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ABSTRACT 

 

COMPUTATIONAL ANALYSIS OF VARIABILITY 

OF RECOMBINATION RATES IN MICE 

 

 

 

Vishnukumar Galigekere Nagabhushana (M.S.) 

 

The University of Texas at Arlington, 2008 

 

Supervising Professor:  Nikola Stojanovic 

 Rapid advances in engineering and technology have fueled research in areas 

such as molecular biology and genetics to a new level and thus have given birth to 

multidisciplinary fields like bioinformatics and computational biology. These fields involve the 

application of one’s expertise in one or more areas including computer science, information 

science, statistics, chemistry and mathematics to solve problems related to biology in general 

and molecular biology and genetics in particular. It is a challenging research area which 

requires one to grasp diverse fields at almost equal rigor and at the same time provides new 

insights into the fascinating field of biology. 

Recombination is a natural phenomenon which occurs in germ cells during meiotic 

division in higher organisms. Much about meiotic recombination is already known, however, the 

genetic mechanism of its regulation remains elusive. Our research team was interested in 

studying the genetic control of this phenomenon by analyzing the variability of rates of 

recombination between several strains of inbred mice. To meet that goal we have assembled a 
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large amount of data and performed computational analysis of linkage maps of different mice 

strains.  

Genome data are available from various public databases which are complex and 

geographically dispersed. These databases tend to evolve rapidly, due to the fast generation 

and inclusion of new or more accurate genomic data. In addition, the interfaces to these 

databases are usually designed to provide information in a way most suitable for viewing by 

human investigators, and are hence limited in functionality. These issues add up to make the 

data collection and preprocessing a rather complex problem, alas one which rarely features 

prominently in any scientific report. 

In this thesis we discuss two different approaches to estimate the variability of recombination 

rates in mice. We present efficient computational tools we have designed to gather data from 

public databases and discuss the preprocessing specific to the requirements dictated by the 

nature of our analysis. We also provide a description of the software tools we have used for the 

analysis of recombination rates. Thereafter, we discuss the algorithms, scripts and programs we 

have designed to arrive at many intermediate results required for the statistical analysis. After 

we have delivered the results described in this thesis, it is now up to our biology collaborators to 

use them for the study of the mechanisms driving the recombination in mice, the original 

motivation for this work. In that sense, this project is still much of a work in progress, and we 

expect that we, from the computer science side, have indeed paved the way for a major 

discovery in life sciences.   
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CHAPTER 1 

INTRODUCTION 

There are millions of living organisms known to inhabit our planet, from the smallest 

and simplest bacteria through the most complex mammals including ourselves. Cells are the 

building blocks of all the organisms known thus far [1]. They are hence ubiquitously referred to 

as the structural and functional units of all living organisms. Cells are classified as prokaryotic or 

eukaryotic. The primary difference between the two is in that prokaryotic cells have no 

membrane encapsulating the nucleus (or even a nucleus as a unit), where as the eukaryotic 

cells do.  

The nucleus of a eukaryotic cell houses almost all the genetic information in the form of 

two long chains of molecules running anti-parallel to each other. These chains of complex 

polymers coil around each other to form a double helical structure called the Deoxyribonucleic 

Acid (DNA). The basic units constituting the DNA are called nucleotides, and the entire polymer 

is made of a combination of only four nucleotides called Adenine, Cytosine, Guanine and 

Thymine. The DNA of higher eukaryotes is further organized in one or more linear structures 

called chromosomes. Most mammalian cells are diploid, having two copies of each 

chromosome, one from the mother and the other form the father. For example, the human DNA 

is divided into twenty three pairs of chromosomes and the mouse DNA is organized into twenty 

pairs of chromosomes. The chromosomes are long chains of nucleotides, compressed and 

packaged by proteins.   

Numerous genes are spread across each chromosome. A gene is defined as the 

functional and physical unit of heredity passed from parent to offspring. Genes are segments of 

DNA, and the majority of genes contain the information necessary for making a specific protein. 

All the genes which occur in one copy of a chromosome also occur in the corresponding 

positions in the other copy Alleles are defined as variants of a gene (or any other genomic 
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feature) at a particular locus on a chromosome. Different alleles produce variations in inherited 

traits, such as hair color or blood type, and their combination is called the organism's genotype. 

Functional alleles can be dominant or recessive. In an individual, the dominant alleles are 

primarily responsible for the trait, also known as the individual's phenotype.  

One of the reasons for life to have flourished so far is in the ability of cells to divide to 

form new cells. The original cells are called parent cells and the newly formed ones are called 

daughter cells.  Mitosis is a type of eukaryotic cell division where the parent cell divides into two 

daughter cells. In this type of division, the parent nucleus first divides into two daughter nuclei, 

each of them having the same copy of the duplicated genome form the parent cell. After the 

division of the nucleus, the cell divides into two daughter cells such that each daughter cell 

carries the complete nuclear genome of the parent. Another type of cell division, meiosis, is 

defined as two successive nuclear divisions, with corresponding cell divisions which produce 

haploid gametes having only one half of the genetic material of the original cell. Meiotic cell 

division occurs in the cells of the reproductive system of sexually reproducing eukaryotes, also 

called germ cells. During the meiotic cell division, a diploid (two copies of each chromosome) 

genome replicates only once to form four haploid (one copy of each chromosome) cells. In 

consequence, a meiotic division results in four haploid cells called gametes. New diploid cells 

are formed only when these gametes are subjected to fertilization. During the first phase of 

meiosis genetic material is exchanged between homologous chromosomes resulting in unique 

genetic content in each of the haploids. This phenomenon is called recombination. The 

combination of parental alleles at different sites of a chromosome is called a haplotype. 

Haplotypes are used for the identification of recombination events between two or more loci. 

