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ABSTRACT

REDUCING THE COMPLEXITY OF REINFORCEMENT LEARNING

IN POMDPS BY DECOMPOSITION INTO

DECISION AND PERCEPTUAL

PROCESSES

Rasool Fakoor, M.S.

The University of Texas at Arlington, 2012

Supervising Professors: Manfred Huber, Sajal K. Das

Markov Decision Processes (MDPs) and Partially Observable Markov Decision

Processes (POMDPs) are very powerful and general frameworks to model decision

and decision learning tasks in a wide range of problem domains. As a result, they are

widely used in complex and real-world situations such as robot control tasks. How-

ever, the modeling power and generality of the frameworks comes at a cost in that

the complexity of the underlying models and corresponding algorithms grows dra-

matically as the complexity of the task domain increases. To address this , this work

presents an integrated and adaptive approach that attempts to reduce the complexity

of the decision learning problem in partially Observable Markov Decision Processes

by separating the overall model into decision and perceptual processes. The goal here

is to focus the decision learning on the aspects of the space that are important for de-

cision making while the observations and attributes that are important for estimating

the state of the decision process are handled separately by the perceptual process. In
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this way, the separation into different processes can significantly reduce the complex-

ity of decision learning. In the proposed framework and algorithm, a Monte Carlo

based sampling method is used for both the perceptual and decision processes in or-

der to be able to deal efficiently with continuous domains. To illustrate the potential

of the approach, we show analytically and experimentally how much the complexity

of solving a POMDP can be reduced to increase the range of decision learning tasks

that can be addressed.
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CHAPTER 1

INTRODUCTION AND RELATED WORK

1.1 Introduction

In most autonomous systems, such as robotic navigation systems, poker, and

planning under uncertainty that need decisions to be made, it is impossible for the

robot or agent to have complete information about the surrounding environment [1].

This incompleteness of information is caused by many factors such as the noise in

sensors, existence of unknown obstacles, and insufficient memory in the agent to

memorize every possible combination of the problem. As a result, the underlying

environment state can not be completely recognizable by the agent [2]. In addition,

the state spaces of these problems are usually large and continuous which makes

learning decision policies a challenging job.

For this class of problems in which system states are not fully observable by

the agent, Partially Observable Markov Decision Processes (POMDPs) are frequently

used to model and solve the decision problem. This, together with the need to deal

with continuous state spaces often makes learning of the solution computationally

intractable using standard solution approaches. One of the difficulties here is that

since the agent can only partially observe the state of the system, it needs to keep track

of the history of past actions and observations. In order to handle this history, the

POMDP uses the probability distribution of the system states to represent the state

of its knowledge. For most problems, this implies that POMDPs can easily become

impractical to solve using traditional methods since, when the number of state space

variables increases, the complexity of solving the POMDP increases exponentially. In
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addition, keeping track of the history accurately and in an analytic fashion requires an

unbounded amount of memory. More importantly, the representation of the policy

and the value function also increase exponentially and thus learning of the policy

becomes a real problem and quickly computationally intractable. Hence, even though

the POMDP is a useful tool to model problems, it can not be easily solved.

To address this, a number of methods have been proposed to solve POMDPs in

such complex applications either by using dimensionality reduction techniques or by

using approximation methods. In this work, we propose a novel approach to address

the complexity of solving POMDPs for autonomous systems which combines sampling

and approximation techniques with a new concept of decomposition of the problem

into separate processes. In particular, we propose a sampling based algorithm in

which the state space and the overall process description of the problem is divided

into a perceptual and a decision component. The underlying rationale is here that in

real world systems perceptual processing generally serves the purpose of extracting

relevant information from the environment that can be used by the decision process

to determine optimal actions. As a consequence, the decision process can frequently

be modeled on a lower-dimensional state representation if the appropriate features

can be correctly extracted by a perceptual process.

The perpetual process is here responsible to derive information that is impor-

tant for the decision process. As such, it serves mainly an information extraction

and partial belief state tracking purpose. On the other side, the decision process is

responsible to use the information from the perceptual process and its own states to

model the actual decision process on a reduced state space and to learn the optimal

policy. In this way, the complexity is decreased in our framework through a reduction

in the number of state variables that are considered in the decision process to a close

to minimal set while ensuring the correct tracking of the corresponding belief state.
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When using sampling based methods, fewer state variables in the decision part, which

is itself modeled as a POMDP here, means a need for fewer samples to represent the

decision problem and, in turn, lower complexity in the representation and learning of

the corresponding policy. In this way, the improvement happens by providing relevant

and processed perceptual information to the decision process model. Moreover, the

perceptual process alleviates needs for the decision process to compute the perceptual

parts of the POMDP’s belief state. The decision part is represented as a POMDP

on a state representation that only includes the decision-relevant state attributes but

which is informed by the state of the perceptual processes.

For the perceptual and decision process, we use a particle filter to track the

belief states. The non-parametric character and simplicity of the particle filter are

the main reasons that we used it here. Through the split of the state space into two

components in our model, one part of the belief update is handled by the perceptual

process and the other part by the decision process. The interaction of the two belief

components needed for the decision process is achieved by re-introducing the updated

belief of the perceptual process as part of the modified belief update in the decision

process. The empirical and analytical analysis shows the efficiency and applicability

of our method and offers some insight into its potential in scaling learning to larger

tasks in real world domains.

The thesis is organized as follows: The rest of this chapter reviews the related

work dealing with complexity of solving POMDPs. Chapter 2 introduces the back-

ground and the underlying notation and formalisms of POMDPs, belief tracking,

Reinforcement Learning, and the particle filter. Chapter 3 describes our approach

and presents the formalization for our method. Chapter 4 describes our simulation

setup and shows the experimental results. Finally, conclusion and future work are

presented in the Chapter 5.
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1.2 Related Work

The problem of scaling learning techniques for POMDP decision making to

larger, more real-world problems has received significant attention in recent years and

led to a number of different approaches to address the problems of representation and

tracking of the belief state, and the computation of optimal solution policies and/or

value functions. Even though various methods such as [1], [3], [4], and [5] have been

proposed to solve POMDPs, dealing with problems with a large number of states

is still challenging and complex, and becomes quickly computationally intractable.

Since there may be no exact solution possible to deal with POMDPS, most of the

recent research tried to find approximate solutions for these problems.

Littman in [1] discussed methods to find near-optimal polices for some problem

domains. Using Reinforcement Learning, their methods can be used to solve POMDPs

in problems with up to 100 states. Thrun in [3] used Monte Carlo methods and

Reinforcement Learning (RL) to solve POMDPs in continuous state and action spaces.

While this addresses the issue of infinite state and action spaces, it does not directly

address the underlying learning complexity. Because when the underlying state space

dimensions increase, the number of samples required by the Monte Carlo POMDP

method to represent the state space still grows rapidly.

In order to solve continuous POMDPs, some of the proposed algorithms convert

the continuous state space into an approximate discrete state space [6]. However, this

is not always applicable since discretization is not possible in all problems and, more

importantly, reduces the correctness of the solution. In [7], Roy proposed a method

to address the solution complexity by reducing the dimensionality of the belief space.

In this method, they used Exponential Family of Principal Components Analysis to

reduce the dimensionality of the problem based on the introduction of structured
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belief. However, they also mentioned in their paper that there exist problems in

which such a dimensionality reduction technique will not work.

In [8], Brooks et al. proposed a parametric POMDP. In this method, the

dimensionality of the belief state is fixed and the belief state is represented as a single

or a mixture of Gaussians. However, there are cases, such as robot navigation, in

which applying this method is not feasible due to the limitations in their belief state

representation. To obtain a more general representation of the belief state, Brooks

and Williams in [5] proposed a method to handle the belief space using a Monte

Carlo method. More specifically, they transferred the parameterized belief using

Monte Carlo sampling. In [9], Zhou et al reduce the dimensionality of the belief space

using density projection. In their method, they projected the high dimensional belief

space onto a parameterized low dimensional space. However, all these belief state

compression methods impose limitations on the belief state that can be represented

and do not inherently consider whether or not state attributes are decision-relevant,

thus potentially requiring a significant number of non-relevant parameters or variables

to be considered in learning the policies. In [10], Brunskill et al proposed a point-

based POMDP that uses hybrid dynamics to solve the continuous POMDP. However,

they mentioned that this method is not applicable for problems in which modeling

the dynamics of the system is expensive using a weighted sum of Gaussians.

In [11], Kurniawati et al. developed a new point-based POMDP algorithm.

