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ABSTRACT

NONLINEAR DYNAMICS AND STOCHASTICITY OF

CORE GENETIC REGULATION

HONGGUANG XI, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Marc Turcotte

Bacillus subtilis is one of the very well-studied organisms in biology. Recent

results show that an alternative competence regulation circuit for this bacterium,

differing only in the order of the composite negative feedback loop onto the master

competence regulator gene comK, despite presenting equivalent functionality, exhibits

physiologically important differences.

It is not clear why Nature only selects a specific gene regulation circuit other

than a plethora of equivalent others. Here, we hope, from the point of view of reverse

engineering, to discover the fundamental reasons for natural selection of a particular

circuit structure over another. Based on the wild-type Bacillus subtilis circuit, we

add a positive autoregulation feedback loop to the intermediate gene comS in the

composite negative feedback loop onto ComK. Since positive feedback loops are most

frequently observed in biology, this hypothetical modification of the original circuit

is evolutionarily plausible.
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We use bifurcation theory to study the dynamical features of the hypothetical

gene circuit vs. the feedback strength of the added positive autoregulation loop, and

we rely on stochastic simulations to perform in silico experiments. We discover the

existence of a bistable system: a stable limit cycle and a stable fixed point separated

by an unstable limit cycle with a varying height of underlying stochastic potential.

This structure is absent from the wild type. The coexistence of the unstable limit

cycle and stochastic noise endows the circuit with an ability to trap, shield or switch

between its two stable attractors. We study the implications for competence. By

calculating the probability of entering competence, we conclude that the hypothetical

circuit possesses less ability, compared to the wild-type circuit, to survive the severe

environmental stresses. This provides some insight into the natural selection of a

particular circuit structure by Evolution.
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CHAPTER 1

INTRODUCTION

1.1 Background

Isogenic cell populations can generate different phenotypes due to epigenetic

mechanisms [1]. This heterogeneity is meaningful in enhancing the cellular adapt-

ability to the environmental changes at the population level [2, 3, 4, 5]. In the point

view of dynamical systems these different phenotypes can be viewed as bistability or

multi-stability [6].

It has been shown mathematically that positive nonlinear feedback regulation

is necessary for the experimental observation of bistability and for excitability [7].

Two famous examples of epigenetic phenotypic variation are the lactose uti-

lization [8, 9, 10] and lysis/lysogeny switches [11, 12] in Escherichia coli. In these

examples theoretical modeling and simulations demonstrate the possible contribution

of biochemical noise.

We are concerned with the competence phenotype in the bacterium Bacillus

subtilis. Competence for transformation is a transient natural ability for B. subtilis

to perform horizontal gene transfer. It is a regulated cellular state induced by en-

vironmental stresses whereby bacteria actively accept exogenous free DNA from the

environment, and incorporate it into its own genome [13].

Isogenic populations of B. subtilis exhibit two (competent and vegetative) states

and therefore can be viewed as a bi-stable system. Between 10 ∼ 25% of a wild-type

B. subtilis culture exhibits competence [13], but this depends on conditions.
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In B. subtilis, the master regulator of the competence machinery is the tran-

scription factor ComK [14], which binds DNA as a tetramer [15], and activates well

over 100 genes [16]. ComK is activated via quorum sensing and it is multiply regu-

lated at the transcriptional level. ComK is also a transcription factor for its own gene

(comK), thereby defining a positive feedback loop at the core of the competence net-

work. ComK is degraded proteolytically: the constitutively abundant protein MecA

binds ComK and targets the complex for degradation by the ClpP-ClpC proteases.

The small protein ComS, induced by the quorum sensing machinery and indirectly

inhibited by ComK, releases ComK from the complex, through competitive binding

to MecA. This defines a negative feedback loop taking the system out of competence.

[17, 18, 19, 20].

Transcriptional, rather than translational noise, is the main source of noise in

gene regulatory systems [12]. Intrinsic stochastic fluctuations (noise) in transcription

of the comK gene consistent with observed low mRNA transcript numbers induce

randomness in the timing of competence excursions [21].

Süel et al. [22, 23] showed how entry into competence is a stochastic event that

depends on intrinsic noise and that competence excursions (entry followed later in

time by concomitant exit) are a consequence of excitability. They abstracted complex

regulatory dynamics to a core of necessary and sufficient processes: positive auto-

regulatory feedback of ComK onto comK, and indirect negative feedback by ComS

on the degradation of ComK (see Fig. 1.1(A)). And with the MeKS model [22] of the

excitable system they interpreted the experimentally observed competence events.

