝑎,𝑚, 𝑘 ∈ 𝑅, 𝐹 (𝑎,𝑚, 𝑘) = 2𝑛𝑑 coordinate of the point (𝑎, 0) ∩ (𝑚)(0, 𝑘).

See Figure 1.2.

In terms of the ternary function 𝐹 , observe that the lines of 𝜋, except 𝑈𝑉 , can

be represented by equations as follows:

𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ (∞) 𝑎𝑛𝑑 (𝑘, 0) : 𝑥 = 𝑘

𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ (𝑚) 𝑎𝑛𝑑 (0, 𝑘) : 𝑦 = 𝐹 (𝑥,𝑚, 𝑘)

where 𝑥 represents the first coordinate and 𝑦 the second coordinate of a point.

Using the ternary function 𝐹 , addition and multiplication can be introduced

on the coordinate set 𝑅 as follows:

7



Figure 1.2. Ternary Function.

Definition 1.2.5. Let 𝜋 be a projective plane, 𝑅 be a set coordinatizing 𝜋 with respect

to 𝑈 , 𝑉 , 𝑂, 𝐼, and 𝐹 the ternary function defined on 𝑅. An addition + and a

multiplication ⋅ are defined on 𝑅 by

𝑎+ 𝑏 ≡ 𝐹 (𝑎, 1, 𝑏), 𝑎 ⋅ 𝑏 = 𝑎𝑏 ≡ 𝐹 (𝑎, 𝑏, 0)

for all 𝑎, 𝑏 ∈ 𝑅.

The algebraic system on the coordinate set 𝑅 with operations determined by

the ternary function 𝐹 as above is called a ternary ring and is denoted by (𝐹,+, ⋅) or
(𝑅,𝐹 ).

Definition 1.2.6. A loop is a set 𝐿 with a binary operation ∗ satisfying

(1) There exists an element 𝑒 ∈ 𝐿 such that 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 for all 𝑎 ∈ 𝐿.

(2) Given two of the elements 𝑎, 𝑏, 𝑐 ∈ 𝐿, the equation 𝑎 ∗ 𝑏 = 𝑐 uniquely determines

the third.

8



Theorem 1.2.1. [10] If (𝑅,𝐹 ) is a ternary ring, then (𝑅,+) is a loop with identity

0, and (𝑅− {0}, ⋅) is a loop with identity 1.

We study right quasifields and translation planes.

Definition 1.2.7. Let 𝑄 be a finite set with two binary operations + and ⋅ satisfying
the following condition:

(1) (𝑄,+) is an abelian group with identity 0.

(2) (𝑄− {0}, ⋅) is a loop with identity 1.

(3) For all 𝑎, 𝑏, 𝑐 ∈ 𝑄, (𝑎+ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ 𝑐+ 𝑏 ⋅ 𝑐.
(4) For all 𝑎 ∈ 𝑄, 𝑎 ⋅ 0 = 0 ⋅ 𝑎 = 0.

Define a ternary function on the set 𝑄 by

(5) For all 𝑎, 𝑏, 𝑐 ∈ 𝑄, 𝐹 (𝑎, 𝑏, 𝑐) = 𝑎 ⋅ 𝑏+ 𝑐.

The quadruple (𝑄,𝐹,+, ⋅) is called a right quasifield and will be denoted by (𝑄,+, ⋅)
A left quasifield is defined as above by replacing (3) by (3′)

(3′) For all 𝑎, 𝑏, 𝑐 ∈ 𝑄, 𝑎⊙ (𝑏+ 𝑐) = 𝑎⊙ 𝑐+ 𝑎⊙ 𝑐

Definition 1.2.8. Let 𝜋1 and 𝜋2 be two projective planes (or affine planes). If there

exists a bijection 𝛼 which maps the points of 𝜋1 onto the points of 𝜋2 and the lines of

𝜋1 onto the lines of 𝜋2 and which preserves incidence, then 𝜋1 and 𝜋2 are said to be

isomorphic, denoted by 𝜋1
∼= 𝜋2.

An isomorphism of a plane into itself is called a collineation.

If a collineation 𝛼 of a projective plane 𝜋 fixes all the points on a line ℓ and all

the lines through a point 𝑃 of 𝜋, then 𝛼 is called a (𝑃, ℓ)-perspectivity. The point 𝑃

is called the center of 𝛼 and ℓ is called the axis. If 𝑃 ∈ ℓ, 𝛼 is called an elation; if

𝑃 /∈ ℓ, 𝛼 is called an homology. The set of all elations of 𝜋 with a fixed axis ℓ form

a group. If this group is transitive on all the points of 𝜋 not on ℓ, then 𝜋 is called

a translation plane with axis ℓ and the affine plane 𝜋ℓ is called a translation plane.

Translation planes are coordinatized by right quasifields.
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If the collineation group of a projective plane 𝜋 contains (𝑃, ℓ)-perspectivities

for all points 𝑃 and all lines ℓ, then 𝜋 is called a Desarguesian plane. Notice that, all

desarguesian planes are coordinatized by finite fields.

1.2.2 Finite Semifields

(I) Basic Results on Semifields

Definition 1.2.9. A finite semifield 𝒮 = (𝐷,+, ∗) is a finite algebraic system con-

taining at least two elements, which possesses two binary operations, + and ∗ such

that

(1) (𝐷,+) is a group with identity 0.

(2) For every 𝑎, 𝑏 ∈ 𝐷, if 𝑎 ∗ 𝑏 = 0, then either 𝑎 = 0 or 𝑏 = 0.

(3) 𝑎 ∗ (𝑏+ 𝑐) = 𝑎 ∗ 𝑏+ 𝑎 ∗ 𝑐; (𝑎+ 𝑏) ∗ 𝑐 = 𝑎 ∗ 𝑐+ 𝑏 ∗ 𝑐 for every 𝑎, 𝑏, 𝑐 ∈ 𝐷.

(4) There exists an element 1 in 𝒮 such that 1 ∗ 𝑎 = 𝑎 ∗ 1 = 𝑎 for every 𝑎 ∈ 𝐷.

Let 𝜋 be a finite translation plane with axis ℓ∞. If the group of elations with

axis ℓ ∕= ℓ∞ and center (∞) is transitive on the points of ℓ∞− (∞), then 𝜋ℓ∞ is called

a semifield plane.

If condition (4) is missing, the algebraic system is called a pre-semifield.

If there are 𝑛 elements in 𝒮, then we say the order of 𝒮 is 𝑛, denoted ∣𝒮∣ = 𝑛.

Remark 1.2.1. (1) Every finite field is a semifield.

(2) The term “proper semifield” refer to a semifield in which the associative law does

not hold, i.e., there exist elements 𝑎, 𝑏, 𝑐 ∈ 𝒮, such that (𝑎 ∗ 𝑏) ∗ 𝑐 ∕= 𝑎 ∗ (𝑏 ∗ 𝑐).
(3) (𝐷 − {0}, ∗) is a loop.

The multiplicative identity 1 does not necessarily exist in a pre-semifield, and

the following theorem provides a technique to convert a pre-semifield into a semifield.
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Theorem 1.2.2. [7] Let 𝒫 = (𝐷,+, ∘) be a pre-semifield without identity, and let

0 ∕= 𝑒 ∈ 𝐷. If a new multiplication ∗ is defined on 𝐷 by the rule

𝑎 ∗ 𝑏 = (𝑎′ ∘ 𝑒) ∗ (𝑒 ∘ 𝑏′) = 𝑎′ ∘ 𝑏′

then with this multiplication ∗ and the given addition, a semifield (𝐷,+, ∗) is obtained
with identity 𝑒 ∘ 𝑒.

Notice: if ∘ is commutative, so is ∗.
Definition 1.2.10. Let (𝑇,+, ∗) and (𝑇1,+, ⋅) be two ternary rings. An isotopism

from 𝑇1 onto 𝑇 is a set of three functions (𝐹,𝐺,𝐻), each being a 1-1 correspondence

from 𝑇1 to 𝑇 , such that

(0)𝐻 = 0,

(𝑎 ∗ 𝑏+ 𝑐)𝐻 = (𝑎𝐹 ) ⋅ (𝑏𝐺) + (𝑐𝐻), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏, 𝑐 ∈ 𝑇.

In particular, let 𝑆1 = (𝐷1,+, ∗) and 𝑆2 = (𝐷2,+, ⋅) be two finite semifields. If

the triple (𝐹,𝐺,𝐻) consists of additive, 1-1 correspondence mappings from 𝐷1 to 𝐷2,

such that

𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥, 𝑦 ∈ 𝐷1, (𝑥𝐹 ) ⋅ (𝑦𝐺) = (𝑥 ∗ 𝑦)𝐻

then 𝑆1 and 𝑆2 are said to be isotopic and the triple (𝐹,𝐺,𝐻) is called an isotopism.

We prove two lemmas that will be used in the future.

Lemma 1.2.1. The semifield 𝒮 = (𝐷,+, ∗) and pre-semifield 𝒫 = (𝐷,+, ∘) in The-

orem 1.2.2 are isotopic.

Proof. Define 𝑅𝑒 : 𝐷 −→ 𝐷, 𝑥 7→ 𝑥∘𝑒 and 𝐿𝑒 : 𝐷 −→ 𝐷, 𝑥 7→ 𝑒∘𝑥. Since (𝐷−{0}, ∘)
is a loop and the two distributive laws hold in 𝒫, 𝑅𝑒 and 𝐿𝑒 are additive bijections.

So are 𝑅−1
𝑒 and 𝐿−1

𝑒 . Also,

𝑎 ∗ 𝑏 = (𝑎′ ∘ 𝑒) ∗ (𝑒 ∘ 𝑏′) = 𝑎′ ∘ 𝑏′ = (𝑎𝑅−1
𝑒 ) ∘ (𝑏𝐿−1

𝑒 )
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Hence 𝒮 and 𝒫 are isotopic with isotopism (𝑅−1
𝑒 , 𝐿−1

𝑒 , 𝐼).

Lemma 1.2.2. Isotopism of ternary rings is an equivalence relation.

Proof. 𝑇 is isotopic to itself, since the triple (𝐹,𝐺,𝐻) can be chosen to be (𝐼, 𝐼, 𝐼),

where 𝐼 is the identity map of 𝑇 .

Let 𝑇1 and 𝑇2 be two isotopic ternary rings with isotopism (𝐹,𝐺,𝐻). Since

𝐹,𝐺,𝐻 are bijective, 𝐹−1, 𝐺−1, 𝐻−1 exist and they are bijections. Also, (0𝑇1)𝐻 = 0𝑇2

implies (0𝑇2)𝐻
−1 = 0𝑇1 and for any 𝑥, 𝑦, 𝑧 ∈ 𝑇2, there exist elements 𝑎, 𝑏, 𝑐 ∈ 𝑇1 such

that

𝑥 = 𝑎𝐹, 𝑦 = 𝑏𝐺, 𝑧 = 𝑐𝐻

Then

(𝑥 ⋅ 𝑦 + 𝑧)𝐻−1 = [(𝑎𝐹 ) ⋅ (𝑏𝐺) + 𝑐𝐻]𝐻−1 = [(𝑎 ⋅ 𝑏)𝐻 + 𝑐𝐻]𝐻−1

= 𝑎 ⋅ 𝑏+ 𝑐 = (𝑥𝐹−1) ⋅ (𝑦𝐺−1) + 𝑧𝐻−1

So 𝑇2 is isotopic to 𝑇1 with isotopism (𝐹−1, 𝐺−1, 𝐻−1).

Let 𝑇1 be isotopic to 𝑇2 with isotopism (𝐹,𝐺,𝐻) and 𝑇2 be isotopic to 𝑇3

with isotopism (𝑃,𝑄,𝑅), then 𝐹𝑅,𝐺𝑄,𝐻𝑅 are bijections from 𝑇1 to 𝑇3. For any

𝑎, 𝑏, 𝑐 ∈ 𝑇1

(0𝑇1)(𝐻𝑅) = (0𝑇1𝐻)𝑅 = (0𝑇2)𝑅 = 0𝑇3 ,

(𝑎 ⋅ 𝑏+ 𝑐)(𝐻𝑅) = (𝑎𝐹 ⋅ 𝑏𝐺+ 𝑐𝐻)𝑅 = (𝑎𝐹 )𝑃 ⋅ (𝑏𝐺)𝑄+ (𝑐𝐻)𝑅

= 𝑎𝐹𝑃 ⋅ 𝑏𝐺𝑄+ 𝑐𝐻𝑅

So 𝑇1 is isotopic to 𝑇3 with isotopism (𝐹𝑅,𝐺𝑄,𝐻𝑅).

The importance of isotopisms on semifields is given by the following theorem

due to Albert.
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Theorem 1.2.3. [1] Two semifields coordinatize isomorphic planes if and only if

they are isotopic.

(II) Nuclei

Various special subsystems are defined for a semifield 𝒮 = (𝐷,+, ∗), indicating
degrees of associativity. The most important of these are the following:

𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑛𝑢𝑐𝑙𝑒𝑢𝑠 𝑁𝑙 : {𝑥 ∈ 𝐷∣(𝑥 ∗ 𝑎) ∗ 𝑏 = 𝑥 ∗ (𝑎 ∗ 𝑏), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 𝐷},

𝑡ℎ𝑒 𝑚𝑖𝑑𝑑𝑙𝑒 𝑛𝑢𝑐𝑙𝑒𝑢𝑠 𝑁𝑚 : {𝑥 ∈ 𝐷∣(𝑎 ∗ 𝑥) ∗ 𝑏 = 𝑎 ∗ (𝑥 ∗ 𝑏), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 𝐷},

𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑛𝑢𝑐𝑙𝑒𝑢𝑠 𝑁𝑟 : {𝑥 ∈ 𝐷∣(𝑎 ∗ 𝑏) ∗ 𝑥 = 𝑎 ∗ (𝑏 ∗ 𝑥), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 𝐷}.

The intersection of these three sets is called the nucleus of the semifield 𝒮 and

is denoted by 𝑁 ; Knuth [11] showed that each nuclei is a finite field and 𝒮 is a vector

space over any of its nuclei; it is a left vector space over 𝑁𝑙, 𝑁𝑚 and 𝑁 ; it is a right

vector space over 𝑁𝑚, 𝑁𝑟 and 𝑁 .

The center of a finite semifield is a set formed by all the elements in 𝑁 that

commute with all the elements in 𝐷, denoted by 𝐾 = 𝑍(𝐷), i.e.,

𝐾 = {𝑥 ∈ 𝑁 ∣𝑎 ∗ 𝑥 = 𝑥 ∗ 𝑎, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐷}

Obviously, the center of a finite semifield with addition and multiplication forms

a finite field. Let 𝐾 = 𝐺𝐹 (𝑞), where 𝑞 = 𝑝𝑟, 𝑝 is the characteristic of 𝐷, and

𝑑𝑖𝑚𝐾𝒮 = 𝑛; then ∣𝒮∣ = 𝑞𝑛.

In this paper, we consider a finite semifield as a vector space over its center.

(III) Examples of Semifields

(1) Classical Knuth Binary Semifields

First we introduce the construction of the classical binary semifields due to

Knuth [12]. Let 𝐹 = 𝐺𝐹 (2𝑚𝑛) and 𝐹0 = 𝐺𝐹 (2𝑚), where 𝑚,𝑛 are postitive integers
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and 𝑛 is odd. Considering 𝐹 as a vector space over 𝐹0, let 𝑓 be any nonzero linear

functional from 𝐹 to 𝐹0, i.e.,

𝑓(𝜆𝑎+ 𝜇𝑏) = 𝜆𝑓(𝑎) + 𝜇𝑓(𝑏)

for all 𝑎, 𝑏 ∈ 𝐹 and all 𝜆, 𝜇 ∈ 𝑓0.

Define a new multiplication ∘ in 𝐹 as follows:

𝑎 ∘ 𝑏 = 𝑎𝑏+ [𝑓(𝑎)𝑏+ 𝑓(𝑏)𝑎]2

Then (𝐹,+, ∘) is a pre-semifield. Choose a nonzero element 𝑒 in 𝐹 and define another

multiplication ∗ by

𝑥 ∗ 𝑦 = (𝑥′ ∘ 𝑒) ∗ (𝑒 ∘ 𝑦′) = 𝑥′ ∘ 𝑦′, ∀𝑥, 𝑦 ∈ 𝐹

then 𝒮 = (𝐹,+, ∗) is a commutative semifield called the classical Knuth binary

semifield.

Let 𝐹 = 𝐺𝐹 (2𝑛), 𝐹0 = 𝐺𝐹 (2), and let 𝑇 be the trace map from 𝐹 to 𝐹0, i.e.

𝑎𝑇 = 𝑎+ 𝑎2 + 𝑎2
2

+ ⋅ ⋅ ⋅+ 𝑎2
𝑛−1

for any 𝑎 ∈ 𝐹 . Then the multiplication ∘ in (1) is defined by

(𝐶𝑜𝑚𝐾𝑛) 𝑥 ∘ 𝑦 = 𝑥𝑦 + (𝑥𝑇𝑦 + 𝑦𝑇𝑥)2

Then the multiplication of pre-semifield (𝐹,+, ∘) can be redefined to get a semifield

(𝐹,+, ∗) using Theorem 1.2.2.

(2) Generalized Knuth Binary Semifield

V. Jha and N.L. Johnson [9] generalized the construction of the classical Knuth

binary semifields in 2010 as follows:

Let 𝐹 = 𝐺𝐹 (2𝑛), 𝑛 ≥ 5 odd, and 𝐹0 = 𝐺𝐹 (2). Suppose 𝐺𝐿(𝐹,+) is the full

group of 𝐹0-linear bijections of the vector space 𝐹 over 𝐹0. Then for any 𝐵,𝐶 ∈
14



𝐺𝐿(𝐹,+), there corresponds a pre-semifield ℱ𝐵,𝐶(𝐹 ) = (𝐹,+,⊙), where ⊙ is defined

by

(𝐺𝑒𝑛𝐾𝑛) 𝑥⊙ 𝑦 = 𝑥𝐵𝑦𝐶 + (𝑥𝐵𝑇𝑦𝐶 + 𝑦𝐶𝑇𝑥𝐵)2

For any choice of 𝑒 ∈ 𝐹 ∗, redefine the multiplication of the pre-semifield ℱ𝐵,𝐶(𝐹 ) =

(𝐹,+,⊙) by the following rule

(𝑥⊙ 𝑒) ∗ (𝑒⊙ 𝑦) = 𝑥⊙ 𝑦, ∀ 𝑥, 𝑦 ∈ 𝐹

ℱ (𝑒)
𝐵,𝐶(𝐹 ) = (𝐹,+, ∗)𝑒 forms a semifield, called a generalized Knuth binary semifield.

Notice that 𝑒⊙ 𝑒 is the multiplicative identity for (𝐹,+, ∗)𝑒.
The following proposition is given in [9] without proof; for completeness we

provide a proof here.

Proposition 1.2.1. Let 𝐹 = 𝐺𝐹 (2𝑛), 𝑛 ≥ 5 odd. With the addition inherited from

the finite field and the multiplication ⊙ defined above, (𝐹,+,⊙) is a pre-semifield

when 𝐵,𝐶 ∈ 𝐺𝐿(𝐹,+).

Proof. First, we show there are no zero divisors for ⊙.

Suppose 𝑥⊙ 𝑦 = 0 and 𝑥 ∕= 0. Then 𝑥𝐵 ∕= 0 since 𝐵 ∈ 𝐺𝐹 (𝐹,+) is a bijection

over 𝐹 and

𝑥𝐵𝑦𝐶 + 𝑥𝐵𝑇 (𝑦𝐶)2 + 𝑦𝐶𝑇 (𝑥𝐵)2 = 0

Dividing by (𝑥𝐵)2 in both sides, we get

𝑥𝐵𝑇 (
𝑦𝐶

𝑥𝐵
)2 +

𝑦𝐶

𝑥𝐵
+ 𝑦𝐶𝑇 = 0

Let 𝑧 =
𝑦𝐶

𝑥𝐵 . Then the above equality becomes 𝑥𝐵𝑇 𝑧2 + 𝑧 + 𝑦𝐶𝑇 = 0. Since 𝑛 is odd,

this equation must be reducible, which implies 𝑧 ∈ 𝐺𝐹 (2). Hence

𝑥⊙ 𝑦 = 𝑥𝐵𝑦𝐶 + (𝑥𝐵𝑇 𝑧𝑥𝐵 + 𝑧𝑥𝐵𝑇𝑥𝐵)2 = 𝑥𝐵𝑦𝐶 = 0

So 𝑦𝐶 = 0 and then 𝑦 = 0.
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Next we show the left distributive law holds in ℱ𝐵,𝐶(𝐹 ) and similarly the right

distributive law also holds.

Since 𝐵,𝐶 are additive bijections on 𝐹 and 𝑇 : 𝐺𝐹 (2𝑛) → 𝐺𝐹 (2), 𝑛 odd, is

also additive,

𝑥⊙ (𝑦 + 𝑧) = 𝑥𝐵(𝑦 + 𝑧)𝐶 + [𝑥𝐵𝑇 (𝑦 + 𝑧)𝐶 + (𝑦 + 𝑧)𝐶𝑇𝑥𝐵]2

= 𝑥𝐵(𝑦𝐶 + 𝑧𝐶) + [𝑥𝐵𝑇 (𝑦𝐶 + 𝑧𝐶) + (𝑦𝐶𝑇 + 𝑧𝐶𝑇 )𝑥𝐵]2

= 𝑥𝐵𝑦𝐶 + 𝑥𝐵𝑧𝐶 + 𝑥𝐵𝑇 (𝑦𝐶)2 + 𝑥𝐵𝑇 (𝑧𝐶)2 + 𝑦𝐶𝑇 (𝑥𝐵)2 + 𝑧𝐶𝑇 (𝑥𝐵)2

= 𝑥⊙ 𝑦 + 𝑥⊙ 𝑧

(3) Albert Semifields

This is a class of finite semifields with characteristic 2 due to Albert [17]. He

simplified the construction of Knuth for the classical binary semifields. Here is Al-

bert’s idea:

Let 𝐹 = 𝐺𝐹 (2𝑛), 𝑛 ≥ 3 odd, with multiplication juxtaposition and write

𝐹 = 𝑆+𝜔𝐺𝐹 (2), where 𝑆 is a (𝑛−1)-dimensional vector space over 𝐺𝐹 (2) containing

1 and 𝜔 is an element not in 𝑆. Define

𝑠 ∗ 𝑡 = 𝑠𝑡, 𝑠 ∗ 𝜔 = 𝜔 ∗ 𝑠 = 𝑠𝜔 + 𝑠2 + 𝑠, 𝜔 ∗ 𝜔 = 𝜔2 + 1

for any 𝑠, 𝑡 ∈ 𝑆. Then the vector space 𝐹 with multiplication ∗ forms a proper

semifield when 𝑛 ≥ 5. Wene [17] proved the following theorem.

Theorem 1.2.4. [17] Let 𝐹 = 𝑆+𝜔𝐺𝐹 (2), where 𝑆 is a (𝑛−1)-dimensional vector

space over 𝐺𝐹 (2) containing 1. Suppose 𝜔̄ = 𝜔 + 𝑠0 for some 𝑠0 in 𝑆. Define

𝑠 ∗ 𝑡 = 𝑠𝑡, 𝑠 ∗ 𝜔̄ = 𝜔̄ ∗ 𝑠 = 𝑠𝜔̄ + 𝑠2 + 𝑠, 𝜔̄ ∗ 𝜔̄ = 𝜔̄2 + 1

for any 𝑠, 𝑡 ∈ 𝑆. The resulting semifields are isomorphic for all 𝑠0 ∈ 𝑆.
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The Albert semifield of order 2𝑛, where 𝑛 ≥ 5 is odd, is denoted 𝐴𝑛(𝑆) in this

work.
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CHAPTER 2

PRIMITIVITY IN FINITE SEMIFIELDS

2.1 Preliminaries

In this section, we are concerned with some basic but helpful tools for the

study of primitivity in semifields. Let 𝒮 = (𝐷,+, ∗) be a finite semifield and 𝐾 be its

center, where 𝐾 ∼= 𝐺𝐹 (𝑞) and 𝑞 is a prime power. Recall 𝒮 is a vector space over 𝐾.

Suppose 𝑑𝑖𝑚𝐾𝒮 = 𝑛. The slope map of any non-zero element 𝑑 ∈ 𝐷 is 𝑇𝑑, specified

by 𝑇𝑑(𝑥) = 𝑥 ∗ 𝑑. Since 𝑇𝑑 is a non-singular linear transformation on 𝐷, it can be

identified with a non-singular 𝑛 × 𝑛 𝐾-matrix, which depends on the choice of the

basis of 𝒮 over 𝐾. Also the slope set for 𝒮 is denoted by 𝜏𝐷 = {𝑇𝑑∣𝑑 ∈ 𝐷}, where 𝑇0

is the zero map.