DNA sequencing is used to determine the exact layout of four nucleotides in DNA 

fragments [2]. Complete genomes of many organisms have been assembled by sequencing 

fragments and then stitching together the sequences of many different fragments [3]. The rapid 

advances in the fields of engineering and computer science has led to the development of 
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various high-throughput technologies, capable of generating  more accurate genetic sequences 

at a much faster rate and at the same time reducing the costs dramatically [4]. These 

technologies have been steadily fueling genetic research, taking it to a new level. In the 

process, they have given birth to cross-disciplinary areas such as bioinformatics and 

computational biology. 

Bioinformatics is an interdisciplinary field between computer science, mathematics, 

statistics, biochemistry, molecular biology and genetics. Within computer science the field 

incorporates concepts from various sub-fields, such as algorithm theory, artificial intelligence, 

data mining and database theory [5]. Some typical bioinformatics tasks include analyzing the 

DNA sequence using a specific algorithm, finding out the similarity between two sequences, 

predicting genes, developing visualization tools, and many more.  For these purposes many 

tools have been developed, such as BLAST [6] and BLAT [24].You have reached the chapter 

sections of the template.  Under Format, the Chapter text’s Font settings are 10-point font size, 

Regular font style and Arial font with no Effects boxes checked.  Under Format, the Chapter 

text’s Paragraph settings are Alignment set to Justified, and Line Spacing set to Double. 

1.1 Meiotic Recombination 

 Meiotic recombination is the swapping of DNA fragments between homologous 

chromosomes during meiosis, as depicted in Figure 1.1. The paternal chromatid and the 

maternal chromatid are represented in blue and red respectively.  Genetic material is swapped 

between the two due to a phenomenon called chromosomal crossover, resulting in mixed 

chromosomes. ‘A’, ‘B’ and ‘C’ are genes on the paternal chromosome and ‘a’, ‘b’ and ‘c’ are the 

corresponding genes on the maternal chromosome. From Figure 1.1, it is evident that a 

crossover can result in hybrid chromosomes with a combination of genes from both paternal 

and maternal chromosomes. 

Recombination in eukaryotes occurs during the first phase (prophase-1) of the meiosis. 

When the four chromatids (single chromosome) are bundled tightly during prophase-1, 
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chromosomal crossover can happen and genetic material can be exchanged. The point at 

which the DNA material is exchanged and which can be seen under a microscope is called 

chiasma.

 

Figure 1.1 Genetic Recombination. 

Figure 1.2 depicts a schematic of a crossover. In diploid cells each chromosome occurs 

in pairs and in our representation we show only one such pair, for the sake of simplicity. The 

ovals represent the nucleus, and red and blue lines represent the chromosomes. ‘A’ and ‘B’ are 

the alleles of two genes on the blue chromosome and, ‘a’ and ‘b’ are the corresponding alleles 

on the red chromosome. The crossover is illustrated by the following steps: 
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Figure 1.2 Schematic Representation of Meiotic Recombination. 

Step 1: Shows the two copies of a particular chromosome in the nucleus. 

Step 2: This step is called DNA synthesis. During this step each chromosome duplicates itself 

and the copies are attached at the centromere. After the duplication the copies are called sister 

chromatids. 

Step 3: During this step, called synapsis, each pair finds its respective homologous chromatid 

pair and bundle up together. These bundles are called tetrads. 

Step 4: At this step each of these tetrads line up in the middle of the nucleus. Chromosomal 

crossovers usually occur during this step. 

Step 5: The nucleus separates into two nuclei segregating homologous chromosomes. This is 

the first of the two divisions occurring during meiosis. In this example, after one single crossover 

each nucleus will have a recombinant chromatid and a parental chromatid. 
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Step 6: Between step 5 and step 6 the nuclei and the sister chromatids separate again, forming 

four haploids. 

Meiotic recombination is fundamental for the viability of a species, as the exchange of 

genetic material between homologous chromosomes increases the genetic diversity of the next 

generation. Much about meiotic recombination is already known, however, the genetic 

mechanism of its regulation remains elusive.  In particular, the recombination rates have been 

found to be different in different regions of the chromosome. If recombination loci were 

randomly distributed on a chromosome, the distances on a genetic map (measuring the 

recombination percentage in a population) would be proportional to the distances on the 

corresponding physical map. Experiments related to this distribution were applied to the mouse 

genome maps, and the distribution of features provided evidence for heterogeneity in 

recombination [15]. Moreover, it is well established that the recombination rate is significantly 

higher near the chromosome ends, the telomeres, than near the centromere in mice [16]. In 

some experiments where a large number of offspring were genotyped (checked for the alleles at 

loci of interest) it was found that recombination events tended to cluster in small regions of a 

few kilobases in size. The regions where such clusters are formed are called recombination 

hotspots [17] [18]. The recombination rate is also known to be dramatically different between 

the sexes in mice, as the average rate of recombination observed in males was 50-85% of that 

observed in females [19]. Based on these results we can assume that the distribution of 

recombination is not stochastic, but that there exists a genetic control of meiotic recombination 

levels. 

Our group has thus undertaken a research project to identify the genetic control of the 

levels of meiotic recombination in mice, and our collaborators have already identified two alleles 

of an X-chromosome linked gene and observed that changes in their expression affected the 

recombination frequencies [20]. However, the project described in this thesis concerns only the 
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computational support of this work, including the data collection, preprocessing and data 

analysis. 

Our first step was to identify the recombination levels in as many crosses of different 

strains of mice (Mus musculus) as possible.  Once we establish the levels for each of the 

considered crosses, our goal is to compare the individual distributions in an effort to evaluate 

the variation of recombination levels between the crosses involving different inbred strains. 

1.2 Recombination Fraction 

 Recombination fraction gives us the probability of a crossover between two loci on the 

same chromosome, as a function of distance. If the loci are far apart, then the probability of 

observing a crossover between them, which is the recombination fraction, is high. 

 

Figure 1.3 Recombination Fraction, [0, 1/2]. 
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  As described above, the end result of meiosis is four gametes, generally laid out as two 

recombinant chromosomes and the other two parental. Regardless of the number of crossovers 

and the distance, the maximum value of the recombination fraction between two loci is 0.50. 

