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ABSTRACT 

 

SUPER RESOLUTION WITH BETTER EDGE 

ENHANCEMENT 

 

Gaurav Hansda, M.S. 

 

The University of Texas at Arlington, 2012 

 

Supervising Professor:  Prof. K. R. Rao 

 Super resolution image reconstruction is a promising technique of digital imaging 

which attempts to generate a raster image with a higher resolution than its source. The 

source can consist of one or more images or frames. This thesis focuses on single-frame 

super-resolution i.e. the source is a single raster image. Changing the resolution directly 

refers to resampling the image. Specific algorithms have been designed for scaling up, 

scaling down and rotating images that deliver high quality results. Process of scaling up 

or super-resolution is the primary focus of this thesis, which in contrast scaling down or 

rotating deals with the problem of increasing the amount of pixels or, more general, data. 

In comparison to various other image enhancement techniques, super-resolution image 

reconstruction technique not only improves the quality of under-sampled, low-resolution 

images by increasing their spatial resolution but also attempts to filter out distortions. 

The Iterative back-projection (IBP) is a classical super-resolution method with 

low computational complexity that can be applied in real time applications. However, it 

often produces many artifacts especially along the strong edges. To reduce these jaggy 

artifacts, this thesis proposes a novel approach to single image super-resolution image
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reconstruction. First, an image up-sampling scheme is implemented which takes the 

advantage of bilateral filtering as well as mean shift image segmentation. This produces a 

better smoothed image. Then, a complex shock filter is used to enhance strong edges in 

the initial up-sampling result and obtain an intermediate high-resolution image.  Complex 

shock filters are less sensitive to noise than other shock filters. After that, a 

reconstruction constraint on the high-resolution image is applied, so that fine details can 

be suppressed in the back projection step. IBP is the state of art method for this. Finally, 

as a post-processing step on the reconstructed image, the structural content of low 

resolution image and the correlation among the pixels with similar structure are learned 

and employed on the reconstructed image to further stop across-edge propagation. The 

experimental results proved that this proposed method can remove the artifacts 

subjectively and obtain sharp edges in visual perception. Comparing this algorithm with 

several other state-of-the-art image super-resolution algorithms shows that this approach 

performs better in terms of both qualitatively and quantitatively (peak signal-to-noise ratio 

and mean square error). 
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CHAPTER 1 

INTRODUCTION TO SUPER-RESOLUTION 

1.1 Introduction 

The world has seen an immense global advancement in the technology, both in 

hardware and software. Digital pictures today are all around us- on the web, on digital 

versatile discs (DVDs), on satellite systems; they are everywhere. Having these pictures 

in digital format allows us to manipulate them the way one want them. Digital image 

processing helps in enhancing the features of interest and extracting useful information 

about the scene from the enhanced image. Initial ideas on image processing were used 

in 1920s for just cable transmission of pictures [1] [5]. Since majority of the information 

received by a human being is visual, integrating the ability to process visual information 

into a system would certainly enhance the overall utility.  Work on using computer 

techniques for improving the quality of images obtained from space probe began at the 

Jet Propulsion Laboratory in 1964 when pictures of the moon transmitted by Ranger 7 

were processed by a computer which also corrects various types of the image distortions 

inherent in the on-board television camera [1]. The field of image processing has grown 

considerably during the past few decades with improvements in size, speed, and cost 

effectiveness of the digital computers.  The camera sensor manufacturing units also have 

advanced in their manufacturing techniques to produce good quality high-resolution (HR) 

digital cameras. Although, HR digital cameras are available, many computer vision 

applications such as satellite imaging, target detection, medical imaging, and many more 

still have a strong requisition for higher resolution imagery which very often exceed the 

capabilities of these HR digital cameras. To cope up with strong demand of higher
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-resolution imagery, these applications have approached image-processing techniques 

for a solution to generate good quality HR imagery. 

The topic of super resolution (SR) first appeared in the early 1980s, with one of 

the first papers in the signal processing community, the paper by Tsai and Huang [2]. 

Super-resolution image reconstruction is a promising technique of digital imaging which 

attempts to reconstruct HR imagery by fusing the partial information contained within a 

number of under sampled low-resolution (LR) images of that scene during the image 

reconstruction process. Super-resolution image reconstruction involves up-sampling of 

under-sampled images thereby filtering out distortions such as noise and blur. In 

comparison to various image enhancement techniques, super-resolution image 

reconstruction technique not only improves the quality of under-sampled, low-resolution 

images by increasing their spatial resolution but also attempts to filter out distortions. 

1.2 Image Resolution 

Optical resolution is a measure of the ability of a camera system, or a component 

of a camera system, to depict the picture detail [3]. On the other hand, image resolution is 

defined as the fineness of detail that can be clearly distinguished in an image. Resolution 

is a fundamental issue in judging the quality of various image acquisitions or processing 

systems. In its simplest form, image resolution is defined as the smallest discernible or 

measurable detail in a visual presentation. Both the definitions apply to digital and analog 

camera systems and images. However, in this research, the term resolution will only 

relate to digital camera systems and digital images. Researchers in digital image 

processing and computer vision classify resolution into three different types [4]. 

• Spatial Resolution: An image is made up of small picture 

elements called pixels. Spatial resolution refers to the spacing of the 

pixels in an image and is measured in pixels per unit length. The higher 
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the spatial resolution, the more are the pixels in an image. High spatial 

resolution allows a clear perception of sharp details and subtle color 

transitions in an image. In case an image with high levels of details is 

not represented by a spatially dense set of pixels, the image is said to 

suffer from aliasing artifacts. For an output device such as a printer the 

spatial resolution is expressed in dots per inch (dpi) [4]. 

• Brightness Resolution: Also known as gray-level resolution, it 

refers to the number of brightness levels or gray-levels used to 

represent a pixel. The brightness resolution increases with the number 

of quantization levels used. A monochrome image is usually quantized 

using 256 levels with each level represented by 8 bits. For a color 

image, at least 24 bits are used to represent one brightness level, i.e., 8 

bits per color plane (red, green, blue). It should be noted that the 

number of gray value quantization levels is also intrinsically related to 

the spatial sampling rate. If the camera sensor has fewer quantization 

levels, it should have a much higher spatial sampling rate to capture the 

scene intensity. This idea is quite similar to that of delta modulation 

used in communication systems and to that of dithering used in half-

tone printing [4]. 

• Temporal Resolution: It represents the frame rate or the number 

of frames captured per second. Higher the temporal resolution, lesser is 

the flicker observed. The lower limit on the temporal resolution is 

proportional to the amount of motion that occurs between two 

consecutive frames. The typical frame rate for a pleasing view is about 

25 frames per second or above [4]. 
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Another kind of resolution of interest is the spectral resolution and it refers to the 

frequency or spectral resolving power of a sensor that gives the bandwidth of the light (or 

electro-magnetic wave) frequencies captured by the sensor. It is defined as the smallest 

resolvable wavelength difference by the sensor. The spectral resolution plays an 

important role in satellite imaging.  

In this research, the term resolution refers to the spatial resolution unless 

otherwise mentioned. As stated earlier, spatial resolution essentially describes the total 

number of pixels in an image, horizontally and vertically. For instance, a digital image 300 

pixel (wide) x 300 pixel (high) consists of a total of 90,000 pixels or is nearly 0.1 

megapixel (MP) image. If this image is quadrupled, the dimensions will be 1,200 pixels 

(wide) x 1,200 pixels (high) with a total of 1,440,000 pixels or nearly 1.5 MP. Clearly, the 

detail carrying capacity of an image is directly proportional to the number of pixels in an 

image. Higher the number of pixels, higher is the detail representation of the image. 

1.3 Image Degradation Factors 

 The acquired image usually represents the scene usually in an unsatisfactory 

manner. Since, real imaging systems as well as imaging conditions are imperfect: an 

observed image represents only a degraded version of the original scene. These 

degradations in the images are caused due to various factors such as blur, noise and 

aliasing. Figure 1.1 shows an example of the original scene and a corrupted image. Such 

distortions may get introduced into an imaging system due to the following reasons: 

 Motion between the camera sensor and the scene or subject. 

 Camera optics and lenses. 

 Atmosphere. 

 Insufficient sampling. 
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Factors like motion of the scene, wrong focus, atmospheric turbulence and 

optical point spread function can introduce degradations in an image known as blur, 

during the imaging process. Removing the effect of blurring in an image is known as de-

blurring which is a well known image enhancement technique. If the conditions at the 

time of acquiring an image are known, it is much easier to de-blur the image accurately. 

Figure 1.2 shows an example of a blurred image and the original scene. 

 

  

Figure 1.1 Original image (left panel) and its noisy, blurred and under-sampled image 
(right-panel). 

 

Noise is a random background event and is certainly not a part of the ideal 

scene/signal and may be caused by a wider range of sources such as variations in 

detector sensitivity, optical imperfections and environmental changes. Although many 

noise models exist in literature, only Gaussian white noise is considered as it provides a 

good model for noise in most of the imaging systems. The noise is also assumed to be 

spatially uncorrelated with respect to the image, i.e., there is no correlation between the 
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image pixel values and the noise components. Figure 1.3 shows an example of a noise-

corrupted image.  

 

Figure 1.2 Original image (left panel) and its blurred image (right-panel). 

 
 Guassian Noise

  

original image

 

Figure 1.3 Example of the noise-corrupted image (left panel) of an original scene (right-
panel) 
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Another factor affecting image resolution is due to the insufficient spatial 

sampling of images. As per the Shanon-Nyquist sampling theorem [5] [6] [7], the 

sampling rate should be greater than twice the highest frequency. If the sampling 

frequency is less than twice the highest frequency,  then all frequency components higher 

than the half the sampling frequency are reflected as lower frequencies in the 

reconstructed signal. This is referred to as under-sampling of images which occurs in 

many imaging sensors. Because of under-sampling, the high frequency component 

overlap with the low frequency components and get introduced into the reconstructed 

image/signal causing degradation of the image. Such degradation is known as aliasing 

which consequently causes partial loss of scene information. The aliasing may also give 

rise to artifacts thereby corrupting the reconstructed image. In order to reduce these 

artifacts, anti-aliasing techniques are implemented. Figure 1.4 shows as example of an 

aliased, under-sampled image and the original scene. 

   

 Figure 1.4 Example of an under-sampled image (left panel) of an original scene (right-
panel) 
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1.4 Significance of Super-resolution 

As defined earlier, spatial resolution refers to the spacing of pixels in a digital 

image. Therefore, more the number of pixels, more detailed are the information contained 

within the image. So a fundamental question arises as to why in the first place the super-

resolution algorithms are required. To answer this question first one should know about 

the image sensor. 

An image sensor or camera is a device which converts optical energy into an 

electrical signal. Modern imaging sensors are based on the charge-coupled device (CCD) 

technology or a complementary metal-oxide-semiconductor (CMOS) active-pixel sensor. 

This essentially consists of an array of photo-detector elements or pixels that have a 

voltage output proportional to the incident light [8]. The sensor size or equivalently the 

number of sensor elements per unit area in the first place decides the spatial resolution of 

the image to capture. Higher the number of detector elements, more is the resolution. An 

imaging system with inadequate detectors will produce a low resolution image, with 

blocky effect. This is because when a scene is photographed from a low resolution 

camera, it is sampled at a low spatial sampling frequency, causing aliasing effect. Now 

based on this, there can be two possible ways to increase the resolution. 

One is to reduce the size of the photo-detector elements. Thereby increasing the 

density and hence the sampling rate. But as pixel size decreases, the amount of light 

incident on each pixel also decreases, and this causes shot noise [9] [10], which 

degrades the image quality. Increasing the pixel density increases the resolution but also 

causes the shot noise. Thus there exists a limitation on the size of a pixel in a sensor and 

the optimal size is estimated to be about 40μm
2
 [11]. The current image sensor 

technology has almost reached this level. 
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 Another approach to increase the resolution is to increase the wafer size which 

leads to increase in the capacitance [12]. But such an increase in capacitance will 

certainly cause a decrease in charge transfer rate. This limitation causes the image of a 

point light source to be blurred. Also there is distortion due to aliasing because of a low 

sampling rate for a low resolution sensor. In certain defense computer vision applications, 

unmanned aerial vehicles (UAVs) are used for acquiring images. All UAVs have a 

payload carrying capacity and is usually half the UAVs take off or launch weight [13]. It is 

therefore not feasible to mount heavy HR cameras with image stabilization equipment to 

counteract the vibrations of UAVs.  The ever demanding need for high resolution imagery 

stimulated research and development of super-resolution techniques. 

While the image sensors limit the spatial resolution of the image, the image 

details (high-frequency bands) are also limited by the optics, due to lens blurs 

(associated with sensor point spread function (PSF)), lens aberrations effects, aperture 

diffractions, and optical blurring due to motion [14]. Constructing imaging chips and 

optical components to capture very high resolution images is prohibitively expensive and 

not practical in most real applications, e.g., widely used surveillance and cell phone built-

in cameras. Besides the cost, the resolution of a surveillance camera is also limited in 

camera storage and hardware storage. Thus there is a need for developing post 

acquisition signal processing techniques to enhance the resolution. These techniques 

being post processing methods applied on low resolution images, they offer flexibility as 

well as cost benefit since there is no additional hardware cost involved. However, the 

increased computational cost may be the burden that any user has to bear. 

Hence to summarize, the more appropriate way of addressing the previously 

mentioned problems is to accept the image degradations and use signal processing to 

post-process the captured images and to trade off computational cost with the hardware 
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cost. These techniques are specifically referred to as super-resolution (SR) 

reconstruction. 

1.5 Applications of Super-resolution 

The field of super-resolution has a vast area of application. Although the concept 

of super-resolution remains the same, the techniques of achieving HR imagery may or 

may not be same for each and every application. This is because in certain applications 

such as real time video surveillance or target detection, computational time is of great 

importance and hence requires a super-resolution technique with high accuracy and low 

computational cost. On the other hand, for certain applications such as astronomical 

imaging or text recognition, computational cost is not a constraint and therefore such 

application can implement super-resolution techniques with high accuracy and a higher 

computational cost. Few of the applications are: 

1. Surveillance video [15] [16]: frame freeze and zoom region of interest 

(ROI) in video for human perception (e.g., look at the license plate in the 

video), resolution enhancement for automatic target recognition (e.g., try 

to recognize a criminal’s face). 

2. Remote sensing [17]: several images of the same area are provided, and 

an improved resolution can be sought. 

3. Medical imaging (CT, MRI, ultrasound, etc.) [18] [19] [20] [21]: several 

images limited in resolution quality can be acquired, and SR technique 

can be applied to enhance the resolution. 

4. Video standards conversion, e.g., from NTSC video signal to HDTV 

signal. 

5. Astronomical imaging, [22], [23]. 

6. Target detection and recognition [24]. 
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1.6 Research Outline 

In this research, a novel approach to super-resolution image reconstruction is 

proposed. The problem of super-resolution is treated as an inverse problem, where it is 

assumed that LR frames are degraded versions of a HR image. One criteria of solving 

this inverse problem is minimizing the reconstruction error. In other words, the result 

which can produce the same low resolution image as the input one is preferred. The 

iterative back-projection (IBP) [25] algorithm is a classical and efficient method to obtain 

the HR image by minimizing the reconstruction error. It is state of the art method when 

magnification factor is 2. The original IBP method was designed to reconstruct the HR 

image from multiple LR inputs, but this research focuses on only one input image. It can 

minimize the reconstruction errors efficiently by an iterative process. However, it can 

produce many jaggy artifacts along the edges. Hence, focus is on improving the quality of 

the reconstructed image generated by the original IBP method and proposes a new 

super-resolution framework based on edge is preserved.  