Definition 2.1.1. Let 𝑉 be a vector space over a finite field 𝐾 ∼= 𝐺𝐹 (𝑞) , 𝑞 = 𝑝𝑟,

with finite dimension n, i.e. 𝑑𝑖𝑚𝐾𝑉 = 𝑛. Then a set of linear maps

𝜏 ⊆ 𝐺𝐿(𝑛,𝐾) ∪ {0𝑛} := 𝐺𝐿(𝑛,𝐾)

is a spread set on 𝑉 if

∣𝜏 ∣ = ∣𝑉 ∣ = 𝑞𝑛, 𝜏 ⊃ {0𝑛, 1𝑛}, 𝑎𝑛𝑑 𝐴, 𝐵 ∈ 𝜏 ⇒ 𝐴−𝐵 ∈ 𝐺𝐿(𝑛,𝐾)

Definition 2.1.2. We say that the set 𝜏 is additive if it is closed under addition.

Proposition 2.1.1. If 𝒮 is a semifield, then the slope set 𝜏𝐷 defined above is an

additive spread set of 𝒮, which is also a vector space over 𝐾.

Proof. We first show ∣𝜏𝐷∣ = ∣𝒮∣ = 𝑞𝑛. First notice that

𝑇𝑚 = 𝑇𝑛 ⇔ 𝑥𝑇𝑚 = 𝑥𝑇𝑛 ⇔ 𝑥 ∗𝑚 = 𝑥 ∗ 𝑛, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥 ∈ 𝑆
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When 𝑥 = 1, we conclude 𝑚 = 𝑛.

The mapping 𝒮 → 𝜏𝐷 that maps 𝑑 ∈ 𝑆 into 𝑇𝑑 ∈ 𝜏𝐷, is 1 − 1; hence onto.

Therefore ∣𝜏𝐷∣ = ∣𝒮∣ = 𝑞𝑛. For any 𝑇𝑚, 𝑇𝑛 ∈ 𝜏𝐷,

𝑥(𝑇𝑚 − 𝑇𝑛) = 𝑥𝑇𝑚 − 𝑥𝑇𝑛 = 𝑥 ∗𝑚− 𝑥 ∗ 𝑛 = 𝑥 ∗ (𝑚− 𝑛)

so 𝑇𝑚 − 𝑇𝑛 = 𝑇𝑚−𝑛 ∈ 𝜏𝐷. Since 𝑇0, 𝑇1 ∈ 𝜏𝐷, the conclusion holds.

Suppose 𝒮 is a vector space over its center 𝐾 with basis {𝜀1 = 1, 𝜀2, ⋅ ⋅ ⋅ , 𝜀𝑛}.
Then all the elements of 𝑆 are linear combinations of {𝜀1 = 1, 𝜀2, ⋅ ⋅ ⋅ , 𝜀𝑛}. The

additive spread set of 𝒮, 𝜏𝐷, is a vector space over 𝐾 according to Remark 2.3 [6].

Hence 𝜏𝐷 and 𝒮 are isomorphic as vector spaces over 𝐾. Therefore {𝑇1, 𝑇𝜀2 , ⋅ ⋅ ⋅ , 𝑇𝜀𝑛}
is a 𝐾-basis of 𝜏𝐷.

Definition 2.1.3. The 𝑛×𝑛 matrix associated with 𝑇𝑑 is called the right slope matrix

of 𝑑 and is denoted 𝑅𝑑.

Remark 2.1.1.

(1) 𝑅𝑑 is nonsingular, and so det(𝑅𝑑) ∕= 0.

(2) Knuth [11] introduced two isotopism classes of semifields with 16 elements:

system 𝑉 and system 𝑊 . Let 𝐹 = 𝐺𝐹 (4), so that 𝐹 has elements 0, 1, 𝜔, 𝜔2 = 1+𝜔.

The elements of system 𝑉 are of the form 𝑢+𝜆𝑣, where 𝑢, 𝑣 ∈ 𝐹 . Addition is defined

in an obvious way:

(𝑢+ 𝜆𝑣) + (𝑥+ 𝜆𝑦) = (𝑢+ 𝑥) + 𝜆(𝑣 + 𝑦) (2.1)

Multiplication is defined by the following rule

(𝑢+ 𝜆𝑣)(𝑥+ 𝜆𝑦) = (𝑢𝑥+ 𝑣2𝑦) + 𝜆(𝑣𝑥+ 𝑢2𝑦 + 𝑣2𝑦2) (2.2)

The set of all the elements in 𝐹 with addition (2.1) and multiplication (2.2) form a

semifield, called system 𝑉 .
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The elements in system 𝑊 are the same as the elements in system 𝑉 . But

the multiplication in 𝑊 , defined below (2.3), is different from the multiplication in

system 𝑉 .

(𝑢+ 𝜆𝑣)(𝑥+ 𝜆𝑦) = (𝑢𝑥+ 𝜔𝑣2𝑦) + 𝜆(𝑣𝑥+ 𝑢2𝑦) (2.3)

By Proposition 2.1.1, since 𝜏𝐷 is an additive spread set, it is closed under

addition. Wene [16] proved that system 𝑉 and system 𝑊 are both right primitive.

In his proof, two special matrices 𝑀1 =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

⎞⎟⎟⎠ and 𝑀2 =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1

⎞⎟⎟⎠
were used. The characteristic polynomials of 𝑀1 and 𝑀2 are 𝑥

4+𝑥+1 and 𝑥4+𝑥3+1

respectively, which are both irreducible over 𝐺𝐹 (2) of order 15 by Corollary 3.4 [13].

However, since {1, 𝜔, 𝜆, 𝜆𝜔} is an ordered basis of system 𝑉 or system 𝑊 over

𝐺𝐹 (2), then the set {𝑅1, 𝑅𝜔, 𝑅𝜆, 𝑅𝜆𝜔} is an ordered basis of 𝜏𝐷 over 𝐺𝐹 (2); so all

the slope matrices should be a linear combination of them. But neither 𝑀1 nor 𝑀2

is, which implies there does not exist an element in 𝒮 = (𝐷,+, ∗) with 𝑀1 or 𝑀2 as

the right slope matrix.

By Theorem 2.2.2, we found all the right primitive elements in Knuth’s system

𝑉 and system 𝑊 . In system 𝑉 , the elements 𝜔 + 𝜆, 𝜔 + 𝜆𝜔, 1 + 𝜔 + 𝜆, 1 + 𝜔 + 𝜆𝜔,

𝜔 + 𝜆+ 𝜆𝜔, and 1 + 𝜔 + 𝜆+ 𝜆𝜔, have right slope matrices as follows:

𝑅𝜔+𝜆 =

⎛⎜⎜⎝
0 1 1 1
1 1 0 1
1 1 1 0
0 1 1 0

⎞⎟⎟⎠ 𝑅𝜔+𝜆𝜔 =

⎛⎜⎜⎝
0 1 0 1
1 1 1 0
0 1 1 1
1 0 0 0

⎞⎟⎟⎠
𝑅1+𝜔+𝜆 =

⎛⎜⎜⎝
1 1 1 1
1 0 0 1
1 1 0 0
0 1 1 1

⎞⎟⎟⎠ 𝑅1+𝜔+𝜆𝜔 =

⎛⎜⎜⎝
1 1 0 1
1 0 1 0
0 1 0 1
1 0 0 1

⎞⎟⎟⎠
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𝑅𝜔+𝜆+𝜆𝜔 =

⎛⎜⎜⎝
0 1 1 0
1 1 1 1
1 0 0 0
1 1 0 1

⎞⎟⎟⎠ 𝑅1+𝜔+𝜆+𝜆𝜔 =

⎛⎜⎜⎝
1 1 1 0
1 0 1 1
1 0 1 0
1 1 0 0

⎞⎟⎟⎠
All the matrices above have right characteristic polynomial 𝑥4 + 𝑥 + 1, which

has order 15. So system 𝑉 has 6 right primitive elements.

Applying the same method we found that system 𝑊 has 6 right primitive

elements too, which are also 𝜔 + 𝜆, 𝜔 + 𝜆𝜔, 1 + 𝜔 + 𝜆, 1 + 𝜔 + 𝜆𝜔, 𝜔 + 𝜆+ 𝜆𝜔, and

1 + 𝜔 + 𝜆+ 𝜆𝜔.

Before our main results, we list all the theorems and lemmas that are needed

in our research.

Result 2.1.1. (Lemma 3.6, [13]) Let 𝑐 be a positive integer. Then the polynomial

𝑓 ∈ 𝐺𝐹 (𝑞)[𝑥] with 𝑓(0) ∕= 0 divides 𝑥𝑐 − 1 if and only if 𝑜𝑟𝑑(𝑓) divides 𝑐.

Result 2.1.2. (Theorem 3.8, [13]) Let 𝑔 ∈ 𝐺𝐹 (𝑞)[𝑥] be irreducible over 𝐺𝐹 (𝑞) with

𝑔(0) ∕= 0 and 𝑜𝑟𝑑(𝑔) = 𝑒, and let 𝑓 = 𝑔𝑏 with a positive integer 𝑏. Let 𝑡 be the smallest

integer with 𝑝𝑒 ≥ 𝑏, where 𝑝 is the characteristic of 𝐹𝑞. Then 𝑜𝑟𝑑(𝑓) = 𝑒𝑝𝑡.

Result 2.1.3. (Theorem 3.9, [13]) Let 𝑔1, ⋅ ⋅ ⋅ , 𝑔𝑘 be pairwise relatively prime nonzero

polynomials over 𝐺𝐹 (𝑞), and let 𝑓 = 𝑔1𝑔2 ⋅ ⋅ ⋅ 𝑔𝑘. Then 𝑜𝑟𝑑(𝑓) is equal to the least

common multiple of 𝑜𝑟𝑑(𝑔1), ⋅ ⋅ ⋅ , 𝑜𝑟𝑑(𝑔𝑘), i.e., 𝑜𝑟𝑑(𝑓) = [𝑜𝑟𝑑(𝑔1), ⋅ ⋅ ⋅ , 𝑜𝑟𝑑(𝑔𝑘)].
Result 2.1.4. (Theorem 3.11, [13]) Let 𝐺𝐹 (𝑞) be a finite field of characteristic 𝑝,

and let 𝑓 ∈ 𝐺𝐹 (𝑞)[𝑥] be a polynomial of positive degree with 𝑓(0) ∕= 0. Let 𝑓 =

𝑎𝑓 𝑏1
1 ⋅ ⋅ ⋅ 𝑓 𝑏𝑘

𝑘 , where 𝑎 ∈ 𝐺𝐹 (𝑞), 𝑏1, 𝑏2, ⋅ ⋅ ⋅ , 𝑏𝑘 ∈ 𝑁 , and 𝑓1, ⋅ ⋅ ⋅ , 𝑓𝑘 are distinct monic

irreducible polynomials in 𝐺𝐹 (𝑞)[𝑥] be the canonical factorization of 𝑓 in 𝐺𝐹 (𝑞)[𝑥].

Then 𝑜𝑟𝑑(𝑓) = 𝑒𝑝𝑡, where 𝑒 = [𝑜𝑟𝑑(𝑓1), ⋅ ⋅ ⋅ , 𝑜𝑟𝑑(𝑓𝑘)] and 𝑡 is the smallest integer with

𝑝𝑡 ≥max(𝑏1, ⋅ ⋅ ⋅ , 𝑏𝑘).
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Result 2.1.5. (Lemma 1, [15]) Let 𝑍(𝐷) = 𝐺𝐹 (𝑝𝑐) be the center of a finite semifield

𝐷 and let 𝜔 ∈ 𝐷∗ such that

𝜔𝑟) = 𝜆𝑟−1𝜔
𝑟−1) + ⋅ ⋅ ⋅+ 𝜆1𝜔 + 𝜆0𝑒

for some 𝜆0, ⋅ ⋅ ⋅ , 𝜆𝑟−1 ∈ 𝐺𝐹 (𝑝𝑐). If 𝑡 ∈ 𝑁 is the order of the polynomial 𝑝(𝑥) =

𝑥𝑟 − 𝜆𝑟−1𝑥
𝑟−1 − ⋅ ⋅ ⋅ − 𝜆1𝑥 − 𝜆0 ∈ 𝐺𝐹 (𝑝𝑐)[𝑥], i.e., the smallest natural number such

that 𝑝(𝑥)∣(𝑥𝑡 − 𝑒), then the element 𝜔 satisfies the equation 𝜔𝑡) = 𝑒.

Result 2.1.6. (Lemma 3.1, [13]) If 𝑓(𝑥) ∈ 𝐺𝐹 (𝑞)[𝑥] is a polynomial of degree 𝑛 ≥ 1

with 𝑓(0) ∕= 0, then there exists a positive integer 𝑒 ≤ 𝑞𝑛 − 1, such that 𝑓(𝑥)∣𝑥𝑒 − 1.

The following well-known fact is used in the proof of the main result of this

chapter; we include a proof for completeness.

Lemma 2.1.1. Suppose 𝑝 is a prime number. Then (𝑝𝑛1 − 1)(𝑝𝑛2 − 1) ⋅ ⋅ ⋅ (𝑝𝑛𝑡 − 1) <

𝑝𝑛1+⋅⋅⋅+𝑛𝑡 − 1, where all the 𝑛′
𝑖𝑠 are positive integers and 𝑡 > 1.

Proof. Induction is applied to prove this result. First,

(𝑝𝑛1 − 1)(𝑝𝑛2 − 1) = 𝑝𝑛1+𝑛2 − 𝑝𝑛1 − 𝑝𝑛2 + 1

= 𝑝𝑛1+𝑛2 − 1− 𝑝𝑛1 − 𝑝𝑛2 + 2

Let Δ = −𝑝𝑛1 − 𝑝𝑛2 + 2. Since 𝑝 is a prime number, and 𝑛𝑖 ≥ 1, then

𝑝𝑛1 + 𝑝𝑛2 ≥ 21 + 21 = 4 > 2

Therefore Δ < 0 and (𝑝𝑛1 − 1)(𝑝𝑛2 − 1) < 𝑝𝑛1+𝑛2 − 1.

Second, suppose (𝑝𝑛1 − 1)(𝑝𝑛2 − 1) ⋅ ⋅ ⋅ (𝑝𝑛𝑘 − 1) < 𝑝𝑛1+⋅⋅⋅+𝑛𝑘 − 1. Then

(𝑝𝑛1 − 1) ⋅ ⋅ ⋅ (𝑝𝑛𝑘 − 1)(𝑝𝑛𝑘+1 − 1)

< (𝑝𝑛1+⋅⋅⋅+𝑛𝑘 − 1)(𝑝𝑛𝑘+1 − 1)

= 𝑝𝑛1+⋅⋅⋅+𝑛𝑘+𝑛𝑘+1 − 𝑝𝑛1+⋅⋅⋅+𝑛𝑘 − 𝑝𝑛𝑘+1 + 1

= 𝑝𝑛1+⋅⋅⋅+𝑛𝑘+𝑛𝑘+1 − 1− 𝑝𝑛1+⋅⋅⋅+𝑛𝑘 − 𝑝𝑛𝑘+1 + 2
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Let Δ = −𝑝𝑛1+⋅⋅⋅+𝑛𝑘 − 𝑝𝑛𝑘+1 + 2. Then Δ < 0 and

(𝑝𝑛1 − 1) ⋅ ⋅ ⋅ (𝑝𝑛𝑘 − 1)(𝑝𝑛𝑘+1 − 1) < 𝑝𝑛1+⋅⋅⋅+𝑛𝑘+𝑛𝑘+1 − 1

2.2 Equivalent Condition for Right Primitivity

Let 𝒮 = (𝒟,+, ∗) be a finite semifield with order 𝑞𝑛. The element 𝜔 ∈ 𝒮 is said

to be a right (left) primitive element of 𝒮 if each element in 𝐷∗ can be represented

as some right (left) power of 𝜔. Note:

𝜔1) = 𝜔, 𝜔2) = 𝜔 ∗ 𝜔, ⋅ ⋅ ⋅ , 𝜔𝑛) = 𝜔𝑛−1) ∗ 𝜔

(𝜔(1 = 𝜔, 𝜔(2 = 𝜔 ∗ 𝜔, ⋅ ⋅ ⋅ , 𝜔(𝑛 = 𝜔 ∗ 𝜔(𝑛−1)

If 𝐾 = 𝑍(𝐷), the center of 𝒮, has order 𝑞, then 𝒮 is right primitive if and only if

there exists at least one element 𝜔 ∈ 𝒮 such that 𝜔𝑞𝑛−1) = 1, where 𝑞𝑛 − 1 is the

least positive integer satisfying the above condition. We also say 𝒮 is primitive if 𝒮
is right and left primitive.

Theorem 2.2.1. Let 𝑑 ∈ 𝒮. Then

𝑎0 + 𝑎1𝑑+ 𝑎2𝑑
2) + ⋅ ⋅ ⋅+ 𝑎𝑛𝑑

𝑛) = 0, 𝑎𝑖 ∈ 𝐾

if and only if

𝑎0𝐼𝑛 + 𝑎1𝑅𝑑 + 𝑎2𝑅
2
𝑑 + ⋅ ⋅ ⋅+ 𝑎𝑛𝑅

𝑛
𝑑 = 0, 𝑎𝑖 ∈ 𝐾

where 𝑅𝑑 is the right slope matrix of 𝑑.

Proof. First we show 𝑎𝑑𝑘) = 𝑎𝑅𝑘
𝑑, 𝑎 ∈ 𝐾, 𝑑 ∈ 𝐷, for all positive integers 𝑘.

If 𝑘 = 1, 𝑎𝑑 = 𝑎 ∗ 𝑑 = 𝑇𝑑(𝑎) = 𝑎𝑅𝑑. Suppose 𝑎𝑑𝑖) = 𝑎𝑅𝑖
𝑑, for some 𝑖 > 1. Then

𝑎𝑑𝑖+1) = 𝑎 ∗ 𝑑𝑖+1) = 𝑎 ∗ (𝑑𝑖) ∗ 𝑑) = (𝑎 ∗ 𝑑𝑖)) ∗ 𝑑 = (𝑎𝑅𝑖
𝑑) ∗ 𝑑 = (𝑎𝑅𝑖

𝑑)𝑅𝑑 = 𝑎𝑅𝑖+1
𝑑 .
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Hence,

𝑎0 + 𝑎1𝑑+ 𝑎2𝑑
2) + ⋅ ⋅ ⋅+ 𝑎𝑛𝑑

𝑛) = 0 ⇔ 𝑎0𝐼𝑛 + 𝑎1𝑅𝑑 + 𝑎2𝑅
2
𝑑 + ⋅ ⋅ ⋅+ 𝑎𝑛𝑅

𝑛
𝑑 = 0

Note: If 𝑎0 + 𝑎1𝑑+ 𝑎2𝑑
2) + ⋅ ⋅ ⋅+ 𝑎𝑛𝑑

𝑛) = 0, 𝑎𝑖 ∈ 𝐾, we say that 𝑑 is a right root of

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥+ 𝑎2𝑥
2 + ⋅ ⋅ ⋅+ 𝑎𝑛𝑥

𝑛 = 0, 𝑎𝑖 ∈ 𝐾.

Remark 2.2.1. When Theorem 2.2.1 is applied, the semifield 𝒮 must be considered

as a vector space over its center; otherwise it is not necessarily true.

For example, let 𝐾 = 𝐺𝐹 (3). In [18] Jha-Cordero observed that the semifield

𝐷𝑁 = (𝐾5,+, ∗) has an ordered basis {𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5} over 𝐾, where

𝐸1 = (0, 0, 0, 1, 0), 𝐸2 = (1, 1, 2, 0, 1), 𝐸3 = (0, 0, 0, 0, 2),

𝐸4 = (0, 1, 0, 2, 0), 𝐸5 = (2, 2, 0, 1, 1)

Let 𝑑 = 𝐸2 and 𝑀 denote the slope map of 𝑑 in the semifield 𝐷𝑁 = (𝐾5,+, ∗). Then

𝑀 =

⎛⎜⎜⎜⎜⎝
0 0 0 1 1
0 1 0 1 2
1 2 0 2 2
1 1 2 0 1
2 2 2 1 0

⎞⎟⎟⎟⎟⎠. Obviously, 2𝑑3)+2𝑑4)+𝑑5) = 0, but 2𝑀3+2𝑀4+𝑀5 ∕= 0.

Theorem 2.2.1 is not true for this example, since 𝐾 is not the center of the

semifield 𝐷𝑁 and then {𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5} is not a basis over its center. In 𝐷𝑁 ,

𝐸3 = (0, 0, 0, 0, 2), is not in the center, because 𝐸2 ∗ 𝐸3 ∕= 𝐸3 ∗ 𝐸2. Here is a copy of

the table of the multiplication in 𝐷𝑁 as given in [18].

∗ 𝐸1 𝐸2 𝐸3 𝐸4 𝐸5

𝐸1 3 127 2 33 220
𝐸2 127 130 37 168 207
𝐸3 2 123 50 154 27
𝐸4 33 175 97 2 64
𝐸5 220 70 64 55 2
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Corollary 2.2.1. Let 𝑓(𝑥) = 𝑥𝑛 + 𝑎𝑛−1𝑥
𝑛−1 + ⋅ ⋅ ⋅+ 𝑎1𝑥+ 𝑎0, 𝑎𝑖 ∈ 𝐾, be the charac-

teristic polynomial of 𝑅𝑑. Then 𝑑 is a right root of 𝑓 ; that is,

𝑑𝑛) + 𝑎𝑛−1𝑑
𝑛−1) + ⋅ ⋅ ⋅+ 𝑎1𝑑+ 𝑎0 = 0

Proof. Since 𝑓(𝑥) is the characteristic polynomial of 𝑅𝑑, then 𝑅𝑑 is a root of 𝑓(𝑥).

i.e.,

𝑅𝑛
𝑑 + 𝑎𝑛−1𝑅

𝑛−1
𝑑 + ⋅ ⋅ ⋅+ 𝑎1𝑅𝑑 + 𝑎0𝐼𝑛 = 0

The result is easily obtained from Theorem 2.2.1.

Definition 2.2.1. The characteristic polynomial of 𝑅𝑑 is called the right characteristic

polynomial of 𝑑.

Remark 2.2.2. Let 𝑓(𝑥) = 𝑥𝑛 + 𝑎𝑛−1𝑥
𝑛−1 + ⋅ ⋅ ⋅+ 𝑎1𝑥+ 𝑎0 be the right characteristic

polynomial of 𝑑 ∈ 𝒮. Suppose 𝑓 is reducible over 𝐾 = 𝑍(𝐷); say 𝑓(𝑥) = 𝑓1(𝑥)𝑓2(𝑥),

where

𝑓1(𝑥) = 𝑥𝑚 +
𝑚−1∑
𝑖=0

𝑏𝑖𝑥
𝑖, 𝑓2(𝑥) = 𝑥𝑘 +

𝑘−1∑
𝑖=0

𝑐𝑖𝑥
𝑖

𝑚, 𝑘 > 0, and 𝑚 + 𝑘 = 𝑛. By Corollary 2.2.1, 𝑑𝑛) + 𝑎𝑛−1𝑑
𝑛−1) + ⋅ ⋅ ⋅ + 𝑎1𝑑 + 𝑎0 = 0.

However, it is possible for 𝑑 not to be a right root of either factor, as the following

example shows.

Example 2.2.1. In system 𝑊 , the right characteristic polynomial of 𝜆 is 𝑥4+𝑥2+1;

so 𝜆4)+𝜆2)+1 = 0. Over 𝐺𝐹 (2) we have 𝑥4+𝑥2+1 = (𝑥2+𝑥+1)2, but 𝜆2)+𝜆+1 =

𝜔 + 𝜆+ 1 ∕= 0.

Note: 𝑓(𝑑)) equals 𝑓1(𝑑))𝑓2(𝑑)) if and only if 𝑑 associates with every element in 𝑆; so

most often 𝑓(𝑑)) ∕= 𝑓1(𝑑))𝑓2(𝑑)).

Lemma 2.2.1. Let 𝑓(𝑥) be the right characteristic polynomial of 𝑑 ∈ 𝐷∗ over 𝐾 =

𝐺𝐹 (𝑞). Then 𝑜𝑟𝑑(𝑓(𝑥)) ≤ 𝑞𝑛 − 1.
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Proof. 𝑓(𝑥) is a polynomial over𝐾 with degree 𝑛, and 𝑓(0) ∕= 0, since 𝑓(0) =det(−𝑅𝑑)

and 𝑅𝑑 is nonsingular. By Result 2.1.6 and the definition of order we get 𝑜𝑟𝑑(𝑓(𝑥)) ≤
𝑞𝑛 − 1.