Hence, Recombination fraction is bound within [0, 1/2]. 

Figure 1.3 shows the recombination fraction as a function of distance. The red and 

green stubs represent two loci (L1, L2) on a pair of homologous chromosomes. In the top part 

the two loci are close, so the recombination fraction is almost zero, but at the bottom of the 

figure the loci are far apart and the probability of observing a crossover is maximal, which is 

0.50. 

Recombination always starts with a crossover. Given two loci, L1 and L2, on a 

chromosome it is possible to observe the recombination between them only if there had been 

an odd number of crossovers (in an absence of additional information, such as more loci to 

observe between L1 and L2), as shown in Figure 1.4. This is because if there were an even 

number of crossovers the alleles at the two loci will be from the original chromatid again. Hence, 

we have to modify our calculation of the recombination fraction to reflect the fact that the 

probability of observing recombination in an interval equals the probability of an odd number of 

crossovers in that interval. 

1.3 Physical Distance and Genetic Distance 

Physical distance measures the actual length of the DNA as the number of nucleotides, 

also called bases (once the nucleotides in DNA pair with the correspondents on the other 

strand, they are often referred as base pairs). Considering the size of the DNA, a base is a 

rather small unit, and hence physical distances are usually measured in kilo-bases (one 

thousand bases) or even mega-bases (one million bases). 

Genetic distance, on the other hand, is a more complex method of quantifying the 

genome. It is defined as the expected number of crossovers occurring on a single chromosome 

between two loci. We shall represent it with ‘d’. Genetic distance is measured in centi-Morgans  
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(cM), where, 1 cM is the distance between two loci where the crossover rate is 1%. It is 

mportant to note that genetic distance is not equal to physical distance. 

 

Figure 1.4 Only Odd Number of Crossovers Can be Identified. 

1.4 Genetic Markers 

 A genetic marker is defined as a gene or other identifiable section of DNA whose 

inheritance can be followed [http://genomics.energy.gov/].  Genetic markers are chosen 

according to different criteria, depending on their intended use and technological constraints. As 

an example, Figure 1.5 (Source: http://www.informatics.jax.org/mgihome/nomen/gene.shtml) 

shows a sample distribution of markers over a small segment from 8 cM to 10 cM of 

chromosome 1. The numbers represent genetic distances between the markers in centi-
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Morgans, and marker names are shown on the right, in blue color. A key feature of mouse 

nomenclature is the laboratory code, which usually consists of three to four letters, which 

identifies a particular institute, laboratory, or investigator who produced the DNA marker. 

 
 

Figure 1.5 Magnified View of the Distribution of Markers on a Small Segment of Mouse 
Chromosome 1.  
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For example, in marker D1Mit58, ‘D’ stands for DNA segment, ‘1’ for Chromosome 1, 

‘Mit’ stands for the lab in which it is obtained, Massachusetts Institute of Technology in this 

case, and  58 is a number identifying this particular marker. 

Some of the common types of markers are: 

• Restriction Fragment Length Polymorphism (RFLP): These markers are detected by a gel 

electrophoresis separation of DNA fragments obtained by digesting DNA from different 

individuals with a restriction enzyme [11]. 

• Short Tandem Repeats or Microsatellites (STR): These markers are detected by identifying 

highly polymorphic short repeats. For instance, (ca)n would stand for cacacacacacaca... 

with "ca" repeated n times.  

• Single Nucleotide Polymorphisms (SNP): This technique relies on detecting a single 

different nucleotide from the sequence (such as G/A variation in "ATCGTAC" as one allele, 

and "ATCATAC" as the other). 

1.5 Crossover Interference 

Crossover interference is defined as the non random placement of crossovers, relative 

to one another, along chromosomes in meiosis [9]. It is a natural mechanism which prevents 

crossovers form occurring in close proximity to one another.  The ratio between the number of 

double crossovers expected without interference and the number actually observed in the 

presence of interference is termed as the index of interference [25]. Moreover, interference 

regulates crossovers across the chromosome such that each pair of chromosomes has at least 

one crossover and multiple crossovers are evenly spaced [26]. Although the existence of a 

mechanism which affects the chances of crossovers occurring in the vicinity of each other is 

known, its molecular basis is presently not understood. 

1.6 Genetic Linkage and Linkage Maps 

If two genes are physically close on a chromosome then they usually segregate 

together, so the probability of observing particular combinations of their alleles is very high. 
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Such genes are said to be linked, and groups of such genes are called linked genes. However, 

if two genes are far apart, then the probability of them being separated due to recombination is 

high. A recombination taking place between such genes results in a hybrid chromosome. 

Linkage is measured in terms of the recombination frequency, which is the ratio of the number 

of recombinants to the total number of progeny and its unit of measurement is centi-Morgan, as 

described above. 

Linkage maps are generated by counting the number of offspring which receive either 

parental or recombinant allele combinations from a parent who carries different alleles at two or 

more loci. Such map is also known as a recombination map, sometimes wrongly termed as 

genetic map (a genetic map usually includes chromosomal details as well as a physical map 

[11]). Mapping is a critical tool for many different areas of biological and medical research.
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CHAPTER 2 

RESOURCES AND TECHNIQUES 

2.1 Backcross 

A backcross is defined as a cross between a hybrid of two pure breeds mated with one 

of the parental strains. It provides a mechanism for the simplest form of linkage analysis, as 

only one parent is heterozygous (i.e. has different alleles on the chromosome pair) at each 

locus, and the other parent is homozygous (identical alleles on the chromosome pair) at these 

same loci.  

 Alleles can be of two types, dominant and recessive. A study of a backcross can be 

simplified (and made cheaper) if the right combination of homozygous and heterozygous 

parents is selected. The homozygous parent should have a pair of recessive alleles and the 

heterozygous parent should have a dominant allele and a recessive allele. In this scenario, we 

can be sure that if the offspring has the dominant allele then it has been transmitted from the 

heterozygous parent. The other case implies that the recessive allele has been transmitted from 

the heterozygous parent. 

