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ABSTRACT 

 

HIGH ORDER WEIGHTED COMPACT BOUNDARY CONDITION 

 

Zhengjie Wang, M.S.  
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Supervising Professor:  Chaoqun Liu 
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 In multi-dimension flows, we expect to have problems at the boundaries when a shock 

hits or reflects at the boundary wall the remedy to this would be to develop weighted boundary 

conditions similar to the Weighted Compact Scheme for the interior nodes, by choosing 

candidate stencils around the boundary nodes and assigning weights to each of these stencils 

with the ENO reconstruction. This would avoid spurious oscillations when shocks are 

encountered at the boundaries. 

 This thesis investigates higher order weighted compact boundary conditions for 

Weighted Compact Scheme (WCS). WCS is a combination of Essentially Non Oscillatory 

Scheme and Weighted Compact Finite Difference Schemes with Spectral-like Resolution. 

Implicit higher order schemes for spatial derivatives are derived for nodes in the neighborhood 

of the boundaries for the existing WCS scheme, which is used for the interior nodes. The 

objective is to achieve a higher weighted algorithm at the boundary, by using a compact stencil. 

To obtain this target, a combination of the spatial nodes’ derivatives and values is going to be 

used. 
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 Several higher order schemes for the boundaries are derived and tested for both sine 

function and exponential function under 1st, 2nd and 3rd Boundary Condition. This new 

boundary scheme not only preserves the characteristic of standard compact schemes and 

achieves high order accuracy and high resolution using compact stencils, but also has the 

potential ability to accurately capture shock waves and discontinuities without oscillation. 

Numerical examples show the scheme is very promising and successful. 
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CHAPTER 1 

INTRODUCTION 

1.1 Review and development of Higher Order Scheme

Considerable progress has been made over the past two decades on developing high-order 

accuracy and high-resolution schemes for calculating flow fields with shocks. In the simulation 

of complex flow fields containing shock waves, most efforts have been paid to the shock-

capturing method. It is well known that first-order accurate schemes are too diffusive, but 

classical central high-order schemes exhibit spurious oscillations around such nodes. In order to 

capture shock waves smoothly without spurious oscillations, the development of non-oscillatory 

dissipative schemes containing no free parameters with high resolution has much been 

emphasized just recent [7]. 

 On the other hand, many physical phenomena possess a wide range of length and time 

scales, turbulent fluid flows being a common example. Direct numerical simulations of these 

processes require all the relevant scales to be properly represented in the numerical model. 

Due to the above reasons, the accuracy requirement in the large-eddy simulations and direct 

numerical simulations of turbulence, computational electromagnetic and computational aero 

acoustics has become a pacing item for technology development [7]. 

 High order finite difference schemes are based on interpolations of discrete data, 

mostly by using algebraic polynomials. Traditional finite difference schemes are based on fixed 

stencil interpolations. For example, to obtain an interpolation for cell i to third order accuracy, 

the information of the three cell i-1, i and i+1 are used to build second order interpolation 

polynomial. This works well for globally smooth problems. The resulting scheme is linear for 

linear PDEs, hence stability can be analyzed by Fourier transforms (for the uniform grid periodic 

case). However, fixed stencil interpolation of second or higher order accuracy is certainly 
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oscillatory near discontinuities. Such oscillations, which are called Gibbs phenomena in spectral 

methods, do not decay in magnitude when the mesh is refines. It is a nuisance to say the least 

for practical computation, and often leads to numerical instabilities in nonlinear problems 

containing discontinuities [7]. 

 Earlier attempts to eliminate or reduce such spurious oscillations near discontinuities 

were mainly based on two approaches: explicit artificial viscosity and limiters. The first approach 

was to add artificial viscosity which could be tuned so that it was large enough near the 

discontinuity to suppress, or at least reduce the oscillations, but was small elsewhere to 

maintain high-order accuracy. One disadvantage of this approach is that delicate tuning of the 

parameters controlling the artificial viscosity is problem dependent. The second approach was 

to apply limiters to eliminate the oscillations. In effect, one reduced the order of accuracy of the 

interpolation near the discontinuities [7]. 

 ENO (Essentially Non-Oscillatory) schemes first introduced by Harten, Engquist, Osher 

and Chakravarthy [2], were the first attempt to obtain uniformly high order accurate, yet 

essential non-oscillatory interpolation for piecewise smooth functions. The reconstruction in [2] 

is a natural extension of an earlier second order version of Harten and Osher [12]. The ENO 

schemes choose the smoothest stencil to pick on interpolating polynomial for the ENO 

reconstruction [7]. 

 Later Weighted ENO (WENO) schemes were developed, using a convex combination 

of all candidate stencils instead of just one as in the original ENO [4]. WENO schemes remove 

all the stencils choosing procedures in ENO which is very time consuming. In WENO each of 

the candidate stencils is assigned a weight that determines the construction of the stencil to the 

final approximation of the numerical flux [5]. The weighted are defined in such a way that in 

smooth regions it approaches certain optimal weights to achieve a higher order of accuracy, 

while in regions near discontinuities; the stencils that contains the discontinuity are assigned a 

nearly zero weight [7]. 

