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ABSTRACT

ESTIMATION OF AIRCRAFT STATES AND WIND

EXPOSURE IN AERIAL REFUELING

JE HYEON LEE, Ph.D.

The University of Texas at Arlington, 2011

Supervising Professor: Atilla Dogan

When a tanker and receiver aircraft fly in tight formation in an aerial refueling

operation, they are exposed to various sources of wind with varying magnitude and

direction. The tanker and the receiver aircraft experience prevailing wind and turbu-

lence. The receiver aircraft is also subject to an additional wind field induced by the

wake of the tanker. The receiver aircraft is required to fly in a precise trajectory rela-

tive to the tanker. Especially, the receiver aircraft should stay at a position with small

tolerances for the fuel transfer operation while the tanker aircraft flies straight level

and makes constant altitude turns. To improve the trajectory tracking and the sta-

tion keeping performance of the receiver under measurement noise, the estimation of

the receiver states and some of the tanker states are needed in the trajectory-tracking

controller. This research has shown that the estimation of the wind exposure should

be known for a successful implementation of an estimator for the states of the aircraft.

A Square-Root Unscented Kalman Filter is developed for each aircraft based on their

nonlinear equations of motion augmented with equations representing the effect of

the wind on the aircraft dynamics. The estimation algorithms are evaluated in an

v



integrated simulation environment that includes full 6-DOF nonlinear equations of

motion of each aircraft, the controllers for each aircraft, models for prevailing wind,

turbulence and vortex-induced wind as well as the aerodynamic interference on the

receiver dynamics. A parameter study is used to evaluate the performance of the

estimation algorithm under either white measurement noise or colored measurement

noise.
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CHAPTER 1

INTRODUCTION

Aircraft flying in the atmosphere are influenced by the motion of air. When

a tanker and receiver aircraft fly in tight formation in an aerial refueling operation,

they are exposed to various sources of wind with varying magnitude and direction.

The tanker and the receiver aircraft experience prevailing wind and turbulence. The

receiver aircraft is also subject to an additional wind field induced by the wake of the

tanker. The receiver aircraft is required to fly in a precise trajectory relative to the

tanker. Especially, the receiver aircraft should stay at a position with small tolerances

for the fuel transfer operation while the tanker aircraft flies straight level and makes

constant altitude turns in the presence of wind. Currently, aerial refueling of receiver

aircraft has to be performed by the pilot, which is one of the most demanding piloting

tasks. Relying on some visual cues, the receiver aircraft pilot has to fly the aircraft

to the refueling contact position and keep it there within a small space relative to

the tanker. There are current efforts underway for developing control technologies to

automate the refueling operation for the receiver aircraft. These efforts are to reduce

the pilot workload and also equip unmanned aerial vehicles with aerial refueling capa-

bility. Estimation of the aircraft states and wind components the aircraft experience

is a crucial enabler for this objective.

To do the automated aerial refueling successfully, the relative position should

be controlled with small tolerance. The relative position controlled designed by linear

quadratic regulator method requires full state feedback. If the full states are provided

by the poor sensors, the performance of the precise relative position controller will be
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degraded or more seriously the relative position control may fail due to the large noise

levels of the sensors. Due to the large measurement noise level and the unmeasured

variable information such as a wind velocity, the relative position of the receiver

aircraft is hard to be controlled. To eliminate the sources causing failure in automated

aerial refueling, this work adapts a Kalman filter, and uses estimated state feedback

control.

1.1 Literature Review

Among aerospace applications that require wind information is the problems of

precise position determination. Air traffic control automation is such an application

[1, 2]. Many aircraft may need to circle over the airport waiting to land while others

are taking off or landing. In adverse weather conditions such as heavy rain, deep

fog, or wind gust, it is challenging for aircraft to land safely. To prevent a possible

collision or conflict between aircraft, air traffic control automation could be used. The

air traffic control automation is to keep a safe physical separation between aircraft, a

key requirement for which is to calculate current position of the aircraft precisely. To

estimate the precise position of the aircraft, wind should be taken into account. Path

planning or trajectory prediction for guidance of unmanned aerial vehicle (UAV) is

another application for wind estimation [2, 3, 4, 5, 6]. A small UAV can be signifi-

cantly influenced by wind in determining its position. Aircraft velocity relative to the

air is not the same as the inertial velocity in the presence of wind. Hence, the path

planning or trajectory prediction requires wind information. Another application that

requires wind information is aerial refueling (AR) [7, 8, 9]. An AR operation involves

a tanker aircraft and a receiver aircraft. While the tanker flies in a specific pattern,

the receiver aircraft follows the tanker aircraft in close proximity. To determine the

relative position of the receiver aircraft, wind velocity should be known, as relative
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Figure 1.1. Velocity Triangle Vector.

position determination is sensitive to wind. Formation flight is another application for

the wind estimation. Formation flight involves a leader aircraft and follower or wing-

man aircraft. Formation flight is used to minimize drag and maximize flying range

through vortex effect generated from a leader [10, 11, 12]. The upwash generated by

vortex of the leader reduces drag. To maintain the maximum drag reduction, the

follower stays in a relative position from the leader with tight position tolerance. The

additional wind field induced by the trailing vortices of the lead aircraft information

affects lift and drag of the follower as well as the relative position. The vortex effect

could be expressed by vortex induced wind on the follower aircraft [7, 9, 13]. Hence,

wind information is required to keep the relative position within the tight position

tolerance. A common aspect of these applications is to determine precise position in

the presence of wind.

There are ground-based wind measurement methods with various limitations

such as low measurement rate, the constant wind velocity assumption and distance

between the aircraft and ground stations where the wind is measured. Some of these

limitations can be overcome by onboard wind estimation. Wind estimation techniques

can be divided into three categories, (i) Graphical method using velocity triangle

vector, (ii) Constant wind model using nonlinear Kalman filter and (iii) Time-varying

wind model without Kalman filter. The most common technique is to use velocity
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triangle vector shown in Fig. 1.1 [1, 3, 5, 14, 15, 16]. The velocity triangle vector is

the relation among (i) the ground speed of an aircraft from a radar track or GPS, (ii)

airspeed of an aircraft from a pitot tube, and (iii) wind velocity relative to the inertial

frame. Reference [1] directly uses velocity triangle vector to extract wind velocity.

In Ref. [1], an aircraft has a constant turning airspeed with known airspeed data and

Figure 1.2. Velocity Plot.

inertial velocity vector is measured by radar track. The airspeed of an aircraft and

its inertial velocity vector are known. Wind is assumed to be constant. As shown in

Fig. 1.2, the known airspeed vector is placed at the center of the velocity plot because

the magnitude of the airspeed is constant. The constant wind vector is calculated

by subtracting the airspeed vector from the ground speed vector [1]. This approach

relies on measurement update without wind model. Thus, noisy wind information

will be obtained. Additionally, the method focuses on extracting the local wind

information based on the circular flight pattern and a radar track. The second group

[4, 14] uses measurements update and constant wind model in nonlinear Kalman

filter. The available measurements are the ground speed from a radar track or a GPS

and airspeed from a pitot tube. The second group uses a constant wind model, which

4



does not reflect abrupt change of wind velocity like wind gust. The constant wind

model approximation is the main limitation of this approach. The third group uses

measurements update, nonlinear equations of motion (EoM), nonlinear wind model,

and time delayed moving average filter (MAF) to estimate wind velocity [17]. The

available measurements are ground velocity of the aircraft from GPS in addition to the

conventional auto-pilot sensors. The other variables are obtained from a numerical

calculation of EoM. The third group is limited to the case of a low speed aircraft

such as a small UAV because the error in the wind linearly increases with airspeed

[17]. This linearly increasing error can be reduced through Kalman filter. Without the

Kalman filter, the convergence of the wind estimation is not guaranteed. To overcome

these issues, first wind model should be constructed by a time-varying model. Second,

Kalman filter algorithm should be used to reduce the noise level and guarantee the

convergence of the wind estimation. Hence, estimation by Kalman filter is the main

approach used in this research for wind estimation along with state estimation.

In this problem, state estimation and noise rejection require the employment of

nonlinear Kalman filter. The translational dynamics and translational kinematics of

an aircraft have wind terms multiplied by the states. This means that the components

of the wind vector would be part of the system matrix of the Linear Kalman Filter

(LKF) at the nominal condition. The wind components vary with time. This implies

that the system matrix of the LKF would become a time dependent matrix, which

is inconsistent with the general LKF requirement of constant system matrices. Thus,

the nonlinear Kalnam filter is required. The most widely used nonlinear estimator

is the Extended Kalman Filter (EKF). The filter has the accuracy of the first order

approximation of the Taylor series expansion at the nominal condition. However,

due to the first order Taylor series approximation, the EKF could have a divergence

problem [18, 19]. The second order extended Kalman Filter (SOEKF) has the second
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order approximation in Taylor series expansion. Even though it is a second order ap-

proximation, the SOEKF is less accurate than the Unscented Kalman Filter (UKF)

[18]. The Particle Filter (PF), known as the sequential Monte Carlo method (SMC),

is a nonlinear estimator dealing with a non-Gaussian distribution [20, 21]. The num-

ber of the particles is proportional to the estimation accuracy, which yields to high

computational burden. Even though the computational burden could be reduced by

Rao-Blackwellization, the PF has more computational burden than that of a EKF.

Further, the accuracy of PF may rapidly degrade if the number of the estimation

variables is greater than three [22]. On the other hand, recently proposed Unscented

Kalman Filter (UKF) overcomes the drawbacks of EKF, SOEKF, and PF. The UKF

is easier to implement and has the second order approximation effect at the Taylor

series expansion under the Gaussian white noise assumption [23, 24, 25, 26]. The

UKF may have a computational problem called singularity during the square root

calculation of a symmetric covariance matrix of the state. The singularity problem

is overcome by the Square Root Unscented Kalman Filter (SR-UKF) [27, 28, 29, 30].

The SR-UKF directly propagates the square root instead of the symmetric covariance

matrix at each step. Therefore, the SR-UKF is used in this research to estimate the

aircraft states and the wind velocity.

1.2 Original Contributions

This research work has made the following original contributions:

◦ A new method is developed for the estimation of time-varying wind vector

onboard an aircraft flying at high speed based on onboard sensor measurement.

◦ A wind model is obtained as a set of nonlinear differential equations by rear-

ranging the nonlinear translational equations of motion that includes the wind effect

through explicit terms with wind components and their derivatives.
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◦ The nonlinear model used in the system update of the estimator is augmented

with the wind model. This makes the wind components parts of the system state

vector. The estimator with the augmented system model can estimate the wind

components as well as the aircraft states.

◦ The Square-Root Unscented Kalman Filter (SR-UKF) framework is used for

the estimator. A potential singularity problem in the implementation of this estimator

is avoided by tuning the covariance matrix of the process noise.

◦ The SR-UKF developed in this research is implemented with both white

measurement noise and colored measurement noise cases. The measurement model

is modified to handle colored measurement noise. Through a parameter study, it is

shown that the performance of the estimator degrades as the measurement error noise

becomes more colored in the sense that the correlation time constant increases.

◦ The state and wind estimations are performed in both tanker and the receiver

aircraft flying in an aerial refueling operation. The equations of motion of the receiver

are written relative to the tanker aircraft’s body frame, a non-inertial reference frame.

As a result, the equations of motion of the receiver aircraft requires some of the

states of the tanker aircraft. Thus, in turn, causes the system update of the receiver

estimator to require the measurement or estimation of the tanker states. In the

implementation of the receiver estimation in a simulation environment, the tanker

state estimates are transmitted to the receiver aircraft for its estimator’s system

update.

◦ When the receiver aircraft flies in the wake of the tanker, it is exposed to a

non-uniform wind field induced by the trailing vortices of the tanker. Thus, the total

wind experienced by the receiver aircraft is due to prevailing wind, turbulence and

the vortex induced wind while the wind the tanker aircraft is exposed to is due to only

prevailing wind and turbulence. The SR-UKF estimator implemented on the receiver

7



can successfully estimate the total wind exposure. By comparing wind estimation of

the tanker with that of the receiver, the vortex induced wind the receiver is exposed

to can easily be identified.

◦ The trajectory tracking controller flies the receiver aircraft relative to the

tanker aircraft, which flies straight level and turns at constant altitude with constant

speed. The estimated states are successfully used in the feedback control when the

measurement error noise is white. The feedback controller was also successful when

the correlation time constant of the colored noise is small.

1.3 Organization of the Dissertation

This dissertation is organized as follows. Chapter 2 introduces modeling of

aircraft dynamics, measurement and wind. Tanker and receiver equations of motion,

tanker and receiver controller, models of wind sources (prevailing wind, turbulence,

wake vortex induced wind, total reference wind), and measurement noise models

for white and colored noise are discussed in Chapter 2. Chapter 3 reviews linear

and nonlinear Kalman filter (linear Kalman filter, extended Kalman filter, unscented

Kalman filter, and square-root unscented Kalman filter) and colored measurement in

Kalman filter. As estimation parts, Chapter 4 introduces estimation of aircraft states

and wind exposure at tanker aircraft, Chapter 5 introduces state and wind estimation

without aerodynamic model, and Chapter 6 introduces relative position control of

receiver aircraft through estimated state feedback. Chapter 7 presents and discusses

the simulation results and parameter studies. Chapter 8 gives the conclusion.
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CHAPTER 2

MODELING OF AIRCRAFT DYNAMICS, MEASUREMENT AND WIND

This chapter gives the details of the simulation environment used for the imple-

mentation and evaluation of the estimation and control of aircraft flying in formation

for aerial refueling. In an aerial refueling operation, while the tanker aircraft flies

through a trajectory with straight level legs and constant altitude turns, the receiver

aircraft is required to fly relative to the tanker aircraft. The motion of the receiver

aircraft includes station keeping at observation, pre-contact, and contact position as

well as transitioning between these positions as depicted in Fig. 2.1. As an environ-

Figure 2.1. Three Aerial Refueling Positions.

mental factor adversely affecting aerial refueling operation, both aircraft are exposed

to the prevailing wind and turbulence. The receiver aircraft is additionally exposed

to the wake vortex induced wind because of the wake of the tanker aircraft. The three
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wind sources, prevailing wind, turbulence, and wake vortex induced wind constitutes

the total wind disturbing the precise position control. Measurement noise could be

another source of disturbance for the position tracking control of the receiver relative

to the tanker. The integrated simulation environment includes the models of all the

aspects of the problem: (i) the nonlinear equations of motion for the tanker aircraft

and the receiver aircraft, (ii) controllers for flying the tanker through a trajectory

relative to the inertial frame and the receiver relative to the tanker, (iii) all sources of

wind the aircraft are exposed to, and (iv) measurement error noise for each aircraft.

The following sections describes all these components separately.

2.1 Tanker Equations of Motion

The aircraft model here represents a KC-135 tanker aircraft flying through a

trajectory with straight level and turning segments in an aerial refueling operation.

The equations of motion of the tanker aircraft including the dynamics effect of wind

exposure are given in Ref. [7, 31] and repeated herein as reference. The translational

dynamics is


V̇
T

β̇
T

α̇
T

 = ε−1T S(ωBT )(RBTWT
VwT )− ε−1T RBTIẆIT

+
1

m
T

ε−1T (RBTIMT + RBTWT
AT + PT ) (2.1)

ε−1T =


cosα

T
cos β

T
sin β

T
cos β

T
sinα

T

− 1
V
T

cosα
T

sin β
T

1
V
T

cos β
T
− 1
V
T

sinα
T

sin β
T

− 1
V
T

sec β
T

sinα
T

0 1
V
T

cosα
T

sec β
T

 , VwT =


VT

0

0

 (2.2)
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MT =


0

0

m
T
g

AT =


−DT

−ST

−LT

PT =


Tx

Ty

Tz

 =


T
T

cos δT

0

−T
T

sin δT

 (2.3)

S(ωBT ) =


0 r

T
−q

T

−r
T

0 p
T

q
T
−p

T
0

 (2.4)

where (V
T
, β

T
, α

T
) are airspeed, side slip angle, and angle of attack, m

T
is the

mass of the tanker aircraft, ωBT is the representation of the angular velocity vector

with components (p
T
, q

T
, r

T
), MT is the gravitational force representation in the

inertial frame, AT is the aerodynamic force representation in the wind frame, PT

is the propulsion force representation in the tanker body frame, WIT is the wind

representation expressed in the inertial frame, RBTWT
is the rotational matrix from

the tanker’s wind frame to the tanker’s body frame, and RBTI is the rotational matrix

from the inertial frame to the tanker’s body frame.

The aerodynamic forces are given by

DT =
1

2
ρV 2

T
S
T
CDT (2.5a)

ST =
1

2
ρV 2

T
S
T
CST (2.5b)

LT =
1

2
ρV 2

T
S
T
CLT (2.5c)
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where S
T

is the reference area of the tanker aircraft and ρ is the air density. The

aerodynamic coefficients are

CDT = CD0 + CDα2α
2
T

(2.6a)

CST = CS0 + CSββT + CSδr δrT (2.6b)

CLT = CL0 + CLααT + CLα2 (α
T
− αref )2 + CLq

c
T

2V
T

qrel + CLδeδeT (2.6c)

where the angular velocity term (qrel) is relative to the surrounding air, δr
T

and δeT

are the rudder and elevator deflections, respectively. The relative angular velocity

is calculated from the angular velocity relative to the inertial frame and the angular

velocity of the air relative to the inertial frame as

p
rel

= p
T
− p

eff

q
rel

= q
T
− q

eff

r
rel

= r
T
− r

eff

(2.7)

where (prel, qrel, rrel) are the angular velocity components relative to the surrounding

air, (p
T
, q

T
, r

T
) are the angular velocity relative to the inertial frame, (p

eff
, q

eff
, r

eff
)

are the rotational wind relative to the inertial frame. The details of the calculation

of the rotational wind components can be seen in Ref. [32, 33].

The rotational dynamics is

ω̇
BT

= I
¯
−1
T

[
MBT + S(ω

BT
)I
T̄
ω
BT

]
(2.8)
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where I
¯T

is the moment of inertia matrix of the tanker aircraft, and MBT is the

applied moment on the tanker aircraft in the tanker body frame. The moments are

given by

LT =
1

2
ρV 2

T
SabTCLT

MT =
1

2
ρV 2

T
SacTCMT

+4zTTT

NT =
1

2
ρV 2

T
SabTCNT

(2.9)

where b
T

is the wingspan of the tanker aircraft, c
T

is the chord length of the tanker

aircraft, 4zT is the moment arms of the thrust in the tanker’s body frame, and T
T

is

the thrust generated by engine. The moment coefficients are expressed by

CLT = CL0 + CLδaδaT + CLδr δrT + CLββT + CLp
b
T

2V
T

prel + CLr
b
T

2V
T

rrel

CMT
= CMααT + CMδe

δeT + CMq

c
T

2V
T

qrel

CNT = CN0 + CNδaδaT + CNδr δrT + CNββT + CNp
b
T

2V
T

prel + CNr
b
T

2V
T

rrel

(2.10)

where δa
T

is the aileron deflection.

The rotational kinematics is

ψ̇
T

= (q
T

sinφ
T

+ r
T

cosφ
T
) sec θ

T

θ̇
T

= (q
T

cosφ
T
− r

T
sinφ

T
)

φ̇
T

= p
T

+ (q
T

sinφ
T

+ r
T

cosφ
T
) tan θ

T

(2.11)

where (ψ
T
, θ

T
, φ

T
) are the Euler angles relative to the inertial frame.

The translational kinematics is

ṙBT = RT
BTIRBTWT

VwT +WIT (2.12)
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where ṙBT is the velocity of the tanker aircraft relative to the inertia frame. The

integration of the velocity is the position vector.