Now we give the main result of this chapter.

Theorem 2.2.2. Suppose 𝒮 = (𝐷,+, ∗) is a semifield of order 𝑞𝑛, with center

𝐾 = 𝐺𝐹 (𝑞). Let 𝑑 be a non-zero element in 𝒮 and 𝑓(𝑥) be its right characteris-

tic polynomial. Then 𝑑 is a right primitive element if and only if 𝑜𝑟𝑑(𝑓(𝑥)) = 𝑞𝑛 − 1.

Proof. The proof follows from the following three lemmas.

Lemma 2.2.2. Let 𝑓(𝑥) be the right characteristic polynomial of 𝑑 ∈ 𝐷∗. Suppose

𝑓 is irreducible over 𝐾. If 𝑜𝑟𝑑(𝑓(𝑥)) = 𝑞𝑛 − 1, 𝑑 is a right primitive element; if

𝑜𝑟𝑑(𝑓(𝑥)) < 𝑞𝑛 − 1, 𝑑 is not a primitive element.

Proof. Suppose 𝑓(𝑥) = 𝑥𝑛 + 𝑎𝑛−1𝑥
𝑛−1 + ⋅ ⋅ ⋅+ 𝑎1𝑥+ 𝑎0, 𝑎𝑖 ∈ 𝐾. Then

𝑅𝑛
𝑑 + 𝑎𝑛−1𝑅

𝑛−1
𝑑 + ⋅ ⋅ ⋅+ 𝑎1𝑅𝑑 + 𝑎0𝐼𝑛 = 0

i.e., 𝑅𝑑 is a root of 𝑓(𝑥). By Theorem 2.2.1, 𝑑𝑛) + 𝑎𝑛−1𝑑
𝑛−1) + ⋅ ⋅ ⋅+ 𝑎1𝑑+ 𝑎0 = 0.

If 𝑜𝑟𝑑(𝑓(𝑥)) = 𝑞𝑛 − 1, by Result 2.1.5, 𝑑𝑞
𝑛−1) = 1.

In order to show 𝑑 is a right primitive element, we also need to show 𝑑𝑖) ∕= 1,

for all 𝑖 such that 0 < 𝑖 < 𝑞𝑛 − 1.

Suppose 𝑑𝑘) = 1 for some 𝑘, 0 < 𝑘 < 𝑞𝑛 − 1. Then 𝑑𝑘) − 1 = 0, and so

𝑅𝑘
𝑑 − 𝐼𝑛 = 0, i.e., 𝑅𝑑 is a root of 𝑥𝑘 − 1. By hypothesis, 𝑓(𝑥) is the characteristic

polynomial of 𝑑, so it is monic and irreducible over 𝐾. Hence 𝑓(𝑥) is the minimal

polynomial of 𝑅𝑑 and 𝑓(𝑥)∣𝑥𝑘−1. If 𝑜𝑟𝑑(𝑓(𝑥)) = 𝑞𝑛−1, then by Result 2.1.1, 𝑞𝑛−1∣𝑘.
But this never happens since 0 < 𝑘 < 𝑞𝑛 − 1. Therefore, 𝑞𝑛 − 1 is the least positive

integer satisfying 𝑑𝑞
𝑛−1) = 1; hence 𝑑 is a right primitive element of 𝒮, i.e., 𝒮 is right

primitive.
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If 𝑜𝑟𝑑(𝑓(𝑥)) = 𝑚 < 𝑞𝑛 − 1, then 𝑓(𝑥)∣𝑥𝑚 − 1. Now 𝑑𝑛) + 𝑎𝑛−1𝑑
𝑛−1) + ⋅ ⋅ ⋅ +

𝑎1𝑑 + 𝑎0 = 0 implies 𝑑𝑚) = 1 by Result 2.1.5. But 𝑚 < 𝑞𝑛 − 1, so 𝑑 can’t be a right

primitive element of 𝒮.

Notice that if all the nonzero elements of 𝒮 have characteristic polynomial with

order less that 𝑞𝑛 − 1, then 𝒮 is not right primitive. This argument was used by I.F.

Rúa [15], when he showed that the Knuth binary semifield of order 32 is neither right

nor left primitive. In the proof he showed that any nonzero element 𝜔 of trace 0 satisfy

𝜔5) + 𝜔 + 1 = 0, and any nonzero element 𝜔 of trace 1 satisfy 𝜔5) + 𝜔4) + 1 = 0. The

characteristic polynomial of each nonzero element is either 𝑥5 + 𝑥+ 1 or 𝑥5 + 𝑥4 + 1;

each of them have order 21, which is less than 31(= 25 − 1).

Lemma 2.2.3. If 𝜔 ∈ 𝐷∗ is a right primitive element of 𝒮, then the right character-

istic polynomial of 𝜔 has order 𝑞𝑛 − 1.

Proof. Let 𝑓(𝑥) = 𝑥𝑛 + 𝑎𝑛−1𝑥
𝑛−1 + ⋅ ⋅ ⋅+ 𝑎1𝑥+ 𝑎0, 𝑎𝑖 ∈ 𝐾, be the right characteristic

polynomial of 𝜔. Then 𝑓(𝑅𝜔) = 0, i.e.,

𝑅𝑛
𝜔 + 𝑎𝑛−1𝑅

𝑛−1
𝜔 + ⋅ ⋅ ⋅+ 𝑎1𝑅𝜔 + 𝑎0𝐼𝑛 = 0

By Theorem 2.2.1,

𝜔𝑛) + 𝑎𝑛−1𝜔
𝑛−1) + ⋅ ⋅ ⋅+ 𝑎1𝜔 + 𝑎0 = 0

Let 𝑚 = 𝑜𝑟𝑑(𝑓(𝑥)), so 𝜔𝑚) = 1. We need to show 𝑚 = 𝑞𝑛 − 1. Since 𝜔 is a right

primitive element of 𝒮 we have 𝑞𝑛−1 is the least positive integer such that 𝜔𝑞𝑛−1) = 1.

Hence 𝑚 ≥ 𝑞𝑛 − 1. But 𝑜𝑟𝑑(𝑓(𝑥)) ≤ 𝑞𝑛 − 1 according to Lemma 2.1, so 𝑚 = 𝑞𝑛 − 1,

i.e., 𝑜𝑟𝑑(𝑓(𝑥)) = 𝑞𝑛 − 1.

Lemma 2.2.4. Let 𝑓(𝑥) be the characteristic polynomial of 𝑑 ∈ 𝐷∗, and suppose 𝑓 is

reducible over 𝐾, where 𝐾 = 𝐺𝐹 (𝑞) = 𝐺𝐹 (𝑝𝑟) for some 𝑟, and 𝑝 is the characteristic

of 𝒮. Then 𝑜𝑟𝑑(𝑓(𝑥)) < 𝑞𝑛 − 1.
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Proof. Suppose 𝑓 = 𝑓 𝑏1
1 ⋅ ⋅ ⋅ 𝑓 𝑏𝑘

𝑘 is the canonical factorization of 𝑓 over 𝐾, where

𝑓1, ⋅ ⋅ ⋅ , 𝑓𝑘 are distinct monic irreducible polynomials in 𝐾[𝑥] and 𝑏𝑖 ≥ 1. By Result

2.1.4, 𝑜𝑟𝑑(𝑓(𝑥)) = 𝑒𝑝𝑡, where 𝑒 = [𝑜𝑟𝑑(𝑓1), ⋅ ⋅ ⋅ , 𝑜𝑟𝑑(𝑓𝑘)], and 𝑡 is the smallest integer

with 𝑝𝑡 ≥ 𝑚𝑎𝑥(𝑏1, ⋅ ⋅ ⋅ , 𝑏𝑘).
Case 1: If there is one 𝑏𝑖 greater than 1, then 𝑝𝑡 ≥ 𝑚𝑎𝑥(𝑏1, ⋅ ⋅ ⋅ , 𝑏𝑘) > 1 implies

𝑡 > 0. If 𝑜𝑟𝑑(𝑓(𝑥)) = 𝑞𝑛 − 1, then 𝑜𝑟𝑑(𝑓(𝑥)) = 𝑝𝑟𝑛 − 1 = 𝑒𝑝𝑡, so 𝑝∣𝑝𝑟𝑛 − 1. This is

obviously impossible, so 𝑜𝑟𝑑(𝑓(𝑥)) ∕= 𝑞𝑛 − 1 and 𝑜𝑟𝑑(𝑓(𝑥)) < 𝑞𝑛 − 1 by Lemma 2.1.

Case 2: If all the 𝑏𝑖 are 1, then 𝑓(𝑥) = 𝑓1(𝑥)𝑓2(𝑥) ⋅ ⋅ ⋅ 𝑓𝑘(𝑥), and ord(𝑓(𝑥)) =

[𝑜𝑟𝑑(𝑓1(𝑥)), ⋅ ⋅ ⋅ , 𝑜𝑟𝑑(𝑓𝑘(𝑥))]. Suppose 𝑑𝑒𝑔(𝑓𝑖(𝑥)) = 𝑛𝑖, then 𝑑𝑒𝑔(𝑓(𝑥)) = 𝑛1 + 𝑛2 +

⋅ ⋅ ⋅+ 𝑛𝑘 = 𝑛 and

𝑜𝑟𝑑(𝑓(𝑥)) = [𝑜𝑟𝑑(𝑓1(𝑥)), ⋅ ⋅ ⋅ , 𝑜𝑟𝑑(𝑓𝑘(𝑥))]

≤ [𝑞𝑛1 − 1, ⋅ ⋅ ⋅ 𝑞𝑛𝑘 − 1] ≤ (𝑞𝑛1 − 1) ⋅ ⋅ ⋅ (𝑞𝑛𝑘 − 1)

< 𝑞𝑛1+𝑞2+⋅⋅⋅+𝑛𝑘 − 1 = 𝑞𝑛 − 1. (𝑏𝑦 𝐿𝑒𝑚𝑚𝑎 2.1.1)

Remark 2.2.3. In [8], Hentzel and Rúa provided a proof of Theorem 2.2.2 using the

technique of linear recurring sequences. Also Gow and Sheekey [14] gave a different

proof for this result using slope matrices.

2.3 Primitivity of Classical Knuth Binary Semifields of order 215, 217, 219

Let 𝐹 = 𝐺𝐹 (2𝑡), 𝑡 odd, with multiplication juxtaposition. The following defines

a multiplication for a commutative pre-semifield (𝐹,+, ∘) due to D.E. Knuth [12]. For

any 𝑥, 𝑦 ∈ 𝐹 , define

𝑥 ∘ 𝑦 = 𝑥𝑦 + (𝑥𝑦𝑇 + 𝑦𝑥𝑇 )2
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where 𝑇 : 𝐺𝐹 (2𝑡) −→ 𝐺𝐹 (2) is the trace function. Choose a nonzero element 𝑒 in 𝐹

and define another multiplication ∗ by

𝑥 ∗ 𝑦 = (𝑥′ ∘ 𝑒) ∗ (𝑒 ∘ 𝑦′) = 𝑥′ ∘ 𝑦′, ∀𝑥, 𝑦 ∈ 𝐹.

Then (𝐹,+, ∗) is a commutative semifield called a classical Knuth binary semifield.

Rúa [15] indicated that from his computations it follows that this semifield with

𝐹 = 𝐺𝐹 (2𝑡), 𝑡 = 7, 9, 11, 13 is primitive. We investigate primitivity of the classical

Knuth binary semifields of order 215, 217, and 219 in this section.

In the following, 𝑅1 represents the mapping 𝑥 → 𝑥 ∘ 1. Also 𝑒 is chosen to be

1, the identity of the finite field.

Theorem 2.3.1. The classical Knuth binary semifields of order 2𝑡, where 𝑡 = 15, 17, 19,

are left and right primitive.

Proof. Suppose 𝑓(𝑥) is an irreducible polynomial over 𝐺𝐹 (2) associated with the

field extension 𝐺𝐹 (2𝑡) over 𝐺𝐹 (2). Then {1, 𝜃, ⋅ ⋅ ⋅ , 𝜃𝑡−1} forms a basis of 𝐺𝐹 (2𝑡)

over 𝐺𝐹 (2), where 𝜃 is a root of 𝑓(𝑥). The set {1, 𝜃, ⋅ ⋅ ⋅ , 𝜃𝑡−1} is also a basis of the

classical Knuth binary semifield ℱ = (𝐺𝐹 (2𝑡),+, ∗) and {𝑇1, 𝑇𝜃, ⋅ ⋅ ⋅ , 𝑇𝜃𝑡−1} is a basis

of the spread set 𝜏𝐷 of ℱ . By Theorem 2.2.2, if there exists an element 𝑑 ∈ ℱ , whose

right characteristic polynomial has order 2𝑡 − 1, then ℱ is primitive. Next we study

each of the cases under discussion.

When 𝑡 = 15, choose 𝑓(𝑥) = 𝑥15 + 𝑥+ 1 and let 𝜃 be a root of 𝑓(𝑥). Then

{1, 𝜃, 𝜃2, ⋅ ⋅ ⋅ , 𝜃14}

is a basis of 𝐺𝐹 (215) over 𝐺𝐹 (2). By Lemma 1 [2], (𝜃𝑖)𝑇 = 0 for all 0 < 𝑖 < 15.

First we compute 𝑅1(𝜃
𝑖), for 0 ≤ 𝑖 < 15. Since

𝑅1(𝜃
𝑖) = 𝜃𝑖 ∘ 1 = 𝜃𝑖 + (𝜃𝑖)2 + (𝜃𝑖)𝑇
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we have

𝑅1(1) = 1

𝑅1(𝜃) = 𝜃 + 𝜃2

𝑅1(𝜃
2) = 𝜃2 + 𝜃4

𝑅1(𝜃
3) = 𝜃3 + 𝜃6

𝑅1(𝜃
4) = 𝜃4 + 𝜃8

𝑅1(𝜃
5) = 𝜃5 + 𝜃10

𝑅1(𝜃
6) = 𝜃6 + 𝜃12

𝑅1(𝜃
7) = 𝜃7 + 𝜃14

𝑅1(𝜃
8) = 𝜃 + 𝜃2 + 𝜃8

𝑅1(𝜃
9) = 𝜃3 + 𝜃4 + 𝜃9

𝑅1(𝜃
10) = 𝜃5 + 𝜃6 + 𝜃10

𝑅1(𝜃
11) = 𝜃7 + 𝜃8 + 𝜃11

𝑅1(𝜃
12) = 𝜃9 + 𝜃10 + 𝜃12

𝑅1(𝜃
13) = 𝜃11 + 𝜃12 + 𝜃13

𝑅1(𝜃
14) = 𝜃13

Second we find 𝑅−1
1 (𝜃𝑖), for 0 ≤ 𝑖 < 15. Since 𝑅−1

1 (𝜃𝑖) is the element such that

𝑅−1
1 (𝜃𝑖) ∘ 1 = 𝜃𝑖, we have

𝑅−1
1 (1) = 1

𝑅−1
1 (𝜃) = 𝜃2 + 𝜃4 + 𝜃8

𝑅−1
1 (𝜃2) = 𝜃 + 𝜃2 + 𝜃4 + 𝜃8

𝑅−1
1 (𝜃3) = 𝜃3 + 𝜃5 + 𝜃10

30



𝑅−1
1 (𝜃4) = 𝜃 + 𝜃4 + 𝜃8

𝑅−1
1 (𝜃5) = 𝜃 + 𝜃3 + 𝜃4 + 𝜃5 + 𝜃6 + 𝜃8 + 𝜃9 + 𝜃12

𝑅−1
1 (𝜃6) = 𝜃5 + 𝜃10

𝑅−1
1 (𝜃7) = 𝜃 + 𝜃5 + 𝜃6 + 𝜃8 + 𝜃10 + 𝜃11 + 𝜃13 + 𝜃14

𝑅−1
1 (𝜃8) = 𝜃 + 𝜃8

𝑅−1
1 (𝜃9) = 𝜃 + 𝜃3 + 𝜃4 + 𝜃5 + 𝜃8 + 𝜃9 + 𝜃10

𝑅−1
1 (𝜃10) = 𝜃 + 𝜃3 + 𝜃4 + 𝜃6 + 𝜃8 + 𝜃9 + 𝜃12

𝑅−1
1 (𝜃11) = 𝜃5 + 𝜃6 + 𝜃10 + 𝜃13 + 𝜃14

𝑅−1
1 (𝜃12) = 𝜃5 + 𝜃6 + 𝜃10

𝑅−1
1 (𝜃13) = 𝜃14

𝑅−1
1 (𝜃14) = 𝜃 + 𝜃5 + 𝜃6 + 𝜃7 + 𝜃8 + 𝜃10 + 𝜃11 + 𝜃13 + 𝜃14

Next we find the basic slope matrices 𝑅𝑖 = 𝑇𝜃𝑖 , for 0 ≤ 𝑖 < 15.

Since 1 is the identity of the classical Knuth binary semifield, 𝑅0 = 𝐼15, the

identity matrix of size 15× 15.

To compute 𝑅1, we first calculate 𝜃𝑖 ∗ 𝜃 and represent the result by a vector

with basis {1, 𝜃, 𝜃2, ⋅ ⋅ ⋅ , 𝜃14}. Then 𝑅1 is composed of the following vectors.

1 ∗ 𝜃 = 𝜃 = (01000, 00000, 00000)

𝜃 ∗ 𝜃 = 𝑅−1
1 (𝜃) ∘𝑅−1

1 (𝜃) = 𝜃 + 𝜃2 + 𝜃4 + 𝜃8

= (01101, 00010, 00000)

𝜃2 ∗ 𝜃 = 𝑅−1
1 (𝜃2) ∘𝑅−1

1 (𝜃) = 𝜃 + 𝜃2 + 𝜃3 + 𝜃4 + 𝜃5 + 𝜃8 + 𝜃9

= (01111, 10011, 00000)
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𝜃3 ∗ 𝜃 = 𝑅−1
1 (𝜃3) ∘𝑅−1

1 (𝜃) = 𝜃3 + 𝜃4 + 𝜃5 + 𝜃9 + 𝜃11 + 𝜃12 + 𝜃13 + 𝜃14

= (00011, 10001, 01111)

𝜃4 ∗ 𝜃 = 𝑅−1
1 (𝜃4) ∘𝑅−1

1 (𝜃) = 𝜃 + 𝜃2 + 𝜃3 + 𝜃5 + 𝜃6 + 𝜃8 + 𝜃9 + 𝜃10

= (01110, 11011, 10000)

𝜃5 ∗ 𝜃 = 𝑅−1
1 (𝜃5) ∘𝑅−1

1 (𝜃) = 𝜃2 + 𝜃5 = (00100, 10000, 00000)

𝜃6 ∗ 𝜃 = 𝑅−1
1 (𝜃6) ∘𝑅−1

1 (𝜃) = 𝜃3 + 𝜃4 + 𝜃7 + 𝜃9 + 𝜃12 + 𝜃13 + 𝜃14

= (00011, 00101, 00111)

𝜃7 ∗ 𝜃 = 𝑅−1
1 (𝜃7) ∘𝑅−1

1 (𝜃) = 𝜃2 + 𝜃4 + 𝜃6 + 𝜃7 = (00101, 01100, 00000)

𝜃8 ∗ 𝜃 = 𝑅−1
1 (𝜃8) ∘𝑅−1

1 (𝜃) = 𝜃 + 𝜃2 + 𝜃3 + 𝜃5 + 𝜃9 + 𝜃10 + 𝜃12

= (01110, 10001, 10100)

𝜃9 ∗ 𝜃 = 𝑅−1
1 (𝜃9) ∘𝑅−1

1 (𝜃) = 𝜃 + 𝜃3 + 𝜃4 + 𝜃6 + 𝜃8 + 𝜃10 + 𝜃12 + 𝜃14

= (01011, 01010, 10101)

𝜃10 ∗ 𝜃 = 𝑅−1
1 (𝜃10) ∘𝑅−1

1 (𝜃) = 𝜃2 + 𝜃5 + 𝜃7 + 𝜃9 + 𝜃13

= (00100, 10101, 00010)

𝜃11 ∗ 𝜃 = 𝑅−1
1 (𝜃11) ∘𝑅−1

1 (𝜃) = 1 + 𝜃3 + 𝜃6 + 𝜃7 + 𝜃9 + 𝜃10 + 𝜃12 + 𝜃13

= (10010, 01101, 10110)

𝜃12 ∗ 𝜃 = 𝑅−1
1 (𝜃12) ∘𝑅−1

1 (𝜃) = 𝜃3 + 𝜃4 + 𝜃7 + 𝜃8 + 𝜃9 + 𝜃10 + 𝜃12 + 𝜃13

= (00011, 00111, 10110)

𝜃13 ∗ 𝜃 = 𝑅−1
1 (𝜃13) ∘𝑅−1

1 (𝜃) = 𝜃 + 𝜃2 + 𝜃3 + 𝜃4 + 𝜃7 + 𝜃8

= (01111, 00110, 00000)

𝜃14 ∗ 𝜃 = 𝑅−1
1 (𝜃14) ∘𝑅−1

1 (𝜃) = 1 + 𝜃 + 𝜃2 + 𝜃4 + 𝜃6 + 𝜃7 + 𝜃9 + 𝜃11

= (11101, 01101, 01000)
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So

𝑅1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
1 1 1 0 1 0 0 0 1 1 0 0 0 1 1
0 1 1 0 1 1 0 1 1 0 1 0 0 1 1
0 0 1 1 1 0 1 0 1 1 0 1 1 1 0
0 1 1 1 0 0 1 1 0 1 0 0 1 1 1
0 0 1 1 1 1 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 1 0 1 0 0 1
0 0 0 0 0 0 1 1 0 0 1 1 1 1 1
0 1 1 0 1 0 0 0 0 1 0 0 1 1 0
0 0 1 1 1 0 1 0 1 0 1 1 1 0 1
0 0 0 0 1 0 0 0 1 1 0 1 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 1 1 0 1 1 0 0
0 0 0 1 0 0 1 0 0 0 1 1 1 0 0
0 0 0 1 0 0 1 0 0 1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Similarly, we found the other slope matrices 𝑅2, 𝑅3, ⋅ ⋅ ⋅ , 𝑅14.