2 



 

 Recently compact schemes have been widely used in the simulation of complex flows, 

especially in the direct numerical simulation of turbulent flows [6]. Standard finite difference 

schemes have explicit forms and need to be at least one point wider than the desired 

approximation order. Compared to standard finite difference approximations, the compact 

schemes can achieve higher order without increasing stencil width. As compact schemes have 

implicit forms and involve derivative values of neighboring grid nodes, additional free 

parameters can be used not only to improve the accuracy but also to optimize the other 

properties such as resolution and stability. The resolution characteristics mean the accuracy 

with which the difference approximation represents the exact result over the full range of length 

scales that can be realized on a given mesh. The notion of resolution is quantified by means of 

a Fourier analysis of the differencing scheme, and is the largest wave number that can be 

accurately represented by the scheme. The resolution characteristic of the scheme is 

essentially important in complex flow simulations. A family of centered compact schemes 

proposed by Lele has been proved to have spectral like resolution [3]. Thought the advantages 

of compact schemes are obvious, there are still difficulties in using them to solve problems 

involving shock waves or discontinuities. When they are used to differentiate a discontinuous 

function, the computed derivative has grid to grid oscillation. Compact schemes for filtering are 

always used together with Compact Schemes for derivative to eliminate numerical oscillations 

[3], but even filtering can not reduce oscillations near discontinuities. Adams [13] proposed the 

hybrid compact-ENO scheme for shock-turbulence interaction problems, in which the upwind-

biased compact schemes are coupled with ENO schemes. A detection algorithm is used to 

identify cells containing the large gradients, and then the flux derivative at the faces of such 

cells is computed with ENO schemes. In this approach, the detection procedure is very time 

consuming [7]. 

 In [1] a new class of compact schemes called the Weighted Compact Schemes (WCS) 

was developed. WCS is a hybrid of different forms of standard schemes. WCS uses the idea of 
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WENO and the Compact Finite Difference Schemes and hence the name WCS. WCS uses a 

set of candidate stencils, and on each candidate stencil, for a given order of accuracy, there is a 

corresponding finite difference compact scheme. According to the smoothness of each stencil, a 

weight is assigned to each finite difference approximation obtained by compact scheme. The 

weights are defined in such a way that the stencils, including the discontinuities, have less 

contribution to the final scheme. Thus, the non-oscillatory property is achieved near 

discontinuities, while high order accuracy and high resolution properties of compact schemes 

can still be preserved in the smooth region. Another problem while using compact scheme is the 

conservation property of the scheme. Conservation property is especially important in solving 

problems involving shocks. Non-conservative methods usually generate large errors near the 

shock [5]. Using the primitive function reconstruction method of ENO scheme to a compact 

scheme can maintain the conservation property, and this is the method applied in WCS to 

achieve conservation [7]. 

 In this paper, weighted high order compact schemes are developed for the nodes in the 

neighborhood under 1st, 2nd and 3rd boundary conditions. This paper is organized as follows; 

Chapter 2 discusses the derivation of the Weighted Compact Scheme in detail. Derivation of 

schemes for the boundary nodes are discussed in Chapter 3. The Weighted Compact Scheme 

with the derived boundary nodes are represented in Chapter 3. The Weighted Compact 

Boundary under all the 3 kinds’ boundary conditions is implemented for various functions, which 

is discussed in Chapter 4. Conclusion and future work for this scheme is discussed in Chapter 

5.
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CHAPTER 2 

WEIGHTED COMPACT SCHEME 

2.1 Basic Formula of Weighted Compact Scheme 

Given the function values on a set of nodes, the finite difference approximation to the 

derivative of the function is expressed as a linear combination of the given function value. For 

simplicity, consider a uniform spaced mesh where the nodes are indexed by j. The independent 

variable at the node j is xj = h(j-1) for Nj ≤≤1  and the function values at the nodes 

 are given. The finite difference approximation  to the first derivative at the 

node j can be written in the following general form by using the finite difference compact 

scheme [3] (Lele, 1992), 

)( jj xff = 'jf

)(1''''' 21122112 ++++−−−−++++−−−− ++++=++++ jjjjjjjjjj fbfaffafb
h

fffff βααβ       

(2.1) 

For a given node j, three candidate stencils containing this node are defined as follows: 

),,( 120 jjj xxxS −−= ,  , ),,( 111 +−= jjj xxxS ),,( 212 ++= jjj xxxS  

j-2 j-1 j j+1 j+2

Interior Stenciles

S0

S1

S2

 

Figure 2.1 Candidate Stencils for an interior node j 
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 On each stencil a finite difference compact scheme is derived in the form of equation 

(2.1) by matching the Taylor series coefficients to various orders. The coefficients for the three 

stencils are given in Table 1.1. 

Table 1.1 Coefficients for the candidate stencils S0, S1 and S2

 β- α- α+ β+ b- a- c a+ b+

S0 θ 2 θ+2 0 0 -5 θ/2-1/2 2 θ-2 θ/2+5/2 0 0 

S1 0 1/4 1/4 0 0 -3/4 0 3/4 0 

S2 0 0 2 θ+2 θ 0 0 -θ/2-5/2 -2 θ+2 5 θ/2+1/2 

where θ is a free parameter. θ is set to zero to get a tridiagonal matrix. This parameter can also 

be used to improve the accuracy or optimize the scheme. The sacrifice would be to increase the 

computer time. 

 The schemes for the three candidate stencils are got by applying equation (2.1) to each 

of these stencils and are given by equation (2.2). 

S0: F0 )
2
52

2
1(1''2 121 jjjjj fff

h
ff +−−=+ −−−  

S1: F1 )
4
3

4
3(1'

4
1''

4
1

1111 +−+− +−=++ jjjjj ff
h

fff  

S2: F2 )
2
12

2
5(1'2' 211 +++ ++−=+ jjjjj fff

h
ff     (2.2) 

 The schemes corresponding to stencils S0 and S2 are third order one-sided finite 

difference schemes (bias difference), and the scheme corresponding to S1 is a fourth order 

centered scheme. These three equations are denoted by F0, F1 and F2. Then a specific weight 

is assigned to each equation, and a new scheme is obtained by a summation of the equations. 