In their method, optimal reachability of belief spaces has been exploited to enhance

the computational efficiency. In other words, the algorithm maintains a belief tree

and only explores the subtrees that were previously visited by the optimal policy.

However, efficient pruning can not easily be achieved and comes with the expense

of memory and computation power [12]. Poupart et al. in [13] proposed a method

to reduce the gap between upper and lower bound on the optimal value function.
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In their method, prioritized breadth first search is used to find the reachable belief

state and linear programming is used for upper bound interpolation. However, their

current method can become intractable with factored POMDPs due to the fact that

the number of variables and constraints in linear programming can be exponential.

Poupart and Boutilier in [14] mathematically derived a set of conditions by

exploiting the structure of the POMDP in order to compress the belief state without

effecting the quality of decision making. In addition, they proposed an optimization

algorithm to find the linear lossy compression. However, compressing the belief state

can lead to suboptimal policies due to the fact that some relevant information may be

discarded during the compression. Finding informative belief points by using point-

based value iteration in solving the POMDP is the main contribution of [4]. In their

method, only a small set of belief points were selected and tracked. More specifically,

they used a stochastic trajectory to find the set of belief points. In addition, their

method only selects reachable belief points and belief points which rapidly enhance

their error bound, not random belief points .

Gradient based policy search methods have been studied as well to deal with

continuous state spaces. Ng in [15] proposed a method to reduce the complexity of

policy search in a POMDP by transferring it to a POMDP problem in which all trans-

actions are deterministic. Since this method is gradient based, the local optima can be

problematic. In addition, policy search methods can be data inefficient. In particular,

reusing the sample trajectories from old policies is sometimes problematic. In [16],

Coquelin et al. used policy gradient methods that replace the POMDP problem with

an optimization problem. In their method, they consider the group of policies which

are based on the particle filter estimated belief. Moreover, they proposed a Finite

Difference technique by which the inconsistency and variance explosion of naive Bayes

has been solved. However, this method only addressed the class of policies which are
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based on a belief state constructed from a particle filter. In addition. due to the use

of the gradient based method, local optima can be problematic as well.

In contrast to all of these methods, the approach presented in this thesis reduces

the state space of the decision POMDP by separating it into separate but coupled

decision and perceptual processes. In other words, the proposed algorithm can reduce

the complexity of solving POMDPs by separating them into decision and perceptual

processes. This, in turn allows the presented method to scale more efficiently in

real-world problems.

7



CHAPTER 2

TECHNICAL BACKGROUND

Machine Learning algorithms are usually classified in four classes:

• Supervised Learning

• Unsupervised Learning

• Semi-Supervised Learning

• Reinforcement Learning

Assume a robot with a sequence of inputs x1, x2, ..xt where xt is the input at time

t [17]. The input can here for example be an image, audio, or a set of previously

collected data. The sequence of outputs y1, y2, ..., yt represents the robot’s actions, and

desired outputs are provided to the learning system in Supervised Learning algorithms

as well. Each of these desired outputs defines what the correct answer would be for

a given input at time t. The Supervised Learning algorithm learns a model that

maps the input data to the desired output given labeled training data. The goal of

the algorithm is to allow the learned model to be used to predict the correct output

when a new set of data is provided. On the other hand, in Unsupervised Learning

the machine only receives the inputs x1, x2, ..xt [17]. The role of the algorithm here

is to detect patterns and structure in the data which is otherwise recognized as pure

unstructured noise [17]. Dimensionality reduction and clustering are examples for

Unsupervised Learning algorithms. However, it is possible to have input data in

which only some points are provided with the corresponding output at the time t. In

other words, some of the data are labeled but others are unlabeled. Semi-Supervised

8



learning algorithms are designed to deal with this class of problems. Recommender

systems are often a classic example for Semi-Supervised Learning.

Finally, Reinforcement Learning (RL) is the class of learning methods in which

the agent interacts with a dynamic environment through actions and requires only

qualitative feedback [17] [18]. Each of the agent’s actions effects the state of the

environment which the agent observes. After executing an action, the agent will also

receive some scalar value which is called reward. Using this feedback, the agent has

to determine which action to take in order to maximize the rewards obtained through

the interaction with the environment [18]. By maximizing rewards, the agent can

determine the optimal policy. It is worth noting that in contrast to other classes

of machine learning methods, like Supervised learning in which the agent has been

provided with a training set, an RL agent should act in the environment in order to

explore its actions’ effects and maximize the reward. The remainder of this chapter

focuses on Reinforcement Learning and basic formalisms for POMDPs, the particle

filter, and the learning methods used in experiments.

2.1 Reinforcement Learning

In Reinforcement Learning, the agent is only provided with a reward func-

tion. The reward function tells the agent when it is acting well or when it is acting

poorly [19]. The agent’s job is to execute actions over time to maximize the re-

wards [19]. In fact, interaction between a learning agent and its environment in

terms of states, actions, and rewards can define a framework to be used in Rein-

forcement Learning [18]. Figure 2.1 shows the Reinforcement Learning structure. In

general, a Reinforcement Learning system consists of the following elements [18]:

• A policy π defines the learning agent’s way of behaving at a given time.
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Agent

Environment

Action
State

Reward

atrtst

st+1

rt+1

Figure 2.1. Reinforcement Learning Structure.

• A reward function rt(s) defines the relationship between the state of the

system, s, and the resulting payoff.

• A value function V is a mapping from state to its utility, usually measured

in terms of the expected total amount of discounted reward that an agent can

collect.

• A Q function is like the V function except that it defines the best value for

each action in each state.

• A Model of the Environment for capturing aspects of the behavior of the

environment.
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The most common underlying mathematical framework for the case when the state of

environment is fully observable is the Markov Decision Process (MDP) [18] [20] [21].

Fully observable here means that the agent can get all required information from the

environment to determine its state and make decisions. In other words, the agent

assumes that the sensors can measure the complete state of the environment and are

not noisy [20]. However, actions in Markov Decision Processes can still have stochastic

effects. Consequently, a single sequence of actions is insufficient for planning [20]. In

other words, every combination of states and actions should be considered in order to

have enough information for planning. Hence, it is necessary to generate the actions

for all possible states that the agent can be in [20]. Value iteration and Policy iteration

are examples of Reinforcement Learning techniques in Markov Decision Processes.

In the real world, however, senors are usually noisy or the environment is only

partially observable. As a result, the agent has insufficient information to make

decisions based only on its current sensor readings and it needs methods to deal

with the noisy projection of the states [20]. One mathematical framework to model

this type of environment is the Partially Observable MDP (POMDP). Dealing with

POMDPs is more complicated than with MDPs due to the fact that POMDPs need

to represent the state in a way that can reflect the partial observability. In addition,

POMDPs are a more general model than MDPs because they can model a larger

class of problems. For this reason, in the next section , we briefly introduce the

Markov Decision Processes and then, we present in more detail how POMDPs can be

represented and some methods to solve them.

2.2 MDP

A MDP is defined by a tuple of four entities: 〈S,A,R, T 〉. Here S is the finite

set of world states denoted by st. A is the finite set of actions. T is the state transition

11



probability function, and R is the reward function. Finding the optimal policy is the

main goal of MDP in reinforcement learning . Value iteration and policy iteration are

example methods which can be used to find the optimal policy for given MDP [18].

2.3 POMDP

A POMDP is an extension of the MDP and is defined by a tuple of six entities:

〈S,A, Z,R, T,O〉. Here S is the set of world states denoted by st. Z is the set of

observations. A is the set of actions, and T is the state transition probability function.

Finally, O is the observation probability function, and R is the reward function. T ,

R, and O can be expressed as follows:

T (s, s′, a) := P (st = s′|st−1 = s, at−1 = a)

O(s, z) := P (zt = z|st = s)

R(s, a) = S × A 7−→ R

Figure 2.2 shows the POMDP model. Since a POMDP has incomplete observations

of the environment, it needs to find an optimal policy based on the complete sequence

of observations and actions from the beginning or a sufficient statistic of observations

and actions from the beginning [22]. This history is defined as follows:

h = {zt, at, zt−1, at−1, ..., z0, a0}

In a POMDP, the policy is the mapping from the histories to actions [3]:

π : h −→ a

Since the history can be infinite, it is common practice to use a sufficient statistic to

represent the history [3] [22] and learn a mapping from that to actions instead [3].

12



     

     St St +1 St +2

at at+1

Zt Zt+2Zt+1

actions

states

observations

T

O

T

O O

Figure 2.2. A POMDP Model.