In the MeKS model, B. subtilis resides mostly in the vegetative state at high

ComS and low ComK. Occasionally, random biochemical fluctuations make the sys-

tem cross the separatrix, causing it to undergo a committed long-distance excursion.
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The MeKS model provides a consistent prediction of the probability of competence

initiation, duration and variation, etc..

It is shown experimentally and theoretically that subtly different competence

circuit topologies result in biologically important different noise characteristics [24].

Specifically, model predictions for a mutant Bacillus subtilis for which only the order

of the negative regulation loop through the intermediary ComS gene was inverted,

were confirmed experimentally. The mutant shows a decreased level of noise and

behaves more like a regular clock, than an excitable system. It is less efficient at

sampling a randomly changing environment making it less desirable than WT, from

an evolutionary standpoint.

Herein, we are concerned with the reasons why Evolution might have selected

a specific circuit and rejected all other choices based on dynamical features of the

genetic network and the functions of biochemical noise. We introduced a minimal

modification to the MeKS model by adding positive auto-regulation onto the in-

termediary gene comS, which we denote comS* (or its product ComS*) (see Fig.

1.1(B)). This paper is about the mathematical consequences induced by regulatory

choices both from the deterministic (high molecular numbers) and the more realistic

stochastic (low molecular numbers) points of view. We are interested by dynamical

features arising from nonlinear dynamics of gene regulatory circuits coupled with in-

trinsic biochemical noise, and attempt to shed light on “why” random evolutionary

choices could have been made.

1.2 Organization

We first described the molecular mechanisms with biochemical reactions (see

Section 2.1), stochastic model (see Section 2.2) and deterministic models (see Section

2.3 and Section 2.4). Then, we compared the dynamical features of 6-ODE and
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2-ODE systems using phase portrait and bifurcation analysis (see Section 2.5). In

Section 2.6 we explained how to calculate nullclines and fixed points. In Section 2.7

we introduced the strategy for parameterization using simulated annealing algorithm.

We explained in detail the calculation of time in competence in Section 2.8.

Then, we studied the dynamical features and stochastic behaviors of CircuitOne,

traversing the parameter space of bs∗ (see Section 3.1.1 - Section 3.1.3). We calcu-

lated the probability of entering competence (see Section 3.1.4) and explained the

stochastic trap effect endowed by the unstable limit cycle (see Section 3.1.5).

Next, we discussed the importance of the added positive feedback loop and

explained the stochastic trap/shield effects by considering the interplays between

limit cycles (see Section 3.2).

Finally, we summarized our current work and mentioned the future directions

(see Chapter 4).

Figure 1.1. Diagrams of MeKS model and CircuitOne model in Bacillus
subtilis. (A) Diagram of MeKS model, which is the WT circuit of competence in B.
subtilis. (B) Diagram of CircuitOne model, which is the hypothetical evolutionary
plausible circuit similar to WT but has, in addition, a positive auto-regulation of the
intermediate gene (comS*).

4



CHAPTER 2

METHODS

2.1 Biochemical Reactions

We hypothetically present a genetic circuit, called “CircuitOne” (see Figure

1.1(B)), which adds an autoregulation loop to the wild type [22, 23].

The biochemical reactions [22, 23] involved in CircuitOne are

P const
comK

k1−→ P const
comK +mRNAcomK ,

PcomK
f(K,k2,kk,n)−−−−−−−→ PcomK +mRNAcomK ,

mRNAcomK
k3−→ mRNAcomK + ComK,

P const
comS∗

k4−→ P const
comS∗ +mRNAcomS∗ ,

PcomS∗
g(K,k5,ks,p,S∗,bss,ss,n∗)−−−−−−−−−−−−−−→ PcomS∗ +mRNAcomS∗ ,

mRNAcomS∗
k6−→ mRNAcomS∗ + ComS∗,

mRNAcomK
k7−→ ∅,

ComK
k8−→ ∅,

mRNAcomS∗
k9−→ ∅,

ComS∗ k10−−→ ∅,

MecA+ ComK
k11/Ω−−−→ MecAK ,

MecA+ ComK
k−11←−− MecAK ,

MecAK
k12−−→ MecA,

MecA+ ComS∗ k13/Ω−−−→ MecAS,
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MecA+ ComS∗ k−13←−− MecAS,

MecAS
k14−−→ MecA,

where P const
comK is the constitutive ComK promoter, PcomK is the regulated ComK pro-

moter, mRNAcomK is the messenger RNA of ComK, ComK is the activator pro-

tein, ComS∗ is the repressor protein, MecA is another protein to which ComK

and ComS∗ bind competitively, MecAK is the dimer of MecA and ComK, ki, i =

1, ..., 14,−11,−13, are reaction rates, and all other notations are similar.