221100 FCFCFCF ++=         (2.3) 
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Where, C0, C1, and C2 are weights and satisfy 1210 =++ CCC . If the weights are properly 

chosen, the scheme achieves a higher order of accuracy because the additional free 

parameters are introduced. If the coefficients are chosen as  

θ2418
1

20 −
== CC , 

θ
θ

129
128

1 −
−

=C        (2.4) 

Then the new scheme obtained by setting θ to zero is a sixth order centered compact scheme 

and is given by: 

)
36
1

9
7

9
7

36
1(1'

3
1''

3
1

211211 ++−−+− ++−−=++ jjjjjjj ffff
h

fff    (2.5) 

The procedure described above implies that a sixth order centered compact scheme can be 

represented by a combination of three lower order schemes. 

 The scheme (2.5) is a standard finite difference compact scheme and cannot avoid the 

oscillations near discontinuities. In order to achieve non-oscillatory property, the method of the 

WENO scheme [2] (Jiang et al. 1996) is introduced to determine the new weight for each 

stencil. The weights are determined according to the smoothness of the function on each 

stencil. Following the WENO method, the new weights are defined as  

∑=

= 2

0i i

k
k

γ
γω   P

k

k
k IS

C
)( +

=
ε

γ  2,1,0=k     (2.6) 

Where, ε is a small positive number which is used to prevent the denominator becoming zero, P 

is important parameter to control weight. ISk is the smoothness measurement which is defined 

according to WENO [5], 

2
12

2
120 )34(

4
1)2(

12
13

jjjjjj ffffffIS +−++−= −−−−  

2
11

2
111 )(

4
1)2(

12
13

+−+− −++−= jjjjj fffffIS  

2
21

2
212 )43(

4
1)2(

12
13

++++ +−++−= jjjjjj ffffffIS     (2.7) 
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Where, the two terms on the right side can be regarded as the measurements of the curvature 

and the slope respectively at a certain point. Through the Taylor expansion, it can be easily 

proved that in smooth regions new weights ωk satisfy: 

)( 2hOCkk +=ω  and       (2.8) )( 3
02 hO=−ωω

The new scheme is formed using these new weights: 

221100 FFFF ωωω ++=         (2.9) 

The leading error of F is a combination of the leading errors of the original schemes, which is: 

4)5(
210

3)4(
20 )

15
1

120
1

15
1()

12
1

12
1( hfhf ωωωωω −+−+−     (2.10) 

When equation (2.9) is satisfied, the leading error of the new scheme can be written as O(h6). 

This scheme is of sixth-order accuracy and has the high resolution property as the centered 

sixth-order compact scheme in smooth regions. But in the regions containing discontinuities, the 

smoothness measurement ISk of the non-smooth stencil is large compared to that of the smooth 

stencil, thus the non-smooth stencil is assigned a small weight and has less contribution to the 

final scheme so that the non-oscillatory property is achieved. 

 With the new weights ωk, the new finite difference compact scheme equation (2.8) is 

written in the form of equation (2.1). The coefficients of the final Weighted Compact Scheme 

with the weights for each stencil is given as follows: 

Table 1.2 Coefficients of the final Weighted Compact Scheme with weights 
β- θω0

α- (2θ+2) ω0+ ω1/4 
α+ (2θ+2) ω2+ ω1/4 
β+ θω2

b- (-5θ/2-1/2) ω0

a- (2θ-2) ω0- 3ω1/4 
c (θ/2+5/2) ω0- (θ/2+5/2) ω2

a+ (-2θ+2)ω2+ 3ω1/4 
b+ (5θ/2+1/2) ω2

8 



 

As ωk is dependent on the smoothness measurement calculated by local function values, the 

scheme coefficients vary from node to node. The free parameter θ can be used to optimize the 

scheme when the properties of high resolution and stability are concerned. If θ is set to zero, 

the matrix formed by the scheme is tridiagonal. Though in the above description the sixth-order 

Weighted Compact Scheme is selected as an example, the method can be extended to a 

general form [1]. 

 

2.2 Conservative formulation

 The conservative property of the scheme is very important in shock wave capturing, 

since it imposes a constraint on the solution error. Non-conservative schemes usually generate 

shocks that have the wrong strength and travel at the wrong speed. In the work of Davis [8] 

(1998), the reconstruction method developed by Shu and Osher [9] for the ENO scheme was 

used together with the Pade scheme to achieve the conservation. The finite difference scheme 

developed itself is not conservative. However, conservation can be obtained when the weighted 

compact scheme is applied together with ENO reconstruction method. The method is described 

below. For 1-D conservation laws: 

0)),((),( =+ txuftxu xt         (2.11) 

When a conservative approximation to the spatial derivative is applied, a semi-discrete 

conservative form of equation (2.10) is as follows: 

)ˆˆ(1

2
1

2
1

−+
−

Δ
−=

jj

j ff
xdt

du
        (2.12) 

2
1

ˆ
+j

f and 
2
1

ˆ
−j

f  are numerical flux functions at the cell interfaces. xΔ is the grid size of the 

uniform grid. In order to achieve the high order accuracy, the numerical flux should be defined in 

such a way that the difference of the numerical flux is a high order approximation of the 

derivative fx. According to the ENO reconstruction procedure [12], it has been approved that the 
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primitive function of at the cell interfaces can be exactly calculated by the given node values 

f

f̂

ˆ
j. If H is the primitive function of , then: f

∑
−∞=+

Δ=
j

ij
xxH )(

2
1 if          (2.13) 