The sufficient statistic in a POMDP is the belief state b. As a result, the policy is

the mapping from the belief state to actions:

π : b −→ a

A belief state here represents a probability distribution over states, bel(s), that reflects

the complete state of knowledge about the system at time t, bel(s) = p(s|zt, at, ..., z1, a1, z0, a0).

The belief can be calculated as follows:

bel(s′) = ηp(z|s′)︸ ︷︷ ︸
measurement update

∫
s

p(s′|s, a)bel(s)ds︸ ︷︷ ︸
prediction

(2.1)
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where s′ and s represent the current and previous state, respectively, and η is a

normalization factor. Tracking the belief state analytically in a continuous space is

generally not tractable and has therefore to be either modeled using an approxima-

tion that imposes limitations on the distribution (e.g. exponential distributions or

Gaussian) or that approximates it using sampling.

The goal in a POMDP is to learn a control policy, π(b), that selects actions, a,

in belief state b such as to maximize the expected discounted future reward:

V (b) = E

[
∞∑
τ=t

γτ−trτ |bt = b, at = a

]
where E is the expectation and γ is discount factor. The goal is to find the optimal

policy such that:

π∗ = argmaxπV
π

In addition to the value function, the utility in a POMDP can be defined by

the Q-value over the belief state:

Qπ(b, a) = E

[
∞∑
τ=t

γτ−trτ |bt = b, at = a

]
where Q is the value function over belief state/action pairs. An optimal policy is here

such that [18]:

Q∗(b, a) = argmaxπQ
π(b, a)

π∗(b) = argmaxaQ
∗(b, a)

2.3.1 Methods to Solve POMDPs

Since the states are not observable in the POMDP [1] [20] [2], it is necessary

to use the belief state to make decisions. In fact, to solve the POMDP, a value

function [20] over belief states can be defined and used to derive an optimal policy:

Vt(b) = maxa

[
r(b, a) + γ

∫
Vt−1(b

′)p(b′|a, b)db
]

(2.2)
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The belief state is defined by a probability distribution over states [20] which is contin-

uous. The problem with continuous belief is that its precise representation generally

requires infinite memory and this makes the POMDP intractable [2]. Consequently,

the value function in (2.2) and/or the policy that optimizes this value function can in

general not be represented and computed analytically, but can only be approximated

using iterative algorithms. A number of approximation methods have been proposed

to deal with this problem such as [6], [7], and [23]. To deal with (2.2), we can classify

the methods in two classes:

1. Finite State Space Methods

2. Continuous State Space Methods

For the first class, either the state space is inherently discrete (and finite) or the

continuous state space is discretized. For the discretized class, method such as Repli-

cated Q-Learning [1] and Linear Q-Learning [1] can be used. On the other hand,

approximation methods can be used to deal with the second class such as Monte

Carlo POMDP [3]. In the next two sections, Linear Q-Learning and Monte Carlo

POMDP are described as they are used in this thesis.

It is worth noting that for finite horizon worlds with finite action and state

spaces it is possible to represent the value functions as piecewise linear functions [1] [2].

However, piecewise linear functions can still be large and can not be easily solved.

2.3.1.1 Linear Q-Learning

One of the approximation methods to deal with POMDPs is Linear Q-Learning

[1]. Linear Q-learning solves the decision POMDP by approximating the Q function

over the belief space. In particular, Linear Q-learning tracks the belief over the finite
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state space and uses a linear function approximator to estimate the Q-value of a belief

state, b, using state/action values:

Q(b, a) =
∑
s

bel(s) q(s, a)

Using this approximation, it learns the parameter values using a variation on the

Q-learning rule:

∆q(s, a) = αbel(s)(r + γmaxa′Q(b′, a′)−Q(b, a))

where α is the learning rate, γ is the discount factor,and a and a′ are actions at time

t− 1 and time t, respectively. In addition, b and b′ are the belief states at time t− 1

and time t, respectively, and b(s′) = belt(s
′) is:

belt(s
′) =

O(s′, zt)
∑

s∈S T (s′, s, a)belt−1(s)∑
s′∈S O(s′, zt)

∑
s∈S T (s′, s, a)belt−1(s)

(2.3)

Linear Q-learning generalizes the Q-learning rule to apply it to the vector-valued

state distribution [1]. Moreover, it uses q(s, a) as a single vector to approximate the

Q function [1]. In other words, it calculates the Q for each action a as Q(b, a) = qT b =∑
s b(s) q(s, a) [1]. Due to inaccuracies in the approximation, Linear Q-learning can

sometimes result in poor policies [1]. However, for small POMDPs, this is usually

not the case [1] and Linear Q-learning can be an efficient learning technique for such

systems.

2.3.1.2 Monte Carlo POMDP

The MC-POMDP [3] is a Reinforcement Learning approach for POMDPs with

continuous state spaces. It represents the belief state of the problem as a sample

set. Similarly, it uses a sample set of belief states and the k-Nearest Neighbor func-

tion approximator to represent the value function. To integrate state tracking and
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value function learning in this approach, the belief state is tracked by samples. When

the belief state is updated, the algorithm first obtains its value-function value by

calculating the nearest neighbors among the stored sample sets using KL-divergence

as the distance function [3], and uses the corresponding stored parameter values to

calculate the value of the current belief state by linearly averaging the neighbors’

parameters. If there are sufficient neighbors for the current belief state, the value

function update is performed by updating the stored function values. Otherwise the

current state sample set is stored together with the estimate of the corresponding

value. In order to approximate and track the belief states, the particle filter is used.

The following pseudo-code shows the Monte Carlo POMDP algorithm in more de-

tail [20]:

1: repeat

2: Sample x ∼ b(x)

3: initialize X with M samples of b(x)

4: repeat

5: for all available actions u do

6: Q(u)=0

7: repeat

8: select random x ∈ X

9: x′ ∼ p(x′|u, x), z ∼ p(z|x′)

10: X ′ = Particle filter(X, u, z)

11: Q(u) = Q(u) + 1
n
(r(x, u) + γV (X ′))

12: until N

13: end for

14: V (X) = maxuQ(u)
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15: u∗ = argmaxuQ(u)

16: x′ ∼ p(x′|u, x)

17: z ∼ p(z|x′)

18: X ′ = Particle filter(X, u, z)

19: X = X ′

20: until episode over

21: until convergence

22: return V

2.4 Belief State Tracking

One of the important steps when applying POMDPs is belief state tracking.

The most general algorithm for tracking belief state is given by the Bayes Filter

algorithm [20]. Variations of Bayes Filter algorithms are classified into two categories:

• Parametric

• Non-Parametric

Gaussian filter or Kalman filter are examples for parametric filters. On the other

hand, the particle filter is one of the most efficient and popular methods for non-

parametric Bayes filtering.

In the following sections, first, the equations for belief tracking are introduced

and then the particle filter is described in detail.

2.4.1 Bayes Filter for Belief State Tracking

The mathematical formulation of the Belief Update can be expressed as follows

[3]:

bel(s′) = p(s′|zt, at−1..., z1, z0) (2.4)
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= ηp(zt|s′, ..., z0)p(s′|at−1, ..z0) (2.5)

= ηp(zt|s′)
∫
s

p(s′|at−1, ..z0, s)p(s|at−1, ..z0, s)ds (2.6)

bel(s′) = ηP (z|s′)︸ ︷︷ ︸
measurement update

∫
s

P (s′|s, a)bel(s)ds︸ ︷︷ ︸
prediction

(2.7)

where s defines the state and η is the normalization factor. (2.5) is the result of

applying Bayes rule to (2.4). In (2.6), to calculate p(s′|at−1, ..z0), the total probability

rule is applied. It is necessary to say that since in a POMDP the observation is

conditionally independent of past observation given the current state, p(zt|s′, ..., z0)

can be rewritten as p(zt|s′). In addition, p(s′|at−1, ..z0, s) is conditionally independent

from observations given the current state and action. Hence, it can be written as

p(s′|s, at−1).

2.4.2 Particle Filter

The particle filter is a non-parametric method that can be used to approximate

the posterior probability or the belief state using Monte-Carlo sampling and a repre-

sentation in the form of weighted particles, {(s(i), w(i))} [20]. The whole procedure of

updating a particle filter consists of three steps:

• Prediction

• Update or Measurement update

• Resampling

The Prediction step uses the system model, T , to generate successor samples by

randomly generating a successor state sample for each particle state according to the

transition probability. The Measurement update uses the observation model, O, to

assign weights to each particle according to the likelihood of the observation given the

corresponding sample state. The resampling process is aimed at increasing particle
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density in areas where particles have high probability, and lowering it in areas of

the distribution with lower probability. To achieve this, resampling generates an

equivalent particle set by sampling from the original set according to the probability

distribution described by their weights. In this from, resampling can be used as one of

the methods to solve the degeneracy problem [24] which is that after some iterations

some particles will have very small weights. Since without resampling the variance of

samples can only increase over time, the degeneracy is an unavoidable problem [24]

which causes the particle filter module to waste a lot of effort on updating the almost

zero weighted particles. To deal with the degeneracy, resampling is one of the methods

which can be used.