 The quality of the initial interpolation image has a very critical impact on the final 

results, especially along the edges. Then this initial image is modified using bilateral 

filtering [26] to preserve true edges, since bilateral filtering can achieve edge-preserving 

image smoothing. The across-edge error propagation can be further reduced by learning 

non-local similarity by the structure of the pixels in LR image. This method is compared 

with bicubic interpolation [27], IBP and Non-local IBP. The reconstructed images can be 

evaluated using perceptual image quality assessment metrics (FSIM [28], SSIM [29]), 

PSNR and MSE. 
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1.7 Summary 

This chapter gives a brief yet comprehensive overview of what super-resolution 

is. It also makes familiarize with some digital image processing concept mainly with the 

factors that induces degradation in images. It also gives a clear idea on why one requires 

super-resolution. This in turn produces the events that demand super-resolution. Hence 

some essential applications of super-resolution are also studied in this chapter. The next 

chapter will give a clearer idea about image super-resolution.
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CHAPTER 2 

OVERVIEW OF SUPER-RESOLUTION TECHNIQUES 

2.1 Introduction 

 The idea of image super-resolution was first introduced by Tsai and Huang [2] in 

1984. Super-resolution image reconstruction has widely been researched in the last two 

decades. Most of the researches has been carried out for combining multiple LR images 

of the same scene to reconstruct a single or more HR image(s) [2] [30] [31] [32] [33]. The 

basic principle underlying most of the aforementioned techniques is to take multiple 

images from the same object under similar lighting conditions but from slightly different 

sensor locations or orientations. When two images provide different views of the same 

object or landscape, the motion or motion vector field (a set of displacements of the pixel 

grid points between the images) is used to keep the grid points tied to their corresponding 

fixed locations on the viewed surface. The true motion between the images is not known, 

and must therefore be approximated that is a complicated and difficult task [34] [35]. 

Furthermore, most of the aforementioned SR techniques are computationally expensive. 

Another major limitation of these techniques is perhaps the requirement of multiple 

images that are often costly to procure and difficult to acquire at the same temporal 

instant, especially for remote sensing. Commonly, the improvement of spatial resolution 

of multi-frame SR algorithm always has to sacrifice the temporal resolution [2]. Other 

limitations include non-suitability of LR images for SR reconstruction; the application of 

SR algorithms is possible only if the images are sub-pixel shifted.  

 Alternatively, many researchers tackled the image fusion problem of 

reconstructing an LR image using a HR image. A typical example is the use of
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panchromatic image for sharpening multi/hyper-spectral images [36] [37] [38] [39] [40] 

[41]. However, SR reconstruction and image fusion are little different. Image fusion 

combines one or several LR images with one or more HR images in order to obtain a 

useful final image with better spatial resolution than LR image. Therefore, fusion methods 

require the use of at least one HR image and the spatial resolution of their results is 

limited by that HR pixel-size. In contrast, SR algorithms do not use any HR image; they 

only depend on LR image(s).  

Another category of super-resolution is called single image (frame) super-

resolution where only one low resolution input is used to produce the high resolution 

image. However, most of the researchers of the existing literatures believe that the 

quality of a single LR image is limited; and interpolation based on an under-sampled 

image does not allow recovering the lost high-frequency information. Hence single LR 

image cannot be used for SR reconstruction and multiple observations of the same scene 

are needed. Typical single-frame SR construction techniques have been criticized widely 

as ‘image enhancement’ by means of image scaling, interpolation, zooming and 

enlargement [42]. Despite the criticisms, these approaches are preferred where multi-

frame techniques are not applicable or affordable.  

2.2 Image Interpolation 

Literally the word interpolation means – “insert (an intermediate value or term) 

into a series by estimating or calculating it from surrounding known values,” in New 

American Oxford Dictionary (NOAD). In signal processing, image interpolation refers to 

the technique of recovering a continuous signal by estimating image data from a set of 

discrete image data samples. Hence, it acts as a bridge between the continuous and the 

discrete domains. Image interpolation forms a fundamental base in image processing and 

is the heart of many computer vision applications such as medical imaging [18] [19], 
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target detection and recognition [24], and astronomical imaging [22]. Almost every image 

processing software implements some interpolation technique for transformations, 

rotations and many other manipulations performed on an image. It is very important that 

the interpolation techniques have a very low computational cost in terms of both, time 

and memory utilization since they are usually implemented at some intermediate step in a 

system. At the same time, it is necessary for the technique to yield good and accurate 

results, or else it could jeopardize the final solution. For instance, in the field of medical 

imaging, computed tomography (CT) or computed axial tomography (CAT) and magnetic 

resonance imaging (MRI) scan employ interpolation techniques during the registration 

process [19]. A slight error in the interpolated data could cause mis-registration thereby 

significantly affecting the accuracy of reconstruction of the final image which may lead to 

wrong diagnosis of a patient. It is therefore very important to choose a correct type of 

interpolation technique, depending upon the nature of its application, which provides the 

best trade-off between accuracy and computational cost. 

2.2.1. Interpolation Properties 

As per the Shannon-Nyquist sampling theorem [43] [2-7] [38] [39], a continuous 

signal (band-limited) can be completely recovered from its samples, if the sampling 

frequency is at least twice the highest frequency (Nyquist frequency) in the original 

signal. For a 1D case, let  f(x)   be the continuous signal to be reconstructed from its 

samples  fk(m) , where k  = 1, 2, …, p. The interpolation process in terms of convolution 

in the spatial domain can then be given as, 

 f (x )  =  f k (m)*h(x )  for k=1, 2, ..p                    (2.1) 

where h(x) is the interpolation reconstruction kernel. For image resampling, the 

interpolation step must reconstruct a two-dimensional (2-D) continuous signal s(x, y) from 

its discrete samples s(k, l) with s, x, y ϵ IR and k, l ϵ IN0
. Thus, the amplitude at the 
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position (x, y) must be estimated from its discrete neighbors. This can be described 

formally as the convolution of the discrete image samples with the continuous 2-D 

impulse response 2Dh(x, y) of a 2-D reconstruction filter 

 

                   (2.2) 

 

In order for the interpolation technique to reconstruct the continuous signal from 

its discrete data samples, the kernel should be, 

 Symmetric: h(x) = h(-x)                                                                (2.3) 

 Zero for all non-zero integers and one if its argument is zero. This rule 

ensures that the interpolation coefficients become the sampled data 

points. 

                                                             (2.4) 
 Separable in order to reduce computational cost. For example, a 2D 

interpolation kernel is given by  h(x, y), then they are separable as: 

             h (x ,  y)  = h(x )  • h(y)                                                (2.5) 

Therefore, using eq. 3.5 for 2D, eq. 3.1 can be rewritten as: 

f (x,y) = f k (m,n) ⃰  h(x,y)  for k=1, 2, …p                   (2.6) 

         =( (f k  (m,n) ⃰x h(x) ) ⃰y  h(y))  

where ⃰ x and  ⃰y denotes convolution in x and y direction respectively. 

It is a fact that the type, size and shape of the kernel chosen for interpolation are 

major factors contributing to the reconstruction quality of the final image or signal. 

Generally, the size of the interpolation kernel is very crucial since it determines the 

computational cost of the system. 
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Figure 2.1 illustrates the interpolation of the point (x, y) in a 4 x 4 neighborhood. 

Interpolation is performed in the x direction first. The small grey intermediate points in 

Fig. 4 are generated by four one-dimensional (1-D) interpolations. They are used for the 

final 1-D interpolation in the y direction. 

 

Figure 2.1 One-dimensional decomposition of the 2-D N x N interpolation of the 
point (x,y) [44]. 

 
The reason for resampling from a smaller to a larger matrix size is often to make 

an image more pleasing to a human viewer. In this case, the properties of the human 

visual system must be taken into account. Certain types of distortions will be much better 

tolerated by the observer than other distortions. For example, noise which is correlated 

with an image is much more noticeable than noise which is uncorrelated with the image. 

The property which is sought in the final image is not necessarily its mathematical 

similarity to the original scene, but rather the appearance of similarity, i.e., verisimilitude 

(the quality of seeming to be true). Considerable work has been done on interpolation for 

a human observer (for example,see Ratzel [45]). Often, the resampled images are 

produced for further processing by a computer. In this case, verisimilitude is not 

necessarily the best property. Rather, mathematical similarity is more desirable. The form 

of the mathematical similarity will depend on the processing which is to be performed. 
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Keys [27] emphasized similarity of the Taylor series expansion of the two signals. 

Alternately, it may be desirable for the interpolating function to have a flat frequency 

response.  

 
2.2.2. Ideal Interpolation 

Shanon sampling theorem [6] can be formally described as: for a uniformly 

sampled DSP system, an analog signal can be perfectly recovered as long as the 

sampling rate is at least twice as large as the highest-frequency component of the analog 

signal to be sampled. In other words, following two conditions must be true in order to get 

perfect reconstruction: 

1. The signal must be bandlimited. This avoids spectra with in finite extent 

that are impossible to replicate without overlap. 

2. The sampling frequency ƒs must be greater than twice the maximum 

frequency ƒmax present in the signal. This minimum sampling 

frequency, known as the Nyquist rate, is the minimum distance 

between the spectra copies, each with bandwidth ƒmax. 

The first condition merely ensures that a sufficiently large sampling frequency 

exists that can be used to separate replicated spectra from each other. Since all imaging 

systems impose a bandlimiting filter in the form of a point spread function, this condition 

is always satisfied for images captured through an optical system. Note that this does not 

apply to synthetic images, e.g., computer-generated imagery.  

The second condition proves to be the most revealing statement about 

reconstruction. It answers the problem regarding the sufficiency of the data samples to 

exactly reconstruct the continuous input signal. It states that exact reconstruction is 

possible only when ƒs > ƒNyquist where ƒNyquist= 2ƒmax. Collectively, these two conclusions 
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about reconstruction form the central message of sampling theory, as pioneered by 

Claude Shannon in his landmark papers on the subject [6]. 

If the original function f(x) was discretized in accordance with the sampling 

theorem, then ƒ(x) must have been “band limited”—it could not contain any signal 

components with frequencies higher than half the sampling frequency ωs. This means 

that the reconstructed signal can only contain a limited set of frequencies and thus its 

trajectory between the discrete  

Figure 2.2 Sinc function in 1D.The function Sinc(x) has the value 1 at the origin 

and zero values at all integer positions. The dashed line plots the amplitude  of 

the underlying sine function [46]. 
 

sample values is not arbitrary but naturally constrained. In this context, absolute units of 

measure are of no concern since in a digital signal all frequencies relate to the sampling 

frequency. In particular, if τs = 1 as the (unitless) sampling interval, the resulting sampling 

frequency is ωs= 2π and thus the maximum signal frequency is ωmax= ωs/2 = π. To 

isolate the frequency range −ωmax ... ωmax in the corresponding (periodic) Fourier 

spectrum, multiply the spectrum G(ω) by a square windowing function  

Hπ(ω) of width ±ωmax = ±π, 

        (2.7) 
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                (2.8) 

This is called an ideal low-pass filter, which cuts-off all signal components with 

frequencies greater than π and keeps all lower-frequency components un-changed. In 

the signal domain, the operation in Eqn. (2.7) corresponds to a linear convolution with the 

inverse Fourier transform of the windowing function Hπ(ω), which is the Sinc function, 

defined as 

 

                                (2.9) 

 

The sinc function as shown in fig. 2.2 is one instance of a large class of functions 

known as cardinal splines, which are interpolating functions de fined to pass through zero 

at all but one data sample, where they have a value of one. This allows them to compute 

a continuous function that passes through the uniformly spaced data samples. 

Since multiplication in the frequency domain is identical to convolution in the 

spatial domain, sinc(x) represents the convolution kernel used to evaluate any point x 

on the continuous input curve g given only the sampled data gs : 

                       (2.10) 

 

Equation 2.3 highlights an important impediment to the practical use of the ideal 

low-pass filter. The filter requires an in finite number of neighboring samples (i.e., an 

infinite filter support) in order to precisely compute the output points. The Sinc function is 

also known as the ideal reconstruction filter. The function is symmetric, Sinc(x) = Sinc (-

x). Also, the Sinc function is zero for all integer values of its argument except for zero.  
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   (a)                                                      (b)                                                        (c) 

Figure 2.3 Ideal interpolation [44]. (a) Kernel plotted for |x| < 3. (b) 
Magnitude of Fourier transform. (c) Logarithmic plot of magnitude. 

 

 

2.3 Kernel Interpolation 

Simple single image resolution enhancement methods on smoothing and 

interpolation techniques for noise reduction have been commonly used in image 

processing. Smoothing can be achieved by applying various spatial filters such as 

Gaussian, Wiener and median filters. Commonly used interpolation kernels are linear, 

bicubic interpolation [27], cubic spline interpolation [47], and Lanczos [48].  Although the 

implementation of this approach is easy, the shortcomings of the kernel-based approach 

are apparent and can be attributed to the underlying model of the interpolated signal. 

Some of the well-known interpolation techniques that can be utilized as convolution 

kernel are described.  

2.3.1. Linear Interpolation 

This is one of the most popular interpolation techniques. Low complexity hence 

became very popular. The general expression can be given as: 

                                                         (2.11) 
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The values of both direct neighbors are weighted by their distance to the 

opposite point of interpolation. The triangular function ƒ(x) corresponds to modest low-

pass filter in frequency domain as shown in the figure 2.4. As one can notice that the 

sidelobes in the stopband are below 10%, which still is considerable. Therefore, the main 

disadvantages of linear interpolation are both the attenuation of high frequency 

components and the aliasing of the data beyond the cut-off point into the low frequencies 

[49]. 

            

(a)                                 (b)                                                         (c) 

Figure 2.4 Linear interpolation [44]. (a) Kernel. (b) Magnitude of Fourier 
transform. (c) Logarithmic plot of magnitude. 

 

2.3.2. Nearest-Neighbor Interpolation 

Nearest-neighbor technique simply uses the value from the nearest pixel. In 

terms of a convolution kernel this is a rectangular function, with width of one pixel. The 

general expression is given as 

                             (2.12) 
 

Fig. 2.5(b) shows that the Fourier spectrum of the nearest neighbor kernel 

equals the sinc function (expressed in the frequency domain). The logarithmical scale  
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(a) 

(b) 

(c) 

Figure 2.5 Nearest-neighbor. (a) Kernel. (b) Magnitude of Fourier transform. (c) 
Logarithmic plot of magnitude.  
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shows prominent sidelobes in those regions of the frequency domain where the 

repetitions of caused by scanning should be suppressed [Fig. 2.5(c)]. The gain in the 

passband rapidly falls off to 64% at the cutoff point, and the amplitude of the side maxima 

is more than 20% [44]. Therefore, strong aliasing and blurring effects are associated with 

the nearest neighbor method for image interpolation. This is one of the most popular 

interpolation techniques. Low complexity hence became very popular. 