The backcross greatly simplifies the interpretation of genetic data because it allows one 

to jump directly from the genotypes of offspring to the frequencies with which different meiotic 

products have been formed by the heterozygous parent [11]. All mapping panels we have used 

for our research are backcross panels collected from various sources. 

2.2 Mapping Panel Data 

A screenshot of a part of mouse chromosome 1 DNA mapping panel data is shown in 

Figure 2.1 (Source: http://www.informatics.jax.org/).  This panel, JAX (BSB), has been obtained 

from the Jackson Laboratory [http://www.jax.org/] in Bar Harbor, Maine. This particular panel 

has been generated by backcrossing a first filial generation (F1) of a cross between C57BL/6J 
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mouse strain and M. spretus, with a pure breed C57BL/6J mouse. Technically this backcross is 

represented as (C57BL/6J x M. spretus) F1 x C57BL/6J. 

 

 

Figure 2.1 Screenshot of a Mapping Panel. 

 

This panel has been constructed with genotypes of 94 animals. The ‘s’ and ‘b’ 

genotypes indicate that the allele is from M. spretus and C57BL/6J animals, respectively, and ‘.’ 

indicates a missing genotype. The genotypes are arranged in a matrix format with the animal 

identification names as the column headers and the genetic markers as the row headers. The  

marker names are repeated in the center and at the end for better visualization of the panel. In 

order to explain the matrix fields let us consider the first row, animal number ‘1c’. This row 
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indicates that at the loci of the first twelve markers, from D1Mit427 to D1Mit67, the offspring ‘1c’ 

has inherited the ‘b’ allele form the C57BL/6J parent. Between the 13th and 14th marker locus a 

crossover has occurred, and hence the genotypes from the 14th marker locus onwards is an 

allele from (C57BL/6J x M. spretus) F1 parent. The 13th and 14th markers, D1Mit67 and 

D1Mit430, are the markers which flank the crossover site and they are hence called flanking 

markers. Also, there is a "3/94" note between these two markers, indicating that 3 out of 94 

animals have experienced a recombination in this particular DNA segment. Moreover, if there 

were to be another crossover down the line, then the genotype would get switched back from ‘s’ 

to ‘b’. The rest of the panel is read in the same fashion. In the next chapter we shall discuss all 

the panels we have used for our research.  

2.3 Mapping Functions 

It is intuitive to imagine the recombination events as independent of each other. A 

direct consequence of this assumption would be to expect a linear relationship between the 

genetic distance and recombination frequency, in fact a one-to-one correspondence. This would 

imply that the recombination fraction should be equal to the mapping distance. However, this is 

true only for genetic distances less than 10cM. For distances greater than 10 cM, it has been 

found that the relationship between genetic distance and the recombination fraction does not 

stay linear any more. This degeneration is due to the fact that the probability of multiple 

crossovers also increases with increasing genetic distances and, since we can only detect odd 

number of crossovers between any two loci, we would end up missing any even number of 

crossovers that might have occurred between them.  As a result, the observed number of 

crossovers will be less than the actual number of crossovers [11].  

For genetic distances greater than 10 cM one has to use mathematical equations 

called map functions, in order to establish a relationship between the genetic distance and 

recombination fractions. A genetic map function ‘M’ is defined as one which establishes a 

relation r = M(d), connecting the recombination fractions ‘r’ and genetic map distances ‘d’ 

between pairs of loci along a chromosome arm [10].  
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 We shall now discuss a slightly generalized and rather simple mapping function, in 

order to illustrate the method by which mapping functions are created. We also briefly discuss a 

mapping function proposed in [27] and its two special cases, Kosambi [13] and Haldane [12]. 

The derivation of the mapping function we have used in our research, the Carter-Falconer 

mapping function [15], is rather complex and out of the scope of this document, however the 

following discussion should give a good picture of mapping functions in general. We shall first 

define a few necessary terms. 

Since double recombinations cannot be detected between two loci, a three point cross 

experiment is considered. A three point cross is a cross involving three loci.  Let r(x) be the 

recombination fraction over an interval ‘x’, whose length is measured in Morgans. Let dx 

represent an infinitesimally small genetic length and r(dx) be the recombination fraction over the 

length dx. Since the recombination fraction and genetic distance feature a one-to-one 

correspondence for small genetic intervals, and dx -> 0, we can say that r(dx) = dx. Let c(x,dx) 

be the coefficient of confidence over the interval (x,dx). The coefficient of confidence is defined 

as a ratio between the expected and observed number of double crossovers (DCO). Crossover 

interference hampers the occurrence of double crossovers according to the mathematical 

relation i = 1 – c, where, i represents interference and c represents the coefficient of confidence, 

the ratio of the observed number of DCOs with the theoretical number of DCOs.  If  x < 10 cM 

then r(x+dx) = r(x) + r(dx), but, if x > 10cM the we have to calculate r(x+dx) by considering the 

possibility of a double crossover in the interval. 

The following derivation [27] is direct extension of the Kosambi mapping function [13]. It 

is a simple mapping function with just one parameter (confidence coefficient) to determine the 

effect of interference. This mapping function is derived by adding a very short interval dx to an 

interval x and finding the recombination fraction for the total interval. 