The numerical flux  at the cell interfaces is the derivative of its primitive function H i.e.: 

 

f̂

2
1

2
1 'ˆ

++
=

jj
Hf         (2.14) 

 As the values of the function H have already been obtained at the cell interfaces, the 

approximations of the derivatives of H at the cell interfaces are calculated directly by the 

Weighted Compact Scheme presented in Section 2.1. Thus, the WCS are applied to the 

primitive function instead of the function itself. In this way the conservation property is achieved.
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CHAPTER 3 

WEIGHTED COMPACT BOUNDARY CONDITIONS FOR WCS 

 Interior nodes use a five nodes stencil, i.e. , at an interior node j, to compute the first 

derivative we use two nodes to the left and two nodes to the right, which gives us a centered 

scheme in smooth regions. But when we approach the neighborhood of the boundary, like 

nodes 1, 2, we do not have two nodes on the left; neither have we had two nodes on the right 

side of node N-1, N. So we have to derive high order compact schemes which is different from 

the interior stencils’ scheme at these boundary nodes. Node 1, N and 2, N-1 use the same 

scheme, except the coefficients have a different sign on the right hand side of the equation 

which we will see after they are derived. So basically we need to derive two weighted compact 

schemes at nodes 1 and 2. 

 Also another issue for the global accuracy of a scheme is that it is partially dependent 

on the accuracy of the boundary conditions. It has been observed that in order to have a high 

order of accuracy globally, it is not sufficient if we have a higher order at the interior but also we 

need to have a higher order equally at the boundaries. It has been confirmed that the highest 

global accuracy achievable is on order higher than that of the boundary, for example if we need 

a sixth order accuracy globally than the boundary should be at least fifth order accurate. Also 

one of the problems is the numerical instabilities due to the boundary conditions, which if left 

unchecked these spurious waves amplify and eventually wipe out the entire solution. Hence the 

objective of this paper is to achieve such a higher order accurate and weighted compact 

scheme that the neighborhood of boundary nodes.  
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3.1 Boundary Node 1 in First Boundary Condition 

Boundary Stenciles
F0

F1

F2

j-2 j-1 j j+1 j+2

Interior Stenciles Boundary Stenciles

N-4 N-3 N-2 N-1 NN-8 N-7 N-6 N-5

 
Figure 3.1 Stencils at Boundary nodes 1 

 

 At boundary node 1 the neighboring nodes lie on left side. In this case the form the 

compact scheme is: 

F0  :      

      )
30
1

10
3

4
5

3
10

2
15

10
17

20
69(1'6' 765432121 fffffff

h
ff +−+−+−−=+  

 

F1  :      

   

)
40
23

300
1439

16
28539

24
1369

20
1299

400
13327(1'

20
363' 876543221 fffffff

h
ff +−+−+−=−  

 

F2  :      

)
7260

13327
5445

78497
726

35699
363

34348
4356

483139
1815

141353
3630
90743(1

'
363

1924'

9876543

21

fffffff
h

ff

+−+−+−

=−
 

(3.1) 

At the right hand side of the equation presented above, seven nodes’ function values are used 

to obtain sixth-order accuracy. F0, F1, F2 are all sixth-order accuracy, and this guarantee the 
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weighted compact scheme is at least sixth-order accuracy. The reason we abandon the 

previous third-order combining fourth-order scheme boundary algorithm, is that if it is compact 

scheme, there are just constant Ck which would not change through the entire computation. So 

the final scheme 221100 FCFCFCF ++=  can cancel fourth-order and fifth-order item. But in 

the weighted compact scheme, Ck transform to ωk, and ωk are keep changing in the entire 

computation. So the final weighted scheme 221100 FFFF ωωω ++=  can not guarantee 

cancel 3rd and 4th order items. At last, make the boundary condition only 3rd order accuracy. For 

here, we do not keep ω0 = ω2 any more. Because it is boundary stencil, not interior stencil. We 

make C0= C1 = C2 =1/3, so if the function is equally smooth at node 1, 2, 3,  ωk will have the 

same value. And each ωk will contribute equally to the final weighted compact scheme. And if 

the function is not equally smooth at node 1, 2, 3, ωk will be different certainly. But the final 

weighted compact scheme will be still six-order accurate despite of ωk ‘s value. If one of the 

three nodes is not smooth, the scheme presented by that node will contribute very little to the 

final weighted compact scheme. Next session will elaborate on why C0= C1 = C2 =1/3. 

 

3.1.2 Ck and ωk

Mathematically, we do not have to use seven nodes’ function value to express the 

combination of and  to obtain a sixth order accuracy compact scheme. For node 1, if we 

set, for instance, 

'1f '2f

F0, using 5 nodes bias difference:      

      
6)7(

1
5)6(

15432121 210
11

30
1)

12
1

3
23

3
2

12
37(1'4' hfhffffff

h
ff −−+−++−=+  

F1, using 6 nodes bias difference: 

   
6)7(

176543221 140
69)

300
197

8
3916

6
187

4
177

200
4973(1'

10
147' hfffffff

h
ff +−+−+−=−  

 

13 



 

F2, using 5 nodes bias difference: 

6)7(
1

5)6(
176543

21

2740
14279

2740
4973)

1644
2501

137
1197

137
2781

411
9569

548
5589(1

'
137
522'

hfhffffff
h

ff

−−+−+−

=−
 

And set
185
207

0 =C ,
184001
18100

1 −=C ,
920005
18906

2 −=C , then C0+ C1 + C2 =1. And the 

combination  can cancel h221100 FCFCFCF ++= 5 and h6 items. Because  

0
2740
4973

30
1

20 =−− CC will cancel h5 items, and  0
2740

14279
140
69

210
11

210 =−+− CCC will 

cancel h6 items. The final scheme will obtain sixth order accuracy. But actually that is not going 

to happen in weighted scheme, because ωk are different from Ck. Let’s take f(x) = sinx to make 

a numerical explanation, we are going to use compact and weighted compact scheme deriving 

in this session to calculate cosx. Dividing [-π, π] into 40 subintervals, then h = π/20.  