2.3.3. Cubic Interpolation 

The cubic convolution kernel is a third-degree approximation to the sinc function 

[50]. It is symmetric, space-invariant, and composed of piecewise cubic polynomials: 

                   (2.13) 
where−3 < a < 0 is used to make h resemble the sinc function. 

Of all the choices for a, the value −1 is preferable if visually enhanced results are 

desired. That is, the image is sharpened, making visual detail perceived more readily. 

However, the results are not mathematically precise, where precision is measured by the 

order of the Taylor series. To maximize this order, the value a =−0.5 is preferable [27]. A 

cubic convolution kernel with a =−0.5 is shown in figure 2.6.  

 

 

                                                      (a)                                                     (b) 
 

Figure 2.6 Cubic convolution [46]: (a) Kernel (a=-0.5). (b) Fourier transform 



 

  25 

 

 

2.3.4. Windowed Sinc Interpolation 

Sampling theory establishes that the sinc function is the ideal interpolation 

kernel. Since the Sinc filter is spatially unlimited and has an infinite impulse response 

(IIR) filter defined by a slowly converging infinite sum, the function is impracticable. To 

solve this problem, the Sinc function can be multiplied by a function which is non-zero in 

a finite range. This function is referred to as the Window Function w(x) and the Sinc is 

then known as Windowed Sinc Function.   

                                    (2.14)  

The results of this operation are predicted by sampling theory, which 

demonstrates that truncation in one domain leads to ringing in the other domain. 

Truncation is equivalent to the multiplication of with a rectangular function in the spatial 

domain, which is tantamount to a convolution with a sinc function in the frequency 

domain. Therefore, truncations of the ideal interpolator produce ringing effects in the 

frequency domain because a considerable amount of energy is discarded. Figures 2.7 

and 2.8 demonstrate this effect, which also is referred to as the Gibbs’s phenomenon 

[47], produced by a truncated sinc function with N=5 and N=6 supporting points, 

respectively. 

 

 



 

  26 

 

 

 

                      (a)                                      (b)                                          (c) 

Figure 2.7 Truncated sinc interpolation, N =5 [44]. (a) Kernel. (b) Magnitude of Fourier 
transform. (c) Logarithmic plot of magnitude 

 

          

    (a)                                  (b)                                                      (c)             

Figure 2.8 Truncated sinc interpolation, N =6 [44]. (a) Kernel. (b) Magnitude of 
Fourier transform. (c) Logarithmic plot of magnitude 

 

 

2.3.5. Drawbacks of Kernel Interpolation 

These three shortcomings are identified next and will have a central role in the 

subjective evaluation. 
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A common problem with kernel super-resolution is that it smoothes the image 

data in discontinuous regions, producing a larger image which appears rather blurred. 

Kernel filters typically perform very well in smooth areas, but not in edge areas [51]. 

Figure 2.9 shows a graphical image at the top left and at the bottom left the same image 

after decimation and super-resolution by one octave (a factor of two) using a linear 

kernel. The intensities of a 10 pixel part are displayed in the graph on the right of the 

image. The darker line represents the original image, while the lighter line represents the 

super-resolved version. It is clear that the originally steep edge has become less steep in 

the super-resolved image, which is visible as edge blurring. 

 

Figure 2.9 Original image and result (in form of graph) after decimation and bilinear 
super-resolution by one octave (factor of two) [51]. 

Cubic spline interpolators also tend to overshoot sharp discontinuities, producing 

a ringing effect on the edges. Hence it introduces blocking artifacts in diagonal edges or 

lines as shown in fig. 2.10. The diagonal line in this image not only looks blurry, but a 

staircase pattern is also emerging in the bilinearly super-resolved image. This staircase 

pattern or blocking artifacts is caused by the horizontal and vertical orientation of the 
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resampling kernels. Kernel super-resolution is unable to recognize or follow diagonal 

lines, which causes blocking. 

 
(a)                                                                 (b)  

 

 
                                (c)                                                                    (d) 

Figure 2.10 Example of blocking artifacts in images. (a) Original image (b) zoomed up 
portion of image. (c) Result after decimation and bilinear super-resolution by one octave. 
(d)  Result after decimation and bilinear super-resolution by one octave of the portion of 

image. 
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The third problem is the inability to generate high frequency components or fine 

detail. This is needed to make the super-resolved image look more plausible. The original 

and super-resolved images are taken through low pass and high pass filters to show the 

higher deterioration in the high pass signal compared to the low pass signal. 

2.4 Single Image SR Algorithms 

In this section some of the works specifically on single image super-resolution is 

reviewed, which is the topic of this thesis. Early efforts on super-resolution deal with the 

property of analytic continuation of a signal. Essentially, these techniques derive the 

missing high frequency components from a portion of the entire spectrum. This process 

sometimes also referred as spectral extension. Harris [52] established that, given a finite 

extent of an object and a continuous but finite portion of the spectrum of the object, the 

entire spectrum can be generated uniquely using the principle of analytic continuation. 

This leads to an exact and complete reconstruction of the object spectrum if the 

measurements are free of noise. Furthermore, if even a small amount of noise is present 

this entire method becomes highly unreliable. A new view of the problem of continuing a 

given segment of the spectrum of a finite object is presented in [53].  Here the signal 

extrapolation is carried out by the method of alternate projections [54], iterating 

alternately between time and frequency domains. This method relies on the notion of 

reducing the ‘error energy’. A dual of same problem is solved by Papoulis [55] where in 

the spectrum of the bandlimited object is recovered from a finite segment of the object 

using an iterative procedure. 

Recently, many learning-based methods have been proposed for single image 

super-resolution reconstruction. Most of these techniques make use of a set of training 

images to learn the best features for the given low resolution image in order to produce a 

high resolution image. Freeman et al. approached super-resolution from a low level vision 
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learning perspective. An approach to low level vision tasks using belief propagation is 

presented in [56].  In this a learning framework called VISTA – Vision by Image/Scene 

TrAining was proposed. By blurring and down-sampling sharply defined images, a 

training set of sharp and corresponding blurred images was constructed. This scene 

underlying the supplied image data is estimated using a Markov network. To make the 

estimation feasible, both the image data and the scene are separated into patches. This 

approach to low level vision is specifically applied to super-resolution in [57].  It uses the 

high frequency part of the low resolution image as ground truth and the high frequency 

part of the high resolution image as scene to be estimated. A faster version of the 

algorithm that only uses a single pass is introduced in [58]. But these methods are 

somewhat dependent on the training set and hence the results are not stable and 

sometimes produce artifacts in real applications. 

Atkins et al. [59] approached super-resolution using pixel classification. Pixel 

classification aims to sort pixels into classes like horizontal edges and smooth areas. In 

this paper, a tree-based classification approach to super-resolution is introduced. This 

algorithm builds a decision tree with a linear interpolator at each leaf of the tree. Each 

non-leaf node in the tree represents a binary choice. In [59] a similar algorithm is 

introduced, which assigns a pixel to one or more classes in a single step instead of using 

a set of binary choices. 

Battiato et al. [60] have published papers on several super-resolution algorithms. 

In this rule based super-resolution approach called locally adaptive zooming algorithm 

(LAZA) is described. In LAZA, the authors use simple rules and configurable thresholds 

to detect edges and update the interpolation process accordingly. In [61] the same 

authors introduce an algorithm that incorporates anisotropic diffusion like the smart 

interpolation by anisotropic diffusion (SIAD) to sharpen edges. 
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Muresan and Parks published several papers [62], [63], [64] on super-resolution 

based on the optimal recovery principle. The authors model the image as belonging to a 

certain ellipsoidal signal class. Together with Kinebuchi [65] a wavelet-based algorithm 

using hidden Markov trees was introduced. It uses lower frequency wavelet coefficients 

to predict the highest frequency coefficients. By applying an inverse wavelet transform 

after prediction, a one octave super-resolved image results. 

Su and Willis [66] present super-resolution by triangulation on pixel level. Yu et 

al. [67] present super-resolution by data-dependant triangulation (DDT). These methods 

use linear interpolation that is not generally aligned with the coordinate axes to reduce 

visible artifacts caused by this alignment. It is shown by the last authors that results can 

be further improved by improving the algorithm that searches for the optimal triangulation 

of the source image. 

Another approach that is explicitly directed at maintaining sharp edges is the use 

of subpixel edge localization by Jensen and Anastassiou [68]. This approach detects the 

most prominent edge in the local window with subpixel precision and uses the resulting 

edge template to obtain sharper edges in super-resolved images. 

There are also a range of commercial products available that rely on an 

algorithm more advanced than kernel-based resampling. Some worth mentioning are 

PhotoZoom Professional by BenVista [69], Imagener by Kneson Software [70], Qimage 

by Digital Domain [71], and SmartScale by Extensis [72]. The Pictura software makes 

use of a modified version of the algorithm presented in [62] by Muresan and Parks. The 

PhotoZoom Professional software was previously known as S-Spline by Shortcut, but has 

gone through some changes in name and company. 
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2.5 Summary 

In this chapter, the basics of interpolation techniques were discussed. It was also 

learnt that why this simple and robust kernel interpolation do not produce desirable 

images. In addition discussed are some of the earlier super-resolution techniques to 

some of the newer methods. In the next chapter the integral components on this 

proposed framework for super-resolution are explained in detail.
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CHAPTER 3 

INTEGRAL PARTS 

3.1 Bilateral Filtering 

3.1.1. Introduction 

Filtering is perhaps the most fundamental operation of image processing and 

computer vision. In the broadest sense of the term "filtering", the value of the filtered 

image at a given location is a function of the values of the input image in a small 

neighborhood of the same location. For example, Gaussian low-pass filtering computes a 

weighted average of pixel values in the neighborhood, in which the weights decrease with 

distance from the neighborhood center [1]. Although formal and quantitative explanations 

of this weight fall-off can be given, the intuition is that images typically vary slowly over 

space, so near pixels are likely to have similar values, and it is therefore appropriate to 

average them together. The noise values that corrupt these nearby pixels are mutually 

less correlated than the signal values, so noise is averaged away while signal is 

preserved. The assumption of slow spatial variations fails at edges, which are 

consequently blurred by linear low-pass filtering. How can one prevent averaging across 

edges, while still averaging within the smooth regions? Many efforts have been devoted 

to reducing this undesired effect [73] [74] [75] [76] [77] [78] [79]. Bilateral filtering is a 

simple, non-iterative scheme for edge-preserving smoothing. 

3.1.2. Concept 

The basic idea underlying bilateral filtering is to apply the range of an image what 

traditional filters implement in its domain. Two pixels can be close to one another, that is, 

occupy nearby spatial location, or they can be similar to one another, that is, have nearby

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html#[1]
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values, possibly in a perceptually meaningful fashion. Closeness refers to vicinity in the 

domain, similarity to vicinity in the range. Traditional filtering is domain filtering, and 

enforces closeness by weighing pixel values with coefficients that fall off with distance. 

Similarly, range filtering can be viewed as a filtering method, which averages image 

values with weights that decay with dissimilarity [26]. Range filters are nonlinear because 

their weights depend on image intensity or color. Computationally, they are no more 

complex than standard non-separable filters. Most importantly, they preserve edges. 

Spatial locality is still a predominant factor. In fact, range filter by itself merely 

distorts an image’s color map. Hence, the combination of range and domain filtering is 

worth noticing. This combined filtering is denoted as bilateral filtering. Consider a shift-

invariant low-pass domain filter applied to an image f(x) [26]: 

                               (3.1) 

where c(ξ, x) measures the geometric closeness between the neighborhood center x and 

a nearby point ξ. The bold font for f and h emphasizes the fact that both input and output 

images may be multi-band. In order to preserve the DC component, kd must be 

            (3.2) 

If the filter is shift-invariant, c(ξ, x) is only a function of vector difference ξ – x, 

and kd is constant. 

Range filtering is similarly defined: 

 



 

  35 

 

 

 

               (3.3) 

except that now s(f(ξ), f(x)) measures the photometric similarity between the pixel at the 

neighborhood center x and that of a nearby point ξ.  Thus, the similarity function s 

operates in the range of the image function f, while the closeness function c operates in 

the domain of f. The normalization constant kr in this case is  

 

  (3.4) 

 

The spatial distribution of image intensities plays no role in range filtering taken 

by itself. Combining intensities from the entire image, however, makes little sense, since 

the distribution of image values far away from x ought not to affect the final value at x. In 

addition, one can show that range filtering without domain filtering merely changes the 

color map of an image, and is therefore of little use. The appropriate solution is to 

combine domain and range filtering, thereby enforcing both geometric and photometric 

locality. Combined filtering can be described as follows [26]: 

 

           (3.5) 

with the normalization  

                                                          (3.6) 
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(a) 

 

(b) 

 

(c) 

Figure 3.1 (a) A 100-gray-level step perturbed by Gaussian noise with σ = 10 gray 
levels. (b) Combined similarity weights c(ξ, x)s(f(ξ), f(x)) for a 23 x 23 neighborhood 
centered two pixels to the right of the step in (a). The range component effectively 

suppresses the pixels on the dark side. (c) The step in (a) after bilateral filtering 
with σr = 50 gray levels and σd = 5 pixels [26]. 
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Combined domain and range filtering is denoted as bilateral filtering. It replaces 

the pixel value at x with an average of similar and nearby pixel values. In smooth regions, 

pixel values in a small neighborhood are similar to one another, and the bilateral filter 

acts essentially as a standard domain filter, averaging away the small, weakly correlated 

differences between pixel values caused by noise [26]. Consider now a sharp boundary 

between a dark and a bright region, as in figure 3.1(a). 

When the bilateral filter is centered, say, on a pixel on the bright side of the 

boundary, the similarity function s assumes values close to one for pixels on the same 

side, and values close to zero for pixels on the dark side. The similarity function is shown 

in figure 3.1(b) for a 23x23 filter support centered two pixels to the right of the step in 

figure 3.1(a). The normalization term k(x) ensures that the weights for all the pixels add 

up to one. As a result, the filter replaces the bright pixel at the center by an average of 

the bright pixels in its vicinity, and essentially ignores the dark pixels. Conversely, when 

the filter is centered on a dark pixel, the bright pixels are ignored instead. Thus, as shown 

in figure 3.1(c) with σr = 50 and σd = 5, good filtering behavior is achieved at the 

boundaries, thanks to the domain component of the filter, and crisp edges are preserved 

at the same time, thanks to the range component. 

A simple and important case of bilateral filtering is shift-invariant Gaussian 

filtering, in which both the closeness function c and the similarity function s are Gaussian 

functions of the Euclidean distance between their arguments. More specifically, c is 

radially symmetric [26]: 

                         (3.7) 

where 
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                                                                      (3.8) 

is the Euclidean distance [80]. The similarity function s is perfectly analogous to c : 

                                                        (3.9) 

where 

                                                  (3.10) 

is a suitable measure of distance in the intensity space. In the scalar case, this may be 

simply the absolute difference of the pixel difference or, since noise increases with image 

intensity, an intensity-dependent version of it. Just as this form of domain filtering is shift-

invariant, the Gaussian range filter introduced above is insensitive to overall additive 

changes of image intensity. Of course, the range filter is shift-invariant as well.  