This is done as follows; 
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r of DCO)rved numbex) - (obser(x) + r(dr(x+dx) =     (1) 

But DCO) ofnumber  al(theoretic / DCO) ofnumber  (observed = dx)c(x,    (2) 

and, theoretical recombination fraction r(x)r(dx) =  and hence; 

theoretical number of DCO 2r(x)r(dx)=        (3) 

Plugging (3) in (2), we get; 

observed number of DCO = ( )2r(x)r(dx)dx)c(x,       (4) 

Plugging (4) in (1), we get; 

( )2r(x)r(dx)dx)c(x, - r(dx) + r(x) = dx)+r(x       (5) 

Since, 10cM <<dx ; we have dx = r(dx) ; 

This mapping function makes the assumption of linearity in r(x), and assumes that when x is 

small, C(x, dx) = K, an arbitrary constant and when x is large, C(x, dx) must 

be 1, which then results in the following differential equation; 

2r 1) -(K  4 +r K  2 - 1 =dr/dx  

Solving this differential equation results in the following mapping function; 
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and the inverse of this function is given by, 

( )

( ) ( ) 








−−
−

=
−

−

xK

xK

eK

e
r

22

22

11

1
)2/1(

 

Figure 2.2 shows a graph of the mapping function for different values of ‘K’. It is worth 

noting that when K = 1 the equation (7) results in the Haldane mapping function and when K = 0 

in equation (6), it results in the Kosambi mapping function. 

Some commonly used mapping functions are listed below: 

The Haldane map function: assumes no crossover interference [12] 
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The Kosambi mapping function: similar to the level of interference in humans [13] 
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The Carter-Falconer mapping function: similar to the level of interference in mice [15] 
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Figure 2.2 Recombination fraction as a function of map distance [27]. 
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2.4 Recombination fractions using binomial distribution 

 We start with a simplistic assumption that there is at most one crossover between (i-1)
th
 

and i
th
 loci, where ‘i’ represents the index of a locus, when they are discretised and sequentially 

arranged. We then define the following: 

Di= 1 implies that a crossover occurs between locus i-1 and locus i  

Di= 0 implies that a crossover does not occur between i-1 and i 

We now define the probability of a crossover between the first two loci as ‘p0’ and 

hence the probability of no crossover between the same loci is  ‘1 - p0’. Thus: 

0i p = 1) = (D P
 

0i p -1 = 0) = (D P
  

With this setup we can use the binomial distribution to find the recombination fractions 

as shown below: [http://coe.math.keio.ac.jp/2005/cherrybud/pdffiles/sugaya.pdf] 
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2.5 Markov property 

We will use the same notation and assumptions as above. Since crossovers are not 

independent events we can use the principles of conditional probability, and define the following 

four equations. [http://coe.math.keio.ac.jp/2005/cherrybud/pdffiles/sugaya.pdf]. 

These considerations have led to algorithms based on Hidden Markov Models, capable 

of estimating the recombination fractions when some genotypes are missing. 
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Where, P (x | y) represents the conditional probability of the event ‘x’ occurring given that ‘y’ has 

already occurred and, (y) P / )y   x ( P = y) |(x  P ∩ .  

2.6 R/QTL 

R/Qtl [30] is an extensible, interactive environment for mapping quantitative trait loci 

(QTLs) in experimental crosses. It is implemented as an add-on package for the statistical 

language/software R [http://www.r-project.org/]. R is a programming language and environment 

designed for statistical computing and graphics. It is an integrated suite of software facilities for 

data manipulation, calculation and graphical display. The R/Qtl library is built on the R platform 

to take advantage of the basic mathematical and statistical functions, and its powerful graphics 

capabilities. For our research purposes, we installed the R and R/Qtl packages on our Linux 

server and also made it available to our collaborators at the Biology Department.  

We opted for the R/Qtl package to exploit its statistical and graphical functions provided by R in 

general, and the built in functions to estimate genetic maps provided in the R/Qtl library in 

particular. The most important component of this tool for estimating genetic maps is the Lander-

Green algorithm [14] which uses the hidden Markov model [31] technology for dealing with 

missing genotype data.  

The key features of the R/Qtl package pertaining to our project are its capability of 

dealing with missing genotype data and allowance for the presence of genotyping errors, for 

backcrosses. 
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CHAPTER 3 

DATA COLLECTION AND ANALYSIS 

To study the recombination rates we first gathered eight mapping panel datasets, all of 

backcross animals. Backcross greatly simplifies the interpretation of genetic data because it 

allows us to directly interpret the recombination fractions from the genotypes of offspring, as 

discussed above.  We looked at the recombination rates in all chromosomes except Y, as our 

goal was to pursue the gene which has female-specific effect on recombination levels. 

Due to the amount of information, it was important that we automate the process of data 

collection as much as possible. We have thus written several Perl scripts to crawl the web and 

fetch the reference genetic distance and the physical distance of each marker. We have 

assembled the panels in the format required by R/QTL, which we used to re-calculate the 

genetic distances based on the data from our panels only. We then estimated the recombination 

fractions between all pairs of markers. Since we only used backcrosses, we simply had to count 

just the number of recombination events. 

  Our goal was to build genetic maps specific to the genotypes of the animals in the 

selected panels, as opposed to the reference data which was already available, averaged over 

many animals and thus having only a rough fit to any given species of mice. For this purpose, 

we used the Lander-Green algorithm based on the Hidden Markov Model technology [14]. The 

details of the functions we have used for this purpose are given in the following section. In order 

to accurately estimate the genetic maps, we used the Carter-Falconer mapping function, as it 

fits the level of crossover interference in mice the best [15]. We have estimated the genetic 

maps in order to compare the corresponding genetic distances with the actual physical intervals 

between the markers, and hence arrive at recombination rates. 

We compared the genetic distances with the corresponding physical distances by 

taking their ratio. We have calculated this ratio for all mouse autosomes (1 through 19), and the 
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X-chromosome. We gathered the recombination rates for all the chromosomes from all eight 

panels. Equipped with these data, our goal was to find the distributions of the rates of 

recombination for each chromosome and compare them across all the eight panels, in an effort 

to establish the variability of recombination rates among the eight different backcrosses.  

