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ABSTRACT

FROM PHENOTYPE TO GENOTYPE: A STRUCTURED SPARSE LEARNING

FRAMEWORK FOR IMAGING GENETICS STUDIES

HUA WANG, Ph.D.

The University of Texas at Arlington, 2012

Supervising Professor: Heng Huang

Sparsity is one of the intrinsic properties of real-world data, thus sparse rep-

resentation based learning models have been widely used to simplify data modeling

and discover predictive patterns. By enforcing properly designed structured sparsity,

one can unify specific data structures with the learning model. We proposed several

novel structured sparsity learning models for multi-modal data fusion, heterogeneous

tasks integration, and group structured feature selection.

We applied our new structured sparse learning methods to the emerging imaging

genetics studies by integrating phenotypes and genotypes to discover new biomark-

ers which are able to characterize neurodegenerative process in the progression of

Alzheimer’s disease and other brain disorders. Different to traditional association

studies, our new structured sparse learning models can elegantly take advantage of the

useful information contained in biomarkers, cognitive measures, and disease status,

where, crucially, the interrelated structures within and between both genetic/imaging

data and clinical outcomes are gracefully exploited by our newly designed convex
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sparse regularization models.

We empirically evaluate our new methods on the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) cohort to identify Alzheimer’s disease (AD) risky biomark-

ers, where we have achieved not only clearly improved prediction performance for cog-

nitive measurements and diagnosis status, but also a compact set of highly suggestive

biomarkers relevant to AD.
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CHAPTER 1

INTRODUCTION

1.1 Backgrounds and Introduction of Imaging Genetics

Alzheimer’s disease (AD) is the most common age related neurodegenerative

disease affecting nearly 25 million people worldwide, a number expected to triple in

the next 50 years. Patients with AD show significant impairment in multiple cog-

nitive domains, including deficits in memory and executive functioning. Progress in

the early clinical diagnosis of AD has led to the characterization of a prodromal syn-

drome featuring relatively isolated memory deficits termed “amnestic mild cognitive

impairment” (mild cognitive impairment; MCI). Amnestic MCI is conceptualized as

a preliminary stage of AD-associated neurodegeneration with the majority of patients

eventually progressing to AD at a rate of 10%—15% per year.

The increasing recognition that early diagnosis and therapeutic intervention

will be necessary to prevent the development of AD underscores the need to de-

velop sensitive and specific biomarkers for detecting and monitoring MCI and AD.

Structural magnetic resonance imaging (MRI) has shown significant promise as a

biomarker to detect early MCI and AD-associated changes, as well as to predict the

rate of disease progression. Cross-sectional studies evaluating the utility of struc-

tural MRI in detecting neurodegeneration have identified significant brain atrophy

in patients with MCI and AD, particularly in regions of the medial temporal lobe

(MTL) using regional volumetric extraction tools such as manual tracing of regions

of interest, and more recently, automated segmentation and parcellation of target

regions. Other semiautomated tools which provide 3-dimensional mapping of brain
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morphology, including voxel-based morphometry (VBM), tensor-based morphometry

(TBM) and related techniques have also identified significant global and local tissue

changes in patients with MCI and AD, including decreased whole brain, hippocam-

pal, and temporal lobar gray matter (GM) density. Structural MRI techniques have

also been shown to provide sensitive prediction of disease progression. Hippocampal

volume and GM density, as well as measures of MTL volume and cortical thickness,

have been identified as sensitive biomarkers for predicting conversion from MCI to

probable AD.

Imaging genetics is an emergent transdisciplinary research field where the asso-

ciation between genetic variation and imaging measures as Quantitative Traits (QTs)

or continuous phenotypes is evaluated. Imaging genetic studies have certain ad-

vantages over traditional case control studies. First, QT association studies have

been shown to have increased statistical power and thus decreased sample size re-

quirements. Second, imaging phenotypes may be closer to the underlying biological

etiology of the disease, making it easier to identify underlying genes. Therefore, my

graduate study focuses on imaging studies to associate phenotypes to genotypes using

structured sparse learning method.

Under the framework of imaging genetics, my research focus on association

studies for AD, where we emphasize the identification of AD relevant biomarkers.

1.2 Structured Sparsity and Its Applications in Machine Learning

The concept of parsimony is central in many scientific domains. In the context

of statistics, signal processing or machine learning, it takes the form of variable or

feature selection problems, and is commonly used in two situations: First, to make

the model or the prediction more interpretable or cheaper to use, i.e., even if the

underlying problem does not admit sparse solutions, one looks for the best sparse

2
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Figure 1.1.Road map of my graduate research..

approximation. Second, sparsity can also be used given prior knowledge that the

model should be sparse. In these two situations, reducing parsimony to finding models

with low cardinality turns out to be limiting, and structured parsimony has emerged

as a fruitful practical extension, with applications to image processing, text processing

or bioinformatics. For example, structured sparsity is used to encode prior knowledge

regarding network relationship between genes; it is also used as an alternative to

structured nonparametric Bayesian process based priors for topic models.

1.3 Association Studies via Structured Sparse Learning

My graduate studies focused on identifying strong associations between regional

imaging phenotypes as QTs and SNP genotypes as QTLs and aims to provide guid-

ance for refined statistical modeling and follow-up studies of candidate genes or loci.

My research can be roughly divided into five parts as illustrated in Fig. 1.1 and

described as follows.

First, by placing the imaging biomarker identification problem under the frame-

work of feature selection using structured sparse learning methods, we developed a

3



joint Alzheimer’s Disease (AD) classification and cognitive measurement regression

model [2], which is able to identify the imaging biomarkers that are both AD-sensitive

and cognition-relevant and can help reveal complex relationships among brain struc-

ture, cognition and disease status.

Second, by recognizing that existing memory performance prediction methods

via regression usually do not take into account either the interconnected structures

within human brains or interrelatedness among memory scores, we proposed a novel

Sparse Multi-tAsk Regression and feaTure selection (SMART) method [3] to jointly

analyze all the imaging and clinical data under a single regression framework and with

shared underlying sparse representations, by which we achieved improved cognitive

measurement prediction performance.

Third, We also developed a new imaging genetics study model [4] to capture

the group structures of genetic data (e.g ., structures due to gene locations, genetic

links, etc.) by proposing a novel matrix norm as regularization. Because the learning

objectives of all above methods involve multiple terms non-smooth matrix norms,

the formulated optimization problems are hard to solve in general. Thus we devel-

oped a series of new algorithms to solve them with rigorously proved correctness and

convergence.

Fourth, because traditional association studies typically perform independent

and pairwise analysis among neuroimaging measures, cognitive scores, and disease

status, and ignore the important underlying interacting relationships between these

units, we propose a new sparse multi-modal multi-task learning method to reveal

complex relationships from gene to brain to symptom. Our main contributions are

three-fold: 1) introducing combined structured sparsity regularizations into multi-

modal multi-task learning to integrate multi-dimensional heterogeneous imaging ge-

netics data and identify multi-modal biomarkers; 2) utilizing a joint classification and

4



regression learning model to identify disease-sensitive and cognition-relevant biomark-

ers; 3) deriving a new efficient optimization algorithm to solve our non-smooth objec-

tive function and providing rigorous theoretical analysis on the global optimum con-

vergency. Using the imaging genetics data from the Alzheimer’s Disease Neuroimag-

ing Initiative database, the effectiveness of the proposed method is demonstrated by

clearly improved performance on predicting both cognitive scores and disease sta-

tus. The identified multi-modal biomarkers could predict not only disease status but

also cognitive function to help elucidate the biological pathway from gene to brain

structure and function, and to cognition and disease.

Finally, we study how the SNP values change when phenotypic measures are

varied. This alternative approach may have a potential to help us discover important

imaging genetic associations from a different perspective. Taking into account the

temporal structure of the longitudinal imaging data and the interrelatedness among

the SNPs, we propose a novel task-correlated longitudinal sparse regression model

to study the association between the phenotypic imaging markers and the genotypes

encoded by SNPs. In our new association model, we extend the widely used ℓ2,1-

norm for matrices to tensors to jointly select imaging markers that have common

effects across all the regression tasks and time points, and meanwhile impose the

trace-norm regularization onto the unfolded coefficient tensor to achieve low rank

such that the interrelationship among SNPs can be addressed. The effectiveness

of our method is demonstrated by both clearly improved prediction performance in

empirical evaluations and a compact set of selected imaging predictors relevant to

disease sensitive SNPs.
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CHAPTER 2

SPARSE MULTI-TASK REGRESSION AND FEATURE SELECTION TO

IDENTIFY IMAGING PREDICTORS FOR MEMORY PERFORMANCE

2.1 Introduction

Through employing pattern classification methods, neuroimaging has demon-

strated its effectiveness in predicting Alzheimer’s disease (AD) status based on in-

dividual magnetic resonance imaging (MRI) and/or positron emission tomography

(PET) scans [5–7]. Because AD is a neurodegenerative disorder characterized by

progressive impairment of memory and other cognitive functions, it is important to

understand how structural and functional changes in brain can influence the perfor-

mance of neuropsychological tests. As a result, regression models have been used to

study whether neuroimaging measures can help predict clinical scores and track AD

progression [8,9]. For example, in [8], stepwise regression was performed in a pairwise

fashion to relate each MRI and FDG-PET measures of the eight candidate regions to

each of the four Rey’s Auditory Verbal Learning Test (RAVLT) memory scores. This

approach was univariate and thereby overlooked the interrelated structures within

both imaging data and clinical data. In [9], using relevance vector regression, the

voxel-based morphometry (VBM) features extracted from the entire brain were jointly

analyzed to predict each selected clinical score, while the investigations of different

clinical scores are independent from each other.

In this chapter, we embrace, rather than ignore, the complexity of the mapping

between interconnected imaging measures and interrelated clinical scores; and pro-

pose a novel Sparse Multi-tAsk Regression and feaTure selection (SMART) method to
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jointly analyze all the imaging and clinical data within a single regression model and

common subspace. Our research focuses on investigating the relationships between

MRI measures and RAVLT memory scores using the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) cohort [10]. Instead of including all possible imaging measures

to predict memory performance, the proposed SMART method is designed to select

the most prominent imaging features that are able to predict memory performance

with improved prediction accuracy. Different from LASSO [11] and other related

methods that perform feature selection separately for each individual memory score,

the proposed sparse multi-task learning model treats each memory score as a cognition

task and selects imaging features that can jointly influence multiple scores/tasks. We

propose to use the combined ℓ2,1-norm and ℓ1-norm regularizations to select features

with high correlations to a subset of memory scores. To demonstrate the effective-

ness of the proposed SMART method, we apply it to identify relevant MRI markers

that can predict multiple RAVLT memory scores. Our empirical results yield not

only clearly improved prediction rates in all the test cases, but also a compact set of

RAVLT-relevant MRI predictors that are in accordance with prior studies.

2.2 Sparse Multi-Task Regression and Feature Selection

Recently sparse regularizations have been applied to classification based feature

selection studies. LASSO [11] was shown to efficiently select useful features for a single

task. However, in our work, we expect to estimate predictive models for several related

memory performance scores together, not an individual one. The multi-task feature

learning [12, 13] used the ℓ2,1-norm regularization to couple feature selection across

tasks using a strict assumption - all tasks share a common underlying representation.

However, in many cases, the common pattern is shared by many tasks, but not all.
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To address this issue, we propose a new Sparse Multi-tAsk Regression and fea-

Ture selection (SMART) model to include both ℓ2,1-norm and ℓ1-norm regularizations

for selecting imaging features, i.e., morphometric variables, and predicting memory

performance. The combined convex norms help us pick up the features with high

correlations to a subset of tasks. The new objective leads to a more difficult opti-

mization problem. To address this problem, we derive a new efficient algorithm with

proved global convergency. In this chapter, given a matrix M , we denoted its i-th

row and j-th column as mi and mj , respectively.

2.2.1 Joint Sparse Regularizations Using Mixed Non-Smooth Norms

To identify the predictable correlations between memory performance scores and

morphometric variables, the linear (least square) regression method is a standard way

in medical image analysis research. Given the morphometric variables of n training

samples
{
xi ∈ R

d
}n
i=1

and the associated memory scores {yi ∈ R
c}ni=1, traditional least

square regression solves the following optimization problem to obtain the projection

matrix W ∈ R
d×c (the bias b is absorbed into W when the constant value 1 is added

as an additional dimension for each data):

min
W

n∑

i=1

∥∥W Txi − yi
∥∥2
2
=
∥∥XTW − Y

∥∥2
F
, (2.1)

where ‖ · ‖F denotes the Frobenius norm of a matrix, X = [x1, . . . , xn] ∈ R
d×n and

Y = [y1, . . . , yn]
T ∈ R

n×c.

In the regular linear regression, the weight matrix W is not sparse. All mor-

phometric variables are involved to the memory scores prediction. However, some

of them are irrelevant to memory performance prediction. Therefore, it is desirable

to select the important morphometric variables for more accurate scores prediction.

To this end, instead of imposing the squared ℓ2-norm regularization as in traditional
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ridge regression, we impose the ℓ2,1-norm regularization. Because the ℓ2,1-norm reg-

ularization penalizes each row of W as a whole and enforce sparsity among the rows,

it is able to select the most prominent morphometric variables [14]. Specifically, we

solve the following convex optimization problem:

min
W

∥∥XTW − Y
∥∥2
F
+ γ ‖W‖2,1 , (2.2)

where ‖ · ‖2,1 denotes the ℓ2,1-norm of a matrix.

We further consider some important morphometric variables are only correlated

to a subset of tasks. The ℓ2,1-norm cannot handle them properly. Thus, we add an

ℓ1-norm regularizer to impose the sparsity among all elements in W and propose our

new Sparse Multi-tAsk Regression and feaTure selection (SMART) model as:

min
W

∥∥XTW − Y
∥∥2
F
+ γ1 ‖W‖1 + γ2 ‖W‖2,1 . (2.3)

Although our objective function is convex, it is difficult to be solved, because

the both regularization terms are non-smooth. Here, we propose an efficient algorithm

to solve our objective function in Eq. (2.3).

Taking the derivative with respect to wi(1 ≤ i ≤ c), and setting it to zero, we

have

XXTwi −Xyi + γ1Diwi + γ2D̃wi = 0, (2.4)

where Di(1 ≤ i ≤ c) is a diagonal matrix with the k-th diagonal element as 1
2|wki|

, D̃

is a diagonal matrix with the k-th diagonal element as 1
2‖wk‖2

. Thus,

wi = (XXT + γ1Di + γ2D̃)−1Xyi. (2.5)

Note that Di and D̃ depend on W and thus is also unknown variables. We propose

an iterative algorithm to solve this problem, which is as listed in Algorithm 3.
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Algorithm 1: Algorithm to solve the proposed objective.
Input: X, Y

Initialize W 1 ∈ R
d×c, t = 1 ;

while not converge do

1. Calculate the diagonal matrices D
(t)
i (1 ≤ i ≤ c) and D̃(t), where the k-th

diagonal element of D
(t)
i is 1

2|w
(t)
ki

|
, the k-th diagonal element of D̃(t) is

1
2‖(w(t))k‖2

;

2. For each i(1 ≤ i ≤ c), w
(t+1)
i = (XXT + γ1D

(t)
i + γ2D̃

(t))−1Xyi ;

3. t = t+ 1 ;

Output: W (t) ∈ R
d×c.

2.2.2 Algorithm Analysis

Theorem 1 Algorithm 3 decreases the objective value in each iteration.

Proof : According to Step 2 in the algorithm, we have

W (t+1) = min
W

Tr(XTW − Y )T (XTW − Y )

+ γ1

c∑

i=1

wT
i D

(t)
i wi + γ2TrW

T D̃(t)W,
(2.6)
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therefore we have

Tr(XTW (t+1) − Y )T (XTW (t+1) − Y )

+ γ1

c∑

i=1

(w
(t+1)
i )TD

(t)
i w

(t+1)
i + γ2Tr(W

(t+1))T D̃tW (t+1)

≤ Tr(XTW (t) − Y )T (XTW (t) − Y )

+ γ1

c∑

i=1

(w
(t)
i )TD

(t)
i w

(t)
i + γ2Tr(W

(t))T D̃(t)W (t)

⇒ Tr(XTW (t+1) − Y )T (XTW (t+1) − Y )

+ γ1

d∑

i=1

c∑

j=1

(
(w

(t+1)
ij )2

2||w(t)
ij ||

− ||w(t+1)
ij ||+ ||w(t+1)

ij ||
)

+ γ2

d∑

k=1

(
||(w(t+1))k||22
2||(w(t))k||2

− ||(w(t+1))k||2 + ||(w(t+1))k||2
)

≤ Tr(XTW (t) − Y )T (XTW (t) − Y )

+ γ1

d∑

i=1

c∑

j=1

(
||w(t)

ij ||+
(w

(t)
ij )

2

2||w(t+1)
ij ||

− ||w(t)
ij ||
)

+ γ2

d∑

k=1

(
||(w(t))k||2 +

||(w(t))k||22
2||(w(t))k||2

− ||(w(t))k||2
)

⇒ Tr(XTW (t+1) − Y )T (XTW (t+1) − Y )

+ γ1

d∑

i=1

c∑

j=1

||w(t+1)
ij ||+ γ2

d∑

k=1

||(w(t+1))k||2

≤ Tr(XTW (t) − Y )T (XTW (t) − Y )

+ γ1

d∑

i=1

c∑

j=1

||w(t)
ij ||+ γ2

d∑

k=1

||(w(t))k||2

The last step holds, because [14] for any vector w and w0, we have ‖w‖2 −
‖w‖22

2‖w0‖2
≤

‖w0‖2 −
‖w0‖

2
2

2‖w0‖2
. Thus, the algorithm decreases the objective value in each iteration.