The geometric spread σd in the domain is chosen based on the desired amount 

of low-pass filtering.  A large σd blurs more, that is, it combines values from more distant 

image locations. Also, if an image is scaled up or down, σd must be adjusted accordingly 

in order to obtain equivalent results. Similarly, the photometric spread σr in the image 

range is set to achieve the desired amount of combination of pixel values. Loosely 

speaking, pixels with values much closer to each other than σr are mixed together and 

values much more distant than σr are not. If the image is amplified or attenuated, σr must 

be adjusted accordingly in order to leave the results unchanged [26].  
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Fig 3.2 (a) and Fig 3.2 (b) show the effectivenesss of bilateral filtering on 

grayscale images and color images by introducing  Additive White Gaussian Noise 

(AWGN) to the input images. An interesting application of bilateral filtering is shown in 

Fig. 3.3 as given in [81]. 

(a) 

(b) 
Figure 3.2 Gray-scale original image with AWGN (left panel) and bilateral filtered 

image(right panel) with σr = 0.1 gray levels and σd = 3 pixels (b) (b) Color original image 
with AWGN (left panel) and bilateral filtered image(right panel) with σr = 0.1 gray levels 

and σd = 3 pixels 
 

 



 

  40 

 

 

 

Figure 3.3 CARTOON Image abstraction using bilateral filtering [81]. 
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3.2 Mean Shift Image Segmentation 

3.2.1. Introduction 

Image segmentation plays a crucial role in various image processing applications 

in several domains, including industrial as well as medical applications [82]. It describes 

the task of partitioning an image into several segments or regions. In other words, it is the 

decomposition of a gray level or color image into homogeneous tiles. This is arguably 

most important low-level vision task. Common segmentation approaches include simple 

thresholding techniques [83], graph-based methods [84], and level set techniques [85] 

among others. They have been applied to images from different imaging modalities in 

typically two or three dimensions, e.g., gray/color images, high dynamic range images, 

CT/MR datasets, and multispectral images. In general, these methods are adapted to the 

specific application [86] [87] [88] [89]. 

Mean shift is an unsupervised clustering algorithm [90], which estimates the 

gradient of a probability density function to detect modes in an iterative fashion. Hence, 

image segmentations that take color/intensity-similarity as well as local connectivity into 

account, can be obtained by applying this algorithm to the combined spatial-range 

domain [91]. Mean shift segmentation has been successfully applied to several 

applications [91] [92] [93]. 

The basic processing of mean shift image segmentation relies on the joint 

domain. The description for the joint domain is as follows: 

An image is typically represented as a two-dimensional lattice of p-dimensional 

vectors (pixels), where p=1 in the gray-level case, three for color images, and p > 3 in the 

multispectral case. The space of the lattice is known as spatial domain, while the gray 

level, color or spectral information is represented in range domain.  The concatenation of 

location vectors and range vectors gives rise to joint spatial-range domain of dimension 
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d=p+2. Now this concatenation must be compensated by a proper normalization. Thus, 

the multivariate kernel is defined as the product of two symmetric kernels and the 

Euclidean metric allows a single bandwidth parameter for each domain [94]: 

   (3.11) 

 

where xs is the spatial part, xr is the range part of the feature vector, v(x) the common 

profile in both the two domains, hs and hr the employed kernel bandwidths, and C the 

corresponding normalization constant. In practice, an Epanechnikov [95] or a (truncated) 

normal kernel always provides satisfactory performance, so the user only has to set the 

bandwidth parameter h = (hs, hr), which, by controlling the size of the kernel, 

determines the resolution of the mode detection [94]. 

3.2.2. Edge preserving smoothing 

Smoothing through replacing the pixel in the window by the (weighted) average 

of the pixels in the window indiscriminately blurs the image, removing not only the noise 

but also salient information. Discontinuity preserving smoothing techniques, on the other 

hand, adaptively reduce the amount of smoothing near abrupt changes in the local 

structure, i.e. edges. 

Many approaches have been implemented to achieve this goal, form adaptive 

Wiener filtering [31], to implementing isotropic [50] and anisotropic [44] local diffusion 

processes. The diffusion based techniques, however, do not have a straightforward 

stopping criterion and, after a sufficiently large number of iterations, the processed image 
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collapses into a flat surface. The connection between anisotropic diffusion and M-

estimators is analyzed in [5].  

The bilateral filters also work in the joint spatial-range domain. The data is 

independently weighted in the two domains and the center pixel is computed as the 

weighted average of the window. The fundamental difference between the bilateral 

filtering and the mean shift-based smoothing algorithm is in the use of local information 

[94]. 

 

3.2.3. Mean Shift Filtering 

Mean shift filtering is a data clustering algorithm commonly used in computer 

vision and image processing. For each pixel of an image (having a spatial location and a 

particular color), the set of neighboring pixels (within a spatial radius and a defined color 

distance) is determined. For this set of neighbor pixels, the new spatial center (spatial 

mean) and the new color mean value are calculated. These calculated mean values will 

serve as the new center for the next iteration. The described procedure will be iterated 

until the spatial and the color (or grayscale) mean stops changing. At the end of the 

iteration, the final mean color will be assigned to the starting position of that iteration. 

The kernel (window) in the mean shift procedure moves in the direction of the 

maximum increase in the joint density gradient, while the bilateral filtering uses a fixed, 

static window. In the image smoothed by mean shift filtering, information beyond the 

individual windows is also taken into account [94]. 

Mean shift filtering with uniform kernel having (hs, hr) = (8,4) has been applied to 

the often used 256x256 gray-level cameraman image (Fig. 3.4(a)), the result being 

shown in Fig. 3.4(b). The regions containing the grass field have been almost completely 
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smoothed, while details such as the tripod and the buildings in the background are 

preserved. 

Figure 3.4 Cameraman image. (a) Original (b) Mean shift filtered (hs,hr) = (8,4). 
 

3.3 Shock filter 

3.3.1. Introduction 

In the past decade there has been a growing amount of research concerning 

partial differential equations in the fields of computer vision and image processing [96]. 

Applications, supported by rigorous theory, were developed for purposes such as image 

denoising and enhancement, segmentation, object tracking and many more [97]. The 

research is focused mostly on linear and nonlinear parabolic schemes of diffusion-type 

processes. Osher and Rudin [98] proposed a hyperbolic equation called shock filter that 

can serve as a stable deblurring algorithm approximating deconvolution. 

The basic idea behind shock filters is the process of applying either erosion or 

dilation in a much localized manner, in order to create a “shock” between two influence 
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zones, one belonging to a maximum and the other to a minimum of the signal. By 

iterating this process (modeled using a PDE framework) according to a small time 

increment dt , one can ultimately obtain a piecewise constant segmentation of the input 

image, thus leading to a  deblurred output.  

The use of shock filters as a means of image enhancement is recommended by 

the advantages this particular method offers: they create strong discontinuities at image 

edges and furthermore, the filtered signal within a region delineated by those edges 

becomes flat. In other words, shock filters create segmentation. Due to their discrete 

mathematical definition they are inherently unstable, meaning that they require special 

discretization schemes in order to preserve the total variation of the signal. Another 

property of shock filters underlined in [99] is that they satisfy the maximum-minimum 

principle which states that the range of the filtered image remains within the range of the 

original image. Another advantage of shock filters over other image enhancement 

methods, such as Fourier or wavelet-based ones is that phenomena like the Gibbs 

phenomenon cannot appear [100]. 

3.3.2. Concept 

The first definition of the shock filter can be traced back to 1975 when Kramer 

and Bruckner have defined the first concepts regarding shock filter theory [101]. The 

formulation of the shock filter equation is: 

                                 It = -|Ix|F(Ixx),      (3.12) 

where F should satisfy F(0)=0, F(s)sign(s) ≥0. Choosing F(s) = sign(s) gives the classical 

shock filter equation as per Kramer and Bruckner definition [102]: 

It = -sign(Ixx)|Ix|                             (3.13) 
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where I represents the image and Ix and Ixx represent the first, respectively the second 

directional derivatives of the image I. Equation 3.13 represents a generic definition since 

the direction x is not properly defined. The first term of the equation represents the edge 

detector (in this case the Canny edge detector [103]) used for shock filter steering [100].  

The actual term of shock filter was introduced in 1990 by Osher and Rudin [98] when 

they proposed this new class of filters based on PDEs and defined the minmod numerical 

scheme for successfully avoiding any instabilities of the algorithm, since the shock filter 

theory is defined only on a discrete domain. The minmod function can be given as: 

    (3.14) 

The shock filter main properties are [104]: 

 Shocks develop at inflection points (second derivative zero-crossings). 

 Local extrema remain unchanged in time. No new local extrema are created. The 

scheme is total variation preserving (TVP). 

 The steady state (weak) solution is piece-wise constant (with discontinuities at 

the inflection points of I0). 

 The process approximates deconvolution. 

As noted in [98], any noise in the blurred signal will also be enhanced.  As a 

matter of fact this process is extremely sensitive to noise. Theoretically, in the continuous 

domain, any white noise added to the signal may add an infinite number of inflection 

points, disrupting the process completely. The performance of the shock filter with and 

without noise can be compared in Fig. 3.5. Clearly the signal in the noisy case is not 

enhanced and the process results mainly in noise amplification. 
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Figure 3.5 Signal (sine wave) and its steady state shock filter solution without 
noise (top) and with very low additive white Gaussian noise, SNR=40dB (bottom) [104] 

 
3.3.3. Previous Works 

The noise sensitivity problem is critical and unless properly solved - might 

prevent most practical uses of shock filters. Previous studies addressed the issue 

suggesting several solutions. The common way seen in literature to increase robustness 

([105] - [108]) is to convolve the signal’s second derivative with a lowpass filter, such as a 

Gaussian: 

It = -sign(Gσ *Ixx)|Ix|                      (3.15) 

where Gσ is a Gaussian of standard deviation σ. 

This is generally not sufficient to overcome the noise problem: convolving the 

signal with a Gaussian of moderate width will in many cases not cancel the inflection 

points produced by the noise. Their magnitude will be considerably lower, but there will 

still be a change of sign at these points, which will lead the flow to go in opposite direction 

at each side. For very wide (large scale) Gaussians - most inflection points produced by 
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the noise are diminished, but at a cost: the locations of the signal’s inflection points are 

less accurate. Moreover, the effective Gaussian’s width σ is in many cases larger than 

the length of the signal, thus causing the boundary conditions imposed on the process to 

strongly affect the solution. Lastly, from a computational point of view, the convolution 

process at each iteration is costly [104].  

If the issue is addressed as an enhancing-denoising problem, one can devise an 

approach in which smoother parts are denoised keeping edges sharpened. The main 

idea is to add some sort of anisotropic diffusion term with an adaptive weight between the 

shock and the diffusion processes. Alvarez and Mazorra were the first to couple shock 

and diffusion in [1] proposing an equation of the form: 

   (3.16) 

where c is a positive constant and ξ is the direction perpendicular to the gradient .  

In order to account for the magnitude of the second derivative controlling the flow 

- from the original shock filter formulation of equation 3.12 and choose F(s) = (2/π) 

arctan(a s). This function is a “soft” sign, where a is a parameter that controls the 

sharpness of the slope near zero. The equation is therefore: 

           (3.17) 

where λ > 0 is a constant weight parameter. In this way the inflection points are not of 

equal weight anymore; regions near edges, with large magnitude of the second derivative 

near the zero crossing, will be sharpened much faster than relatively smooth regions. 
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Figure 3.6 Schematic diagram of the super-resolution algorithm. A high-resolution 

reconstructed image (left) is sought, which gives simulated low-resolution images that are 
as close as possible to the observed low-resolution images [109]. 

 

3.4 Iterative Back-Projection 

The iterative back-projection (IBP) technique [25] can accomplish the HR image 

interpolation and de-blurring simultaneously. Its underlying idea is that the reconstructed 

HR image from the degraded LR image should produce the same observed LR image if 
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passing it through the same blurring and downsampling process. The IBP technique can 

minimize the reconstruction error by iteratively back-projecting the reconstruction error 

into the reconstructed image. 

IBP is an efficient algorithm to acquire the HR image by minimizing the norm of 

the reconstruction error. Given an estimate of the reconstructed HR image and a model 

of the imaging process, a set of simulated LR images can then be generated. Each 

simulated LR image is compared with the actual version and then the error can be used 

for correcting the estimated image. In fact, it is difficult to restore a HR image in a one-

shot manner. Hence, an iterative procedure is needed. This simulate/correct process is 

iterated until some stopping condition is achieved. Generally, the minimization of some 

error criterion between the simulated and observed LR images is adopted as the stopping 

condition [110]. 

Super-resolution of monochrome and color low resolution image sequences was 

considered by Irani and Peleg [25]. They derived an iterative back-projection algorithm 

based on computer aided tomography. The schematic diagram of super-resolution 

algorithm is given in Fig. 3.6. The algorithm starts with an initial guess ( X0) for the output 

high-resolution image ( X1) and the imaging process (A) is simulated to generate low-

resolution images (bsim) based on the initial guess. These simulated low-resolution 

images are then compared with the observed ones (b) and the error generated between 

them is back-projected onto the initial guess via back-projection operator (Abp), thereby 

minimizing the error iteratively. 

                  (3.18) 
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The algorithm considers translational and rotational motion but the authors claim 

that the same concept can be applied to other motions also. They considered multiple 

motion analysis in [25] including occlusion and transparency. The algorithm successfully 

solves the issue of blur and noise, however due to the ill-posed nature of super-

resolution; the technique is unable to generate a unique solution.  

 

3.5 Similar structure learning 

Because of the constant back-projection kernel, the reconstruction error is back 

projected into the reconstructed image isotropically. This produces artifacts across the 

edges. These artifacts can be removed by the post-processing step. The structure of low 

resolution (LR) image is employed to guide the high resolution (HR) image. Hence it is 

better to first learn the structural content of each HR pixel, from the LR input pixels. Then 

find the correlation among the pixels with the similar structure. At the end, one can 

employ this correlation to correct the reconstructed image. 

The matching process involves computation of the similarity measure for each 

disparity value, followed by an aggregation and optimization step. Since these steps 

consume a lot of processing power, there are significant speed-performance advantages 

to be had in optimizing the matching algorithm. 

One way to learn the similar structure can be described as follows: First learn the 

structure of HR pixel from the LR image. The image signal is not a static signal, but local 

image signal can be considered as stationary signal. Consider small squared windows (B 

with n2 pixels) as basic structure elements. The criterions that can be used to find the 

pixels with similar structure are the zero-mean normalized cross correlation (CC) and the 

mean absolute differences (MAD) [111]. 
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                        (3.19) 

 

                                  (3.20) 

where Ω contains all the pixels of the reference window Bref ; x and x’ are the given pixel 

and reference pixel respectively; B and      are denoted as the mean values of 

respectively B and Bref. The transformation of the coordinates is characterized by the 

mapping function m. To simplify the registration problem and particularly to save 

computation time, pure translation motions of B are assumed. The main motive to use 

these two criterions is because they are somewhat complementary: CC emphasizes the 

similarity of the structural or geometrical content of the windows, while MAD underlines 

the similarity of the luminance (and color) information. A matched window is found if the 

two measures ECC and EMAD satisfy the respective thresholds τCC and τMAD, more 

specifically: ECC > τCC and EMAD < τMAD [111]. This implementation uses an exhaustive 

search in order to find the matching windows, but more intelligent (pattern-based) search 

algorithms can reduce the computation time enormously. 

3.6 Summary 

In this chapter some of the integral components of this thesis are introduced. It 

started with bilateral filtering which is a type of edge preserving smoothing filter. To 

further preserve the edges in the images mean shift image segmentation can be used. 