Since genotype data rarely span the entire lengths of the chromosome arm, we 

calculated the physical distance between the first and the last marker for each chromosome and 

attempted to estimate the amount of data we were missing. When we compared the physical 

distance between the markers flanking each chromosome in each panel to the actual size of the 

corresponding chromosomes, we determined that we were missing a significant amount of data 

from the ends of some chromosomes. This presented a substantial problem, as it is known that 

the recombination rates are significantly higher in the telomere region of mouse chromosomes 

[16]. There was little point in estimating the distributions of recombination rates based on the 

gathered data as further analysis based on these panels would probably lead to flawed 

analysis. However, we could still use the gathered information for other types of analysis 

towards our general goal, that of modeling the recombination interference. 

To model the interference we looked at the double recombinants in the same set of 

mapping panels. Since it is not possible to know the exact position of the crossover we can only 

isolate the interval between two markers in which it had occurred. Similarly, for double 

recombinations we can only isolate the flanking markers of both crossovers. To gather the 

intervals, we have obtained the physical distances of the markers flanking the double-

recombination events. For each chromosome featuring two recombination events, we obtained 

four numbers corresponding to the positions of the flanking markers. For a given haplotype, if 

the first recombinant falls between the distances ( u1 , v1 ) and the second between ( u2 , v2 ), 

it implies that the inter-recombination’s distance, 'd', must be bound within the interval ( l , r ) = ( 

u2 - v1 , v2 - u1 ). Such data are said to be double-censored [21]. After we obtained the 

bounding intervals for all double recombinants, we used graph theory to simplify the problem of 

estimating the distributions of distances between the crossover events. Censored data can be 
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represented as intersection graphs, by first representing every double recombination interval as 

a vertex and then connecting the intersecting intervals by an edge. Once we obtained the 

intersection graphs for all panels, we identified the maximal cliques in these graphs. If V is the 

set of all vertices in a graph then a clique C is defined as a subset of V such that every vertex in 

C is connected to every other vertex in C. A clique is said to be maximal if it is not a subset of 

another clique. In case of univariate (i.e. our case, since we were only interested in the 

distribution of interval lengths) censored data every interval will belong to at least one maximal 

clique. For the maximum likelihood estimation, all that matters are the sets of intervals which 

participate in these maximal cliques, and not the actual representation of the cliques [21]. After 

we obtained the maximal cliques for all datasets, we represented them as clique matrices. A 

clique matrix is a matrix in which each vertex participating in the corresponding maximal clique 

is represented by ‘1’ and the the others are represented by ‘0’. In the context of interval graphs, 

clique matrices are also known as Petrie matrices [28]. 

  We have built a C# program to identify all double recombinants and to extract the 

corresponding markers. We have used our Perl scripts to automatically fetch the physical 

distances for the necessary markers. 

3.1 Methods and Algorithms for Data Collection 

 In this section we describe the methods involved in data collection, preprocessing and 

estimating genetic maps and estimating the recombination rates. 

 In our study we have assembled all panels of reasonable quality which could be 

collected in the public domain, a total of eleven, and here we provide their list. Unfortunately, we 

could not use the panels form the Mouse Genome Informatics source (list number 2), as the 

physical distances for most of their markers were unavailable. The data sources for the panels 

are mentioned in the header. Any modifications to the original panels are described for the ones 

which needed changes.  

1. Center for Genome Dynamics at the Jackson Laboratory (http://cgd.jax.org/): 

• BALB X (BALB X C57BL/6) 
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• (C57BL/6 x C3H) x C57BL/6 (Modifications: Removed unfinished genotypes Rows 41 – 

203) 

• (C3H X C57BL/6) X C3H (Modifications: Removed unfinished genotypes Rows 53 – 

259) 

• (SM X NZB) x NZB (Modifications: Removed unfinished genotypes Rows: 3, 4, 8-10,15-

17, 21, 22, 29, 30, 37, 38, 40, 42, 44, 51, 56, 61, 62, 66-2, 74, 77, 78, 81-86) 

2. Mouse Genome Informatics (http://www.informatics.jax.org/) 

• JAX-BSB (C57BL/6J x M. spretus)F1 x C57BL/6J 

• JAX-BSS (C57BL/6JEi x SPRET/Ei)F1 x SPRET/EiJ 

• JAX-BCB Mouse Mutant Resource (C57BL/6J x CAST/Ei) F1 x C57BL/6J 

3. Folami Datasets: [23] B2.xls: Genotypes of [(PERC x DDK) F1 x C57BL/6] N2 females, chr 

1-X 

• B11-9.xls: Genotypes of  [(PERA x DDK)F1 x C57BL/6]N2 females, chr 1-9 

• B110-X.xls: Genotypes of  [(PERA x DDK)F1 x C57BL/6]N2 females, chr 10-X 

Less and more skewed: [21] 

• Cross: (C57BL/6.Cg-Pgk1a x DDK) x C57BL/6 (less XCI skewed) 

• Cross: (C57BL/6.Cg-Pgk1a x DDK) x C57BL/6 (more XCI skewed) 

Most of the mapping panels were in Comma Separated Values (CSV) format or tab delimited 

format with the first column specifying the list of markers and the first row providing animal IDs. 

The rest of the data are the corresponding genotypes, as shown in Figure 3.1.  

 For our purposes we needed to transpose the above format and record the 

chromosome number and genetic distances as the second and the third row, respectively. We 

have also populated the datasets with the genetic distances obtained for each marker, and we 

show a screenshot of the modified panel data in Figure 3.2. 
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Figure 3.1 Screenshot Depicting the Raw Data. 

 

 

Figure 3.2 A Screenshot of the Modified Panel. 
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The genetic distances for each marker were obtained from Mouse Genome Informatics 

(MGI) web site [http://www.informatics.jax.org/]. We have used Perl scripts to crawl the MGI site 

and parse out the genetic distances. For this case, we generated a list of URLs by appropriately 

inserting the marker name to the URL of the Genes and Markers Form in the MGI website. The 

crawler script then serially goes to each of these web pages listed as URLs in the input file and 

parses out the corresponding genetic distances. Some of the marker names in our list represent 

syntenic genes (genes that occur on the same chromosome are called syntenic genes). For 

such markers the Genes and Markers Form does not provide any information about their 

physical distances. For a given webpage, if the script does not encounter any physical distance, 

it looks for the string “Syntenic”. If it finds this string, it returns an appropriate message; 

otherwise, it returns a “Null” string. For our analysis, we simply eliminated the markers that 

represented syntenic genes. 