�

At the convergence, W (t), D
(t)
i (1 ≤ i ≤ c) and D̃(t) will satisfy the Eq. (4.9). As

the problem (2.3) is a convex problem, satisfying the Eq. (4.9) indicates that W is a
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global optimum solution to the problem (2.3). Therefore, Algorithm 3 will converge

to the global optimum of the problem (2.3). Because we have closed form solution in

each iteration, our algorithm converges very fast.

2.3 Imaging and Memory Data

Both MRI and memory data used in this study were obtained from the ADNI

database1. ADNI is a landmark investigation sponsored by the NIH and industrial

partners designed to collect longitudinal neuroimaging, biological and clinical infor-

mation from 822 participants that will track the neural correlates of memory loss from

an early stage. Further information can be found in [15] and at www.adni-info.org.

Following a previous imaging genetics study [16], 708 out of 733 non-Hispanic Cau-

casian participants with no missing MRI morphometric and RAVLT information were

included in this study. The 708 participants are categorized by three baseline diagnos-

tic groups: healthy control (HC, n = 199), mild cognitive impairment (MCI, n = 346)

(thought to be a preclinical stage of AD), and AD (n = 163).

Two widely employed automated MRI analysis techniques were used to process

and extract imaging measures across the entire brain from all baseline scans of ADNI

participants as previously described [16]. First, voxel-based morphometry (VBM) [8]

was performed to define global gray matter (GM) density maps and extract local GM

density values for 86 target regions. Second, automated parcellation via FreeSurfer

V4 [17] was conducted to define 56 volumetric and cortical thickness values and to

extract total intracranial volume (ICV). The full descriptions about these measures

are available in [16]. All these measures were adjusted for the baseline age, gender,

1http://www.loni.ucla.edu/ADNI
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Table 2.1.Descriptions of RAVLT cognitive measures.

Task ID Description

TOTAL Total score of the first 5 learning trials
TOT6 Trial 6 total number of words recalled
TOTB List B total number of words recalled
T30 30 minute delay total number of words recalled
RECOG 30 minute delay recognition score

education, handedness, and baseline ICV using the regression weights derived from

the healthy control participants.

The cognitive measures we use to test the proposed SMART method are the

baseline RAVLT memory scores from all ADNI participants [18]. The standard

RAVLT format starts with a list of 15 unrelated words (List A) repeated over five

different trials and participants are asked to repeat. Then the examiner presents a

second list of 15 words (List B), and the participant is asked to remember as many

words as possible from List A. Trial 6, termed as 5 minute recall, requests the partic-

ipant again to recall as many words as possible from List A, without reading it again.

Trial 7, termed as 30 minute recall, is administrated in the same way as Trial 6, but

after a 30 minute delay. Finally, a recognition test with 30 words read aloud, request-

ing the participant to indicate whether or not each word is on List A. The RAVLT

has proven useful in evaluating verbal learning and memory. The five RAVLT scores

are summarized in Table 5.1.

2.4 Experimental Results and Discussions

In this section, we evaluate the proposed SMART method by applying it to the

ADNI cohort, where a wide range of MRI morphometric features are examined and

selected to predict memory performance measured by five RAVLT scores shown in
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Table 5.1. The goal is to select a compact set of RAVLT-relevant MRI features while

maintaining high predictive power.

2.4.1 Improved Memory Performance Prediction

In our experiments, we examine three different sets of morphometric variables

{xi}ni=1 ∈ R
d for each participant, where d = 86 for VBM morphometric variables, d =

56 for FreeSurfer morphometric variables, and d = 144 for the combined set of VBM

and Freesurfer variables. Evaluating the memory performance prediction on the three

baseline diagnosis groups (HC, MCI, AD) and the group with all participants (HC +

MCI + AD) using the three types of morphometric variables, we end up with a total

of twelve test cases as in Table 2.2, where, e.g ., “FreeSurfer HC” denotes the test case

conducted on the participants of MCI group using FreeSurfer morphometric variables,

and “VBM+FreeSurfer all” denotes the test case conducted on all the participants

using the combined morphometric variables by VBM and FreeSurfer.

We compare SMART against multivariate regression (MRV) in memory perfor-

mance prediction. For each test case, we randomly pick 80% participants and use

their morphometric variables and memory scores as training data, and perform the

prediction for the remaining participants. The prediction performances assessed by

root mean square error (RMSE), a widely used measurement for statistical regression

analysis, are reported in Table 2.2.

A first observation on the results in Table 2.2 shows that the proposed SMART

method consistently outperforms the conventional multivariate regression method in

all the test cases for all the cognitive tasks. The FreeSurfer measures, VBM measures,

and combined measures have similar predictive powers.

A more careful analysis shows that, using our method, it is easier to predict

memory performance for AD than HC, while MCI shows an intermediate pattern.
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This partially agrees with the findings in [8], which claims that MR morphormetry

is not related to memory in HC, but positively related to memory functions in MCI

and AD. Using multivariate regression, the above trend holds only for FreeSurfer

measures. For VBM and combined cases, it is far more difficult to predict memory

performance in MCI than HC and AD (11.495 vs . 8.651 and 7.233 for VBM, and

68.22 vs . 12.265 and 14.552 for VBM + FreeSurfer).

Finally, we can see that the most predictable outcome is T30 for AD group

with RMSE of 1.050 for FreeSurfer, 0.904 for VBM, and 0.858 for the combined

measures. Considering TOTAL is the sum of the 5 scores, the performance for AD

group is decent with RMSE of 5.042 for FreeSurfer, 5.120 for VBM, and 4.805 for the

combined measures. The least predictable outcome is RECOG, whose RMSEs are

generally greater than 2.7.

2.4.2 Feature Selection Capabilities

The main advantage of the proposed SMART method lies in its capability to

simultaneously perform regression analysis and feature selection. Besides reducing

the computational complexity of the learning model as in other applications, fea-

ture selection is of significant importance in the study of neuroimaging, because it

has a potential to identify the relevant imaging predictors and explain the effects of

morphometric changes in relation to memory performance.

The heat map of the regression coefficients of each FreeSurfer measure w.r.t.

each cognitive task (W in Eq. (2.3)) learned by SMART is shown in Fig. 2.1. The

bigger the magnitude of an coefficient is, the more important the feature is in predict-

ing the corresponding memory score. For example, “HippVol” (hippocampal volume)

plays the most important role in memory performance prediction when testing on all

participants, while “LatVent” (volume of lateral ventricle) is the most effective pre-
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dictor when the test is conducted on AD group. The selected features by our method

are marked with “x”. The heat map of regression coefficients of VBM measures are

shown in Fig. 2.2. Fig. 2.3 visualizes the cortical map of selected features for predic-

tion of TOTAL score using FreeSurfer measures in the total sample (left) and the AD

sample (right).

Fig. 2.1 shows that “HippVol” is consistently selected in all the groups ex-

cept AD, implicating that it is an important indicator for cognitive decline and has

a potential for early detection of AD. This perfectly accords with many evidences

in existing literatures [19–24]. In addition, “EntCtx” (thickness of entorhinal cor-

tex), “Parahipp” (thickness of parahippocampal gyrus), “Precuneus” (thickness of

precuneus) and “InfParietal” (thickness of inferior parietal gyrus) are also selected

in different test conditions. These areas are important components of the brain’s

episodic memory network [8], which has been proved to be normally engaged during

episodic recall and heavily impact the memory performance [8,25,26]. Similar observa-

tions that our selections match literature evidences can also be found in both Fig. 2.1

and Fig. 2.2, which concretely confirm the effectiveness of the proposed method from

neurobiological perspective.

Moreover, besides selecting common prominent features across all cognitive

tasks through imposing ℓ2,1 regularization as in Eq. (2.3), we also enforce sparsity

on W through ℓ1 regularization, such that the relative importance of the selected

features are properly weighted. For example, as in Fig. 2.2, the “Hippocampus”

(GM density) is only selected in MCI and AD groups, but not selected by HC group.

This observation, again, is extensively supported in literature. It has been shown

that, in normal aging, memory, including listing learning measures with clinically

applied retention intervals (< 1h), appears weakly related to medial temporal lobe

(MTL) [23], whereas memory has consistently been related to MLT volumes in MCI
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and AD [23]. This provides one more evidence showing the ability of SMART for

properly identifying relevant features.

2.5 Conclusions

In this chapter, we proposed a new SMART model to perform both regression

analysis for memory performance prediction and morphometric variables selection in

an MCI/AD study. Different from related existing methods that ignore the interre-

lated structures within imaging data or those within clinical data, SMART analyzes

all the imaging and clinical data within a single regression framework and common

subspace, such that the predictive performance can be improved by these correla-

tions. Our experiments using the MRI and RAVLT data of the ADNI cohort yielded

promising results: (1) the prediction performance of SMART was consistently better

than conventional multi-variate regression, (2) a compact set of imaging predictors

were identified in each test case and were in accordance with prior findings, and (3)

these selected imaging features could predict multiple memory scores at the same

time and had a potential to play an important role in determine cognitive functions

and characterizing AD progression. These promising results were consistent with our

theoretical foundation and prior studies, which demonstrated the effectiveness of the

proposed method.
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Table 2.2.Prediction performance measured by RMSE.

Test cases TOTAL TOT6 TOTB T30 RECOG

FreeSurfer HC
MVR 8.762 4.362 3.281 4.305 4.021

SMART 6.645 2.940 2.235 2.806 3.621

FreeSurfer MCI
MVR 6.998 2.765 2.399 2.480 3.427

SMART 5.600 1.990 1.953 1.709 3.181

FreeSurfer AD
MVR 5.897 1.768 2.058 1.382 3.390

SMART 5.042 1.452 1.716 1.050 2.830

FreeSurfer all
MVR 5.926 2.238 2.036 2.090 3.342

SMART 5.736 2.139 1.961 1.966 3.196

VBM HC
MVR 8.651 3.772 2.885 3.496 4.776

SMART 6.705 2.844 2.139 2.656 3.584

VBM MCI
MVR 11.495 4.256 4.621 4.032 5.598

SMART 5.584 1.832 1.931 1.669 3.017

VBM AD
MVR 7.223 2.162 2.622 1.479 4.163

SMART 5.120 1.518 1.826 0.904 2.781

VBM all
MVR 6.090 2.290 2.140 2.141 3.396

SMART 5.718 2.103 1.993 1.921 3.182

VBM+FreeSurfer HC
MVR 12.265 5.416 4.349 5.089 6.703

SMART 6.664 2.829 2.230 2.683 3.577

VBM+FreeSurfer MCI
MVR 68.222 26.146 23.489 30.033 34.306

SMART 5.533 1.901 1.869 1.606 3.114

VBM+FreeSurfer AD
MVR 14.552 4.307 5.141 4.297 8.430

SMART 4.805 1.218 1.731 0.858 2.865

VBM+FreeSurfer all
MVR 6.505 2.596 2.258 2.540 3.582

SMART 5.809 2.208 2.000 2.051 3.214
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Figure 2.1. Heat map of selected features for prediction using FreeSurfer measures
in (a) the total sample, (b) HC, (c) MCI, and (d) AD. In each of (a-d), regression
weights (i.e., coefficients) for left and right measures are visualized as two separate
panels, where columns in each panel correspond to different memory scores. Since
our method selects features with absolute values ≥ 1, the range of the color map is
limited to [-1,1] for a more effective visualization. All selected features are marked
with “x”. .
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Figure 2.2. Heat map of selected features for prediction using VBM measures in (a)
the total sample, (b) HC, (c) MCI, and (d) AD. In each of (a-d), regression weights
(i.e., coefficients) for left and right measures are visualized as two separate panels,
where columns in each panel correspond to different memory scores. Since our method
selects features with absolute values ≥ 1, the range of the color map is limited to [-1,1]
for a more effective visualization. All selected features are marked with “x”. .
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Figure 2.3. Cortical map of selected features for prediction using FreeSurfer measures
in the total sample (left) and the AD sample (right). Each map only visualizes the
regression weights for RAVLT-TOTAL score for individual cortical thickness mea-
sures (i.e., volume measures and mean thickness measures of larger regions are not
included). Since our method selects features with absolute values ≥ 1, the range of
the color map is limited to [−1, 1] for a more effective visualization. .
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CHAPTER 3

IDENTIFYING AD-SENSITIVE AND COGNITION-RELEVANT IMAGING

BIOMARKERS VIA JOINT CLASSIFICATION AND REGRESSION

3.1 Introduction

Neuroimaging is a powerful tool for characterizing neurodegenerative process

in the progression of Alzheimer’s disease (AD). Pattern classification methods have

been widely employed to predict disease status using neuroimaging measures [?, 27].

Since AD is a neurodegenerative disorder characterized by progressive impairment

of memory and other cognitive functions, regression models have been investigated

to predict clinical scores from individual magnetic resonance imaging (MRI) and/or

positron emission tomography (PET) scans [8, 9]. For example, in [8], stepwise re-

gression was performed in a pairwise fashion to relate each of MRI and FDG-PET

measures of eight candidate regions to each of four Rey’s Auditory Verbal Learning

Test (RAVLT) memory scores.

Predicting disease status and predicting memory performance, using neuroimag-

ing data, are both important learning tasks. Prior research typically studied these

tasks separately. One example is to first determine disease-relevant cognitive scores

and then identify imaging biomarkers associated with these scores so that interesting

pathways from brain structure to cognition to symptom can potentially be discovered.

However, a specific cognitive function could be related to multiple imaging measures

associated with different biological pathways (some of them are not related to AD).

As a result, the identified imaging biomarkers are not necessarily all disease specific.

To have a better understanding of the underlying mechanism specific to AD, an in-
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teresting topic would be to only discover imaging biomarkers associated with both

cognitive function and AD status.

To identify AD-sensitive and cognition-relevant imaging biomarkers, we propose

a new joint classification and regression learning model to simultaneously perform-

ing two heterogeneous tasks, i.e., imaging-to-disease classification and imaging-to-

cognition regression. We use magnetic resonance imaging (MRI) measures as predic-

tors and cognitive memory scores and disease status as response variables. For each

individual regression or classification task, we employ a multi-task learning model in

which tasks for predicting different memory performances (or those for predicting AD

and control dummy variables in classification) are considered as homogeneous tasks.

Different to LASSO and other related methods that mainly find the imaging features

correlated to each individual memory score, our method selects the imaging features

that tend to play an important role on influencing multiple homogenous tasks.

Our new method utilizes the sparse regularization to perform imaging biomarker

selection and learn a sparse parameter matrix under a unified framework that inte-

grates both heterogeneous and homogenous tasks. Specifically, by recognizing that

the formation and maintenance [28] of memory are synergically accomplished by a few

brain areas, such as medial temporal lobe structures, medial and lateral parietal, as

well as prefrontal cortical areas, we use the ℓ2,1-norm regularization to select features

that can predict most memory scores and classify AD versus control. Empirical com-

parison with the existing methods demonstrates that the proposed method not only

yields improved performance on predicting both cognitive scores and disease status,

but also discovers a small set of AD-sensitive and cognition-relevant biomarkers in

accordance with prior findings.
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3.2 Sparse Model for Joint Classification and Regression

When we study either regression or classification via a multi-task learning

model, given a set of input variables, (i.e., features, such as imaging biomarkers),

we are interested in learning a set of related models (e.g ., associations between image

biomarkers and cognitive scores) for predicting multiple homogenous tasks (such as

predicting cognitive scores). Since these homogenous tasks are typically interrelated,

they share a common input space. As a result, it is desirable to learn all the models

jointly rather than treating each task as an independent one. Such multi-task learn-

ing methods can help discover robust patterns, especially when significant patterns in

a single task become outliers for other tasks, and potentially increase the predictive

power.

To identify AD-sensitive and cognition-relevant biomarkers from imaging data,

we formulate a new problem to jointly learn two heterogeneous tasks: classification

and regression. We propose a new sparse model for joint classification and regression

to perform multivariate regression for cognitive memory scores predictions and logistic

regression for disease classification tasks simultaneously.

Notation. In this chapter, we write matrices and vectors as bold uppercase and

lowercase letters respectively. Given a matrix M = [mij ], we denote its i-th row as

mi and j-th column asmj . The Frobenius norm of the matrixM is denoted as ‖M‖F,

and the ℓ2,1-norm [14] of M is defined as ‖M‖2,1 =
∑

i

√∑
j m

2
ij =

∑
i ‖mi‖2.

3.2.1 Objective of Sparse Joint Classification and Regression

First, logistic regression is used for disease classification. Given the training

data X = [x1, . . . ,xn] ∈ R
d×n, each data point xi is associated with a label vector

yi = [yi1, . . . , yic1] ∈ R
c1 . If xi belongs to the k-th class, yik = 1, otherwise yik = 0. We
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write Y =
[
(y1)

T
, . . . , (yn)T

]T
∈ R

n×c1. In traditional multi-class logistic regression,

under a projection matrix W ∈ R
d×c1 , we have

p (k | xi,W) =
ew

T
k
xi

∑c1
l=1 e

wT
l
xi

=⇒ p
(
yi | xi,W

)
=

c1∏

k=1

(
ew

T
k
xi

∑c1
l=1 e

wT
l
xi

)yik

,

where p (k | xi,W) is the probability that xi belongs to the k-th class, and p (yi | xi,W)

is the probability that xi is associated with the given label yi. Therefore, the multi-

class logistic loss that maximizes the Log-likelihood can be achieved by minimizing:

l1 (W) = −log
n∏

i=1

p
(
yi | xi,W

)
=

n∑

i=1

c1∑

k=1

(
yiklog

c1∑

l=1

ew
T
l
xi − yikw

T
k xi

)
. (3.1)

In AD classification, we have two classes, i.e., AD and health control (HC).