𝑅2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
1 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 1 0 1 1 0 1 0 1 1 0 1 1 1 0
0 1 1 0 0 1 1 1 0 0 1 0 1 1 1
0 1 0 1 0 0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
0 1 1 0 1 0 0 0 0 1 0 0 1 1 1
0 1 0 1 0 1 1 1 0 1 0 1 1 0 0
0 0 0 0 1 1 0 0 1 0 1 1 1 0 0
0 0 0 0 0 0 1 1 0 1 0 1 1 0 0
0 0 0 1 0 0 1 1 1 1 0 1 1 0 1
0 0 0 1 0 1 1 0 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1 0 1 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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𝑅3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 1 1 0 1 0 0 1 1 1 0 0 0 1 0
0 1 0 0 0 1 0 0 0 1 1 0 0 1 0
0 1 1 1 0 1 1 0 0 0 1 0 1 1 0
0 0 1 0 1 0 1 1 1 1 0 1 1 0 1
0 0 0 0 1 0 0 1 0 1 0 0 0 0 1
0 0 0 0 0 1 1 0 0 0 0 0 1 0 0
0 1 1 0 1 0 0 1 0 1 0 1 1 1 1
0 0 0 1 0 1 1 0 0 1 0 0 1 1 1
0 1 0 0 0 1 0 1 0 0 1 1 1 0 1
0 1 1 0 0 1 0 0 0 1 1 0 0 0 1
0 1 1 0 1 0 1 0 1 1 0 1 1 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
0 1 1 0 1 0 0 1 1 1 0 1 0 1 0
0 1 0 0 0 0 0 1 0 1 0 1 0 0 1
0 1 1 1 0 1 1 1 0 0 1 1 1 1 1
1 0 0 0 0 1 1 1 0 0 1 0 1 1 1
0 1 0 0 0 1 0 0 1 0 1 0 0 0 0
0 1 1 1 0 0 1 0 0 1 1 0 1 0 0
0 0 0 1 0 0 0 1 0 1 0 1 1 1 1
0 1 1 0 1 1 0 1 0 1 1 1 0 1 0
0 1 0 1 0 1 1 1 0 1 0 1 1 0 1
0 1 1 0 0 0 0 0 0 1 0 1 1 0 1
0 0 0 0 0 1 1 1 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 1 1 1 0 0 1 1 1 0 1
0 0 0 1 0 1 1 1 0 1 1 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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𝑅5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0 0 1 0 1 0 1 1
0 0 0 1 0 1 0 0 1 0 1 1 1 1 0
0 1 0 0 0 0 0 0 1 1 1 1 0 1 1
0 0 0 0 1 1 0 1 1 1 0 1 1 0 1
0 0 1 1 1 1 0 1 1 1 1 1 1 0 0
1 1 0 1 1 0 1 0 0 0 0 0 1 0 1
0 0 1 0 0 1 1 0 0 1 0 1 1 1 0
0 0 1 0 0 0 1 0 1 1 0 1 0 1 0
0 0 0 1 1 1 0 0 0 0 0 1 0 0 1
0 0 1 0 1 1 1 0 0 1 0 1 0 1 0
0 0 1 1 0 0 1 0 1 0 1 1 0 0 1
0 0 0 1 1 0 0 0 1 0 1 1 1 1 1
0 0 0 1 0 1 0 0 1 0 1 0 1 1 1
0 0 1 0 1 0 0 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 1 0 1 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 1 1 0 1 0 0 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 1 0 0 0 0 1 1
0 0 0 1 0 1 1 0 0 0 1 0 1 1 0
1 0 1 1 1 1 1 1 1 0 1 1 1 0 1
0 1 1 0 0 1 0 1 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0 1 0 1 0 0 1
0 1 1 0 1 1 0 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 0 1 0 0 1 1 0
0 0 1 0 1 0 0 0 1 1 0 1 1 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
0 1 1 1 1 0 0 1 1 0 0 0 0 0 1
0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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𝑅7 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0 1 1 1 1 0 1 1
0 0 1 1 1 0 0 1 0 1 0 0 1 1 0
0 1 0 0 1 0 0 0 0 0 1 0 0 0 1
0 0 0 1 1 1 0 0 1 1 0 0 1 0 0
0 1 1 0 1 1 1 0 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1 1 0 1 1 0 0 0
0 1 0 1 0 0 1 1 0 0 1 0 0 1 1
1 1 0 1 1 0 1 1 1 1 0 0 0 1 0
0 0 0 0 1 0 1 1 1 1 0 1 1 1 0
0 0 1 1 1 0 0 0 0 1 0 1 0 1 0
0 0 0 0 1 0 0 1 0 0 1 1 0 0 1
0 0 1 1 1 0 0 1 1 0 1 1 1 1 1
0 0 1 0 0 0 0 0 1 0 0 0 1 1 1
0 0 0 0 1 0 1 1 1 1 1 0 1 0 0
0 0 1 1 1 0 0 1 0 1 0 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0
0 1 1 0 1 1 0 0 1 1 1 1 0 1 1
0 1 0 0 0 1 0 0 0 1 1 0 0 0 0
0 1 1 1 0 1 1 1 0 0 1 1 1 0 1
0 0 0 0 0 1 1 0 0 0 1 1 1 0 0
0 1 1 0 1 0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0 0 1 1 0 1 0 0
0 0 0 0 0 1 0 1 0 0 1 1 1 1 1
1 0 0 0 0 0 0 1 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 1 0 0 1 1 1 0 1
0 1 1 0 1 1 0 1 0 1 1 0 0 0 1
0 0 0 1 0 0 1 1 0 1 1 1 1 0 1
0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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𝑅9 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0 1 0 0 0 0 1 1 0
0 1 1 0 1 0 0 1 1 1 1 0 0 1 1
0 0 1 0 1 1 0 0 1 0 1 0 1 1 0
0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
0 1 0 1 0 1 0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 0 0 1 1 0 1 0 1 0
0 1 0 1 1 1 0 0 1 0 0 1 0 0 0
0 0 0 1 1 1 0 1 0 0 1 0 1 1 1
0 1 1 0 1 0 1 1 0 1 1 1 1 0 0
1 0 1 1 1 1 1 1 0 0 0 1 0 0 1
0 1 0 1 1 0 1 0 1 1 1 1 0 1 1
0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
0 1 1 1 0 0 0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 1 1 0 1 0 0 0 1
0 1 1 0 1 0 0 1 0 0 1 0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅10 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 1 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0 1 1 1 0 0 1 0
0 1 0 0 0 1 0 1 1 1 0 1 0 1 0
0 0 0 0 1 0 0 0 1 1 1 0 1 0 0
0 0 1 1 1 1 0 1 1 1 1 1 1 1 0
0 1 0 1 1 0 1 1 0 0 0 1 1 1 0
0 0 0 0 1 0 1 1 1 0 1 1 1 1 1
0 1 0 0 0 0 1 0 1 1 0 1 0 1 0
0 0 0 0 1 0 0 0 0 1 1 1 0 0 1
0 1 0 0 0 0 1 0 0 0 1 1 0 1 0
1 0 1 0 0 1 0 1 1 1 1 0 1 0 0
0 0 0 1 1 1 0 1 1 0 0 0 0 1 0
0 0 0 1 0 1 0 0 1 0 1 0 1 1 0
0 1 0 0 0 1 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 1 1 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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𝑅11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 1 0 1 1 0 0 0 0 0 1
0 0 1 0 1 1 1 0 1 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 1 0 0 0 1
0 1 1 0 1 1 1 0 1 1 0 0 1 0 1
0 0 0 0 0 1 0 1 1 1 1 0 1 1 1
0 0 0 0 0 0 0 1 0 1 1 1 0 0 0
0 1 0 1 0 1 1 0 0 1 1 1 0 1 0
0 1 0 0 1 1 0 0 1 0 1 0 0 0 1
0 0 0 0 1 1 1 1 1 1 1 0 1 0 1
0 1 1 1 1 1 0 1 0 1 1 0 0 1 1
0 1 1 0 1 1 0 1 0 1 0 1 0 1 1
1 0 1 1 1 1 1 1 1 0 0 1 0 0 1
0 1 1 0 0 0 0 0 0 0 0 0 1 1 1
0 1 1 1 1 0 0 0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1 0 0 0 1 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 1 1 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 1 0 0 0 0 1
0 1 1 0 1 1 0 1 1 1 1 1 0 0 0
0 1 1 0 1 1 0 0 1 0 1 1 0 1 0
0 0 0 1 0 1 1 0 0 0 1 0 1 0 0
0 0 1 1 1 1 1 0 1 0 1 0 1 1 0
0 1 0 0 1 0 0 0 1 1 0 0 0 0 0
0 1 1 1 0 0 0 1 0 1 0 1 0 0 1
0 1 1 1 1 0 0 0 0 0 0 0 0 1 0
0 1 1 1 1 0 1 0 0 0 1 0 1 1 0
0 0 1 1 1 1 1 1 1 0 0 0 0 0 1
1 1 1 0 0 1 0 1 0 0 1 1 1 0 0
0 1 1 1 1 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 1 1 1 1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

38



𝑅13 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 1 1 0 1 1 1 1 0 0 0 1
0 1 0 0 1 1 0 1 1 1 1 0 0 0 1
0 1 1 1 0 1 0 0 0 1 1 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 1 1 0 0 1 1 1 0 1
0 0 0 1 0 0 1 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0
0 1 1 0 1 1 0 1 1 1 1 0 0 0 0
0 1 1 0 1 0 0 1 1 0 0 0 0 0 1
0 0 0 1 0 1 1 1 0 0 1 1 1 0 1
0 0 0 1 0 0 1 0 0 1 0 1 1 0 0
0 0 0 0 0 1 0 1 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0 0 1 1 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅14 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 1 0 1 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1 1 0 0 1 1 1
0 1 0 1 1 1 1 1 0 0 0 1 1 0 0
0 0 0 0 1 1 1 0 1 0 0 1 0 0 0
0 1 1 0 1 0 1 1 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
0 1 0 1 0 0 1 1 0 0 1 0 0 0 1
0 1 0 1 1 0 1 0 1 1 0 1 0 0 1
0 0 1 0 0 1 1 0 0 0 1 1 1 1 1
0 1 0 1 1 0 0 0 0 1 0 1 0 1 0
0 0 0 1 1 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 1 1 0 1 1 1 1
0 0 1 1 0 1 1 1 1 1 0 1 0 1 0
0 0 0 0 1 1 1 0 1 1 0 1 0 0 1
1 0 1 1 1 0 0 1 0 1 0 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The program given in Appendix A is used to compute the different right characteristic

polynomials of all the elements in 𝒮 = (𝐺𝐹 (215),+, ∗).
Finally to find a primitive polynomial. We checked all the above polynomials

and found that the matrix 𝑅3 + 𝑅9, corresponding to the element 𝜃3 + 𝜃9, has right

characteristic polynomial

𝐹 (𝑥) = 𝑥15 + 𝑥6 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥+ 1
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We now show that 𝐹 (𝑥) is a primitive polynomial over 𝐺𝐹 (2), i.e., the order of 𝐹 (𝑥)

is 215 − 1.

Let 𝛼 be a root of 𝐹 (𝑥). We need to show the order of 𝛼 is 215 − 1. Now

215 − 1 = 7× 31× 151 and

𝛼15 = 𝛼6 + 𝛼4 + 𝛼3 + 𝛼2 + 𝛼+ 1

𝛼31 = 𝛼13 + 𝛼9 + 𝛼7 + 𝛼5 + 𝛼3 + 𝛼

𝛼151 = 𝛼13 + 𝛼12 + 𝛼10 + 𝛼9 + 𝛼6 + 𝛼5 + 𝛼

𝛼7×31 = 𝛼14 + 𝛼13 + 𝛼11 + 𝛼10 + 𝛼9 + 𝛼8 + 𝛼4 + 1

𝛼7×151 = 𝛼12 + 𝛼11 + 𝛼6 + 𝛼5 + 𝛼3 + 𝛼2

𝛼31×151 = 𝛼14 + 𝛼13 + 𝛼12 + 𝛼11 + 𝛼4 + 𝛼3 + 𝛼

𝛼215−1 = 1

Therefore the order of 𝐹 (𝑥) is 215 − 1.

For the case when 𝑡 = 17, we choose 𝑓(𝑥) = 𝑥17 + 𝑥3 + 1. Then using Matlab

and GAP we found that the element 𝜃 + 𝜃3 has right characteristic polynomial

𝐹 (𝑥) = 𝑥17 + 𝑥13 + 𝑥11 + 𝑥7 + 𝑥4 + 𝑥+ 1

which is irreducible over 𝐺𝐹 (2). Since 217−1 is a Mersenne prime number, the order

of 𝐹 (𝑥) must be 217 − 1.

When 𝑡 = 19, we choose 𝑓(𝑥) = 𝑥19 + 𝑥9 + 𝑥7 + 𝑥 + 1. Then again by using

Matlab and GAP we found that the element 𝜃9 has right characteristic polynomial

𝐹 (𝑥) = 𝑥19 + 𝑥17 + 𝑥16 + 𝑥15 + 𝑥14 + 𝑥13 + 𝑥11 + 𝑥10 + 𝑥7 + 𝑥3 + 𝑥2 + 𝑥+ 1

which is irreducible over 𝐺𝐹 (2). Since 219 − 1 is also a Mersenne prime number,then

the order of 𝐹 (𝑥) is 219 − 1.
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2.4 Primitive Elements in The Classical Knuth Binary Semifields

In this section, we are concerned with the number of primitive elements in the

classical Knuth binary semifields. Knuth [12] proved that for any element 𝑑 ∈ 𝐹 ,

the mapping 𝑑 → 𝑑2 is an automorphism of the classical Knuth binary semifield.

Hence 𝑑 and 𝑑2 have the same right characteristic polynomial. Let 𝑟 be the smallest

integer such that 𝑑2
𝑟
= 𝑑. Then obviously 𝑑, 𝑑2, 𝑑2

2
, ⋅ ⋅ ⋅ , 𝑑2𝑟−1

have the same right

characteristic polynomial.

Definition 2.4.1. We call 𝑟 the length of 𝑑 and {𝑑, 𝑑2, 𝑑22 , ⋅ ⋅ ⋅ , 𝑑2𝑟−1} the family of

𝑑.

Proposition 2.4.1. For any nonzero 𝑑 ∈ 𝒮, the length 𝑟 of 𝑑 is a divisor of 𝑡.

Proof. Let 𝑑 ∕= 1, otherwise the result is obviously true, and 𝑡 = 𝑞𝑟 + 𝑎, where

0 ≤ 𝑎 < 𝑟. If 𝑎 ∕= 0, since 𝑑 ∈ 𝐹 and 𝑑2
𝑟
= 𝑑, then

𝑑 = 𝑑2
𝑡

= 𝑑2
𝑞𝑟+𝑎

= 𝑑2
𝑞𝑟

𝑑2
𝑎

and 𝑑2
𝑎
= 1. Hence the order of 𝑑 must be a divisor of (2𝑟 − 1, 2𝑎) = 1, and so 𝑑 = 1.

Hence 𝑎 = 0 and then 𝑟 is a divisor of 𝑡.

Remark 2.4.1. Some right characteristic polynomials with degree 𝑡 have more than

t matrices as their roots.

For example, in the classical Knuth binary semifield of order 32, 𝑥5+𝑥+1 is the

right characteristic polynomial of each of the following fifteen elements: 𝜁, 𝜁2, 𝜁4, 𝜁+

𝜁3 + 𝜁4, 𝜁2 + 𝜁3, 𝜁3, 𝜁 + 𝜁4, 𝜁 + 𝜁2 + 𝜁3 + 𝜁4, 𝜁2 + 𝜁3 + 𝜁4, 𝜁 + 𝜁2 + 𝜁3, 𝜁 + 𝜁2, 𝜁2 +

𝜁4, 𝜁 + 𝜁3, 𝜁 + 𝜁2 + 𝜁4, 𝜁 + 𝜁2 + 𝜁3. Hence all the matrices associated with these

fifteen elements are the roots of 𝑥5 + 𝑥+ 1.

In any semifield 𝑡-dimensional over its center, 0 is the unique element with

right characteristic polynomial 𝑥𝑡 and 1 is the unique element with right character-
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istic polynomial (𝑥 − 1)𝑡. Since 0 and 1 can never be primitive elements, these two

polynomials are excluded from all the subsequent proofs of this section.

For every right characteristic polynomial 𝑓(𝑥), where 𝑓(𝑥) ∕= 𝑥𝑡 and 𝑓(𝑥) ∕=
(𝑥 − 1)𝑡, let 𝑁(𝑓) indicate the number of elements in ℱ whose right characteristic

polynomial is 𝑓(𝑥). Then 𝑁(𝑓) =
∑

𝑖∣𝑡,1<𝑖≤𝑡

𝑖 ⋅ 𝑛𝑖,𝑓 , where 𝑖 = length of a family, and

𝑛𝑖,𝑓 = the number of families of length 𝑖 whose elements have 𝑓(𝑥) as their right

characteristic polynomial.

For example, in Remark 2.4, there are 3 families of length 5 whose elements

have right characteristic polynomial 𝑥5+𝑥+1 in the Knuth binary semifield of order

32. In this case 𝑖 = 5 and 𝑛𝑖 = 3.

Notice that by the arguments given above, Part (1) of the following result

follows.

Theorem 2.4.1. Let ℱ = (𝐺𝐹 (2𝑡),+, ∗), 𝑡 odd, be the classical Knuth binary semi-

field and 𝑓1(𝑥), 𝑓2(𝑥), ⋅ ⋅ ⋅ , 𝑓𝑛(𝑥) be all the distinct primitive right characteristic poly-

nomials of ℱ . Let 𝑁𝑡 be the number of primitive elements in ℱ . Then

(1) 𝑁𝑡 =
∑

𝑖∣𝑡,1<𝑖≤𝑡

𝑖 ⋅ 𝑛𝑖, where 𝑖 = length of a family, 𝑛𝑖 =
𝑛∑

𝑘=1

𝑛𝑖,𝑘, 𝑛𝑖,𝑘 = the number of

families of length 𝑖 whose elements have 𝑓𝑘(𝑥) as their right characteristic polynomial.

(2) 𝑛𝑖 ≤ [2
𝑖−2
𝑖
].

Proof. We prove Part (2).

Let 𝑑 be a primitive element with length 𝑖; then 𝑑2
𝑖−1 = 1. Suppose 𝜃 is a

generator of the finite field 𝐺𝐹 (2𝑡), and 𝑑 = 𝜃𝑚 for some 𝑚. Then (𝜃𝑚)2
𝑖−1 =

𝜃𝑚(2𝑖−1) = 1. Hence 2𝑡 − 1∣𝑚(2𝑖 − 1). Let 𝑠(2𝑡 − 1) = 𝑚(2𝑖 − 1) for some 𝑠; hence

𝑚 = 𝑠(2
𝑡 − 1
2𝑖 − 1

). There are at most 2𝑖 − 2 choices for 𝑚, which means 𝑑 has at most

2𝑖 − 2 possibilities. The set of conjugates of 𝑑 contains 𝑖 elements, so the number of

families with length 𝑖 must be less than or equal to [2
𝑖 − 2
𝑖 ].
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Theorem 2.4.2. With the hypothesis of Theorem 2.4.1, if 𝑡 is an odd prime number,

then 𝑁𝑡 is a multiple of 𝑡.

Proof. Let 𝑑 ∕= 0 be a primitive element in ℱ with length 𝑖. Then 𝑖∣𝑡, and so 𝑖 = 1 or

𝑡. If 𝑖 = 1, then we have 𝑑2 = 𝑑, which implies 𝑑 = 1; hence the length of 𝑑 must be

𝑡 and so 𝑁𝑡 is a multiple of 𝑡.

The following well-known result follows easily from Theorem 2.4.1.

Corollary 2.4.1. If 𝑡 is an odd prime number, then 𝑡∣(2𝑡−1 − 1)

Proof. If 𝑡 is a prime number, there are 2𝑡 − 2 nonzero, nonidentity elements in

the Knuth binary semifield ℱ = (𝐺𝐹 (2𝑡),+, ∗), 𝑡 odd. All these elements can be

separated into several families; each family has 𝑡 elements, so 𝑡∣(2𝑡−1 − 1).

Theorem 2.4.3. For an odd integer 𝑡 ∈ [5, 19] , the number of primitive elements,

𝑁𝑡, in the classical Knuth binary semifield ℱ=(𝐺𝐹 (2𝑡),+, ∗) is a multiple of 𝑡.

Proof. This result is true for prime numbers 𝑡 by Theorem 2.4.2. When 𝑡 = 9, choose

the irreducible polynomial 𝑓(𝑥) = 𝑥9 + 𝑥4 + 𝑥3 + 𝑥 + 1 over 𝐺𝐹 (2). Let 𝜃 be a

root of 𝑓(𝑥). Since 𝑓(𝑥) is a primitive polynomial over the finite field 𝐺𝐹 (29), then

𝜃 is a generator of the multiplicative group of this field. Let 𝑑 be an element in

ℱ = (𝐺𝐹 (29),+, ∗) of length 3. Then there are 6 possibilities for 𝑑 in ℱ , which are

𝜃73, 𝜃146, 𝜃292

𝜃219, 𝜃438, 𝜃365

With the help of Matlab and GAP, we found the right characteristic polynomial of

each family is,

𝑃1(𝑥) =𝑥9 + 𝑥8 + 𝑥3 + 𝑥+ 1 = (𝑥2 + 𝑥+ 1)(𝑥3 + 𝑥2 + 1)(𝑥4 + 𝑥3 + 1)

𝑃2(𝑥) =𝑥9 + 𝑥3 + 𝑥2 + 𝑥+ 1 = (𝑥2 + 𝑥+ 1)(𝑥3 + 𝑥+ 1)(𝑥4 + 𝑥3 + 𝑥2 + 𝑥+ 1)
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respectively, which are both reducible over 𝐺𝐹 (2). So those 𝑑 are not primitive

elements in ℱ = (𝐺𝐹 (29),+, ∗), which implies that the number of primitive elements

in ℱ = (𝐺𝐹 (29),+, ∗) is a multiple of 9.

The only case left is 𝑡 = 15. Now we prove all the right characteristic polyno-

mials of all the elements of length 𝑟, where 𝑟 is a proper divisor of 15, are reducible

over 𝐺𝐹 (2).

Let 𝑓(𝑥) = 𝑥15+𝑥+1 be an irreducible polynomial for the field extension from

𝐺𝐹 (2) to 𝐺𝐹 (215). It is easily shown that 𝑓(𝑥) has order 215 − 1, which implies that

𝑓(𝑥) is primitive. Let 𝜃 be a root of 𝑓(𝑥). Then 𝜃 is a generator of the multiplicative

group of the finite field 𝐺𝐹 (215). Suppose 𝑑 is an element in ℱ = (𝐺𝐹 (215),+, ∗) of
length 𝑟. Then 𝑑 = 𝜃𝑚 for some 𝑚.

1. If 𝑟 = 3, there are 23 − 2 = 6 choices for 𝑑, and those elements are separated

into 2 families.

(1.1) 𝜃Δ, 𝜃2Δ, 𝜃4Δ

(1.2) 𝜃3Δ, 𝜃6Δ, 𝜃5Δ

where Δ = 31 × 151. With the help of Matlab and GAP, we found that the right

characteristic polynomials of (1.1) and (1.2) are

𝐹1(𝑥) = 𝑥15 + 𝑥13 + 𝑥12 + 𝑥9 + 𝑥8 + 𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥+ 1

= (𝑥3 + 𝑥+ 1)(𝑥12 + 𝑥6 + 𝑥5 + 𝑥3 + 1)

𝐹2(𝑥) = 𝑥15 + 𝑥14 + 𝑥12 + 𝑥11 + 𝑥10 + 𝑥9 + 𝑥8 + 𝑥6 + 𝑥4 + 𝑥2 + 1

= (𝑥3 + 𝑥2 + 1)(𝑥12 + 𝑥8 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 1),

respectively; notice these are both reducible over 𝐺𝐹 (2). So these 𝑑 are not primitive

elements in ℱ .
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2. If 𝑟 = 5, there are 25−2 = 30 choices for 𝑑, and those elements are separated

into 6 families.

(2.1) 𝜃𝛿, 𝜃2𝛿, 𝜃4𝛿, 𝜃8𝛿, 𝜃16𝛿

(2.2) 𝜃3𝛿, 𝜃6𝛿, 𝜃12𝛿, 𝜃24𝛿, 𝜃17𝛿

(2.3) 𝜃5𝛿, 𝜃10𝛿, 𝜃20𝛿, 𝜃9𝛿, 𝜃18𝛿

(2.4) 𝜃7𝛿, 𝜃14𝛿, 𝜃28𝛿, 𝜃25𝛿, 𝜃19𝛿

(2.5) 𝜃11𝛿, 𝜃22𝛿, 𝜃13𝛿, 𝜃26𝛿, 𝜃21𝛿

(2.6) 𝜃15𝛿, 𝜃30𝛿, 𝜃29𝛿, 𝜃27𝛿, 𝜃23𝛿

where 𝛿 = 7 × 151. With the help of Matlab and GAP, we found that the right

characteristic polynomials of (2.1)–(2.6) are

𝐺1(𝑥) = 𝑥15 + 𝑥12 + 𝑥11 + 𝑥9 + 𝑥8 + 𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥+ 1

= (𝑥2 + 𝑥+ 1)2(𝑥3 + 𝑥2 + 1)(𝑥8 + 𝑥7 + 𝑥3 + 𝑥+ 1)

𝐺2(𝑥) = 𝑥15 + 𝑥14 + 𝑥13 + 𝑥9 + 𝑥8 + 𝑥6 + 𝑥5 + 𝑥3 + 1

= (𝑥2 + 𝑥+ 1)2(𝑥3 + 𝑥+ 1)(𝑥8 + 𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥+ 1)

𝐺3(𝑥) = 𝑥15 + 𝑥13 + 𝑥9 + 𝑥8 + 𝑥7 + 𝑥+ 1

= (𝑥2 + 𝑥+ 1)(𝑥3 + 𝑥2 + 1)(𝑥10 + 𝑥8 + 𝑥6 + 𝑥5 + 1)

𝐺4(𝑥) = 𝑥15 + 𝑥14 + 𝑥11 + 𝑥10 + 𝑥9 + 𝑥5 + 𝑥4 + 𝑥+ 1

= (𝑥2 + 𝑥+ 1)(𝑥3 + 𝑥+ 1)(𝑥10 + 𝑥6 + 𝑥5 + 𝑥+ 1)

𝐺5(𝑥) = 𝑥15 + 𝑥13 + 𝑥12 + 𝑥11 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥+ 1

= (𝑥2 + 𝑥+ 1)2(𝑥3 + 𝑥2 + 1)(𝑥8 + 𝑥7 + 𝑥6 + 𝑥5 + 𝑥2 + 𝑥+ 1)

𝐺6(𝑥) = 𝑥15 + 𝑥14 + 𝑥10 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥3 + 𝑥+ 1

= (𝑥2 + 𝑥+ 1)(𝑥3 + 𝑥2 + 1)(𝑥10 + 𝑥9 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 1)
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respectively. Again these are all reducible over 𝐺𝐹 (2). So these 𝑑 are not primitive

elements in ℱ = (𝐺𝐹 (215),+, ∗).