0.0246740)0cos
20

()'( 22
10 ==≈

πhfIS  

0.0240702)
20

cos
20

()'( 22
21 ==≈

ππhfIS  

0.0240702)
20

cos
20

()'( 22
22 ==≈

ππhfIS  

Assuming ε = 0.976, P = 1 

1.1181653
1.0006740)()(

0
1

0

0

0

0
0 ==

+
=

+
=

C
IS

C
IS

C
P εε

γ  

4-1
1

1

1

1

1
1 109.836213

1.0000702)()(
×−==

+
=

+
=

C
IS

C
IS

C
P εε

γ  

40.02058451
0.9983179)()(

2
1

2

2

2

2
2 −==

+
=

+
=

C
IS

C
IS

C
P εε

γ  

Then, 
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1.097287
471.09654839*1.0006740471.09654839

00
2

0

0
0 ====
∑=

C

i i

γ
γ

γω  

4-11
2

0

1
1 108.96952896

471.09654839*1.0000702471.09654839
×−====

∑=

C

i i

γ
γ

γω  

0.01880373
471.09654839*0.9983179471.09654839

22
2

0

2
2 −====
∑=

C

i i

γ
γ

γω  

In the final weighted compact scheme 221100 FFFF ωωω ++= can not cancel h5 and h6 

items. And the final scheme will at most achieve fourth order. That is reason why we make each 

Fk sixth-order accuracy. 

 

3.1.3 Error Analysis 

F0:       

7)8(
1765432121 56

1~)
30
1

10
3

4
5

3
10

2
15

10
17

20
69(1'6' hffffffff

h
ff −+−+−+−−−+  

F1:       

7)8(
1

876543221

1120
503~

)
40
23

300
1439

16
28539

24
1369

20
1299

400
13327(1'

20
363'

hf

fffffff
h

ff

−

+−+−+−−−
 

 F2:      

7)8(
1

987654321

101640
208903~

)
7260

13327
5445

78497
726

35699
363

34348
4356

483139
1815

141353
3630
90743(1'

363
1924'

hf

fffffff
h

ff

−

+−+−+−−−
 

The combination error in the final weighted compact boundary condition will be seventh order. 
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3.2 Boundary Node 2 in First Boundary Condition  

Boundary Stenciles
F0

F1

F2

j-2 j-1 j j+1 j+2

Interior Stenciles Boundary Stenciles

N-4 N-3 N-2 N-1 NN-7 N-6 N-5

 
Figure 3.2 Stencils at Boundary nodes 2 

The compact scheme is: 

F0:      

 )
300
1

24
1

3
1

6
7

12
13

600
227(1'''

10
1

654321321 ffffff
h

fff +−++−−=++  

 

F1:      

)
21240
227

236
25

354
185

531
1085

472
475

3540
9283(1'

118
345''

177
5

765432321 ffffff
h

fff −+−++−=++−  

 

F2:      

)
87900
9283

4688
4274

293
1031

3516
29473

1172
17867

11720
1122869(1

'
5860
39981''

586
69

876543

321

ffffff
h

fff

−+−+−

=−+−
                          (3.2) 

Just as stated above, we make C1 = C2 = C3=1/3, so if the function is equally smooth at node 1, 

2, 3,  ωk will have the same value. And each ωk will contribute equally to the final weighted 

compact scheme. And if the function is not equally smooth at node 1, 2, 3, ωk will be different 

certainly. But the final weighted compact scheme will be still six-order accurate despite of ωk ‘s 

value. If one of the three nodes is not smooth, the scheme presented by that node will 

contribute very little to the final weighted compact scheme. 
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3.2.2 Error Analysis 

F0:      

 
7)8(

2654321321 1680
1~)

300
1

24
1

3
1

6
7

12
13

600
227(1'''

10
1 hfffffff

h
fff −+−++−−−++  

 

F1:      

7)8(
2

765432321

19824
79~

)
21240
227

236
25

354
185

531
1085

472
475

3540
9283(1'

118
345''

177
5

hf

ffffff
h

fff −+−++−−++−
 

F2:      

7)8(
2

876543321

46880
3431~

)
87900
9283

4688
4274

293
1031

3516
29473

1172
17867

11720
1122869(1'

5860
39981''

586
69

hf

ffffff
h

fff −+−+−−−+−
 

 

The combination error in the final weighted compact scheme will be seventh order. 

 

3.3 Boundary Node 1 in Second & Third Boundary Condition  

Under the First Boundary Condition, all f are all known. But under Second Boundary Condition, 

is known other than f1. Under the Third Boundary Condition, what we know is 

just . We can merge Second Boundary Condition into Third Boundary 

Condition with assuming a = 0 and b = 1. With the same bias difference method, another 

combination of and  can be represented by  

'1f

cfbfa =⋅+⋅ '11

1f '1f

F0 : 

)
363
20

1089
490

121
196

363
1225

1089
4900

121
490

363
980(1'

363
140

876543211 fffffff
h

ff +−+−+−=+  

Making it compact, 
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F1 : 

)
481
245

481
1920

1443
19600

481
12544

481
14700

1443
31360

481
3920(1

'
481
280

9876543

11

fffffff
h

ff

+−+−+−

=+
(3.3) 

And then define Ck and ωk to make the scheme weighted, 

2
1

10 == CC ,    P
k

k
k IS

C
)( +

=
ε

γ  
∑=

= 2

0i i

k
k

γ
γω   

  1,0=k

Weighted Compact Scheme: 1100 FFF ωω +=        (3.4) 

Then F combines the Third Boundary Condition cfbfa =⋅+⋅ '11 , forming a linear system. 