Second, we use multivariate least square regression to predict cognitive scores,

which minimizes:

l2 (P) =
∥∥XTP− Z

∥∥2
F
, (3.2)

where X is the data matrix, Z =
[
(z1)

T
, . . . , (zn)T

]T
∈ R

n×c2 is the label matrix for

the c2 regression tasks, and P ∈ R
d×c2 is the projection matrix.

The objective for joint classification and regression to identify AD-sensitive and

cognition-relevant imaging biomarkers can now be formulated as follows:

min J (V) = l1 (W) + l2 (P) + γ ‖V‖2,1 , (3.3)

where V = [W P] ∈ R
d×(c1+c2). Thanks to the ℓ2,1-norm regularization on V, the

biomarkers are identified across all tasks so that they are not only correlated to

cognitive scores but also discriminative to disease status.

3.2.2 An Efficient Iterative Algorithm

Due to the non-smoothness of the ℓ2,1-norm term, J in Eq. (3.3) is hard to solve

in general. Thus we derive an efficient iterative algorithm as follows.
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Taking the derivatives of J w.r.t. W and P, we set them to be zeros:

∂J

∂W
=

∂l1 (W)

∂W
+ 2γDW = 0,

∂J

∂P
= 2XXTP− 2XZ+ 2γDP = 0, (3.4)

where D is a diagonal matrix whose k-th diagonal element is 1

2‖vk‖
2

. Because D

depends on V, it is also an unknown variable. Following standard optimization

procedures in statistical learning, we alternately optimize V and D.

Algorithm 2: An efficient algorithm to solve Eq. (3.3).

Input: X = [x1, . . . ,xn] ∈ R
d×n, Y = [y1, . . . ,yn]

T ∈ R
n×c1, and

Z = [z1, . . . , zn]
T ∈ R

n×c2 .

1. Initialize W ∈ R
d×c1 , P ∈ R

d×c2 , and let V = [W P] ∈ R
d×(c1+c2) ;

while not converge do

2. Calculate the diagonal matrix D, of which the k-th element is 1
2‖vk‖

2

;

3. Update w by w−B−1a, where (d× (p− 1) + u)-th element of a ∈ R
dc1×1 is

∂[l1(W)+γ tr(WTDW)]
∂Wup

for 1 ≤ u ≤ d, 1 ≤ p ≤ c1, the

(d× (p− 1) + u, d× (q − 1) + v)-th element of B ∈ R
dc1×dc1 is

∂[l1(W)+γ tr(WTDW)]
∂Wup∂Wvq

for 1 ≤ u, v ≤ d and 1 ≤ p, q ≤ c1. Construct the updated

W ∈ R
d×c1 by the updated vector w ∈ R

dc1 , where the (u, p)-th element of W

is the (d× (p− 1) + u)-th element of w;

4. Update P by P =
(
XXT + γD

)−1
XZ;

5. Update V by V = [W P];

end

Output: W ∈ R
d×c1 and P ∈ R

d×c2 .

First, we randomly initialize V ∈ R
d×(c1+c2), upon which we calculate D. After

obtaining D, we update the solution V = [W P] using Eq. (3.4). To be more precise,

P is updated by P =
(
XXT + γD

)−1
XZ. Because we cannot update W with a
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closed form solution upon Eq. (3.4), we employ Newton’s method to obtain updated

W by solving the following problem: minW l1 (W) + γ tr
(
WTDW

)
.

Once we obtain the updated V = [W P], we can calculate D. This procedure

repeats until convergence. The detailed algorithm is summarized in Algorithm 3,

whose convergence is proved as following.

Lemma 1 For any vector v and v0, we have ‖v‖2 −
‖v‖22

2‖v0‖2
≤ ‖v0‖2 −

‖v0‖
2
2

2‖v0‖2
. Proof

is available in [14].

Theorem 2 Algorithm 3 decreases the objective value of J in every iteration.

Proof. In each iteration, denote the updated W as W̃, the updated P as P̃, thus

the updated V is Ṽ =
[
W̃ P̃

]
. According to step 3 of Algorithm 3, we have

l1

(
W̃
)
+ γ tr

(
W̃TDW̃

)
≤ l1 (W) + γ tr

(
WTDW

)
. (3.5)

According to step 4 we know that

l2

(
P̃
)
+ γ tr

(
P̃TDP̃

)
≤ l2 (P) + γ tr

(
PTDP

)
. (3.6)

According to the definition of D and Lemma 1, we have the following inequality:

d∑

k=1

∥∥ṽk
∥∥
2
−

d∑

k=1

∥∥ṽk
∥∥2
2

2 ‖vk‖2
≤

d∑

k=1

∥∥vk
∥∥
2
−

d∑

k=1

∥∥vk
∥∥2
2

2 ‖vk‖2

⇒ γ
d∑

k=1

∥∥ṽk
∥∥
2
− γ tr

(
ṼTDṼ

)
≤ γ

d∑

k=1

∥∥vk
∥∥
2
− γ tr

(
VTDV

)
.

(3.7)

Because tr
(
VTDV

)
= tr

(
WTDW

)
+ tr

(
PTDP

)
, by adding Eqs. (3.5–3.7) at the

both sides, we arrive at

l1

(
W̃
)
+ l2

(
P̃
)
+ γ

d∑

k=1

∥∥ṽk
∥∥
2
≤ l1 (W) + l2 (P) + γ

d∑

k=1

∥∥vk
∥∥
2

(3.8)

Thus, Algorithm 3 decreases the value of J in Eq. (3.3) in every iteration. � �

Because J in Eq. (3.3) is obviously lower-bounded by 0, Theorem 1 guaran-

tees the convergence of Algorithm 3. In addition, because J is convex, Algorithm 3

converges at the global optimum of the problem.
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3.3 Experimental Results

We evaluate our method by applying it to the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) cohort. The goal is to select a compact set of AD-sensitive and

cognition-relevant imaging biomarkers while maintaining high predictive power.

Data preparation. We downloaded data from the ADNI database (http://adni.

loni.ucla.edu). We used baseline MRI data, from which we extracted 56 volumet-

ric and cortical thickness values (Fig. 5.4) using FreeSurfer (http://surfer.nmr.

mgh.harvard.edu), as described in [16]. We included memory scores from three

different cognitive assessments including Mini-Mental State Exam (MMSE), Rey’s

Auditory Verbal Learning Test (RAVLT), and TRAILS. Details about these assess-

ments are available in the ADNI procedure manuals (http://www.adni-info.org/

Scientists/ProceduresManuals.aspx).

3.3.1 Biomarker Identification

The proposed method aims to identify imaging biomarkers that are associated

with both disease status and cognitive scores in a joint classification and regression

framework. Here we first examine the identified biomarkers. Fig. 5.4 shows a summa-

rization of selected features for the three experiments (one for each type of cognitive

scores) where the regression/classification weights are color-mapped for each feature

and each task. Fig. 3.2 visualizes the cortical maps of selected features for both

classification and regression in different tasks.

Fig. 5.4 and Fig. 3.2 show that a small set of MRI measures are identified, includ-

ing hippocampal volume (HippVol), entorhinal cortex thickness (EntCtx), amygdala

volume (AmygVol), inferior parietal gyrus thickness (InfParietal), and middle tempo-

ral gyrus thickness (MidTemporal). These are all well-known AD-relevant biomarkers.
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Figure 3.1. Weight maps of the joint classification and regression tasks. One binary
classification task for AD and HC. Three different groups of cognitive scores for
regression: (a) MMSE score, (b) RAVLT score, (c) TRAILS score. “-L” indicates the
FreeSurfer biomarkers at the left side, and “-R” indicates those at the right side. .

Our method also shows that these markers are jointly associated with one or more

memory scores. Although we know that MRI measures, cognitive scores and diagnosis

are highly correlated, the complex relationships among them remain to be discovered

for a better understanding of AD mechanism. This is one major focus of our work. As

shown in Fig. 5.4, different AD-sensitive MRI measures could be related to different

cognitive tasks. The proposed sparse method for joint classification and regression

enables us to sort out MRI-cognition relationships while focusing on AD-sensitive

markers.

29



Figure 3.2. Cortical map of selected features for cognitive score prediction using
FreeSurfer measures in the three joint classification and regression tasks..

3.3.2 Improved Prediction Performance

Now we evaluate the performance of joint classification and regression for AD

detection and cognitive score prediction using MRI data. We performed standard

5-fold cross-validation, where the parameter γ of our method in Eq. (3.3) was fine

tuned in the range of {10−5, . . . , 1, . . . , 105} by an internal 5-fold cross-validation in

the training data of each of the 5 trials. For classification, we compared the proposed

method against two baseline methods including logistic regression and support vector

machine (SVM). For SVM, we implemented three different kernels including linear,

polynomial and Gaussian kernels. For polynomial kernel, we searched the best results

when the polynomial order varied in the range of {1, 2, . . . , 10}; for Gaussian kernel,

we fine tuned the parameter α in the same range as that for our method and fixed

parameter C as 1. For regression, we compared our method against two widely used

methods including multivariate regression and ridge regression. For the latter, we

fine tuned its parameter in the same range as that for our method. The results are

reported in Table 3.1.
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Table 3.1 shows that our method performs clearly better than both logistic

regression and SVM, which are consistent with our motivations in that our method

classifies participants using the information from not only MRI measures but also the

reinforcement by cognitive score regression. In addition, the cognitive score regression

performances of our method measured by root mean squared error (RMSE) outper-

form both multivariate regression and ridge regression, supporting the usefulness of

joint classification and regression from another perspective. Ridge regression achieves

close but slightly worse regression performance. However, it lacks the ability to iden-

tify relevant imaging markers. All these observations demonstrate the effectiveness

of the proposed method in improving the performances of both AD detection and

cognitive score prediction.

Mild cognitive impairment (MCI) is thought to be the prodromal stage of AD.

Including MCI in this type of analyses will be an interesting future direction to help

biomarker discovery for early detection of AD. We performed an initial analyis on

three-class classification for AD, MCI and HC: the accuracy of our method was 0.663

and the best of other tested methods was 0.615. Apparently this is a much harder

task and warrants further thorough investigation.

3.4 Conclusions

In this chapter, we have proposed a new sparse model for joint classification

and regression and applied it to the ADNI cohort for identifying AD-sensitive and

cognition-relevant imaging biomarkers. Our methodological contributions are three-

fold: 1) proposing a new learning model, joint classification and regression learning,

to identify disease-sensitive and task-relevant biomarkers for analyzing multimodal

data; 2) employing structural sparsity regularization to integrate heterogenous and

homogenous tasks in a unified multi-task learning framework; 3) deriving a new effi-

31



Table 3.1.Comparison of classification and regression performance.

Memory 

score # subjects # AD # HC

Classification 

accuracy

Regression 

RMSE

Logistic 

regression

Multivariate 

regression

Ridge 

regression

MMSE 378 175 203 0.881 0.034  ± 0.002 0.783 (linear kernel) 0.041 ± 0.003 0.039 ± 0.004

RAVLT 371 172 199 0.884 0.019 ± 0.001 0.839 (Polynomial kernel) 0.028 ± 0.002 0.024 ± 0.003

TRAILS 369 166 203 0.864 0.043 ± 0.002 0.796 (Gausssian kernel) 0.049 ± 0.003 0.046 ± 0.003

Classification accuracy

0.832

Our method RMSE (mean ± std)

SVM

cient optimization algorithm to solve our non-smooth objective function, and coupling

this with rigorous theoretical analysis on global optimum convergency. Empirical

comparison with the existing methods demonstrates that our method not only yields

improved performance on predicting both cognitive scores and disease status using

MRI data, but also discovers a small set of AD-sensitive and cognition-relevant imag-

ing biomarkers in accordance with prior findings.
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CHAPTER 4

IDENTIFYING QUANTITATIVE TRAIT LOCI VIA GROUP-SPARSE

MULTI-TASK REGRESSION AND FEATURE SELECTION

4.1 Introduction

Imaging genetics is an emergent transdisciplinary research field, where the asso-

ciations between genetic variations and imaging measures as quantitative traits (QTs)

or continuous phenotypes are evaluated. Compared to case-control status, the QTs

have increased statistical power and are closer to the underlying biological etiology of

the disease making it easier to identify underlying genes [16,29]. Genome-wide associ-

ation studies (GWAS) have been increasingly performed to correlate high-throughput

single nucleotide polymorphism (SNP) data to large-scale image data. While many

studies employed a hypothesis-driven approach by making significant reduction in one

or both data types [30], some recent studies examined these associations at the whole

genome entire brain level [16]. Pairwise univariate analysis was typically used in

traditional association studies to quickly provide important association information

between SNPs and QTs. However, it treated the SNPs and the QTs as indepen-

dent and isolated units, therefore the underlying interacting relationships between

the units might be lost. Multivariate methods to examine joint effect of multi-locus

genotype on a single phenotype were studied in general genetic association studies as

well as several recent imaging genetic studies. This paradigm did not consider the

relationship between interlinked brain phenotypes and thus still had limited power in

revealing complex imaging genetic associations. In this work, taking into account the

interrelated structure within and between SNPs and QTs, we propose a new frame-
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Figure 4.1. Top 37 AD risk factor genes used in this study and the numbers of their
SNPs..

Figure 4.2. Pairwise LD correlation coefficients (r2 > 0.2 in blue) among the 1224
SNPs used in this study. The SNPs clearly form groups. .

work for effectively identifying quantitative trait loci, which addresses the following

challenges in imaging genetics association study.

First, traditional association studies consider all the SNPs evenly distributed

and assess each SNP individually. However, certain SNPs are naturally connected

via different pathways. Multiple SNPs from one gene often jointly carry out genetic

functionalities. Moreover, linkage disequilibrium (LD) describes the non-random as-

sociation between alleles at different loci, through which the SNPs in high LD are
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Figure 4.3.VBM ROIs used in this study are mapped onto a brain..

linked together in meiosis. Thus, instead of treating SNPs in an isolated manner, it

would be beneficial to exploit the group structure among SNPs.

Second, because the functionality of the human brain typically involves more

than one cerebral component, investigating each individual regional brain phenotype

separately will inevitably lose the interacting relationships between them. For ex-

ample, the brain’s episodic memory network, including medial temporal lobe (MTL)

structures, medial and lateral parietal, and prefrontal cortical areas, are normally

engaged together during episodic recall [8]. In addition, accurate prediction of dis-

ease status and progression are typically implicated by multiple brain regions coupled

with other biomarkers. Therefore, jointly analyzing all the imaging phenotypes via

one single integral regression model is desirable to elucidate the shared mechanism

that may be hidden otherwise.

By recognizing the interrelated nature of these genotypes and phenotypes, in

this study, we propose a novel Sparse Multi-tAsk Regression and feaTure selection

(SMART) method to identify quantitative trait loci in a mild cognitive impairment

(MCI) and Alzheimer’s disease (AD) study using a few important imaging QTs rele-

35



vant to AD. We consider each SNP as a feature and each QT as a response variable

(i.e., a learning task), and formulate a multi-task regression framework including

multiple features (SNPs) and multiple responses (QTs). Our goal is to reveal the

relationships between these genetic features and imaging phenotypes.

The proposed model consists of three major components. First, it is built upon

regression analysis due to the continuous responses of the imaging phenotypes. As

a result, the regression coefficients assess the relationships between SNPs and QTs.

Second, in order to address the group-wise association among SNPs, inspired by group

Lasso [31], we propose a new form of regularization, called as group ℓ2,1-norm (G2,1-

norm) regularization, in which the coefficients of the SNPs within a pre-defined group,

with respect to all the QTs, are penalized as a whole via ℓ2-norm, while ℓ1-norm is

used to sum up the group-wise penalties to enforce sparsity between groups [11]. The

latter is important because in reality only a small fraction of genotypes are related

to a specific phenotype. Moreover, with sparsity, outliers and irrelevant associations

are inherently removed. Lastly, through enforcing ℓ2,1-norm regularization, feature

selection becomes an integrated procedure across multiple learning tasks [12,13], such

that the interrelationships among different imaging phenotypes are leveraged. Note

that the proposed G2,1-norm and the enforced ℓ2,1-norm couple a set of learning tasks

together such that the regression analysis can be carried out jointly across all the

QTs, whereas Lasso [11] and group Lasso [31] perform regression analysis separately,

one task at a time.

We apply the proposed SMART method to the ADNI cohort [10] for identifying

quantitative trait loci (QTLs) in MCI and AD using a set of imaging phenotypes

known to be relevant to AD. Our empirical results yield not only clearly improved

prediction performance in all test cases, but also a compact set of SNP predictors

relevant to the imaging genotypes that are in accordance with prior studies.
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4.2 Materials and Data Sources

Both SNP and structural magnetic resonance imaging (MRI) data used in the

preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (adni.loni.ucla.edu). One goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), positron emission tomography

(PET), other biological markers, and clinical and neuropsychological assessment can

be combined to measure the progression of mild cognitive impairment (MCI) and

early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org.

Following a prior study [16], 733 non-Hispanic Caucasian participants were included

in this study.

4.2.1 SNP genotyping and group information

The SNP data [32], used in this study, were genotyped using the Human 610-

Quad BeadChip (Illumina, Inc., San Diego, CA). Among all SNPs, only SNPs, belong-

ing to the top 40 AD candidate genes listed on the AlzGene database (www.alzgene.org)

as of June 10, 2010, were selected after the standard quality control (QC) and impu-

tation steps. The QC criteria for the SNP data include (1) call rate check per subject

and per SNP marker, (2) gender check, (3) sibling pair identification, (4) the Hardy-

Weinberg equilibrium test, (5) marker removal by the minor allele frequency and (6)

population stratification. As the second pre-processing step, the quality-controlled

SNPs were imputed using the MaCH software [33] to estimate the missing genotypes.

After that, the Illumina annotation information based on the Genome build 36.2 was

used to select a subset of SNPs, belonging to the top 40 AD candidate genes [34].