Conjecture 2.4.1. In the classical Knuth binary semifield ℱ = (𝐺𝐹 (2𝑡),+, ∗), 𝑡

odd, any right characteristic polynomial 𝑓(𝑥) of an element 𝑑, whose length is a

proper divisor of 𝑡, is reducible over 𝐺𝐹 (2); so the number of primitive elements in

ℱ is always a multiple of 𝑡.

Remark 2.4.2.

Let 𝐺𝐹 (𝑞) be the finite field of order 𝑞. Cohen and Mullen [5] proved four conjectures

made by Golomb for finite fields as follows:

Conjecture A: If 𝑞 > 2 then 𝐺𝐹 (𝑞) contains two primitive elements 𝛼 and 𝛽

(not necessarily distinct) with 𝛼+ 𝛽 = 1.

Conjecture B: If 𝑞 > 3 then 𝐺𝐹 (𝑞) contains two primitive elements 𝛼 and 𝛽

with 𝛼+ 𝛽 = −1.

Conjecture C: For all 𝑞 > 𝑞0, every non-zero element 𝜀 has at least one repre-

sentation of the form 𝜀 = 𝛼+ 𝛽, where 𝛼 and 𝛽 are primitive elements of 𝐺𝐹 (𝑞).

Conjecture D: There exists a primitive quadratic of trace 1 over every 𝐺𝐹 (𝑞).

By direct cooperation, see appendices C and D, we found that Conjectures A

and C also hold in the classical Knuth binary semifields of order 27 and 29. Conjecture

A also holds in Knuth’s system 𝑉 and system 𝑊 , but Conjecture C fails in them.

Notice that in our context, Conjectures B and A are the same; Conjecture D is not

applicable in the classical Knuth binary semifields.

Conjecture 2.4.2. Golomb’s conjectures A and C hold in all the primitive classical

Knuth binary semifields.

46



2.5 Primitivity of Albert Semifields of order 27, 29, 211, 213

Albert semifields 𝐴𝑛(𝑆), where 𝑛 ≥ 5 is odd, is a class of commutative semifields

with characteristic 2. The Albert semifield of order 32 is both right and left primitive

and it contains 22 primitive elements [17]. We are concerned with the primitivity of

Albert Semifields 𝐴𝑛(𝑆), when 𝑛 = 7, 9, 11, 13.

Theorem 2.5.1. The Albert Semifields 𝐴𝑛(𝑆), where 𝑛 = 7, 9, 11, 13, are all right

and left primitive.

Proof. When 𝑛 = 7, suppose 𝑓(𝑥) = 𝑥7 + 𝑥 + 1 is the irreducible polynomial over

𝐺𝐹 (2) used to construct the finite field 𝐺𝐹 (27) and 𝜃 is a root of 𝑓(𝑥). Then

{1, 𝜃, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6} is a 𝐺𝐹 (2)-basis of the vector space 𝐺𝐹 (27).

Let 𝑆 = 𝐺𝐹 (2) + 𝐺𝐹 (2)𝜃 + 𝐺𝐹 (2)𝜃2 + 𝐺𝐹 (2)𝜃3 + 𝐺𝐹 (2)𝜃4 + 𝐺𝐹 (2)𝜃5 and

𝜔 = 𝜃6. By the definition of multiplication in Albert semifields,

𝑠 ∗ 𝑡 = 𝑠𝑡, 𝑠 ∗ 𝜔 = 𝜔 ∗ 𝑠 = 𝑠𝜔 + 𝑠2 + 𝑠, 𝜔 ∗ 𝜔 = 𝜔2 + 1

for any 𝑠, 𝑡 ∈ 𝑆. We calculate all the right slope matrices {𝑇1, 𝑇𝜃, ⋅ ⋅ ⋅ , 𝑇𝜃6}. Let 𝑅𝑖

be the right slope matrix 𝑇𝜃𝑖 , 0 ≤ 𝑖 < 7.

Obviously, 𝑅0 = 𝐼7, the identity matrix of size 7× 7. Next we compute 𝑅1:

1 ∗ 𝜃 = 𝜃 = (01000, 00)

𝜃 ∗ 𝜃 = 𝜃2 = (00100, 00)

𝜃2 ∗ 𝜃 = 𝜃3 = (00010, 00)

𝜃3 ∗ 𝜃 = 𝜃4 = (00001, 00)

𝜃4 ∗ 𝜃 = 𝜃5 = (00000, 10)

𝜃5 ∗ 𝜃 = 𝜃6 = (00000, 01)

𝜃6 ∗ 𝜃 = 𝜃7 + 𝜃2 + 𝜃 = 1 + 𝜃2 = (10100, 00)
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So 𝑅1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Similarly, we found

𝑅2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0
0 0 0 0 0 1 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑅3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0
0 0 0 1 1 0 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑅5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 1
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 1
0 0 1 0 1 0 0
0 1 0 1 1 0 0
0 0 0 0 1 1 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
1 0 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Using the program given in Appendix B, we can get all the different right

characteristic polynomials of all the elements in the Albert Semifield 𝐴7(𝑆).

Finally we checked all the polynomials above and found that the matrix 𝑅1+𝑅2,

corresponding to the element 𝜃 + 𝜃2, has right characteristic polynomial 𝐹 (𝑥) =

𝑥7 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥+ 1, which has order 27 − 1. So 𝜃 + 𝜃2 is a right primitive

element, which implies 𝐴7(𝑆) is both right and left primitive.
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When 𝑛 = 9, 11, 13, similarly by our computation, the Albert semifields 𝐴𝑛 are

all all right and left primitive.

2.6 Automorphisms of Right Primitive Semifields

If 𝜔 is a right primitive element of 𝒮 = (𝐷,+, ∗) and 𝜎 is any automorphism of

𝒮, then 𝜎(𝜔) must be a right primitive element and 𝜎(𝜔𝑖)) = 𝜎(𝜔)𝑖) for any integer 𝑖.

Now we consider sort of a converse of this problem, namely, if 𝒮 = (𝐷,+, ∗) is a right

primitive semifield of order 𝑞𝑛, and 𝜎 is a bijection from 𝒮 to 𝒮 with 𝜎(𝜔𝑖)) = 𝑑𝑖),

where 𝜔 and 𝑑 = 𝜎(𝜔) are both right primitive elements, must 𝜎 be an automorphism

of 𝒮? Certainly if 𝜔 and 𝑑 have different characteristic polynomials, 𝜎 is not an

automorphism of 𝒮; however, if 𝜔 and 𝑑 have the same characteristic polynomial,

what happens?

We give two examples in which 𝜎 is defined by 𝜎(𝜔𝑖)) = 𝜎(𝜔)𝑖), where 𝜔 and 𝑑

are right primitive elements with the same right characteristic polynomial, but 𝜎 is

not an automorphism of 𝒮.
Example 1 Knuth’s system 𝑊 . In 𝑊 , which is a noncommutative semifield,

there are 6 right primitive elements who possess the same right characteristic polyno-

mial 𝑥4 + 𝑥+1, and all the bijections can be represented by 𝜎𝑖𝑗(𝑢+ 𝜆𝑣) = 𝑢𝑖 + 𝜆𝜔𝑗𝑣,

𝑖 = 1, 2, 𝑗 = 0, 1, 2, [11]. We show that exactly 3 of them are automorphisms in system

𝑊 , namely 𝜎10(𝑢+𝜆𝑣) = 𝑢+𝜆𝑣, 𝜎11(𝑢+𝜆𝑣) = 𝑢+𝜆𝜔𝑣, and 𝜎12(𝑢+𝜆𝑣) = 𝑢+𝜆𝜔2𝑣.

Proof. 𝜎10 is the identity map of system 𝑊 , so it is obviously an automorphism. Now,

for addition,

𝜎11((𝑢+ 𝜆𝑣) + (𝑥+ 𝜆𝑦))

= 𝜎11((𝑢+ 𝑥) + 𝜆(𝑣 + 𝑦))
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= (𝑢+ 𝑥) + 𝜆𝜔(𝑣 + 𝑦)

= (𝑢+ 𝜆𝜔𝑣) + (𝑥+ 𝜆𝜔𝑦)

= 𝜎11(𝑢+ 𝜆𝑣) + 𝜎11(𝑥+ 𝜆𝑦)

For multiplication, we have on the one hand,

𝜎11((𝑢+ 𝜆𝑣)(𝑥+ 𝜆𝑦))

= 𝜎11((𝑢𝑥+ 𝜔𝑣2𝑦) + 𝜆(𝑣𝑥+ 𝑢2𝑦))

= (𝑢𝑥+ 𝜔𝑣2𝑦) + 𝜆𝜔(𝑣𝑥+ 𝑢2𝑦)

On the other hand,

𝜎11(𝑢+ 𝜆𝑣)𝜎11(𝑥+ 𝜆𝑦)

= (𝑢+ 𝜆𝜔𝑣)(𝑥+ 𝜆𝜔𝑦)

= (𝑢𝑥+ 𝜔(𝜔𝑣)2𝜔𝑦) + 𝜆(𝜔𝑣𝑥+ 𝑢2𝜔𝑦)

= (𝑢𝑥+ 𝜔𝑣2𝑦) + 𝜆𝜔(𝑣𝑥+ 𝑢2𝑦)

= 𝜎11((𝑢+ 𝜆𝑣)(𝑥+ 𝜆𝑦))

Hence 𝜎11 is an automorphism of system 𝑊 . Similarly, we can prove that 𝜎12 is an

automorphism of system 𝑊 .

But 𝜎20, 𝜎21, and 𝜎22 are not automorphisms of system 𝑊 , because

𝜎20((𝜔 + 𝜆)(𝜔 + 𝜆)) = 1 + 𝜆 ∕= 𝜆 = 𝜎20(𝜔 + 𝜆)𝜎20(𝜔 + 𝜆),

𝜎21((𝜔 + 𝜆)(𝜔 + 𝜆)) = 1 + 𝜆𝜔 = 𝜆𝜔 = 𝜎21(𝜔 + 𝜆)𝜎21(𝜔 + 𝜆),

𝜎22((𝜔 + 𝜆)(𝜔 + 𝜆)) = 1 + 𝜆𝜔2 = 𝜆𝜔2 = 𝜎22(𝜔 + 𝜆)𝜎21(𝜔 + 𝜆).

Example 2 Let 𝐺𝐹 (27) = 𝐺𝐹 (2)(𝜃), where 𝜃 is a root of the irreducible

polynomial 𝑓(𝑥) = 𝑥7+𝑥+1 over 𝐺𝐹 (2). Then {1, 𝜃, 𝜃2, ⋅ ⋅ ⋅ , 𝜃6} is a 𝐺𝐹 (2)-basis of
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𝐺𝐹 (27). Now consider the elements 𝜃 + 𝜃6 and 𝜃4 + 𝜃5 in the classical Knuth binary

semifield ℱ = (𝐺𝐹 (27),+, ∗). They are primitive elements and the characteristic

polynomial of both elements is 𝑥7 + 𝑥 + 1. Suppose 𝜎 is the bijection of ℱ given by

𝜎((𝜃 + 𝜃6)𝑖)) = (𝜃4 + 𝜃5)𝑖); we show that 𝜎 is not an automorphism of ℱ .

By direct computation, we know

𝑅1(1) = 1 𝑅1(𝜃) = 𝜃 + 𝜃2

𝑅1(𝜃
2) = 𝜃2 + 𝜃4 𝑅1(𝜃

3) = 𝜃3 + 𝜃6

𝑅1(𝜃
4) = 𝜃 + 𝜃2 + 𝜃4 𝑅1(𝜃

5) = 𝜃3 + 𝜃4 + 𝜃5

𝑅1(𝜃
6) = 𝜃5

and
𝑅−1

1 (1) = 1, 𝑅−1
1 (𝜃) = 𝜃2 + 𝜃4

𝑅−1
1 (𝜃2) = 𝜃 + 𝜃2 + 𝜃4, 𝑅−1

1 (𝜃3) = 𝜃 + 𝜃4 + 𝜃5 + 𝜃6

𝑅−1
1 (𝜃4) = 𝜃 + 𝜃4, 𝑅−1

1 (𝜃5) = 𝜃6

𝑅−1
1 (𝜃6) = 𝜃 + 𝜃3 + 𝜃4 + 𝜃5 + 𝜃6

Also

𝜃 = (𝜃 + 𝜃6)44) 1 + 𝜃 + 𝜃2 + 𝜃3 + 𝜃4 = (𝜃4 + 𝜃5)44)

𝜃 + 𝜃2 + 𝜃4 = (𝜃 + 𝜃6)82) 1 + 𝜃2 + 𝜃6 = (𝜃4 + 𝜃5)82)

Hence

𝜃 ∗ 𝜃 = 𝑅−1
1 (𝜃) ∘𝑅−1

1 (𝜃) = 𝜃 + 𝜃2 + 𝜃4 = (𝜃 + 𝜃6)82)

𝜎(𝜃 ∗ 𝜃) = (𝜃4 + 𝜃5)82) = 1 + 𝜃2 + 𝜃6

But

𝜎(𝜃) ∗ 𝜎(𝜃) = 𝜎((𝜃 + 𝜃6)44)) ∗ 𝜎((𝜃 + 𝜃6)44))

= (𝜃4 + 𝜃5)44) ∗ (𝜃4 + 𝜃5)44)

= (1 + 𝜃 + 𝜃2 + 𝜃3 + 𝜃4) ∗ (1 + 𝜃 + 𝜃2 + 𝜃3 + 𝜃4)

= (1 +𝑅−1
1 (𝜃) +𝑅−1

1 (𝜃2) +𝑅−1
1 (𝜃3) +𝑅−1

1 (𝜃4))2

= 1 + 𝜃2 + 𝜃3 + 𝜃4 + 𝜃5 + 𝜃6

𝜎(𝜃 ∗ 𝜃) ∕= 𝜎(𝜃) ∗ 𝜎(𝜃), so 𝜎 is not an automorphism of ℱ .
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CHAPTER 3

DIMENSION of FINITE SEMIFIELDS

3.1 Introduction

In this chapter we are concerned with the dimension of a finite semifield over its

sub-semifields. We know the dimension of the finite field 𝐹 = 𝐺𝐹 (𝑞𝑛) over a subfield

𝐾 = 𝐺𝐹 (𝑞𝑚) is specified by 𝑙𝑜𝑔𝑞𝑚𝑞
𝑛 = 𝑛

𝑚 , which is always an integer. One may more

generally defined the dimension of an arbitrary finite ternary ting with respect to any

sub-ternary ring.

Definition 3.1.1. Let 𝐷 be a ternary ring of order 𝑛 with a sub-ternary ring 𝐸 of

order 𝑚. Then the dimension of 𝐷 relative to 𝐸 is specified by 𝑑𝑖𝑚𝐸𝐷 := 𝑙𝑜𝑔𝑚𝑛;

𝐷 is transcendental, fractional, or integer dimensional, relative to 𝐸, according to

whether 𝑑𝑖𝑚𝐸𝐷 is transcendental, rational (but not an integer), or an integer.

Similarly, if 𝜋 is an affine plane of order 𝑛, with an affine subplane 𝜋0 of

order 𝑚, the dimension of 𝜋 relative to 𝜋0 is specified by 𝑙𝑜𝑔𝑚𝑛. In particular, 𝜋 has

transcendental, fractional, or integer dimensional, relative to 𝜋0, according to whether

𝑙𝑜𝑔𝑚𝑛 is transcendental, rational (but not an integer), or an integer.

In this paper, we focus on finite semifields and finite semifield planes. Suppose

𝒮 = (𝐷,+, ∗) is a finite semifield, 𝑛-dimensional over its center𝐾 ∼= 𝐺𝐹 (𝑞), where 𝑞 is

a prime power. Then the order of 𝒮 must be 𝑞𝑛. Let 𝐸 be any sub-semifield of 𝒮; then
the order of 𝐸 must be 𝑞𝑚 for some positive integer𝑚. Hence 𝑑𝑖𝑚𝐸𝐷 = 𝑙𝑜𝑔𝑞𝑚𝑞

𝑛 = 𝑛
𝑚 ,

which is either an integer or a proper rational number. Therefore, finite semifields

can never have transcendental dimension.
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Definition 3.1.2. Let 𝒮 = (𝐷,+, ∗) be a finite semifield of order 𝑛, with a sub-

semifield 𝐸 of order 𝑚. Then the dimension of 𝒮 relative to 𝐸, is specified by 𝑑 :=

𝑑𝑖𝑚𝐸𝐷 = 𝑙𝑜𝑔𝑚𝑛; the semifield 𝒮 is fractional dimensional relative to 𝐸 if 𝑑 is a

proper rational number.

A semifield 𝒮 is considered fractional if it is fractional dimensional relative to

some sub-semifield 𝐸.

In this chapter we show that some semifields can be fractional dimensional and

some other semifields can never be fractional dimensional. If 𝐸 is a sub-semifield of

𝐷 such that 𝑑𝑖𝑚𝐸𝐷 is a proper rational number, we consider the case when 𝐸 has

small order, i.e., ∣𝐸∣ = 𝑞2 or ∣𝐸∣ = 𝑞3.

Let 𝜋 be a projective (affine) plane of order 𝑛 with a subplane 𝜋0 of order 𝑚.

Then either 𝑛 = 𝑚2 or 𝑛 ≥ 𝑚2 +𝑚 [p10, 10].

Definition 3.1.3. If 𝜋 is a projective (affine) plane of order 𝑛, a Baer subplane of

𝜋 is a subplane of order 𝑚 with 𝑛 = 𝑚2.

By the Baer condition, it is obvious that a fractional dimensional semifield 𝐷

must have order ∣𝐷∣ ≥ 32. Examples of semifields of order 32 containing the finite

field 𝐺𝐹 (4) are given in [2], [9], and [15] . G.P. Wene also found several sporadic

semifields of order 2𝑗, for 𝑗 = 5, 7, 9, 11, that admit a subplane of order 22. On

the other hand, V.Jha and N.L.Johnson [9] pointed out a sufficient condition for the

generalized Knuth binary semifields to admit a subfield of order 22.

Let 𝐹 = 𝐺𝐹 (2𝑡), the finite field of order 2𝑡, and 𝐺𝐿(𝐹,+) be the full group of

𝐺𝐹 (2)-linear bijections of the vector space 𝐹 . We first point out the notation to be

used in this chapter.

Notation 3.1.1. (1) 𝑇 : 𝐹 → {0, 1}, 𝑥 → 𝑥𝑇 , is the trace map, and Γ = 𝐾𝑒𝑟(𝑇 ).

(2) The stabilizer of Γ in 𝐺𝐿(𝐹,+) is denoted by 𝐺𝐿(𝐹,+)Γ.
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In this chapter first we list some finite semifields that are fractional dimensional

relative to the finite field 𝐺𝐹 (22), and then we prove that the classical Knuth binary

semifields do not admit any sub-semifields; hence this class of semifields can never be

fractional dimensional. Finally, we show that a special class of the generalized Knuth

binary semifields are commutative and do not admit subfields 𝐺𝐹 (22) or 𝐺𝐹 (23). We

also prove that the Albert semifields can never contain 𝐺𝐹 (23).

3.2 Generalized Knuth Binary Semifields with Fractional Dimension

The classical binary Knuth pre-semifield associated with the finite field 𝐹 =

𝐺𝐹 (2𝑡), 𝑡 ≥ 5 odd, is a commutative pre-semifield (𝐹,+, ∘) with product:

(𝐶𝑜𝑚𝐾𝑛) 𝑥 ∘ 𝑦 = 𝑥𝑦 + (𝑥𝑇𝑦 + 𝑦𝑇𝑥)2

V. Jha and N.L. Johnson [9] generalized the construction of the classical Knuth

binary semifields as follows.

Let 𝐹 = 𝐺𝐹 (2𝑡), 𝑡 ≥ 5 odd. Then for any 𝐵,𝐶 ∈ 𝐺𝐿(𝐹,+), there corresponds

a pre-semifield ℱ𝐵,𝐶(𝐹 ) = (𝐹,+,⊙), where ⊙ is defined by

(𝐺𝑒𝑛𝐾𝑛) 𝑥⊙ 𝑦 = 𝑥𝐵𝑦𝐶 + (𝑥𝐵𝑇𝑦𝐶 + 𝑦𝐶𝑇𝑥𝐵)2

For any choice of 𝑒 ∈ 𝐹 ∗. The product in the pre-semifield ℱ𝐵,𝐶(𝐹 ) = (𝐹,+,⊙) can

be redefined so that ℱ (𝑒)
𝐵,𝐶(𝐹 ) = (𝐹,+, ∗)𝑒 becomes a semifield called a generalized

Knuth binary semifield. The new product is given by

(𝑥⊙ 𝑒) ∗ (𝑒⊙ 𝑦) = 𝑥⊙ 𝑦, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥, 𝑦 ∈ 𝐹

Notice that 𝑒⊙ 𝑒 is the multiplicative identity for (𝐹,+, ∗)𝑒.
Let 𝐵 = 𝑅𝑏 and 𝐶 = 𝑅𝑐 be multiplication from the right by elements 𝑏, 𝑐 ∈ 𝐹 .

V. Jha and N.L. Johnson [9] also pointed out that if there exist 𝑏, 𝑐 ∈ 𝐹 such that

(𝑒𝑐)𝑇 = 𝑏𝑇 = (𝑒𝑏)𝑇 = 0, 𝑐𝑇 = 1, 𝑎𝑛𝑑
𝑒2

𝑒+ 1
= 1 +

𝑏

𝑐
(3.1)
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then there exists a subfield isomorphic to 𝐺𝐹 (4) in (𝐹,+, ∗)𝑒.
The corresponding semifield plane is the commutative binary Knuth semifield

plane, which has order 2𝑡, and would then admit a subsemifield plane of order 22.

When 𝑡 = 5 or 7 there are subplanes of order 4 in the commutative binary

Knuth semifield planes of order 2𝑡, c.f. Corollary 1 [9].

In this section we present a family of irreducible polynomials, where all the

x-divisible monomials (i.e., all the monomials of the form 𝑥𝑖, where 𝑖 ≥ 1) have

trace zero, and then use them to show that there are semifields of order 2𝑟, for

any odd integer 𝑟 ∈ [5, 31], containing 𝐺𝐹 (4). Hence these semifields are fractional

dimensional.

Lemma 3.2.1. Suppose 𝐹 = 𝐺𝐹 (2𝑡), where 𝑡 is an odd positive integer. Let 𝑡 =

2𝑁+1 for some positive integer 𝑁 . Suppose 𝑥𝑡+𝑓(𝑥)+1 is an irreducible polynomial

for the field extension over 𝐺𝐹 (2), where 𝑓(𝑥) is any x-divisible polynomial (i.e., the

constant of 𝑓(𝑥) is 0) of degree< 𝑡, in which all even degree monomials have coefficient

zero. Then 𝑇 (𝑥𝑖) = 0 for 0 < 𝑖 < 𝑡.

Proof. For any 𝑥𝑖, 0 < 𝑖 < 𝑡,

𝑇 (𝑥𝑖) =
𝑡−1∑
𝑗=0

(𝑥𝑖)2
𝑗

= 𝑥𝑖 + (𝑥𝑖)2 + (𝑥𝑖)2
2

+ ⋅ ⋅ ⋅+(𝑥𝑖)2
𝑡−1

Let 𝐺𝑎𝑙(𝐹 )={all the distinct automorphisms of 𝐺𝐹 (2𝑡) over 𝐺𝐹 (2)} and 𝜎 be any

element of 𝐺𝑎𝑙(𝐹 ). Then 𝜎(𝑥) = 𝑥2𝑚 , for any 𝑚 = 0, 1, ⋅ ⋅ ⋅ , 𝑡 − 1. Since 𝑡 is odd,

𝜎(𝑥) is 𝑥-divisible, and so is 𝑇 (𝑥𝑖). Hence 𝑇 (𝑥𝑖) = 0, because the trace function is

onto 𝐺𝐹 (2).

Lemma 3.2.2. If an irreducible polynomial in Lemma 3.2.1 exists with 𝑎2𝑁−1 = 0,

i.e., 𝑎𝑡−2 = 0, then 𝑇 (𝑥𝑡+2) = 0.