Particles in this form can be consider as a tool to update and represent the

belief state using samples.

2.4.2.1 Particle Filter Algorithm

In order to get more intuition about how (2.7) can be calculated in practice,

the algorithm of the particle filter has been written according to [20] and [24]. This

algorithm generates state samples, sit, for time t based on the particles sit−1. In this

step , the state transition distribution is used to generate the next particle sets. After

this step, an importance factor is calculated. The importance factor incorporates the

measurement zt into the distribution represented by the particle set. The last step of

the particle filter is shown in line 5 through 8. This step is called the resampling step.

Resampling transfers the particle set into another particle set of the same size [20].

By sampling them according to wi, it reduces the number of particles with lower

weights and increases the number of particle with higher ones without changing the

represented belief state.
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Algorithm 1 Particle Filter Algorithm

1: Ŝ = S = 0

2: for i = 1 to N do

3: Draw sit ∼ p(st|sit−1)

4: Assign the particle a weight wit = p(zt|sit)

5: for i = 1 to N do

6: draw i with the probability α wi

7: add sit to St

8: end for

9: Add the 〈sit, wit〉 to the sample set

10: end for
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CHAPTER 3

PROPOSED FRAMEWORK

In this work, we propose a method to reduce the complexity of solving POMDPs

by decomposing them into separate, coupled perceptual and decision processes which

leads to a reduction of the state space size of the decision learning problem. In our

method, we reduce the state space of the POMDP by handling some aspects of the

state space outside of the decision POMDP. To achieve this, the whole problem state

space is separated into separate state spaces for the decision and perceptual process.

The perceptual process just serves to estimate aspects of the belief state while the

decision process estimates the remainder and determines a policy. As a result, the

decision process is modeled as a reduced state space POMDP. To allow the appli-

cation of this method to continuous state spaces, the decision and the perceptual

processes are here both handled by a sampling method within which this separation

makes it possible to represent the POMPD with a smaller state space which leads to

smaller sample sets for the decision POMDP and as a result reduced representational

and decision learning complexity. The goal here is to focus decision learning on the

aspects of the space that are important for decision making while the observations

and attributes that are important for estimating the state of the decision process

are handled separately by the perceptual process. In this way, the separation into

different processes can significantly reduce the complexity of decision learning. In

order to get a better intuition about how this framework can reduce the complex-

ity of solving POMDP problems, we first derive the mathematical equation for the

distributed coupled POMDP in a discrete space and after that we extend our ap-
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proach to a continuous state space in which a sampling representation has been used

to define our algorithm. In particular, in the continuous state space, Monte Carlo

based sampling methods and corresponding sample set representations are used for

both the perceptual and decision processes in order to be able to deal efficiently with

continuous domains.

3.1 Mathematical Derivation of Equations in a Discrete State Space

In the proposed method, the belief update is divided into two separate parts:

decision and perceptual processes belief update. The update in the decision process

is handled in the form of a POMDP and the update in the perceptual process is

handled by a sampling method such as a particle filter. By the separation, the

POMDP only deals with the required information to find an optimal policy and

the perceptual processes use the raw data from the sensor and send the processed

state attribute to the POMDP. The separation promises the potential to lead to

reduced complexity in the decision process by omitting non-necessary information.

For example, shape and color information can be useful for the perceptual process

but is often not essential for the POMDP decision making. In other words, our

method tries to put all information inside the POMDP which is required to decide

the action and all other information should be handled by the perceptual process.

Due to this separation, the states of the perceptual process and the POMDP are

different. Since the most expensive part of the overall computation is solving the

POMDP, we want to have a separation in which the state of the POMDP decision

component is as compact as possible. Unloading the POMDP states to the perceptual

process, if done correctly, can reduce the overall computational complexity to a great

extend. Moreover, handling the uncertainty separately in the perceptual process

and decision process can further reduce the complexity. In particular, when the
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uncertainty increases in either the perceptual process or the decision process, the

other process does not need to handle that uncertainty as well. However, in the

traditional model, when the uncertainty is increased either in the world and action

model or in the sensors used for perception, this uncertainty has to be handled by

the entire POMDP process, leading to a significant increase in overall complexity.

In our method, the state and observation of the whole system are divided into

states and observations of the perceptual process and the POMDP. Zf and Sf de-

fine perceptual process observations and states, respectively, and Zd and Sd are the

decision process observations and states:

Z = (Zf , Zd), S = (Sf , Sd)

Figure 3.1 shows the separation. In the figure, the decision process is built around the

states in Sd and the perceptual processes are built for the states in Sf . Even though,

we have just one POMDP in our method, we can have more than one perceptual

processes. For example, when there is an agent tracking multiple objects in the en-

vironment, the tracking of each object can be handled independently by separate,

loosely coupled perceptual processes to further reduce the complexity of the percep-

tual processes and thus of the overall system. The solid lines in Figure 3.1 show the

direct relations and information flow between observations, perceptual process and

decision process that are necessary in an ideal decomposition into perceptual and

decision processes. On the other hand, the dash lines are used to show the additional

information that has to be exchanged in situations where no optimal decomposition

is - or can be - performed, requiring correction terms in the other process. For ex-

ample, in some situations Sd can have an effect on the prediction step of the particle

filter in the perceptual process. The formulation can explicitly reflect the relation

among those terms. Hence, there can be correlations between states and observations
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Figure 3.1. Dividing the Belief into Two Parts.

of the decision process and the perceptual process, but an ideal split would make Sd

as compact as possible and achieve a situation where the dashed information flow

can be avoided as much as possible. Such an ideal split is achievable under certain

conditions which will be detailed in the formal derivation in the next section. In

addition to providing a means to evaluate the quality of a split, these conditions also

present a way to potentially automatically identify useful splits into perceptual and

decision processes. In order to formulate our method and to illustrate its potential

for complexity reduction as well as the conditions under which this decomposition is

most effective and where correction terms are not required, we will in the next section

derive the equations for the partially decoupled belief update. The formulation shows
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that the belief update can be divided into the perceptual process and decision pro-

cess belief update with additional correction terms that reflect the residual effects of

remaining coupling between the processes. In the following section, we first describe

the measurement update step and then, in the later section, the prediction step.

3.1.1 Update Formulation for Measurement Update

In this section, we define new equations for the perceptual process and the

decision process measurement update. We solve P (z|s′) in a way that reflects the

update of the perceptual and the decision processes separately:

P (z|s′) = P (zd, zf |s′d, s′f )

= P (zd|zf , s′d, s′f )︸ ︷︷ ︸
*

P (zf |s′d, s′f )︸ ︷︷ ︸
**

We can apply Bayes rule to term * :

P (zd|zf , s′d, s′f ) =
P (s′f |zd, zf , s′d)P (zd|zf , s′d)

P (s′f |zf , s′d)
(3.1)

Similarly, Bayes rule can be applied to term ** as well:

P (zf |s′d, s′f ) =
P (s′d|zf , s′f )P (zf |s′f )

P (s′d|s′f )
(3.2)

From (3.1) and (3.2), we have:

P (zd, zf |s′d, s′f ) = P (zf |s′f , a)P (zd|zf , s′d)Co (3.3)

Co =
P (s′f |zd, zf , s′d, a)

P (s′f |zf , s′d)
P (s′d|zf , s′f )
P (s′d|s′f )

(3.4)

By using Bayes rule, the first part of the correction term Co in (3.4) will be as follows:

P (s′f |zd, zf , s′d)
P (s′f |zf , s′d)

=
P (zd|s′d, s′f , zf )P (s′f |zf , s′d)
P (s′f |zf , s′d)P (zd|zf , s′d)
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=
P (zd|s′d, s′f , zf )
P (zd|zf , s′d)

(3.5)

and the second part of (3.4) can be written by Bayes rule as:

P (s′d|zf , s′f )
P (s′d|s′f )

=
P (zf |s′d, s′f )P (s′d|s′f )
P (s′d|s′f )P (zf |s′f )

=
P (zf |s′d, s′f )
P (zf |s′f )

(3.6)

Finally, by putting (3.3), (3.5), and (3.6) together, the update equation for the mea-

surement update is as follows:

P (zd, zf |s′d, s′f ) = P (zf |s′f )︸ ︷︷ ︸
I

P (zd|zf , s′d)︸ ︷︷ ︸
II

P (zf |s′d, s′f )
P (zf |s′f )︸ ︷︷ ︸

(III)

P (zd|s′d, s′f , zf )
P (zd|zf , s′d)︸ ︷︷ ︸

(IV)

(3.7)

(III) here represents the residual effect of the perceptual process on the decision

process and (IV) is the residual effect of the decision process on the perceptual process.