Shock filters can help to clearly discriminate between the homogenous patterns. Iterative 

back projection algorithm reduces the errors present in the reconstructed image to a 
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minimum. Finally, by learning similar structure in the low resolution image, one can 

incorporate in the final high resolution image to get better perceptual quality. In the next 

chapter the proposed flow for the image super-resolution using these techniques are 

given.
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CHAPTER 4 

PROPOSED FRAMEWORK FOR SUPER-RESOLUTION 

4.1 Introduction 

This thesis proposes a novel approach to single image super-resolution. The 

goal of single image super-resolution is to recover a high-resolution image from a low-

resolution image.  Although much work has been done, super-resolution has not been 

solved very well yet. As pointed out in [112], the generation process of a low-resolution 

image can be modeled as smoothing and down-sampling a high-resolution image. Single 

image super-resolution is a challenging problem because there is inevitable information 

loss in down-sampling and the number of unknowns in the recovery exceeds the number 

of observed data.  

Almost all image super-resolution methods [[56], [113], [114], [115], [116], [117]] 

need an initial high-resolution image for latter steps via up-sampling the input low-

resolution image. Previous approaches often use interpolation methods (e.g., bicubic 

interpolation [27]) to obtain the initial high resolution results. Such a simple method 

severely degrades the final results. In this thesis, a novel up-sampling method is 

implemented to obtain the initial high-resolution result. The primary focus is on improving 

the quality of the reconstructed image generated by the original Iterative back projection 

(IBP) [25] method and proposes a new SR framework based on edge preservation.    

4.2 Problem Statement 

The iterative back-projection (IBP) algorithm [25] is a state of art method when 

the magnification factor is 2 [118]. This is an efficient method to obtain the HR image by
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minimizing the reconstruction error. The original IBP method was designed to reconstruct 

the HR image from multiple LR inputs. Here, the focus is just on one input image only. 

In theory, the degradation process from HR image to LR image can be modeled 

by a combination of the blur effect (due to the atmosphere, the object/camera motion, 

and the sensor), and the down-sampling operations [119]. This can be formulated as 

follows: 

IL = (IH ∗ g) ↓d     (4.1) 

where IH and IL are the HR and LR images respectively, g is the point spread function 

(PSF), ∗ is the convolution operator, and ↓d is the down-sampling operator with scaling 

factor d. In iterative procedure, there are two steps:  

(1) Compute the reconstruction error as follows: 

er(I) = IL – (I ∗ g) ↓d      (4.2) 

The reconstruction error of an HR image I can be defined as the difference 

between the LR input image IL, and the synthesized LR image by I. 

(2) Update the HR image with the reconstruction error as follows 

                    (4.3) 

where is the HR image at the tth iteration, ↑ is the up-sampling operator, p is a 

constant back-projection kernel. 

It is shown in [25] that for d=1(the problem of SR is equivalent to the problem of 

deblurring in this case) and for multiple LR input images, the back-projection algorithm 

[25] can converge to the desired deblurred image, which satisfies Eqn. 4.1 for all LR 

inputs under their corresponding geometry transform, with an exponential rate under 

certain conditions. 
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Theorem 1 By updating the HR image with the back-projection iteration  will 

converge to desired image Ic, which satisfies Eqn. 4.1, with an exponential rate for all 

d≥1, given ||δ−g∗p↓d||1 < 1. 

The proof of Theorem 1 is presented in [119]. It means that by applying the back-

projection method iteratively, the reconstruction error can be minimized efficiently for any 

positive integer scaling factor d, with one LR input image, when||δ−g∗p↓d||1 < 1. Similar 

to the discussion in [25], back-projection filter corresponding to smaller value of 

||δ−g∗p↓d||1 will have faster converging speed, while it may produce numerically 

unstable results [119]. 

Figure 4.1 The distribution of the error using different interpolation algorithms [118]. 

converges to the original image with an exponential rate, which was proved in 

[25]. However, it can be easily observed that  may converge to an HR image with 
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jaggy artifacts especially along the strong edges. There are two reasons for this result. 

One is the initial interpolation cannot preserve the edge. The other is that the 

reconstruction error is back projected into the reconstructed image without considering 

the structural content of the pixel. 

(a) 

(b) 

Figure 4.2 (a) Original image on left panel and its top right cropped image on the right 
panel. (b)Interpolation of the cropped image using nearest neighbor (left panel) and 

bicubic (right panel). 
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The extent with which the initial interpolation affects the quality of the HR image 

generated by the IBP method can be shown experimentally. Consider two interpolation 

algorithms, bicubic interpolation and nearest neighbor interpolation, as the initial image 

estimate. As in [118], 50 natural gray images are tested whose size is M x N. Hence in 

total 50xMxN pixels are examined. Define  is the value of the original pixel,  is 

the value of the reconstructed pixel. The error of pixel can be defined as the difference 

between the original pixel and the output pixel as follows: 

      (4.4) 

Figure 4.1 is the distribution diagram of the error of 50 x M x N pixels. When the 

error of pixel is zero, the number of pixels using bicubic interpolation as the initial 

estimate is more than that using nearest neighbor. It can be seen that the total number of 

errors of pixels using bicubic interpolation as the initial estimate is fewer than the nearest 

neighbor as the initial estimate. 

Figure 4.2 shows the HR images generated by using the bicubic interpolation 

method and using the nearest neighbor interpolation. It is observed that with bicubic 

interpolation, there is better edge preservation and fewer jaggy artifacts than nearest 

neighbor interpolation (see the letters in the fig. 4.2(b)). So an initial estimate with better 

edge preservation will lead to promising final results. 

 

4.3 The proposed SR framework 

In this thesis, a new framework is proposed to improve the HR image 

reconstruction quality. The proposed SR framework is shown in Fig. 4.3. It includes a pre-

processing procedure and a post-processing procedure. The pre-processing step is to 
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strengthen the true edge. The post-processing step can remove the jaggy artifacts 

produced by the back projected reconstruction error. 

A novel up-sampling method is proposed to obtain the initial high-resolution 

result. Our scheme incorporates a soft-edge and a hard-edge constraint in up-sampling. 

The soft-edge constraint is enforced via bilateral filtering [26] which smoothes the image 

while preserving edges. The hard-edge constraint is enforced after applying the mean 

shift image segmentation algorithm [94]. 

After obtaining the initial result via up-sampling, the complex shock filter [104] is 

used to enhance strong edges in the high-resolution image, instead of imposing prior 

knowledge on the high-resolution image which is used in previous methods [[114], [115], 

[120], [116]]. 

Then, a reconstruction constraint on the high-resolution image is enforced and 

the final result is solved by back projection [119]. The results obtained by the original 

back projection [119] often suffer from ringing artifacts. Due to the combination of up-

sampling scheme and the complex shock filter, this algorithm obtains results without 

noticeable ringing artifacts. 

Finally, in order to further stop the across-edge error propagation, non-local 

similarity by the structure of the pixels in LR image is learnt and this similar correlation is 

employed to correct the reconstructed HR image [111]. The experimental results show 

that the proposed method can improve the output results both in visual perception and in 

objective estimation. 
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Figure 4.3  The proposed SR framework. 
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4.3.1. Upsampling 

In previous image up-sampling algorithms [60], the filter is constructed 

considering only spatial information with useful intensity information discarded. Motivated 

by bilateral filtering in [26], a novel up-sampling scheme considering both spatial and 

intensity information is implemented. Bilateral filtering can be defined as: 

 (4.5) 

where I is the input image, and Ω is the set of all pixels of the image, p and q 

denote pixel locations over the image, and W(p) is the normalization constant at p, and 

σs and σr are standard deviations of two Gaussian functions and , respectively. 

As explained in section 3.1, the intuition of bilateral filtering is to smooth the 

image using pixels which are close both in the spatial domain and in the intensity domain. 

This can be called as soft-edge constraint. In this algorithm, to interpolate a target pixel, 

the nearby pixels with similar colors are chosen to interpolate a target pixel. In order to 

preserve edges even better, a hard-edge constraint can be utilized [121]. In this method, 

first segmentation is performed on the input low resolution image by mean shift algorithm 

[94]. Then for each pixel, only the pixels in the same segment [121] are used. 

Mean shift can be easily viewed as a nonparametric estimator of density 

gradient. It is employed in the joint, spatial-range (value) domain of gray level and color 

images for discontinuity preserving filtering and image segmentation. As stated by 

Comaniciu et al. [94], “an image is typically represented as 2-dimensional lattices of r-

dimensional vectors (pixels), where r is1 in the gray level case, 3 for color images, or r > 

3 in the multispectral case. The space of the lattice is known as the spatial domain while 
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the gray level, color, or spectral information is represented in the range domain. 

However, after a proper normalization with σs and σr global parameters in the spatial and 

range domains, the location and range vectors can be concatenated to obtain a spatial-

range domain of dimension d = r+2.” 

To explain this clearly, consider an image as set of vectors in the spatial-range 

domain: 

I = { xj }  where j=1,… ,n    (4.6) 

Each vector xj has two parts, a spatial part and a range part, where the range 

part may be written as a function of the spatial part: 

            (4.7) 

The superscripts s and r denote the spatial and range parts of the vectors, 

respectively. Hence, the image vectors can be referred as pixels, and name the spatial 

and the range part, pixel location and pixel value, respectively. 

The mean shift procedure [94] is applied for all the data points in the joint spatial-

range domain. Each data point becomes associated with a point of convergence which 

represents the local mode of the density in the d-dimensional space. The process, having 

the parameters σs and σr, takes into account simultaneously both the spatial and range 

information. 

The output of the mean shift filter for an image pixel is defined as the range 

information carried by the point of the convergence. This process achieves a high quality 

discontinuity preserving spatial filtering. For the segmentation task, the convergence 

points sufficiently close in the joint domains are fused to obtain the homogeneous regions 

in the images. 
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Let IM be the result of mean shift image segmentation. By combining both the 

soft-edge constraint and the hard-edge constraint, the up-sampling is formulated as: 

 (4.8) 

                 (4.9) 

                                 (4.10) 

where β is a balance parameter, ph is pixel position in the high-resolution image, and pl is 

the position in the low-resolution image corresponding to ph. If the coordinates of pl are 

not integers, IL(pl) and IM(pl) are obtained by nearest interpolation on the low-resolution 

image. The term βIL(pl) in equation 4.8 is used to emphasize the importance of the filter 

center pl. 

4.3.2. Shock Filtering 

From section 3.3 it is known that the Shock filters are based on the idea to apply 

locally either dilation or erosion process, depending on whether the pixel belongs to the 

influence zone of a maximum or a minimum. The decision between dilation and erosion is 

made using the sign function (also called the signum) s in the set {-1, 0, +1} based on the 

Laplace operator [101]. Applying this procedure produces a sharp discontinuity called 

shock at the borderline between two influence zones. 

Another desirable goal is the ability to change the process behavior with time in a 

controlled manner. The basic idea is that processes controlled by the gradient magnitude 
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have large errors in estimating gradients at the initial stages, where the signal is still very 

noisy. Therefore a preliminary phase of mainly noise removal can be advantageous 

[122]. It is suggested to use two processes with continuous transition in time, beginning 

with linear diffusion at time zero (strong denoising), and advancing towards high 

nonlinearity (strong edge-preserving properties) [78]. 

Similar ideas can be applied here. It is desired to decrease the shock effects of 

the process at the beginning (when estimating the signal’s inflection points is difficult) - 

allowing the diffusion process to smooth out the noise. As the evolution advances, false 

inflection points produced by the noise are greatly reduced and the enhancing shock part 

can gain dominance. A simple way to do that is to multiply the second derivative of the 

shock part by time t. Hence, equation 3.17 for time t can be rewritten as: 

   (4.11) 

From equation 4.11 and approximating the solution for small angle, one can 

derive the complex shock filter formulation. The complex filter is an elegant way to avoid 

the need of convolving the signal in each iteration and still get smoothed estimations. The 

time dependency of the process is inherent, without the need to explicitly use the 

evolution time t. Moreover, the imaginary value receives feedback - it is smoothed by the 

diffusion and enhanced at sharp transitions by the shock, thus can serve better for 

controlling the process than a simple second derivative. 

The complex shock filter generalized to 2D is: 

   (4.12) 

where,     ,  
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λ = reiθ is a complex scalar and  is a real scalar, the parameter a controls the 

sharpness of the slope near zero, θ is the phase angle of the complex part, and  

denotes the complex part of . More details can be found in [104]. The final output after 

shock filtering is obtained by the following operation: 

     (4.13) 

where  is a iteration step. In this experiment =0.1 and the initial input in the iteration 

is Iu. 

4.3.3. Reconstruction refinement 

The obtained intermediate result IS often does not satisfy the reconstruction 

constraint. Reconstruction error is defined as 

E(IL,IH) = IL – (IH ∗ g)↓d    (4.14) 

where ∗ is the convolution operator, g is a spatial filter, and ↓d denotes the down-

sampling operator with factor d. The reconstruction constraint requires that the high-

resolution image after smoothing and down-sampling should be as close as possible to 

the input low-resolution image. 

As in many image super-resolution methods [113-116], the reconstruction error 

can be minimized by the back projection algorithm [25] which is an iterative gradient-

based minimization method. In this thesis also iterative back projection is incorporated to 

obtain the high resolution image by minimizing the reconstruction error as described in 

section 3.4. 
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Hence, the high resolution image can be continually updated as: 

   (4.15) 

where  is the high-resolution image at iteration t, and g and p are the spatial filter and 

Gaussian “back projection” filter, respectively. The intermediate result IS from the 

equation 4.13, is used as the initial IH at the first iteration. In this experiment, the 

variances of g and p are set to d/2. 

4.3.4. Similar structure learning 

Because of the constant back-projection kernel “p” in equation 4.15, the 

reconstruction error is back projected into the reconstructed image isotropically. This 

produces some artifacts across the edges. In addition to this, it is often assumed that true 

motion is needed for super-resolution, however many registration methods do not yield 

true motion: their results are optimal to some proposed cost criterion, which are not 

necessarily equal to true motion. With this in mind, one can hypothetically assume that 

repetitive structures can serve as multiple noisy observations of the same structure (after 

proper registration). Besides, repetitivity in texture, one can also find this recurrent 

property in other parts of the image. Some examples are shown in Fig. 4.4. 

Hence with the help of post-processing step, one can reduce the artifacts 

produced by back projection kernel to minimum. The structure of low resolution input 

image is employed to guide the high resolution image. This can be implemented as: 

1. Learn the structural content of the low resolution input pixels for each high 

resolution pixel. This can be done using two criterions, namely zero-mean 

normalized cross correlation (CC) and the mean absolute differences as 

explained in section 3.5. 
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(a) 

 

(b) 

 

(c) 

Figure 4.4 (a) Repetition in different objects. (b) Repetition along edges. (c) Repetition in 
uniform areas [111]. 
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2. Find the correlation among the pixels with the similar structure.  

3. Employ the correlation to correct the reconstructed image.  

In this thesis, search window is limited to 20x20. One can choose this to be as 

large as the whole image, but it will result in very large computation.  Continuing the 

discussion from section 3.5, subpixel registration in the spatial domain can be achieved 

either by interpolating image data or by interpolating the correlation data. In order to save 

computation time, resample only the reference window Bref, on a higher resolution. The 

subpixel shifts can be estimated using the criterion of equation 3.15. After the 

registration, the pixel values of B are mapped onto the high resolution (HR) grid. Most 

existing techniques [57, 116] use linear methods to upscale Bref. However, these 

interpolation methods typically suffer from blurring, staircasing and/or ringing. These 

artifacts not only degrade the visual quality but also affect the registration accuracy. That 

is why a fast non-linear restoration-based interpolation based on level curve mapping 

[123] is adopted.  