55



Proof. Let 𝑓(𝑥) =
𝑁∑
𝑘=1

𝑎2𝑘−1𝑥
2𝑘−1. Then 𝑥𝑡 = 1 +

𝑁∑
𝑘=1

𝑎2𝑘−1𝑥
2𝑘−1, and

𝑥𝑡+2 = 𝑥2𝑥𝑡 = 𝑥2 + 𝑎1𝑥
3 + ⋅ ⋅ ⋅+ 𝑎2𝑡−3𝑥

2𝑁−1 + 𝑎2𝑁−1𝑥
𝑡

By Lemma 3.2.1, 𝑇 (𝑥𝑖) = 0, 0 < 𝑖 < 𝑡, so

𝑇 (𝑥𝑡+2) = 0 + 𝑎2𝑁−1𝑇 (𝑥
𝑡) = 0 + 0 = 0

Theorem 3.2.1. Suppose an irreducible polynomial in Lemma 3.2.2 exists and let

𝑒 = 1 + 𝑥, 𝑏 = 𝑥𝑡+1 + 𝑥𝑡−2, 𝑐 = 𝑥𝑡 + 𝑥𝑡−1

Then the generalized Knuth binary semifield (𝐹,+, ∗)𝑒 admits a subfield isomorphic

to 𝐺𝐹 (4).

Proof. We just need to check 𝑒, 𝑏 and 𝑐 satisfy (3.1):

Now 𝑒2

1 + 𝑒 =
(1 + 𝑥)2

𝑥 = 1 + 𝑥2

𝑥 , and

𝑏

𝑐
=

𝑥𝑡+1 + 𝑥𝑡−2

𝑥𝑡 + 𝑥𝑡−1
=

𝑥𝑡−2(𝑥3 + 1)

𝑥𝑡−1(𝑥+ 1)
=

𝑥2 + 𝑥+ 1

𝑥

So 𝑒2

1 + 𝑒 = 1 + 𝑏
𝑐 . Also

𝑇 (𝑏) = 𝑇 (𝑥𝑡+1) + 𝑇 (𝑥𝑡−2) = 0 + 0 = 0,

𝑇 (𝑐) = 𝑇 (𝑥𝑡) + 𝑇 (𝑥𝑡−1) = 1 + 0 = 1,

𝑇 (𝑒𝑐) = 𝑇 ((1 + 𝑥)(𝑥𝑡 + 𝑥𝑡−2)) = 𝑇 (𝑥𝑡+1) + 𝑇 (𝑥𝑡−1) = 0.

By Lemma 3.2.2,

𝑇 (𝑒𝑏) = 𝑇 (𝑥𝑡+1) + 𝑇 (𝑥𝑡−2) + 𝑇 (𝑥𝑡+2) + 𝑇 (𝑥𝑡−1) = 0.
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Theorem 3.2.1 works for some particular orders of generalized Knuth binary

semifield. The following corollary lists 𝑓(𝑥) in the irreducible polynomials of 𝑥𝑡 +

𝑓(𝑥) + 1 associated with 𝐺𝐹 (2𝑡), 𝑡 odd.

Corollary 3.2.1. If 𝑓(𝑥) in Lemma 3.2.2 exists, then the semifield (𝐹,+, ∗)𝑒 with

𝑒, 𝑏, and 𝑐 as given above is a fractional semifield of order 2𝑡 for each odd 𝑡 ≥ 1.

Examples of such 𝑓(𝑥) include:

𝑡 = 7, 9, 15, 𝑓(𝑥) = 𝑥+ 1

𝑡 = 11, 𝑓(𝑥) = 𝑥5 + 𝑥3 + 𝑥+ 1

𝑡 = 13, 𝑓(𝑥) = 𝑥7 + 𝑥3 + 𝑥+ 1

𝑡 = 17, 25, 31, 𝑓(𝑥) = 𝑥3 + 1

𝑡 = 19, 𝑓(𝑥) = 𝑥9 + 𝑥7 + 𝑥+ 1

𝑡 = 21, 𝑓(𝑥) = 𝑥7 + 1

𝑡 = 23, 𝑓(𝑥) = 𝑥5 + 1

𝑡 = 27, 𝑓(𝑥) = 𝑥9 + 𝑥5 + 𝑥3 + 1

𝑡 = 29, 𝑓(𝑥) = 𝑥27 + 𝑥+ 1

In fact, everything won’t be lost even if 𝑓(𝑥) has at least one monomial with

even degree. For example, for 𝐹 = 𝐺𝐹 (213) we can choose the irreducible polynomial

𝑥13 + 𝑥4 + 𝑥3 + 𝑥+ 1 over 𝐺𝐹 (2) to generate 𝐹 , and choose

𝑒 = 1 + 𝑥11, 𝑏 = 1 + 𝑥+ 𝑥7 + 𝑥9, 𝑐 = 𝑥7 + 𝑥9

The corresponding generalized Knuth semifield of order 213 also admits a subfield of

order 4.

3.3 The Classical Knuth Binary Semifields without Fractional Dimension

In this section, we prove the following main result:
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Theorem 3.3.1. Let ℱ = (𝐺𝐹 (2𝑡),+, ∗) be the classical Knuth binary semifield, 𝑡

odd. Then for any 𝑘, 1 < 𝑘 < 𝑡, there does not exist a subsemifield of order 2𝑘 in ℱ .

Proof. The proof of this theorem utilizes the following two lemmas.

Lemma 3.3.1. 𝑅−1
1 (𝑑2) = (𝑅−1

1 (𝑑))2 for any 𝑑 ∈ 𝐺𝐹 (2𝑡).

Proof. Let 𝑥 = 𝑅−1
1 (𝑑) and 𝑦 = 𝑅−1

1 (𝑑2). We need to show 𝑦 = 𝑥2, where 𝑥2 is the

product in the field.

𝑥 = 𝑅−1
1 (𝑑) ⇒ 𝑥 ∘ 1 = 𝑑

⇒ 𝑥+ (𝑥𝑇 + 1𝑇𝑥)2 = 𝑑

⇒ 𝑥+ 𝑥2 + 𝑥𝑇 = 𝑑 ((𝑥𝑇 )2 = (𝑥2)𝑇 = 𝑥𝑇 )

⇒ 𝑥2 + 𝑥4 + 𝑥𝑇 = 𝑑2

Since 𝑦 = 𝑅−1
1 (𝑑2), we have

𝑦 + (𝑦𝑇 + 𝑦)2 = 𝑑2 𝑎𝑛𝑑 𝑦 + 𝑦2 + 𝑦𝑇 = 𝑑2

So 𝑦 + 𝑦2 + 𝑦𝑇 = 𝑥2 + 𝑥4 + 𝑥𝑇 and (𝑦 + 𝑥2) + (𝑦 + 𝑥2)2 = 𝑥𝑇 + 𝑦𝑇

Let 𝑎 = 𝑦 + 𝑥2; then 𝑎+ 𝑎2 = 𝑥𝑇 + 𝑦𝑇 ∈ 𝐺𝐹 (2).

If 𝑥𝑇 +𝑦𝑇 = 1, then 𝑎+𝑎2 = 1, which implies that 𝑎 is a root of the polynomial

𝑥2 + 𝑥 + 1. So there is a subfield 𝐺𝐹 (22) in 𝐺𝐹 (2𝑡) generated by 𝑥2 + 𝑥 + 1. But 𝑡

is odd, so this is impossible. Hence 𝑥𝑇 + 𝑦𝑇 = 0, and 𝑎 + 𝑎2 = 0. So either 𝑎 = 0 or

𝑎 = 1. If 𝑎 = 1, then

𝑎𝑇 = (𝑦 + 𝑥2)𝑇 = 𝑦𝑇 + (𝑥2)𝑇 = 𝑦𝑇 + 𝑥𝑇 = 0.

But this contradicts the fact that 𝑎𝑇 = 1𝑇 = 1. Hence 𝑎 = 0, which implies 𝑦+𝑥2 = 0

and 𝑦 = 𝑥2.
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Lemma 3.3.2. In the classical Knuth semifield ℱ = (𝐺𝐹 (2𝑡),+, ∗), 𝑡 odd, let 𝑑 be

any element in 𝐺𝐹 (2𝑡), not in 𝐺𝐹 (2). Then for any 𝑘

{1, 𝑥1, 𝑥2, 𝑥3, ⋅ ⋅ ⋅ , 𝑥𝑘}

where

𝑥1 = 𝑑, 𝑥2 = 𝑑 ∗ 𝑑, 𝑥3 = 𝑥2 ∗ 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑖 = 𝑥𝑖−1 ∗ 𝑥𝑖−1

is a linearly independent set over 𝐺𝐹 (2).

Proof. Suppose 𝑑1 = 𝑅−1
1 (𝑑) and 𝑑𝑛 = 𝑅−1

1 (𝑑𝑛−1). Then

𝑑 = 𝑑1 ∘ 1 = 𝑑1 + (𝑑𝑇1 + 1𝑇𝑑1)
2 = 𝑑1 + 𝑑21 + 𝑑𝑇1 (3.2)

𝑑𝑛 = 𝑑𝑛−1 ∘ 1 = 𝑑𝑛−1 + (𝑑𝑇𝑛−1 + 1𝑇𝑑𝑛−1)
2 = 𝑑𝑛−1 + 𝑑2𝑛−1 + 𝑑𝑇𝑛−1 (3.3)

Note: 𝑑𝑇 = 𝑑𝑇1 = 𝑑𝑇2 = ⋅ ⋅ ⋅ = 𝑑𝑇𝑖 , for any 𝑖.

Claim 1 : 𝑥𝑖 = 𝑑2
𝑖−1

𝑖−1 , 𝑖 = 2, 3, ⋅ ⋅ ⋅ , 𝑘.
Proof: If 𝑖 = 2, then

𝑥2 = 𝑑 ∗ 𝑑 = 𝑅−1
1 (𝑑) ∘𝑅−1

1 (𝑑) = 𝑑1 ∘ 𝑑1
= 𝑑21 + (𝑑𝑇1 𝑑1 + 𝑑𝑇1 𝑑1)

2 = 𝑑21

Suppose 𝑥𝑖−1 = 𝑑2
𝑖−2

𝑖−2 , then for 𝑖,

𝑥𝑖 = 𝑥𝑖−1 ∗ 𝑥𝑖−1 = 𝑅−1
1 (𝑥𝑖−1) ∘𝑅−1

1 (𝑥𝑖−1)

= 𝑅−1
1 (𝑑2

𝑖−2

𝑖−2 ) ∘𝑅−1
1 (𝑑2

𝑖−2

𝑖−2 )

= (𝑅−1
1 (𝑑𝑖−2))

2𝑖−2 ∘ (𝑅−1
1 (𝑑𝑖−2))

2𝑖−2

= (𝑑𝑖−1)
2𝑖−2 ∘ (𝑑𝑖−1)

2𝑖−2

= (𝑑𝑖−1)
2𝑖−1

Claim 2 : {1, 𝑑, 𝑥2, 𝑥3, ⋅ ⋅ ⋅ , 𝑥𝑘} is linearly independent over 𝐺𝐹 (2).
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Suppose 𝑎0 ∗ 1+ 𝑎1 ∗ 𝑑+ 𝑎2 ∗ 𝑥2 + ⋅ ⋅ ⋅+ 𝑎𝑘 ∗ 𝑥𝑘 = 0, 𝑎𝑖 ∈ 𝐺𝐹 (2). Then by Claim

1, we have

𝑎0 + 𝑎1 ∗ 𝑑+ 𝑎2 ∗ (𝑑21) + 𝑎3 ∗ (𝑑42) + ⋅ ⋅ ⋅+ 𝑎𝑘 ∗ (𝑑2𝑘−1

𝑘−1 ) = 0 (3.4)

Simplify the left hand side of Equality (3.4) as follows.

First by Equality (3.2), replace 𝑑 by 𝑑1 and we get the left hand side of Equality

(3.4) to be

𝑎0 + 𝑎1 ∗ 𝑑𝑇1 + ∗𝑎1 ∗ 𝑑1 + (𝑎1 + 𝑎2) ∗ 𝑑21 + 𝑎3 ∗ 𝑑42 ++ ⋅ ⋅ ⋅+ 𝑎𝑘 ∗ 𝑥𝑘 (3.5)

Let 𝑃1 = 𝑎0 + 𝑎1 ∗ 𝑑𝑇 + ∗𝑎1 ∗ 𝑑1 + (𝑎1 + 𝑎2) ∗ 𝑑21.
Next by Equality (3.3), replace 𝑑1 by 𝑑2 and we get the left hand side of Equality

(3.4) to be

𝑎0+(𝑎1+ 𝑎2) ∗ 𝑑𝑇 + 𝑎1 ∗ 𝑑2+ 𝑎2 ∗ 𝑑22+(𝑎1+ 𝑎2+ 𝑎3) ∗ 𝑑42+ 𝑎4 ∗ 𝑑83+ ⋅ ⋅ ⋅+ 𝑎𝑘 ∗𝑥𝑘 (3.6)

Let 𝑃2 = 𝑎0 + (𝑎1 + 𝑎2) ∗ 𝑑𝑇 + 𝑎1 ∗ 𝑑2 + 𝑎2 ∗ 𝑑22 + (𝑎1 + 𝑎2 + 𝑎3) ∗ 𝑑42
Repeating the same procedure and replacing 𝑑𝑖−1 by 𝑑𝑖 according to Equality

(3.3), we get the left hand side of Equality (3.4) to be

𝑃𝑖 + 𝑎𝑖+2 ∗ 𝑑2𝑖+1

𝑖+1 + 𝑎𝑖+3 ∗ 𝑑2𝑖+2

𝑖+2 + ⋅ ⋅ ⋅+ 𝑎𝑘 ∗ 𝑥𝑘 (3.7)

where

𝑃𝑖 = 𝑎0 + (𝑚1,𝑖) ∗ 𝑑𝑇 + 𝑎1 ∗ 𝑑𝑖 + (𝑚2,𝑖) ∗ 𝑑2𝑖 + (𝑚4,𝑖) ∗ 𝑑4𝑖 + ⋅ ⋅ ⋅+ (𝑚2𝑖,𝑖) ∗ 𝑑2𝑖𝑖

and

𝑚1,𝑖 = 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑖
𝑚2,𝑖 = 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎1 𝑎𝑛𝑑 𝑎2

𝑚4,𝑖 = 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎1, 𝑎2, 𝑎𝑛𝑑 𝑎3

...

𝑚2𝑖,𝑖 = 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑖+1

(3.8)
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Now we prove that Equation (3.8) is true for any 𝑖, where 1 ≤ 𝑖 ≤ 𝑘.

Obviously, if 𝑖 = 1 or 2, the above result is true. Suppose it’s also true for 𝑖;

then for 𝑖+ 1, we have

𝑃𝑖+1 = 𝑎0 + (𝑚1,𝑖) ∗ 𝑑𝑇 + 𝑎1 ∗ (𝑑𝑖+1 + 𝑑2𝑖+1 + 𝑑𝑇 )

+ (𝑚2,𝑖) ∗ (𝑑𝑖+1 + 𝑑2𝑖+1 + 𝑑𝑇 )2 + (𝑚4,𝑖) ∗ (𝑑𝑖+1 + 𝑑2𝑖+1 + 𝑑𝑇 )4

+ ⋅ ⋅ ⋅+ (𝑚2𝑖,𝑖) ∗ (𝑑𝑖+1 + 𝑑2𝑖+1 + 𝑑𝑇 )2
𝑖

+ 𝑎𝑖+2 ∗ 𝑑2𝑖+1

𝑖+1

= 𝑎0 + (𝑚1,𝑖 + 𝑎1 +𝑚2,𝑖 +𝑚4,𝑖 + ⋅ ⋅ ⋅+𝑚2𝑖,𝑖) ∗ 𝑑𝑇

+ 𝑎1 ∗ 𝑑𝑖+1 + (𝑎1 +𝑚2,𝑖) ∗ 𝑑2𝑖+1 + (𝑚2,𝑖 +𝑚4,𝑖) ∗ 𝑑4𝑖+1

+ ⋅ ⋅ ⋅+ (𝑚2𝑖−1,𝑖 +𝑚2𝑖,𝑖) ∗ 𝑑2𝑖𝑖+1 + (𝑚2𝑖,𝑖 + 𝑎𝑖+2) ∗ 𝑑2𝑖+1

𝑖+1

So

𝑚1,𝑖+1 = 𝑚1,𝑖 + 𝑎1 +𝑚2,𝑖 +𝑚4,𝑖 + ⋅ ⋅ ⋅+𝑚2𝑖,𝑖

= 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑖+1

𝑚2,𝑖+1 = 𝑎1 +𝑚2,𝑖 = 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎1 𝑎𝑛𝑑 𝑎2

...

𝑚2𝑖,𝑖+1 = 𝑚2𝑖−1,𝑖 +𝑚2𝑖,𝑖 = 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑖+1

𝑚2𝑖+1,𝑖+1 = 𝑚2𝑖,𝑖 + 𝑎𝑖+2 = 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑖+2

Also, for all 𝑗 between 1 and 𝑖+1, by the construction of 𝑚2𝑗 ,𝑖+1, the term 𝑎𝑗+1 occurs

in 𝑚2𝑗 ,𝑖+1.

Hence, the left hand side of Equality (3.4) can be represented as a polynomial

of 𝑑𝑘−1, so

𝑎0 ∗ 1 + 𝑎1 ∗ 𝑑+ 𝑎2 ∗ 𝑥2 + ⋅ ⋅ ⋅+ 𝑎𝑘 ∗ 𝑥𝑘 = 0, 𝑎𝑖 ∈ 𝐺𝐹 (2)
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is equivalent to 𝑃𝑘−1 = 0. Therefore, all the coefficients of 𝑃𝑘−1 must be 0. Then we

get

𝑎0 +𝑚1,𝑘−1(𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑘−1) = 0

𝑎1 = 0

𝑚2,𝑘−1(𝑎1, 𝑎2) = 0

𝑚4,𝑘−1(𝑎1, 𝑎2, 𝑎3) = 0

...

𝑚2𝑘−1,𝑘−1(𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑘) = 0

This linear system has a unique solution 𝑎0 = 𝑎1 = ⋅ ⋅ ⋅ = 𝑎𝑘 = 0.

Now we can prove Theorem 3.3.1.

Proof. Suppose for some 1 < 𝑘 < 𝑡, the classical Knuth binary semifield ℱ admits a

sub-semifield 𝑆𝑘 of order 2𝑘. Let 𝑑 ∈ 𝑆𝑘, but 𝑑 /∈ 𝐺𝐹 (2). Then by Lemma 3.3.2,

{1, 𝑥1, 𝑥2, 𝑥3, ⋅ ⋅ ⋅ , 𝑥𝑘−1}

is linearly independent and

𝑥1 = 𝑑 ∈ 𝑆𝑘

𝑥2 = 𝑥1 ∗ 𝑥1 ∈ 𝑆𝑘

...

𝑥𝑘−1 = 𝑥𝑘−2 ∗ 𝑥𝑘−2 ∈ 𝑆𝑘

So {1, 𝑥1, 𝑥2, 𝑥3, ⋅ ⋅ ⋅ , 𝑥𝑘−1} can be viewed as a basis of 𝑆𝑘 over 𝐺𝐹 (2). Therefore,

𝑥𝑘 = 𝑥𝑘−1 ∗ 𝑥𝑘−1 ∈ 𝑆𝑘

which implies that 𝑥𝑘 should be a linear combination of {1, 𝑥1, 𝑥2, 𝑥3, ⋅ ⋅ ⋅ , 𝑥𝑘−1}. This
is a contradiction to Lemma 3.3.2.
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Corollary 3.3.1. For the classical Knuth binary semifield ℱ = (𝐺𝐹 (2𝑡),+, ∗), 𝑡 odd,
which is a vector space over 𝐺𝐹 (2), 𝑁𝑙 = 𝑁𝑟 = 𝑁𝑚 = 𝐺𝐹 (2).

It is uncommon for a semifield to admit no sub-semifields; we give a special

name for such a semifield.

Definition 3.3.1. Suppose 𝒮 = (𝐷,+, ∗) is a semifield. Then 𝒮 is said to be simple

if 𝒮 has no any proper sub-semifield.

Rúa [15] showed that a semifield, 3-dimensional over its center, is both right and

left primitive; obviously, a 3-dimensional semifield over its center is never fractional

dimensional. V.Jha and M. Cordero [6] proved that a 5-dimensional semifield over

its center 𝐺𝐹 (𝑞), which is not fractional dimensional, is both right and left primitive

if 𝑞 is large enough. Following Theorem 3.3.1, we have the following conjecture.

Conjecture 3.3.1. Let 𝒮 be a simple semifield, 𝑛-dimensional over its center 𝐺𝐹 (𝑞).

When 𝑞 is large enough, 𝒮 is both left and right primitive.

Lemma 3.3.3. The classical Knuth binary semifield 𝑆1 = (𝐹,+, ∗) and the gener-

alized Knuth binary semifield 𝑆2 = (𝐹,+, ∗′), where 𝐹 = 𝐺𝐹 (2𝑡), 𝑡 ≥ 5 odd, are

isotopic.

Proof. By Lemma 1.2.1 and Lemma 1.2.2, we just need to show that the classical

Knuth binary pre-semifield 𝑃1 = (𝐹,+, ∘) and the generalized Knuth binary pre-

semifield 𝑃2 = (𝐹,+,⊙) are isotopic. Let 𝐵,𝐶 be any two mappings in 𝐺𝐿(𝐹,+).

By the definition of ⊙,

𝑥⊙ 𝑦 = 𝑥𝐵𝑦𝐶 + (𝑥𝐵𝑇𝑦𝐶 + 𝑦𝐶𝑇𝑥𝐵)2 = (𝑥𝐵) ∘ (𝑦𝐶)

We get that 𝑃1 and 𝑃2 are isotopic with isotopism (𝐵,𝐶, 𝐼).

By Albert’s Theorem, the classical Knuth binary semifield 𝑆1, which is com-

mutative, and the generalized Knuth binary semifield 𝑆2, which is not commutative,
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coordinatize isomorphic planes, 𝜋1 and 𝜋2, respectively. Theorem 3.3.1 tells us 𝜋1

is never fractional dimensional, but 𝜋2, by Theorem 3.2.1, contains 𝐺𝐹 (22) when

𝑡 ∈ [5, 31]. In fact, V. Jha [19] proved that for any odd integer 𝑡, the generalized

Knuth binary semifields always contain 𝐺𝐹 (22), so 𝜋2 is always fractional dimen-

sional.

Notice that we have found two isotopic semifields, one commutative and not

fractional dimensional, and the other noncommutative and fractional dimensional

that coordinatize isomorphic planes. Hence isomorphic semifield planes may

have very different algebraic structures coordinating them.

3.4 The Generalized Knuth Binary Semifields Without Fractional Dimension

In this section, we prove that a special subclass of generalized Knuth binary

semifields, where 𝐵,𝐶 leave the trace kernel Γ invariant, do not contain the subfields

𝐺𝐹 (22) or 𝐺𝐹 (23).

Definition 3.4.1. If (𝐹,+, ∘) is an arbitrary pre-semifield, then the twister of any

𝑒 ∈ 𝐹 ∗ is the unique function 𝜈𝑒 : 𝐹 → 𝐹 specified by

𝑓 ∘ 𝑒 = 𝑒 ∘ 𝑓 𝜈𝑒 , 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑓 ∈ 𝐹

Result 3.4.1. [19 Remark 4.1] For any pre-semifield (𝐹,+, ∘), the twister 𝜈𝑒 belong

to 𝐺𝐿(𝐹,+).

For the generalized Knuth pre-semifield ℱ𝐵,𝐶(𝐹 ) = (𝐹,+,⊙), where 𝐵,𝐶 ∈
𝐺𝐿(𝐹,+)Γ, the corresponding twister is sometimes denoted by 𝜈

(𝐵,𝐶)
𝑒 , to emphasize

the dependency of 𝜈𝑒 on the choice of (𝐵,𝐶).

If the choice of (𝐵,𝐶) is clear from the context, we just write 𝜈𝑒 instead of

𝜈
(𝐵,𝐶)
𝑒 .
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Result 3.4.2. [19 Corollary 4.3] Suppose 𝑒 ∈ Γ∗ and 𝑒𝐵 = 𝑒𝐶, 𝐵,𝐶 ∈ 𝐺𝐿(𝐹,+)Γ.

Then the left and right multiplication by 𝑒 in the generalized Knuth pre-semifield

ℱ𝐵,𝐶(𝐹 ) are specified as follows.

(1) 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝐹, 𝑓 𝜈
(𝐵,𝐶)
𝑒 = 𝑓𝐵𝐶−1

.