The residual effects define the part of the information which is not captured by the

observation in each of the processes. For example, in the perceptual process, the

residual effect addresses the information which is not captured by the perceptual

process. It is worth noting that when the observations in the decision process or the

perceptual process are complete, i.e. all information required for the respective state

updates and observation predictions is captured, the terms (III) and (IV) will become

one.

Thus, if the states of the perceptual process and of the decision process are

complete in the sense that they encode all information necessary to predict the cor-

responding observation probabilities, the equation would reduce to:

P (zd, zf |s′d, s′f ) = P (zd|zf ,s′d)P (zf |s′f )
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This reflects the ideal case where measurement updates can be performed com-

pletely independently for the perceptual and decision processes, and represents part

of a potential condition under which a separation into perceptual and decision process

is optimal within the proposed framework.

3.1.2 Prediction Formulation for Belief Prediction

In this section, we show how the prediction step of the POMDP belief update,∑
s∈S P (s′|s, a)bel(s) can be expresses separately for the perceptual and the decision

processes:

∑
s∈S

P (s′|s, a)bel(s) =
∑
s∈S

P (s′d, s
′
f |sd, sf , a)bel(sf , sd)

=
∑

sd,sf∈S

P (s′d|sd, s′f , sf , a)P (s′f |sd, sf , a)bel(sd, sf )

=
∑
sd∈Sd

P (s′d|sd, s′f , a)
∑
sf∈Sf

(
P (s′d|sd, sf , s′f , a)

P (s′d|sd, s′f , a)
P (s′f |sf )

P (s′f |sd, sf , a)

P (s′f |sf , a)
bel(sf , sd)

)

The belief, bel(sf , sd), can be written as follows:

bel(sd, sf ) = bel(sd|sf )bel(sf ) (3.8)

Using Bayes rule this can be re-written as follows:

bel(sd|sf ) = bel(sd)
P (sd|sf , z0, .., zt−1)
P (sd|z0, .., zt−1)

(3.9)

Then, by using (3.8) and (3.9), we have:

∑
sd∈Sd

P (s′d|sd, s′f , a)bel(sd)
∑
sf∈Sf

(
P (s′d|sd, sf , s′f , a)

P (s′d|sd, s′f , a)︸ ︷︷ ︸
(*)
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P (s′f |sf )bel(sf )
P (s′f |sd, sf , a)

P (s′f |sf , a)︸ ︷︷ ︸
(**)

P (sd|sf , z0, .., zt−1)
P (sd|z0, .., zt−1)︸ ︷︷ ︸

(***)

)
(3.10)

The term (**) in (3.10) represents the residual effect of sd on s′f that sf does not

explain. We would like this value to be one, implying that the perceptual process

state contains all information that is required to update itself. Term (*) in (3.10)

similarly represents the residual effect that the previous state of a particle has on the

predicted state of the POMDP that is not provided by the output of the perceptual

process. Finally, term (***) in (3.10) represents the correlation between the belief

of the perceptual process and the decision process. In other words, how much of

the belief in the decision process is already handled by the belief in the perceptual

process. To put it more simply, if sd and sf are dependent, term (***) defines what

part of the belief of sd is integrated into the belief in sf inside of perceptual process.

Finally, by putting (3.7) and (3.10) together, we have the whole belief update,

bel(s′), separately expresses as the belief updates for the perceptual process and the

decision process and an additional set of correction terms to compensate for imper-

fections in the separation into the different processes:

∑
sd∈Sd

P (zd|zf , s′d)P (s′d|sd, s′f , a)bel(sd)︸ ︷︷ ︸
POMDP belief update

P (zd|s′d, s′f , zf )
P (zd|zf , s′d)︸ ︷︷ ︸
correction term

(3.11)

∑
sf∈Sf

(
P (zf |s′f )P (s′f |sf )bel(sf )︸ ︷︷ ︸
Perceptual process belief update

P (s′d|sd, sf , s′f , a)

P (s′d|sd, s′f , a)︸ ︷︷ ︸
correction term

P (sd|sf , z0, .., zt−1)
P (sd|z0, .., zt−1)

P (zf |s′d, s′f )
P (zf |s′f )

P (s′f |sd, sf , a)

P (s′f |sf , a)︸ ︷︷ ︸
correction term

)
(3.12)
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The terms in parts (3.11) and (3.12) of the complete belief update equation show

that the separation leads to the complete belief update for the perceptual process and

decision process with a number of correction terms which account for interactions and

correlations between state variables and observations in the two types of processes.

There will be a perfect split under certain assumptions where all correction terms

become one. Through this, this formula provides insight into how to come up with

the best separation into perceptual filter and POMDP, and how to assign state space

components to the constituent processes. Besides, since each of the updates is sep-

arately done , it leads to each process handling relevant parts of the process rather

than the whole of it. As a result, the uncertainty in one part has no direct effect on

the other side.

In the next section, we describe the proposed sampling based algorithm to deal

with (3.12).

3.2 Sampling Algorithm for Continuous State Spaces

Due to the continuity of the belief state, handling it in an efficient way can

significantly help to solve the POMDP. Most previous work in this area, as mentioned

previously, concentrated on how the belief state can be handled and the value function

can be approximated. In our method we augment this with a new approach where part

of belief state is handled by the perceptual process and the other part by the decision

process. Through this, we handle the belief state in a way that leads to a smaller

state space for the decision process. To achieve this, we divide the overall POMDP

problem into a decision process and a perceptual process. The decision process can

be modeled itself as a POMDP with a reduced state space which allows us to use the

available frameworks for policy learning to solve the reduced decision problem. For

the perceptual process, a particle filter is used to track the state statistics. It is worth
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noting that the decision part uses the relevant parts of the belief state computed by

the perceptual process in the same way as its local observations. How to determine

the state spaces for the decision and the perceptual processes is generally difficult and

beyond the scope of the thesis. However, through the mathematical and algorithmic

analysis of our model, we provide some intuition how the separation should be done.

In particular, the correction terms in the derivation provide some insight how state

and observation variables should be separated to reduce POMDP complexity. Figure

3.2 shows the overall idea of our approach.

3.2.1 Separation of Belief Update in Continuous State Spaces

Since the belief update plays an important role in solving the POMDP, we

derive here the equations to update the belief state in for the perceptual and decision
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processes when applying our method in the case of a continuous state space. If S

defines the state of the overall POMDP, the belief update equation in (2.7) can be

rewritten for the combined state, s′f , s
′
d, of the two processes as bel(s′d, s

′
f ) and tracked

as: ∫
sd

∫
sf

p(s′d, s
′
f |sd, sf , a)p(zd, zf |s′d, s′f )bel(sd, sf )dsfdsd

in which sd and sf define the states of the decision processes and the perceptual

process, respectively. We assume here that the decision part is defined by the

state/observation pair {sd, zd} and the perceptual process by {sf , zf}. After applying

Bayes rule and other probabilistic transformation rules as shown in the previous sec-

tion for discrete state space, the following belief update formula for bel(s′d, s
′
f ) shows

the separation into the two processes:∫
sd

(
p(zd|zf , s′d)p(s′d|sd, s′f , a)bel(sd)︸ ︷︷ ︸

POMDP belief update

p(zd|s′d, s′f , zf )
p(zd|zf , s′d)︸ ︷︷ ︸
correction term

∗
∫
sf

(
p(zf |s′f )p(s′f |sf )bel(sf )︸ ︷︷ ︸
Perceptual process belief update

p(s′d|sd, sf , s′f , a)

p(s′d|sd, s′f , a)︸ ︷︷ ︸
correction term

p(sd|sf , z0, .., zt−1)
p(sd|z0, .., zt−1)

p(zf |s′d, s′f )
p(zf |s′f )

p(s′f |sd, sf , a)

p(s′f |sf , a)︸ ︷︷ ︸
correction term

)
dsf

)
dsd (3.13)

(3.13) shows how the belief in the perceptual and decision process can be separately

tracked. Meanwhile, it shows the correlation between sd and sf in terms of correction

terms. Because, the decision process only needs to deal with decision-relevant state

variables, it can lead to a smaller state space for the decision process which reduces

the complexity of dealing with the POMDP. In addition, the decision process POMDP
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only needs sd to make decisions. As a result, it is necessary to calculate bel(s′d) from

bel(s′d, s
′
f ). Hence, bel(s′d) can be defined as follows:

bel(s′d) =

∫
s′f

bel(s′d, s
′
f )ds

′
f (3.14)

To solve (3.14), we propose a Monte Carlo sampling based algorithm to calculate

bel(s′d) by using (3.13) and (3.14). In the next section, we explore our algorithm in

more detail.