The tanker aircraft model is represented in a compact form as

ẋ
T

= f(x
T
, u,WIT , ẆIT ), x

T
∈ <12 (2.13)

The state vector is given by

x
T

= [V
T
, β

T
, α

T
, p

T
, q

T
, r

T
, ψ

T
, θ

T
, φ

T
, x

T
, y

T
, z

T
]T (2.14)

The control input is defined by

u = [δa
T
, δe

T
, δr

T
, T

T
]T (2.15)

where (δa
T

, δe
T

, δr
T

) are aileron, elevator, and rudder deflection respectively, and T
T

is the thrust.

2.2 Receiver Equations of Motion

In aerial refueling simulations conducted in this research, a model representing

Learjet 25 receiver aircraft as a surrogate receiver is used. In an aerial operation, the

receiver aircraft should fly and be controlled relative to the tanker aircraft. Thus,

the equations of motion are written in terms of the position and orientation of the

receiver relative to the body frame of the tanker.
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The matrix form of the translational dynamics is [7, 31]


V̇

β̇

α̇

 = ε−1R

[
S(ω

BRBT
) + RBRBT

S(ω
BT

)RT
BRBT

]
(RBRWR

Vw +WBR)

− ε−1R ẆBR +
1

m
R

ε−1R (RBRBT
RBTIMR + RBRWR

AR + PR) (2.16)

where

ε−1R =


cosα cos β sin β cos β sinα

− 1
V

cosα sin β 1
V

cos β − 1
V

sinα sin β

− 1
V

sec β sinα 0 1
V

cosα sec β

 (2.17)

where (V, β α) are velocity relative to the wind frame, side slip angle, and angle

of attack, ω
BRBT

is the relative angular velocity in the component form, Vw is the

component of the velocity relative to the wind frame, mR is the mass of the receiver

aircraft, WBR is the representation of the wind expressed in the receiver body frame

and thus ẆBR is the wind derivative relative to the receiver body frame expressed in

the receiver body frame. Further, RBRBT
is the rotational matrix from the tanker’s

body frame to the receiver’s body frame and RBRWR
is the rotational matrix from

the receiver’s wind frame to the receiver’s body frame.

The external force is the sum of the gravitational force MR expressed in the

inertia frame, the aerodynamics force AR expressed in the receiver body frame, and
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the propulsive force PR expressed in the receiver body frame. The matrix forms of

the external forces are give by

MR =


0

0

m
R
g

AR =


−D

−S

−L

PR =


Tx

Ty

Tz

 (2.18)

where g is the gravity, (D, S, L) are drag, side force, and lift, (Tx, Ty, Tz) are the

thrust in x-y-z directions of the receiver body frame.

The aerodynamic forces are given by

D =
1

2
ρV 2S

R
CD (2.19a)

S =
1

2
ρV 2S

R
CS (2.19b)

L =
1

2
ρV 2S

R
CL (2.19c)

where S
R

is the reference area of the receiver aircraft. The aerodynamic force coef-

ficients are

CD = CD0 + CDαα + CDα2α
2 + CDδeδe + CDδe2δ

2
e + CDδsδs + CDδs2δ

2
s (2.20a)

CS = CS0 + CSββ + CSδaδa + CSδr δr (2.20b)

CL = CL0 + CLαα + CLα2(α− αref )2 + CLq
c

2V
R

qrel + CLδeδe + CLδsδs (2.20c)

where qrel is the pitch component of the angular velocity of the aircraft relative to

the surrounding air in the body frame. The other two components are qrel and rrel.
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All together, the representation of the angular velocity of the receiver relative to the

surrounding air in the body frame is

ωrel =


p
rel

q
rel

r
rel

 (2.21)

which can be written in terms of the angular velocity of the receiver relative to the

tanker, angular velocity of the receiver relative to the inertial frame and the angular

velocity of the surrounding air relative to the inertial frame, i.e., rotational wind, as

ωrel = ω
BRBT

+ RBRBT
ω
BT
−


p
eff

q
eff

r
eff

 (2.22)

where (p
eff
, q

eff
, r

eff
) are the rotational wind relative to the inertial frame, expressed

in the body frame of the receiver. The details of the rotational wind calculation can

be found in Refs. [32, 33]

The matrix form of the rotational dynamics is [7, 31]

ω̇
BRBT

= I
¯
−1
R
MBR + I

¯
−1
R

S(ω
BRBT

+ RBRBT
ω
BT

)I
¯R

(ω
BRBT

+ RBRBT
ω
BT

)

− S(ω
BRBT

)RBRBT
ω
BT
−RBRBT

ω̇
BT

(2.23)
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where I
¯R

is the inertia matrix of the receiver aircraft, and MBR is the moment of the

receiver aircraft at the receiver body frame as

MBR =


L

M

N

 (2.24)

where (L, M, N ) are roll moment, pitch moment, and yaw moment. The moments

are given by

L =
1

2
ρV 2S

R
bCL −4zTy +4yTz

M =
1

2
ρV 2S

R
cCM +4zTx +4xTz

N =
1

2
ρV 2S

R
bCN −4yTx −4xTy

(2.25)

where b is the wingspan, c is the chord length of the receiver aircraft, (4x, 4y, 4z)

are the moment arms of the thrust in the body frame of the receiver and (Tx, Ty, Tz)

are thrust relative to the receiver body frame. The moment coefficients are

CL = CL0 + CLδaδa + CLδr δr + CLββ + CLp
b

2V
prel + CLrrel

b

2V
rrel

CM = CM0 + CMαα + CMδe
δe + CMq

c

2V
qrel + CMδs

δs

CN = CN0 + CNδaδa + CNδr δr + CNββ + CNp
b

2V
prel + CNrrel

b

2V
rrel

(2.26)

where (δa,δe,δr,δs) are the deflections for the aileron, elevator, rudder and stabilizer,

respectively.
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Rotational kinematics is [7, 31]

ψ̇ = (q sinφ+ r cosφ) sec θ

θ̇ = (q cosφ− r sinφ)

φ̇ = p+ (q sinφ+ r cosφ) tan θ

(2.27)

where the orientation (ψ, θ, φ), and the angular velocity (p,q,r) are relative to the

tanker expressed in the receiver body frame.

Figure 2.2. Relative Position Vector of the Receiver Aircraft.

As depicted in Fig. 2.2, the position vector of the receiver relative to the inertia

frame is the sum of the position vector of the tanker relative to the inertia frame and

the relative position vector of the receiver with respect to the tanker.

[̂I
¯
]T rR = [̂I

¯
]T rT + [̂I

¯
]TRT

BTIξ (2.28)

where rR is the representation of the position of the receiver relative to the inertia

frame expressed in the inertia frame, rT is the representation of the position of the

tanker relative to the inertia frame expressed in the inertia frame, and ξ is the repre-
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sentation of the receiver position relative to the tanker expressed in the tanker body

frame. The matrix form of the relative translational kinematics is [7, 31].

ξ̇ = RT
BRBT

RBRWR
Vw + RT

BRBT
WBR −RBTIṙT + S(ω

BT
)ξ (2.29)

where ξ is written in component form as

ξ =


ξ1

ξ2

ξ3

 (2.30)

The receiver aircraft model is represented in a compact form as

ẋ
R

= f(x
R
, x

T
, u,WBR , ẆBR) (2.31)

The state vector is given by

x
R

= [V, β, α, p, q, r, ψ, θ, φ, ξ1, ξ2, ξ3]
T (2.32)

The control input is defined by

u
R

= [δa, δe, δr, δs, T, δy, δz]
T (2.33)

where (δa, δe, δr, δs) are aileron deflection angle, elevator deflection angle, rudder

deflection angle, and stabilizer deflection angle, T is the thrust, (δy, δz) are engine

nozzle deflections for an aircraft capable of thrust vectoring control. The thrust

vectoring is not used in this work.
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2.3 Tanker Controller

In an aerial refueling operation, the tanker aircraft is flown by a pilot through a

pre-specified trajectory, consisting of straight level and turn segments, at a constant

altitude and with a constant airspeed. In the simulation, this is achieved by a feedback

controller. The controller is designed in Ref. [31] based on a commanded constant

airspeed, a commanded constant altitude and a commanded time-varying yaw-rate.

This section gives a brief overview of the controller as a reference.

Table 2.1. Six Nominal Conditions

Nominal Condition Yaw Rate Airspeed

1 ψ̇1 V1
2 ψ̇1 V2
3 ψ̇2 V1
4 ψ̇2 V3
5 ψ̇3 V1
6 ψ̇3 V2

The control law developed using an LQR-based approach relies on gain schedul-

ing to cover the whole range of flight conditions that the tanker aircraft flies in an

aerial refueling operation. The gain scheduling uses commanded airspeed and com-

manded yaw rate as scheduling variables. The six nominal conditions defined based

on the scheduling variables are listed in Table 2.1. For each nominal condition, the

nonlinear equations of motion are linearized and an LQR-controller is designed based

on the linear model of each nominal condition. The linear model for each nominal

condition is

∆ẋT = A∆xT + B∆u (2.34)
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where ∆xT is the linearized system state vector of the tanker aircraft, and ∆u is the

linearized control input. The linearized control input vector is defined by

∆u = [∆δa
T

∆δe
T

∆δr
T

∆T
T

]T (2.35)

For improving steady-state performance of tracking the commanded signals,

three integral control terms are added to the LQR-controllers. For this, three error

signals are defined between the commanded outputs and actual outputs as

ė = ∆y
T
−∆yc (2.36)

where

e =


∆V −∆Vc

∆z −∆zc

∆ψ̇ −∆ψ̇c

 (2.37)

where ∆ indicates deviation from the nominal condition, and the subscript c indi-

cates the commanded signal. The augmented equation, for each nominal condition,

obtained by combining both Eq. (2.34) and Eq. (2.36) is

∆ẋT

ė

 =

A 0

C 0


∆xT

e

+

B

0

∆u+

 0

−∆yc

 (2.38)
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The state feedback control law for Eq. (2.38), with the gains calculated by the

LQR procedure, is

∆ui = −Ki ·∆xTi −Ke,i · e

ui = u0,i + ∆ui

∆x
Ti

= x
T
− x

T0,i

(2.39)

where i ∈ {1, 2, 3, 4, 5, 6} corresponding to the six nominal conditions of Table 2.1,

and [Ki Ke,i] is the augmented state feedback gain matrix obtained by minimizing

the cost function in LQR design technique.

Figure 2.3. LQR-based Controller for Tanker Aircraft.
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For the implementation of the gain scheduling controller, a Lagrange interpo-

lation is used between the six linear controllers designed for each nominal condition.

Thus, the gain scheduling control law is

u =
(ψ̇c − ψ̇2)(ψ̇c − ψ̇3)(Vc − V2)
(ψ̇1 − ψ̇2)(ψ̇1 − ψ̇3)(V1 − V2)

u1 +
(ψ̇c − ψ̇1)(ψ̇c − ψ̇3)(Vc − V2)
(ψ̇2 − ψ̇1)(ψ̇2 − ψ̇3)(V1 − V2)

u3

+
(ψ̇c − ψ̇1)(ψ̇c − ψ̇2)(Vc − V2)
(ψ̇3 − ψ̇1)(ψ̇3 − ψ̇2)(V1 − V2)

u5 +
(ψ̇c − ψ̇2)(ψ̇c − ψ̇3)(Vc − V1)
(ψ̇1 − ψ̇2)(ψ̇1 − ψ̇3)(V2 − V1)

u2

+
(ψ̇c − ψ̇1)(ψ̇c − ψ̇3)(Vc − V1)
(ψ̇2 − ψ̇1)(ψ̇2 − ψ̇3)(V2 − V1)

u4 +
(ψ̇c − ψ̇1)(ψ̇c − ψ̇2)(Vc − V1)
(ψ̇3 − ψ̇1)(ψ̇3 − ψ̇2)(V2 − V1)

u6

(2.40)

Figure 2.3 shows the implementation of the LQR-controller in the nonlinear simulation

environment.

2.4 Receiver Controller

In an aerial refueling operation, the receiver aircraft’s position should be con-

trolled relative to the tanker while the tanker aircraft flies through its pre-specified

trajectory. Thus, the receiver controller is designed to track the commanded position

of the receiver relative to the tanker. For the design of the receiver controller, the

same method summarized above for the tanker aircraft is used. Namely, a state-

feedback and integral control method is used and the gain scheduling approach is

used to cover the whole flight range of the aircraft in an aerial refueling operation.

The gain scheduling uses the tanker’s commanded airspeed and yaw rate as schedul-

ing variables and has the six set of gains computed by the LQR technique at each of

the six nominal conditions, defined in Table 2.1. As with the tanker’s controller, the

details of the receiver controller design can be found in Refs. [7, 31]

24



The linearized model of the receiver equations of motion for each nominal con-

dition is

∆ẋR = A∆xR + B∆u (2.41)

where ∆xR is the linearized system state vector of the receiver aircraft, and ∆u is the

linearized control input vector, defined as

∆u = [∆δa ∆δe ∆δr ∆T ∆δy ∆δz]
T (2.42)

where T is a thrust, (δy, δz) are engine nozzle deflections for an aircraft capable of

thrust vectoring control and (δa, δe, δr) are the aileron, elevator and rudder deflections,

respectively. In this work, the engine nozzle deflections are zeros as the aircraft

simulated does not have thrust vectoring capability.

For the integral control of the relative position, the error states are defined as

ė = ∆y
R
−∆yc (2.43)

where

e =


∆ξ1 −∆ξ1,c

∆ξ2 −∆ξ2,c

∆ξ3 −∆ξ3,c

 (2.44)

where ∆ indicates deviation from the nominal condition, and the subscript c indi-

cates the commanded signal. The augmented equation, for each nominal condition,

obtained by combining both Eq. (2.41) and Eq. (2.43) is

∆ẋR

ė

 =

A 0

C 0


∆xR

e

+

B

0

∆u+

 0

−∆yc

 (2.45)

25



The state feedback control law for Eq. (2.45), with the gains calculated by the

LQR procedure, is

∆ui = −Ki ·∆xRi −Ke,i · e

ui = u0,i + ∆ui

∆x
Ri

= x
R
− x

R0,i

(2.46)

where i ∈ {1, 2, 3, 4, 5, 6} corresponding to the six nominal conditions of Table 2.1,

and [Ki Ke,i] is the augmented state feedback gain matrix obtained by minimizing

the cost function in LQR design technique.

Figure 2.4. LQR-based Controller for Receiver Aircraft.
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For the implementation of the gain scheduling controller, a Lagrange interpo-

lation is used between the six linear controllers designed for each nominal condition.

Thus, the gain scheduling control law is

u =
(ψ̇c − ψ̇2)(ψ̇c − ψ̇3)(Vc − V2)
(ψ̇1 − ψ̇2)(ψ̇1 − ψ̇3)(V1 − V2)

u1 +
(ψ̇c − ψ̇1)(ψ̇c − ψ̇3)(Vc − V2)
(ψ̇2 − ψ̇1)(ψ̇2 − ψ̇3)(V1 − V2)

u3

+
(ψ̇c − ψ̇1)(ψ̇c − ψ̇2)(Vc − V2)
(ψ̇3 − ψ̇1)(ψ̇3 − ψ̇2)(V1 − V2)

u5 +
(ψ̇c − ψ̇2)(ψ̇c − ψ̇3)(Vc − V1)
(ψ̇1 − ψ̇2)(ψ̇1 − ψ̇3)(V2 − V1)

u2

+
(ψ̇c − ψ̇1)(ψ̇c − ψ̇3)(Vc − V1)
(ψ̇2 − ψ̇1)(ψ̇2 − ψ̇3)(V2 − V1)

u4 +
(ψ̇c − ψ̇1)(ψ̇c − ψ̇2)(Vc − V1)
(ψ̇3 − ψ̇1)(ψ̇3 − ψ̇2)(V2 − V1)

u6

(2.47)

Figure 2.4 shows the implementation of the LQR-controller in the nonlinear simulation

environment.

2.5 Models of Wind Sources

The tanker aircraft, while flying through the commanded trajectory, and the

receiver aircraft, while flying relative to the tanker, are exposed to the prevailing

wind and turbulence. The receiver aircraft is also subject to an additional wind field

induced by the wake of the tanker aircraft, which is called the wake vortex induced

wind. The vortex induced wind field is highly nonuniform and thus its magnitude

and direction vary depending on the position relative to the tanker. For example,

when the receiver is at the observation position, the receiver is outside the wake of

the tanker, and the magnitude of the vortex induced wind is zero. Thus, the receiver

is exposed to the superposition of the prevailing wind and the turbulence. when the

receiver is at the contact position, it is subject to the superposition of the prevailing

wind, vortex induced wind and the turbulence.
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2.5.1 Prevailing Wind

The prevailing wind (Wpre) relative to the inertial frame is obtained by two

different methods. One is based on a set of flight data. The second method is

based on a probabilistic method, which is referred to, in this paper, as Exponentially

Correlated Wind Model (ECWM).

2.5.1.1 Flight Data Based Model

The prevailing wind is extracted from a test flight data including a KF-135R

as the tanker aircraft and a Learjet 25 as the surrogate receiver aircraft. The test

flight was conducted over Lake Ontario, north of Rochester, NY, on September 22,

2004 as part of the AFRL Automated Aerial Refueling (AAR) program. During the

flight over Lake Ontario, the flight data measured onboard the tanker and the receiver

aircraft were recorded. In a prior work, Lewis calculated the total wind based on the

flight data and the velocity triangle vector [7]. The equation form of the velocity

triangle vector is

WI = ṙBT −RT
BTIRBTWT

[VT 0 0]T (2.48)

where WI is the representation of the wind vector in the inertial frame, ṙBT is the

representation of the tanker aircraft’s inertial velocity in the inertial frame, RBTI is

the rotational matrix from the inertial frame to the tanker body frame, RBTWT
is

the rotational matrix from the tanker aircraft’s wind frame to the body frame, and

VT is the tanker aircraft’s airspeed.

The total wind relative to inertial frame is calculated by Eq. (2.48), based on

the GPS reading (ṙBT ), IMU or magnetometer readings (RBTI), and airdata sensor

readings (VT and RBTWT
). After the turbulence effect is removed by the mean

calculation, the mean value of Eq. (2.48) is considered to be the prevailing wind.
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The mean value is calculated using a non-causal moving-window averaging filter [7].

This reference prevailing wind used in this research is entered into the simulation as

exogenous input and thus independent of the states of the aircraft during simulation.

2.5.1.2 Exponentially correlated Wind Model (ECWM)

The prevailing wind is generated based on an exponentially correlated stochas-

tic model, called ECWM (Exponentially Correlated Wind Model). The ECWM is

proposed to provide randomly generated wind profile. The concept of the ECWM is

obtained from the Dryden turbulence model, that is, a random process is generated

by filtering a white noise through a linear system representation by a transfer function

with a large correlation time constant. The components of the prevailing wind are

computed by

Ẇpre,X =− bw Wpre,X +
√
aw · bw ηx

Ẇpre,Y =− bw Wpre,Y +
√
aw · bw ηy

Ẇpre,Z = 0

(2.49)

where aw is the coefficient to show the extent of the mean square value of the prevailing

wind, bw is the inverse time constant to show the extent of the correlation of the

prevailing wind, and (ηx, ηy) are the zero-mean Gaussian white noises with one-sided

power spectrum density of one. The two constants aw and bw are

aw =2(E[Wpre]
2 + σ2

w)

bw =1/τw

(2.50)

where τw is the correlation time constant that controls the degree of the correlation

of the wind.
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Wind can be expressed by a magnitude and direction. The initial value of the

magnitude, Wpre,0, is determined by a Gaussian distribution with the specific mean

and variance of the wind and the initial condition of the direction, ψw,0, is computed

by a uniform distribution within the range from 0 to 2π. The initial conditions of the

components of the wind in inertial frame, transformed from a magnitude-direction

coordinate, are

Wpre,X0 =|Wpre,0| · cosψw,0

Wpre,Y0 =|Wpre,0| · sinψw,0

Wpre,Z0 =0

(2.51)

2.5.2 Turbulence

The Dryden model is used to model the turbulence as a random process [34].