(2) 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝐹, 𝑒 ∘ 𝑓 = 𝑓𝐶𝐵−1 ∘ 𝑒.

In this section, we prove that the generalized Knuth binary semifield ℱ (𝑒)
𝐵,𝐶(𝐹 ) =

(𝐹,+, ∗)𝑒 is commutative when 𝑒 ∈ Γ∗ and 𝑒𝐵 = 𝑒𝐶 , for 𝐵,𝐶 ∈ 𝐺𝐿(𝐹,+)Γ. We also

show that it does not admit 𝐺𝐹 (22) or 𝐺𝐹 (23).

Lemma 3.4.1. Suppose 𝑒 ∈ Γ∗ and 𝑒𝐵 = 𝑒𝐶, 𝐵,𝐶 ∈ 𝐺𝐿(𝐹,+)Γ. Then the general-

ized Knuth binary semifield ℱ (𝑒)
𝐵,𝐶(𝐹 ) = (𝐹,+, ∗)𝑒 is commutative.

Proof. For any 𝑓, 𝑔 ∈ 𝐹 , we show (𝑒⊙ 𝑓) ∗ (𝑒⊙ 𝑔) = (𝑒⊙ 𝑔) ∗ (𝑒⊙ 𝑓).

(𝑒 ∘ 𝑓) ∗ (𝑒 ∘ 𝑔) = (𝑓𝐶𝐵−1 ∘ 𝑒) ∗ (𝑒 ∘ 𝑔) (𝑏𝑦 𝑅𝑒𝑠𝑢𝑙𝑡 3.4.2)

= 𝑓𝐶𝐵−1 ∘ 𝑔

= (𝑓𝐶𝐵−1

)𝐵𝑔𝐶 + ((𝑓𝐶𝐵−1

)𝐵𝑇𝑔𝐶 + 𝑔𝐶𝑇𝑓𝐶𝐵−1

)2

= 𝑓𝐶𝑔𝐶 + (𝑓𝐶𝑇 𝑔𝐶 + 𝑔𝐶𝑇𝑓𝐶)2

On the other hand,

(𝑒 ∘ 𝑔) ∗ (𝑒 ∘ 𝑓) = (𝑔𝐶𝐵−1 ∘ 𝑒) ∗ (𝑒 ∘ 𝑓) (𝑏𝑦 𝑅𝑒𝑠𝑢𝑙𝑡 3.4.2)

= 𝑔𝐶𝐵−1 ∘ 𝑓

= (𝑔𝐶𝐵−1

)𝐵𝑓𝐶 + ((𝑔𝐶𝐵−1

)𝐵𝑇𝑓𝐶 + 𝑓𝐶𝑇 𝑔𝐶𝐵−1

)2

= 𝑔𝐶𝑓𝐶 + (𝑔𝐶𝑇𝑓𝐶 + 𝑓𝐶𝑇𝑔𝐶)2

Obviously, 𝑓𝐶𝑔𝐶 = 𝑔𝐶𝑓𝐶 , which implies (𝑒 ∘ 𝑓) ∗ (𝑒 ∘ 𝑔) = (𝑒 ∘ 𝑔) ∗ (𝑒 ∘ 𝑓).
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Theorem 3.4.1. For any odd integer 𝑛, with the hypothesis of Lemma 3.4.1, the

generalized Knuth binary semifield ℱ (𝑒)
𝐵,𝐶(𝐹 ) = (𝐹,+, ∗)𝑒 does not contain the finite

field 𝐺𝐹 (22).

Proof. Since (𝐹 ∗,⊙) is a loop, for any 𝑑 ∕= 0, there is a unique 𝑓 ∈ 𝐹 ∗ such that

𝑑 = 𝑓 ⊙ 𝑒. If {1, 𝑑} is a basis of 𝐺𝐹 (22), then

𝑑 /∈ 𝐺𝐹 (2) 𝑎𝑛𝑑 𝑑 ∗ 𝑑 = 𝑑+ 1 (3.9)

where 1 = 𝑒⊙ 𝑒 is the identity of the generalized Knuth binary semifield ℱ (𝑒)
𝐵,𝐶(𝐹 ) =

(𝐹,+, ∗)𝑒.
We prove

𝑑2 = 𝑑+ 1, 𝑖.𝑒., (𝑓 ⊙ 𝑒)2) = 𝑓 ⊙ 𝑒+ 𝑒⊙ 𝑒 (3.10)

where (𝑓 ⊙ 𝑒)2) = (𝑓 ⊙ 𝑒) ∗ (𝑓 ⊙ 𝑒), never has a solution in the generalized Knuth

binary semifield ℱ (𝑒)
𝐵,𝐶(𝐹 ) = (𝐹,+, ∗)𝑒.

(𝑓 ⊙ 𝑒)2) = (𝑓 ⊙ 𝑒) ∗ (𝑒⊙ 𝑓 𝜈𝑒) = 𝑓 ⊙ 𝑓 𝜈𝑒

= 𝑓𝐵𝑓 𝜈𝑒𝐶 + (𝑓𝐵𝑇𝑓 𝜈𝑒𝐶 + 𝑓 𝜈𝑒𝐶𝑇𝑓𝐵)2

= 𝑓𝐵(𝑓𝐵𝐶−1

)𝐶 + (𝑓𝐵𝑇𝑓𝐵𝐶−1𝐶 + 𝑓𝐵𝐶−1𝐶𝑇𝑓𝐵)2

= 𝑓𝐵𝑓𝐵 = (𝑓𝐵)2

𝑓 ⊙ 𝑒+ 𝑒⊙ 𝑒 = 𝑓𝐵𝑒𝐶 + (𝑓𝐵𝑇 𝑒𝐶 + 𝑒𝐶𝑇𝑓𝐵)2 + 𝑒𝐵𝑒𝐶 + (𝑒𝐵𝑇 𝑒𝐶 + 𝑒𝐶𝑇 𝑒𝐵)2

= 𝑓𝐵𝑒𝐶 + 𝑓𝐵𝑇 (𝑒𝐶)2 + 𝑒𝐵𝑒𝐶

= 𝑓𝐵𝑒𝐵 + 𝑓𝐵𝑇 (𝑒𝐵)2 + (𝑒𝐵)2

Case 1: When 𝑓 ∈ Γ. If (3.10) is true, then (𝑓𝐵)2 + 𝑓𝐵𝑒𝐵 + (𝑒𝐵)2 = 0. Since 𝑛

is odd, the above equation never has a solution in the finite field 𝐹 = 𝐺𝐹 (2𝑛).

Case 2: When 𝑓 /∈ Γ. Then 𝑓 ⊙ 𝑒 + 𝑒 ⊙ 𝑒 = 𝑓𝐵𝑒𝐵 + (𝑒𝐵)2 + (𝑒𝐵)2 = 𝑓𝐵𝑒𝐵. If

(3.10) is true, then (𝑓𝐵)2 = 𝑓𝐵𝑒𝐵, and so 𝑓𝐵 = 0 or 𝑓𝐵 = 𝑒𝐵. Hence 𝑓 = 0 or 𝑓 = 𝑒,

since 𝐵 ∈ 𝐺𝐿(𝐹,+), and then implies 𝑑 = 0 or 𝑑 = 𝑒⊙ 𝑒.
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Lemma 3.4.2. Suppose 𝑒 ∈ Γ∗ and 𝑒𝐵 = 𝑒𝐶, 𝐵,𝐶 ∈ 𝐺𝐿(𝐹,+)Γ. For any 𝑓 ∈ 𝐹 , let

𝑓1 ⊙ 𝑒 = 𝑓 . Then

𝑓1 =

⎧⎨⎩ (
𝑓
𝑒𝐶

)𝐵
−1
, 𝑖𝑓 𝑓1 ∈ Γ,

(
𝑓
𝑒𝐶

)𝐵
−1

+ 𝑒, 𝑖𝑓 𝑓1 /∈ Γ.

Proof. If 𝑓1 ⊙ 𝑒 = 𝑓 , then

𝑓 = 𝑓𝐵
1 𝑒𝐶 + (𝑓𝐵𝑇

1 𝑒𝐶 + 𝑒𝐶𝑇𝑓𝐵
1 )2

= 𝑓𝐵
1 𝑒𝐶 + 𝑓𝐵𝑇

1 (𝑒𝐶)2

Case 1: if 𝑓1 ∈ Γ, then 𝑓 = 𝑓𝐵
1 𝑒𝐶 and 𝑓𝐵

1 =
𝑓
𝑒𝐶

. So 𝑓1 = (
𝑓
𝑒𝐶

)𝐵
−1
.

Case 2: if 𝑓1 /∈ Γ, then 𝑓 = 𝑓𝐵
1 𝑒𝐶 + (𝑒𝐶)2 and 𝑓𝐵

1 =
𝑓 + (𝑒𝐶)2

𝑒𝐶
. So

𝑓1 = (
𝑓

𝑒𝐶
)𝐵

−1

+ (𝑒𝐶)𝐵
−1

= (
𝑓

𝑒𝐶
)𝐵

−1

+ 𝑒.

Theorem 3.4.2. For any odd integer 𝑛, with the hypothesis of Lemma 3.4.1, the

generalized Knuth binary semifield ℱ (𝑒)
𝐵,𝐶(𝐹 ) = (𝐹,+, ∗)𝑒 does not contain the finite

field 𝐺𝐹 (23) when (𝑛, 3) = 1.

Proof. By Theorem 3.4.1, for any 𝑑 ∈ 𝐹 −𝐺𝐹 (2), {1, 𝑑, 𝑑2)} is linearly independent,

so this set can be viewed as a basis of 𝐺𝐹 (23) over 𝐺𝐹 (2). Any finite field 𝐺𝐹 (𝑞𝑛),

𝑞 is a prime power, can be constructed by an irreducible polynomial over 𝐺𝐹 (𝑞). For

the finite field 𝐺𝐹 (23), there are only 2 irreducible polynomials over 𝐺𝐹 (2):

𝑥3 + 𝑥+ 1 𝑎𝑛𝑑 𝑥3 + 𝑥2 + 1.

Without lost of generality, let 𝑑 be a root of 𝑔(𝑥) = 𝑥3+𝑥+1, which is the irreducible

polynomial for the field extension from 𝐺𝐹 (2) to 𝐺𝐹 (23).

For any 𝑑 ∈ 𝐹 −𝐺𝐹 (2), let 𝑑 = 𝑓 ⊙ 𝑒. In order to prove this theorem, we just

need to show that the equation

(𝑓 ⊙ 𝑒)3) + 𝑓 ⊙ 𝑒+ 𝑒⊙ 𝑒 = 0 (3.11)

67



has no solution in 𝐹 = 𝐺𝐹 (2𝑛), when (𝑛, 3) = 1.

By the computation in Theorem 3.4.1,

𝑓 ⊙ 𝑒+ 𝑒⊙ 𝑒 = 𝑓𝐵𝑒𝐵 + 𝑓𝐵𝑇 (𝑒𝐵)2 + (𝑒𝐵)2 (3.12)

and

(𝑓 ⊙ 𝑒)2) = (𝑓𝐵)2 (3.13)

Case 1: if 𝑓 ∈ Γ, then 𝑓 ⊙ 𝑒+ 𝑒⊙ 𝑒 = 𝑓𝐵𝑒𝐵 + (𝑒𝐵)2. Let 𝑓1 ⊙ 𝑒 = (𝑓 ⊙ 𝑒)2).

If 𝑓1 ∈ Γ, then by Lemma 3.4.2, 𝑓1 = (
(𝑓𝐵)2

𝑒𝐵
)𝐵

−1
and

(𝑓 ⊙ 𝑒)3) = (𝑓 ⊙ 𝑒)2) ∗ (𝑓 ⊙ 𝑒)

= (𝑓1 ⊙ 𝑒)2) ∗ (𝑒⊙ 𝑓 𝜈𝑒) = 𝑓1 ⊙ 𝑓 𝜈𝑒

= 𝑓𝐵
1 𝑓 𝜈𝑒𝐶 + (𝑓𝐵𝑇

1 𝑓 𝜈𝑒𝐶 + 𝑓 𝜈𝑒𝐶𝑇𝑓𝐵
1 )2

= (
(𝑓𝐵)2

𝑒𝐵
)𝑓𝐵 =

(𝑓𝐵)3

𝑒𝐵

So if (3.11) is true, then

(𝑓𝐵)3

𝑒𝐵
+ 𝑓𝐵𝑒𝐵 + (𝑒𝐵)2 = 0 (3.14)

and

(𝑓𝐵)3 + 𝑓𝐵(𝑒𝐵)2 + 𝑒𝐵)3 = 0 (3.15)

Let 𝑧 =
𝑓𝐵

𝑒𝐵
. Since 𝑒 ∕= 0 and 𝐵 is a bijection on 𝐹 , 𝑒𝐵 ∕= 0. Then dividing by (𝑒𝐵)3

in both sides of equation (3.15), we get 𝑧3 + 𝑧+1 = 0. This equation has no solution

in 𝐹 because (𝑛, 3) = 1.

If 𝑓1 /∈ Γ, then by Lemma 3.4.2, 𝑓1 = (
(𝑓𝐵)2

𝑒𝐵
)𝐵

−1
+ 𝑒 and

(𝑓 ⊙ 𝑒)3) = (𝑓 ⊙ 𝑒)2) ∗ (𝑓 ⊙ 𝑒) = 𝑓1 ⊙ 𝑓 𝜈𝑒

= 𝑓𝐵
1 𝑓 𝜈𝑒𝐶 + (𝑓𝐵𝑇

1 𝑓 𝜈𝑒𝐶 + 𝑓 𝜈𝑒𝐶𝑇𝑓𝐵
1 )2
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= (𝑓𝐵
1 )𝑓𝐵 + (𝑓 𝜈𝑒𝐶)2 = (𝑓𝐵

1 )𝑓𝐵 + (𝑓𝐵)2

= (
(𝑓𝐵)2

𝑒𝐵
+ 𝑒𝐵)𝑓𝐵 + (𝑓𝐵)2

=
(𝑓𝐵)3

𝑒𝐵
+ 𝑒𝐵𝑓𝐵 + (𝑓𝐵)2

So if equation (3.11) is true, then

(𝑓𝐵)3

𝑒𝐵
+ 𝑒𝐵𝑓𝐵 + (𝑓𝐵)2 + 𝑓𝐵𝑒𝐵 + (𝑒𝐵)2 = 0 (3.16)

and

(𝑓𝐵)3

𝑒𝐵
+ (𝑓𝐵)2 + (𝑒𝐵)2 = 0 (3.17)

Hence (
𝑓𝐵

𝑒𝐵
)3+(

𝑓𝐵

𝑒𝐵
)2+1 = 0. This equation has no solution in 𝐹 because (𝑛, 3) = 1.

Case 2: if 𝑓 /∈ Γ, then 𝑓 ⊙ 𝑒+ 𝑒⊙ 𝑒 = 𝑓𝐵𝑒𝐵. Let 𝑓1 ⊙ 𝑒 = (𝑓 ⊙ 𝑒)2).

If 𝑓1 ∈ Γ, then by Lemma 3.4.2, 𝑓1 = (
(𝑓𝐵)2

𝑒𝐵
)𝐵

−1
and so

(𝑓 ⊙ 𝑒)3) = 𝑓1 ⊙ 𝑓 𝜈𝑒

= 𝑓𝐵
1 𝑓 𝜈𝑒𝐶 + (𝑓𝐵𝑇

1 𝑓 𝜈𝑒𝐶 + 𝑓 𝜈𝑒𝐶𝑇𝑓𝐵
1 )2

= (𝑓𝐵
1 )𝑓𝐵 + (𝑓𝐵

1 )2

= (
(𝑓𝐵)2

𝑒𝐵
)𝑓𝐵 + (

(𝑓𝐵)2

𝑒𝐵
)2

=
(𝑓𝐵)3𝑒𝐵 + (𝑓𝐵)4

(𝑒𝐵)2

So if equation (3.11) is true, then

(𝑓𝐵)3𝑒𝐵 + (𝑓𝐵)4

(𝑒𝐵)2
+ 𝑓𝐵𝑒𝐵 = 0 (3.18)

and

𝑓𝐵[(𝑓𝐵)3 + 𝑒𝐵(𝑓𝐵)2 + (𝑒𝐵)3] = 0 (3.19)

Since 𝑓 ∕= 0 and 𝐵 is a bijection on 𝐹 , then 𝑓𝐵 ∕= 0. Hence equation (3.19) can be

simplified as

(𝑓𝐵)3 + 𝑒𝐵(𝑓𝐵)2 + (𝑒𝐵)3 = 0 (3.20)

69



However, equation (3.20) has no solution in 𝐹 because (𝑛, 3) = 1.

If 𝑓1 /∈ Γ, then by Lemma 3.4.2, 𝑓1 = (
(𝑓𝐵)2

𝑒𝐵
)𝐵

−1
+ 𝑒 and

(𝑓 ⊙ 𝑒)3) = 𝑓1 ⊙ 𝑓 𝜈𝑒

= 𝑓𝐵
1 𝑓 𝜈𝑒𝐶 + (𝑓𝐵𝑇

1 𝑓 𝜈𝑒𝐶 + 𝑓 𝜈𝑒𝐶𝑇𝑓𝐵
1 )2

= (𝑓𝐵
1 )𝑓𝐵 + (𝑓𝐵)2 + (𝑓𝐵

1 )2

= (
(𝑓𝐵)2

𝑒𝐵
+ 𝑒𝐵)𝑓𝐵 + (𝑓𝐵)2 + (

(𝑓𝐵)2

𝑒𝐵
+ 𝑒𝐵)2

=
(𝑓𝐵)3

𝑒𝐵
+

(𝑓𝐵)4

(𝑒𝐵)2
+ 𝑓𝐵𝑒𝐵 + (𝑓𝐵)2 + (𝑒𝐵)2

If (3.11) is true, then

(𝑓𝐵)3

𝑒𝐵
+

(𝑓𝐵)4

(𝑒𝐵)2
+ (𝑓𝐵)2 + (𝑒𝐵)2 = 0

⇒(𝑓𝐵)3𝑒𝐵 + (𝑓𝐵)4 + (𝑒𝐵)4 + (𝑓𝐵)2(𝑒𝐵)2 = 0

⇒(𝑓𝐵 + 𝑒𝐵)[(𝑓𝐵)3 + 𝑓𝐵(𝑒𝐵)2 + (𝑒𝐵)3] = 0

Since 𝐵 is a bijection on 𝐹 and 𝑓𝐵 ∕= 𝑒𝐵, then we have 𝑓𝐵 + 𝑒𝐵 ∕= 0, and

(𝑓𝐵)3 + 𝑓𝐵(𝑒𝐵)2 + (𝑒𝐵)3 = 0 (3.21)

Similarly the equation above has no solution in 𝐹 .

3.5 The Albert Semifields Without Fractional Dimension

Wene [17] proved that any Albert semifield 𝐴𝑛(𝑆), 𝑛 odd, where 𝑆 is a (𝑛− 1)-

dimensional vector space over 𝐺𝐹 (2) containing 1, never contains a field of order 4.

We have the following result:

Theorem 3.5.1. For any odd integer 𝑛, where (𝑛, 3) = 1, it’s impossible for the

Albert semifield 𝐴𝑛(𝑆), where 𝑆 is a (𝑛 − 1)-dimensional vector space over 𝐺𝐹 (2)

containing 1, to contain the finite field 𝐺𝐹 (23).
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Proof. Since𝐺𝐹 (4) is not contained in any Albert semifield𝐴𝑛(𝑆), for any 𝑑 /∈ 𝐺𝐹 (2),

{1, 𝑑, 𝑑 ∗ 𝑑} is linearly independent. Hence this set can be viewed as a 𝐺𝐹 (2)-basis of

the finite field 𝐺𝐹 (23). Suppose the finite field 𝐺𝐹 (23) is generated by the irreducible

polynomial 𝑓(𝑥) = 𝑥3 + 𝑥+ 1 over 𝐺𝐹 (2) and 𝑑 is a zero of 𝑓(𝑥).

We show all the elements 𝑑 in the Albert semifield 𝐴𝑛, when (𝑛, 3) = 1, can not

be a root of the equation 𝑥3 + 𝑥+ 1 = 0 .

There are a total of 4 cases to consider:

(𝑖) 𝑑, 𝑑 ∗ 𝑑 ∈ 𝑆; (𝑖𝑖) 𝑑 ∈ 𝑆, 𝑑 ∗ 𝑑 /∈ 𝑆;

(𝑖𝑖𝑖) 𝑑 /∈ 𝑆, , 𝑑 ∗ 𝑑 ∈ 𝑆; (𝑖𝑣) 𝑑, 𝑑 ∗ 𝑑 /∈ 𝑆

Case i: If 𝑑, 𝑑 ∗ 𝑑 ∈ 𝑆, then {1, 𝑑, 𝑑 ∗ 𝑑} ⊆ 𝑆, so a subfield 𝐺𝐹 (23) is contained

in 𝐺𝐹 (2𝑛). But this is impossible since (𝑛, 3) = 1.

Case ii: If 𝑑 ∈ 𝑆, but 𝑑∗𝑑 = 𝑑2 /∈ 𝑆. Suppose 𝑑∗𝑑 = 𝜔+ 𝑡 for some 𝑡 ∈ 𝑆, then

𝑑3) = (𝜔 + 𝑡) ∗ 𝑑 = 𝜔 ∗ 𝑑+ 𝑡 ∗ 𝑑

= 𝜔𝑑+ 𝑑2 + 𝑑+ 𝑡𝑑

If 𝑑3) = 𝑑+ 1, then

𝜔𝑑+ 𝑑2 + 𝑑+ 𝑡𝑑 = 𝑑+ 1 ⇒ 𝜔𝑑+ 𝑑2 + 𝑡𝑑+ 1 = 0

⇒ 𝑑2 + (𝜔 + 𝑡)𝑑+ 1 = 0

⇒ 𝑑2 + (𝑑2)𝑑+ 1 = 0, 𝑖.𝑒., 𝑑3 + 𝑑2 + 1 = 0

Hence 𝑑 is a root of the irreducible polynomial 𝑔(𝑥) = 𝑥3 + 𝑥2 +1 over 𝐺𝐹 (2), which

implies 𝐺𝐹 (23) is in 𝐺𝐹 (2𝑛). But this contradicts the fact that (𝑛, 3) = 1.

If 𝑑 /∈ 𝑆, suppose 𝑑 = 𝜔 + 𝑑1 for some 𝑑1 ∈ 𝑆, then

𝑑 ∗ 𝑑 = (𝜔 + 𝑑1) ∗ (𝜔 + 𝑑1) = 𝜔2 + 𝑑21 + 1
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Case iii: If 𝑑 /∈ 𝑆, but 𝑑 ∗ 𝑑 ∈ 𝑆. Then

𝑑3) = 𝑑2) ∗ 𝑑 = (𝜔2 + 𝑑21 + 1) ∗ (𝜔 + 𝑑1)

= (𝜔2 + 𝑑21 + 1)𝜔 + (𝜔2 + 𝑑21 + 1)2 + (𝜔2 + 𝑑21 + 1) + (𝜔2 + 𝑑21 + 1)𝑑1

= (𝜔2 + 𝑑21 + 1)[(𝜔2 + 𝑑21 + 1) + (𝜔 + 𝑑1 + 1)]

If 𝑑3) = 𝑑+ 1, then

(𝜔2 + 𝑑21 + 1)[(𝜔2 + 𝑑21 + 1) + (𝜔 + 𝑑1 + 1)] = 𝜔 + 𝑑1 + 1

Since 𝑑 /∈ 𝐺𝐹 (2), 𝑑+ 1 = 𝜔 + 𝑑1 + 1 ∕= 0 and then

(𝜔 + 𝑑1 + 1)[(𝜔2 + 𝑑21 + 1) + (𝜔 + 𝑑1 + 1)] = 1

⇒ (𝜔 + 𝑑1 + 1)[(𝜔 + 𝑑1 + 1)(𝜔 + 𝑑1)] = 1

⇒ (𝑑+ 1)[(𝑑+ 1)𝑑] = 1, 𝑖.𝑒., 𝑑3 + 𝑑+ 1 = 0

The equation above implies that 𝐺𝐹 (23) is contained in 𝐺𝐹 (2𝑛). But this contradicts

the fact that (𝑛, 3) = 1.