The above procedure yielded 1224 SNPs from 37 genes. For the remaining 3

genes, no SNPs were available on the genotyping chip. The genes and the number

of their SNPs are shown in Fig. 4.1. The ranking of the AlzGene database is based

37



Table 4.1. Quantitative traits (QTs) from “matching” ROIs: the volumetric/thickness
measures (FreeSurfer) and GM density measures (VBM).

LHippVol LHippocampus

RHippVol Rhippocampus

LEntCtx

LParahipp

REntCtx

RParahipp

LPrecuneus LPrecuneus

RPrecuneus RPrecuneus

LMeanFront LMeanFrontal

RMeanFront RMeanFrontal

LMeanLatTemp LMeanLatTemporal

RMeanLatTemp RMeanLatTemporal

Volume/Thickness (ID and ROI)

Mean thickness of inferior temporal, middle temporal, and superior

temporal gyri

Inferior temporal gyrus, middle temporal gyrus, and superior

temporal gyrus

GM Density (ID and ROI)

Volume of Hippocampus Hippocampus

Thickness of Entorhinal Cortex and Thickness of Parahippocampal

Gyrus

LParahipp

Parahippocampal Gyrus

RParahipp

Thickness of Precuneus Precuneus

Mean thickness of caudal midfrontal, rostral midfrontal, superior

frontal, lateral orbitofrontal, and medial orbitofrontal gyri and

Inferior frontal operculum, inferior orbital frontal gyrus, inferior

frontal triangularis, medial orbital frontal gyrus, middle frontal gyrus,

on SNPs instead of genes. As a result, most of the SNPs from these genes (Fig. 4.1)

might be irrelevant to AD, while a small fraction of them could be risk factors for

the disease and be associated with our intermediate imaging traits. Our task is to

identify the SNPs in these 37 genes that predict important imaging QTs.

A straightforward observation from Fig. 4.1 shows that the SNPs are naturally

divided into groups upon their belonging genes. This grouping structure of SNPs,

though conveying important biological information, is seldom utilized in previous

association studies that consider every SNP equally and investigate their genetic

effects on imaging phenotypes separately. In this work, as one of the contributions,

we aim to make use of the grouping information of SNPs in our learning model so as

to achieve more lucid relationships between SNPs and neuroimaging phenotypes.

Besides grouping SNPs by genes, an alternative method could be based on LD.

Through estimating non-random association of alleles at different loci (e.g., using

pairwise correlation coefficients r2, as shown in Fig. 4.2), the relationships between

SNPs in terms of genetic linkage are established. For example, the group structure

can be clearly observed in Fig. 4.2, where a group is defined as a block of SNPs whose

pairwise r2 ≥ 0.2. As a result, we have 185 groups comprising 1029 SNPs, with each

of the remaining 195 SNPs being isolated by itself.
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In this study, we consider grouping SNPs by both genes and LD correlation

coefficients r2.

4.2.2 MRI analysis and extraction of imaging genotypes

Two widely employed automated MRI analysis techniques were used to process

and extract imaging genotypes across the brain from all baseline scans of ADNI

participants as previously described [16]. First, voxel-based morphometry (VBM) [35]

was performed to define global gray matter (GM) density maps and extract local

GM density values for target regions. Second, automated parcellation via FreeSurfer

V4 [17] was conducted to define volumetric and cortical thickness values for regions of

interest (ROIs) and to extract total intracranial volume (ICV). Further information is

available in [16]. While a complete investigation of all VBM and FreeSurfer measures

is an interesting future direction, this study is focused on a subset of these measures to

test the proposed methods. Ten VBM (GM density) measures and twelve FreeSurfer

measures (thickness/volume), which are known to be related to AD, are selected as

QTs for identifying QTLs. These QTs are extracted from roughly matching ROIs

with VBM and FreeSurfer. Table 4.1 shows the description of these QTs and Fig. 4.3

maps some of these ROIs in the brain space. All these measures were adjusted for the

baseline age, gender, education, handedness, and baseline ICV using the regression

weights derived from the healthy control participants.

4.3 Methods

In this section, we first systematically develop our computational models to

explore the associations between SNPs and imaging phenotypes. As illustrated in

Fig. 4.4, our method mainly addresses the group structure of genetic markers and

joint learning across all the imaging endophenotypes, such that the learned regression
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model has better prediction performance and the selected SNPs are more biological

meaningful. After that, we provide a new efficient algorithm to solve the proposed

new multi-task regression and feature selection objective, followed by the rigorous

algorithm analysis to prove its correctness and convergence.

Throughout this chapter, we write matrices as boldface uppercase letters and

vectors as boldface lowercase letters. Given a matrix M = (mij), its i-th row and

j-th column are denoted as mi and mj respectively. The Frobenius norm and ℓ2,1-

norm (also called as ℓ1,2-norm) of a matrix are defined as ||M||F =
√∑

i ||mi||22 and

||M||2,1 =
∑

i

√∑
j m

2
ij =

∑
i ||mi||2, respectively.

4.3.1 Sparse Multi-tAsk Regression and feaTure selection

To explore the associations between SNPs and continuous imaging phenotypes,

the linear (least square) regression (LR) is a standard approach. To avoid over-fitting

and increase numerical stability, the ridge regression (RR) is a better option. Given

the SNP data of the ADNI participants {x1, · · · ,xn} ⊆ ℜd and the selected imaging

phenotypes {y1, · · · ,yn} ⊆ ℜc, where n is the number of participants (sample size),

d is the number of SNPs (feature dimensionality) and c is the number of imaging

phenotypes (tasks), the RR is designed to solve:

min
W

n∑

i=1

||WTxi − yi||2 + γ
d∑

i=1

||wi||2, (4.1)

where the entry wij of the weight matrix W measures the relative importance of the

i-th SNP in predicting the response of the j-th imaging phenotype, and γ > 0 is a

tradeoff parameter.

However, the RR model in Eq. (4.1) suffers from a number of problems when

applied to evaluation of the imaging genetic associations. First, the weight matrix

W is not sparse, therefore all the SNPs are involved in the prediction of imaging
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Figure 4.4. Illustration of the proposed SMART method. We incorporate the group
structural information of the genetic markers through a new group ℓ2,1-norm regu-
larization (||W||G2,1), and enforce ℓ2,1-norm regularization (||W||2,1) to jointly select
prominent SNPs across all endophenotypes..

phenotype responses. However, among numerous SNPs, only a small fraction of them

are relevant to specific imaging QTs. Thus, it is desirable to select only relevant

SNPs for more accurate prediction. Second, similar to LR, the tasks in the RR

regression model are decoupled and each of them can be learned separately. As

a result, the information of underlying interacting relationships between the brain

regions are ignored, which, though, are essential to brain functionalities. Finally, the

rows of W are equally treated in the RR model, which implies that the underlying

structures among these SNPs are overlooked. However, it is generally believed that

many SNPs are genetically linked. In order to tackle these difficulties, we propose

a novel Sparse Multi-tAsk Regression and feaTure selection (SMART) method to

exploit the interrelated structures within and between the genotypes and phenotypes.
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4.3.1.1 Group-sparsity for genetic association

The objective of RR model in Eq. (4.1) uses Frobenious norm for regularization,

which penalizes all the coefficients in a flat manner thereby all the SNPs are evenly

treated. However, SNPs on the same chromosome with close distance tend to be

inherited together and correlated with each other. For example, as shown in Fig. 4.4,

the pairwise LD correlation coefficients r2 between “rs1476413”, “rs1801131” and

“rs6541003” are greater than 0.2, thus they are more homogeneous and should be

considered together when we predict the responses of the imaging QTs. Motivated

by sparse learning, such as Lasso [11] and group Lasso [31], we propose a new form

of regularization as follows:

min
W

n∑

i=1

||WTxi − yi||22 + γ
K∑

k=1

√√√√∑

i∈πk

c∑

j=1

w2
ij , (4.2)

where the SNPs, i.e., features, are partitioned into K groups Π = {πk}Kk=1, such that

{wi}mk

i=1 ∈ πk are genetically linked, andmk is the number of SNPs in πk. Two types of

genetic links are used here to group SNPs: (1) SNPs are naturally divided into groups

based on their belonging or nearest genes. (2) SNPs are grouped by thresholding the

pairwise LD correlation coefficients r2, e.g., in this work, the neighboring SNPs whose

r2 ≥ 0.2 form a group.

Without loss of generality, {πk}Kk=1 are ordered and concatenated. Denote W =


W1

· · ·

WK



, where Wk ∈ R

mk×c(1 ≤ k ≤ K), we can write Eq. (4.2) as following:

min
W

n∑

i=1

||WTxi − yi||22 + γ

K∑

k=1

||Wk||F , (4.3)
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which can be written in matrix form as following:

min
W

||WTX−Y||2F + γ||W||G2,1, (4.4)

where X = [x1, . . . ,xn], Y = [y1, . . . ,yn], and || · ||G2,1 is our proposed group ℓ2,1-norm

(G2,1-norm) of a matrix with respect to a partition Π and defined as:

||W||G2,1 =

K∑

k=1

√√√√∑

i∈πk

c∑

j=1

w2
ij =

K∑

k=1

||Wk||F . (4.5)

Note that: the G2,1-norm defined above is different from the regularization term in

group Lasso. Given a partition of the features, the group Lasso enforces group-wise

sparsity for each learning task separately, whereas the G2,1-norm defined in Eq. (4.5)

penalizes the regression coefficients of a group of features across all the learning tasks

jointly. As a result, the biological group-level structural information among SNPs are

incorporated into our multi-task learning model.

Moreover, because the ℓ1-norm across all the group-wise penalties are used in

G2,1-norm, similar to Lasso and group Lasso, sparsity is enforced among biological

groups. This is important in identifying relevant genotypes for specific phenotypes,

because only a small fraction of SNPs are related to certain imaging phenotypes. From

the perspective of sparsity learning, the Lasso and group Lasso have flat sparsity, the

ℓ2,1-norm has structured sparsity, and the G2,1-norm has structured sparsity across

feature groups.

4.3.1.2 Individual structured sparsity for joint feature selection

Although the objective in Eq. (4.4) takes into account the group structure of the

SNP data through the proposed G2,1-norm, the feature selection across tasks are still

not completely addressed, because G2,1-norm penalizes the coefficients flatly within

each group of SNPs. To be more specific, within a given group, say πk, Frobenious
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norm ||Wk||F is used, which is the same as ridge regression that uses Frobenious

norm over the whole projection matrix W. In an important group, certain features

could be irrelevant; on the other hand, in a less important group, some features

could be significant to tasks. Thus, we enforce additional structured sparsity to

our learning model for jointly selecting features across multiple tasks via a ℓ2,1-norm

regularization [12, 13, 36, 37]:

min
W

n∑

i=1

||WTxi − yi||22 + γ1

K∑

k=1

||Wk||F + γ2

d∑

i=1

||wi||2, (4.6)

which can be concisely rewritten in matrix form as:

min
W

n∑

i=1

||WTX−Y||2F + γ1||W||G2,1 + γ2||W||2,1 . (4.7)

In Eq. (4.7), the first term measures the regression loss. The second term couples all

the regression coefficients of a group of features over all the c tasks together, which

incorporates the grouping information on features (SNPs) due to the genetic linkage.

Finally, the third term penalizes all c regression coefficient of each individual feature

as whole to select features across multiple learning tasks.

We call Eq. (4.7) as Sparse Multi-tAsk Regression and feaTure selection (SMART)

method with illustration in Fig. 4.4.

4.3.2 A new efficient optimization algorithm

Because the number of genetic markers can be very large, we need an efficient

algorithm to solve Eq. (4.7). Existing algorithms usually reformulate such sparsity

problem as a second order cone programming (SOCP) or semidefinite programming

(SDP) problem, which can be solved by interior point method or the bundle method.

However, solving SOCP or SDP is computationally very expensive, which limits their
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use in practice. Here, we propose an efficient algorithm to solve our objective function

in Eq. (4.7).

Taking the derivative with respect to W, and setting the derivative to zero, we

have1

XXTW −XYT + γ1DW + γ2D̃W = 0, (4.8)

where D is a block diagonal matrix with the k-th diagonal block as 1
2‖Wk‖F

Ik, Ik is

an identity matrix with size of mk, D̃ is a diagonal matrix with the i-th diagonal

element as 1
2‖wi‖2

. Thus we have

W = (XXT + γ1D+ γ2D̃)−1XYT , (4.9)

where W can be efficiently obtained by solving the linear equation (XXT + γ1D +

γ2D̃)W = XYT , and the matrix inversion that is computationally expensive is not

involved.

Note that D and D̃ in Eq. (4.9) depend on W and thus are also unknown

variables. We propose an iterative algorithm to solve this problem, which is described

in Algorithm 3.

4.3.3 Analysis of the algorithm

Now we prove that Algorithm 3 converges to the global optimum.

Lemma 2 For any matrices M and M0 with the same size, we have ||M||F −
||M||2

F

2||M0||F
≤ ||M0||F − ||M0||2F

2||M0||F
.

1When ‖Wk‖F = 0, the k-th diagonal block of D can be regularized as 1

2
√

‖Wk‖2

F
+ς

Ik. Sim-

ilarly, when wi = 0, the i-th diagonal element of D̃ can be regularized as 1

2
√

‖wi‖2

2
+ς

. Then

the derived algorithm can be proved to minimize
∑n

i=1
||WTxi − yi||22 + γ1

∑K

k=1

√
‖Wk‖2

F
+ ς +

γ2
∑d

i=1

√
‖wi‖22 + ς . It is easy to see that this problem is reduced to problem (4.6) when ς → 0.

45



Algorithm 3: Algorithm to solve Eq. (4.7).

Input: X = [x1,x2, · · · ,xn] ∈ R
d×n, Y = [y1,y2, · · · ,yn] ∈ R

c×n

Initialize W1 ∈ R
d×c, t = 1 ;

while not converge do

1. Calculate the block diagonal matrix Dt, where the k-th diagonal is

1
2‖Wk

t ‖F
Ik; Calculate the diagonal matrix D̃t, where the i-th diagonal element

is 1
2‖wi

t‖2
;

2. Wt+1 = (XXT + γ1Dt + γ2D̃t)
−1XYT ;

3. t = t+ 1 ;

Output: Wt ∈ R
d×c.

Proof : Obviously, −(||M||F − ||M0||F )2 ≤ M, so we have

−(||M||F − ||M0||F )2 ≤ M

⇒ 2||M||F ||M0||F − ||M||2F ≤ ||M0||2F

⇒ ||M||F − ||M||2
F

2||M0||F
≤ ||M0||F − ||M0||2F

2||M0||F

which completes the proof. �

Theorem 3 Algorithm 3 decreases the objective value in each iteration.

Proof : In each iteration t, according to step 2 we have

||WT
t+1X−Y||2F + γ1TrW

T
t+1DtWt+1 + γ2TrW

T
t+1D̃tWt+1

≤ ||WT
t X−Y||2F + γ1TrW

T
t DtWt + γ2TrW

T
t D̃tWt

⇒ ||WT
t+1X−Y||2F + γ1

K∑

k=1

||Wk
t+1||2F

2||Wk
t ||F

+ γ2

d∑

i=1

||wi
t+1||22

2||wi
t||2

≤ ||WT
t X−Y||2F + γ1

K∑

k=1

||Wk
t ||2F

2||Wk
t ||F

+ γ2

d∑

i=1

||wi
t||22

2||wi
t||2

. (4.10)
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Applying Lemma 3 twice to Eq. (4.10), we have the following

||WT
t+1X−Y||2F + γ1

K∑

k=1

||Wk
t+1||F + γ2

d∑

i=1

||wi
t+1||2

≤ ||WT
t X−Y||2F + γ1

K∑

k=1

||Wk
t ||F + γ2

d∑

i=1

||wi
t||2. (4.11)

Thus, Algorithm 3 decreases the objective value in each iteration. �

Algorithm 3 stops when the following criterion is satisfied:

||Wt+1 −Wt||F / max (||Wt||F , 1) ≤ Tol, (4.12)

where Tol = 10−4 is empirically selected in our experiments.

Upon convergence, Wt, Dt and D̃t will satisfy Eq. (4.9). As the problem of

solving Eq. (4.7) is a convex problem, satisfying the Eq. (4.9) indicates that Wt is

a global optimum solution to Eq. (4.7). Therefore, Algorithm 3 converges to the

global optimum of Eq. (4.7). Since we have a closed form solution in each iteration,

our algorithm converges very fast, which makes our method is suitable for not only

candidate SNP but also genome-wide association studies.

4.4 Experimental Results and Discussions

In this section, we evaluate the proposed SMART method by applying it to the

data from the ADNI cohort, where a wide range of SNPs are examined and selected to

predict the response of the MRI imaging phenotypes. The goal is to select a compact

set of SNPs while maintaining high predictive power.

4.4.1 Improved imaging phenotype prediction

We first evaluate the proposed method in predicting the continuous responses of

candidate neuroimaging phenotypes. Given two sets of imaging phenotypes, FreeSurfer

and VBM, we conduct experiments on each of them separately.
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(b) VBM imaging genotypes.

Figure 4.5. Performance comparison: The mean and standard deviation (SD) of
the root mean square errors (RMSEs) obtained from 5 cross-validation trials in each
experiment are plotted, where each error bar indicates ± 1 SD..

We compare our method against multivariate linear regression, ridge regression,

and multi-task feature learning (MTFL) [13] method. The former two are the most

widely used methods in statistical learning and medical image analysis. The latter

one is a method most related to the proposed method in that it also selects features

(SNPs) across tasks, however it only uses ℓ2,1-norm regularization whereby group

information is not taken into account. Therefore, MTFL method can be seen as a

special case of the proposed method by setting γ1 = 0 in Eq. (4.7).