The Dryden model is expressed by first order differential equations. The input is

the zero mean Gaussian white noise with unity power spectrum. The differential

equations of the Dryden model are



ẋw1

ẋw2

ẋw3

ẋw4

ẋw5


=



− V
Lu

0 0 0 0

0 0 1 0 0

0 − V
Lv
−2 V

Lv
0 0

0 0 0 0 1

0 0 0 − V
Lw
−2 V

Lw





xw1

xw2

xw3

xw4

xw5


+



√
2V σ2

u

πLu
0 0

0 0 0

0 1 0

0 0 0

0 0 1




η1

η2

η3

 (2.52)

where (xw1, xw2, xw3, xw4, xw5) are states of the Dryden model, V is the airspeed of

the aircraft, and (η1, η2, η3) are the zero mean Gaussian white noise with unity power

spectrum.
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The components of wind due to turbulence is expressed in the body frame as

Wtur =


1 0 0 0 0

0 σv√
π

(
V
Lv

)1.5
σv

√
3V
πLv

0 0

0 0 0 σw√
π

(
V
Lw

)1.5
σw

√
3V
πLw





xw1

xw2

xw3

xw4

xw5


(2.53)

where σu, σv, and σw are turbulence intensity set to 0.39 m/s (1.3 ft/s) at an altitude

of 7010 m (22,998 ft), and Lu, Lv, and Lw are set to 533.4 m, which represents light

turbulence, as marked in Fig 2.5, which is reproduced from [34]. The values of L and

σ are recommended in MIL-F-8785C [34]. Figure 2.6 shows the components of the

reference turbulence relative to the inertial frame.

2.5.3 Wake Vortex Induced Wind

Since the vortex induced wind field acting on the receiver aircraft is highly

nonuniform, standard aerodynamic force and moment equations, based on airspeed,

angle of attack and sideslip angle, cannot be used directly. A method, called NWEMT

(Nonuniform Wind Effect Modeling Technique), enables the use of standard dynamic

equations of motion and aerodynamic build-up equations with wind effect terms in-

cluded [7, 32]. The NWEMT approximates the nonuniform wind field the aircraft is

exposed to by uniform translational and rotational wind components. The effective

translational and rotational wind components are directly integrated into the equa-

tions of motion through the wind terms in the translational dynamics and kinematics

equations as well as through the angular velocity of the surrounding air components

in the aerodynamic force and moment expressions.
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Figure 2.5. Turbulence Intensity.

2.5.4 Total Reference Wind for Tanker and Receiver

The total wind the tanker aircraft is exposed to is the superposition of the

prevailing wind and the turbulence. On the other hand, the receiver is exposed to

the total wind that is the superposition of the prevailing wind, vortex-induced wind

and the turbulence. Fig. 2.7 shows the components of the total wind, based on the

flight data based prevailing wind and the Dryden based turbulence. Fig. 2.8 shows an

example of the total wind, based on the ECWM and the Dryden turbulence. Fig. 2.9
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Figure 2.6. Turbulence Generated by Dryden Model.

shows the components of the total wind based on the fight data based prevailing wind,

the Dryden based turbulence, and wake vortex induced wind acting on the receiver

aircraft.

2.6 Sensors and Measurement Noise Models

Both aircraft are assumed to be equipped with conventional autopilot sensors,

an airdata sensor, and inertial measurement unit (IMU), a magnetometer, and GPS.

The airdata sensor measures airspeed, side slip angle, and angle of attack. IMU mea-

sures acceleration, angular acceleration, and attitude. The magnetometer measures

the orientation. GPS measures absolute velocity and position. Measurement equation

is

ỹk = C xk + vk (2.54)
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Figure 2.7. Wind Profile Based on Flight Data Based Prevailing Wind and Dryden
Turbulence.

where xk ∈ <12 is the state vector, vk ∈ <12 is the measurement noise and C is

the distribution matrix. This work assumes that the full states are measured by

the aforementioned sensors. The measurement noise can be modeled as zero-mean

Gaussian white-noise, or zero-mean colored noise. The standard deviations of the

measurement noises for each sensor with the white noise or the colored noise are

shown in Table 2.2. The noise characteristics are obtained from a test flight data

given in Ref. [7]. Even if the noise variance listed in Table 2.2 are the smaller

ones used in this research, they are still larger relative to a commercial sensor LN-251

made by Northrop Grumman [35].

For the performance evaluation of the estimators developed in this research in a

worst case in terms of inaccurate measurement noise, the second noise characteristics

34



0 500 1000 1500 2000 2500 3000
−9

−8

−7

−6
(W

I T

) x [
m

/s
]

0 500 1000 1500 2000 2500 3000

12

14

(W
I T

) y [
m

/s
]

0 500 1000 1500 2000 2500 3000
−1

0

1

(W
I T

) z [
m

/s
]

time [sec]

Figure 2.8. Wind Profile Based on ECWM Prevailing Wind and Dryden Turbulence.
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Figure 2.9. Wind Profile Based on Flight Data Based Prevailing Wind, Dryden
Turbulence and Wake Vortex Induced Wind at Receiver Aircraft.
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Table 2.2. Measurement Characteristics for Both Aircraft

V
T

or V β
T

or β α
T

or α p
T

or p q
T

or q r
T

or r
[m/s] [rad] [rad] [rad/s] [rad/s] [rad/s]

σ 0.2 0.0035 0.0044 0.0131 0.0131 0.0131
Max. Nom.∗ 190 0 0.1005 0.0041 0.0478 0.0406

Percent Err [%] 0.32

ψ
T

or ψ θ
T

or θ φ
T

or φ x
T

or ξ1 y
T

or ξ2 z
T

or ξ3
[rad] [rad] [rad] [m] [m] [m]

σ 0.0044 0.0044 0.0044 3 3 3
Max. Nom.∗ 0.0652 0.8659 7010

Percent Err [%] 1.52 0.13
*Max. Nom. is the maximum of the nominal values.

are set to be ten times larger than those of Table 2.2 except for the velocity and

the position vectors. The velocity and position vector are twenty times and two

times larger than those of Table 2.2, respectively. The second noise characteristics

are listed on Table 2.3 This is to obtain the sensor characteristics such that the

Table 2.3. Second Measurement Characteristics for Both Aircraft

V
T

or V β
T

or β α
T

or α p
T

or p q
T

or q r
T

or r
[m/s] [rad] [rad] [rad/s] [rad/s] [rad/s]

σ 6 0.035 0.044 0.131 0.131 0.131
Max. Nom.∗ 190 0 0.1005 0.0041 0.0478 0.0406

Percent Err [%] 9.47

ψ
T

or ψ θ
T

or θ φ
T

or φ x
T

or ξ1 y
T

or ξ2 z
T

or ξ3
[rad] [rad] [rad] [m] [m] [m]

σ 0.044 0.044 0.044 6 6 6
Max. Nom.∗ 0.0652 0.8659 7010

Percent Err [%] 15.24 0.26
*Max. Nom. is the maximum of the nominal values.

standard deviations of the second measurement noises are calculated by the percent

error of the nominal value within the three standard deviation bound. For instance,
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the nominal speed of the aircraft is 190 m/s. 9.47 percent error of the airspeed is 18

m/s. Thus, the standard deviation is 6 m/s.

2.6.1 White Noise Model

The measurement noise can be modeled as zero-mean Gaussian white-noise,

which is a widely used measurement noise model [21, 36, 37, 38]. The measurement

noise is directly added to the actual value of the corresponding states of the aircraft.

2.6.2 Colored Noise Model

Colored measurement noise can be treated as exponentially correlated random

variables [38]. In this work, the only source of the colorness of the measurement

noise is assumed to be the correlation with time. Colored measurement noise model

developed by a first order differential equation is

v̇i = −bv vi +
√
avi · bv wv (2.55)

where avi is the coefficient to show the degree of the mean square value of the mea-

surement noise, i is the index for each measurement, wv is zero-mean Gaussian white

noise with variance Q and bv is the inverse correlation time constant to show the

extent of the correlation of the measurement. As the correlation time constant (τv)

decreases, the noise becomes more like white measurement noise. In contrast, as the

correlation time constant increases, the correlation error starts to behave like a bias

error.

The auto-correlation of Eq. (2.55) is

Rvivi(τ) =
avi
2
e−bv|τ | (2.56)
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where τ is the time interval parameter. When τ is zero, the auto-correlation becomes

Rvivi(0) =
avi
2

(2.57)

where Rvivi(0) is the mean square value of the measurement noise, which is the

variance if the mean value of the measurement noise is zero. The two constant avi

and bv are

avi = 2 E[v2
i ] (2.58)

bv =
1

τv
(2.59)

The zero-mean Gaussian white noise, wv in Eq. (2.55) is the input to the first

order differential equation. To generate the correlated measurement noises with the

variances listed Table 2.2 or Table 2.3, the variance of wv should be calculated from

the discrete form of Eq. (2.55) such as

vi,k+1 = e−bvTvi,k + (1− e−bvT )

√
avi
bv
wv,k (2.60)

At the steady state, vi,k+1 equals vi,k. Thus, the variance of wv is

Φi =
1− (e−bv T )2

(1− e−bv T )2
bv
avi

var(vi) (2.61)

where var(vi) is the square value of the standard deviation given in Table 2.2 or

Table 2.3. In the matrix form, the the colored noise equation is

v̇ = Avv + GvWv (2.62)
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where Av = diag(−bv, · · · ,−bv) ∈ <m×m and Gv = diag(
√
av1bv, · · · ,

√
avmbv) ∈

<m×m, Wv is a zero-mean Gaussian white noise. The discrete form of Wv is Wv,k,

whose covariance is Φ = diag(Φ1, · · · ,Φm). Note that diag means diagonalization.
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CHAPTER 3

OVERVIEW OF KALMAN FILTERING APPROACHES

Kalman Filter (KF) is an optimal estimator, whose main purpose is to estimate

a state vector of a system and to reject a noise vector from a measurement vector.

There are different versions of KF depending on whether the system and measure-

ment equations are linear or nonlinear. If the system and measurement equations are

linear, a linear KF is used. If the system and/or measurement equations are nonlin-

ear, nonlinear estimators such as an Extended Kalman Filter (EKF), an Unscented

Kalman Filter (UKF), and Square-Root Unscented Kalman Filter (SR-UKF) should

be used. This chapter presents a brief overview of these four kinds of the Kalman

filtering approaches: Linear KF, EKF, UKF, and SR-UKF. This discussion is limited

to continuous system and discrete measurement, while there are other combination

of the system and measurement models.

3.1 Linear Kalman Filter

The linear Kalman Filter (LKF) is used when the system equation and the mea-

surement equation are linear. The continuous linear system and discrete measurement

equations are given as

ẋ = A x+ B u+ G w

ỹk = H xk + vk

(3.1)

where x ∈ <n is the state vector, u ∈ <p is the control input vector, w ∈ <q is

the process noise vector characterized by Gaussian white noise with zero mean and
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variance of Q ∈ <q×q, vk ∈ <m is the measurement noise characterized by Gaussian

white noise with zero mean and covariance of Rk ∈ <m×m, and ỹk ∈ <m is a discrete

measurement vector. The subscript k indicates discrete time.

The general implementation of a KF consists of two steps: Measurement Update

and System Update. The discrete measurement update of the KF is [25, 26, 39]

Kk = Pk
−HT

[
HPk

−HT + Rk

]−1
(3.2a)

P+
k = [I−KkH] Pk

− (3.2b)

x̂+k = x̂−k + Kk

[
ỹk −Hx̂−k

]
(3.2c)

where Kk ∈ <n×m is the Kalman gain for the linear estimator, Pk
− ∈ <n×n is a

priori state covariance estimate, Pk
+ ∈ <n×n is a posteriori state covariance estimate,

x̂−k ∈ <n is a priori state estimate and x̂+k ∈ <n is a posteriori state estimate. Note

that I indicates an identity matrix and the superscript (·)T indicates transpose. The

initial condition for Pk
− is generally selected to include large numbers in the form

of a diagonal matrix. The initial condition for x̂−k is selected based on a reasonable

guess.

The continuous system update of KF is [25, 26, 39]

˙̂x = Ax̂+ Bu (3.3a)

Ṗ = AP + PAT + GQGT (3.3b)

where x̂ is the estimated state vector before the measurement update and P is the

state covariance matrix before the measurement update. The continuous system

update is done by numerical integration using Runge-Kutta method. The system
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update rate is set to the simulation update rate (T ), which is determined by rule of

thumb as

T ≤ 1

10 |λmax|
(3.4)

where λmax is a maximum real eigenvalue of the system matrix (A). The measurement

update rate is set to be the same as the system update rate.

The limitation of the linear KF is that the system matrix A and measurement

matrix H must be constant. If the system matrix A and/or the measurement matrix

H are time-varying, nonlinear estimators such as EKF, UKF, or SR-UKF should be

considered.

3.2 Extended Kalman Filter

Extended Kalman Filter (EKF) has the same structure as the linear KF except

for the linearization of the system and measurement functions around the current

estimate. The linearization is conducted by a first order approximation of the Tay-

lor series expansion [25, 26, 39]. Consider the nonlinear system and measurement

equation as

ẋ = f(x, u, t) + G w

ỹk = h(xk) + vk

(3.5)

where x ∈ <n is the state vector, u ∈ <p is the control input vector, w ∈ <q is

the process noise vector characterized by Gaussian white noise with zero mean and

variance of Q ∈ <q×q, vk ∈ <m is the measurement noise characterized by Gaussian

white noise with zero mean and covariance of Rk ∈ <m×m, and ỹk ∈ <m is a discrete

measurement vector.
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The discrete measurement update of EKF is [25, 26, 39]

Kk = Pk
−Hk

T
[
HPk

−Hk
T + Rk

]−1
(3.6a)

Pk
+ = [I−KkHk] Pk

− (3.6b)

x̂+k = x̂−k + Kk

[
ỹk −Hkx̂

−
k

]
(3.6c)

Hk =
∂h

∂x

∣∣∣∣
x̂−k

(3.6d)

where Kk ∈ <n×m is the Kalman gain, Pk
− ∈ <n×n is a priori state covariance

estimate, Pk
+ ∈ <n×n is a posteriori state covariance estimate, x̂−k ∈ <n is a priori

state estimate and x̂+k ∈ <n is a posteriori state estimate. The initial condition for

Pk
− is generally selected to have large numbers in the form of a diagonal matrix. The

initial condition for x̂−k is selected based on a reasonable guess.

The continuous system update of KF is [25, 26, 39]

˙̂x = f(x̂, u, t) (3.7a)

Ṗ = AP + PAT + GQGT (3.7b)

A =
∂f

∂x

∣∣∣∣
x̂=x̂+k

(3.7c)

where x̂ is the estimated state vector before the measurement update and P is the

state covariance matrix before the measurement update. In this approach, since the

system and measurement update rate are set to the same rate, the nominal values of

the system update is obtained from the result of the measurement update and the

nominal values of the measurement update is obtained from the result of the system

update. If the system and measurement equations are highly nonlinear, the linearized

equations for the system and measurement cannot adequately represent the nonlinear
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motion by the first order approximation. Due to this limitation of EKF, UKF has

become a widely used nonlinear estimator as an alternative [25, 26].

3.3 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) deals with nonlinear equations through a

forth order approximation effect in the Tayor series expansion [24]. Another advantage

of the UKF is that the mean and covariance are propagated directly by the nonlinear

system and measurement equations without the linearization process [24, 25, 26, 39].

Due to these advantages, UKF has become a widely used nonlinear estimator as an

alternative to EKF.

Consider the system equation and measurement equation, respectively, as

ẋ = f(x, u, t) + w (3.8a)

ỹk = h(xk) + vk (3.8b)

where x ∈ <n is the state vector, u ∈ <p is the control input vector, w ∈ <q is

the process noise vector characterized by Gaussian white noise with zero mean and

variance of Q ∈ <q×q, vk ∈ <m is the measurement noise characterized by Gaussian

white noise with zero mean and covariance of Rk ∈ <m×m, and ỹk ∈ <m is a discrete

measurement vector.

In a linear KF or EKF, process noises are not used in the system update and

measurement noises are not used in the measurement update because they are as-

sumed to be zero by mean calculation. In contrast, in UKF, the process noises are

used in the system update and measurement noises are used in the measurement up-

date through sigma points, which are the points around the prior mean for the states,

process noises and measurement noises. The sigma points are divided into two groups.
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The sigma points for the states are the first group, whose values are around the prior

mean states, the sigma points for the noises are the other group, whose values are

around zero. The degree of scattering for the sigma points is based on the covariances

of P, Q and R. Thus, an augmented state vector is defined as the concatenation of

the vectors of the states, process noise and measurement noise, the sigma points are

determined by augmented state vector and the augmented state covariance matrix.

The augmented state and state covariance matrix are respectively [25, 26]

x̂ak−1 = [x̂k−1 0 0]T , x̂ak−1 ∈ <L (3.9a)

Pa
xk−1

= diag(P+
xk−1

, Q,Rk), Pa
xk−1
∈ <L×L (3.9b)

where P+
xk−1

is a posteriori state covariance estimate, L = n+ q+m and diag means

diagonalization. The initial condition for P+
xk−1

is generally selected to consist of large

numbers in the form of a diagonal matrix. The initial condition for x̂k−1 is selected

based on a reasonable guess. The sigma points are generated by [22, 23, 24, 25, 26]

χk−1 =


χxk−1

χwk−1

χvk−1

 =
[
x̂ak−1 x̂ak−1 + γ

√
Pa
xk−1

x̂ak−1 − γ
√

Pa
xk−1

]
(3.10)

where χk−1 ∈ <n×(2L+1) is sigma points, γ =
√
L+ λ, λ = α2(L+ κ)− L, constant α

specifies the spread of the sigma points around the prior mean and normally ranges

from 1 × 10−4 to 1 [25]. The scaling factor κ is the tuning parameter for the higher

order approximation. For the case of the Gaussian distribution, κ = 3−L minimizes

the mean square error up to the fourth order [24]. χxk−1 is the sigma points for the
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state, χwk−1 is the sigma points for the process noise, and χvk−1 is the sigma points for

the measurement noise. The system update process is [22, 23, 24, 25, 26]

χxk|k−1 = f(χxk−1, uk−1, χ
w
k−1) (3.11a)

x̂−k =
2L∑
i=0

wmi χ
x
i,k|k−1 (3.11b)

P−xk =
2L∑
i=0

wci
(
χxi,k|k−1 − x̂−k

) (
χxi,k|k−1 − x̂−k

)T
(3.11c)

where

wm0 =
λ

L+ λ
(3.12a)

wc0 =
λ

L+ λ
+ (1− α2 + β) (3.12b)

wmi = wci =
1

2(L+ λ)
(3.12c)

and (wm0 , w
c
i ) are weighting factors for the mean calculation, (wc0, w

c
i ) are weighting

factors for the state covariance calculation. β is the secondary scaling factor. For

Gaussian distribution, β = 2 is optimal [29]. ŷ−k is the estimated output before

the measurement update and P−xk is a priori state covariance estimate. Eq. (3.11a)

propagates the current state vector to the next state vector using each column vector

of the sigma points through the nonlinear system equations of Eq. (3.14a). Eq. (3.11b)

calculates the mean value through the updated sigma points for the state, which is

called a priori state estimate. Eq. (3.11c) calculates a priori state covariance estimate.
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The measurement update process is [22, 23, 24, 25, 26]

Yk|k−1 = h
(
χxk|k−1

)
+ χvk−1 (3.13a)

ŷ−k =
2L∑
i=0

wmi Yi,k|k−1 (3.13b)

Pyk =
2L∑
i=0

wci
(
Yi,k|k−1 − ŷ−k

) (
Yi,k|k−1 − ŷ−k

)T
(3.13c)

Pxkyk =
2L∑
i=0

wci (χ
x
i,k|k−1 − x̂−k )(Yi,k|k−1 − ŷ−k )T (3.13d)

Kk = Pxkyk(Pyk)
−1 (3.13e)

x̂+k = x̂−k + Kk(ỹk − ŷ−k ) (3.13f)

P+
xk

= P−xk −KkPykKk
T (3.13g)

where Eq. (3.13a) and Eq. (3.13b) compute the estimated output by mean calculation.