After extracting the pixels with the similar structure, the correlation of the similar 

pixels can be learned, and use this information to correct the reconstructed HR image. 

Data fusion in is similar to that in the non-local IBP [124] method. The reconstructed 

image can be updated as the weighted average of all elements in S(x’), considering the 

initial interpolated image to be : 

                                       (4.16) 
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where S(x’) is a set which contains the pixels with the similar structure, and weight 

w(x,x’) shows the correlation between the given pixel and the similar structure pixel. 

w(x.x’) can be obtained as follows: 

                                               (4.17) 

                                                       (4.18) 

where C(x) is the normalization constant and t1 is a parameter to control the decaying 

speed. 

4.4 Summary 

In this chapter the proposed methodology is discussed. Firstly, the input low 

resolution image is upsampled using bilateral filtering and mean shift image 

segmentation. Secondly, this upsampled image is processed by shock filter with which 

one can get better smoothed filter. Thirdly, Iterative back projection is applied to this 

image as a reconstruction refinement of the shock filtered image. Lastly, to further stop 

the across-edge the similar structure in the low resolution image is learnt and based on 

zero mean-mean normalized cross correlation (CC) and the mean absolute differences 

(MAD). This data is then fused with the IBP high resolution image. In the next chapter, 

the results of this experiment are shown. Also the comparisons of this proposed method 

with other established super-resolution methods are discussed. 
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CHAPTER 5 

RESULTS AND CONCLUSION 

5.1 Image quality assessment 

Any processing applied to an image may cause an important loss of information 

or quality. Image quality evaluation methods can be subdivided into objective and 

subjective methods [125], [126]. Subjective methods are based on human judgment and 

operate without reference to explicit criteria [127]. Objective methods are based on 

comparisons using explicit numerical criteria [128], [129], and several references are 

possible such as the ground truth or prior knowledge expressed in terms of statistical 

parameters and tests [130-132]. 

Image quality is a characteristic of an image that measures the perceived image 

degradation (typically, compared to an ideal or perfect image). Imaging systems may 

introduce some amounts of distortion or artifacts in the signal, so the quality assessment 

is an important problem. The metrics that has been used in this thesis for the image 

quality assessment (IQA) are discussed in the subsequent sections 

5.1.1. PSNR 

The peak-signal-to-noise ratio (PSNR) is the most common measure of picture 

quality. Another more popularly used measure is Mean-Squared Error (MSE).  The 

mean-squared error (MSE) between two images g(n,m) and (n,m) can be given by: 

                         (4.1) 

One problem with mean-squared error is that it depends strongly on the image 

intensity scaling. A mean-squared error of 100.0 for an 8-bit image (with pixel values in
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the range 0-255) looks dreadful; but a MSE of 100.0 for a 10-bit image (pixel values in [0, 

1023]) is barely noticeable. PSNR avoids this problem by scaling the MSE according to 

the image range: 

                                               (4.2) 

where S is the maximum pixel value. PSNR is measured in decibels (dB). These are 

appealing because they are simple to calculate, have clear physical meanings, and are 

mathematically convenient in the context of optimization. But they are not very well 

matched to perceived visual quality [133-138]. Its main drawback is that the signal 

strength is estimated as S2, rather than the actual signal strength for the image. Hence, 

PSNR is not as adequate as perceptually meaningful measures [139].  

5.1.2. SSIM 

The Structural SIMilarity (SSIM) index [29] is a method for measuring the 

similarity between two images. The SSIM index can be viewed as a quality measure of 

one of the images being compared provided the other image is regarded as of perfect 

quality. The SSIM index is a full reference (FR) metric, in other words, the measuring of 

image quality based on an initial uncompressed or distortion-free image as reference. 

SSIM is designed to improve on traditional methods like peak signal-to-noise ratio and 

mean squared error, which have proved to be inconsistent with human eye perception. 

The difference with respect to other techniques mentioned previously such as 

MSE or PSNR, is that these approaches estimate perceived errors on the other hand 

SSIM considers image degradation as perceived change in structural information. 

Structural information is the idea that the pixels have strong inter-dependencies 

http://en.wikipedia.org/w/index.php?title=Full_reference_metric&action=edit&redlink=1
http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
http://en.wikipedia.org/wiki/Mean_squared_error
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especially when they are spatially close. These dependencies carry important information 

about the structure of the objects in the visual scene [29]. 

At a high level, SSIM attempts to measure the change in luminance, contrast, 

and structure in an image. Luminance is modeled as average pixel intensity, contrast by 

the variance between the reference and distorted image, and structure by the cross-

correlation between the 2 images. The resulting values are combined (using exponents 

referred to as alpha, beta, and gamma) and averaged to generate a final SSIM index 

value. 

The general form of SSIM can be given as: 

            (4.3) 

where α>0, β>0, and γ>0 are parameters used to adjust the relative importance of the 

three components, and x, y are image patches, and 

                                               (4.4) 

                                               (4.5) 

                                                       (4.6) 

l(x,y) in equation 4.4 is luminance comparison, c(x,y) in equation 4.5  is contrast 

comparison and s(x,y) in equation 4.6 is structural comparison. C1, C2 and C3 are 
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constants to avoid instability. μx and μy are mean average of x and y, and  , and  are 

variances of x and y.  is covariance of x and y. In order to simplify the equation 4.3, 

set α= β = γ=1 and 

C1 = (K1L)2                                                               (4.7) 

C2 = (K2L)2                                                               (4.8) 

C3 = C2/2                                                            (4.9) 

Where L is the dynamic range of the pixel values (255 for 8-bit grayscale images), and 

K1,K2<<1 is a small constant. Therefore, equation 4.3 can be re-written as: 

                 (4.10) 

5.1.3. FSIM 

The great success of SSIM and its extensions owes to the fact that human visual 

system (HVS) is adapted to the structural information in images. The visual information in 

an image, however, is often very redundant, while the HVS understands an image mainly 

based on its low-level features, such as edges and zero crossings [140-142]. In other 

words, the salient low-level features convey crucial information for the HVS to interpret 

the scene. Accordingly, perceptible image degradations will lead to perceptible changes 

in image low-level features, and hence, a good IQA metric could be devised by 

comparing the low-level feature sets between the reference image and the distorted 

image. Based on the aforementioned analysis, a novel low-level feature similarity (FSIM) 

induced FR IQA metric, namely, FSIM has been evolved. 
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Consider calculating the similarity between images f1 and f2. Denote by PC1 and 

PC2 the phase congruency (PC) maps extracted from f1 and f2, respectively, and G1 and 

G2 the gradient magnitude (GM) maps extracted from them. FSIM index from [28] can be 

defined as follows: 

                                    (4.11) 

where Ω is the whole image, and  

                                      (4.12) 

                                          (4.13) 

                                  (4.14) 

For simplicity, PCm(x) = max{PC1(x), PC2(x)}, and α= β = 1, and T1 and T2 denotes 

positive constants to increase the stability. Detailed explanation of this metric can be 

found on [28]. 

5.2 Results 

The proposed algorithm is compared with some already established super-

resolution methods. The methods which are used to compare are bicubic interpolation 

[27], Projection onto Convex Set (POCS) Technique [55], non-local iterative back 

projection (NLIBP) [111] and 2D auto regressive model based image interpolation [143]. 

Test images used in this thesis are shown in fig. 5.1. 
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 Figure 5.1. Test image: estatua 
 

 Figure 5.2. Test image: lena 
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 Figure 5.3. Test image: clock 

Figure 5.4. Test image : portofino 
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 Figure 5.5. Test image: barche 

 
 
 
 

Table 5.1 Comparison using Lena image 

 PSNR (dB) SSIM FSIM 

Proposed algorithm 28.91 0.9106 0.9518 

Bicubic interpolation 28.27 0.8631 0.9418 

POCS 27.93 0.9457 0.9467 

NLIBP 28.69 0.8573 0.9259 

2D auto regressive 

model 
29.05 0.8754 0.9487 
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Table 5.2 Comparison using Barche image 

 PSNR (dB) SSIM FSIM 

Proposed algorithm 29.24 0.8913 0.9243 

Bicubic interpolation 26.98 0.9331 0.9077 

POCS 21.65 0.6372 0.7567 

NLIBP 27.46 0.8226 0.8845 

2D auto regressive 

model 
27.37 0.8403 0.9161 

 

Table 5.3 Comparison using Estatua image 

 PSNR (dB) SSIM FSIM 

Proposed algorithm 30.19 0.7933 0.9412 

Bicubic interpolation 29.81 0.7760 0.9204 

POCS 24.51 0.6187 0.8101 

NLIBP 30.66 0.7785 0.9033 

2D auto regressive 

model 
30.08 0.7840 0.9226 

 

Table 5.4 Comparison using Portofino image 

 PSNR (dB) SSIM FSIM 

Proposed algorithm 26.97 0.7995 0.9217 

Bicubic interpolation 25.64 0.7728 0.8904 

POCS 22.46 0.5880 0.7539 

NLIBP 26.61 0.7710 0.8673 

2D auto regressive 

model 
25.71 0.7743 0.8924 
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Table 5.5 Comparison using Clock image 

 PSNR (dB) SSIM FSIM 

Proposed algorithm 29.19 0.9290 0.9268 

Bicubic interpolation 28.63 0.9331 0.9305 

POCS 21.74 0.8201 0.8049 

NLIBP 29.19 0.9292 0.9215 

2D auto regressive 

model 
28.98 0.9357 0.9379 

 

Table 5.6 Overall comparisons for all images 

 PSNR (dB) SSIM FSIM 

Proposed algorithm 
28.9 0.8674 0.93316 

Bicubic interpolation 
28.866 0.8556 0.9186 

POCS 
23.658 0.72194 0.81446 

NLIBP 
28.522 0.83172 0.9005 

2D auto regressive 

model 
28.238 0.84194 0.92354 

 

5.3 Conclusions 

In this thesis a novel image interpolation method is proposed with special 

attention to edges present in the images. Tables 5.1-5.5 clearly show that the proposed 

algorithm performs better than its counterparts. There has been 3-6% increase in the 

FSIM index. Also worth noting is that the proposed algorithm out-perform the other 

existing techniques when the image under consideration has more details (complex) in it. 

The given algorithm is more suitable for applications where computational cost is not a 
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constraint. Using mean-shift image segmentation definitely preserves edges during the 

upsampling. In addition to this, through post processing on the reconstructed images 

improves the image quality.  

This new framework improves the quality of the HR image reconstructed by the 

IBP method. The upsampling process which is combination of bilateral filtering and 

mean-shift image segmentation is used in the initial step to strengthen the true edge. In 

order to further reduce the across-edge error propagation, post processing on the 

reconstructed HR image is employed, which takes the advantage of the correlation of 

pixels with the similar structure to guide the reconstructed image. The proposed algorithm 

can improve the results in both subjective visual quality and PSNR measure. 

5.4 Future Work 

The algorithm can be optimized for better performance. One can tweak this 

algorithm and have a check on the error convergence, which is important for several 

other applications. Other than that the super-resolution problem is not yet solved. There 

are always other frameworks yet to be discovered towards optimal super-resolution.



 

  81 

 

 

REFERENCES 

[1] R. C. Gonzalez and R. E. Woods, "Digital Image Processing". New Jersey: Prentice 

Hall, 2008. 

[2] R. Y. Tsai and T. S. Huang, "Multiframe image restoration and registration," in 

Advances in Computer Vision and Image Processing. (1st ed.), T. S. Huang, Ed. London: 

JAI Press Inc., pp. 101-106, 1984. 

[3] B. S. I. Staff, "Photography. electronic still picture cameras. resolution 

measurements", B S I Standards, Feb. 2000. Available: 

http://books.google.com/books?id=aQbFAAAACAAJ. 

[4] S. Chaudhuri and M. V. Joshi. Research on image super-resolution. pp. 15-31. 2005.  

[5] H. Nyquist , "Certain topics in telegraph transmission theory,"  Transactions of the 

American Institute of Electrical Engineers, vol. 47, no.2, pp. 617-644, Apr.1928.  

[6] C. E. Shanon, “A mathematical theory of communication,"  Bell System Technical 

Journal, vol. 27, no.4, pp. 623 - 656, Oct. 1948.  

[7] C. E. Shannon, "Communication in the presence of noise,” Proceedings of the IEEE, 

vol. 86, no.2, pp. 447-457. Feb.1998.  

[8] R. J. Schalkoff. "Digital image processing and computer vision ", New York, Wiley, 

1989. Available: http://books.google.com/books?id=-vtRAAAAMAAJ. 

[9] H. Stark and P. Oskoui, "High-resolution image recovery from image-plane arrays, 

using convex projections,” Jour. of Optical Society of America, vol. 6, no.11, pp. 1715-

1726. Nov.1989. Available: http://josaa.osa.org/abstract.cfm?URI=josaa-6-11-1715.

http://books.google.com/books?id=aQbFAAAACAAJ
http://books.google.com/books?id=-vtRAAAAMAAJ
http://josaa.osa.org/abstract.cfm?URI=josaa-6-11-1715


 

  82 

 

 

[10] K. Aizawa, T. Komatsu and T. Saito, "A scheme for acquiring very high resolution 

images using multiple cameras,"  IEEE International Conference on Acoustics, Speech, 

and Signal Processing,San Francisco, CA, vol.3, pp. 289-292,Mar. 1992. 

[11] E.-.Eid, "Study of limitations on pixel size of very high resolution image sensors,” 

Proceedings of the Eighteenth National Radio Science Conference,vol.1, pp. 15-28, 

2001. 

[12] T. Komatsu, K. Aizawa, T. Igarashi and T. Saito, "Signal-processing based method 

for acquiring very high resolution images with multiple cameras and its theoretical 

analysis," IEE Proceedings on Communications, Speech and Vision, vol. 140, no.1, pp. 

19-24, Feb.1993.  

[13] V. Bannore and L. Swierkowski, “An iterative approach to image super-resolution.” in 

Intelligent Information Processing III, vol. 228, pp. 473-482, Springer, Boston, 2007.  

[14] P. Milanfar. "Super-resolution imaging ", Taylor & Francis Group, 2010. Available: 

http://books.google.com/books?id=fjTUbMnvOkgC. 

[15] M. Cristani, D. S. Cheng, V. Murino and D. Pannullo, "Distilling information with 

super-resolution for video surveillance,” Proceedings of the ACM 2nd international 

workshop on Video surveillance & sensor networks, New York, NY, USA, pp. 2-11, 2004. 

Available: http://doi.acm.org/10.1145/1026799.1026803. 

[16] F. C. Lin, C. B. Fookes, V. Chandran and S. Sridharan, "Investigation into optical 

flow super-resolution for surveillance applications,” APRS Workshop on Digital Image 

Computing: Pattern Recognition and Imaging for Medical Applications, Brisbane, 

Australia, pp. 73-78, Feb. 2005. Available: http://eprints.qut.edu.au/17945/. 