Note that k11/Ω and k13/Ω are used in the case when we consider the molecule

number of each species. If we consider the concentration of each species, we just use

k11 and k13.

MecA can negatively control ComK, i.e., when bound by MecA, the gene ex-

pression of ComK is inhibited. If by competition more ComS∗ bind MecA, then more

ComK get released, so we can say ComS∗ (indirectly) enhances the gene expression

of ComK.

In the above reactions we describe the activating effect of ComS∗ on ComK and

the positive autoregulation of ComK itself by

f(K, k2, kk, n) =
k2K

n

knk +Kn
, (2.1)

where K is the concentration of ComK (ComS∗), k2 is the strength coefficient, kk is

the concentration of ComK when half comK genes are activated, and n is the Hill

coefficient. In total, f behaves as a rate constant.

And, the suppressing effect of ComK on ComS∗ and the positive autoregulation

of ComS∗ itself are manifested in

g(K, k5, ks, p, S
∗, bss, ss, n

∗) =
k5k

p
s

kps +Kp
· bssS

∗n∗

sn∗
s + S∗n∗ (2.2)
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where K (S∗) is the concentration of ComK (ComS∗), k5 is the strength coefficient, ks

is the concentration of ComK when half comS∗ genes are activated, p and n∗ are the

Hill coefficients, ss is the concentration of ComS∗ when half comS∗ genes are activated,

and bss is a scaling factor without unit. In total, g behaves as a rate constant.

2.2 Stochastic Model

The stochastic model consists of 16 elemental biochemical reactions (see Section

2.1) that constitute a discrete event level description of mRNA and protein dynamics

of the two constituent proteins in the system: ComK and ComS*. Included in this

description is mRNA constitutive and regulated production, constitutive degrada-

tion, mRNA translation into ComK and ComS*, and their competitive proteolytic

degradation via complexing (binding) with free MecA, in the form of ComK MecA

(MecAK) and ComS* MecA (MecAS). Biochemical fluctuations are simulated using

the Gillespie algorithm which numerically reproduces the solution of the equivalent

Master Equation of the system [25, 26, 27, 28].

2.3 The 6-ODE Deterministic Model

2.3.1 Model Description

Based on all those reactions (see Section 2.1) we can write six reaction rate

functions:

d[mRNAcomK ]

dt
= k1[P const

comK ] + f(K, k2, kk, n)[PcomK ]− k7 · [mRNAcomK ], (2.3)

d[mRNAcomS∗ ]

dt
= k4[P const

comS∗ ]+g(K, k5, ks, p, S
∗, bss, ss, n

∗)[PcomS∗ ]−k9 ·[mRNAcomS∗ ],

(2.4)

7



d[ComK]

dt
= k3 · [mRNAcomK ]− k8[ComK]− k11 · [MecA] · [ComK]

+k−11[MecAK ], (2.5)

d[ComS∗]

dt
= k6 · [mRNAcomS∗ ]− k10[ComS∗]− k13 · [MecA] · [ComS∗]

+k−13[MecAS], (2.6)

d[MecAK ]

dt
= k11 · [MecA] · [ComK]− k−11[MecAK ]− k12[MecAK ], (2.7)

d[MecAS]

dt
= k13 · [MecA] · [ComS∗]− k−13[MecAS]− k14[MecAS]. (2.8)

2.3.2 Bifurcation Analysis

We studied the dynamics of the 6-ODE continuous description of CircuitOne

with sufficient timescale separation between protein expression and mRNA dynamics.