We group SNPs using two methods: (1) SNPs annotated with the same gene are

grouped together; (2) SNPs within the same LD block are grouped together, where

r2 ≥ 0.2 is used in this work. For each test case, we conduct standard 5-fold cross-

validation and report the average results. For each of the 5 trials, within the training

data, an internal 5-fold cross-validation is performed to fine tune the parameters in

the range of {10−5, 10−4, . . . , 104, 105} for ridge regression, MTFL method, and our

method. For each trial, from the learned coefficient matrix we sum the absolute
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Table 4.2. The results (p-values) of t-tests for performance comparison between our
methods and three competing methods.

FreeSurfer biomarkers VBM biomarkers

Group by gene Group by
r2 > 0.2

Group by gene Group by
r2 > 0.2

MLR 7.08 × 10−5 3.13 × 10−5 9.28 × 10−6 3.96× 10−6

RR 1.31 × 10−2 2.21 × 10−3 2.12 × 10−2 1.85× 10−3

MTFL 6.57 × 10−7 2.41 × 10−7 5.82 × 10−7 2.63× 10−7

values of the coefficients of a single SNP over all the tasks as the SNP weight, from

which we pick up the top {10, 20, . . . , 100} SNPs to predict the regression responses

for the test data. The performance of each trial is assessed by root mean square error

(RMSE), a widely used measurement for regression analysis. For each experiment,

the mean and standard deviation (SD) of the RMSEs obtained from the 5 trials

are reported in Fig. 4.5, where each error bar indicates ± 1 SD. Detailed RMSE

results of each fold in cross-validation are available in the supplementary document

at http://ranger.uta.edu/%7eheng/imaging-genetics/.

The proposed SMART methods consistently outperform three competing meth-

ods in both FreeSurfer and VBM cases (Fig. 4.5), while the cross-validation trials in

each experiment perform very similarly to one another (see the error bars in Fig. 4.5).

For a formal comparison, t-test is performed and the resulting p-values are reported

in Table 4.2, from which we can see that our methods are significantly better than

three completing methods. Moreover, the predictive performances of our methods are

considerably stable, whereas those of the other methods are sensitive to experimental

conditions. These results clearly demonstrate the advantage of the proposed SMART

method in predicting phenotypic responses.
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Amore careful observation shows that the regression performance of our method

when using r2 > 0.2 to group SNPs is better than that of our method when grouping

SNPs by genes. While gene is the most natural way to group SNPs, different segments

within the same gene may have different functions (e.g., bases for different isoforms)

and mixing them together may perturb the prediction. Grouping by LD blocks using

r2 yields more homogeneous groups and has a potential to boost the prediction power.

Fig. 4.6 shows heat maps of prediction errors on each QT. While all these

QTs are AD-relevant, Fig. 4.6 indicates that they are affected in different degrees by

genetic factors. QTs that are better predicted by SNPs include GM density measures

of the parahippocampal gyrus and frontal region in VBM analyses and thickness

measures of the frontal region, lateral temporal region and precuneus in FreeSurfer

analyses. The VBM and FreeSurfer measures of a certain region yield similar results

in some cases (e.g., frontal region), but may provide different information in other

cases (e.g., parahippocampal gyrus). Thus, performing both VBM and FreeSurfer

analyses can help identify useful imaging phenotypes and guide further investigation

to better elucidate the underlying disease mechanism, from gene, to brain structure

and function, and to symptoms.

4.4.2 Genetic marker selection

Shown in Fig. 4.7 are the regression coefficients for top 10 selected SNPs. First,

these SNPs are either AlzGene candidates or proximal to the candidates; however,

little is known about their underlying mechanisms in relation to AD. The results

shown in Fig. 4.7 can help identify relevant QTs for each SNP and has a potential

to gain biological insights from gene to brain to symptoms. Second, as expected, the

APOE SNP rs429358 shows the strongest association with all QTs in each experiment;

and the hippocampal measures exhibit the strongest association with the APOE SNP.
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Clearly, the proposed approach is able to identify the most important AD genetic risk

factor via imaging QTs as well as the best-known neurodegenerative marker. Third,

besides confirming the prior findings, our method also yielded new discoveries such as

the associations between APOE and other eminent AD markers including entorhinal

cortex and parahippocampal gyrus. These associations were not identified in our

prior massive univariate analyses on the same data (Shen et al., 2010), indicating

that the proposed multi-locus method has increased power to discover interesting

imaging QTs. In sum, the above evidence demonstrates not only the effectiveness of

the proposed method but also the strength of using imaging QTs in genetic association

study.

Quite a few SNPs from the SORCS1 gene are selected as the top 10 hits in each

experiment, however the large size of the gene (Fig. 4.1) may play a role. Fig. 4.8

shows an LD plot with location maps for a group of 46 SORCS1 SNPs, where two top

hits (red spikes) are highlighted for each of the FreeSurfer and VBM experiments. Al-

though SORCS1 has been associated with diabetes and AD, the top ranked SORCS1

SNPs in Fig. 4.7 have not been reported in prior association studies. Thus, this gene

together with its SNPs warrants further investigation in independent cohorts. Due to

the nature of our method, an epistasis analysis on these top hits would be appropriate

for investigation in future studies.

4.5 Conclusions

In this chapter, we have proposed a novel Sparse Multi-tAsk Regression and

feaTure selection (SMART) method to perform both regression analysis for predict-

ing continuous responses of brain imaging measures and selecting relevant SNPs in

an MCI/AD study. Different from traditional regression methods that ignore the

interrelated structures within genotyping and imaging data, our method studies the
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Figure 4.6. Top panels show the heat maps of root mean square errors (RMSEs) for
predicting VBM (top left) and FreeSurfer (top right) measures using linear regression,
ridge regression, our G-SMuRFS method with SNPs grouped by gene, and G-SMuRFS
with SNPs grouped by r2 > 0.2, where top 10 SNPs were used in our G-SMuRFS
methods. In the bottom panel, RMSEs for predicting VBM measures using four
methods are mapped onto the brain volume. .

associations between SNPs and imaging phenotypes within a single regression frame-

work and shared common subspace. Through enforcing a new form of regularization

using G2,1-norm that takes into account both group-level structural information inside

SNP data and sparsity among SNP groups, our learning model is able to exploit ad-

ditional information to achieve both enhanced predictive performance and improved

feature (SNP) selection capability. Besides, ℓ2,1-norm regularization is used in our

model to jointly select SNPs relevant to important imaging phenotypes. An efficient

algorithm to solve the proposed objective is presented with rigorous proof of its cor-

rectness and convergence. Our experiments using the SNP and MRI data from the
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Figure 4.7. Regression coefficients are visualized for top 10 selected SNPs in each
of the four experiments (from top to bottom): (1) Group by r2 > 0.2, regression
on VBM measures, (2) group by gene, regression on VBM measures, (3) group by
r2 > 0.2, regression on FreeSurfer measures, and (4) group by gene, regression on
FreeSurfer measures. .

ADNI cohort yielded the following promising results: (1) the prediction performance

of SMART method was consistently better than conventional multi-variate linear re-

gression and ridge regression, (2) a compact set of SNP predictors were identified

in each test case, warranting further investigation in independent cohorts for confir-

mation, and (3) these selected SNPs could predict the responses of multiple imaging

phenotypes at the same time and had a potential to serve as useful genetic risk factors

for AD. These promising results were consistent with our theoretical foundation and
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Figure 4.8. Pair-wise Linkage Disequilibrium (LD) in a group of 46 SNPs proximal
to SORCS1. Numerical values r2 of the LD maps are determined by Haploview and
visualized with WGAViewer. The top panel is the ideogram of the chromosome and
the vertical red line represents the relative location of the locus of interest. In the
second panel, regression coefficients*100 is plotted for each SNP for the FreeSurfer
data, where two top hits rs765651 and rs1931600 are labeled with red lines. In the
third panel, regression coefficients*100 is plotted for each SNP for the VBM data,
where two top hits rs1931600 and rs1936488 are labeled with red lines. The fourth
panel shows the recent selection score [1]. The bottom figure demonstrates the LD
pattern among 46 SNPs. .
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in accordance with some prior studies, which demonstrated the effectiveness of the

proposed method.

One important future direction of this work could be to explore the possibility of

simultaneously employing multiple SNP grouping schemes or more generally adopting

a pre-defined network/pathway strategy and see whether these approaches can further

improve the prediction performance. Other potential future directions include (1)

application of SMART method to additional imaging phenotypes (e.g ., PET, fMRI

data), and (2) building a principled sparse learning framework to reveal complex

relationships among multiple data sources available in the ADNI database, including

genetic, cerebrospinal fluid (CSF), plasma, imaging, and cognitive data sets to study

AD at a system biology level.
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CHAPTER 5

IDENTIFYING DISEASE SENSITIVE AND QUANTITATIVE TRAIT

RELEVANT BIOMARKERS FROM MULTI-DIMENSIONAL

HETEROGENEOUS IMAGING GENETICS DATA VIA SPARSE

MULTI-MODAL MULTI-TASK LEARNING

5.1 Introduction

Recent advances in acquiring multi-modal brain imaging and genome-wide ar-

ray data provide exciting new opportunities to study the influence of genetic variation

on brain structure and function. Research in this emerging field, known as imaging

genetics, holds great promise for a system biology of the brain to better understand

complex neurobiological systems, from genetic determinants to cellular processes to

the complex interplay of brain structure, function, behavior and cognition. Analy-

sis of these multi-modal data sets will facilitate early diagnosis, deepen mechanistic

understanding and improved treatment of brain disorders.

Machine learning methods have been widely employed to predict Alzheimer’s

disease (AD) status using imaging genetics measures [5–7, 27]. Since AD is a neu-

rodegenerative disorder characterized by progressive impairment of memory and other

cognitive functions, regression models have also been investigated to predict clinical

scores from structural, such as magnetic resonance imaging (MRI), and/or molecular,

such as fluorodeoxyglucose positron emission tomography (FDG-PET), neuroimaging

data [8, 9]. For example, [8] performed stepwise regression in a pairwise fashion to

relate each of MRI and FDG-PET measures of eight candidate regions to each of four

Rey’s Auditory Verbal Learning Test (RAVLT) memory scores. This univariate ap-
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Figure 5.1. A simplified schematic example of two pathways from gene to QTs to
phenotypic endpoints: the red one is disease relevant while the blue one yields only
normal variation. Traditional two-stage imaging genetic strategy identifies QT 1 and
QT 2 first and then Genes 1, 2, 3. Our new method will identify only disease relevant
genes (i.e., Gene 1 and Gene 2); and Gene 3 won’t be identified because it cannot be
used to classify disease status..

Figure 5.2. The proposed sparse multi-modal multi-task feature selection method will
identify biomarkers from multi-modal heterogeneous data resources. The identified
biomarkers could predict not only disease status, but also cognitive functions to help
researchers better understand the underlying mechanism from gene to brain structure
and function, and to cognition and disease..

proach, however, did not consider either interrelated structures within imaging data

or those within cognitive data. Using relevance vector regression, [9] jointly analyzed

the voxel-based morphometry (VBM) features extracted from the entire brain to pre-

dict each selected clinical score, while the investigations of different clinical scores are

independent from each other.

One goal of imaging genetics is to identify genetic risk factors and/or imaging

biomarkers via intermediate quantitative traits (QTs, e.g. cognitive memory scores

used in this chapter) on the chain from gene to brain to symptom. Thus, both
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disease classification and QT prediction are important machine learning tasks. Prior

imaging genetics research typically employs a two-step procedure for identifying risk

factors and biomarkers: one first determines disease-relevant QTs, and then detects

the biomarkers associated with these QTs. Since a QT could be related to many

genetic or imaging markers on different pathways that are not all disease specific

(e.g., QT 2 and Gene 3 in Fig. 5.1), an ideal scenario would be to discover only those

markers associated with both QT and disease status for a better understanding of

the underlying biological pathway specific to the disease.

On the other hand, identifying genetic and phenotypic biomarkers from large-

scale multi-dimensional heterogeneous data is an important biomedical and biological

research topic. Unlike simple feature selection working on a single data source, multi-

modal learning describes the setting of learning from data where observations are

represented by multiple types of feature sets. Many multi-modal methods have been

developed for classification and clustering purposes, such as co-training [38–41] and

multi-view clustering [42, 43]. However, they typically assume that the multi-modal

feature sets are conditionally independent, which does not hold in many real-world

applications such as imaging genetics. Considering different representations give rise

to different kernel functions, several Multiple Kernel Learning (MKL) approaches

[44–53] have been recently studied and employed to integrate heterogeneous data

and select multi-type features. However, such models train a single weight for all

features from the same modality, i.e., all features from the same data source are

weighted equally, when they are combined with the features from other sources. This

limitation often yields inadequate performance.

To address the above challenges, we propose a new sparse multi-modal multi-

task learning algorithm that integrates heterogeneous genetic and phenotypic data

effectively and efficiently to identify disease-sensitive and cognition-relevant biomark-
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ers from multiple data sources. Different to LASSO [11], group LASSO [31] and other

related methods that mainly find the biomarkers correlated to each individual QT

(memory score), we consider predicting each memory score as a regression task and

select biomarkers that tend to play an important role in influencing multiple tasks.

A joint classification and regression multi-task learning model is utilized to select the

biomarkers correlated to memory scores and disease categories simultaneously.

Sparsity regularizations have recently been widely investigated and applied

to multi-task learning models [12, 13, 54–57]. Sparse representations are typically

achieved by imposing non-smooth norms as regularizers in the optimization prob-

lems. From the view of sparsity organization, we have two types: 1) The flat sparsity

is often achieved by ℓ0-norm or ℓ1-norm regularizer or trace norm in matrix/tensor

completion. Optimization techniques include LARS [58], linear gradient search [59],

proximal methods [60]. 2) The structured sparsity is usually obtained through differ-

ent sparse regularizers such as ℓ2,1-norm [55–57], ℓ2,0-norm [61], ℓ∞,1-norm [62], (also

denoted as ℓ1,2-norm, ℓ1,∞-norm in different papers) and group ℓ1-norm [31] which

can be solved by methods in [54, 63]. We propose a new combined structured sparse

regularization to integrate features from different modalities and to learn a weight for

each feature leading to a more flexible scheme for feature selection in data integration,

which is illustrated in Fig. 5.3. In our combined structured sparse regularization, the

group ℓ1-norm regularization (blue circles in Fig. 5.3) learns the feature global impor-

tance, i.e. the modal-wise feature importance of every data modality on each class

(task), and the ℓ2,1-norm regularization (red circles in Fig. 5.3) explores the feature

local importance, i.e. the importance of each feature for multiple classes/tasks. The

proposed method is applied to identify AD-sensitive biomarkers associated to the

cognitive scores by integrating heterogeneous genetic and phenotypic data (as shown
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in Fig. 5.2). Our empirical results yield clearly improved performance on predicting

both cognitive scores and disease status.

5.2 Identifying Disease Sensitive and QT Relevant Biomarkers from Heterogeneous

Imaging Genetics Data

Pairwise univariate correlation analysis can quickly provide important associa-

tion information between genetic/phenotypic data and QTs. However, it treats the

features and the QTs as independent and isolated units, therefore the underlying

interacting relationships between the units might be lost. We propose a new sparse

multi-modal multi-task learning model to reveal genetic and phenotypic biomarkers,

which are disease sensitive and QT-relevant, by simultaneously and systematically

taking into account an ensemble of SNPs (Single-nucleotide polymorphism) and phe-

notypic signatures and jointly performing two heterogeneous tasks, i.e. biomarker-

to-QT regression and biomarker-to-disease classification. The QTs studied in this

chapter are the cognitive scores.

In multi-task learning, given a set of input variables (i.e., features such as SNPs

and MRI/PET measures), we are interested in learning a set of related models (e.g.

relations between genetic/imaging markers and cognitive scores) to predict multiple

outcomes (i.e., tasks such as predicting cognitive scores and disease status). Because

these tasks are relevant, they share a common input space. As a result, it is desirable

to learn all the models jointly rather than treating each task as independent and

fitting each model separately, such as Lasso [11] and group Lasso [31]. Such multi-

task learning can discover robust patterns (because significant patterns in a single

task could be outliers for other tasks) and potentially increase the predictive power.

In this chapter, we write matrices as uppercase letters and vectors as boldface

lowercase letters. Given a matrix W = [wij], its ith row and jth column are denoted
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Figure 5.3. Illustration of the feature weight matrix W T . The elements in matrix
with deep blue color have large values. The group ℓ1-norm (G1-norm) emphasizes
the learning of the group-wise weights for a type of features (e.g ., all the SNPs
features, or all the MRI imaging features, or all the FDG-PET imaging features)
corresponding to each task (e.g ., the prediction for a disease status or a memory
score) and the ℓ2,1-norm accentuates the individual weight learning cross multiple
tasks..

as wi and wj, respectively. The ℓ2,1-norm of the matrix W is defined as ||W ||2,1 =

∑
i=1 ||wi||2 (also denoted as ℓ1,2-norm by other researchers).