[17] F. Li, X. Jia and D. Fraser, "Universal HMT based super resolution for remote 

sensing images," IEEE International Conference on Image Processing, pp. 333-336, Oct. 

2008. 

http://books.google.com/books?id=fjTUbMnvOkgC
http://doi.acm.org/10.1145/1026799.1026803
http://eprints.qut.edu.au/17945/


 

  83 

 

 

[18] J. B. A. Maintz and M. A. Viergever, "A survey of medical image registration,"  Med. 

Image Anal. vol. 2, no.1, pp. 1-36, Oct.1997.  

[19] S. Peled and Y. Yeshurun, "Superresolution in MRI: application to human white 

matter fiber tract visualization by diffusion tensor imaging,"  Magn. Reson. Med., vol. 45, 

no.1, pp. 29-35, Jan. 2001.  

[20] J. A. Kennedy, O. Israel, A. Frenkel, R. Bar-Shalom and H. Azhari, "Super-resolution 

in PET imaging,"  IEEE Transactions on Medical Imaging, vol. 25, no.2, pp. 137-147, 

Feb. 2006.  

[21] K. Malczewski and R. Stasinski, "Toeplitz-based iterative image fusion scheme for 

MRI,"  15th IEEE International Conference on Image Processing, San Diego, CA, pp. 

341-344, Oct. 2008. 

[22] T. Bauer, "Super-resolution imaging: The use case of optical astronomy. "  

Proceedings of the IADIS International Conference Computer Graphics, Visualization, 

Computer Vision and Image Processing,Rome, Italy, pp. 49-59, 2011. 

[23] K. G. Puschmann and F. Kneer, "On super-resolution in astronomical imaging,” 

Astronomy and Astrophysics, vol. 436, no.1, pp. 373-378, June 2005.  

[24] L. M. Novak, G. J. Owirka and A. L. Weaver, "Automatic target recognition using 

enhanced resolution SAR data," IEEE Transactions on Aerospace and Electronic 

Systems, vol. 35, no.1, pp. 157-175, Jan.1999.  

[25] M. Irani and S. Peleg, "Motion analysis for image enhancement: resolution, 

occlusion, and transparency,” Journal of Visual Communication and Image 

Representation, vol. 4, no.4, pp. 324-335, Dec.1993.  

[26] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images,"  

Proceedings of the Sixth International Conference on Computer Vision, Bombay, India, 

pp. 839-846, Jan.1998. Available: http://dl.acm.org/citation.cfm?id=938978.939190. 

http://dl.acm.org/citation.cfm?id=938978.939190


 

  84 

 

 

[27] R. Keys, "Cubic convolution interpolation for digital image processing," IEEE 

Transactions on  Acoustics, Speech and Signal Processing, vol. 29, no.6, pp. 1153-1160, 

Dec. 1981.  

[28] L. Zhang, L. Zhang, X. Mou and D. Zhang, "FSIM: A feature similarity index for 

image quality assessment," IEEE Transactions on Image Processing, vol. 20, no.8, pp. 

2378-2386, Aug. 2011.  

[29] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality assessment: 

from error visibility to structural similarity,” IEEE Transactions on Image Processing vol. 

13, no.4, pp. 600-612, Apr. 2004.  

[30] S. P. Kim, N. K. Bose and H. M. Valenzuela, "Recursive reconstruction of high 

resolution image from noisy undersampled multiframes," IEEE Transactions on 

Acoustics, Speech and Signal Processing, vol. 38, no.6, pp. 1013-1027, Jun.1990.  

[31] S. P. Kim and W.-Su, "Recursive high-resolution reconstruction of blurred multiframe 

images," IEEE Transactions on Image Processing, vol. 2, no.4, pp. 534-53, Oct.1993.  

[32] S. Rhee and M. G. Kang, "DCT-based regularized algorithm for high-resolution 

image reconstruction," International Conference on Image Processing, vol.3, pp. 184-

187, Oct.1999. 

[33] R. H. Chan, T. F. Chan, L. Shen and Z. Shen, "Wavelet algorithms for high-resolution 

image reconstruction,” SIAM J.Sci.Comput. vol. 24, no.4, pp. 1408-1432, Apr. 2002.  

[34] B. K. Horn. "Robot Vision ", 1st ed.,   Cambridge, MA: McGraw-Hill Higher 

Education, 1986. 

[35] P. Packalén, T. Tokola, J. Saastamoinen and M. Maltamo, "Use of a 

super‐resolution method in interpretation of forests from multiple NOAA/AVHRR 

images,” International Journal of Remote Sensing, vol. 27, no.24, pp. 5341-5357, Dec. 

2006.  



 

  85 

 

 

[36] Z. Wang, D. Ziou, C. Armenakis, D. Li and Q. Li, "A comparative analysis of image 

fusion methods," IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no.6, 

pp. 1391-1402, June 2005.  

[37] T. Ranchin, B. Aiazzi, L. Alparone, S. Baronti and L. Wald, "Image fusion—the 

ARSIS concept and some successful implementation schemes,” ISPRS Journal of 

Photogrammetry and Remote Sensing, vol. 58, no.1–2, pp. 4-18, June 2003.  

[38] M. Gonzalez-Audicana, X. Otazu, O. Fors and J. Alvarez-Mozos, "A low 

computational-cost method to fuse IKONOS images using the spectral response function 

of its sensors,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no.6, pp. 

1683-1691, June 2006.  

[39] M. V. Joshi, L. Bruzzone and S. Chaudhuri, "A model-based approach to 

multiresolution fusion in remotely sensed images," IEEE Transactions on Geoscience 

and Remote Sensing, vol. 44, no.9, pp. 2549-2562, Sept. 2006.  

[40] J. H. Park and M. G. Kang , "Spatially adaptive multi-resolution multispectral image 

fusion,"  International Journal of Remote Sensing, vol. 25, no.23, pp. 5491-5508, Dec. 

2004. 

[41] B. Bhatta. "Remote Sensing and GIS ", Oxford University Press, 2008. 

[42] J. C. Chan, J. Ma and F. Canters, "A comparison of superresolution reconstruction 

methods for multi-angle CHRIS/Proba images," Proc. SPIE Image and Signal Processing 

for Remote Sensing XIV, vol.7109, no. 1, Oct. 2008.  

[43] A. J. Jerri, "The Shannon sampling theorem—Its various extensions and 

applications: A tutorial review,” Proceedings of the IEEE vol. 65, no.11, pp. 1565-1596, 

Nov.1977.  



 

  86 

 

 

[44] T. M. Lehmann, C. Gonner and K. Spitzer, "Survey: interpolation methods in medical 

image processing," IEEE Transactions on Medical Imaging, vol. 18, no.11, pp. 1049-

1075, Nov.1999.  

[45] J. N. Ratzel, "The discrete representation of spatially continuous images,"  Thesis 

(Ph. D. ) MIT, 1980.  

[46] W. Burger and M. J. Burge. "Principles of digital image processing: core algorithms ", 

Springer, 2009. Available: http://books.google.com/books?id=s5CBZLBakawC. 

[47] H. Hou and H. Andrews, "Cubic splines for image interpolation and digital filtering,” 

IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 26, no.6, pp. 508-

517, Dec.1978.  

[48] K. Turkowski, "Filters for common resampling task," in Graphics Gems, A. S. 

Glassner, Ed. San Diego, CA, USA: Academic Press Professional, Inc., pp. 147-

165,1990. 

[49] J. A. Parker, R. V. Kenyon and D. E. Troxel, "Comparison of interpolating methods 

for image resampling," IEEE Transactions on Medical Imaging, vol. 2, no.1, pp. 31-39. 

Mar.1983.  

[50] G. Wolberg, "Sampling, reconstruction, and antialiasing," in Computer Science 

Handbook (2nd ed.), A. B. Tucker, Ed. CRC Press, pp. 39-1 - 39-25, 2004. 

 [51] J. D. van Ouwerkerk , "Image super-resolution survey,"  Image and Vision 

Computing, vol. 24, no.10, pp. 1039-1052, Feb.2006.  

[52] J. L. Harris, "Diffraction and Resolving Power,"  J. Opt. Soc. Am. vol. 54, no.7, pp. 

931-933, July1964. Available: http://www.opticsinfobase.org/abstract.cfm?URI=josa-54-7-

931. 

[53] R. Gerchberg, “Super-resolution through error energy reduction.” Optica Acta: 

International Journal of Optics vol.21, no.9, pp. 709, Jan.1974.  

http://books.google.com/books?id=s5CBZLBakawC
http://www.opticsinfobase.org/abstract.cfm?URI=josa-54-7-931
http://www.opticsinfobase.org/abstract.cfm?URI=josa-54-7-931


 

  87 

 

 

[54] A. K. Jain, "Fundamentals of Digital Image Processing ", Upper Saddle River, NJ, 

USA: Prentice-Hall, Inc, 1989. 

[55] A. Papoulis, "A new algorithm in spectral analysis and band-limited extrapolation,” 

IEEE Transactions on Circuits and Systems, vol. 22, no.9, pp. 735-742. Sept. 1975.  

[56] W. T. Freeman, E. C. Pasztor and O. T. Carmichael, ”Learning low-level vision”. 

IJCV vol.40, no.1, pp. 25-47, Jan. 2000.  

[57] W. T. Freeman and E. C. Pasztor, "Markov networks for super-resolution,"  

Proceedings of 34th Annual Conference on Information Sciences and Systems,NJ, Mar. 

2000. 

[58] W. T. Freeman, T. R. Jones and E. C. Pasztor, "Example-based super-resolution,” 

IEEE Computer Graphics and Applications, vol. 22, no.2, pp. 56-65, Mar. 2002.  

[59] C. B. Atkins, C. A. Bouman and J. P. Allebach, "Optimal image scaling using pixel 

classification," International Conference on  Image Processing, vol.3, pp. 864-867, Oct. 

2001. 

[60] S. Battiato, G. Gallo and F. Stanco, "A locally adaptive zooming algorithm for digital 

images,"  Image Vision Comput. vol. 20, no.11, pp. 805-812. Sept.2002. Available: 

http://www.sciencedirect.com/science/article/pii/S0262885602000896. 

[61] S. Battiato, G. Gallo and F. Stanco,” Smart interpolation by anisotropic diffusion”. 

12th International Conference on Image Analysis and Processing, pp. 572-577, Sept. 

2003.  

[62] D. D. Muresan and T. W. Parks, "Adaptive, optimal-recovery image interpolation,"  

IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake 

City, UT, vol.3, pp. 1949-1952, May 2001. 

[63] D. D. Muresan and T. W. Parks, "Adaptively quadratic (AQua) image interpolation," 

IEEE Transactions on Image Processing, vol. 13, no.5, pp. 690-698, May 2004.  

http://www.sciencedirect.com/science/article/pii/S0262885602000896
http://libproxy.uta.edu:2129/refworks2/default.aspx?r=references%7CMainLayout::init


 

  88 

 

 

[64] D. D. Muresan and T. W. Parks, "Prediction of image detail," International 

Conference on Image Processing, Vancouver, BC, Canada, vol.2, pp. 323-326, Sept. 

2000. 

[65] K. Kinebuchi, D. D. Muresan and T. W. Parks, "Image interpolation using wavelet 

based hidden Markov trees," IEEE International Conference on Acoustics, Speech, and 

Signal Processing, ,Salt Lake City, UT, vol.3, pp. 1957-1960, May 2001. 

[66] D. Su and P. Willis, "Image interpolation by pixel-level data-dependent triangulation,” 

Computer Graphics Forum vol. 23, no.2, pp. 189-201, Jul. 2004. Available: 

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2004.00752.x/abstract. 

[67] Xiaohua Yu, B. S. Bryan and T. W. Sederberg, "Image reconstruction using data-

dependent triangulation," IEEE Computer Graphics and Applications, vol. 21, no.3, pp. 

62-68, May 2001.  

[68] K. Jensen and D. Anastassiou, "Subpixel edge localization and the interpolation of 

still images," IEEE Transactions on Image Processing, vol. 4, no.3, pp. 285-295. 

Mar.1995.  

[69] http://www.benvista.com.; Commercial tool for  photo enhancement 

[70] http://www.imagener.com/; Commercial tool for photo enhancement.. 

[71] http://www.ddisoftware.com/qimage/plugins/index.html; Commercial tool for photo 

enhancement. 

[72] http://www.extensis.com; Commercial tool for photo enhancement.. 

[73] L. Davis and A. Rosenfeld. , "Noise cleaning by iterated local averaging," IEEE 

Transactions on Systems, Man and Cybernetics, vol. 8, no.9, pp. 705-710, Sept. 1978.  

[74] N. Himayat and S. A. Kassam. , "Approximate performance analysis of edge 

preserving filters," IEEE Transactions on Signal Processing, vol. 41, no.9, pp. 2764-2777, 

Sept.1993.  

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2004.00752.x/abstract
http://www.benvista.com/
http://www.imagener.com/
http://www.ddisoftware.com/qimage/plugins/index.html
http://www.extensis.com/


 

  89 

 

 

[75] T. Huang, G. Yang and G. Tang. , "A fast two-dimensional median filtering 

algorithm," IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 27, 

no.1, pp. 13-18. Feb.1979.  

[76] J. Lee, "Digital image enhancement and noise filtering by use of local statistics," 

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-2, no.2, pp. 

165-168. Mar1980.  

[77] P. M. Narendra, "A separable median filter for image noise smoothing," IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-3, no.1, pp. 20-29. 

Jan.1981.  

[78] P. Perona and J. Malik, "Scale-space and edge detection using anisotropic 

diffusion,"  Pattern Analysis and Machine Intelligence, IEEE Transactions on vol. 12, 

no.7, pp. 629-639. Jul1990.  

[79] L. Yin, R. Yang, M. Gabbouj and Y. Neuvo, "Weighted median filters: a tutorial,” 

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 

43, no.3, pp. 157-192, Mar. 1996.  

[80] L. Wang, Y. Zhang and J. Feng, "On the Euclidean distance of images,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence vol. 27, no.8, pp. 1334-1339, 

Aug.2005.  

[81] H. Winnemoller, S. C. Olsen and B. Gooch, "Real-time video abstraction,” ACM 

Trans.Graph. vol. 25, no.3, pp. 1221-1226, Jul. 2006. Available: 

http://doi.acm.org/10.1145/1141911.1142018. 

[82] Y. J. Zhang, "Advances in image and video segmentation ", USA: IRM Press, 

2006Available: http://books.google.com/books?id=VMWrAh2Di2QC. 

[83] Q. Hu, Z. Hou and W. L. Nowinski, "Supervised range-constrained thresholding," 

IEEE Transactions on Image Processing, vol. 15, no.1, pp. 228-240, Jan.2006.  

http://doi.acm.org/10.1145/1141911.1142018
http://books.google.com/books?id=VMWrAh2Di2QC


 

  90 

 

 

[84] L. Grady, "Random walks for image segmentation," IEEE Transactions on Pattern 

Analysis and Machine Intelligence, vol. 28, no.11, pp. 1768-1783, Nov. 2006.  

[85] J. A. Sethian, "Level set methods and fast marching methods: evolving interfaces in 

computational geometry, fluid mechanics, computer vision, and materials science ", 

Cambridge University Press, 1999. Available: 

http://books.google.com/books?id=ErpOoynE4dIC. 