Figure 2.1(A) shows the bifurcation analysis [29, 30, 31, 32] of the 6-ODE model as

a function of bs∗, the coupling strength at the intermediate gene, in the otherwise

negative regulation loop of CircuitOne. SN refers to the saddle-node bifurcation at

bs∗ = 42.4, which corresponds to a collision between two fixed points: a saddle and

a stable node; HB refers to the subcritical Hopf bifurcation at bs∗ = 419.6, at which

the stability of the fixed points changes from unstable to stable. At the Hopf point,

an unstable limit cycle is born and this is indicated by red dashed lines emanating

from the bifurcation point. An unstable limit cycle (also sometimes loosely called an

unstable periodic “orbit”) is a loop in the dynamical phase plane, from which the local

vector field always points away. As the coupling strength bs∗ is further increased, the

unstable limit cycle grows until bs∗ = 1696 where it collides with the already existing

stable limit cycle (red solid line) at the cyclic fold (CF) bifurcation. HC refers to the

saddle-homoclinic bifurcation at bs∗ = 5.9 where the stable periodic orbit is lost due

to the collision of the stable periodic orbit passing through the saddle. Figure 2.1(A)
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shows the maximum and minimum values of the stable and unstable limit cycles as

red solid and dashed lines, respectively. At the CF bifurcation point, the periodic

oscillatory dynamics therefore disappears: the unstable orbit collides with the stable

one to “annihilate” each other. The 6-ODE model is closer to the stochastic model.

As expected, the thermodynamic limit of the stochastic model with high free MecA,

agrees with the 6-ODE model.

2.4 The 2-ODE Deterministic Model

2.4.1 Model Description

Considering Eq. (2.3) and assuming that the concentration of [mRNAcomK ],

i.e., the number of mRNAcomK , is constant, we get

0 =
d[mRNAcomK ]

dt
= k1[P const

comK ] + f(K, k2, kk, n)[PcomK ]− k7 · [mRNAcomK ].

So,

[mRNAcomK ] =
k1[P const

comK ]

k7

+
f(K, k2, kk, n)[PcomK ]

k7

. (2.9)

Considering Eq. (2.4) and assuming that the concentration of [mRNAcomS∗ ],

i.e., the number of mRNAcomS∗ , is constant, we get

0 =
d[mRNAcomS∗ ]

dt
= k4[P const

comS∗ ]+g(K, k5, ks, p, S
∗, bss, ss, n

∗)[PcomS∗ ]−k9·[mRNAcomS∗ ].

So,

[mRNAcomS∗ ] =
k4[P const

comS∗ ]

k9

+
g(K, k5, ks, p, S

∗, bss, ss, n
∗)[PcomS∗ ]

k9

. (2.10)

Considering Eq. (2.7) and assuming that the concentration of [MecAK ], i.e.,

the number of MecAK , is constant, we get

0 =
d[MecAK ]

dt
= k11 · [MecA] · [ComK]− k−11[MecAK ]− k12[MecAK ].

9



Figure 2.1. Bifurcation diagram of the 6-ODE model and of the adiabatic
2-ODE model. (A) Bifurcation diagram of the 6-ODE model with respect to pa-
rameter bs∗. The black curves represent the fixed points and the red curves represent
the limit cycles, solid for stable and dashed for unstable. The system has saddle-node
(SN), subcritical Hopf (HB), saddle-homoclinic (HC) and cyclic fold (CF) bifurca-
tions. At the HB, the focus changes from unstable to stable with bs∗ increasing.
An unstable limit cycle (red dashed curve) is born at HB and annihilates the cir-
cumventing stable limit cycle (red solid curve) at the bifurcation point CF. With
bs∗ decreasing, the stable limit cycle vanishes as it collides with the saddle at HC.
The parameters [23, 33] are shown in Table 2.3.2. (B) Bifurcation diagram of the
adiabatic 2-ODE model with respect to parameter bs∗. The meaning of the curves
and points are similar to those in (A), and the bifurcation structure of the reduced
2-ODE model is similar to that of the 6-ODE model. The parameters are shown in
in Table 2.3.2.
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Table 2.1. Parameter Set for 6-ODE Model

k1(s−1) k2(s−1) k3(s−1) k4(s−1) k5(s−1) k6(s−1)
0.00525 4.5 0.2 2.4× 10−4 0.036 0.2

k7(s−1) k8(s−1) k9(s−1) k10(s−1) k11(nM−1s−1) k−11(s−1)
0.05 1× 10−5 0.05 1× 10−5 2.02× 10−5 11.62

k12(s−1) k13(nM−1s−1) k−13(s−1) k14(s−1) kk(nM) ks(nM)
0.5 4.5× 10−5 0.0212 4× 10−4 1.2× 105 2× 104

n p ss(nM) n∗ P const
comK(nM) PcomK(nM)