Case iv: If 𝑑, 𝑑 ∗ 𝑑 /∈ 𝑆. Then 𝑑 ∗ 𝑑 = (𝜔 + 𝑑1) ∗ (𝜔 + 𝑑1) = 𝜔2 + 𝑑21 + 1. Let

𝑑 ∗ 𝑑 = 𝜔 + 𝑝 for some 𝑝 ∈ 𝑆; so 𝑝 = 𝜔2 + 𝜔 + 𝑑21 + 1 and then

𝑑3) = 𝑑2) ∗ 𝑑 = (𝜔 + 𝑝) ∗ (𝜔 + 𝑑1)

= 𝜔 ∗ 𝜔 + 𝜔 ∗ (𝑝+ 𝑑1) + 𝑝 ∗ 𝑑1
= 𝜔2 + 1 + (𝑝+ 𝑑1)𝜔 + (𝑝+ 𝑑1)

2 + (𝑝+ 𝑑1) + 𝑝𝑑1

If 𝑑3) = 𝑑+ 1, then

𝜔2 + (𝑝+ 𝑑1)𝜔 + (𝑝+ 𝑑1)
2 + (𝑝+ 𝑑1) + 𝑝𝑑1 = 𝜔 + 𝑑1

⇒ 𝜔2 + (𝜔2 + 𝜔 + 𝑑21 + 1 + 𝑑1)𝜔 + (𝜔2 + 𝜔 + 𝑑21 + 1 + 𝑑1)
2 + (𝜔2 + 𝜔 + 𝑑21 + 1 + 𝑑1)

+ (𝜔2 + 𝜔 + 𝑑21 + 1)𝑑1 = 𝜔 + 𝑑1
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⇒ 𝜔4 + 𝜔3 + 𝜔(𝑑21 + 𝑑1 + 1) + (𝑑21 + 𝑑1 + 1)2 + (𝑑21 + 𝑑1 + 1) + (𝜔2 + 𝜔)𝑑1 + 𝑑31 = 0

⇒ (𝜔4 + 𝑑41) + (𝜔3 + 𝜔𝑑21 + 𝜔2𝑑1 + 𝑑31) + (𝜔 + 𝑑1) = 0

⇒ (𝜔 + 𝑑1)
4 + (𝜔 + 𝑑1)

3 + (𝜔 + 𝑑1) = 0

Since 𝑑 = 𝜔 + 𝑑1 ∕= 0 ,then the equation above is 𝑑3 + 𝑑2 + 1 = 0, which implies that

𝐺𝐹 (23) is contained in 𝐺𝐹 (2𝑛). But again this is impossible because (𝑛, 3) = 1.
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CHAPTER 4

CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

In Chapter II, we focused on the the problem of right primitivity for finite

semifields. After providing the basic definition of primitivity of finite semifields, we

proved the main theorem of the chapter, which provided an equivalent condition for

right primitivity of finite semifields (Section 2.2). With this result, we investigated the

primitivity of the classical Knuth binary semifields of order 2𝑛, where 𝑛 = 15, 17, 19

(Section 2.3), and the Albert semifields of order 2𝑛, where 𝑛 = 7, 9, 11, 13 (Section

2.5). Also for the primitive classical Knuth binary semifields we exhibited a formula

to describe the number of primitive elements (Section 2.4). Finally, we investigated

some properties of automorphisms of right primitive semifields (Section 2.6).

In Chapter III, we provided some new results on the dimension of finite semi-

fields. Let 𝐹 = 𝐺𝐹 (2𝑛), where 𝑛 is an odd positive integer. First, the classical

Knuth binary semifields ℱ = (𝐹,+, ∗), which is an 𝑛-dimensional vector space over

𝐺𝐹 (2), does not contain any sub-semifields (Section 3.3). Next, we considered two

special classes of the generalized Knuth binary semifields ℱ (𝑒)
𝐵,𝐶(𝐹 ) = (𝐹,+, ∗)𝑒, where

𝐵,𝐶 ∈ 𝐺𝐿(𝐹,+) and 𝑒 is a nonzero element in 𝐹 . Each semifield in the first class

contains the subfield 𝐺𝐹 (22), when 𝑛 ∈ [5, 31]; hence this class is fractional dimen-

sional(Section 3.2). The semifield in the second class do not contain the subfield

𝐺𝐹 (22) or 𝐺𝐹 (23) (Section 3.4). Finally, we proved that the Albert semifields do not

contain subfields 𝐺𝐹 (23) either (Section 3.5).
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4.2 Future Work

Until now, all semifields that do not admit the finite fields 𝐺𝐹 (22) or 𝐺𝐹 (23)

are commutative. Some interesting problems to explore are the following.

∙ Let 𝑆 be a commutative semifield. Is it possible for 𝑆 to be fractional dimen-

sional?

∙ If 𝜋1 and 𝜋2 are two semifield planes coordinatized by 2 commutative finite

semifields, can 𝜋1 and 𝜋2 be absolutely isomorphic? (See Definition 1.1.2)
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APPENDIX A

MATLAB PROGRAM FOR ℱ = (𝐺𝐹 (215),+, ∗)
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In this appendix, we present a Matlab program to get all the distinct right

characteristic polynomials of all the elements in the classical Knuth binary semifield

ℱ = (𝐺𝐹 (215),+, ∗).

𝐵 = [ ];𝑗 = 0;

for 𝑖0 = 0 : 1

for 𝑖1 = 0 : 1

for 𝑖2 = 0 : 1

for 𝑖3 = 0 : 1

for 𝑖4 = 0 : 1

for 𝑖5 = 0 : 1

for 𝑖6 = 0 : 1

for 𝑖7 = 0 : 1

for 𝑖8 = 0 : 1

for 𝑖9 = 0 : 1

for 𝑖10 = 0 : 1

for 𝑖11 = 0 : 1

for 𝑖12 = 0 : 1

for 𝑖13 = 0 : 1

for 𝑖14 = 0 : 1

𝑗 = 𝑗 + 1;

𝑝 = 𝑝𝑜𝑙𝑦(𝑖0 ∗𝐴0+ 𝑖1 ∗𝐴1+ 𝑖2 ∗𝐴2+ 𝑖3 ∗𝐴3+ 𝑖4 ∗𝐴4+ 𝑖5 ∗𝐴5+ 𝑖6 ∗𝐴6+ 𝑖7 ∗𝐴7+
𝑖8 ∗ 𝐴8 + 𝑖9 ∗ 𝐴9 + 𝑖10 ∗ 𝐴10 + 𝑖11 ∗ 𝐴11 + 𝑖12 ∗ 𝐴12 + 𝑖13 ∗ 𝐴13 + 𝑖14 ∗ 𝐴14);
𝑝 = 𝑟𝑜𝑢𝑛𝑑(𝑝);

𝑟 = 𝑎𝑏𝑠(𝑚𝑜𝑑(𝑝, 2));

𝐵(𝑗, :) = 𝑟;
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unique(B, ‘rows’)

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end
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APPENDIX B

MATLAB PROGRAM FOR 𝐴7(𝑆)
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In this appendix, we present a Matlab program to get all the distinct right

characteristic polynomials of all the elements in the Albert semifield 𝐴7(𝑆).

for 𝑖0 = 0 : 1

for 𝑖1 = 0 : 1

for 𝑖2 = 0 : 1

for 𝑖3 = 0 : 1

for 𝑖4 = 0 : 1

for 𝑖5 = 0 : 1

for 𝑖6 = 0 : 1

𝐴 = 𝑖0 ∗𝑅0 + 𝑖1 ∗𝑅1 + 𝑖2 ∗𝑅2 + 𝑖3 ∗𝑅3 + 𝑖4 ∗𝑅4 + 𝑖5 ∗𝑅5 + 𝑖6 ∗𝑅6;

𝑝 = 𝑝𝑜𝑙𝑦(𝑟𝑒𝑚(𝐴, 2));

𝑟 = 𝑟𝑜𝑢𝑛𝑑(𝑟𝑒𝑚(𝑝, 2))

end

end

end

end

end

end

end
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APPENDIX C

PRIMITIVE ELEMENTS IN ℱ = (𝐺𝐹 (27),+, ∗)
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In this appendix, we present all the primitive elements in the Knuth binary

semifield ℱ = (𝐺𝐹 (27),+, ∗). The irreducible polynomial 𝑓(𝑥) = 𝑥7+𝑥+1 is chosen

to be the polynomial associated with the field extension over 𝐺𝐹 (2). Let 𝜁 be a root

of 𝑓(𝑥). Then {1, 𝜁, 𝜁2, ⋅ ⋅ ⋅ , 𝜁6} is a 𝐺𝐹 (2)-basis of 𝐺𝐹 (27).

Primitive elements in the Knuth binary semifield of order 27

𝜁 1 + 𝜁 𝜁2

𝜁 + 𝜁2 1 + 𝜁2 1 + 𝜁 + 𝜁2

𝜁4 1 + 𝜁4 𝜁 + 𝜁4

1 + 𝜁 + 𝜁4 𝜁2 + 𝜁4 𝜁 + 𝜁2 + 𝜁4

1 + 𝜁2 + 𝜁4 1 + 𝜁 + 𝜁2 + 𝜁4 𝜁3 + 𝜁4

1 + 𝜁3 + 𝜁4 𝜁 + 𝜁3 + 𝜁4 1 + 𝜁 + 𝜁3 + 𝜁4

𝜁2 + 𝜁3 + 𝜁4 𝜁 + 𝜁2 + 𝜁3 + 𝜁4 1 + 𝜁2 + 𝜁3 + 𝜁4

1 + 𝜁 + 𝜁2 + 𝜁3 + 𝜁4 𝜁5 1 + 𝜁5

𝜁 + 𝜁5 1 + 𝜁 + 𝜁5 𝜁2 + 𝜁3 + 𝜁5

𝜁 + 𝜁2 + 𝜁3 + 𝜁5 1 + 𝜁2 + 𝜁3 + 𝜁5 1 + 𝜁 + 𝜁2 + 𝜁3 + 𝜁5

𝜁4 + 𝜁5 1 + 𝜁4 + 𝜁5 𝜁 + 𝜁4 + 𝜁5

1 + 𝜁 + 𝜁4 + 𝜁5 𝜁3 + 𝜁4 + 𝜁5 1 + 𝜁3 + 𝜁4 + 𝜁5

𝜁 + 𝜁3 + 𝜁4 + 𝜁5 1 + 𝜁 + 𝜁3 + 𝜁4 + 𝜁5 𝜁 + 𝜁6

1 + 𝜁 + 𝜁6 𝜁 + 𝜁2 + 𝜁6 1 + 𝜁 + 𝜁2 + 𝜁6

𝜁3 + 𝜁6 1 + 𝜁3 + 𝜁6 𝜁2 + 𝜁3 + 𝜁6

1 + 𝜁2 + 𝜁3 + 𝜁6 𝜁 + 𝜁4 + 𝜁6 1 + 𝜁 + 𝜁4 + 𝜁6

𝜁 + 𝜁2 + 𝜁4 + 𝜁6 1 + 𝜁 + 𝜁2 + 𝜁4 + 𝜁6 𝜁 + 𝜁3 + 𝜁4 + 𝜁6

1 + 𝜁 + 𝜁3 + 𝜁4 + 𝜁6 𝜁 + 𝜁2 + 𝜁3 + 𝜁4 + 𝜁6 1 + 𝜁 + 𝜁2 + 𝜁3 + 𝜁4 + 𝜁6

𝜁 + 𝜁5 + 𝜁6 1 + 𝜁 + 𝜁5 + 𝜁6 𝜁2 + 𝜁5 + 𝜁6

1 + 𝜁2 + 𝜁5 + 𝜁6 𝜁3 + 𝜁5 + 𝜁6 1 + 𝜁3 + 𝜁5 + 𝜁6

𝜁 + 𝜁2 + 𝜁3 + 𝜁5 + 𝜁6 1 + 𝜁 + 𝜁2 + 𝜁3 + 𝜁5 + 𝜁6 𝜁 + 𝜁4 + 𝜁5 + 𝜁6

1 + 𝜁 + 𝜁4 + 𝜁5 + 𝜁6 𝜁2 + 𝜁4 + 𝜁5 + 𝜁6 1 + 𝜁2 + 𝜁4 + 𝜁5 + 𝜁6

𝜁 + 𝜁3 + 𝜁4 + 𝜁5 + 𝜁6 1 + 𝜁 + 𝜁3 + 𝜁4 + 𝜁5 + 𝜁6 𝜁2 + 𝜁3 + 𝜁4 + 𝜁5 + 𝜁6

1 + 𝜁2 + 𝜁3 + 𝜁4 + 𝜁5 + 𝜁6
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APPENDIX D

PRIMITIVE ELEMENTS IN ℱ = (𝐺𝐹 (29),+, ∗)

83



In this appendix, we present all the primitive elements in the Knuth binary

semifield ℱ = (𝐺𝐹 (29),+, ∗). The irreducible polynomial 𝑓(𝑥) = 𝑥9+𝑥+1 is chosen

to be the polynomial associated with the field extension over 𝐺𝐹 (2). Let 𝜁 be a root

of 𝑓(𝑥). Then {1, 𝜁, 𝜁2, ⋅ ⋅ ⋅ , 𝜁8} is a 𝐺𝐹 (2)-basis of 𝐺𝐹 (29).

Primitive elements in the Knuth binary semifield of order 29

𝜁8, 𝜁7+𝜁8, 𝜁5+𝜁6+𝜁8, 𝜁5+𝜁6+𝜁7+𝜁8, 𝜁4, 𝜁4+𝜁7, 𝜁4+𝜁5+𝜁8, 𝜁4+𝜁5+𝜁7, 𝜁4+𝜁5+𝜁7+

𝜁8, 𝜁4+𝜁5+𝜁6+𝜁8, 𝜁3+𝜁6, 𝜁3+𝜁6+𝜁7, 𝜁3+𝜁5+𝜁6+𝜁7, 𝜁3+𝜁5+𝜁6+𝜁7+𝜁8, 𝜁3+𝜁4+𝜁6, 𝜁3+

𝜁4+𝜁6+𝜁8, 𝜁3+𝜁4+𝜁6+𝜁7, 𝜁3+𝜁4+𝜁5, 𝜁3+𝜁4+𝜁5+𝜁8, 𝜁2, 𝜁2+𝜁6+𝜁7+𝜁8, 𝜁2+𝜁5, 𝜁2+

𝜁5+𝜁7, 𝜁2+𝜁5+𝜁7+𝜁8, 𝜁2+𝜁4+𝜁8, 𝜁2+𝜁4+𝜁7, 𝜁2+𝜁4+𝜁6+𝜁7+𝜁8, 𝜁2+𝜁4+𝜁5, 𝜁2+𝜁4+

𝜁5+𝜁8, 𝜁2+𝜁4+𝜁5+𝜁7, 𝜁2+𝜁4+𝜁5+𝜁6, 𝜁2+𝜁4+𝜁5+𝜁6+𝜁8, 𝜁2+𝜁3+𝜁7+𝜁8, 𝜁2+𝜁3+

𝜁6, 𝜁2+𝜁3+𝜁5+𝜁6, 𝜁2+𝜁3+𝜁4+𝜁7, 𝜁2+𝜁3+𝜁4+𝜁7+𝜁8, 𝜁2+𝜁3+𝜁4+𝜁6+𝜁8, 𝜁, 𝜁+𝜁6+

𝜁8, 𝜁+𝜁5, 𝜁+𝜁5+𝜁6+𝜁8, 𝜁+𝜁4+𝜁6+𝜁8, 𝜁+𝜁4+𝜁5+𝜁7, 𝜁+𝜁3+𝜁8, 𝜁+𝜁3+𝜁7, 𝜁+𝜁3+

𝜁7+𝜁8, 𝜁+𝜁3+𝜁5+𝜁7, 𝜁+𝜁3+𝜁5+𝜁6, 𝜁+𝜁3+𝜁5+𝜁6+𝜁7, 𝜁+𝜁3+𝜁4+𝜁7+𝜁8, 𝜁+𝜁3+𝜁4+

𝜁6, 𝜁+𝜁3+𝜁4+𝜁5, 𝜁+𝜁2+𝜁7, 𝜁+𝜁2+𝜁6+𝜁8, 𝜁+𝜁2+𝜁6+𝜁7, 𝜁+𝜁2+𝜁5+𝜁6+𝜁8, 𝜁+𝜁2+

𝜁5+𝜁6+𝜁7, 𝜁+𝜁2+𝜁4, 𝜁+𝜁2+𝜁4+𝜁8, 𝜁+𝜁2+𝜁4+𝜁7, 𝜁+𝜁2+𝜁4+𝜁5+𝜁6, 𝜁+𝜁2+𝜁4+𝜁5+

𝜁6+𝜁8, 𝜁+𝜁2+𝜁4+𝜁5+𝜁6+𝜁7+𝜁8, 𝜁+𝜁2+𝜁3+𝜁8, 𝜁+𝜁2+𝜁3+𝜁7, 𝜁+𝜁2+𝜁3+𝜁6, 𝜁+𝜁2+

𝜁3+𝜁4+𝜁7, 𝜁+𝜁2+𝜁3+𝜁4+𝜁7+𝜁8, 𝜁+𝜁2+𝜁3+𝜁4+𝜁5, 𝜁+𝜁2+𝜁3+𝜁4+𝜁5+𝜁7+𝜁8, 𝜁+𝜁2+

𝜁3+𝜁4+𝜁5+𝜁6+𝜁7+𝜁8, 1+𝜁8, 1+𝜁7, 1+𝜁7+𝜁8, 1+𝜁6, 1+𝜁6+𝜁8, 1+𝜁6+𝜁7, 1+𝜁5, 1+

𝜁5+𝜁7, 1+𝜁5+𝜁6, 1+𝜁5+𝜁6+𝜁8, 1+𝜁5+𝜁6+𝜁7+𝜁8, 1+𝜁4, 1+𝜁4+𝜁8, 1+𝜁4+𝜁7, 1+𝜁4+

𝜁6, 1+𝜁4+𝜁5, 1+𝜁4+𝜁5+𝜁8, 1+𝜁4+𝜁5+𝜁7, 1+𝜁4+𝜁5+𝜁7+𝜁8, 1+𝜁4+𝜁5+𝜁6+𝜁8, 1+

𝜁4+𝜁5+𝜁6+𝜁7, 1+𝜁3, 1+𝜁3+𝜁7, 1+𝜁3+𝜁6, 1+𝜁3+𝜁6+𝜁7, 1+𝜁3+𝜁6+𝜁7+𝜁8, 1+𝜁3+

𝜁5, 1+𝜁3+𝜁5+𝜁7+𝜁8, 1+𝜁3+𝜁5+𝜁6, 1+𝜁3+𝜁5+𝜁6+𝜁7, 1+𝜁3+𝜁5+𝜁6+𝜁7+𝜁8, 1+𝜁3+

𝜁4, 1+𝜁3+𝜁4+𝜁8, 1+𝜁3+𝜁4+𝜁7+𝜁8, 1+𝜁3+𝜁4+𝜁6, 1+𝜁3+𝜁4+𝜁6+𝜁8, 1+𝜁3+𝜁4+𝜁6+

𝜁7, 1+𝜁3+𝜁4+𝜁5, 1+𝜁3+𝜁4+𝜁5+𝜁8, 1+𝜁3+𝜁4+𝜁5+𝜁7+𝜁8, 1+𝜁3+𝜁4+𝜁5+𝜁6, 1+

𝜁2, 1+𝜁2+𝜁6, 1+𝜁2+𝜁6+𝜁7, 1+𝜁2+𝜁6+𝜁7+𝜁8, 1+𝜁2+𝜁5, 1+𝜁2+𝜁5+𝜁7, 1+𝜁2+𝜁5+

𝜁7+𝜁8, 1+𝜁2+𝜁4, 1+𝜁2+𝜁4+𝜁8, 1+𝜁2+𝜁4+𝜁7, 1+𝜁2+𝜁4+𝜁7+𝜁8, 1+𝜁2+𝜁4+𝜁6+
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𝜁8, 1+𝜁2+𝜁4+𝜁6+𝜁7+𝜁8, 1+𝜁2+𝜁4+𝜁5, 1+𝜁2+𝜁4+𝜁5+𝜁8, 1+𝜁2+𝜁4+𝜁5+𝜁7, 1+

𝜁2+𝜁4+𝜁5+𝜁6, 1+𝜁2+𝜁4+𝜁5+𝜁6+𝜁8, 1+𝜁2+𝜁3, 1+𝜁2+𝜁3+𝜁7, 1+𝜁2+𝜁3+𝜁7+

𝜁8, 1+𝜁2+𝜁3+𝜁6, 1+𝜁2+𝜁3+𝜁6+𝜁8, 1+𝜁2+𝜁3+𝜁6+𝜁7, 1+𝜁2+𝜁3+𝜁6+𝜁7+𝜁8, 1+

𝜁2+𝜁3+𝜁5+𝜁6, 1+𝜁2+𝜁3+𝜁4+𝜁7, 1+𝜁2+𝜁3+𝜁4+𝜁7+𝜁8, 1+𝜁2+𝜁3+𝜁4+𝜁6+𝜁8, 1+

𝜁2+𝜁3+𝜁4+𝜁5, 1+𝜁2+𝜁3+𝜁4+𝜁5+𝜁6, 1+𝜁, 1+𝜁+𝜁6+𝜁8, 1+𝜁+𝜁6+𝜁7, 1+𝜁+𝜁5, 1+

𝜁+𝜁5+𝜁6+𝜁8, 1+𝜁+𝜁4+𝜁6+𝜁8, 1+𝜁+𝜁4+𝜁5+𝜁7, 1+𝜁+𝜁4+𝜁5+𝜁6, 1+𝜁+𝜁4+𝜁5+

𝜁6+𝜁7+𝜁8, 1+𝜁+𝜁3, 1+𝜁+𝜁3+𝜁8, 1+𝜁+𝜁3+𝜁7, 1+𝜁+𝜁3+𝜁7+𝜁8, 1+𝜁+𝜁3+𝜁6+

𝜁7, 1+𝜁+𝜁3+𝜁5+𝜁7, 1+𝜁+𝜁3+𝜁5+𝜁6, 1+𝜁+𝜁3+𝜁5+𝜁6+𝜁7, 1+𝜁+𝜁3+𝜁4+𝜁8, 1+

𝜁+𝜁3+𝜁4+𝜁7+𝜁8, 1+𝜁+𝜁3+𝜁4+𝜁6, 1+𝜁+𝜁3+𝜁4+𝜁5, 1+𝜁+𝜁3+𝜁4+𝜁5+𝜁8, 1+𝜁+

𝜁3+𝜁4+𝜁5+𝜁6+𝜁7, 1+𝜁+𝜁2, 1+𝜁+𝜁2+𝜁8, 1+𝜁+𝜁2+𝜁7, 1+𝜁+𝜁2+𝜁6, 1+𝜁+𝜁2+𝜁6+

𝜁8, 1+𝜁+𝜁2+𝜁6+𝜁7, 1+𝜁+𝜁2+𝜁5+𝜁7, 1+𝜁+𝜁2+𝜁5+𝜁7+𝜁8, 1+𝜁+𝜁2+𝜁5+𝜁6, 1+

𝜁+𝜁2+𝜁5+𝜁6+𝜁8, 1+𝜁+𝜁2+𝜁5+𝜁6+𝜁7, 1+𝜁+𝜁2+𝜁4, 1+𝜁+𝜁2+𝜁4+𝜁8, 1+𝜁+𝜁2+

𝜁4+𝜁7, 1+𝜁+𝜁2+𝜁4+𝜁6+𝜁8, 1+𝜁+𝜁2+𝜁4+𝜁5+𝜁6, 1+𝜁+𝜁2+𝜁4+𝜁5+𝜁6+𝜁8, 1+𝜁+

𝜁2+𝜁4+𝜁5+𝜁6+𝜁7+𝜁8, 1+𝜁+𝜁2+𝜁3+𝜁8, 1+𝜁+𝜁2+𝜁3+𝜁7, 1+𝜁+𝜁2+𝜁3+𝜁6, 1+

𝜁+𝜁2+𝜁3+𝜁6+𝜁8, 1+𝜁+𝜁2+𝜁3+𝜁4, 1+𝜁+𝜁2+𝜁3+𝜁4+𝜁7, 1+𝜁+𝜁2+𝜁3+𝜁4+𝜁7+

𝜁8, 1+𝜁+𝜁2+𝜁3+𝜁4+𝜁6, 1+𝜁+𝜁2+𝜁3+𝜁4+𝜁6+𝜁8, 1+𝜁+𝜁2+𝜁3+𝜁4+𝜁5, 1+𝜁+𝜁2+

𝜁3+𝜁4+𝜁5+𝜁7+𝜁8, 1+𝜁+𝜁2+𝜁3+𝜁4+𝜁5+𝜁6+𝜁8, 1+𝜁+𝜁2+𝜁3+𝜁4+𝜁5+𝜁6+𝜁7+𝜁8
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