The pseudo-code for the script implementing this strategy, cM_Grabber, is provided in 

Figure 3.3. In the pseudo code, italicized words are variables and strings in quotes are 

messages returned. The ‘+’ is used to represent more than one returned string, a message and 

a value, for instance. 

Input file: list of all URLs corresponding to each marker whose genetic distance is to be found. 

Output file: list of marker names and corresponding genetic distance/error message. 

Obtaining the physical distances for the flanking markers for each chromosome in each 

panel is a more complex task.  For this, we have used the same strategy as in the cM_Grabber. 

We generated a URL file and crawled the MGI site and parsed the physical distance in base 

pairs, for all markers for which it was available. If the physical distance for a marker is not 

available, then the script will automatically look for the primers used to identify that particular 

genomic sequence. If the crawler failed to fetch the physical distance from the page 

represented by the URL, it looks for the string “PCR” and captures the hyperlink embedded in a 

number next to it. The crawler then goes to the web page represented by this URL and looks for 

a link embedded, this time, in the string “PCR”. Now the script follows this new link to its 
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corresponding webpage and captures another link embedded in the marker name listed under 

the string “Probe”. Following this URL leads the crawler to the webpage containing the forward 

and reverse primers for that particular marker.  

Figure 3.3 Pseudo-code for the Script Implementing cM_Grabber. 
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The script captures these two primers and stores them in a different file with their 

corresponding marker name. A list of such primer pairs and their corresponding marker names 

are generated and stored serially. 

Once the script captures all the physical distances using the first strategy, it will then 

automatically submit the forward and reverse primers from the primer list to the UCSC Genome 

Browser [29] for In-Silico PCR [http://genome.ucsc.edu/cgi-bin/hgPcr]. Here, the “Genome”, and 

“Assembly” fields are set, as defaults, to “Mouse” and “Feb. 2006” respectively. The “Max 

Product Size”, “Min Perfect Match” and “Min Good Match” were set to 4000, 15, and 15, 

respectively. 

 

Figure 3.4 Flow Chart Representing the Collection of Physical Distances for all Markers. 
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If these parameters fail to generate a hit, then they are changed to 10000, 10, and 10, 

respectively. In case of a hit we flag it with an asterisk in the output file, so that we can manually 

check the output later. If the script fails to fetch the physical distance through ePCR, it will 

automatically submit the first primer to Blat [24]. If that generates a hit it will move to the next 

marker, else it submits the second primer. If both fail, the script returns the marker itself. The 

entire procedure is shown in Figure 3.4 as a flowchart. 

3.2 Estimating Genetic Maps 

To estimate the genetic maps, we have calculated the recombination fractions between 

all pairs of markers, using R/QTL functions. Since we used backcrosses only, it is sufficient to 

just count the number of recombination events. We then used the Lander-Green algorithm to re-

estimate the genetic map based on the genotype data of the experimental cross. We set the 

genotyping error rate used in the calculation of the penetrance Pr (observed genotype | true 

genotype) to 0.001, for all panels. For the mapping function we used Carter-Falconer, as it best 

fits the level of interference in mice [15]. Figure 3.5 illustrates this process in a form of a flow 

chart. 

We conclude this section with a detailed description of every step performed in 

estimating genetic maps based on the genotype data: 

Step 1: We first include the QTL library in R. Then using the read.cross function we  

input a file formatted as mentioned earlier and convert it into an object of class cross. As 

parameters to this function we give the path to the file, file format, genotype characters, the 

character denoting the missing genotypes, and we also set another parameter, convertXdata, to 

TRUE. If this is set to TRUE, any X chromosome genotype data is converted to the internal 

standard, using columns ‘sex’ and ‘pgm’ in the phenotype data, if they are available, or by 

inference if they are not. If FALSE, the X chromosome data are read as is. 

Sometimes, there can be more than one marker at the same position; we then use the 

function jittermap for adjustment. This function simply adds a small number to the positions of 

each of the overlapping markers, and hence makes them distinct. 
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Figure 3.5 The Process of Estimating Genetic Maps. 

 

Step 2: We use the est.rf function to estimate the recombination fraction between all 

pairs of markers. Since we are using backcross, this simply counts the number of recombination 

events. 

Step 3: We then use the est.map function which implements the Lander-Green 

algorithm, in order to re-estimate the genetic map based on the genotype data of the 

experimental cross. For this function we use three parameters. First is the name of the map. 

Second, called error.prob, is the assumed genotyping error rate used in the calculation of the 

penetrance Pr (observed genotype given true genotype). The third, map.function, specifies the 

function used to map genetic distance to recombination fraction. We use the Carter-Falconer 

function as it best fits the level of interference in mice. 

Step 4: We can use the plot.map feature to visualize the difference between the 

reference map based on the markers (averaged for many animals of different strains) and the 
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one estimated from the genotype data of a particular panel. This function shows the comparison 

chromosome by chromosome, as illustrated in Figure 3.6. 

Step 5: The function summary (map name) outputs the final result as a table, as 

illustrated in Table 3.1. 

 
Figure 3.6 Comparing Genetic Maps Based on Reference Data and the Newly 

Estimated Values for a Particular Panel. 
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Table 3.1 The Estimated Genetic Map. 

 

3.3 Estimating Recombination Rates 

Once we have the genetic lengths for all the chromosomes, our next task is to obtain 

the recombination fractions. We calculate them for each chromosome and for each panel by 

taking the ratio of genetic distance in cM to the physical distance in MB (please see column 

cM/MB of Table 3.2). We also record the physical distances for the first and last marker of every 

chromosome, in columns MB_Start and MB_End, respectively. The column Length_MB gives 

the physical distance between the first and the last markers. This value should be compared 

with the last column, recording the chromosome size. 
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Table 3.2 An Example of Final Compiled Results. 