2 5 96 2 1 1

P const
comS (nM) PcomS(nM) MT (nM) bss bs∗ —

1 1 120 400 1200 —

Table 2.2. Parameter Set for 2-ODE Model

αk βk δk λk kk Γk Γs n
8.54× 10−4 0.6 1× 10−4 1× 10−5 4× 103 2× 104 16 2

αs βs δs λs ks ss n∗ p
3.2× 10−5 8× 10−3 1× 10−4 1× 10−5 666.6667 3.2 2 5
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So,

[MecAK ] =
k11 · [MecA] · [ComK]

k−11 + k12

. (2.11)

Considering Eq. (2.8) and assuming that the concentration of [MecAS], i.e.,

the number of MecAS, is constant, we get

0 =
d[MecAS]

dt
= k13 · [MecA] · [ComS∗]− k−13[MecAS]− k14[MecAS].

So,

[MecAS] =
k13 · [MecA] · [ComS∗]

k−13 + k14

. (2.12)

Because the total concentration of [MecA], [MecAK ] and [MecAS], denoted by

[MT ], is constant, we get

[MT ] = [MecA] + [MecAK ] + [MecAS]

= [MecA] +
k11 · [MecA] · [ComK]

k−11 + k12

+
k13 · [MecA] · [ComS∗]

k−13 + k14

. (2.13)

So,

[MecA] =
[MT ]

1 + k11·[ComK]
k−11+k12

+ k13·[ComS∗]
k−13+k14

. (2.14)
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Now, we consider Eq. (2.5):

d[ComK]

dt
= k3 · [mRNAcomK ]− k8[ComK]− k11 · [MecA] · [ComK]

+k−11[MecAK ]

= k3 ·
(
k1[P const

comK ]

k7

+
f(K, k2, kk, n)[PcomK ]

k7

)
−k8[ComK]

−k11 · [MecA] · [ComK]

+k−11
k11 · [MecA] · [ComK]

(k−11 + k12)

=
k1k3[P const

comK ]

k7

+
k3f(K, k2, kk, n)[PcomK ]

k7

−k11 · [MecA] · [ComK] ·
(

1− k−11

k−11 + k12

)
−k8[ComK]

=
k1k3

k7

· [P const
comK ]

+
k3

k7

· k2K
n

knk +Kn
· [PcomK ]

− [MT ]

1 + k11·[ComK]
k−11+k12

+ k13·[ComS∗]
k−13+k14

· [ComK] · k11k12

k−11 + k12

−k8[ComK]

=
k1k3

k7

· [P const
comK ]

+
k2k3

k7

· [PcomK ] · Kn

knk +Kn

−k11k12[MT ]

k−11 + k12

· [ComK]

1 + k11[ComK]
k−11+k12

+ k13[ComS∗]
k−13+k14

−k8[ComK]

= αk +
βkK

n

knk +Kn
− δkK

1 + K
Γk

+ S∗

Γs

− λkK, (2.15)
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where

K = [ComK], (2.16)

αk =
k1k3

k7

· [P const
comK ] =

k1k3

k7

· P
const
comK

Ω
, (2.17)

βk =
k2k3

k7

· [PcomK ] =
k2k3

k7

· PcomK

Ω
, (2.18)

δk =
k11k12[MT ]

k−11 + k12

, (2.19)

Γk =
k−11 + k12

k11

, (2.20)

Γs =
k−13 + k14

k13

, (2.21)

λk = k8. (2.22)
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Similarly, we consider Eq. (2.6):

d[ComS∗]

dt
= k6 · [mRNAcomS∗ ]− k10[ComS∗]− k13 · [MecA] · [ComS∗]

+k−13[MecAS]

= k6 ·
(
k4[P const

comS∗ ]

k9

+
g(K, k5, ks, p, S

∗, bss, ss, n
∗)[PcomS∗ ]

k9

)
−k10[ComS∗]

−k13 · [MecA] · [ComS∗]

+k−13
k13 · [MecA] · [ComS∗]

(k−13 + k14)