P+
xk

is a posteriori state covariance estimate, Pyk is the measurement covariance

estimate, Pxkyk is the cross covariance estimate, Kk is the Kalman gain, and x̂+k is a

posteriori state estimate. Eq. (3.13c) calculates the measurement covariance estimate,

Eq. (3.13d) calculates cross covariance of the state and the measurement, Eq. (3.13e)

calculates Kalman gain, Eq. (3.13f) propagates a priori state estimate to a posteriori

state estimate by multiplying the Kalman gain and the residual of the measurement.

Eq. (3.13g) propagates a priori state covariance matrix to a posteriori state covariance

matrix. To generate the sigma points of Eq. (3.10), a square root of the augmented

state covariance,
√

Pa
xk−1

, is calculated at every time step, which can potentially

lead to a computational singularity. To avoid the computational singularity problem,

Square-Root Unscented Kalman Filter (SR-UKF) is proposed [27].
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3.4 Square-Root Unscented Kalman Filter

SR-UKF propagates the square root of the covariance matrix of the state instead

of the covariance matrix itself [27]. By the propagation of the square root itself, the

square root calculation causing a computational singularity is avoided. Since the SR-

UKF has the same advantages as the UKF, SR-UKF also is preferred for nonlinear

problems over the EKF. Consider the system equation and measurement equation,

respectively, as

ẋ = f(x, u, t) + w (3.14a)

ỹk = h(xk) + vk (3.14b)

where x ∈ <n is the state vector, u ∈ <p is the control input vector, w ∈ <q is

the process noise vector characterized by Gaussian white noise with zero mean and

variance of Q ∈ <q×q, vk ∈ <m is the measurement noise characterized by Gaussian

white noise with zero mean and covariance of Rk ∈ <m×m, and ỹk ∈ <m is a discrete

measurement vector.

The SR-UKF has same structure as the UKF except for the augmented state

covariance propagation. Instead of the augmented state covariance propagation at

the UKF, square root propagation of the augmented state covariance is used at the

SR-UKF. The square root of the augmented state covariance become [27, 28]

Saxk−1
= diag(Sxk−1

,
√

Q,
√

R), Saxk−1
∈ <L×L (3.15)

where Sxk−1
= chol(Pk−1)

T , chol means Cholesky factorization that produces a lower

triangular matrix Sxk−1
, satisfying the relation Sxk−1

· STxk−1
= Pk−1.
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The sigma points are also changed to [27, 28]

χk−1 =


χx
k−1

χwk−1

χvk−1

 = [x̂ak−1 x̂ak−1 + γSaxk−1
x̂ak−1 − γSaxk−1

], χk−1 ∈ <n×(2L+1) (3.16)

where γ =
√
L+ λ, λ = α2(L + κ)− L, constant α specifies the spread of the sigma

points around the prior mean, the scaling factor κ is the tuning parameter for the

higher order approximation, χxk−1 is the sigma points for the state, χwk−1 is the sigma

points for the process noise, and χvk−1 is the sigma points for the measurement noise.

For the system update of the SR-UKF, Eq. (3.11c) at the UKF is modified

to [27, 28]

[Q−k ,S
T
xk

] = QR
(√

wc1(χ
x
1:2L,k|k−1 − x̂−k )T

)
(3.17a)

Sxk =
[
STxk(1 : n, 1 : n)

]T
(3.17b)

STxk = cholupdate
(
STxk ,

√
wc0(χ

x
0,k|k−1 − x̂−k ),′+′

)
(3.17c)

where QR is called the QR decomposition. Note that chol(P)T returns the Cholesky

factorization of P, which is a lower triangular matrix S, cholupdate(ST , x,′+′) returns

the upper triangular Cholesky factor of P + x · xT and cholupdate(ST , x,′−′) returns

the upper triangular Cholesky factor of P− x · xT .
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The measurement update of the SR-UKF is [27, 28]

Yk|k−1 = h(χxk|k−1) + χvk−1 (3.18a)

ŷ−k =
2L∑
i=0

wmi Yi,k|k−1 (3.18b)

[
Qyk ,S

T
yk

]
= QR

(√
wc1(Y1:2L,k|k−1 − ŷ−k )T

)
(3.18c)

Syk =
[
STyk(1 : m, 1 : m)

]T
(3.18d)

STyk = cholupdate
(
STyk ,

√
wc0(Y0,k|k−1 − ŷ−k ),′+′

)
(3.18e)

Pxkyk =
2L∑
i=0

wci (χ
x
i,k|k−1 − x̂−k )(Yi,k|k−1 − ŷ−k )T (3.18f)

Kk = (Pxkyk/S
T
yk

)/Syk = Pxkyk(SykS
T
yk

)−1 (3.18g)

x̂+k = x̂−k + Kk(ỹk − ŷ−k ) (3.18h)

U = KkSyk (3.18i)

STxa,k = cholupdate(STxk ,U,
′−′) (3.18j)

S+
xk

= (STxk)
T (3.18k)

where Eq. (3.18a) and Eq. (3.18b) compute the estimated output by mean calcu-

lation. S+
xk

and Syk are lower triangle matrices for the square root of a posteriori

state covariance estimate and for the square root of the measurement covariance, re-

spectively. Pxkyk is the cross covariance estimate, Kk is the Kalman gain, and x̂+k is

a posteriori state estimate. Eqs. (3.18c) to (3.18e) calculate the square root of the

measurement covariance matrix, Eq. (3.18f) calculates cross covariance of the state

and the measurement, Eq. (3.18g) calculates Kalman gain, Eq. (3.18h) propagates a

priori state estimate to a posteriori state estimate by multiplying the Kalman gain
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and the residual of the measurement. Eq. (3.18i) to Eq. (3.18k) propagate the square

root of a priori state covariance matrix to that of a posteriori state covariance matrix.

3.5 Colored Measurement in Kalman Filter

In the real world, measurement error is are most likely to colored noises rather

than the white noise, which is introduced as a theoretical construction to provide

mathematical simplicity in derivation of a measurement model. This chapter deals

with the characteristics of the colored measurement noise (CMN) and introduces a

method to deal with measurements characterized by CMN in Kalman Filter (KF).

The characteristics of CMN can be explained by the non-constant PSD, while

PSD of the white measurement noise (WMN) is constant. The constant PSD of

WMN explains that all of the measurement noises are totally independent, which

is uncorrelated with time. In contrast, CMN is correlated with time. The extent

of the correlation of CMN is linear to the correlation time constant (τv). As the

correlation time constant increases, the extent of the correlation increases, and the

exponentially correlated error behaving like a bias error increases. Fig. 3.1 shows

that as the correlation time constant (τv) increase, the colored measurement noise

signal behaves like a bias error. Due to the exponentially correlated error, a general

KF based on white measurements should be modified to handle a timely correlated

colored measurements. The degree of the correlation is calculated by

Degree of Correlation [%] = e−τ/τv × 100 (3.19)

For instance, if τv is 20 seconds and τ , a time interval parameter, is 10 seconds, the

degree of the correlation is 60.7 %.
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Figure 3.1. Exponentially Correlated Error Behaving Like a Bias Error.
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There are two approaches to dealing with colored measurements in KF. The

first method augments colored measurement noise equations into equations of motion

of the system [25]. By augmentation, the states of the system and the corresponding

colored measurement noises are obtained by integrating the augmented system equa-

tion in KF. The sum of the state vector and the corresponding CMN vector becomes

an estimate of the colored measurements. The estimate of the colored measurements

will be compared with the colored measurements to minimize the estimation error.

The disadvantage of this method is that their is no measurement covariance ma-

trix (R) in estimation, which acts as a weighting factor to increase accuracy of the

estimation. Without the measurement covariance or without knowing the accurate

measurement covariance of R, it is hard to obtain accurate estimate.

The main idea of the second approach to dealing with colored measurement

in KF is to remove the colored noise from the colored measurement [25, 26, 39].

Generally, this approach is developed and used for linear system update and mea-

surement update in Kalman structure while aircraft system equations in this research

are nonlinear. The limitation of nonlinearity could be overcome by modifying the

measurement quality. In defining the new measurement equation, two constraints

should be considered: (i) CMN could be removed and (ii) the newly defined mea-

surement should be measurable. Consider the continuous system, discrete colored

measurement equation and continuous noise equation, respectively, as

ẋ = Ax+ Bu+ Gw (3.20a)

ỹk = Cxk + vk (3.20b)

v̇ = Avv + GvWv (3.20c)
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where x ∈ <n is the state vector, u ∈ <p is the control input vector, w ∈ <q is the zero-

mean Gaussian white noise vector with variance of Q ∈ <q×q, vk ∈ <m is the colored

noise vector, and Wv ∈ <m is the zero-mean Gaussian white noise with variance

of Φ calculated by Eq. (2.61). Note that A, B, G, C, Av and Gv are constant.

Equation (3.20a) and (3.20c) can be discretized by Euler method, respectively, as

xk − xk−1
T

= Axk + Buk + Gwk (3.21a)

vk − vk−1
T

= Avvk + GvWv,k (3.21b)

where T is a update rate. In this research, the update rate for the continuous equation

is same as that of the discrete equation. Equation (3.21a) and (3.21b) are used to

define the new measurement to remove colored noise.

The newly defined measurement model in discrete is

ỹ
N,k

=
ỹk − ỹk−1

T
−Avỹk −CBuk (3.22a)

=
C(xk − xk−1)

T
+
vk − vk−1

T
−Av(Cxk + vk)−CBuk (3.22b)

= C(Axk + Buk + Gwk) + (Avvk + GvWv,k)−Av(Cxk + vk)−CBuk (3.22c)

= C
N
x
k

+ v
N,k

(3.22d)

where C
N

= CA−AvC, v
N,k

= CGwk + GvWv,k. The new measurement noise v
N,k

is characterized by zero-mean Gaussian white noise with covariance R
N,k

satisfying a

white noise assumption of a general KF, which is calculated by

R
N,k

= E[v
N,k
vT
N,k

] (3.23a)

= CGQGTCT + GvΦGv
T (3.23b)
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In this case, v
N,k

is correlated with w
k
. The degree of correlation between v

N,k
and

wk is calculated by

E[w
k
vT
N,k

] = M (3.24a)

M = QGTCT (3.24b)

KF is generally derived under the condition that the process noise vector is not

correlated with the measurement noise vector. To remove the correlation between

the process noise vector and the measurement noise vector, the system equation is

modified. In this research, since the update rate of the continuous equation is same

as that of the discrete equation, ỹ
N

= ỹ
N,k

, x = x
k
, v

N
= v

N,k
and R

N
= R

N,k
are

satisfied.

ẋ = Ax+ Bu+ Gw + GMR
N

−1(ỹ
N
−C

N
x− v

N
) (3.25a)

= A
N
x+ u

N
+ w

N
(3.25b)

where

A
N

= A−GMR
N

−1C
N

(3.26a)

u
N

= Bu+ GMR
N

−1ỹ
N

(3.26b)

w
N

= Gw −GMR
N

−1v
N

(3.26c)
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where w
N

is a new process noise characterized by zero-mean Gaussian white noise

with variance Q
N

. The variance of the new process noise is

Q
N

= E[w
N
wT
N

] (3.27a)

= GQGT −GMR
N

−1MTGT (3.27b)

Therefore, the newly defined continuous system and discrete measure equations

satisfying conditions of general KF are

ẋ = A
N
x+ u

N
+ w

N
(3.28a)

ỹ
N,k

= C
N
xk + v

N,k
(3.28b)

The un-correlation between the new process noise (w
N

) and the newly defined mea-

surement noise (v
N

) can be proved by

E[w
N
vT
N

] = E[(Gw −GMR
N

−1v
N

)vT
N

] (3.29a)

= GE[wv
N

]−GMR
N

−1E[v
N
v
N

] = 0 (3.29b)
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CHAPTER 4

ESTIMATION OF AIRCRAFT STATES AND WIND EXPOSURE AT TANKER

AIRCRAFT

This chapter presents the method used for the estimation of the aircraft states

and the wind components in tanker aircraft. The nonlinear estimator developed in

this chapter is based on SR-UKF. Simulation experiments have shown that the con-

vergence of the estimation of aircraft states is not possible without including the wind

information in the equation of motion (EOM) of the aircraft. Thus, to avoid the issue

of divergence in the state estimation, the equations of motion are augmented with a

dynamic wind model for the system update of the estimator. With this approach,

the convergence of the estimator guarantees the estimation of the aircraft states as

well as the wind components.

4.1 Wind Modeling for Estimation

The wind model for the tanker aircraft is obtained by rearranging Eq. (2.1) in

terms of wind as

ẆIT = RT
BTI

S(ωBT )RBTWT
VwT +

1

m
T

(RBTIMT + RBTWT
AT + PT )− ε

T


V̇
T

β̇
T

α̇
T




(4.1)
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where the wind derivative (ẆIT ) is relative to the inertial frame and

ε
T

=


cos β

T
cosα

T
−V

T
sin β

T
cosα

T
−V

T
cos β

T
sinα

T

sin β
T

V
T

cos β
T

0

cos β
T

sinα
T
−V

T
sin β

T
sinα

T
V
T

cos β
T

cosα
T

 (4.2)

There is no direct measurement of the rate of change of the airdata (V̇T , β̇T , α̇T ).

Hence, the rate of change of the airdata are replaced by the numerical calculation

of the translational dynamics in Eq. (2.1). The aerodynamics force (AT ) is obtained

by using the same aerodynamic model as in the translational equations of motion.

The knowledge of the aerodynamic model is a very strong assumption and will be

addressed by using the acceleration measurement instead in the next chapter.

4.2 Augmentation of the State-Space Model for System Update

The system equations are augmented by combining the wind model in Eq. (4.1)

with the equations of motion in Eq. (2.13). As stated earlier, this is to have the

convergence of the estimator and to estimate the wind components along with the

aircraft states.

Augmented with the wind components, the augmented state vector is

x̂a = [x̂
T
, ŴIT ]T , x̂a ∈ <15 (4.3)

The augmented system is written in compact form as

˙̂xa = f(x̂a, u, ŴIT ,
˙̂
WIT ) + η (4.4)
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where u ∈ <4 is the control input, ŴIT ∈ <3 is the estimated wind relative to the

inertial frame,
˙̂
WIT ∈ <3 is the estimated derivative of wind relative to the inertial

frame, and η ∈ <15 is the process noise for the system update of the estimation, which

is a vector of Gaussian white noises with zero-mean and covariance Qa .

Without the covariance matrix Qa , the augmented system may cause a singu-

larity because two different forms of the same matrix equations from Eqs. (2.1) and

(4.1), are used in the augmented system equations. Singularity causes when the state

error covariance matrix (P) in KF is non-positive definite. Another problem is due to

the turbulence acting on the aircraft as part of the wind exposure. While the total

reference turbulence generated by Dryden model acts as a colored process noise, the

wind model used in the system update does not include noise. To represent the color-

ness of turbulence, three process noises could be added at the end of the components

of wind model in Eq. (4.1). The process noises would be taken into account in system

update (state and state error covariance propagation) of SR-UKF by a covariance

matrix of the process noises, which is called Q0 in this research. In general, the spe-

cific values of Q0 are unknown and it is difficult to estimate the augmented states by

tuning the three diagonal quantities of Q0 matrix. The process covariance matrix,

Q0, plays the role of the control parameters to achieve successful estimation in the

system update of KF. Through experience or trial and error, as the dimension of

the process covariance matrix increases, KF may better estimate the augmented full

states as well as the avoidance of singularity. The dimension of the process covariance

matrix (Qa), used in this work, is chosen to be equal to the number of the states of

the augmented system. By tuning the covariance matrix of the process noise (Qa),

the singularity and turbulence problems are solved in the augmented system update

of SR-UKF.
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A procedure, called loop transfer recovery (LTR), is developed [25, 40] for tuning

the covariance matrix of the process noise. The LTR is used to obtain a reasonably

large stability margins of a LQR controller that uses the KF estimated states as

feedback signals. A scalar tuning parameter is defined for tuning the covariance

matrix such that

Q = Q1 + q2BBT (4.5)

where q is a positive tuning parameter, B is the matrix for the control input in

a linear system, and Q1 is the initial covariance matrix. As shown in the LTR

application, tuning a covariance matrix is general. This research also uses a tuning

approach to increase the estimation accuracy and to avoid singularity problem due

to the improperly selected covariance matrix. The tuning procedure in this work is

conducted by experience or trial and error.

Fig. 4.1 shows a depiction of the augmented system for the estimator of the

tanker aircraft. Note in Fig. 4.1 that the derivative of wind relative to the inertial

frame, d
dt

(ŴIT ), is provided to system update of the estimation from the previous

numerical calculation data, through a unit delay operation, z−1, because there is no

measurement of the derivative of wind relative to the inertial frame.

4.3 Calculated Measurement of Wind (CMW)

For the Kalman filter implementation for correction, measurement update must

be conducted. However, there is no direct measurement of the wind for the measure-

ment update. Instead of the direct measurement of the wind, the calculated mea-

surement of wind (CMW) is used to increase the accuracy of the wind estimate. The
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Figure 4.1. Augmented State Update in SR-UKF.

CMW for the tanker aircraft is obtained by rearranging Eq. (2.12) with respect to

the wind as

WIT = ˜̇rBT − R̃T
BTIR̃BTWT

ṼwT (4.6)

where ·̃ means measurement data of (·). However, the CMW for the measurement

update of SR-UKF may have a large level of noise. To reduce the noise level of CMW,

a filter with a moving average window (MAW) is used

WIT (k) =
1

2n+ 1

k∑
i=k−2n

WIT (i), WIT ∈ <3 (4.7)

where 2n+1 is the window size.

The CMW is used for minimizing the error of the wind estimation based on the

Kalman structure if measurement noise is white. If the measurement noise is colored,

The CMW is not used in the measurement update of the KF because a newly defined

measurement, which is general approach to deal with a colored measurement in KF,
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can not be measured. Thus, the augmented measurement equation for the tanker

aircraft in the condition of the white measurement noise is

ỹa,T,k =

 x
T,k

WIT,k

+ v
a,T,k

, ỹa,T,k ∈ <15

v
a,T,k

=

v
T,k

0


(4.8)

where WIT,k ∈ <3 is the CMW, v
a,T,k
∈ <15 is the augmented measurement noise, and

v
T,k
∈ <12 is the measurement noise for the state of the tanker aircraft. Note that the

measurement covariance of the Kalman filter used as a weighting factor among the

measurements has the same dimension as the measurement vector. In this work, the

measurement covariances of the Kalman filter for the components of CMW is set by

calculating variances of the CMW, which are calculated by Eq. (4.6) and (4.7) after

measurement noises are added at the corresponding states while the tanker aircraft

uses a true state vector as a feedback state vector. The specific variances of the CMW

is calculated by the history of the CMW. The pre-calculated variances of the CMW

are used in the measurement update of the KF.