Solving this linear system, we can get and . So in main WCS matrix, we just need 

compute . 

1f '1f

',',......,',' 1232 −− NN ffff

 

3.3.2 Error Analysis 

7)8(
1

876543211

726
35~

)
363
20

1089
490

121
196

363
1225

1089
4900

121
490

363
980(1'

363
140

hf

fffffff
h

ff

−

+−+−+−−+
 

7)8(
1

987654311

481
280~

)
481
245

481
1920

1443
19600

481
12544

481
14700

1443
31360

481
3920(1'

481
280

hf

fffffff
h

ff

−

+−+−+−−+

 The combination error in the final weighted compact scheme will be seventh order. 

 

 

18 



 

3.4 Boundary Node 2 in Second & Third Boundary Condition  

As showing in the previous session, we found and . In this session, we are going to focus 

Node 2 in Second & Third Boundary Condition. 

1f '1f

The compact scheme is: 

F0:      

 )
120

1
12
1

12
5

3
5

24
25

60
137

12
1(1'

2
5' 765432132 fffffff

h
ff −+−++−−=+  

 

F1:      

)
30
1

10
3

4
5

3
10

2
15

10
17

20
69(1'6' 876543232 fffffff

h
ff +−+−+−−=+  

 

F2:      

)
40
23

300
1439

16
28539

24
1369

20
1299

400
13327(1'

20
363' 987654332 fffffff

h
ff +−+−+−=−  (3.5) 

Definition of Ck and ωk is same as (2.6) 

∑=

= 2

0i i

k
k

γ
γω   P

k

k
k IS

C
)( +

=
ε

γ  2,1,0=k  

 

3.4.2 Error Analysis

F0:      

 
7)8(

2765432132 336
1~)

120
1

12
1

12
5

3
5

24
25

60
137

12
1(1'

2
5' hffffffff

h
ff −+−++−−=+  

 

F1:      

7)8(
2876543232 56

1~)
30
1

10
3

4
5

3
10

2
15

10
17

20
69(1'6' hffffffff

h
ff −+−+−+−−=+  
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F2:      

7)8(
2

987654332

1120
503~

)
40
23

300
1439

16
28539

24
1369

20
1299

400
13327(1'

20
363'

hf

fffffff
h

ff

−

+−+−+−=−
 

The combination error in the final weighted compact scheme will be seventh order. 

 

3.5 Matlab Program Code for 2nd & 3rd Boundary Condition 

Comply with Matlab syntax, comment line start with % 

function WCS 

% n the number of subintervals 

n=40; 

h=2*pi/n; 

t=linspace(-pi,pi,n+1); 

%Test f(x)=sinx 

f=sin(t); 

%A(:,1) and B(1)is the mixed boundary condition coefficient 

%A(1,1)*f(1)+A(1,2)*f'(1)=B(1) 

A(1,1)=1;A(1,2)=0;B(1)=0; 

A(2,1)=2283;A(2,2)=840*h; 

B(2)=6720*f(2)-11760*f(3)+15680*f(4)-14700*f(5)+9408*f(6)-3920*f(7)+960*f(8)-105*f(9); 

% Solve the f1 and f1’ linear system 

x=A\B'; 

f(1)=x(1); 

% Directly copy f1’ to the final results 

d(1)=x(2); 
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%Node N, the same with Node 1 

A(1,1)=1;A(1,2)=0;B(1)=0; 

A(2,1)=2283;A(2,2)=-840*h; 

B(2)=6720*f(n)-11760*f(n-1)+15680*f(n-2)-14700*f(n-3)+9408*f(n-4)-3920*f(n-5)+960*f(n-6)-

105*f(n-7); 

% Solve the fN and fN’ linear system 

x=A\B'; 

f(n+1)=x(1); 

% Directly copy fN’ to the final results 

d(n+1)=x(2); 

H(1)=0; 

%Construct H 

for i=2:n+2 

    H(i)=H(i-1)+f(i-1)*h; 

End 

% ε = 10-6

yita =10^-6; 

% ISK 

is(1)=13*(f(1)-2*f(2)+f(3))^2/12+(f(1)-4*f(2)+3*f(3))^2/4; 

is(2)=13*(f(2)-2*f(3)+f(4))^2/12+(f(2)-f(4))^2/4; 

is(3)=13*(f(3)-2*f(4)+f(5))^2/12+(3*f(5)-4*f(4)+f(3))^2/4; 

 % γK 

gama(1)=1/(yita+is(1)); 

gama(2)=1/(yita+is(2)); 

gama(3)=1/(yita+is(3)); 

s=sum(gama); 
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% ωk 

for i=1:3 

w(i)=gama(i)/s; 

end 

% Right hand side of Fk 

fr(1)=-10*H(1)-274*H(2)+125*H(3)+200*H(4)-50*H(5)+10*H(6)-H(7); 

fr(2)=-207*H(2)-102*H(3)+450*H(4)-200*H(5)+75*H(6)-18*H(7)+2*H(8); 

fr(3)=39981*H(3)-77940*H(4)+68450*H(5)-46800*H(6)+21375*H(7)-5756*H(8)+690*H(9); 