=
k4k6[P const

comS∗ ]

k9

+
k6g(K, k5, ks, p, S

∗, bss, ss, n
∗)[PcomS∗ ]

k9

−k13 · [MecA] · [ComS∗] ·
(

1− k−13

k−13 + k14

)
−k10[ComS∗]

=
k4k6

k9

· [P const
comS∗ ]

+
k6

k9

· k5k
p
s

kps +Kp
· bssS

∗n∗

sn∗
s + S∗n∗ · [PcomS∗ ]

− [MT ]

1 + k11·[ComK]
k−11+k12

+ k13·[ComS∗]
k−13+k14

· [ComS∗] · k13k14

k−13 + k14

−k10[ComS∗]

=
k4k6

k9

· [P const
comS∗ ]

+
k5k6bss
k9

· [PcomS∗ ] · kps
kps +Kp

· S∗n∗

sn∗
s + S∗n∗

−k13k14[MT ]

k−13 + k14

· [ComS∗]

1 + k11[ComK]
k−11+k12

+ k13[ComS]
k−13+k14

−k10[ComS∗]

= αs + βs
kps

kps +Kp
· S∗n∗

sn∗
s + S∗n∗ −

δsS
∗

1 + K
Γk

+ S∗

Γs

− λsS∗, (2.23)
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where

S∗ = [ComS∗], (2.24)

αs =
k4k6

k9

· [P const
comS∗ ] =

k4k6

k9

· P
const
comS∗

Ω
, (2.25)

βs =
k5k6bss
k9

· [PcomS∗ ] =
k5k6bss
k9

· PcomS∗

Ω
, (2.26)

δs =
k13k14[MT ]

k−13 + k14

, (2.27)

λs = k10. (2.28)

Now, we get the dimensioned version (in the unit of nM/s):

dK

dt
= αk +

βkK
n

knk +Kn
− δkK

1 + K
Γk

+ S
Γs

− λkK . (2.29)

dS∗

dt
= αs + βs

kps
kps +Kp

· S∗n∗

sn∗
s + S∗n∗ −

δsS
∗

1 + K
Γk

+ S∗

Γs

− λsS∗ . (2.30)

2.4.2 Bifurcation Analysis

Due to timescale separation, the 6-ODE continuous model can be reduced to

a 2-ODE model via adiabatic approximation. Figure 2.1(B) a bifurcation diagram

of the 2-ODE model with ComK vs. bs∗. SN refers to a saddle-node bifurcation at

bs∗ = 42.4. HB refers to the subcritical Hopf bifurcation at bs∗ = 270.3, CF refers

to the cyclic fold bifurcation at bs∗ = 1622 and HC refers to a saddle-homoclinic

bifurcation at bs∗ = 5.9. We find that the bifurcation structure is similar to that of

6-ODE model shown in Figure 2.1(A). However, since in the 6-ODE system, there is

only imperfect timescale separation of dynamics, the bifurcations of the 2-ODE model

are located at slightly different locations. We note that the bifurcation diagrams show

the presence of an unstable limit cycle, which is a circling ravine in the probability of

residence. In terms of a potential function, from which the vector field on the phase
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plane is derived, it can be thought of as a circling ridge. The analogy with a ridge

can be formalized by establishing the correspondence of the vector field to the height

of the ridge, in terms of the underlying stochasticity, via a potential function [34].

2.5 Comparison of Behaviors between 6-ODE and 2-ODE Models

2.5.1 Comparison in Phase Portrait

Figure 2.2 presents a phase plane analysis of the excitable configuration. The

ComK nullcline (red) has a single branch, but the ComS* nullcline possesses multiple

branches shown in cyan, yellow and green. The 6-ODE equivalent curves to the

2-ODE nullclines are shown on the 2-dimensional (ComK, ComS*)-phase plane as

red dots (ComK) and black squares (ComS*). As expected, because of time-scale

separation in the 6-ODE model, we find general good agreement between the 2-ODE

nullclines and their 6-ODE equivalent. However, we notice that timescale separation

in the 6-ODE system is not quite sufficient to yield complete and exact agreement

between the 6-ODE model and its 2-ODE reduced version, throughout the entirety

of the dynamics. Local discrepancy exists in the peak and the valley of the ComK

nullcline. The 6-ODE ComK curve pinches upwards in the peak region and pinches

downwards in the valley region. This is indicated by dashed lines connecting the red

dots. In contrast, in the same regions, the 2-ODE ComK nullcline smoothly rounds

out. Purple stars mark the locations of the fixed points of the 6-ODE dynamics. They

correctly coincide with the intersections of the 2-ODE ComK and ComS* nullclines,

thus demonstrating excellent agreement between the 2-ODE and 6-ODE descriptions,

for the basic nature of the dynamics of the system.