4.4 Colored Measurement in Wind Estimation

The newly defined measurement equation in this chapter is slightly different

from that in Section 3.5, Eq. (3.22a), because the system equation for the aircraft is

not the same as the system equation for estimation due to the wind model. While

the aircraft is disturbed by independent wind profile with turbulence, the augmented

system equation in estimation relies on the wind model that calculates wind based on

the estimated states. Thus, the process noise vectors for the aircraft and the system
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equation for estimation are not the same. Additionally, the system equations for the

aircraft and the estimation are nonlinear while the system equation in Section 3.5,

Eq. (3.20a), are linear. As discussed in Section 3.5, a new measurement equation

should be defined considering two constraints: (i) colored noise is removed and (ii)

new defined vector is measurable. The continuous tanker aircraft equation reproduced

by Eq. 2.13, discrete colored measurement equation and continuous noise equation,

respectively, are

ẋ
T

= f(x
T
, u,WIT , ẆIT ) (4.9a)

ỹ
T,k

= Cx
T,k

+ v
k

(4.9b)

where x
T
∈ <12 is the tanker state vector, u ∈ <4 is the control input vector. WIT ∈ <3

is wind velocity relative to the inertial frame, ẆIT ∈ <3 is the wind acceleration

relative to the inertial frame, y
T,k
∈ <12 is the colored measurement vector, v

k
∈ <12

is the colored noise vector. The colored noise is generated by

v̇ = Avv + GvWv (4.10)

where Wv ∈ <12 is the zero-mean Gaussian white noise with variance of Φ
T
∈ <12×12

calculated by Eq. (2.61). Note that C ∈ <12×12, Av ∈ <12×12 and Gv ∈ <12×12 are

constant. Equation (4.9a) and (4.10) can be discretized by Euler method, respectively,

as

x
T,k
− x

T,k−1

T
= fk(xT , u,WIT , ẆIT ) (4.11a)

v
k
− v

k−1

T
= Avv

k
+ GvWv,k (4.11b)
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where T is a update rate. In this research, the update rate for the continuous equation

is same as that of the discrete equation. Equation (4.11a) and (4.11b) are used to

define the new measurement to remove colored noise.

The new measurement equation for the tanker aircraft is characterized by the

white measurement that is an assumption of a general KF, which is

ỹ
T,N,k

=
ỹ
T,k
− ỹ

T,k−1

T
−Avỹ

T,k
(4.12a)

=

[
C(x

T,k
− x

T,k−1
)

T
+

v
k
− v

k−1

T

]
−Av(Cx

T,k
+ v

k
) (4.12b)

=
[
Cfk(xT , u,WIT , ẆIT ) + (Avvk + GvWv,k)

]
−Av(Cx

T,k
+ v

k
) (4.12c)

= hk(xT , u,WIT , ẆIT , bv) + v
T,N,k

(4.12d)

where

hk(xT , u,WIT , ẆIT , bv) = (−Av C)x
T,k

+ C fk(xT , u,WIT , ẆIT )

v
T,N,k

= Gv Wv,k

(4.13)

where v
T,N,k

∈ <12×12 is a zero-mean Gaussian white noise with variance of GvΦT
GT

v ∈

<12×12. Hence, the quality of Eq. (4.12a) could be measurable, and Eq. (4.12d) shows

that the measurement noise is the zero-mean Gaussian white noise, which satisfies a

white noise assumption of a general KF.

In summary, the augmented system equations for estimation are

˙̂xa,T = f(x̂a, u, ŴIT ,
˙̂
WIT ) + η

T
(4.14)
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where η
T
∈ Re15 are the white noise for a tanker aircraft. The measurement equations

are

ỹ
T,N,k

= hk(xT , u,WIT , ẆIT , bv) + v
T,N,k

(4.15)

where v
T,N,k

∈ <12 is the white noise vector. Note that τv to determine the extent of

correlation in the colored noise is set to 20 second, which means 60.7 percent corre-

lation after 10 seconds. If the variance of the measurement noise or the correlation

time constant changes, the process noise covariance matrix should be tuned to obtain

accurate estimate.

4.5 Application of SR-UKF

Because the system equation in Eq. (4.4) is nonlinear, a linear KF does not

yield satisfactory performance due to the time-varying system matrix. Even through

EKF is a nonlinear estimator, EKF using the linearization process by a first order

approximation leads to divergent in estimation because the system equation is highly

nonlinear and the aircraft operation covers various trim flights and accelerated flight.

The family of UKF may be one solution to deal with the property of highly nonlinear.

SR-UKF among the family is selected to avoid computational singularity, which is a

potential problem in UKF implementation. This chapter uses continuous-discrete SR-

UKF with the sample rate of 0.05 second for both system and measurement updates.

By the application of the SR-UKF based on the system equation of Eq. (4.4) and the

measurement equation of Eq. (4.8), the state and wind could be estimated. Since the

magnitude of the eigenvalue of the stable system matrix with the largest real part is

1.1525, the sample rate is selected to be 0.05 second based on Eq. (3.4).
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CHAPTER 5

STATE AND WIND ESTIMATION WITHOUT AERODYNAMIC MODEL

The previous chapter shows that, using SR-UKF with the system model aug-

mented with the wind model, aircraft states and wind components can be estimated

on a single aircraft. However, the approach relies on a strong assumption that the

exact aerodynamic force and moment models are known for the system update of the

estimator. This chapter will introduce a new method to estimate aircraft states and

wind without the knowledge of the aerodynamic force and moment models. In the

evaluation of the estimation, introduced in this chapter, in the simulation environ-

ment, the estimated state values are not used for the feedback controller. Instead,

actual state variables are fedback to the controller. This practice is justified by the

fact that the tanker airplane is flown by its pilot while the receiver should be flown

by its flight control system in an automated aerial refueling operation. Thus, there

is no need for feeding back the state variables in the tanker aircraft. Further, the

measurement errors are Gaussian white noise processes.

5.1 Modeling of System Update for Estimation

The main part of system update of KF consists of the EOM of an aircraft,

which includes aerodynamic force expressions in the translational dynamics and mo-

ment expressions in the rotational dynamics. Since it is not practical to assume the

knowledge of the aerodynamic force and moment expressions for the system update

of the estimation, the aerodynamic forces and moments should be replaced in the

estimation algorithm by an alternative method.
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The translational dynamics for the estimation is obtained from Eq. (2.1) after

replacing the external force term by acceleration measurement relative to the inertial

frame expressed in the tanker body frame. Thus, the translational dynamics equations

become 
˙̂
V
T

˙̂
β
T

˙̂α
T

 = ε̂−1T S(ω̂BT )(R̂BTWT
V̂wT )− ε̂−1T R̂BTI

˙̂
WIT + ε̂−1T ãBT (5.1)

where ãBT is the measurements of the components of an acceleration relative to the

inertial frame expressed in the tanker body frame, and
˙̂
WIT is obtained through a

unit-delay operator, z−1, because their is no direct measurement of wind derivative.

Similarly, aerodynamic moment terms in Eq. (2.8) can not be calculated without

the moment expressions of the tanker aircraft. Since there is no direct measurement

of the angular acceleration, the rotational dynamics is replaced by the difference of

the angular velocity measurements in time, which yields

˙̂ωBT =
ω̃BT (t)− ω̃BT (t− T )

dt
(5.2)

where ω̃BT is the measurement of angular velocity relative to the inertial frame ex-

pressed in the tanker body frame, and T is the sample period.

The rotational kinematics and translational kinematics are directly used from

Eqs. (2.11) and (2.12), respectively, without modifications.

In compact form, the model of the tanker aircraft in estimation without the

aerodynamic force and moment expressions becomes

˙̂xT = f(x̂T ,
˙̂
WIT , ãBT , ω̃BT ), x̂T ∈ <12 (5.3)
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Note that, in this approach, control variables (δaT ,δeT ,δrT ,T ) are not required in the

estimation.

5.2 Modeling of Wind

The modeling of wind for estimation is obtained by rearranging Eq. (5.1) with

respect to the derivative of wind, which yields

˙̂
WIT = R̂T

BTI

S(ω̂BT )R̂BTWT
V̂wT + ãBT − ε̂T


˙̂
V
T

˙̂
β
T

˙̂α
T


 (5.4)

where ãBT is obtained from the acceleration measurements and the rate of change of

the airdata (
˙̂
VT ,

˙̂
βT , ˙̂αT ) is replaced by the numerical calculation of the translational

dynamics, Eq. (5.1). In compact form, the model of wind used in estimation is

˙̂
WIT = f(x̂T , ˙̂xT , ãBT ), ŴIT ∈ <3 (5.5)

5.3 Augmentation for System Update of SR-UKF

The augmented state vector is defined as

x̂a = [x̂T , ŴIT ]T , x̂a ∈ <15 (5.6)

The augmented system can be written in compact form by combining Eq. (5.3) with

Eq. (5.5) as

˙̂xa = f(x̂a,
˙̂
WIT , ãBT , ω̃BT ) + η (5.7)
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where η ∈ <15 is the process noise with variance of Qa ∈ <15×15, which is used to

avoid occurrence of the singularity problem due to employing two different versions of

the same equation and also represent the effect of the turbulence as a process noise,

as previously discussed in Section 4.2

Figure 5.1 shows the block diagram representation of the system update model

along with the input-output notation of the augmented system. As depicted in the

figure, the derivative of wind (
˙̂
WIT ) uses time delay (z−1), acceleration relative to the

body tanker frame (ãBT ) is obtained from the measurement directly, and the angular

acceleration relative to the inertial frame expressed in the body tanker frame is ob-

tained from the time difference of the angular velocity measurements. The augmented

system does not require control variables since the aerodynamic models, which would

require control variables, are not used in this implementation.

Figure 5.1. Augmented State Update without Aerodynamic Model.

5.4 Application of SR-UKF

Because the system equation in Eq. (5.7) is nonlinear, a linear KF does not

yield satisfactory performance due to the time-varying system matrix. Even through
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EKF is a nonlinear estimator, EKF using the linearization process by a first order

approximation leads to divergent in estimation because the system equation is highly

nonlinear and the aircraft operation covers various trim flights and accelerated flight.

The family of UKF may be one solution to deal with the property of highly nonlinear.

SR-UKF among the family is selected to avoid computational singularity, which is a

potential problem in UKF implementation. This chapter uses continuous-discrete SR-

UKF with the sample rate of 0.05 second for both system and measurement updates.

By the application of the SR-UKF based on the system equation of Eq. (5.7) and the

measurement equation of Eq. (4.8), the state and wind could be estimated without

aerodynamic information. Since the magnitude of the eigenvalue of the stable system

matrix with the largest real part is 1.1525, the sample rate is selected to be 0.05

second based on Eq. (3.4).
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CHAPTER 6

RELATIVE POSITION CONTROL OF RECEIVER AIRCRAFT

In a boom-receptable aerial refueling operation, the receiver aircraft is controlled

relative to the tanker aircraft. Specifically, the receiver aircraft should be kept at the

refueling position with target limits for the boom operator in the tanker aircraft to

establish the boom-receptacle connection and maintain it for fuel transfer. For an

automated aerial refueling operation, the receiver aircraft is flown by a flight control

system. In this research, the receiver aircraft is controlled by a MIMO-LQR based

state feedback controller, which is introduced in Section 2.4. Since the receiver is

controlled relative to the tanker, the receiver’s feedback controller uses the receiver

states and some of the tanker states. The tanker SR-UKF-based estimator, introduced

in Chapter 3, estimates the tanker states, which are transmitted to the receiver for the

controller. Further, this chapter introduces the estimator designed for the estimation

of the receiver states as well as the wind components the receiver aircraft is exposed

to. The design of the receiver estimation, the same method, introduced in Chapter

3 for the tanker aircraft, is used with some modifications. Recall that this method

assumes the availability of the aerodynamic force and moment expressions.

6.1 Modeling of Wind for Estimation

A wind model can be obtained by rearranging Eq. (2.16) in terms of the wind

derivative. Note that Eq. (2.16) has WBR , which is the representation (components)

of the wind in the body-frame of the receiver. As a result, the integration of ẆBR does

not yield the wind components. On the other hand, the integration of the derivative
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of the wind components in the inertial frame results in the wind components. Thus,

Eq. (2.16) should be written in terms of WIR , the components of the wind in the

inertial frame. The relation between the components of the wind in body-frame and

inertial frame is

WBR = RBRIWIR (6.1)

where RBRI is the rotation matrix from the inertial frame to the body frame of the

receiver. The time derivative of this equation yields

ẆBR = ṘBRIWIR + RBRIẆIR (6.2)

where, from the Poisson’s form of the rotational kinematics

ṘBRI = S(ωBR)RBRI (6.3)

Eqs. (6.1), (6.2) and (6.3) yield

ẆBR = S(ωBR)WBR + RBRIẆIR (6.4)

where the direct integration of ẆIR yields WIR , the components of wind in the inertial

frame.
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Substituting ẆBR from Eq. (6.4) in Eq. (2.16) leads to a new form of the

translational dynamics for estimation as


˙̂
V

˙̂
β

˙̂α

 = ε̂−1R

[
S(ω̂

BRBT
) + R̂BRBT

S(ω̂
BT

)R̂T
BRBT

]
(R̂BRWR

V̂w)

− ε̂−1R R̂BRI
˙̂
WIR +

1

m
R

ε̂−1R (R̂BRBT
R̂BTIMR + R̂BRWR

ÂR + PR) (6.5)

which is rearranged with respect to the wind to obtain the wind derivative model

relative to the inertial frame as

˙̂
WIR = R̂T

BRI

{[
S(ω̂BRBT ) + R̂BRBT

S(ω̂BT )R̂T
BRBT

] (
R̂BRWR

V̂w

)}

+ R̂T
BRI


1

mR

(
R̂BRBT

R̂BTIMR + R̂BRWR
ÂR + PR

)
− ε̂

R


˙̂
V

˙̂
β

˙̂α


 (6.6)

where

ε
R

=


cos β cosα −V sin β cosα −V cos β sinα

sin β V cos β 0

cos β sinα −V sin β sinα V cos β cosα

 (6.7)

where MR, PR, and aerodynamic expressions are assumed to be known, and the rate

of change of the airdata (V, β, α) are replaced by the numerical calculation of the

translational dynamics, Eq. (6.5).
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6.2 Augmentation for System Update of Kalman Filter

The augmented system for the receiver aircraft is obtained by combining Eq. (2.31)

and Eq. (6.6) after replacing ẆBR in Eq. (2.31) with Eq. (6.4). The state vector for

the augmented system is

x̂a,R = [x̂R, ŴIR ]T (6.8)

In summary, the translational dynamics for estimation is Eq. (6.5). The rotational

dynamics and rotational kinematics for estimation are the same as Eq. (2.23) and

Eq. (2.27), respectively. The wind components in the receiver body frame in trans-

lational kinematics of Eq. (2.29) is transformed to components in the inertial frame

by using Eq. (6.1) for the estimation, which is

RT
BRBT

WBR = RT
BRBT

(RBRIWIR)

= RBTIWIR

(6.9)

where

RT
BRBT

RBRI = RBTI (6.10)

Eq. (2.29) and Eq. (6.9) yield the alternative translational kinematics as

ξ̇ = RT
BRBT

RBRWR
Vw + RBTIWIR −RBTIṙT + S(ω

BT
)ξ (6.11)

Thus, the translational kinematics, to be used in estimation, becomes

˙̂
ξ = R̂T

BRBT
R̂BRWR

V̂w + R̂BTIŴIR − R̂BTI
˙̂r
T

+ S(ω̂
BT

)ξ̂ (6.12)
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In compact form, the augmented system is

˙̂xa,R = f(x̂a,R, x̂T , ˙̂xT , uR, ŴIR ,
˙̂
WIR) + η

R
(6.13)

where η
R
∈ <15 is the zero-mean Gaussian white noise with variance QR ∈ <15×15,

which is used in the system update of the KF, u
R
∈ <7 is the control input, and

ŴIR ∈ <3 is the estimated wind components in the inertial frame.

Figure 6.1. Augmented State Update in SR-UKF of Receiver Aircraft.

Fig. 6.1 shows a depiction of the augmented system in the KF system update

for the receiver aircraft. The derivative of the wind relative to the inertial frame,

d
dt

(ŴIR), is provided to the estimation system update from the previous numerical

calculation, through a unit delay operation, z−1, because there is no measurement of

the derivative of wind relative to the inertial frame.

6.3 Calculated Measurement of Wind (CMW)

In Kalman filter implementation, measurement update must be provided for

correction. However, there is no direct measurement of wind velocity for the mea-

surement update. Instead of direct measurement, the calculated measurement of wind
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(CMW) could be used to increase the accuracy of the estimation. An equation for

calculating the CMW for the receiver aircraft is obtained by rearranging Eq. (6.11)

with respect to the wind as

WIR = R̃T
BTI
˜̇ξ − R̃T

BTIR̃
T
BRBT

R̃BRWR
ṼwR + ˜̇rT − R̃T

BTIS̃(ωBT )ξ̃ (6.14)

where (̃·) means measurement data of (·). WIR calculated by Eq. (6.14) may have

large noise level. To reduce the large noise level, the filter with a moving average

window (MAW) that are introduced in Eq. (4.7) is used.

The CMW is used to minimize wind estimation error based on the Kalman

structure. Thus, the augmented measurement equation for the receiver aircraft is

ỹa,R,k =

 x
R,k

WIR,k

+ v
a,R,k

, ỹa,R,k ∈ <15

v
a,R,k

=

v
R,k

0


(6.15)

where WIR,k ∈ <3 is the CMW, v
a,R,k

∈ <15 is the augmented measurement noise,

and v
R,k
∈ <12 is the measurement noise for the states of the receiver aircraft.

6.4 Colored Measurement in Wind Estimation

The newly defined measurement equation in this chapter is slightly different

from that in Section 3.5, Eq. (3.22a), because the system equation for the aircraft is

not the same as the system equation for estimation due to the wind model. While

the aircraft is disturbed by independent wind profile with turbulence, the augmented

system equation in estimation relies on the wind model that calculates wind based on
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the estimated states. Thus, the process noise vectors for the aircraft and the system

equation for estimation are not the same. Additionally, the system equations for the

aircraft and the estimation are nonlinear while the system equation in Section 3.5,

Eq. (3.20a), are linear. As discussed in Section 3.5, a new measurement equation

should be defined considering two constraints: (i) colored noise is removed and (ii)

new defined vector is measurable.

The continuous receiver aircraft equation reproduced by Eq. 2.31, discrete col-

ored measurement equation and continuous noise equation, respectively, are

ẋ
R

= f(x
R
, x

T
, u,WBR , ẆBR), x

R
∈ <12 (6.16a)

ỹ
R,k

= Cx
R,k

+ v
k
, ỹ

R,k
∈ <12 (6.16b)

v̇ = Avv + GvWv (6.16c)

where x
R
∈ <12 is the tanker state vector, u ∈ <7 is the control input vector, WBR ∈

<3 is wind velocity relative to the inertial frame expressed in the receiver body frame,

ẆBR ∈ <3 is the wind acceleration written in the receiver body frame, y
R,k
∈ <12 is

the colored measurement vector, v
k
∈ <12 is the colored noise vector and Wv ∈ <12

is the zero-mean Gaussian white noise with variance of Φ
R
∈ <12×12 calculated by

Eq. (2.61). Note that C ∈ <12×12, Av ∈ <12×12 and Gv ∈ <12×12 are constant.

Equation (6.16a) and (6.16c) can be discretized by Euler method, respectively, as

x
R,k
− x

R,k−1

T
= fk(xR , xT , u,WBR , ẆBR) (6.17a)

v
k
− v

k−1

T
= Avv

k
+ GvWv,k (6.17b)
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The new measurement equation for the receiver aircraft is characterized by the

white measurement that is an assumption of a general KF, which is

ỹ
R,N,k

=
ỹ
R,k
− ỹ

R,k−1

T
−Avỹ

R,k
(6.18a)

=

[
C(x

R,k
− x

R,k−1
)

T
+

v
k
− v

k−1

T

]
−Av(Cx

R,k
+ v

k
) (6.18b)

=
[
Cfk(xR , xT , u,WBR , ẆBR) + (Avvk + GvWv,k)

]
−Av(Cx

R,k
+ v

k
) (6.18c)

= hk(xR , xT , u,WBR , ẆBR , bv) + v
R,N,k

(6.18d)

where

hk(xR , xT , u,WBR , ẆBR , bv) = (−Av C)x
R,k

+ C fk(xR , xT , u,WBR , ẆBR)

v
R,N,k

= Gv Wv,k

(6.19)

where v
R,N,k

∈ <12×12 is a zero-mean Gaussian white noise with variance of GvΦR
Gv

T ∈

<12×12. Hence, the quality of Eq. (6.18a) could be measurable, and Eq. (6.18d) shows

that the measurement noise is zero-mean Gaussian white noise, which satisfies the

white noise assumption of a general KF.