3.2.2 Distributed Belief Tracking Algorithm

To explain the algorithm’s operation, we classify terms in (3.13) into three

classes:

• Sampling or Resampling terms that can be solved easily by pure sampling or

resampling steps.

• Bias terms that bias the sampling distribution.

• Weight adjustments that adjust the weights of samples.

In our algorithm, we first deal with the perceptual process before updating the de-

cision process. The reason for this is that the decision part uses feedback from the

perceptual process to compute some of its terms (in particular, it uses the relevant

parts of s′f in the calculation of s′d). Besides, this reflects the fact that the perceptual

process mostly plays the role of a preprocessor for the decision part by handling and

decoupling the state features that have no direct importance in the decision process

but only serve to correctly track the belief of features that are relevant for decision

making.

”Update Perceptual Process” in lines 2 through 3 of Algorithm 2 is responsible

to calculate the bias term and track the belief of the perceptual process. Due to the

simplicity of the particle filter and its ability to track multidimensional distributions
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Algorithm 2 Calculate bel(s′d)

1: Initialize sample sets of Sf and Sd

2: Update Perceptual Process

• Calculate the bias term
p(s′f |sd,sf ,a)
p(s′f |sf ,a)

• 〈s′f , wf〉 = Update Belief Sf (sf , zf )

3: Correlate sd with some sample from sf .

4: Update Decision Process

• Calculate the bias term
p(s′d|sd,sf ,s

′
f ,a)

p(s′d|sd,s
′
f ,a)

• 〈s′d, wd〉 = Update Belief Sd(sd, zd, s
′
f , zf )

• Calculate the weight adjustment terms

5: Feedback adjust(S ′d, S
′
f )

6: Down Sample to (bel(s′d))

efficiently, it is used here to handle the belief tracking. It uses the observation and

prediction model of the system to generate the particle sets for the given states. In

line 3, the samples of sd are correlated to the samples of sf . If we assume that the

size of the sample sets for sd and sf are m and n, respectively, the size of the sample

set after correlation in the worst case will be (n ∗m). ”Update Decision Process” in

line 4 is responsible to track the belief of the decision process. Rather than just using

sd, zd to track the belief, Update Belief Sd uses s′f and zf as well. Since
p(zf |s′d,s

′
f ,a)

p(zf |s′f ,a)

and
p(zd|s′d,s

′
f ,zf ,a)

p(zd|zf ,s′d,a)
do not depend on the belief (i.e. they do not need samples to

be computed as they come from the system model), their computation is delayed

until all other terms’ computation is completed. Feedback adjust is responsible to

calculate them. However, it is worth noting that we are interested in making these

terms unnecessary, i.e. in making them one by selecting sf and zf accordingly. This
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is achieved by making the observation model of the perceptual process maximally

independent from the observation of the decision process.

In the most general case, lines 1 to 5 of the algorithm calculate bel(s′d, s
′
f ). This

is necessary in order to correctly capture the remaining interdependencies between the

states in the perceptual and the decision processes. In order to correctly do this, the

samples from sd have to be correlated with samples from sf . This step is here called

”Up sampling”. The reason for this step is to extract information from the belief of

sd which is already captured in bel(sf ) and thus to avoid including it twice. Within

the mathematical derivation,
p(sd|sf ,z0,..,zt−1)

p(sd|z0,..,zt−1)
in (3.13) is responsible for this. On the

other hand, to learn an optimal decision policy we are interested only in bel(s′d) which

can be calculated using (3.14). To do this and to simultaneously reduce the size of

the up-sampled state set, we down-sample it. For this, any resampling method can

be used. The result of this step is a sample set for bel(s′d).

3.3 Policy Learning

The proposed framework can be used either in the discrete state space or contin-

uous state space. In the discrete state space any policy learning method can be used

with the proposed framework. However, in the discretized state space experiments

performed here, we use the Linear Q-learning to learn a policy. For the continuous

state space experiments, on the other hand, we use the value function learning method

used in the Monte Carlo POMDP framework [3] to learn a policy. This allows us to

represent the value function directly in terms of a sample set represented by belief

state sample set/value parameter pairs, making this a convenient method to use with

the proposed method. It is worth noting that the proposed framework is generally

independent of the learning policy method. In other words, it can be used with any

learning policy method which can deal with learning in a POMDP.
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3.4 Practical Considerations and Analysis

Our proposed algorithm can reduce the complexity of the overall POMDP by

reducing the number of state variables in the decision POMDP either in continuous

or discrete state spaces. This, in turn, leads to a smaller sample set for the decision

process POMDP in a continuous state space or fewer state variables for POMDPs

in a discrete state space which reduces the complexity of solving the POMDP. In

addition, because handling the sample set in the particle filter is just much cheaper

than solving the POMDP, we prefer the perceptual process to handle the state space

as much as possible. For this reason, during the separation, we want the perceptual

process to avoid the feedback from the decision process. However, the states of

the POMDP generally require some information or feedback from the perceptual

process. If we can find a separation that can have completely isolated and independent

observations for the perceptual process and decision part, some of the terms in (3.13)

will automatically become ones, significantly simplifying the algorithm. In the next

chapter, we compare our method with the conventional POMDP methods and show

the efficiency of our algorithm.
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CHAPTER 4

EXPERIMENTS AND RESULTS

In order to empirically demonstrate the applicability and effectiveness of our

approach, we simulated our algorithm in two difference situations. In the first one, we

used our method when the state space of the POMDP is discretized. In the second one,

our method was used on a continuous state space. Since, the representations of the

value functions are completely different in each of the state spaces, it is important to

show how our algorithm behaves in each of these spaces. For the first case, we simulate

the problem of tracking a bouncing ball using a robot with learning capability, and

for the second experiment, a simplified version of the SpaceInvader game is used.

4.1 POMDP with Discretized State Space

To demonstrate the framework, we performed experiments with a simulated

robot and a simulated bouncing ball in a grid world of size 9 × 8, where the actions

of the robot, which move it between grid cells, are to be learned, and the ball moves

in a continuous space, bouncing off the walls surrounding the grid world. The robot

carries a camera which can measure the distance and angle to the bouncing ball

but only with a certain level of sensor noise. In this simulation, the robot wants to

track the bouncing ball by putting the camera and himself in the right position and

direction to keep the ball in view. We used the particle filter to track the bouncing

ball and Linear Q-learning as the method to solve the POMDP part. Figure 4.1 shows

a snapshot of the simulation.

37



Figure 4.1. Bouncing Ball and Simulated Robot.

4.1.1 Simulation Model

Here, we describe how the object and robot are modeled in this environment.

4.1.1.1 System Model

In order to make the simulation more realistic, we used egocentric coordinates

for the observations made by the robot camera. Here, the camera system provides

coordinates relative to the robot rather than in terms of the global coordinate sys-

tem. Using egocentric coordinate makes the perception more realistic and more noise

resistant as it no longer relies on the robot location. In addition, egocentric coordi-

nates can model the uncertainty in perception completely independent of the robot

location. The outputs of the camera are distance and angle towards the bouncing

ball. The samples, or particles, represent possible bouncing ball locations as a vector
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of angle and distance. The equations for the angle and distance calculation in the

simulation are as follows:

φi = arctan(
Yi
Xi

) (4.1)

di =
√
X2
i + Y 2

i (4.2)

where Xi and Yi are the relative location of the object to the camera. These can be

calculated using the following equations:

Xit = Xot −Xrt

Yit = Yot − Yrt

Here, Xr and Yr are the global location of the robot and Xo and Yo are the global

location of the bouncing ball. The model for the movement of the bouncing ball is:

Xot = Xot−1 + ∆t ∗ Vxt−1 + ωxo

Yot = Yot−1 + ∆t ∗ Vyt−1 + ωyo

In which Vx and Vy are the velocity in the x-direction and y-direction, respectively. ωx

and ωy are Gaussian random variables with mean of zero and standard deviation of

0.23 and 0.22, respectively. In the simulation, when the ball hits the wall the velocity

in the hitting direction will be reversed. The particle filter uses the following as its

prediction model:

Xit = Xit−1 + Fx(a) + ∆t ∗ (Vxt−1 + ζx) + ωxi (4.3)

Yit = Yit−1 + Fy(a) + ∆t ∗ (Vyt−1 + ζy) + ωyi (4.4)

In (4.3) and (4.4), both ωs are Gaussian noise for the location with mean of zero and

standard deviations of 0.1. ζ is the Gaussian noise model for velocity with mean of

zero and standard deviation of 0.25 in the x-direction and 0.21 in the y-direction. This
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velocity noise, although not present in the simulated system, is necessary to allow the

particle filter to estimate the system’s velocity, and is partially compensated through

the reduced position noise, ω. After calculating these values for each particle, we

convert them to φi and di using (4.1) and (4.2). Index i indicates the particle numbers.