5.2.1 Heterogeneous Data Integration via Combined Structured Sparse Regulariza-

tions

First, we will systematically propose our new multi-modal learning method to

integrate and select the genetic and phenotypic biomarkers from large-scale hetero-

geneous data. In the supervised learning setting, we are given n training samples

{(xi,yi)}ni=1, where xi = (x1
i , · · · ,xk

i )
T ∈ ℜd is the input vector including all fea-

tures from a total of k different modalities and each modality j has dj features

(d =
∑k

j=1 dj). yi ∈ ℜc is the class label vector of data point xi (only one ele-

ment in yi is 1, and others are zeros), where c is the number of classes (tasks). Let
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X = [x1, · · · ,xn] ∈ ℜd×n and Y = [y1, · · · ,yc] ∈ ℜc×n. Different to MKL, we directly

learn a d× c parameter matrix as:

W =




w1
1 ... w1

c

... ... ...

wk
1 ... wk

c



∈ ℜd×c, (5.1)

where wq
p ∈ ℜdq indicates the weights of all features in the q-th modality with respect

to the p-th task (class). Typically we can use a convex loss function L(X,W ) to mea-

sure the loss incurred by W on the training samples. Compared to MKL approaches

that learn one weight for one kernel matrix representing one modality, our method

will learn the weight for each feature to capture the local feature importance. Because

the features come from heterogeneous data sources, we impose the regularizer R (W )

to capture the interrelationships of modalities and features as:

min
W

L(X,W ) + γR (W ) , (5.2)

where γ is a trade-off parameter. In heterogeneous data fusion, from multi-view

perspective of view, the features of a specific view (modality) can be more or less

discriminative for different tasks (classes). Thus, we propose a new group ℓ1-norm

(G1-norm) as a regularization term in Eq. (5.2), which is defined over W as following:

‖W‖G1
=

c∑

i=1

k∑

j=1

||wj
i ||2, (5.3)

which is illustrated by the blue circles in Fig. 5.3. Then the Eq. (5.2) becomes:

min
W

L(X,W ) + γ1 ‖W‖G1
. (5.4)

Because the group ℓ1-norm uses ℓ2-norm within each modality and ℓ1-norm between

modalities, it enforces the sparsity between different modalities, i.e. if one modality of
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features are not discriminative for certain tasks, the objective in Eq. (5.4) will assign

zeros (in ideal case, usually they are very small values) to them for corresponding

tasks; otherwise, their weights are large. This new group ℓ1-norm regularizer captures

the global relationships between data modalities.

However, in certain cases, even if most features in one modality are not dis-

criminative for the classification or regression tasks, a small number of features in the

same modality can still be highly discriminative. From the multi-task learning point

of view, such important features should be shared by all/most tasks. Thus, we add

an additional ℓ2,1-norm regularizer into Eq. (5.4) as:

min
W

L(X,W ) + γ1 ‖W‖G1
+ γ2 ‖W‖2,1 . (5.5)

The ℓ2,1-norm was popularly used in multi-task feature selection [55, 63]. Because

the ℓ2,1-norm regularizer impose the sparsity between all features and non-sparsity

between tasks, the features that are discriminative for all tasks will get large weights.

Our regularization items consider the heterogeneous features from both group-

wise and individual viewpoints. Fig. 5.3 visualizes the matrixW T as a demonstration.

In Fig. 5.3, the elements with deep blue color have large values. The group ℓ1-norm

emphasizes the group-wise weights learning corresponding to each task and the ℓ2,1-

norm accentuates the individual weight learning cross multiple tasks. Through the

combined regularizations, for each task (class), many features (not all of them) in

the discriminative modalities and a small number of features (may not be none)

in the non-discriminative modalities will learn large weights as the important and

discriminative features.

The multi-dimensional data integration has been increasingly important to

many biological and biomedical studies. So far, the MKL methods are most widely

used. Due to the learning model deficiency, the MKL methods cannot explore both
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modality-wise importance and individual importance of features simultaneously. Our

new structured sparse multi-modal learning method integrates the multi-dimensional

data in a more efficient and effective way. The loss function L(X,W ) in Eq. (5.8) can

be replace by either least square loss function or logistic regression loss function to

perform regression/classification tasks.

5.2.2 Joint Disease Classification and QT Regression

Because we are interested in identifying the disease sensitive and QT relevant

biomarkers, we consider performing both logistic regression for classifying disease

status and multivariate regression for predicting cognitive memory scores simultane-

ously [2]. A similar model was used in [64] for heterogeneous multi-task learning.

Regular multi-task learning only considers homogeneous tasks such as regression or

classification individually. Joint classification and regression can be regarded as a

learning paradigm for handling heterogeneous tasks.

First, logistic regression is used for disease classification, which minimizes the

following loss function:

L1(W ) =
n∑

i=1

c1∑

k=1

(
yiklog

c1∑

l=1

ew
T
l
xi − yikw

T
k xi

)
. (5.6)

Here, we perform three binary classification tasks for the following three diagnostic

groups respectively (c1 = 3): AD, Mild Cognitive Impairment (MCI), and health

control (HC).

Second, we use the traditional multivariate least squares regression model to

predict memory scores. Under the regression matrix P ∈ ℜd×c2 , the least squares loss

is defined by

L2(P ) =
∥∥XTP − Z

∥∥2
F
, (5.7)
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where X is the data points matrix, P is the coefficient matrix of regression with c2

tasks, the label matrix Z =
[
(z1)

T
, (z2)

T
, · · · , (zn)T

]T
∈ ℜn×c2.

We perform the joint classification and regression tasks, the disease sensitive

and QT relevant biomarker identification task can be formulated as the following

objective:

min
V

n∑

i=1

c1∑

k=1

(
yiklog

c1∑

l=1

ew
T
l
xi − yikw

T
k xi

)

+
∥∥XTP − Z

∥∥2
F
+ γ1 ‖V ‖G1

+ γ2 ‖V ‖2,1 ,
(5.8)

where V = [W P ] ∈ ℜd×(c1+c2). As a result, the identified biomarkers will be corre-

lated to memory scores and also be discriminative to disease categories.

Because the objective in Eq. (5.8) is a non-smooth problem and cannot be easily

solved in general, we derive a new efficient algorithm to solve this problem in the next

subsection.

5.2.3 Optimization Algorithm

We take the derivatives of Eq. (5.8) with respect to W and P respectively, and

set them to zeros, we have

∂L1(W )

∂W
+ 2γ1

c1∑

i=1

Diwi + 2γ2DW = 0, (5.9)

2XXTP − 2XZ + 2γ1

c2∑

i=c1+1

Dipi + 2γ2DP = 0, (5.10)

where Di(1 ≤ i ≤ c1 + c2) is a block diagonal matrix with the k-th diagonal block

as 1

2‖vk
i ‖2

Ik (Ik is a dk by dk identity matrix), D is a diagonal matrix with the k-

th diagonal element as 1

2‖vk‖
2

. Because Di(1 ≤ i ≤ c1 + c2) and D depend on

V = [ W P ], they are also unknown variables to be optimized. In this chapter, we

provide an iterative algorithm to solve Eq. (5.8). First, we guess a random solution
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V ∈ ℜd×(c1+c2), then we calculate the matrices Di(1 ≤ i ≤ c1 + c2) and D according

to the current solution V . After obtaining the Di(1 ≤ i ≤ c1 + c2) and D, we can

update the solution V = [ W P ] based on Eq. (5.9). Specifically, the i-th column

of P is updated by pi = (XXT + γ1Di + γ2D)−1Xzi. We cannot update W with a

closed form solution based on Eq. (5.9), but we can obtained the updated W by the

Newton’s method. According to Eq. (5.9), we need to solve the following problem:

min
W

L1(W ) + γ1

c1∑

i=1

wT
i Diwi + γ2Tr(W

TDW ). (5.11)

Similar to the traditional method in the logistic regression [65, 66], we can use the

Newton’s method to obtain the solution W .

For the first term, the traditional logistic regression derivatives can be applied

to get the first and second order derivatives [66].

For the second term, the first and second order derivatives are

∂
c1∑
i=1

wT
i Diwi

∂Wup
= 2Dp(u, u)Wup ,

∂
c1∑
i=1

wT
i Diwi

∂Wup∂Wvq

= 2Dp(u, u)δuvδpq,

(5.12)

where Dp(u, u) is the u-th diagonal element of Dp.

For the third term, the first and second order derivatives are

∂Tr(W TDW )

∂Wup

= 2D(u, u)Wup ,

∂T r(W TDW )

∂Wup∂Wvq
= 2D(u, u)δuvδpq.

(5.13)

After obtaining the updated solution V = [ W P ], we can calculate the new ma-

trices Di(1 ≤ i ≤ c1 + c2) and D. This procedure is repeated until the algorithm

converges. The detailed algorithm is listed in Algorithm 3. We will prove that the

above algorithm will converge to the global optimum.
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5.2.4 Algorithm Analysis

To prove the convergence of the proposed algorithm, we need a lemma as follows.

Lemma 3 For any vectors v and v0, we have the following inequality: ‖v‖2−
‖v‖22

2‖v0‖2
≤

‖v0‖2 −
‖v0‖

2
2

2‖v0‖2
.

Proof : Obviously, −(‖v‖2 − ‖v0‖2)2 ≤ 0, so we have

− (‖v‖2 − ‖v0‖2)2 ≤ 0 ⇒ 2 ‖v‖2 ‖v0‖2 − ‖v‖22 ≤ ‖v0‖22

⇒ ‖v‖2 −
‖v‖22

2 ‖v0‖2
≤ ‖v0‖2 −

‖v0‖22
2 ‖v0‖2

, (5.14)

which completes the proof. �

Then we prove the convergence of the algorithm, which is described in the

following theorem.

Theorem 4 The algorithm decreases the objective value of problem (5.8) in each

iteration.

Proof : In each iteration, suppose the updated W is W̃ , and the updated P is P̃ ,

then the updated V is Ṽ = [ W̃ P̃ ]. From Step 3 in the Algorithm 3, we know

that:

L1(W̃ ) + γ1

c1∑

i=1

w̃T
i Diw̃i + γ2Tr(W̃

TDW̃ )

≤ L1(W ) + γ1

c1∑

i=1

wT
i Diwi + γ2Tr(W

TDW ).

(5.15)

According to Step 4, we have:

∥∥∥XT P̃ − Y
∥∥∥
2

F
+ γ1

c2∑

i=1

p̃T
i Dip̃i + γ2Tr(P̃

TDP̃ )

≤
∥∥XTP − Y

∥∥2
F
+ γ1

c2∑

i=1

pT
i Dipi + γ2Tr(P

TDP ).

(5.16)
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Based on the definitions of Di(1 ≤ i ≤ c1 + c2) and D, and Lemma 1, we have two

following inequalities:

K∑

k=1

∥∥ṽk
i

∥∥
2
−

K∑

k=1

∥∥ṽk
i

∥∥2
2

2
∥∥vk

i

∥∥
2

≤
K∑

k=1

∥∥vk
i

∥∥
2
−

K∑

k=1

∥∥vk
i

∥∥2
2

2
∥∥vk

i

∥∥
2

⇒
K∑

k=1

∥∥ṽk
i

∥∥
2
− ṽT

i Diṽi ≤
K∑

k=1

∥∥vk
i

∥∥
2
− vT

i Divi

⇒ γ1

c1+c2∑

i=1

K∑

k=1

∥∥ṽk
i

∥∥
2
− γ1

c1+c2∑

i=1

ṽT
i Diṽi

≤ γ1

c1+c2∑

i=1

K∑

k=1

∥∥vk
i

∥∥
2
− γ1

c1+c2∑

i=1

vT
i Divi, (5.17)

and

d∑

k=1

∥∥ṽk
∥∥
2
−

d∑

k=1

∥∥ṽk
∥∥2
2

2 ‖vk‖2
≤

d∑

k=1

∥∥vk
∥∥
2
−

d∑

k=1

∥∥vk
∥∥2
2

2 ‖vk‖2

⇒ γ2

d∑

k=1

∥∥ṽk
∥∥
2
− γ2Tr(Ṽ

TDṼ )

≤ γ2

d∑

k=1

∥∥vk
∥∥
2
− γ2Tr(V

TDV ). (5.18)

Note that the following two equalities:

c1+c2∑

i=1

vT
i Divi =

c1∑

i=1

wT
i Diwi +

c2∑

i=1

pT
i Dipi,

T r(V TDV ) = Tr(W TDW ) + Tr(P TDP ),

(5.19)

then by adding Eqs. (5.15–5.18) in the both sides, we arrive at

L1(W̃ ) + L2(P̃ ) + γ1

c1+c2∑

i=1

K∑

k=1

∥∥ṽk
i

∥∥
2
+ γ2

d∑

k=1

∥∥ṽk
∥∥
2

≤ L1(W ) + L2(P ) + γ1

c1+c2∑

i=1

K∑

k=1

∥∥vk
i

∥∥
2
+ γ2

d∑

k=1

∥∥vk
∥∥
2
.

Therefore, the algorithm decreases the objective value of problem (5.8) in each iter-

ation. �
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In the convergence, W , P ,Di(1 ≤ i ≤ c1+c2) andD satisfy the Eq. (5.9). As the

Eq. (5.8) is a convex problem, satisfying the Eq. (5.9) indicates that V = [ W P ] is

a global optimum solution to the Eq. (5.8). Therefore, the Algorithm 3 will converge

to the global optimum of the Eq. (5.8). Because our algorithm has the closed form

solution in each iteration, the convergency is very fast.

5.3 Empirical Studies and Discussions

Data used in the preparation of this article were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). One goal

of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers, and clinical and neuropsycho-

logical assessment can be combined to measure the progression of MCI and early

AD. For up-to-date information, see www.adni-info.org. Following a prior imaging

genetics study [16], 733 non-Hispanic Caucasian participants were included in this

study. We empirically evaluate the proposed method by applying it to the ADNI

cohort, where a wide range of multi-modal biomarkers are examined and selected to

predict memory performance measured by five RAVLT scores and classify participants

into health control (HC), MCI and AD.

5.3.1 Experimental Design

Overall Setting. Our primary goal is to identify relevant genetic and imaging

biomarkers that can classify disease status and predict memory scores (Fig. 5.2).

We describe our genotyping, imaging and memory data in Section 5.3.1; present the

identified biomarkers in Section 5.3.2; discuss the disease classification in Section 5.3.3;

and demonstrate the memory score prediction in Section 5.3.4.
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Genotyping Data. The single nucleotide polymorphism (SNP) data [32] were geno-

typed using the Human 610-Quad BeadChip (Illumina, Inc., San Diego, CA). Among

all SNPs, only SNPs, belonging to the top 40 AD candidate genes listed on the Alz-

Gene database (www.alzgene.org) as of June 10, 2010, were selected after the standard

quality control (QC) and imputation steps. The QC criteria for the SNP data include

(1) call rate check per subject and per SNP marker, (2) gender check, (3) sibling pair

identification, (4) the Hardy-Weinberg equilibrium test, (5) marker removal by the

minor allele frequency and (6) population stratification. The quality-controlled SNP

were then imputed using the MaCH software to estimate the missing genotypes. After

that, the Illumina annotation information based on the Genome build 36.2 was used

to select a subset of SNPs, belonging or proximal to the top 40 AD candidate genes.

This procedure yielded 1224 SNPs, which were annotated with 37 genes [?]. For the

remaining 3 genes, no SNPs were available on the genotyping chip.

Imaging Biomarkers. In this study, we use the baseline structural MRI and molec-

ular FDG-PET scans, from which we extract imaging biomarkers. Two widely em-

ployed automated MRI analysis techniques were used to process and extract imaging

genotypes across the brain from all baseline scans of ADNI participants as previously

described [16]. First, voxel-based morphometry (VBM) [35] was performed to define

global gray matter (GM) density maps and extract local GM density values for 86

target regions (Fig. 5.4(a)). Second, automated parcellation via freeSurfer V4 [17]

was conducted to define 56 volumetric and cortical thickness values (Fig. 5.4(b)) and

to extract total intracranial volume (ICV). Further information about these mea-

sures is available in [16]. All these measures were adjusted for the baseline age, gen-

der, education, handedness, and baseline ICV using the regression weights derived

from the healthy control participants. For PET images, following [67], mean glucose
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Table 5.1.RAVLT cognitive measures as responses in multi-task learning.

Task ID Description of RAVLT scores

TOTAL Total score of the first 5 learning trials
TOT6 Trial 6 total number of words recalled
TOTB List B total number of words recalled
T30 30 minute delay total number of words recalled
RECOG 30 minute delay recognition score

metabolism (CMglu) measures of 26 regions of interest (ROIs) in the Montreal Neu-

rological Institute (MNI) brain atlas space were employed in this study (Fig. 5.4(c)).

Memory Data. The cognitive measures we use to test the proposed method are the

baseline RAVLT memory scores from all ADNI participants. The standard RAVLT

format starts with a list of 15 unrelated words (List A) repeated over five different

trials and participants are asked to repeat. Then the examiner presents a second

list of 15 words (List B), and the participant is asked to remember as many words

as possible from List A. Trial 6, termed as 5 minute recall, requests the participant

again to recall as many words as possible from List A, without reading it again. Trial

7, termed as 30 minute recall, is administrated in the same way as Trial 6, but after

a 30 minute delay. Finally, a recognition test with 30 words read aloud, requesting

the participant to indicate whether or not each word is on List A. The RAVLT has

proven useful in evaluating verbal learning and memory. Table 5.1 summarizes five

RAVLT scores used in our experiments.

Participant Selection. In this study, we included only participants with no missing

data for all above four types (views) of features and cognitive scores, which resulted

in a set of 345 subjects (88 HC, 174 MCI and 88 AD). The feature sets extracted

from baseline multimodal data of these subjects are summarized in Table 6.1.
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Table 5.2.Multi-modal feature sets as predictors in multi-view learning.

View ID (Feature Set ID) Modality # Features

VBM MRI 86
FreeSurfer MRI 56
FDG-PET FDG-PET 26
SNP Genetics 1244

5.3.2 Biomarker Identifications

The proposed heterogeneous multi-task learning scheme aims to identify genetic

and phenotypic biomarkers that are associated with both cognition (e.g., RAVLT in

this study) and disease status in a joint regression and classification framework. Here

we first examine the identified biomarkers. Shown in Fig. 5.4 is a summarization of

selected features for all four data types, where the regression/classification weights

are color-mapped for each feature and each task.