In summary, the augmented system equations for estimation are

˙̂xa,T = f(x̂a, u, ŴIT ,
˙̂
WIT ) + η

T
(6.20)

˙̂xa,R = f(x̂a,R, x̂T , ˙̂xT , uR, ŴIR ,
˙̂
WIR) + η

R
(6.21)

where η
T
∈ <15 and η

R
∈ <15 are the white noise for a tanker and receiver aircraft

respectively. The measurement equations are

ỹ
T,N,k

= hk(xT , u,WIT , ẆIT , bv) + v
T,N,k

(6.22)
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ỹ
R,N,k

= hk(xR , xT , u,WBR , ẆBR , bv) + v
R,N,k

(6.23)

where v
T,N,k

∈ <12 and v
R,N,k

∈ <12 are white noise vectors. Note that τv quantifying

the extent of correlation in the colored noise is set to 1 second, which means 36.8

percent correlation after 1 second. If the variance of the measurement noise or the

correlation time constant changes, the process noise covariance matrix should be

tuned to obtain accurate estimate.

6.5 Application of SR-UKF

Because the system equation in Eq. (6.13) is nonlinear, a linear KF does not

yield satisfactory performance due to the time-varying system matrix. Even through

EKF is a nonlinear estimator, EKF using the linearization process by a first order

approximation leads to divergent in estimation because the system equation is highly

nonlinear and the aircraft operation covers various trim flights and accelerated flight.

The family of UKF may be one solution to deal with the property of highly nonlinear.

SR-UKF among the family is selected to avoid computational singularity, which is a

potential problem in UKF implementation. This chapter uses continuous-discrete SR-

UKF with the sample rate of 0.05 second for both system and measurement updates.

By the application of the SR-UKF based on the system equation of Eq. (6.13) and the

measurement equation of Eq. (6.15), the state and wind for the receiver aircraft could

be estimated. Since the magnitude of the eigenvalue of the stable system matrix with

the largest real part is 1.1525, the sample rate is selected to be 0.05 second based on

Eq. (3.4).
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6.6 Linear Quadratic Gaussian (LQG) Controller

The LQR-based trajectory tracking controller for the receiver aircraft is pre-

sented in Section 2.4. The linear quadratic Gaussian (LQG) controller, implemented

in this chapter, is the LQR-based controller with feedback signals are the state es-

timates, instead of measurement signals. This controller can potentially improve

closed-loop performance by replacing the large noisy measurements with the esti-

mated states. The LQG structure is shown in Fig. 6.2.

Figure 6.2. LQG Controller for Receiver Aircraft.
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CHAPTER 7

RESULT OF SIMULATION AND PARAMETER STUDY

7.1 Estimation of Aircraft States and Wind Exposure at Tanker Aircraft

The SR-UKF estimation algorithm developed for the tanker aircraft are imple-

mented in an integrated simulation environment. In the simulation, the controller of

the tanker is commanded to fly the aircraft through the trajectory shown in Fig. 7.1

with the nominal airspeed of 190 m/s. Table 7.1 describes the four cases simulated

in terms of the turbulence model, the prevailing wind generation, and the variation

of the measurement noise. The purpose is to investigate the performance of the es-

timation algorithm in various simulated wind conditions and with sensors of various

levels of measurement noise. For the controller of the tanker, the actual states are

used in the feedback control.

Figure 7.1. Trajectory of Tanker.
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Table 7.1. Four Case Studies

Wtur Wpre Measurement Noise Feedback Signal
Case I Dryden Flight Data Small Level Actual
Case II Dryden ECWM Small Level Actual
Case III Dryden ECWM Large Level Actual
Case IV Dryden Flight Data Large Level Actual

7.1.1 Case I: Test Flight Wind and Small Measurement Noise

The tanker aircraft is exposed to the time-varying prevailing wind profile rep-

resenting the condition of the test flight as described in Section 2.5.1.1. The mea-

surement noise is modeled as Gaussian white noise with the characteristics listed in

Table 2.2. The turbulence superimposed on the prevailing wind is obtained from the

Dryden model, described in Section 2.5.2.
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Figure 7.2. Percent Errors of Wind Estimate (Case I).

The estimated wind velocity vector is expressed in terms of its magnitude and

direction and shown in Fig. 7.2. The magnitude error is usually less than 5% and

the direction error in general remains less 3%. Even at the worst case when the
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tanker aircraft turns, the magnitude and direction errors do not exceed 10% and 3%,

respectively.

0 1000 2000 3000
-15

-10

-5

(W
I T

) x [m
/s

]

0 1000 2000 3000
5

10

15

20

(W
I T

) y [m
/s

]

0 1000 2000 3000
-1

0

1

(W
I T

) z [m
/s

]

time [sec]

0 10 20 30 40
-2

0

2

E
rr

W
x [m

/s
]

0 10 20 30 40
-2

0

2

E
rr

W
y [m

/s
]

0 10 20 30 40
-2

0

2

E
rr

W
z [m

/s
]

time [sec]

Figure 7.3. Comparison Between Reference and Estimated Wind (Case I).

The plots on the left hand side of Fig. 7.3 show the components of the reference

wind and the estimated wind throughout the whole simulation. The figures clearly

show that the estimation is successful in capturing very well the time variation of the

wind. On the right hand side of Fig. 7.3, the estimation errors, in the component

form, are shown in the first 40 seconds and compared with the 3σ bounds. The x-

& y-component errors converge to the respective 3σ bounds in 20 seconds while the

z-component error converges in 10 seconds.

83



0 1000 2000 3000
188

189

190

191

192
V

T
 [
m

/s
]

0 1000 2000 3000
-5

0

5

β T
 [
d
e
g
]

0 1000 2000 3000
-5

0

5

10

α
T
 [
d
e
g
]

0 1 2 3 4 5
-0.4

-0.2

0

0.2

0.4

d
V

T
 [
m

/s
]

0 1 2 3 4 5
-0.01

-0.005

0

0.005

0.01
d
β T

 [
d
e
g
]

0 5 10
-0.01

-0.005

0

0.005

0.01

d
α

T
 [
d
e
g
]

Figure 7.4. Measured and Estimated Airspeed, Sideslip Angle and Angle of Attack.
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Figure 7.5. Measured and Estimated Angular Velocity Components.
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Figure 7.6. Measured and Estimated Euler Angles.
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Figure 7.7. Measured and Estimated Position Components.
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Figures 7.4 to 7.7 show the comparison of the estimated aircraft states with the

measured states. All the states are successfully estimated while the tanker aircraft

goes through various straight-level and turning segments of the commanded trajectory

while exposed to the time varying prevailing wind and turbulence. Further, the noise

levels in all the estimated states are reduced as compared to the respective measured

states.

7.1.2 Case II: ECWM Prevailing Wind and Small Measurement Noise

In this case, the prevailing wind is generated by ECWM. The variation of

this wind profile is less than that in Case I. Every other aspect of this simulation

is the same as in Case I. The estimated wind vector is expressed in terms of its

magnitude and direction. The percentage errors of the estimated wind in terms of

magnitude and direction are shown in Fig. 7.8. The magnitude error is usually less

than 4% and the direction error in general remains less 2%. The plots on the left

hand side of Fig. 7.9 show the components of the reference wind and the estimated

wind throughout the whole simulation. The figures clearly show that the estimation

is successful in capturing very well the time variation of the wind. On the right hand

side of Fig. 7.9, the estimation errors, in the component form, are shown in the first

40 seconds and compared with the 3σ bounds. The x- & y-component errors converge

to the respective 3σ bounds in 20 seconds while the z-component error converges in

10 seconds. Figures 7.10 to 7.13 show the measured and estimated aircraft states

throughout the whole simulation. This simulation case studies the performance of

the estimation algorithm under a different wind profile and shows no change in the

performance while the aircraft is exposed to a different prevailing wind profile.
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Figure 7.8. Percent Errors of Wind Estimate (Case II).
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Figure 7.9. Comparison Between Reference and Estimated Wind (Case II).
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Figure 7.10. Measured and Estimated Airspeed, Sideslip Angle and Angle of Attack.
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Figure 7.11. Measured and Estimated Angular Velocity Components.
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Figure 7.12. Measured and Estimated Euler Angles.
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Figure 7.13. Measured and Estimated Position Components.
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7.1.3 Case III: ECWM Prevailing Wind and Large Measurement Noise

Case III focuses on the sensitivity of the proposed estimation method against

increased level of measurement noise, whose characteristics are given in Table 2.3.

The estimated wind vector is expressed in terms of its magnitude and direction. The
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Figure 7.14. Percent Errors of Wind Estimate (Case III).

percentage errors of the estimated wind in terms of magnitude and direction are

shown in Fig. 7.14. The magnitude error is usually less than 5% and the direction

error in general remains less 5%. Even at the worst case when the tanker aircraft

turns, the magnitude and direction errors do not exceed 12% and 10%, respectively.

The plots on the left hand side of Fig. 7.15 show the components of the reference

wind and the estimated wind throughout the whole simulation. The figures clearly

show that the estimation is successful in capturing very well the time variation of the

wind. On the right hand side of Fig. 7.15, the estimation errors, in the component

form, are shown in the first 200 seconds and compared with the 3σ bounds. The y-

component error converges to the 3σ bound in 40 seconds while the x- & z-component

errors converge almost immediately.
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Figure 7.15. Comparison Between Reference and Estimated Wind (Case III).

Figures 7.16 to 7.19 show the comparison of the estimated aircraft states with

the measured states in the case of very noisy measurement error. All the states are

successfully estimated while the tanker aircraft goes through various straight-level

and turning segments of the commanded trajectory while under the influence of the

time varying prevailing wind generated from ECWM and turbulence. Further, the

noise levels in all the estimated states are reduced as compared to the respective

measured states with very high level of noise.
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Figure 7.16. Measured and Estimated Airspeed, Sideslip Angle and Angle of Attack.
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Figure 7.17. Measured and Estimated Angular Velocity Components.
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Figure 7.18. Measured and Estimated Euler Angles.
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Figure 7.19. Measured and Estimated Position Components.
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7.2 Tanker State and Wind Estimation Without Aerodynamic Model

This section investigates the performance of the estimation when aerodynamic

force and moment models are not available in system update of the estimation. In-

stead, the estimation relies on measurements of translational acceleration and the

difference of angular velocity measurements as an approximation for angular accel-

eration. For the controller of the tanker, the actual states are used in the feedback

control.

7.2.1 Case III: ECWM Prevailing Wind and Large Measurement Noise

In this case, the prevailing wind is generated by the ECWM, presented in Sec-

tion 2.5.1.2 and the turbulence is generated by the Dryden model described in Section

2.5.2. In this simulation case, measurement has a large level of noise, as described in

Table 2.3.
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Figure 7.20. Percent Errors of Wind Estimate (Case III).

Figure 7.20 shows the percent estimation error in the wind vector in terms of

its magnitude and direction. The magnitude error is usually less than 10% and the

direction error in general remains less than 10%. The plots on the left hand
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Figure 7.21. Comparison Between Reference and Estimated Wind (Case III).

side of Fig. 7.21 show the components of the reference wind and the estimated wind

throughout the whole simulation. The figures show that the estimation is successful

in capturing the time variation of the wind generated from ECWM. On the right hand

side of Fig. 7.21, the estimation errors, in the component form, are shown in the first

60 seconds and compared with the 3σ bounds. The x- & y-component errors converge

to the respective 3σ bounds in 20 seconds and 40 seconds while the z-component error

converges almost immediately.

Figures 7.22 to 7.25 show the comparison of the estimated aircraft states with

the measured states. All the states are successfully estimated while the tanker aircraft

goes through various straight-level and turning segments of the commanded trajectory

in the presence of time varying prevailing wind and turbulence.
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Figure 7.22. Measured and Estimated Airspeed, Sideslip Angle and Angle of Attack.
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Figure 7.23. Measured and Estimated Angular Velocity Components.
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Figure 7.24. Measured and Estimated Euler Angles.
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Figure 7.25. Measured and Estimated Position Components.
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7.2.2 Case IV: Prevailing Wind from Flight Data and Large Measurement Noise

In this case, the tanker aircraft is exposed to the prevailing wind profile ex-

tracted from the test flight data with Dryden turbulence. The measurement has a

large level of noise with the characteristics listed in Table 2.3.
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Figure 7.26. Percent Errors of Wind Estimate (Case IV).

The estimated wind vector has the percentage errors as shown in Fig. 7.26

in terms of its magnitude and direction. The magnitude error is usually less than

10% and the direction error in general remains less 5%. The plots on the left hand

side of Fig. 7.27 show the components of the reference wind and the estimated wind

throughout the whole simulation. The figures show that the estimation is successful

in capturing the time variation of the wind obtained from the test flight data. On the

right hand side of Fig. 7.27, the estimation errors, in the component form, are shown

in the first 200 seconds and compared with the 3σ bounds. The x- & y-component

errors converge to the respective 3σ bounds in 40 seconds while the z-component error

converges almost immediately.

Figures 7.28 to 7.31 show a comparison of the estimated aircraft states with the

measured states. All the states are successfully estimated while the tanker aircraft

106



0 1000 2000 3000
-20

-15

-10

-5
(W

I T

) x [m
/s

]

0 1000 2000 3000
0

10

20

(W
I T

) y [m
/s

]

0 1000 2000 3000

-2

0

2

(W
I T

) z [m
/s

]

time [sec]

0 50 100 150 200
-4

-2

0

2

4

E
rr

W
x [m

/s
]

0 50 100 150 200
-4

-2

0

2

4

E
rr

W
y [m

/s
]

0 50 100 150 200
-4

-2

0

2

4
E

rr
W

z [m
/s

]

time [sec]

Figure 7.27. Comparison Between Reference and Estimated Wind (Case IV).

goes through various straight-level and turning segments of the commanded trajectory

while experiencing time varying prevailing wind and turbulence. Further, the noise

levels in all the estimated states are reduced as compared to the respective measured

states. The right sides of Figs. 7.28 to 7.31 show the estimation error and the transient

of each estimate as compared to their respective 3σ bounds.
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Figure 7.28. Measured and Estimated Airspeed, Sideslip Angle and Angle of Attack.
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Figure 7.29. Measured and Estimated Angular Velocity Components.
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Figure 7.30. Measured and Estimated Euler Angles.
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Figure 7.31. Measured and Estimated Position Components.
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7.3 Tanker State and Wind Estimation Under Colored Measurement

This section presents the simulation results when the sensors have colored mea-

surement noise with a correlation time constant of 20 seconds. Two cases are studied.

In the first case studied, the measurement noise has small variances as described in

Table 2.2 and the second case has large variance, listed in Table 2.3. In both cases,

the prevailing wind is generated by the ECWM. For the controller of the tanker, the

actual states are used in the feedback control.

7.3.1 Case II: ECWM Prevailing Wind and Small Measurement Noise

In this case, the variances of the colored measurement noises during the simu-

lation are characterized in Table 2.2.
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Figure 7.32. Percent Errors of Wind Estimate (Case II).

The percentage errors of the estimated wind in terms of magnitude and direction

are shown in Fig. 7.32. The magnitude error is usually less than 10% and the direction
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Figure 7.33. Percent Errors of CMW (Case II).

error in general remains less than 10%. Comparison of Figs. 7.32 and 7.33 shows that

the error of the estimated wind is only slightly smaller than that of the CMW. This is

because the CMW is calculated from the measured states by Eq. (4.6) and Eq. (4.7)

and the state measurements have only small errors. When the measurement noises

are large, as will be in the next case, the performance of the CMW calculation will

worsen, and will not be comparable.

The plots on the left hand side of Fig. 7.34 show the components of the reference

wind and the estimated wind throughout the whole simulation. The figures show that

the estimation is successful in capturing the time variation of the wind. On the right

hand side of Fig. 7.34, the estimation errors, in the component form, are shown in the

first 400 seconds and compared with the 3σ bounds. The x- & y-component errors

converge to the respective 3σ bounds in 100 seconds while the z-component error

converges to the 3σ bound in 80 seconds.
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Figure 7.34. Comparison Between Reference and Estimated Wind (Case II).
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Figure 7.35. Measured and Estimated Airspeed, Sideslip Angle and Angle of Attack.
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Figure 7.36. Measured and Estimated Angular Velocity Components.
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Figure 7.37. Measured and Estimated Euler Angles.
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Figure 7.38. Measured and Estimated Position Components.
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Figures 7.35 to 7.38 show the comparison of the estimated aircraft states with

the measured states. All the states are successfully estimated while the tanker aircraft

goes through various straight-level and turning segments of the commanded trajectory

while subject to time varying prevailing wind and turbulence. Further, the noise levels

in (β
T
, α

T
, p

T
, q

T
, r

T
, θ

T
) are reduced as compared to the respective measured states.

For instance, the measurement of the roll angular velocity has a standard deviation

of 0.8 degree while estimate of that has a standard deviation of 0.4 degree. The right

side of the figures show the estimation error and the transient of each estimate.

7.3.2 Case III: ECWM Prevailing Wind and Large Measurement Noise

The variance of the colored measurement noise during the whole time is based

on Table 2.3.
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Figure 7.39. Percent Errors of Wind Estimate (Case III).
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Figure 7.40. Percent Errors of CMW (Case III).

The percentage errors of the estimated wind in terms of magnitude and direction

are shown in Fig. 7.39. The magnitude error is usually less than 10% and the direction

error in general remains less 10%. Comparison of Figs. 7.39 and 7.40 shows that the

error of the estimated wind is significantly smaller than that of the CMW, which is

calculated from the available measurements by Eqs. (4.6) and (4.7).

Fig. 7.41 shows that the estimation is successful in capturing the time variation

of the wind. On the right hand side of Fig. 7.41, the estimation errors, in the com-

ponent form, are shown in the first 1000 seconds and compared with the 3σ bounds.

The x- & y-component errors converge to the respective 3σ bounds in 200 and 120

seconds respectively while the z-component error converges almost immediately.

Figures 7.42 to 7.45 show the comparison of the estimated aircraft states with

the measured states. All the states are successfully estimated while the tanker aircraft

goes through various straight-level and turning segments of the commanded trajectory

in the presence of time varying prevailing wind and turbulence. Further, the noise
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levels in all the estimated states except for the components of position are reduced

as compared to the respective measured states. The worse estimation in the position

vector appears when correlation time constant of the colored noise is colored. For

instance, the measurement of the roll angular velocity has a standard deviation of

7.5 degree while estimate of that has a standard deviation of 0.4 degree after the

roll angular velocity estimation has converged. The right side of the figures show the

estimation error and the transient of each estimate with 3σ bounds.
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Figure 7.41. Comparison Between Reference and Estimated Wind (Case III).
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Figure 7.42. Measured and Estimated Airspeed, Sideslip Angle and Angle of Attack.
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Figure 7.43. Measured and Estimated Angular Velocity Components.
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Figure 7.44. Measured and Estimated Euler Angles.
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Figure 7.45. Measured and Estimated Position Components.
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7.3.3 Parameter Study with Colored Measurement Noise

As stated earlier, the white noise assumption in the KF development is a the-

oretical abstraction and it is more likely to have colored measurement noise in the

physical world. Thus, a method, described in Section 4.4, is used to handle colored

measurement noise in the KF framework. Note that for the control of the tanker

aircraft, the actual states are used as the feedback signal. The estimated states of the

tanker are used in the estimation of the receiver as the receiver system model depends

on some of the tanker states. The parameter study presented in this section is carried

out to determine the limitations of the SR-UKF estimation as implemented in the

tanker aircraft when the measurement error is colored noise. The effects of the vari-

ations of two parameters on the estimation performance are investigated. The first

parameter, the correlation time constant τv, defines the ”coloredness” of the mea-

surement noise while the second set of parameters, turbulence intensity (σu,σv,σw),

quantity the strength of the process noise of the aircraft, turbulence part of the wind.