[86] S. Chabrier, B. Emile, H. Laurent, C. Rosenberger and P. Marche, "Unsupervised 

evaluation of image segmentation application to multi-spectral images,"  Proceedings of 

the 17th International Conference on Pattern Recognition,vol.1, pp. 576-579, Aug. 2004. 

[87] X. Artaechevarria, A. Munoz-Barrutia and C. Ortiz-de-Solorzano, "Combination 

strategies in multi-atlas image segmentation: application to brain MR data,” IEEE 

Transactions on Medical Imaging, vol. 28, no.8, pp. 1266-1277. Aug. 2009.  

[88] A. Roy, S. Kumar Parui, A. Paul and U. Roy, "A color based image segmentation and 

its application to text segmentation,"  Sixth Indian Conference on Computer Vision, 

Graphics & Image Processing,Bhubaneswar, India, pp. 313-319, Dec. 2008. 

[89] G. Huilin, D. Lihua, C. Wenjie and X. Gang, "The applications of image segmentation 

techniques in medical CT images,"  30th Chinese Control Conference (CCC),Yantai, pp. 

3296-3299, July 2011. 

[90] K. Fukunaga and L. Hostetler, "The estimation of the gradient of a density function 

with applications in pattern recognition," IEEE Transactions on Information Theory, vol. 

21, no.1, pp. 32-40, Jan. 1975.  

[91] D. Comaniciu and P. Meer, "Robust analysis of feature spaces: Color image 

segmentation,” IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition, San Juan, pp. 750-755, Jun 1997. 

http://books.google.com/books?id=ErpOoynE4dIC


 

  91 

 

 

[92] J. S. Suri, S. K. Setarehdan and S. Singh, "Advanced algorithmic approaches to 

medical image segmentation: state-of-the-art application in cardiology, neurology, 

mammography and pathology ", 1st ed.,   New York, NY, USA: Springer-Verlag New 

York, Inc, 2002. 

[93] A. A. Bell, J. N. Kaftan, T. Aach, D. M.-Ebrecht and A. Bocking, "High dynamic range 

images as a basis for detection of argyrophilic nucleolar organizer regions under varying 

stain intensities," IEEE International Conference on Image Processing, Atlanta, GA, pp. 

2541-2544, Oct. 2006. 

[94] D. Comaniciu and P. Meer. , "Mean shift: a robust approach toward feature space 

analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no.5, 

pp. 603-619, May 2002.  

[95] Q. Guo, X. Chang and H. Chu. "Mean-shift of variable window based on the 

epanechnikov kernel," International Conference on Mechatronics and Automation, 

Harbin, pp. 2314-2319, Aug. 2007. 

[96] M. Kerckhove, “Scale-space and morphology in computer vision. scale-space and 

morphology in computer vision,” Vancouver, Canada: Springer-Verlag, 2001. Available: 

http://books.google.com/books?id=DlRvjAKY2WAC. 

[97] B. M. Romeny, "Geometry-driven diffusion in computer vision ", Norwell, MA, USA: 

Kluwer Academic Publishers, 1994. 

[98] S. Osher and L. I. Rudin, "Feature-oriented image enhancement using shock filters,"  

SIAM J.Numer.Anal., vol. 27, no.4, pp. 919-940, Aug. 1990. Available: 

http://dx.doi.org/10.1137/0727053. 

[99] J. Weickert, "Coherence-enhancing shock filters," in Pattern Recognition, Lecture 

Notes in Computer Science, B. Michaelis and G. Krell, Eds., Springer, Berlin, Heidelberg. 

http://books.google.com/books?id=DlRvjAKY2WAC
http://dx.doi.org/10.1137/0727053


 

  92 

 

 

[100] L. Cosmin, L. Olivier, P. Sorin, T. Romulus and B. Monica, "Image enhancement 

using a new shock filter formalism,"  ACTA Technica Napocensis:Electronics and 

Telecommunications, vol. 50, no.3, pp. 27-30, Mar. 2009.  

[101] H. P. Kramer and J. B. Bruckner, "Iterations of a non-linear transformation for 

enhancement of digital images,” Pattern Recognition vol. 7, no.1-2, pp. 53-58, Jun.1975. 

Available: http://www.sciencedirect.com/science/article/pii/0031320375900138. 

[102] F. Guichard and J. Morel, "A note on two classical enhancement filters and their 

associated PDE's,"  Int.J.Comput.Vision vol. 52, no.2-3, pp. 153-160, May 2003. 

Available: http://dx.doi.org/10.1023/A:1022904124348. 

[103] O. Marques, "Edge detection," in Practical Image and Video Processing using 

MATLAB, 1st ed., New Jersey: Wiley-IEEE Press, pp. 335-363, 2011. 

[104] G. Gilboa, N. A. Sochen and Y. Y. Zeevi, "Regularized shock filters and complex 

diffusion,” Proceedings of the 7th European Conference on Computer Vision-Part I, pp. 

399-413, 2002. Available: http://dl.acm.org/citation.cfm?id=645315.649481. 

[105] L. Alvarez and L. Mazorra, "Signal and image restoration using shock filters and 

anisotropic diffusion,” SIAM J. Numer. Anal. vol. 31, no.2, pp. 590-605, Feb.1994. 

Available: http://epubs.siam.org/doi/abs/10.1137/0731032. 

[106] O. Coulon and S. R. Arridge, "Dual echo MR image processing using multi-spectral 

probabilistic diffusion coupled with shock filters."  Proc. of the British Conference on 

Medical Image Understanding and Analysis, (MIUA 2000),London, pp. 141-144, 2000. 

[107] P. Komprobst, R. Deriche and G. Aubert, "Image coupling, restoration and 

enhancement via PDE's," IEEE International Conference on Image Processing, Santa 

Barbara, CA, vol.2, pp. 458-461, Oct 1997. 

http://www.sciencedirect.com/science/article/pii/0031320375900138
http://dx.doi.org/10.1023/A:1022904124348
http://dl.acm.org/citation.cfm?id=645315.649481
http://epubs.siam.org/doi/abs/10.1137/0731032


 

  93 

 

 

[108] F. R. Nicolas and J. P. Francoise, "Controlled anisotropic diffusion,"  Proc. SPIE 

Conf. on Nonlinear Image Processing VI - IS&T / SPIE Symp. on Electronic Imaging, 

Science and Technology, San Jose, CA, vol.2424, pp. 329-340, Mar. 1995. 

[109] M. Irani and S. Peleg, "Improving resolution by image registration,"  CVGIP: 

Graph.Models Image Process. vol. 53, no.3, pp. 231-239, Apr. 1991. Available: 

http://dx.doi.org/10.1016/1049-9652(91)90045-L. 

[110] G. -. Lin and M. -. Lai, "Enhancing resolution using iterative back-projection 

technique for image sequences,” Journal of Computers vol. 19, no.3, pp. 44-54. Oct. 

2008.  

[111] H. Luong, A. Ledda and W. Philips, "Non-local image interpolation,"  Proc. Int. Conf. 

Image Process., Atlanta, GA, United States, pp. 693-696, Oct. 2006. 

[112] S. Baker and T. Kanade, "Limits on super-resolution and how to break them," IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no.9, pp. 1167-1183, 

Sept. 2002.  

[113] S. Jian, Z. Nan-Ning, T. Hai and S. H.-Yeung, "Image hallucination with primal 

sketch priors,” IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition,vol.2, pp. II-729-36, Jun 2003. 

[114] S. Dai, M. Han, W. Xu, Y. Wu and Y. Gong, "Soft edge smoothness prior for alpha 

channel super resolution,"  IEEE Conference on Computer Vision and Pattern 

Recognition, Minneapolis, MN, pp. 1-8, June 2007. 

[115] Q. Shan, Z. Li, J. Jia and C. Tang, "Fast image/video upsampling,"  ACM 

Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH Asia, vol. 27, no.5, 

pp. 153:1-153:7, Dec. 2008.  

http://dx.doi.org/10.1016/1049-9652(91)90045-L


 

  94 

 

 

[116] J. Sun, Z. Xu and H.-Y. Shum, "Image super-resolution using gradient profile prior,"  

IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, pp. 1-8, 

Jun. 2008. 

[117] J. Yang, J. Wright, T. Huang and Y. Ma, "Image super-resolution as sparse 

representation of raw image patches,"  IEEE Conference on Computer Vision and Pattern 

Recognition, Anchorage, AK, pp. 1-8, Jun 2008. 

[118] Y. Fan, Z. Gan, Y. Qiu and X. Zhu, "Single image super resolution method based 

on edge preservation," Sixth International Conference on Image and Graphics 

(ICIG),Hefei, Anhui, pp. 394-399, Aug 2011. 

[119] S. Dai, M. Han, Y. Wu and Y. Gong, "Bilateral back-projection for single image 

super resolution," IEEE International Conference on Multimedia and Expo, Beijing, pp. 

1039-1042, July 2007. 

[120] R. Fattal, "Image upsampling via imposed edge statistics,” ACM Trans. Graph. vol. 

26, no.3, pp. 95. Jul. 2007. Available: http://doi.acm.org/10.1145/1276377.1276496. 

[121] Q. Zhou, S. Chen, J. Liu and X. Tang, “Edge-preserving single image super-

resolution”, Proceedings of the 19th ACM international conference on Multimedia, 

Arizona, USA, pp. 1037-1040. Nov. 2011.  

[122] G. Gilboa, Y. Y. Zeevi and N. Sochen, "Image enhancement segmentation and 

denoising by time dependent nonlinear diffusion processes," IEEE International 

Conference on Image Processing, Thessaloniki, vol.3, pp. 134-137, Oct. 2001. 

[123] H. Q. Luong, P. de Smet and W. Philips, "Image interpolation using constrained 

adaptive contrast enhancement techniques,” IEEE International Conference on Image 

Processing.vol.2, pp. II-998-1001, Sept. 2005. 

http://doi.acm.org/10.1145/1276377.1276496


 

  95 

 

 

[124] W. Dong, L. Zhang, G. Shi and X. Wu, "Nonlocal back-projection for adaptive image 

enlargement," 16th IEEE International Conference on Image Processing (ICIP), Cairo, 

pp. 349-352, Nov. 2009. 

[125] R. Kreis, "Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy 

and a gallery of artifacts,” NMR Biomed., vol. 17, no.6, pp. 361-381, Oct. 2004.  

[126] I. Avcıbas¸, B. Sankur and K. Sayood, "Statistical evaluation of image quality 

measures," Journal of Electronic Imaging, vol. 11, no.2, pp. 206-223, April 2002.  

[127] L. W. MacDonald and R. Luo, "Colour Imaging: Vision and Technology ", Wiley, 

1999. Available: http://books.google.com/books?id=rO9RAAAAMAAJ. 

[128] M. Cadik and P. Slavik, "Evaluation of two principal approaches to objective image 

quality assessment,” Eighth International Conference on Information Visualisation, IEEE  

Computer Society Press, pp. 513-518, Jul 2004. 

[129] T. B. Nguyen and D. Ziou, "Contextual and non-contextual performance evaluation 

of edge detectors,” Pattern Recogn.Lett. vol. 21, no.8, pp. 805-816, Jul. 2000. Available: 

http://dl.acm.org/citation.cfm?id=351795.351800. 

[130] O. Elbadawy, M. R. El-Sakka and M. S. Kamel, "An information theoretic image-

quality measure,"  IEEE Canadian Conference on Electrical and Computer Engineering, 

Waterloo, Ont., vol.1, pp. 169-172, May 1998. 

[131] A. Medda and V. DeBrunner, "Color image quality index based on the UIQI,” IEEE 

Southwest Symposium on Image Analysis and Interpretation, Denver, CO, pp. 213-217, 

Jun 2006. 

[132] R. Dosselmann and X.- D. Yang, "Existing and emerging image quality metrics,"  

Canadian Conference on Electrical and Computer Engineering, Saskatoon, Sask., pp. 

1906-1913, May 2005. 

http://books.google.com/books?id=rO9RAAAAMAAJ
http://dl.acm.org/citation.cfm?id=351795.351800


 

  96 

 

 

[133] B. Girod, "What’s wrong with mean-squared error?" in Digital images and human 

vision, A. B. Watson, Ed. Cambridge, MA, USA: MIT Press, pp. 207-220, 1993. Available: 

http://dl.acm.org/citation.cfm?id=197765.197784. 

[134] P. C. Teo and D. J. Heeger, "Perceptual image distortion,” IEEE International 

Conference Image Processing, Austin, TX, vol.2, pp. 982-986, Nov. 1994. 

[135] A. M. Eskicioglu and P. S. Fisher, "Image quality measures and their performance,” 

IEEE Transactions on Communications vol. 43, no.12, pp. 2959-2965, Dec.1995.  

[136] M. P. Eckert and A. P. Bradley, "Perceptual quality metrics applied to still image 

compression,” Signal Process- Special Issue on Image and Video Quality Metrics, vol. 

70, no.3, pp. 177, Nov.1998.  

[137] Z. Wang and A. C. Bovik, "A universal image quality index,” IEEE Signal Processing 

Letters, vol. 9, no.3, pp. 81-84, Mar. 2002.  

[138] Z. Wang, A. C. Bovik and L. Lu, "Why is image quality assessment so difficult?"  

IEEE International Conference on Acoustics, Speech, and Signal Processing 

(ICASSP),Orlando, FL, USA, vol.4, pp. IV-3313-IV-3316, May 2002. 

[139] B. Rani, R. K. Bansal and S. Bansal, "Comparative analysis of wavelet filters using 

objective quality measures,” IEEE International Advance Computing Conference, Patiala, 

India, pp. 402-407, Mar. 2009. 

[140] D. Marr, "Vision". New York: Freeman, 1980. 

[141] D. Marr and E. Hildreth, "Theory of edge detection,” Proc. R. Soc. Lond. B. Biol. 

Sci., vol. 207, no.1167, pp. 187-217, Feb. 1980.  

[142] M. C. Morrone and D. C. Burr, "Feature detection in human vision: a phase-

dependent energy model,” Proc. R. Soc. Lond. B. Biol. Sci.,  vol. 235, no.1280, pp. 221-

245, Dec. 1988.  

http://dl.acm.org/citation.cfm?id=197765.197784


 

  97 

 

 

[143] X. Zhang and X. Wu, "Image Interpolation by Adaptive 2-D Autoregressive 

Modeling and Soft-Decision Estimation,” IEEE Transactions on Image Processing vol. 17, 

no.6, pp. 887-896, June 2008.  



 

  98 

 

 

BIOGRAPHICAL INFORMATION 

 

Gaurav Hansda was born on 22
nd

 July, 1988 in Jabalpur, Madhya Pradesh, India. 

He is the elder son of Mr. Anoop Hansda and Mrs. Georgina Hansda. He received his 

Bachelor’s Degree in Electronics Engineering from D. J. Sanghvi college of Engineering 

(Mumbai University), Mumbai in 2010. Immediately after getting his Bachelor’s Degree, 

he decided to pursue his Masters Degree in Electrical Engineering at University of Texas 

at Arlington. During his study period in Arlington he was interested in Image and Video 

Processing and joined the Multimedia Group at UTA in Jan. 2011 under the guidance of 

Dr. K. R. Rao. He got an opportunity to intern at Qualcomm Technology Inc. from Aug. 

2012 to Dec. 2012 in San Diego, California in LINUX Android camera team which 

broadened his understanding in these fields in depth. After his graduation, he intends to 

find a job in multimedia field where he can utilize his knowledge and experience 

practically. 