Hence, the state of the particle filter can be represented as (φi,di,Vx,Vy). xo,yo can

be converted to the φi and di, using equations (4.1) and (4.2). Since, we are using

egocentric coordinates, the location of the robot is not important. However, the effect

of the robot movement on the state of the particle filter should be considered. For

this reason, we assume that, the camera is always facing in the right direction and the

robot moves in one of four directions: (Up, Down, Right, Left). Given that, Fx(a) and

Fy(a) define the effect of the instantaneous robot movement on the perceptual process.

For example, when the robot moves left, all egocentric observations and states will

move to the right. In other words, F (a) defines how much the local features change

through the robot movement. In our simulation, the actions move the robot by 1

square and thus the local features also move with a step size of one:

Fx(Right) = −1, Fx(Left) = 1, Fx(Up) = Fx(Down) = 0

Fy(Up) = −1, Fy(Down) = 1, Fy(Right) = Fy(Left) = 0

Finally, the observation model for the particle filter is:

dobs = d+ τ

φobs = φ+ %

where τ and % are zero mean Gaussian random variables with standard deviations of

0.18 and 0.09, respectively. The weights, w(i), of each particle are calculated as:

w(i) = N(0,0.18)(d
(i) − dobs) ∗N(0,0.09)(φ

(i) − φobs)

where N(x) is the value of the normal distribution at point x.

40



4.1.1.2 Reward Function

The goal of this simulation is to learn a policy that allows the robot to put

himself and camera in right position to track the bouncing ball without wasting

valuable energy and considering its state of knowledge about its own location and the

location of the bouncing ball. In order to do that, the reward function, r, is assigned

based on the distance of the robot from the ball:

r =



−0.1 if d = 0

5 if d < 2

2 if 2 ≤ d < 4

0 otherwise

4.1.2 Learning Method

We use Linear Q-Learning in these experiments to learn a policy for the POMDP

decision process. Since there is no uncertainty in the robot motion and location,

and because the state representation and observations chosen for the particle filter

perfectly correlates the uncertainty in the POMDP with the one used for the particle

filter, the belief update in the POMDP on which Linear Q-Learning is used, reduces

to a direct transformation of the posterior probability or belief of the particle filter.

This leads to the following value updates:

Q(b, a) =
∑

w(i)q(s(i), a)

∆q(s(i), a) = α w(i)(r + γ ∗maxa′Q(b′, a′)−Q(b, a))

where w′(i) and w(i) are weights of particles at time t and t − 1, respectively, and i

indicates the particle number. In addition, γ is the discount factor, which for these

experiments is set to 0.7. α defines the learning rate which for these experiments
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is 0.1. In order to explore the action space in each step of Linear Q-Learning, we

use the ε − greedy method with ε = 0.1. Finally, the states of the POMDP are

(xr, yr, xo, yo, Vx, Vy).

Since, in our simulation, the robot location and motion is certain, all correction

terms in (3.7) for the POMDP and observation probability are one with the exception

of the one for belief correlation between the particle filter and the POMDP (term (***)

in (3.10)) which here cancels the belief term of the POMDP since all prior belief is

already handled in the particle filter. Similarly, the correction terms in the particle

filter are one due to the fact that there is no influence from sd on s′f and from s′d on

the zf .

4.1.3 Traditional Method

In order to compare our method, we perform another simulation with the above

configuration. In this case, instead of using a separate particle filter for updating the

belief of a perceptual process separately from the belief of the POMDP, we use a

monolithic POMDP with the egocentric camera observations and (2.3) to perform

the belief update in order to solve the POMDP with the same Linear Q-Learning

algorithm without any separation of perception and decision processes.

4.1.4 Experimental Results

In this experiment, the proposed method and the traditional, monolithic POMDP

comparison method were executed for 3335 trials where each trial consists of 300

episodes, each consisting of 25 steps. Each of the methods was performed 10 times.

To accommodate the used learning framework, we used the continuous belief state

update for the particle filter and discrete states for the POMDP. Figure 4.2 shows the
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Figure 4.2. Learning Curve.

average learning curve for the 10 different executions. Each point in the curve shows

the average reward for one trial and error bars represent one standard deviation.

These results show that the proposed method outperforms the traditional com-

parison method using the same POMDP learning algorithm both in terms of learning

speed and final policy value. Part for the reason for this can be seen in the increased

efficiency of the proposed separation into perceptual and decision processes which

also allows the use of a discrete POMDP method while maintaining the belief state

in the perceptual process in a continuous form (which is not possible in monolithic

methods). It is worth noting that even though we used the sampling method, which

is an approximate method, the result shows that at the end our method is achiev-

ing better final results. In addition, the results illustrate how the proposed method

benefits from the potential complexity reduction discussed in the previous sections.
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Figure 4.3. Space Invader.

4.2 POMDP in Continuous State Space

To demonstrate the efficiency and applicability of our algorithm in a continuous

state space, we simulated a simplified version of the Space Invader game. In this game,

a robot horizontally moves across the bottom of the screen and fires with a laser at a

flying object. The overall goal is to learn the policy for the robot that leads to reward

maximization. The reward is here related to the number of the times that the robot

can shoot the object. Figure 4.3 shows a snapshot of the game.

The simulation has been performed with two different algorithms. For the first

algorithm, we used the Monte Carlo POMDP [3] algorithm. In this algorithm, the

entire problem has been modeled as the decision POMDP. For the other one, we

used our proposed algorithm to track the belief states separately and to find the

maximum policy in terms of bel(sd). For our algorithm, instead of modeling the

complete problem as a monolithic POMDP, we divided it into a perceptual process

responsible for correctly tracking the state of the object and a decision process. In

order to solve the decision part in our algorithm, the same approach as in the Monte

Carlo POMDP [3] has been used. For the perceptual process, we used a particle filter.
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As described previously, our algorithm reduces the complexity of solving the overall

PODMP by breaking it down into decision and perceptual parts. In the following

section, we describe the simulation model.

4.2.1 State Space

Here we describe the state space for each algorithm.

4.2.1.1 Monte Carlo POMDP algorithm

For this algorithm, the state space of the problem is formed by the state vari-

ables 〈Xo, Yo, Vxo , Vyo , Xr〉 representing the location and velocity of the object in the

2D space and the location of the robot in its 1D space.

4.2.1.2 Our Proposed Algorithm

For the proposed algorithm, we separate the perceptual and the decision process,

resulting in two types of states:

• Decision Process POMDP : 〈Xr, Xo〉.

• Perceptual Process (Particle Filter): 〈Xo, Yo, Vxo , Vyo〉.

In order to solve the decision process POMDP, we used the Monte Carlo POMDP

algorithm augmented with the proposed approach to updating the corresponding

belief state sample set, and for the perceptual process we used the particle filter to

track its belief state. It is worth noting that the separation is done such that states in

the POMDP and the particle filter components are sufficient to make decisions and

track the belief state.

4.2.2 Simulation Model

Here, we describe how the object and robot are modeled in this environment.
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4.2.2.1 Flying Object movement Model

The flying object moves in a world of size 2× 2. When the object hits the wall,

it bounce back towards the inside. In order to reflect the bounce, the velocity of the

object is reversed in the bounce direction. Since the object area is a 2D space, X

and Y represents the location of the object. Thus, the object moves according to the

following equations:

Xot = Xot−1 + ∆t× Vxt−1 + ωxo

Yot = Yot + ∆t× Vyt−1 + ωyo

where ωx and ωy represent a Gaussian noise with mean 0 and standard deviation of

0.01.