This parameter study is repeated for two different levels of measurement noise, low

level from Table 2.2 and high level from Table 2.3. The prevailing wind is gener-

ated by the ECWM, described in Section 2.5.1.2. The ECWM randomly generates

the initial conditions of the wind components. However, to isolate the effect of the

two parameters selected, the initial condition of the wind are set to constants, i.e.,

(Wpre,x0,Wpre,y0,Wpre,z0) are equal to (7,-13,0) m/s for all the simulation runs con-

ducted to generate the results of the parameter study. The effects of the variation

of the parameters on the wind estimation are quantified by two characteristics of the

wind estimations: (i) the convergence time and (ii) the variance of the estimation

error.
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7.3.3.1 Parameter Study: Correlation Time Constant

The correlation time constant influences to the extent of the correlation of

CMN, which causes the exponentially correlated error to behave like a bias error.

If correlation time constant approaches to zero, the signal becomes more like white

signal, and if the correlation time constant increases up to 10 or 100 seconds, the

signal becomes a colored signal.

The wind estimation of the left side of Fig. 7.46 indicates that the signal when

the correlation time constant is 0.05 second has a short convergent time while the

signal when the correlation time constant is 10 or 100 seconds has a long convergent

time under the measurement characteristics of Table 2.3. The characteristic of the

estimation affected by the variance of the correlation time constant is the variance

of the estimation error. The variance of the estimation error in x-y components

increases when the correlation time constant increases, as shown in the right side of

Fig. 7.46. The amount of the change in z direction of the variance error is relatively

small compared with the amount in x-y direction.

When the measurement characteristics are of Table 2.2, which are one tenth of

the measurement characteristics of Table 2.3 in standard deviation, the left side of

Fig. 7.47 shows that the convergent time increases exponentially like 1000 seconds as

the correlation time constant increases until 50 seconds. A possible reason for the

long convergent time may be the improperly selected process noise matrix. As shown

in Fig. 7.47, the variances of the estimated wind errors increase slowly. When the

correlation time constant is greater than 50 seconds, the variances of the estimated

wind errors increase dramatically. Hence, the feasible range of the correlation time

constant is from 0.05 to 50 seconds with the current process noise covariance matrix.
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Figure 7.46. Correlation Time Constant Effect on Tanker Aircraft with Table 2.3.
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Figure 7.47. Correlation Time Constant Effect on Tanker Aircraft with Table 2.2.
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The change of the measurement characteristics from Table 2.3 to Table 2.2 in-

fluences the performance of the estimation. Additionally, the process noise covariance

matrix that newly selected by changing the variance of the measurement influences

the performance of the estimation. The variance of the estimated errors in the right

side of Fig. 7.47 is smaller than Fig. 7.46 due to the comparatively small noise level

of the measurement.

In summary, the estimation algorithm with the colored measurement works well

within a reasonable error range when the correlation time constant is between 0 and

20 seconds due to the convergent time of Fig. 7.47.

7.3.3.2 Parameter Study: Turbulence Intensity

The reference turbulence wind generated by Dryden model is characterized by

the intensity and the wave length, whose values given in Chapter 2.5.1 and used in

the simulation runs so far, represent a light turbulence. This section investigates the

effect of the Dryden turbulence intensity as a parameter study. For this study, the

correlation time constant is set to 20 seconds. The left sides of Fig. 7.48 and Fig. 7.49

show that the convergent time for wind estimation may not be influenced by the

turbulence intensity. However, as the turbulence intensity increases, the variances of

the estimated wind errors in x-y-z components increase. Hence, the working range of

the turbulence intensity, highlighted on Fig. 2.5 by the yellow color, is from 0 to 3

m/s. Beyond the maximum intensity of turbulence, the estimation is divergent from

the measurement signal.

In summary, an increase in the correlation time constant increases the conver-

gence time and estimation error, and an increase in the turbulence intensity does not

influence the convergence time but affects the estimation error. The change of the
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Figure 7.48. Intensity of Turbulence on Tanker Aircraft under Large Noise.
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Figure 7.49. Intensity of Turbulence on Tanker Aircraft under Small Noise.
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measurement characteristics influences the convergence time and the estimation error

with a proper selection of the process noise covariance matrix.

7.4 Relative Position Control of Receiver Aircraft Through Estimated State Feed-

back and Parameter Study

For an automated aerial refueling capability, the position of the receiver air-

craft should be controlled by its flight control system relative to the tanker, which

is flying through a specified pattern by its pilot. The trajectory tracking controller

of the receiver is briefly described in Section 2.4. Fig. 7.50 shows an example of

the commanded and the actual position components of the receiver relative to the

tanker aircraft expressed in the tanker’s body frame. Note that the receiver aircraft

is commanded to stay at and maneuver between the observation and contact position

(see Fig. 2.1) as the tanker is flown through its commanded trajectory relative to the

inertial frame, as shown in Fig. 7.1 with commanded constant speed and constant

altitude. Due to the large noise levels of the measurement, the existing LQR-based

controller of the receiver aircraft does not work properly if the measured signals are

used for feedback. To minimize the measurement noise level, the proposed estimation

algorithm is applied to estimate the full state of the receiver aircraft. This section

studies the performance of the closed-loop system of the receiver when the estimated

states of the receiver as well as the estimated tanker states are used as feedback sig-

nals. This is done in two case of measurement noise: white measurement and colored

measurement. The descriptions of the two cases are given in Table 7.2. Specifically,

in the colored measurement case, a parameter study is conducted for the correlation

time constant, turbulence intensity, and measurement noise level with respect to the

relative position error. Fig. 7.51 depicts the relative position error indicating a feasible

range of the boom for the fuel transfer. (xc, yc, zc) is the commanded relative position
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Figure 7.50. Position of Receiver Aircraft.

of the receiver aircraft. (∆X,∆Y,∆Z) is the relative position error by the difference

between the true signals and the commanded signals. The acceptable relative position

error along each direction for the successful fuel transfer without disconnecting the

boom in an actual fuel transfer is 2 meter in all three directions. In this research, no

attempt is made to reduce the relative position errors down to the acceptable limits.

The investigation in this section focuses on identifying the effect of using estimated

signals for feedback as opposed to using measured signals on position errors.

Table 7.2. Two Simulation Cases for Relative Position Control

Wtur Wpre Measurement Noise Feedback Signal
Case I Dryden Flight Data White, Small Level Estimated
Case II Dryden ECWM Colored, Small Level Estimated
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Figure 7.51. Definition of Relative Position Error.

7.4.1 Relative Position Control with White Measurement Noise and Parameter Study

This section deals with the relative position control with estimated state feed-

back in the case of white measurement noise. In this case, the prevailing wind is used

from the flight data as described in Section 2.5.1.1, the Dryden model generates the

turbulence as described in Section 2.5.2 for the tanker and the receiver aircraft and

the vortex induced wind is generated as described in Section 2.5.3.

The light turbulence is generated by the Dryden model with the intensity of

(0.39, 0.39, 0.39) m/s and the wave length of (533.4, 533.4, 533.4) meter in compo-

nent forms, and the variance of the measurement is as listed in Table 2.2. Under

these conditions, the relative position control of the receiver aircraft is successfully

accomplished with estimated state feedback. Especially, at the contact position, the

relative position error as shown in Fig. 7.52 are smaller than 3, 4 and 3 meters in x,

y and z directions, respectively.
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Figure 7.52. Relative Position Error at a Contact Position with White Noise.

In the case of white measurement noise, the estimated wind in the receiver

aircraft is shown Figs. 7.53 and 7.54. By the percentage errors in terms of magnitude

and direction, the magnitude error is usually less than 8% and the direction error in

general remains less than 5%.
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Figure 7.53. Percent Errors of Wind Estimate (Case I).
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The plots on the left hand side of Fig. 7.54 show the components of the reference

wind and the estimated wind throughout the whole simulation. The figures show that

the estimation is successful in capturing the time variation of the wind. On the right

hand side of Fig. 7.54, the estimation errors, in the component form, are shown in the

first 100 seconds and compared with the 3σ bounds. The x- & y-component errors

converge to the respective 3σ bounds in 60 seconds while the z-component error

converges to the 3σ bound in 20 seconds. When the receiver moves to the contact

position, it is behind the tanker and influenced by the nonuniform wind induced by

the tanker’s wake vortices. The contact position is in the downwash region of the

nonuniform wind field. As shown in the (WIR)z plot on the left side of Fig. 7.54, the

estimated wind precisely captures the downwash exposure whenever the receiver goes

to the contact position. The z-component of the wind is zero when the receiver is at

the observation position and thus outside the wake of the tanker. Another way to

identify the wake vortex induced wind is to compare the estimated wind by the tanker

estimator with that by the receiver estimator. For example, the difference between

the z-components of the estimated winds of the tanker in Fig. 7.3 and that of the

receiver in Fig. 7.54 is clearly the vortex-induced wind as the tanker is not exposed

to the nonuniform wind field. Figure 7.55 shows the effect of the measurement noise

level on the station-keeping performance of the closed loop system in a comparative

way between measured state feedback versus estimated state feedback. The level of

measurement noise is quantified by factor G, which multiplies the standard deviations

of the state measurements listed in Table 2.2. The larger factor G is, the more noisy

the measurements are. Figure. 7.55, simulated between 860 and 980 seconds, shows

that the controller using measured state feedback works only when G is less than 0.6.

On the other hand, the controller using the estimated state feedback can perform
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station-keeping until G is 7. This shows that the estimated state feedback increases

the robustness of the closed loop system against the measurement noise.
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Figure 7.54. Comparison Between Reference and Estimated Wind (Case I).
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Figure 7.55. Parameter Study of White Measurement Noise Variance by Multiplying
G with the Noise Characteristics of Table 2.2. Turbulence Intensity is 0.39 m/s.
Simulation Time at the Contact Position is between 860 and 980 Seconds.
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7.4.2 Relative Position Control with Colored Measurement Noise and Parameter

Study

In this case, the sensors have colored measurement noises, the prevailing wind

is generated by ECWM, and the light turbulence is generated by Dryden model with

intensity of (0.39, 0.39, 0.39) m/s and a wave length of (533.4, 533.4, 533.4) meter in

component forms, the variances of the measurements is of Table 2.2, and correlation

time constant (τv) is 1 second. Under these conditions, the relative position control

of the receiver aircraft is successfully performed. Especially, at the contact position,

the relative position error shown in Fig. 7.56 is smaller than about 2 meters in all

three directions.
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Figure 7.56. Relative Position Error at a Contact Position with Colored Noise.

In this case of the colored measurement noise, the estimated wind in the receiver

aircraft is shown in Figs. 7.57 and 7.58. As shown in Fig. 7.57, the magnitude error

is usually less than 5% and the direction error in general remains less than 5%.
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Figure 7.57. Percent Errors of Wind Estimate (Case II).
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Figure 7.58. Comparison Between Reference and Estimated Wind (Case II).

The plots on the left hand side of Fig. 7.58 show the components of the reference

wind and the estimated wind throughout the whole simulation. The figures show that
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the estimation is successful in capturing the time variation of the wind. On the right

hand side of Fig. 7.58, the estimation errors, in the component form, are shown in the

first 100 seconds and compared with the 3σ bounds. The x- & y-component errors

converge to the respective 3σ bounds in 10 seconds while the z-component error

converges to the 3σ bound in 18 seconds. As previously discussed in Section 7.4.1,

when the tanker aircraft moves to the contact position, it is exposed to downwash due

to the tanker’s wake vortex induced wind field. The z-plot in Fig. 7.58 clearly shows

that the downwash is accurately estimated whenever the receiver goes to the contact

position. The estimated z-wind (downwash) is due to the tanker’s wake vortices

because the prevailing wind does not have z-component.

As shown in Fig. 7.59, as the level of noise increases (i.e., multiplication factor

G increases), the station-keeping error in all three directions increases as well in both

cases: (i) measured state feedback and (ii) estimated state feedback. This analysis is

repeated with two different values of correlation time constant: (i) τv = 0.05 second

on the left side of Fig. 7.59 and (ii) τv = 1 second on the right side of Fig. 7.59.

For all values of G, the estimated state feedback yields smaller station keeping error

as compared to the performance of the direct state measurement feedback in both

cases of the correlation time constants. Only exception is in the y-component in

the case of τv = 1 second. In this case, the y-error is smaller with measurement

feedback, but only for very small values of G. Even in this case, when G is greater than

about 0.6, the measurement feedback yields much larger error. Another important

advantage of using estimated state feedback is shown by the maximum value of G

for which the feedback controller can manage to provide station keeping even if with

slightly larger errors. Figure 7.59 shows that the measurement feedback works only

for very small values of G in both cases of τv. On the other hand, the state estimate

feedback works up to G = 3 when τv = 0.05 second up to G = 7 when τv = 1
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second. This analysis shows that the algorithm developed in this research to handle

colored measurement noise is limited mainly by the correlation time constant. The

largest correlation time constant the estimation can work is 1 second. Recall that

the larger the correlation time constant is, the more ”colored” the measurement noise

becomes. If the measurement noise is too colored, the estimation cannot converge,

probably because the algorithm cannot remove the coloredness of the measurement.

This limitation can be eased up by better tuning the process noise covariance in the

KF.

Fig. 7.60 shows the effect of the turbulence intensity on the station keeping

performance and compares the performances of two cases: (i) estimated state feedback

and (ii) measured state feedback. The simulations that generated these results use

the same multiplication factor G = 1 and same correlation time constant τv = 1

at a contact position simulated between 860 and 980 seconds. The figure shows

that the components of the relative position errors increase in both cases as the

turbulence intensity increases. The maximum intensity at which the controller still

works is higher, 2 m/s (6.56 ft/sec), with estimated state feedback than that, 1.2

m/s (3.94 ft/s), with measured state feedback. Note that Fig. 2.5 shows the range

of the turbulence goes up to moderate turbulence with estimated state feedback

while it stays close to light turbulence with measured state feedback. Figure 7.60

also shows that the station keeping performance (the range of position error relative

to the commanded contact position) of the closed loop system is much better with

estimated state feedback throughout the whole feasible turbulence range. Therefore,

this analysis clearly shows the benefit of using estimated state feedback over the

measurement feedback.

141



0 1 2 3
2

4

6

8

10

τ
v
 = 0.05 [sec]

∆X
 [m

]

0 1 2 3
0

10

20

30

40

∆Y
 [m

]

0 1 2 3
0

5

10

15

20

G:Multiplication Factor

∆Z
 [m

]

0 2 4 6 8
0

10

20

30

τ
v
 = 1 [sec]

∆X
 [m

]

 

 

Mea.Feedback
Est.Feedback

0 2 4 6 8
5

10

15

20

25
∆Y

 [m
]

0 2 4 6 8
0

5

10

15

20

G:Multiplication Factor

∆Z
 [m

]

Figure 7.59. Parameter Study of Colored Measurement Noise Variance by Multiplying
G with the Noise Characteristics of Table 2.2. Turbulence Intensity is 0.39 m/s.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

Kalman Filter based estimation algorithms are developed for the estimation

of the aircraft states and the wind exposure, separately for the tanker and receiver

aircraft flying in formation for an aerial refueling operation. The aircraft states are

estimated by a Square-Root Unscented Kalman Filter (SR-UKF) because the math-

ematical models of tanker and receiver aircraft are highly non-linear, the flight op-

eration covers various trim conditions, and aircraft are exposed to various sources of

wind. A main advantage of UKF and SR-UKF in implementation is that they do

not require the calculation of complex Jacobian matrices. The scalar forms of the

equations need to be used in the UKF or SR-UKF. A wind estimation model for the

tanker or receiver aircraft is obtained by rearranging the translational dynamics in

terms of wind terms. The wind can also be calculated through a combination of the

available measurements without estimation, which is called Calculated Measurement

of Wind (CMW) in this work. The CMW has large magnitudes of noise even after

the CMW is passed through a moving average filter to reduce its large noise level. If

the CMW is used in the estimation of the state of the tanker aircraft or the receiver

aircraft, the state estimation will be divergent or have the problem of mathemati-

cal singularity. In other words, the covariance of the state of SR-UKF has a large

possibility to be divergent. To avoid the divergence of the covariance of the state,

the wind estimation is done by augmenting the equations of motion of the tanker or

the receiver aircraft with the wind model in the SR-UKF. However, the augmented

equations of motion have a singularity problem due to the fact that the wind model
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is a modified version of the translational dynamics equations, which is part of the

augmented system update in the SR-UKF along with the wind equation. This singu-

larity problem is resolved by tuning the covariance matrix of the process noise in the

estimation. Another reason to tune the covariance matrix of the process noise is to

represent the effect of turbulence, which is the process noise to the aircraft dynamics.

The SR-UKF estimator developed for the tanker and receiver aircraft are evalu-

ated in an integrated simulation environment. The simulation includes three sources

of wind: (i) prevailing wind, (ii) turbulence and (iii) wake vortex induced wind. The

tanker is exposed to the superposition of prevailing wind and turbulence while the

receiver experiences the superposition of all the three sources. The prevailing wind

is generated by two different methods: (i) a wind profile extracted from a test flight

data, and (ii) a probabilistic method that is based on filtering a white noise process

through a linear filter. The estimation algorithms work equally well in either case

of the prevailing wind in both tanker and receiver aircraft. The receiver aircraft is

exposed to the vortex-induced wind when it flies in the wake of the tanker in addition

to the prevailing wind and turbulence. Since the SR-UKFs estimate the total wind

each aircraft experiences, the receiver estimator successfully determines the effect of

the vortex-induced wind in the total wind exposure whenever the receiver aircraft

moves behind the tanker aircraft. The difference between the winds estimated in the

tanker and receiver aircraft reveals the vortex induced wind since the aircraft are

exposed to the same prevailing wind and turbulence.

The wind estimation algorithms are developed to work with colored measure-

ment noise as well as zero-mean Gaussian white noise in the SR-UKF. To deal with

colored measurement noise in Kalman filter, a new measurement that have the char-

acteristics of a zero-mean Gaussian white noise is defined. By using this new mea-
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surement equation for the measurement update of SR-UKF, the SR-UKF becomes a

conventional KF based on the white measurement noise.

A parameter study is conducted to determine the verifications of the estimation

algorithms in the case of colored measurement noise. The maximum available corre-

lation time constant, which is a key parameter to determine sensor’s specifications,

is 100 seconds for the tanker without estimation feedback control, and 1 second for

the receiver aircraft with estimated state feedback control. An additional parame-

ter study is performed to evaluate the robustness of the estimation algorithm. As

turbulence intensity increases, the variance of the estimation error increases in both

aircraft. The maximum turbulence intensity is 3 m/s for the tanker and 2 m/s for

the receiver aircraft estimators to still yield convergent results. The maximum inten-

sity values represent moderate turbulence while 0.39 intensity which is default in the

estimation algorithm represents light turbulence.

The controller for the receiver aircraft to track position commands relative to the

tanker aircraft is provided with the estimated states instead of the measured states

to determine whether estimated state feedback improves closed loop performance.

Another parameter study is conducted to investigate the sensitivity of the station-

keeping performance of the receiver against the level of measurement noise. The

level of measurement noise is quantified by a multiplication factor for the variations

of all the state measurement errors in a baseline case. The parameter study shows

that the station-keeping controller is able to perform its task with the multiplication

factor increased up to seven when the controller uses the estimated state feedback.