 

 

3.4 Modeling Recombination Interference 

To model the recombination interference we have looked for all double recombinants in 

all mapping panel datasets we have assembled. For each instance of double recombination we 

have located the physical distances of the flanking markers, i.e. for each chromosome with two 

recombination events, we recorded four numbers corresponding to the position of the flanking 

markers. For a given haplotype, if the first recombination happened between the positions u1 

and v1, and the second between u2 and v2, it implies that the inter-recombination distance 'd', 
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falls in the interval (l, r ) = ( u2 - v1 , v2 - u1 ). In that case the distance d is said to be double-

censored.  

For doubly censored data we can use graph theoretic approach to simplify the problem 

of finding the nonparametric maximum likelihood estimation (NPMLE) of the underlying 

distribution. We represent the censored data as intersection graphs, then use a combinatorial 

algorithm to obtain the clique matrix. 

We have used the same mapping panels as before, and captured all intervals of double 

recombination events, for every chromosome and for every panel. We have constructed the 

intersection graphs using all the double recombination intervals from each panel, then used the 

algorithm proposed by Gentleman and Vandal [22] to identify the maximal cliques in each 

graph. Based on these maximal cliques we have constructed Petrie matrices for the panels. 

We conclude this section with a detailed description of every step performed in 

modeling the recombination interference based on the genotype data: 

For each panel, do step 1 through 4. 

Step 1. Record all intervals (L, R), where L is the minimal distance and R is the 

maximal distance between four flanking markers.  

Step 2. Compare these intervals and form a graph with each interval as a vertex, and 

an edge connecting the vertices if and only if the corresponding intervals intersect.  

Step 3. Identify all maximal cliques using the perfect elimination scheme, and then 

using the combinatorial algorithm described in [22]. 

Step 4. Form a Petrie/clique matrix based on the maximal cliques. 

End 

We now elaborate on the above steps based on example data. 

Step 1: Let us consider the following intervals: 

A= [1, 3] 

B = [5, 7] 

C = [2, 5] 
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D = [7, 9] 

E = [6, 8] 

F = [1, 8] 

G = [9, 11] 

H = [12, 14] 

Step 2: We can manually compare the above intervals and determine the intersecting ones. For 

example, the intervals of A and B do not intersect, whereas the intervals B and C intersect. We 

compare each interval with every other interval to form a graph, such that every interval is a 

vertex and intersecting intervals are connected by an edge. Figure 3.7 shows the graph thus 

obtained. 

Figure 3.7 An Intersection Graph. 

 

Step3: Having obtained the intersection graph, we incorporate a perfect elimination scheme to 

find the maximal cliques. For univariate interval-censored data a particularly useful perfect 

elimination scheme is obtained from the ordering of the right endpoints of the data in increasing 

order [22]. Therefore, we sort the interval data based on the right value, and input it to our 

implementation of the combinatorial algorithm of [22]. 
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Step 4: After identifying all maximal cliques, we form the Petrie matrices for each panel as 

follows:  

1. We build a matrix with vertices heading the columns and identified maximal cliques as rows.  

2. We populate the matrix with ‘1’ for each vertex participating in the corresponding maximal 

clique. 

3. We populate the rest of the matrix with ‘0’. 

A screenshot of the matrix obtained for one of our panels is shown in Figure 3.8. 

 

Figure 3.8 A Screenshot Depicting Petrie Matrix. 
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CHAPTER 4 

DISCUSSION 

 During the initial phase of this project, we spent a substantial effort in collecting genetic 

data from various sources. For this purpose, we have implemented several scripts and 

programs, as described in the previous chapters. Furthermore, there was a major need for 

preprocessing of the collected data to make them useable for our study.  Much of the 

computational work has been performed using a variety of pre-existing software commonly used 

for bioinformatics tasks, such as R, R/QTL, ePCR and BLAT, which needed to be installed and 

connected into a customized environment through glue scripts. Overall, it was a true exercise in 

bioinformatics and computational support of the work of investigators in life sciences. 

Unfortunately, not everything in science goes smoothly, and as we gathered more data 

we realized that the irregularity of the genetic data currently available was a huge obstacle. In 

particular, the lack of flanking markers covering the chromosome end to end created a situation 

in which we could not use our data for reliable conclusions. For example, for the (C57BL/6 

always x C3H) x B6 dataset, the flanking markers spanned an average of only 65.25% of the 

chromosome length. We have observed a maximum coverage of 80% for chromosome 1 and a 

minimum coverage of 53% for chromosome 18 (Table 3.2), and all the missing data were at the 

ends of the chromosomes. Since it has already been established that the recombination in mice 

occurs at significantly higher rates near the telomeres, we have found ourselves unable to 

derive reliable conclusions.  

In order to keep pursuing our original goals, we had to think about a fresh approach, so 

we decided to take the recombination interference route to model the distribution of 

recombination rates. We have thus identified all intervals of double recombination in our original 

panels, and used the idea of censored data from the order theory. With the aid of graph 
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theoretical techniques we have generated the intersection graphs based on these intervals of 

double recombination. Eventually, we came up with fast and efficient ways of achieving data 

collection, preprocessing and analysis of the acquired datasets.  

Equipped with the interval graphs and the Petrie matrices for all panels, the products of 

our work, the biology/statistics part of our team, Dr. Elena de la Casa-Esperon and Dr. J.C. 

Loredo-Osti, intend to find the Non Parametric Maximum Likelihood Estimate (NPMLE) of the 

underlying distribution. This will facilitate the comparison the empirical distributions of the 

double recombinations in each cross from the non-interference distribution (modeled as 

Poisson) and hence analyze the deviation between the two models. Comparing these 

deviations between crosses will provide a means to compare interference differences between 

them. In this way we can study the variation of the levels of meiotic recombination, and fulfill the 

goals of our original project. 
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