4.2.2.2 Robot movement Model

The robot only moves in a 1D space (i.e. X). When the robot hits the walls

(right or left wall), it stays at the wall, i.e. in X = 0 for the left wall and X = 2 for

the right wall. Thus, the robot moves according to following equation:

Xtr = Xt−1r + f(action) + ωxr

where ωxr is a movement noise with standard deviation of 0.01. The available actions

for the robot are left, right, and shoot. Since the actions are continuous, they effect

the robot’s position as follows:

f(right) = 0.2, f(left) = −0.2, f(shoot) = 0;

4.2.2.3 Observation Model for Robot

The only observation of the robot is a noisy, binary close range wall proximity

sensor that indicates that the wall is close by. In order to calculate the observation
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model for the robot, we calculate the probability of the sensor indicating a wall using

a normal distribution with standard deviation 0.1 and mean 0 for the left and right

wall:

• Left Wall:

Wleft =
N(0,0.1)(xr)

N(0,0.1)(0)

• Right Wall:

WRight =
N(0,0.1)(Nx − xr)

N(0,0.1)(0)

in which Nx is the width of the world and xr is the location of the robot. The final

values, WRight and WLeft are the likelihood of he right and the left wall proximity

sensor indicating a wall and are used to generate a corresponding wall proximity

observation.

4.2.2.4 Observation Model for Flying Object

The observation of the object is obtained from a simplified ”radar station”

located in the lower left corner of the object area. It provides a noisy measure of the

distance from position (0, 0) and can be calculated by:

do =
√
X2
o + Y 2

o + ψ

in which ψ is Gaussian noise with a standard deviation of 0.02.

4.2.2.5 Reward Function

The goal of this simulation is to learn a policy that allows the robot to shoot

the object as frequently as possible without wasting valuable energy and considering

its state of knowledge about its own location and the location of the flying object.

The reward function is modeled as follows:

47



r =



100 if |Xr −Xo| < 0.25 ∧ action = shoot

−0.1 if action = right

−0.1 if action = left

−80 if action = shoot ∧miss

4.2.3 Monte Carlo POMDP Implementation Detail

As we previously mentioned, the Monte Carlo POMDP [3] method is used as

value function learning. The following pseudo-code shows the Monte Carlo POMDP

algorithm in more detail [20]:

1: repeat

2: Sample x ∼ b(x) and init X with M samples

3: repeat

4: for all available actions u do

5: Q(u) = 0

6: repeat

7: select random x ∈ X

8: x′ ∼ p(x′|u, x), z ∼ p(z|x′)

9: X ′ = Particle filter(X, u, z)

10: calulate the distance of X ′ from table entries

dk=KL distance(X ′, (V0, ...Vn))

11: if there are K-nearset neighbor in V-table then

12: V (X ′)=
∑ Vk

dk∑ 1
dk

13: end if

14: Q(u) = Q(u) + 1
n
(r(x, u) + γV (X ′))

15: until N
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16: end for

17: action = ε-greedy(Q)

18: dk=KL distance(X, (V0, ...Vn))

19: if there are K-nearset neighbor in table then

20: V (X) =
∑ Vk

dk∑ 1
dk

21: Update the table

Vk = Vk + αη 1
dk

(Q(action)− Vk)

22: else

23: add Q(action) to the table

24: end if

25: x′ ∼ p(x′|action, x)

26: z ∼ p(z|x′)

27: X ′ = Particle filter(X, u, z)

28: X = X ′

29: until episode over

30: until convergence

The KL-divergence calculates the distance between two distributions. In our

case, since we have samples sets, we need to use a Mixture of Gaussians in the

KL distance function. Calculating the Mixture of Gaussian is O(kn2) where n is the

number of samples.

The KL distance between two distributions can be calculated as follows:

KLD(P ||Q) =

∫
x

P (x) log(
P (x)

Q(x)
)dx

In order to apply our framework to this algorithm, we made the following

changes:
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• In line 7, two instances of particle filter functions are called. One with 〈Xo, Yo, Vxo , Vyo〉

for the perceptual process and another one for the POMDP(decision process)

with the 〈Xr, Xo〉 state variables .

• In line 8 and 15, KL distance uses just 〈Xr, Xo〉 as state variables.

In fact, in our method, the KL divergence method and V table both deal with a

smaller number of state variables in comparison with the traditional Monte Carlo

POMDP which in turns effects learning speed and complexity of the algorithm.

4.2.4 Simulation Results

To compare our algorithm with the Monte Carlo POMDP algorithm, we calcu-

late two different quantities: i) learning curve in terms of the performance achieved

as a function of the number of learning trials, each consisting of 25 steps, and ii) the

time complexity in terms of the computation time required per step taken. The learn-

ing curve shows how fast the algorithm can learn the optimal policy. On the other

hand, the time complexity measurement shows how long it takes for the algorithm to

calculate each value function update. Since, our algorithm deals with a smaller set of

state samples, it can convergence to an optimal policy much faster than the standard

Monte Carlo POMDP approach. In addition, the time complexity of our algorithm

is much lower due to the reduced amount of complexity in the computation of the

decision part.

Figure 4.4 shows the time complexity of our method and traditional Monte

Carlo POMDP. Since, our algorithm deals with a smaller state space in the decision

process, the average running time of the algorithm is dramatically lower and also

increases much more slowly as it requires significantly fewer value-function samples to

be stored and compared. The main reason for the much lower time complexity is that

our algorithm builds a significantly smaller table for the sample sets used to represent
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Figure 4.4. Time Complexity.

the value function which leads to a dramatically smaller number of computations of

KL-divergence. Conversely, the Monte Carlo method has larger average running time

because its sample table is much larger than the one for our method which leads to

higher search time. Furthermore, the monolithic Monte Carlo POMDP deals with

a larger state space which increases the complexity of calculating the value function

and the sample set.
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Figure 4.5. Learning Curve.

Figure 4.5 shows the learning curves, averaged over 18 runs for both algorithm

in terms of the average reward per step over 22 trials. The error bars in the figure
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represent one standard deviation. As the figure shows, the learning speed of our

algorithm is much faster than for the monolithic Monte Carlo POMDP. Moreover,

after 130 trials our algorithm is converged; however, the Monte Carlo POMDP still

oscillates around a value significantly lower than the one achieved by our method.

There are a couple of reasons for this behavior. First, the Monte Carlo POMDP has

much larger value tables because it is dealing with 5 state variables as compared the

two state variables in our method. In addition, since this method has to keep track

of a larger belief state space, it takes more time to have a sufficient distribution to

cover the space states. As a result, the Monte Carlo POMDP method requires more

time to cover the value function space and more time to learn.
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Figure 4.6. Learning Curve with tighter threshold.

In addition, we perform a different experiment where all parameters are the

same as in the previous experiment except for the KL threshold. For this experiment,

we choose the KL threshold tighter i.e. we require a close match for the K-nearest

neighbor function approximator for the value function. In the previous experiment,

the threshold was 0.5. However, this time, we make it tighter and assign 0.4. Fig-
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Figure 4.7. Time Complexity with tighter threshold.

ure 4.6 and 4.7 shows the learning curves and time complexity curves, averaged

over 18 runs for both algorithm in terms of the average reward per step over 22 tri-

als. It worth noting that, our algorithm after 180 trials is converged; however, the

Monte Carlo POMDP again oscillates around a value significantly lower than the

one achieved by our method. As the figures show, our algorithm outperforms the

traditional Monte Carlo POMDP in terms of learning rate and learning time.

In conclusion, Figures 4.4, 4.5, 4.7, and 4.6 show that our method outperforms

the Monte Carlo POMDP, indicating its potential to allow learning to scale to larger

problems.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

POMDPs are a very powerful and general modeling and decision solution frame-

work that can address a wide range of problem domains. However, it suffers from

issues in terms of tractability as the complexity of POMDP solutions increases rapidly

as the complexity of the state space increases. In this thesis, we proposed a framework

to reduce the complexity of POMDPs by separating them into separate decision and

perceptual processes. We showed formally that this separation is possible and derived

the compensation terms that address interactions between the processes if no optimal

process separation is achieved. In the proposed method, we used a particle filter as

the perceptual process and a POMDP as the decision process. Using the proposed

framework a significant reduction in the complexity of the POMDP solution can be

achieved by performing a separation into perceptual and decision process in a way

that removes many of the compensation terms. We mathematically and empirically

show in a set of experiments that whenever a good separation is achieved, the com-

plexity of solving the overall POMDP is reduced. In future work, we want determine

analytically how much the complexity of the overall POMDP can be reduced and

under what precise conditions. Furthermore, we will study the potential of using

the derived formulation to automatically make decisions about the appropriate split

between perceptual and decision processes.
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