On the other hand, when the measured states are fedback, the controller fails if the

multiplication factor is greater than 0.6. This indicates that the estimated state

feedback improves the robustness of the station keeping performance against the

measurement noise.
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One of the limitations of the proposed estimation algorithm is that it depends on

the process noise covariance, which is not known. The process noise covariance from

the Dryden turbulence model cannot be used in estimation because the estimated

wind model, calculated from the estimated states, does not reflect the process noise.

Thus, the process noise covariance in SR-UKF is not known, and thus needs to be

tuned. Since no systematic tuning procedure is suggested, the selection of the process

noise covariance matrix, based on simulation experiments, is not necessarily the best

one and may yield a degraded performance in actual implementation. An adaptive

process noise covariance in non-linear Square-Root Unscented Kalman Filter should

be developed for tuning the process noise covariance automatically. This will remain

as a future work. If an adaptive procedure is developed, the performance of the

estimation method will be enhanced even though a large correlation time constant is

applied. Further, this research focuses on the estimation of the translational wind.

However, the receiver aircraft is also exposed to rotational wind when flying behind

the tanker. Since this effect is not taken into account in the estimation, it is stated as

unmodeled disturbance in the system update part of the estimation. If the rotational

wind can also be estimated along with the translational wind, the performance of the

estimation may improve. Thus, the estimation of the rotational wind should be a

topic for future work.

In this research, no attempt is made to tune the controller to improve the

station-keeping and trajectory-tracking performance of the receiver controller. This

research is focused on improving the closed loop performance by employing estimation

techniques for a fixed controller. Another item for future work is to re-tune the current

controller or design different controllers using estimated state feedback in order to

further improve the relative position tracking performance of the receiver aircraft.
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When the receiver aircraft flies behind the tanker, it is exposed to nonuniform

wind field. This means that the airdata sensor on the receiver will read different

airspeed, side-slip angle and angle-of-attack data, depending on its placement on the

aircraft. Namely, the airdata sensor will provide local readings while the aircraft dy-

namics is affected by the distribution of the wind over the aircraft. In the current

research, the receiver estimator uses data from effective airspeed, side-slip angle and

angle-of-attack calculations, instead of local readings. The overall effect of this prac-

tice in simulation should be investigated and eventually local airdata sensor readings

should be used in the estimation.
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APPENDIX A

SCALAR FORM OF EQUATIONS OF MOTION FOR TANKER
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The equations of motion for tanker aircraft including wind are described in

Ref. [31]. The scalar forms of tanker equations are required for development of the

family of the unscented Kalman filters.

A.1 Translational Dynamics of Tanker Aircraft

The translational dynamics in scalar form are
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where
[
(ẆIT )x, (ẆIT )y, (ẆIT )z

]
are the derivative of the components of the wind

expressed in the inertial frame .
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In addition to the gravitational force, the external forces are aerodynamics force (DT ,

ST , LT ) and thrust (TT ).

The aerodynamic forces are given by

DT =
1

2
ρV 2

T
SaCDT

ST =
1

2
ρV 2

T
SaCST

LT =
1

2
ρV 2

T
SaCLT

(A.4)

where Sa is the reference area of the tanker aircraft. The aerodynamic coefficients

are

CDT = CD0 + CDα2α
2
T

CST = CS0 + CSββT + CSδr δrT

CLT = CL0 + CLααT + CLα2 (α
T
− αref )2 + CLq

c
T

2V
T

qrel + CLδeδeT

(A.5)

In scalar form of the relative angular velocity,

prel = p
T
− peff

qrel = q
T
− qeff

rrel = r
T
− reff

(A.6)
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where p
T
, q

T
, and r

T
are angular velocity relative to the inertial frame. peff , qeff ,

and reff are rotational wind relative to the inertial frame.

Rotational matrix (RBTI) from the inertial frame to the tanker body frame is

given by

RBTI =


R11 R12 R13

R21 R22 R23

R31 R32 R33

 (A.7)

where each element is
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A.2 Rotational Dynamics of Tanker Aircraft

Rotational dynamics in scalar form are
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where Ix, Iy, Iz, and Ixz are moments of inertia. The moments are given by
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The moment coefficients are expressed by
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A.3 Rotational Kinematics of Tanker Aircraft

Rotational kinematics in scalar form are

ψ̇
T

= (q
T

sinφ
T

+ r
T

cosφ
T
) sec θ

T

θ̇
T

= (q
T

cosφ
T
− r

T
sinφ

T
)

φ̇
T

= p
T

+ (q
T

sinφ
T

+ r
T

cosφ
T
) tan θ

T

(A.12)
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where (ψ
T
, θ

T
, φ

T
) are the Euler angles relative to the inertial frame.

A.4 Translational Kinematics of Tanker Aircraft

Translational kinematics in scalar form are

ẋ
T

= (V
T

cos β
T

cosα
T
)R11 + (V

T
sin β

T
)R21 + (V

T
sinα

T
cos β

T
)R31 + (WIT )x

ẏ
T

= (V
T

cos β
T

cosα
T
)R12 + (V

T
sin β

T
)R22 + (V

T
sinα

T
cos β

T
)R32 + (WIT )y

ż
T

= (V
T

cos β
T

cosα
T
)R13 + (V

T
sin β

T
)R23 + (V

T
sinα

T
cos β

T
)R33 + (WIT )z

(A.13)

where [(WIT )x, (WIT )y, (WIT )z] are components of wind velocity expressed in the in-

ertial frame.

A.5 Model of the Wind Experienced by Tanker

Wind components expressed in the inertial frame are

(ẆIT )x = R11(ẆBt)x +R21(ẆBt)y +R31(ẆBt)z

(ẆIT )y = R12(ẆBt)x +R22(ẆBt)y +R32(ẆBt)z

(ẆIT )z = R13(ẆBt)x +R23(ẆBt)y +R33(ẆBt)z

(A.14)
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where

(ẆBt)x = r
T
V
T

sin β
T
− q

T
V
T

sinα
T

cos β
T

+
1

m
T

(−m
T
g sin θ

T
−D

T
cos β

T
cosα

T
+ S

T
cosα

T
sin β

T
+ L

T
sinα

T
+ Tx)

−
(
V̇
T

cos β
T

cosα
T
− β̇

T
V
T

sin β
T

cosα
T
− α̇

T
V
T

cos β
T

sinα
T

)
(ẆBt)y = −r

T
V
T

cos β
T

cosα
T

+ p
T
V
T

sinα
T

cos β
T

+
1

m
T

(m
T
g sinφ

T
cos θ

T
−D

T
sin β

T
− S

T
cos β

T
+ Ty)

−
(
V̇
T

sin β
T

+ β̇
T
V
T

cos β
T

)
(ẆBt)z = q

T
V
T

cos β
T

cosα
T
− p

T
V
T

sin β
T

+
1

m
T

(m
T
g cosφ

T
cos θ

T
−D

T
sinα

T
cos β

T
+ S

T
sinα

T
sin β

T
− L

T
cosα

T
+ Tz)

−
(
V̇
T

cos β
T

sinα
T
− β̇

T
V
T

sin β
T

sinα
T

+ α̇
T
V
T

cos β
T

cosα
T

)
(A.15)

155



APPENDIX B

SCALAR FORM OF EQUATIONS OF MOTION FOR RECEIVER
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The equations of motion for receiver aircraft including wind effect are described

in Ref. [31]. The scalar forms of tanker equations are required for the development

of the family of the unscented Kalman filters.

B.1 Translational Dynamics of Receiver Aircraft

The translational dynamics in scalar form are

V̇ = g[cosα cos β(−sin θ
T
R11 + sinφ

T
cos θ

T
R12 + cosφ

T
cos θ

T
R13)

+ sin β(− sin θ
T
R21 + sinφ

T
cos θ

T
R22 + cosφ

T
cos θ

T
R23)

+ cos β sinα(− sin θ
T
R31 + sinφ

T
cos θ

T
R32 + cosφ

T
cos θ

T
R33)]

+
1

m
(−D + Tx cosα cos β + Ty sin β + Tz cos β sinα)

+ (p+ p
T
R11 + q

T
R12 + r

T
R13)(Wz sin β −Wy cos β sinα)

+ (q + p
T
R21 + q

T
R22 + r

T
R23)(−Wz cosα cos β +Wx cos β sinα)

+ (r + p
T
R31 + q

T
R32 + r

T
R33)(Wy cosα cos β −Wx sin β)

− (Ẇx cosα cos β + Ẇy sin β + Ẇz cos β sinα) (B.1)
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β̇ = (p+ p
T
R11 + q

T
R12 + r

T
R13) sinα

− (r + p
T
R31 + q

T
R32 + r

T
R33) cosα

+
g

V
[− cosα sin β(− sin θ

T
R11 + sinφ

T
cos θ

T
R12 + cosφ

T
cos θ

T
R13)

+ cos β(− sin θ
T
R21 + sinφ

T
cos θ

T
R22 + cosφ

T
cos θ

T
R23)

− sinα sin β(− sin θ
T
R31 + sinφ

T
cos θ

T
R32 + cosφ

T
cos θ

T
R33)]

− 1

mV
(S + Tx cosα sin β − Ty cos β + Tz sinα sin β)

+
1

V
[(p+ p

T
R11 + q

T
R12 + r

T
R13)(Wz cos β +Wy sinα sin β)

+ (q + p
T
R21 + q

T
R22 + r

T
R23)(Wz cosα sin β −Wx sinα sin β)

+ (r + p
T
R31 + q

T
R32 + r

T
R33)(−Wy cosα sin β −Wx cos β)

− (−Ẇx cosα sin β + Ẇy cos β − Ẇz sinα sin β)] (B.2)

α̇ = (p+ p
T
R11 + q

T
R12 + r

T
R13)(− sin β cosα sec β)

+ (q + p
T
R21 + q

T
R22 + r

T
R23)

+ (r + p
T
R31 + q

T
R32 + r

T
R33)(− sin β sinα sec β)

+
g

V
[− sec β sinα(− sin θ

T
R11 + sinφ

T
cos θ

T
R12 + cosφ

T
cos θ

T
R13)

+ cosα sec β(− sin θ
T
R31 + sinφ

T
cos θ

T
R32 + cosφ

T
cos θ

T
R33)]

− 1

mV
(L sec β + Tx sec β sinα− Tz cosα sec β)

+
1

V
[(p+ p

T
R11 + q

T
R12 + r

T
R13)(−Wy cosα sec β)

+ (q + p
T
R21 + q

T
R22 + r

T
R23)(Wz sinα sec β +Wx cosα sec β)

+ (r + p
T
R31 + q

T
R32 + r

T
R33)(−Wy sinα sec β)

− (−Ẇx sec β sinα + Ẇz cosα sec β)] (B.3)
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where (Wx, Wy, Wz) are the components of the wind velocity expressed in the body

frame, and (Ẇx, Ẇy, Ẇz) are the derivatives of the wind body components relative

to the receiver body frame.

In addition to graviational force, the external forces are aerodynamics forces

(D, S, L), and thrust (Tx,Ty, Tz). The components of aerodynamics force are

D =
1

2
ρV 2SaCD

S =
1

2
ρV 2SaCS

L =
1

2
ρV 2SaCL

(B.4)

where Sa is the reference area of the receiver aircraft. The aerodynamic coefficients

are

CD = CD0 + CDαα + CDα2α
2 + CDδeδe + CDδe2δ

2
e + CDδsδs + CDδs2δ

2
s

CS = CS0 + CSββ + CSδaδa + CSδr δr

CL = CL0 + CLαα + CLα2(α− αref )2 + CLq
c

2V
R

qrel + CLδeδe + CLδsδs

(B.5)

The relative angular velocity vector is given by

ω̄rel = ω̄
BR
− ω̄eff (B.6)

where

ω̄
BR

= ω̄
BRBT

+ ω̄
BT

(B.7)

In matrix form, the relative angular velocity of the receiver is expressed at the receiver

body frame.

ωrel = ω
BRBT

+ RBRBT
ω
BT
− ωeff (B.8)
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In scalar form of the relative angular velocity,

prel = p+ p
T
R11 + q

T
R12 + r

T
R13 − peff

qrel = q + p
T
R21 + q

T
R22 + r

T
R23 − qeff

rrel = r + p
T
R31 + q

T
R32 + r

T
R33 − reff

(B.9)

where

R11 = cos θ cosψ

R12 = cos θ sinψ

R13 = − sin θ

R21 = − cosφ sinψ + sinφ sin θ cosψ

R22 = cosφ cosψ + sinφ sin θ sinψ

R23 = sinφ cos θ

R31 = sinφ sinψ + cosφ sin θ cosψ

R32 = − sinφ cosψ + cosφ sin θ sinψ

R33 = cosφ cos θ (B.10)
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B.2 Rotational Dynamics of Receiver Aircraft

ṗ =

(
IzL+ IxzN
IxIz − I2xz

)
+

(
IyIz − I2z − I2xz
IxIz − I2xz

)
(q + p

T
R21 + q

T
R22 + r

T
R23)(r + p

T
R31 + q

T
R32 + r

T
R33)

+

(
IzIxz + IxzIx − IxzIy

IxIz − I2xz

)
(p+ p

T
R11 + q

T
R12 + r

T
R13)(q + p

T
R21 + q

T
R22 + r

T
R23)

− [r(p
T
R21 + q

T
R22 + r

T
R23)− q(pTR31 + q

T
R32 + r

T
R33)]

− (ṗ
T
R11 + q̇

T
R12 + ṙ

T
R13) (B.11)

q̇ =
M
Iy

+
Ixz
Iy

[(r + p
T
R31 + q

T
R32 + r

T
R33)

2 − (p+ p
T
R11 + q

T
R12 + r

T
R13)

2]

+
Iz − Ix
Iy

(p+ p
T
R11 + q

T
R12 + r

T
R13)(r + p

T
R31 + q

T
R32 + r

T
R33)

− [p(p
T
R31 + q

T
R32 + r

T
R33)− r(pTR11 + q

T
R12 + r

T
R13)]

− (ṗ
T
R21 + q̇

T
R22 + ṙ

T
R23) (B.12)

ṙ =

(
IxzL+ IxN
IxIz − I2xz

)
+

(
IxzIy − IxzIz − IxzIx

IxIz − I2xz

)
(q + p

T
R21 + q

T
R22 + r

T
R23)(r + p

T
R31 + q

T
R32 + r

T
R33)

+

(
I2xz + I2x − IxIy
IxIz − I2xz

)
(p+ p

T
R11 + q

T
R12 + r

T
R13)(q + p

T
R21 + q

T
R22 + r

T
R23)

− [q(p
T
R11 + q

T
R12 + r

T
R13)− p(pTR21 + q

T
R22 + r

T
R23)]

− (ṗ
T
R31 + q̇

T
R32 + ṙ

T
R33) (B.13)
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The moments are given by

L =
1

2
ρV 2S

R
bCL −4zTy +4yTz

M =
1

2
ρV 2S

R
cCM +4zTx +4xTz

N =
1

2
ρV 2S

R
bCN −4yTx −4xTy

(B.14)

where b is the wingspan, c is the chord length of the receiver aircraft, and (4x, 4y,

4z) are the moment arms of the thrust in the body frame of the receiver. The moment

coefficients are

CL = CL0 + CLδaδa + CLδr δr + CLββ + CLp
b

2V
prel + CLrrel

b

2V
rrel

CM = CM0 + CMαα + CMδe
δe + CMq

c

2V
qrel + CMδs

δs

CN = CN0 + CNδaδa + CNδr δr + CNββ + CNp
b

2V
prel + CNrrel

b

2V
rrel

(B.15)

B.3 Rotational Kinematics of Receiver Aircraft

Rotational kinematics is

ψ̇ = (q sinφ+ r cosφ) sec θ (B.16)

θ̇ = (q cosφ− r sinφ) (B.17)

φ̇ = p+ (q sinφ+ r cosφ) tan θ (B.18)

where the orientation (ψ, θ, φ), and the angular velocity (p,q,r) are relative to the

tanker expressed in the receiver body frame.
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B.4 Translational Kinematics of Receiver Aircraft

The scalar form of the relative motion of the translational kinematics of the

receiver including wind effect are given by

ẋ = (V cos β cosα +Wx)R11 + (V sin β +Wy)R21 + (V sinα cos β +Wz)R31

− [VxT (cos θ
T

cosψ
T
) + VyT (cos θ

T
sinψ

T
)− VzT sin θ

T
]

+ (r
T
y − q

T
z) (B.19)

ẏ = (V cos β cosα +Wx)R12 + (V sin β +Wy)R22 + (V sinα cos β +Wz)R32

− [VxT (− cosφ
T

sinψ
T

+ sinφ
T

sin θ
T

cosψ
T
)

+ VyT (cosφ
T

cosψT + sinφ
T

sin θ
T

sinψ
T
) + VzT (sinφ

T
cos θ

T
)]

+ (p
T
z − r

T
x) (B.20)

ż = (V cos β cosα +Wx)R13 + (V sin β +Wy)R23 + (V sinα cos β +Wz)R33

− [VxT (sinφ
T

sinψ
T

+ cosφ
T

sin θ
T

cosψ
T
)

+ VyT (− sinφ
T

cosψT + cosφ
T

sin θ
T

sinψ
T
) + VzT (cosφ

T
cos θ

T
)]

+ (q
T
x− p

T
y) (B.21)

where (Wx, Wy, Wz) are relative to the inertial frame expressed in the receiver body

frame.
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B.5 Wind Components of Receiver Aircraft

(ẆIR)x = R11(Ẇtmp)x +R21(Ẇtmp)y +R31(Ẇtmp)z (B.22)

(ẆIR)y = R12(Ẇtmp)x +R22(Ẇtmp)y +R32(Ẇtmp)z (B.23)

(ẆIR)z = R13(Ẇtmp)x +R23(Ẇtmp)y +R33(Ẇtmp)z (B.24)

where

(Ẇtmp)x = (V sin β) (r + T3)− (V sinα cos β) (q + T2)

+ g (− sin θTR11 + sinφT cos θTR12 + cosφT cos θTR13)

+
1

m
R

(−D cos β cosα + S cosα sin β + L sinα + Tx)

−
(
V̇ cos β cosα− β̇V sin β cosα− α̇V cos β sinα

)
(B.25)

(Ẇtmp)y = −(V cos β cosα)(r + T3) + (V sinα cos β)(p+ T1)

+ g (− sin θTR21 + sinφT cos θTR22 + cosφT cos θTR23)

+
1

m
R

(−D sin β − S cos β + Ty)

−
(
V̇ sin β + β̇V cos β

)
(B.26)
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(Ẇtmp)z = (V cos β cosα)(q + T2)− (V sin β)(p+ T1)

+ g (− sin θTR31 + sinφT cos θTR32 + cosφT cos θTR33)

+
1

m
R

(−D sinα cos β + S sinα sin β − L cosα + Tz)

−
(
V̇ cos β sinα− β̇V sin β sinα + α̇V cos β cosα

)
(B.27)

where

T1 = p
T
R11 + q

T
R12 + r

T
R13

T2 = p
T
R21 + q

T
R22 + r

T
R23

T3 = p
T
R31 + q

T
R32 + r

T
R33 (B.28)

ẆIR is the wind derivative relative to the inertial frame.

The relation between wind derivative relative to the receiver body frame and

wind derivative relative to the inertial frame is

[BR]T ẆBR = [BR]T
[
RBRIẆIR + S(ωBR)WBR

]
(B.29)

where WBR is the wind velocity components relative to the inertial frame expressed

in the receiver body frame.

ẆBR =


Ẇx

Ẇy

Ẇz

 , ẆIR =


(ẆIR)x

(ẆIR)y

(ẆIR)z

 , WBR =


Wx

Wy

Wz

 (B.30)
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