In Fig. 5.4(a), many VBM measures are selected to be associated with disease

status, which is in accordance with known global brain atrophy pattern in AD. The

VBM measures associated with RAVLT scores seem to be a subset of those disease

sensitive markers, showing a specific memory circuitry contributing to the disease, as

well as suggesting that the disease is implicated by not only this memory function

but also other complicated factors. Evidently, the proposed method could have a

potential to offer deep mechanistic understandings. Shown in Fig. 5.5 is a compari-

son between RAVLT-relevant markers and AD-relevant markers and their associated

weights mapped onto a standard brain space.

Fig. 5.4(b) shows the identified markers from the FreeSurfer data. In this

case, a small set of markers are discovered. These markers, such as hippocampal

volume, amygdala volume, and entorhinal cortex thickness, are all well-known AD-
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relevant markers, showing the effectiveness of the proposed method. These markers

are also shown to be associated with both AD and RAVLT. The FDG-PET findings

(Fig. 5.4(c)) are also interesting and promising. The AD-relevant biomarkers include

angular, hippocampus, middle temporal, and post cingulate regions, which agrees

with prior findings (e.g., [67]). Again, a subset of these markers are also relevant to

RAVTL scores.

As to the genetics, only top findings are shown in Fig. 5.4(d). The APOE

E4 SNP (rs429358), the best known AD risk factor, shows the strongest link to both

disease status and RAVLT scores. A few other important AD genes, including recently

discovered and replicated PICALM and BIN1, are also included in the results. For

those newly identified SNPs, further investigation in independent cohorts should be

warranted.

5.3.3 Improved Disease Classification

We classify the selected participants of ADNI cohort using the proposed meth-

ods by integrating the four different types of data. We report the classification

performances of our method. We compare our methods against several most re-

cent multiple kernel learning (MKL) methods that are able to make use of multiple

types of data including SVM ℓ∞ MKL method [51], SVM ℓ1 MKL [49], SVM ℓ2

MKL method [47], least square (LSSVM) ℓ∞ MKL method [48], LSSVM ℓ1 MKL

method [46] and LSSVM ℓ2 MKL method [45]. We also compare a related method,

Heterogeneous Multi-task Learning (HML) method [64], which simultaneously con-

ducts classification and regression like our method. However, because this method

is designed for homogenous input data and is not able to deal with multiple types

of data at the same time, we concatenate the four types of features as its input. In

addition, we report the classification performances by our method and SVM on each
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individual types of data as baselines. SVM on a simple concatenation of all four types

of features are also reported. In our experiments, we conduct three-class classifica-

tion, which is more desirable and more challenging than binary classifications using

each pair of three categories.

We conduct standard 5-fold cross-validation and report the average results.

For each of the 5 trials, within the training data, an internal 5-fold cross-validation is

performed to fine tune the parameters. The parameters of our methods (γ1 and γ2 in

Eq. (5.8)) are optimized in the range of {10−5, 10−4, . . . , 104, 105}. For SVM method

and MKL methods, one Gaussian kernel is constructed for each type of features

(i.e., K (xi,xj) = exp (−γ||xi − xj ||22)), where the parameters γ are fine tuned in the

same range used as our method. We implement the MKL methods using the codes

published by [45]. Following [45], in LSSVM ℓ∞ and ℓ2 methods, the regularization

parameter λ is estimated jointly as the kernel coefficient of an identity matrix; in

LSSVM ℓ1 method, λ is set to 1; in all other SVM approaches, the C parameter of

the box constraint is set to 1. We use LIBSVM1 software package to implement SVM.

We implement HML method following the details in its original work, and set the

parameters to be optimal. The classification performances measured by classification

accuracy of all compared methods in AD detection are reported in Table 5.3.

A first glance at the results shows that our methods consistently outperform

all other compared methods, which demonstrates the effectiveness of our methods

in early AD detection. In addition, the methods using multiple data sources are

generally better than their counterparts using one single type of data. This confirms

the usefulness of data integration in AD diagnosis. Moreover, our methods always

outperform the MKL methods in these experiments, although both take advantage

of multiple data sources. This observation is consistent with our theoretical analysis.

1http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Table 5.3. Classification performance comparison between the proposed method and
related methods for distinguishing HC, MCI and AD.

Methods Accuracy (mean+std)

SVM (SNP) 0.561 ± 0.026
SVM (FreeSurfer) 0.573 ± 0.012
SVM (VBM) 0.541 ± 0.032
SVM (PET) 0.535 ± 0.026
SVM (all) 0.575 ± 0.019
HML (all) 0.638 ± 0.019

SVM ℓ∞ MKL method 0.624 ± 0.031
SVM ℓ1 MKL method 0.593 ± 0.042
SVM ℓ2 MKL method 0.561 ± 0.037
LSSVM ℓ∞ MKL method 0.614 ± 0.031
LSSVM ℓ1 MKL method 0.585 ± 0.018
LSSVM ℓ2 MKL method 0.577 ± 0.033

Our method (SNP) 0.673 ± 0.021
Our method (FreeSurfer) 0.689 ± 0.029
Our method (VBM) 0.669 ± 0.031
Our method (PET) 0.621 ± 0.028

Our method 0.726 ± 0.032

That is, our methods not only assign proper weight to each type of data, but also

consider the relevance of the features inside each individual type of data. In contrast,

the MKL methods address the former while not taking into account the latter.

5.3.4 Improved Memory Performance Prediction

Now we evaluate the memory performance prediction capability of the pro-

posed method. Because the cognitive scores are continuous, we evaluate the proposed

method via regression and compare it to two baseline methods, i.e., multivariate lin-

ear regression (MRV) and ridge regression. Because both MRV and ridge regression

are for single-type input data, we conduct regression on each of the four types of

features and a simple concatenation of them. Similarly, we also predict memory per-
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Table 5.4. Comparison of memory prediction performance measured by average RM-
SEs (smaller is better).

Test case TOTAL TOT6 TOTB T30 RECOG

MRV (SNP) 6.153 2.476 2.168 2.201 3.483
MRV (FreeSurfer) 5.928 2.235 2.039 2.088 3.339
MRV (VBM) 6.093 2.289 2.142 2.137 3.394
MRV (PET) 6.246 2.514 2.237 2.215 3.615
MRV (all) 5.909 2.232 1.992 2.032 3.306

Ridge (SNP) 6.076 2.416 2.147 2.117 3.368
Ridge (FreeSurfer) 5.757 2.203 2.004 2.017 3.237
Ridge (VBM) 5.976 2.147 2.038 2.129 3.249
Ridge (PET) 6.153 2.443 2.186 2.107 3.515
Ridge (all) 5.704 2.143 1.989 1.994 3.193

Our method (SNP) 5.991 2.201 2.008 2.001 3.107
Our method (FreeSurfer) 5.601 2.106 1.947 1.886 3.015
Our method (VBM) 5.715 2.011 1.899 1.974 3.041
Our method (PET) 6.013 2.241 2.017 2.017 3.331
Our method (all) 5.506 1.984 1.886 1.841 2.989

formance by our method on the same test conditions. When multiple-type input data

is used, as demonstrated in Section 5.3.2, our method automatically and adaptively

select the prominent biomarkers for regression. For each test case, we conduct stan-

dard 5-fold cross-validation and report the average results. For each of the 5 trials,

within the training data, an internal 5-fold cross-validation is performed to fine tune

the parameters in the range of {10−5, 10−4, . . . , 104, 105} for both ridge regression and

our method. For our method, in each trial, from the learned coefficient matrix we

sum the absolute values of the coefficients of a single feature over all the tasks as

the overall weight, from which we pick up the features with non-zero weights (i.e.,

w > 10−3) to predict regression responses for test data. The performance assessed by

root mean square error (RMSE), a widely used measurement for statistical regression

analysis, are reported in Table 5.4.
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From Table 5.4 we can see that the proposed method always has better memory

prediction performance. Among the test cases, the FreeSurfer imaging measures and

VBM imaging measure have similar predictive power, which are better than those of

PET imaging measures and SNP features. In general, combining the four types of

features are better than only using one type of data. Because our method adaptively

weight each type of data and each feature inside a type of data, it has the least re-

gression error when using all available input data. These results, again, demonstrated

the usefulness of our method and data integration in early AD diagnosis.

5.4 Conclusions

In this chapter, we proposed a novel sparse multi-modal multi-task learning

method to identify the disease sensitive biomarkers via integrating heterogeneous

imaging genetics data. We utilized the joint classification and regression learning

model to identify the disease sensitive and QT relevant biomarkers. We introduced a

novel combined structured sparsity regularization to integrate heterogeneous imaging

genetics data, and derived a new efficient optimization algorithm to solve our non-

smooth objective function and followed with the rigorous theoretical analysis on the

global convergency. The empirical results showed our method improved both memory

scores prediction and disease classification accuracy.
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Figure 5.4. Weight maps for multi-modal data: (a) VBM measures from MRI, (b)
FreeSurfer measures from MRI, (c) glucose metabolism from FDG-PET, and (d)
top SNP findings. Weights for disease classification were labeled as Diag-L (left
side), Diag-R (right side), or Diag; and weights for RAVLT regression were labeled
as AVLT-L, AVLT-R or AVLT. In (a-c), weights were normalized by dividing the
corresponding threshold used for feature selection, and thus all selected features had
normalized weights ≥ 1 and were marked with “x”. In (d), only top SNPs were
shown, weights were normalized by dividing the weight of the 10th top SNP, and the
top 10 SNPs for either classification or regression task had normalized weights ≥ 1
and were marked with “x”..
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(a) Overall weights for disease classifi-
cation

(b) Overall weights for AVLT regression

Figure 5.5. VBM weights of joint regression of AVLT scores and classification of
disease status were mapped onto brain..
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CHAPTER 6

FROM PHENOTYPE TO GENOTYPE: AN ASSOCIATION STUDY OF

LONGITUDINAL PHENOTYPIC MARKERS TO ALZHEIMER’S DISEASE

RELEVANT SNPS

6.1 Introduction

Neuroimaging genetics is an emerging research field, where brain imaging is

used as quantitative phenotypes to investigate the role of genetic variation in brain

structure and function. It holds great promise for a systems biology of the brain

to better understand complex neurobiological systems, from genetic determinants to

cellular processes to the complex interplay of brain structure, function, behavior and

cognition. Disorders of the nervous system are associated with complex neurobiolog-

ical changes, which may lead to profound alterations at all levels of organization.

Genome-wide association studies (GWAS) have been increasingly performed to

correlate high-throughput SNP data to large-scale imaging data. To facilitate such

association analysis, many studies employed a hypothesis-driven approach [30] by

making significant reduction in one or both data types. For example, some whole brain

studies focused on a small number of genetic variables, e.g ., [68–71], and some whole

genome studies examined a limited number of imaging variables, e.g ., [29, 72, 73].

Many SNPs have been identified as risk factors for Alzheimer’s Disease (AD), see

those in the AlzGene database (www.alzgene.org).

So far most studies focus on selecting and associating SNPs to AD status or

imaging phenotypes. Very few studies have been done to directly examine how the

SNP values change when phenotypic measures are varied, i.e., via regression of SNP
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values on phenotypic measures. This alternative approach may have a potential to

help us discover important imaging genetic associations from a different perspective.

In this study, we perform such an initial analysis for finding phenotypic imaging

markers which are related to SNPs from or proximal to AlzGene candidates.

Neuroimaging measures have been widely studied to predict disease status

and/or cognitive performance [5, 6]. However, whether these measures coupled with

their longitudinal profiles have sufficient power to infer relevant genotype groups is

still an under-explored yet important topic in AD research. A simple strategy typi-

cally used in longitudinal studies (e.g., [74]) is to analyze a single summarized value

such as average change, rate of change, or slope. This approach may be inadequate to

distinguish the complete dynamics of cognitive trajectories and thus become unable

to identify the underlying genetic structure.

With these observations, in this work, we propose a new task-correlated longitu-

dinal sparse regression framework to effectively identify the longitudinal phenotypic

markers related to candidate AD SNPs. Based on the emerging structured sparse

learning techniques, which has been effectively applied in imaging genetics studies,

the new combined structured sparse regularizations are introduced to tackle the lon-

gitudinal phenotypic patterns and biological genotypic correlations. The proposed

new computational biology model consists of three major components. First, due to

the serial measures of the imaging phenotypes over time, we propose a novel longi-

tudinal regression analysis method. As a result, the regression coefficients assess the

relationships between longitudinal phenotypes and their genetic makeups. Second,

certain SNPs are naturally correlated via different ways, e.g. multiple SNPs from

one single gene often jointly carry out similar genetic functionalities, SNPs in high

linkage disequilibrium (LD) are linked together in meiosis. To incorporate such SNP

correlations in our association studies, we propose to use the trace/nuclear norm reg-
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ularization [75] to approximately minimize the rank of regression coefficient matrix,

such that the coefficients of phenotypes associated to correlated SNPs are linearly

dependent. Lastly, through enforcing the ℓ2,1-norm regularization, the imaging fea-

ture selection across most SNPs are coupled [12, 13], so that the identified imaging

phenotypes are longitudinally stable and have common influence on all the SNPs.

We apply the proposed method to the ADNI cohort [15] for identifying longitu-

dinal phenotypes using a set of SNPs based on the AlzGene database. Our empirical

results yield not only clearly improved prediction performance in all test cases, but

also a compact set of associations between phenotypes and genotypes that are in

accordance with prior research findings.

6.2 Materials and Data Sources

Both SNP and structural magnetic resonance imaging (MRI) data used in the

preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (adni.loni.ucla.edu). One goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), positron emission tomography

(PET), other biological markers, and clinical and neuropsychological assessment can

be combined to measure the progression of mild cognitive impairment (MCI) and early

Alzheimer’s disease (AD). For up-to-date information, we refer interested readers to

www.adni-info.org.

6.2.1 SNP genotypes

The SNP data used in this study [32] were genotyped using the Human 610-

Quad BeadChip (Illumina, Inc., San Diego, CA). Among all SNPs, only SNPs, belong-

ing to the top 40 AD candidate genes listed on the AlzGene database (www.alzgene.org)

as of June 10, 2010, were selected after the standard quality control (QC) and impu-
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tation steps. The QC criteria for the SNP data include (1) call rate check per subject

and per SNP marker, (2) gender check, (3) sibling pair identification, (4) the Hardy-

Weinberg equilibrium test, (5) marker removal by the minor allele frequency and (6)

population stratification. As the second pre-processing step, the quality-controlled

SNPs were imputed using the MaCH software [33] to estimate the missing genotypes.

After that, the Illumina annotation information based on the Genome build 36.2 was

used to select a subset of SNPs, belonging to the top 40 AD candidate genes [34].

The above procedure yielded 1224 SNPs from 37 genes. For the remaining 3 genes,

no SNPs were available on the genotyping chip.

6.2.2 MRI analysis and extraction of imaging phenotypes

Two widely employed automated MRI analysis techniques were used to process

and extract imaging genotypes across the brain from all the MRI scans of ADNI

participants as previously described [16]. First, voxel-based morphometry (VBM)

[35] was performed to define modulated gray matter (GM) maps and extract local

GM values for target regions. Second, automated parcellation via FreeSurfer V4

[17,76] was conducted to define volumetric and cortical thickness values for regions of

interest (ROIs) and to extract total intracranial volume (ICV). Further information

is available in [16]. The time points examined in this study for imaging markers

included baseline (BL), Month 6 (M6), Month 12 (M12) and Month 24 (M24). All

the participants with no missing BL/M6/M12/M24 MRI measurements were included

in this study. Fig. 6.2 shows the names of these ROIs in the brain space. All these

measures were adjusted for baseline ICV using the regression weights derived from

the healthy control (HC) participants.
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6.3 Task-Correlated Longitudinal Sparse Regression

For the association study of longitudinal imaging phenotypes to the genotypes,

the input imaging features are a set of matrices X = {X1, X2, . . . , XT} ∈ R
d×n×T cor-

responding to the measurements at T consecutive time points, whereXt is the imaging

measurements for a certain type of imaging markers, such as VBM or FreeSurfer mark-

ers used in this study, at time t (1 ≤ t ≤ T ). Obviously, X is a tensor data with d imag-

ing features, n subject samples and T time points. The output genetic variations de-

scribed by c SNPs for the n subject samples forms a matrix Y = [y1, . . . ,yn]
T ∈ R

n×c,

where the yi ∈ R
c is the SNPs values of the i-th subject sample. Our goal is to learn

from {X , Y } a model that can reveal the associations between the longitudinal imag-

ing phenotypes X and the genotypes Y .

A straightforward method for relating imaging phenotypes and SNPs is to per-

form regression at each time point separately, which, though, does not take into

account the valuable information conveyed by the longitudinal patterns of the phe-

notypic inputs. To overcome this limitation, different from previous studies that

learned the regression coefficient matrix for each time point individually, we aim to

learn a unified longitudinal regression model to find the genetic features which are

associated to the longitudinal imaging patterns over all the measurement time points.

To this end, we expect to learn a coefficient tensor (a stack of coefficient matrices)

B = {B1, · · · , BT} ∈ R
d×c×T to reveal the temporal changes of the coefficient matri-

ces. In this chapter, we propose to use the low-rank structured sparse regularizations

to explore the temporal patterns and the interrelatedness between SNPs in a new

task-correlated longitudinal sparse regression model.
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6.3.1 Task-correlated longitudinal sparse regression using low-rank structured sparse

regularizations

The simplest model to associate the the phenotypic markers to the genotypes is

the multivariate regression model, which solves the following optimization problem:

min
B

J0 = L (B) + γ||B||22 = L (B) + γ
T∑

t=1

d∑

k=1

||bk
t ||22. (6.1)

where bk
t denotes the k-th row of coefficient matrix Bt at time t, and L (B) is the

proposed longitudinal loss and defined as:

L (B) = ||B ⊗1 X T − Y ||2F =

T∑

t=1

||XT
t Bt − Y ||2F . (6.2)

Because the objective J0 in Eq. (6.1) can be decoupled for each individual time point

and does not consider the longitudinal correlations between the imaging features

and the SNPs, it is not suitable for longitudinal data analysis and feature selection.