% Left hand side of Fk , A(1,1) is ,A(1,2) is ,A is defined as WCS main matrix '1f '2f

A(1,1)=120*w(1)+60*w(2)+1200*w(3); 

A(1,2)=300*w(1)+360*w(2)-21780*w(3); 

% Right hand side of F 

B(1)=(w(1)*fr(1)+w(2)*fr(2)+w(3)*fr(3))/h; 

for j=3:n-1 

clear gama; 

is(1)=13*(f(j-2)-2*f(j-1)+f(j))^2/12+(f(j-2)-4*f(j-1)+3*f(j))^2/4; 

is(2)=13*(f(j-1)-2*f(j)+f(j+1))^2/12+(f(j-1)-f(j+1))^2/4; 

is(3)=13*(f(j)-2*f(j+1)+f(j+2))^2/12+(3*f(j)-4*f(j+1)+f(j+2))^2/4; 

 gama(1)=1/(18*(yita+is(1))^0.5); 

 gama(2)=8/(9*(yita+is(2))^0.5); 

 gama(3)=1/(18*(yita+is(3))^0.5); 

s=sum(gama); 

for i=1:3 

w(i)=gama(i)/s; 

end 

A(j-1,j-2)=2*w(1)+w(2)/4; 
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A(j-1,j-1)=1; 

A(j-1,j)=2*w(3)+w(2)/4; 

B(j-1)=(-1*w(1)*H(j-2)/2+(-2*w(1)-3*w(2)/4)*H(j-1)+(5*w(1)/2-

5*w(3)/2)*H(j)+(2*w(3)+3*w(2)/4)*H(j+1)+w(3)*H(j+2)/2)/h;    

end 

clear gama; 

is(3)=13*(f(n+1)-2*f(n)+f(n-1))^2/12+(f(n+1)-4*f(n)+3*f(n-1))^2/4; 

is(2)=13*(f(n)-2*f(n-1)+f(n-2))^2/12+(f(n)-f(n-2))^2/4; 

is(1)=13*(f(n-1)-2*f(n-2)+f(n-3))^2/12+(3*f(n-1)-4*f(n-2)+f(n-3))^2/4; 

gama(1)=1/(18*(yita+is(1))^0.5); 

gama(2)=8/(9*(yita+is(2))^0.5); 

gama(3)=1/(18*(yita+is(3))^0.5); 

s=sum(gama); 

for i=1:3 

w(i)=gama(i)/s; 

end 

A(n-1,n-2)=2*w(1)+w(2)/4; 

A(n-1,n-1)=1; 

A(n-1,n)=2*w(3)+w(2)/4; 

B(n-1)=(-1*w(1)*H(n-2)/2+(-2*w(1)-3*w(2)/4)*H(n-1)+(5*w(1)/2-

5*w(3)/2)*H(n)+(2*w(3)+3*w(2)/4)*H(n+1)+w(3)*H(n+2)/2)/h;    

clear gama; 

gama(1)=1/(yita+is(1)); 

gama(2)=1/(yita+is(2)); 

gama(3)=1/(yita+is(3)); 

s=sum(gama); 

23 



 

for i=1:3 

w(i)=gama(i)/s; 

end 

fr(1)=10*H(n+2)+274*H(n+1)-125*H(n)-200*H(n-1)+50*H(n-2)-10*H(n-3)+H(n-4); 

fr(2)=207*H(n+1)+102*H(n)-450*H(n-1)+200*H(n-2)-75*H(n-3)+18*H(n-4)-2*H(n-5); 

fr(3)=-39981*H(n)+77940*H(n-1)-68450*H(n-2)+46800*H(n-3)-21375*H(n-4)+5756*H(n-5)-

690*H(n-6); 

A(n,n)=120*w(1)+60*w(2)+1200*w(3); 

A(n,n-1)=300*w(1)+360*w(2)-21780*w(3); 

B(n)=(w(1)*fr(1)+w(2)*fr(2)+w(3)*fr(3))/h; 

% Solve the main WCS matrix to compute H’ 

x=A\B'; 

% Transfer H’ to f’ 

for i=1:n-1 

    d(i+1)=(x(i+1)-x(i))/h; 

end 

% plot error 

plot(t,d-cos(t))
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CHAPTER 4 

NUMERICAL RESULTS 

In this chapter, the sixth-order WCS derived in the previous chapter will be used to test sine 

function, exponential function, and analyze the numerical error. 

 

4.1 f(x) = sinx 

We are going to test f(x) = sinx, and of course f ’=cosx.  

 

Figure 4.1  f(x) = sinx ππ ≤≤− x  Subinterval 40 
 

+ WCS numerical results …exact results   

 

 

 

The following diagram is the sixth-order WCS numerical error: 
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Figure 4.2  f(x) = sinx ππ ≤≤− x   Subinterval 40 

 
 

 
Figure 4.3  f(x) = sinx ππ ≤≤− x   Subinterval 160 
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Figure 4.4  f(x) = sinx ππ ≤≤− x   Subinterval 320 
 

 

4.1.2 Accuracy Order Analysis

Table 4.1 Accuracy Order f(x) = sinx 

Subinterval 1L    Error Order 2L  Error Order ∞L  Error Order 

20 0.001512  0.000999  0.000706  

40 4.47E-05 5.0806 2.89E-05 5.11276 2.04E-05 5.1133 

80 8.15E-07 5.77634 5.09E-07 5.82463 3.6E-07 5.82495 

160 1.38E-08 5.88296 8.2E-09 5.95768 5.79E-09 5.95819 

320 3.85E-10 5.16506 1.31E-10 5.96845 9.23E-11 5.97018 

The order analysis shows explicitly, the Weighted Compact Boundary Scheme can guarantee 

the global WCS are sixth-order accuracy. 
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4.2 Exponential function f(x) = exp(-300x2) 

f(x) = exp(-300x2), then f’(x) = -600exp(-300x2). We are going to test the new Weighted 

Compact Boundary Scheme by f(x) = exp(-300x2) 

 

Figure 4.5  f(x) = exp(-300x2)  11 ≤≤− x  Subinterval 40 
 

o WCS numerical results - exact results   
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Figure 4.6  f(x) = exp(-300x2)  11 ≤≤− x  Subinterval 80 

o WCS numerical results - exact results  

  

 
Figure 4.7  f(x) = exp(-300x2)  11 ≤≤− x  Subinterval 160 

o WCS numerical results -  exact results   
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4.2.2 Error Analysis 

Table 4.2 Accuracy Order f(x) = exp(-300x2) 

Subinterval 1L    Error Order 2L  Error Order ∞L  Error Order 

20 12.13257  6.622628  5.498617  

40 1.51641 3.00015 0.617534 3.42281 0.424323 3.69583 

80 0.547779 1.46899 0.220403 1.48638 0.139669 1.60315 

160 0.011333 5.59505 0.003176 6.11701 0.002358 5.88829 

320 0.000287 5.30396 5.61E-05 5.82311 3.51E-05 6.06804 

The order analysis shows explicitly, the Weighted Compact Boundary Scheme can guarantee 

the global WCS are sixth-order accuracy. 

 

4.3 Exponential function f(x) = exp(-300(x+0.959)2)

This numerical test of exponential function f(x) = exp(-300(x+0.959)2) is focus on the ability of 

Weighted Compact Boundary Scheme. Because f(x) = exp(-300(x+0.959)2)  has a severely 

deep slop at boundary .  And we are going to test 21−=x nd Boundary condition. That 

is . The numerical results are followed: ))959.01(300exp()959.01(600)1(' 2+−−+−−=−f

f(x) = exp(-300(x+0.959)2), then .  ))959.0(300exp()959.0(600' 2+−+−= xxf
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Figure 4.8 WCS f(x) = exp(-300(x+0.959)2)   11 ≤≤− x  Subinterval 40 

o WCS numerical results - exact results  

 
Comparing with Compact Scheme of 40 subintervals 

 
Figure 4.9 CS f(x) = exp(-300(x+0.959)2) 11 ≤≤− x   Subinterval 40 

o CS numerical results - exact results   
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Figure 4.10  WCS f(x) = exp(-300(x+0.959)2)   11 ≤≤− x   Subinterval 80 

o WCS numerical results - exact results   

Comparing with Compact Scheme of 80 subintervals 

 

Figure 4.11 CS f(x) = exp(-300(x+0.959)2)   11 ≤≤− x  Subinterval 80 

o CS numerical results - exact results   
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Figure 4.12 WCS f(x) = exp(-300(x+0.959)2)   11 ≤≤− x   Subinterval 160 

o WCS numerical results -  exact results   

 
Comparing with Compact Scheme of 160 subintervals 

 
Figure 4.13 CS f(x) = exp(-300(x+0.959)2)   11 ≤≤− x   Subinterval 160 

o CS numerical results - exact results   
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The numerical results showed that this Weighted Compact Boundary Scheme can precisely 

capture the deep slop at the neighborhood of left boundary. And the ability of capturing is much 

better than Compact Scheme at the boundary. 

 

 

4.4 Exponential function f(x) = exp(-300(x-0.959)2) 

In this session, we are going to test the Weight Compact Boundary Scheme under the 3rd 

Boundary Condition 

       x=1. ))959.0(300exp()959.0(600))959.0(300exp()(')( 22 −−−−−−=+ xxxxfxf

The results comparing to Compact Scheme at the boundary will show a much better capturing 

ability. 

 
Figure 4.14 WCS   ))959.0(300exp()( 2−−= xxf 11 ≤≤− x   Subinterval 40 

o WCS numerical results - exact results   
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Comparing Compact Scheme with 40 subintervals: 

 
Figure 4.15 CS   ))959.0(300exp()( 2−−= xxf 11 ≤≤− x   Subinterval 40 

o CS numerical results - exact results  
 

 
Figure 4.16 WCS   ))959.0(300exp()( 2−−= xxf 11 ≤≤− x   Subinterval 80 

o WCS numerical results - exact results  
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Comparing Compact Scheme with 80 subintervals: 

 

Figure 4.17 CS   ))959.0(300exp()( 2−−= xxf 11 ≤≤− x   Subinterval 80 

o CS numerical results - exact results  
 

 
Figure 4.18 WCS   ))959.0(300exp()( 2−−= xxf 11 ≤≤− x   Subinterval 160 

o WCS numerical results -  exact results   
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Comparing Compact Scheme with 160 subintervals: 

 
Figure 4.19 CS   ))959.0(300exp()( 2−−= xxf 11 ≤≤− x   Subinterval 160 

 
o CS numerical results - exact results
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 The Weighted Compact boundary conditions developed in this work has been 

successfully tested. This Weighted Compact boundary conditions derived have shown to 

achieve higher order accuracy and high resolution. So the basic work of deriving the equations 

for one dimension has been successfully done in this paper. 

The future work would involve applying the WCS for multi-dimension flows, DNS/LES and flows 

with shock-turbulence interactions. Before we do this, we have one more issue is that test the 

interaction of shocks and discontinuities at the boundaries. In all our present problems tested, 

we have not encountered shock interaction with the boundaries. Hence the future work is very 

challenging, interesting and promising.
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