Because the selected imaging markers with temporal changes are desired to connect

all the SNPs, the T groups of regression tasks at different time points should not be

decoupled and have to be performed simultaneously. Thus we introduce the structured

sparse regularization [12–14] into the longitudinal data regression and feature selection

model as following:

min
B

J1 = L (B) + γ

d∑

k=1

√√√√
T∑

t=1

||bk
t ||22, (6.3)

Apparently, J1 in Eq. (6.3) can no longer be decoupled over time dimension. Upon

solution, the imaging features with common influences to all the SNPs across all the

time points will be identified out due to the second term in Eq. (6.3), which essentially

is a tensor extension of the widely used ℓ2,1-norm for matrices.

To further take into account that many SNPs are interrelated together and

their effects on brain structure or disease progression could overlap, we expect to
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further develop J1 in Eq. (6.3) to leverage the useful information conveyed by the

SNPs correlations. Mathematically speaking, due to the interrelatedness among the

SNPs, the learning vector (bt)j should have certain correlations, where (bt)j denotes

the j-th column of Bt. Namely, the coefficient matrices Bt (1 ≤ t ≤ T ) should be of

low-rank. Given a general n-mode tensor T ∈ R
I1×I2×···×In, we denote unfoldk (T ) =

T(k) ∈ R
Ik×(I1...Ik−1Ik+1...In) as the unfolding operation along its k-th mode. Then we

can achieve our goal by minimizing the rank of B(1) = [B1, B2, . . . , BT ] ∈ R
d×(c×T )

induced from B, which leads to the following optimization problem:

min
B

J2 = L (B) + γ1

d∑

k=1

√√√√
T∑

t=1

||bk
t ||22 + γ2 ‖B‖∗ , (6.4)

where ‖‖∗ denotes the trace-norm of a matrix, and without ambiguity we drop the

subscript of the matrix B(1) for notation brevity. Given a matrix M ∈ R
n×m and its

singular values σi (1 ≤ i ≤ min (n,m)), the trace-norm of M is defined as ‖M‖∗ =

∑min (n,m)
i=1 σi = Tr

(
MMT

) 1
2 . It has been shown that [75] the trace-norm is the

best convex approximation of the rank-norm. Therefore, the third term of J2 in

Eq. (6.4) indeed minimizes the rank of the unfolded learning model B, such that the

correlations among the SNPs are captured. Due to its both capabilities for imaging

marker selection and task correlation integration, we call J2 defined in Eq. (6.4) as

the proposed task-correlated longitudinal sparse regression model.

6.3.2 A New Optimization Algorithm and Its Global Convergence

Because our new objective J2 is non-smooth, the problem in Eq. (6.4) is diffi-

cult to solve in general. Some existing methods, such as LARS [58], linear gradient

search [59], proximal [60] methods, can solve it, but not efficiently. Thus, in this

subsection we derive a new efficient algorithm to solve J2 with rigorous proof of its

global convergence.
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Taking the derivative of J2 w.r.t Bt and set it to zeros, we have:

2XtX
T
t Bt − 2XtY + 2γ1DBt + 2γ2D̄Bt = 0, (6.5)

where D is a diagonal matrix with D(k, k) = 1

2
√

∑T
t=1 ||b

k
t ||

2
2

and D̄ =
(
BBT

)−1/2
/2.

Thus, we can derive:

Bt = (XtX
T
t + γ1D + γ2D̄)−1XtY. (6.6)

When the time t changes from 1 to T , we can compute Bt (1 ≤ t ≤ T ) by Eq. (6.6).

Because D and D̄ depend on B and can be seen as latent variables, we propose an

iterative algorithm to obtain the global optimum solutions of B in Algorithm 4.

Algorithm 4: A new algorithm to minimize J2 in Eq. (6.4).

Data: X ∈ R
d×n×T , Y ∈ R

n×c.

1. Initialize B(0) ∈ R
d×c×T using the regression results at each individual time

point.

repeat

2. Calculate the diagonal matrix D, where the k-th diagonal element is

computed as 1

2
√

∑T
t=1 ||b

k
t ||

2
2

.

3. Calculate D̄ = 1
2

(
BBT

)− 1
2 .

4. Update Bt by Bt = (XtX
T
t + γ1D + γ2D̄)−1XtY .

until Converges

Result: B = {B1, B2, . . . , BT } ∈ R
d×c×T .

We summarize the convergence of Algorithm 4 as following.

Theorem 5 Algorithm 4 monotonically decreases J2 in Eq. (6.4) in each iteration,

and converges to the globally optimal solution.
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Proof : In Algorithm 4, in each iteration we denote the updated Bt as B̃t and

the updated L as L̃. From step 4 we know that:

L̃+ γ1

T∑

t=1

Tr(B̃T
t DB̃t) + γ2

T∑

t=1

Tr(B̃T
t D̄B̃t) ≤

L+ γ1

T∑

t=1

Tr(BT
t DBt) + γ2

T∑

t=1

Tr(BT
t D̄Bt).

(6.7)

In each iteration, denote the updated B as B̃ and the updated bk
t as b̃k

t , ac-

cording to the definitions of D and D̄, we can write:

L̃+γ1
2

d∑

k=1

||
∑T

t=1 b̃
k
t ||22√∑T

t=1 ||bk
t ||22

+
γ2
2
Tr
(
B̃B̃T

(
BBT

)− 1
2

)
≤

L+γ1
2

d∑

k=1

||
∑T

t=1 b
k
t ||22√∑T

t=1 ||bk
t ||22

+
γ2
2
Tr
(
BBT

(
BBT

)− 1
2

)
.

(6.8)

Following [14], it can be verified that:

√√√√
T∑

t=1

||b̃k
t ||22 −

∑T
t=1 ||b̃k

t ||22
2
√∑T

t=1 ||bk
t ||22

≤

√√√√
T∑

t=1

||bk
t ||22 −

∑T
t=1 ||bk

t ||22
2
√∑T

t=1 ||bk
t ||22

.

(6.9)

Tr
(
B̃B̃T

) 1
2 − TrB̃B̃T

(
BBT

)− 1
2 ≤

Tr
(
BBT

) 1
2 − TrBBT

(
BBT

)− 1
2 .

(6.10)

Adding the both sides of Eqs. (6.8–6.10) together, we obtain:

L̃+ γ1

d∑

k=1

√√√√
T∑

t=1

||b̃k
t ||22 + γ2Tr

(
B̃B̃T

) 1
2 ≤

L+ γ1

d∑

k=1

√√√√
T∑

t=1

||bk
t ||22 + γ2Tr

(
BBT

) 1
2 .

(6.11)
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Thus, our algorithm decreases the objective value of Eq. (6.4) in each iteration.

When the objective value keeps unchange, Eq. (6.5) is satisfied, i.e., the KKT condi-

tion of the objective is satisfied. Our algorithm reaches one of the optimal solution.

Because our objective in Eq. (6.4) is a convex problem, our Algorithm 4 will converge

to one of the globally optimal solution. �

Computational analysis. In the iteration loop of Algorithm 4, steps 2 is compu-

tationally trivial. Step 3 solves a singular value decomposition (SVD) problem, and

step 4 solves a system of linear equations, both of which, thereby the whole algorithm,

are well studied in literature and can be solved very efficiently by existing numerical

packages.

6.4 Experimental Results and Discussions

In this section, we evaluate the proposed method by applying it to the ADNI

cohort, where a wide range of imaging markers measured over a period of two years

are examined and associated to SNPs that are relevant to AD. The goal is to discover

a compact set of phenotypic imaging markers that are closely related to AD sensitive

genotypes encoded by SNPs.

6.4.1 Improved prediction of SNPs from longitudinal phenotypic imaging markers

We first evaluate the proposed method by applying it to the ADNI cohort to

predict the SNPs of the participants from each of their two types of imaging pheno-

types, i.e., VBM markers and FreeSurfer markers, tracked over four different time

points, including baseline (BL) and 6/12/24-month (M06/M12/M24). Because some

subjects of the ADNI cohort do not have complete imaging marker measurements over

all the four time points, in our experiments we use the subject samples that have both
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Table 6.1. Numbers of participants in the experiments using two different types of
imaging markers.

Imaging phenotypes # total # AD # MCI # HC

VBM 424 86 194 144
FreeSurfer 474 100 216 158

SNPs data and complete imaging measurements. As a result, two subsets of ADNI

subjects are included in our experiments, one for each type of imaging phenotypes,

as detailed in Table 6.1.

We compare the proposed method against its three close counterparts including

multivariate linear regression (LR) method, ridge regression (RR) method, and least

absolute shrinkage and selection operator (Lasso) [11] method. LR method is the

most broadly used association model in both statistical learning and imaging genet-

ics. RR method is the regularized version of LR model to avoid over-fitting. Lasso

method replaces the squared ℓ2-norm regularization in RR method by the ℓ1-norm

regularization, from which sparse results can be achieved [11]. Different to these com-

pared methods, our new association model imposes structured sparsity via the tensor

ℓ2,1-norm regularization for phenotypic marker selection and the trace-norm regular-

ization for capturing the interrelationships among different SNPs. We implement two

versions of the proposed method as follows. First, we implement our method by only

imposing the trace-norm regularization, denoted as “Ours (Trace-norm only)”, which

only makes use of the SNPs’ correlations, but does not select longitudinal imaging

markers. Second, we implement the full version of the proposed method, denoted

as “Ours”, which solves the problem in Eq. (6.4). For measuring the regression per-

formance of the five compared association models, we use a 5-fold cross-validation

strategy by computing the Pearson’s correlation coefficient (CORR) and the root
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Figure 6.1. Regression performance with respect to the use of different number of
longitudinal time points by three different methods..

mean square error (RMSE) between the predicted and the actual SNPs values, which

are reported in Fig. 6.1.

As can be seen from Fig. 6.1, if we only use the baseline data, the proposed

method is reduced into a conventional multi-task regression model, which appears as

a matrix but not a tensor and achieves only the slightly better performance than the

RR and Lasso methods. On the other hand, by using the longitudinal data, the per-

formance of the proposed method is significantly improved, e.g ., for predicting SNPs

using the longitudinal data over all the four time points, the proposed (BL∼M24)

method achieves the CORR of 0.793 and 0.812 and the RMSE of 0.314 and 0.301,

respectively, which are much better than the case of using only the baseline data.
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Figure 6.2. Weight maps of the association between imaging markers and the SNPs
learned by the proposed method..

In addition, Fig. 6.1 also shows that the usage of longitudinal data can improve

the performances of all the LR, RR and Lasso methods, although the improvements

are much less than the proposed method.

These results demonstrate the effectiveness of using longitudinal data for im-

proved regression from imaging phenotypes to genotypes, especially by the proposed

method, which has the capability to make use of the input data through longitudinal

feature selection and the integration of the interrelatedness among the SNPs.

6.4.2 Identification of longitudinal imaging markers

One primary goal of this study is to identify a subset of imaging phenotypes

that are highly correlated to certain SNPs to capture important imaging genomic

associations in AD research. Thus, we examine the phenotypic imaging markers

identified by the proposed methods, which are relevant to the genotypes encoded by

SNPs.

92



Figure 6.3. Visualization of top 10 VBM features selected by the proposed method at
four different time points. The colors of the selected brain regions show the regression
coefficients of the corresponding VBM markers..

6.4.2.1 Identified imaging markers with high AD risks.

Shown in Fig. 6.2 are the overall regression coefficients for all the VBM and

FreeSurfer measures with respect to the 1224 SNPs used in this study. Because these

SNPs are AlzGene candidates or proximal to the candidates, the results in Fig. 6.2 can

help identify SNP-relevant imaging phenotypes and have a potential to gain biological

insights from gene to brain to symptoms. Besides, the top 10 selected VBM imaging

features, as well as their association coefficients, are visualized in Fig. 6.3 by mapping

them onto the human brain.

A first glance at the association weigh maps shows that the selected imaging

markers have clear patterns that span across all the four studied time points, which

demonstrates that these phenotypic markers are longitudinally stable thus can serve

as screening target over the course of AD progression. We also observe that hip-

pocampal measures (LHippocampus, RHippocampus, LHippVol and RHippVol) are

identified, which is in accordance with the fact that in the pathological pathway of AD,

medial temporal lobe including hippocampus is firstly affected, followed by progres-

sive neocortical damage. The thickness measures of isthmus cingulate (LIsthmCing

and RIsthmCing), frontal pole (LFrontalPole and RFrontalPole) and posterior cin-
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gulate gyrus (LPostCingulate and RPostCingulate) are also selected, which, again,

is accordance with the fact that the GM atrophy of these regions is high in AD. In

summary, the identified longitudinally stable markers strongly agree with the exist-

ing findings, which warrants the correctness of the discovered phenotype-genotype

associations, and reveals the complex relationships among MRI measures, genetic

variations, and diagnosis status. This is of clear importance for theoretical research

and clinical practices for a better understanding of AD mechanism.

6.4.2.2 Case studies: markers identified for rs423958-APOE and rs11136000-CLU.

We provide two case studies to show the top 10 FreeSurfer markers associated

with two major AD risk SNPs: rs423958-APOE and rs11136000-CLU. We explore

the associations between the FreeSurfer markers and the two SNPs in four different

subject groups induced from the ADNI data, i.e., the groups of All, AD, MCI and

HC participants respectively. The number of the subjects in each group is available

in Table 6.1. We select the imaging markers by their average regression coefficients

over all the four time points. The top 10 FreeSurfer markers relevant to rs423958-

APOE and their regression coefficients are shown in Fig. 6.4, and those relevant to

rs11136000-CLU are shown in Fig. 6.5. From Fig. 6.4 we can see that most of the top

10 FreeSurfer markers for rs423958-APOE in the four different testing groups are well

known AD sensitive phenotypes, such as hippocampal volume in All, AD, MCI and

HC groups, amygdala volume in All, AD, MCI and HC groups, accumbens volume

in All and MCI groups, entorhinal cortex thickness in AD and HC groups. Similar

patterns are also observed for rs11136000-CLU, as shown in Fig. 6.5. Although data

is not shown due to space limit, our VBM analyses have also yielded similar results.

The complete imaging marker identification results by our method for both VBM and

FreeSurfer markers on the top 10 identified SNPs are available at the author’s website
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at http://ranger.uta.edu/%7eheng/imgsnp/. These results have again demonstrated

the promise of the proposed method in term of its capability to identify imaging

markers relevant to AD sensitive SNPs.

6.5 Conclusions

Elucidating the associations between longitudinal phenotypic imaging markers

and AD sensitive SNPs is of important value for both scientific research and clinical

practice. In this chapter, we presented a new task-correlated longitudinal sparse re-

gression method to identify longitudinal imaging markers to AD relevant SNPs. In

our newly proposed regression model, we imposed a tensor ℓ2,1-norm regularization

extended from the standard matrix ℓ2,1-norm to capture the temporal patterns in

the longitudinal data over all the tasks of interest, and meanwhile imposed the trace-

norm regularization onto the unfolded coefficient tensor such that the interrelatedness

among the SNPs during the progression of AD conversion is addressed. Due to the

additional time dimension of the input data and the non-smoothness of the tensor ℓ2,1-

norm and trace-norm, solving the formulated objective of our new method was very

challenging. Therefore we presented an efficient iterative algorithm and rigorously

proved its convergence to the global optimum. We applied the proposed method to

the ADNI cohort and evaluated it in both SNPs prediction and longitudinal imaging

marker identification. The clearly improved regression performance in the prediction

and highly suggestive imaging markers selected by our new method have validated

its effectiveness.
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Figure 6.4. Top 10 FreeSurfer markers identified for rs423958-APOE..

0.000E+00

1.000E 02

2.000E 02

3.000E 02

4.000E 02

5.000E 02

6.000E 02

(a) All subjects.

0.000E+00

5.000E 03

1.000E 02

1.500E 02

2.000E 02

2.500E 02

3.000E 02

3.500E 02

4.000E 02

(b) AD subjects.

0.000E+00

5.000E 03

1.000E 02

1.500E 02

2.000E 02

2.500E 02

3.000E 02

(c) MCI subjects.

0.000E+00

1.000E 02

2.000E 02

3.000E 02

4.000E 02

5.000E 02

(d) HC subjects.

Figure 6.5. Top 10 FreeSurfer markers identified for rs11136000-CLU..
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CHAPTER 7

CONCLUSIONS AND FUTURE WORKS

My research mainly focus on imaging genetics, where our goal is to elucidate

the complicated interrelationships among the genotypes, phenotypes, cognitive mea-

surements and diagnosis status on the ADNI platform to help early AD detection.

We have built up a unified framework using sparse learning theories, by which we

can identify disease relevant biomarkers upon different inputs of the available data.

To summarize, from task perspective, we have designed models that can deal with

homogeneous tasks for cognitive measure regression and heterogeneous tasks to ad-

ditionally deal with AD status classification; from data perspective, we have devised

models that can deal with both single-modal and multi-modal input data; we also de-

veloped model to deal with longitudinal data, which is a new, yet important, direction

for imaging genetics.

Recent advances in acquiring multi-modal brain imaging and genome-wide ar-

ray data have provided exciting new opportunities to study the influence of genetic

variation on brain structure and function. Analysis of these multi-modal data sets

will facilitate early diagnosis, deepen mechanistic understanding and improved treat-

ment of brain disorders. In the future, I will harness the opportunities of designing

principled structured sparse learning and multi-task learning approaches to reveal so-

phisticated relationships among multi-modal imaging genetic data sets and addressing

critical challenges of dimensionality, scalability, diversity, complexity, and heterogene-

ity in order to realize the full potential of the data. My new multi-modal learning
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methods will also be applied to solve the emerging multi-dimensional biological data

integration, such as the The Cancer Genome Atlas (TCGA) data analysis.
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