Focusing on differences however, the magenta asterisk #4 in Figure 2.2 locates

a saddle-like region of the 6-ODE dynamics. This dynamical feature does not exist
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in the 2-ODE description because the 2-ODE ComK and ComS* nullclines, although

coming numerically very close to each other in this region of the phase plane, do not

precisely intersect. In Figure 2.2 we provide, for each fixed point of the 6-ODE dy-

namics, a composite speed metric (
√

(dK/dt)2 + (dS∗/dt)2) that measures the local

speed of the dynamics. Thus, we see that the 6-ODE dynamics slows down con-

siderably near canonical fixed point #1, #2 and #3. The 6-ODE dynamics slows

down much less, but still appreciably, near the saddle-like feature indicated by the

magenta asterisk #4. As demonstrated by the blue stochastic track, this location is

exactly where the stochastic dynamics also dwells. The observed dynamical feature is

explained as stochastic dwelling in the vicinity of a relatively flat 6-ODE saddle-like

region of phase space. Figure 2.2 also indicates the presence of a stable node and

hyperbolic fixed point in the 6-ODE dynamics. These features (node #5 and #6)

are located in the lower left corner of the phase plane. The 2-ODE description does

not show these dynamical features. The mismatch in dynamics is due to incomplete

timescale separation in the 6-ODE model, compared to complete timescale separa-

tion in the 2-ODE model. We have verified that a saddle-node bifurcation does also

occur in the 2-ODE model, but at a lower bs∗ (data not shown), thus restoring the

agreement in dynamics. Furthermore, we note that the region of the phase plane

where the saddle-node bifurcation occurs is biologically inaccessible because it resides

at ComS* below 1 molecule ([ComS*]< 1nM).
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Figure 2.2. Agreement of dynamics between 2-ODE and 6-ODE models at
bs∗ = 5. The red circles depict the ComK nullcline, and the gray circles depict the
ComS* corresponding equivalent curve. The solid red curves delineate the ComK
nullcline and the cyan, yellow and green curves delineate the ComS* nullclines of the
2-ODE model, respectively. The magenta curves are the result from the stochastic
simulation. The stability of the different points is shown in the table below the plot.
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2.5.2 Comparison in Bifurcation Structure

Figure 2.1(A) and Figure 2.1(B) are similar and they naturally define three

dynamical regions of interest: bs∗ < HB, HB < bs∗ <CF and bs∗ >CF. These regions

have the following dynamical nature: stable limit cycle around an unstable focus,

stable limit cycle around a stable focus surrounded (i.e. shielded) by a unstable limit

cycle, and stable focus (spiral).

2.6 Nullclines and Fixed Points

We solve a 5-equation system to find the nullclines of ComK and ComS∗, re-

spectively, in 6D-ODE system which are equivalent to those obtained in 2D-ODE

system.

To get the ComK nullclines, we solve

d[mRNAcomK ]
dt

= 0

d[mRNAcomS∗ ]
dt

= 0

d[ComK]
dt

= 0

d[MecAK ]
dt

= 0

d[MecAS ]
dt

= 0

, (2.31)

without considering d[ComS∗]
dt

= 0. We search for the solutions grid by grid in the

ComK-ComS∗ phase plane. For each ComS∗ grid, we try one by one several ComK

grids in a certain range, of which some may converge to one solution, and others may

converge to another solution. This is reason why there may have several branches for

each nullcline (see Figure 2.3).
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Figure 2.3. Details of the calculation of ComS* multi-branch nullclines.
Diamonds denote the nodes in the upper branch (the larger ComS* values), and the
squares denote the nodes in the lower branch (the smaller ComS* values). (A) The
red curve is the ComK nullcline. The cyan, yellow and green curves are the ComS*
multi-branch nullclines. (B-F) For each ComK value, we find the ComS* nullcline
candidates for which the absolute dComS*/dt value falls below a threshold equal to
0.1. We then select the local minima of the candidates as the solutions.

Similarly, to get the ComS∗ nullclines, we solve

d[mRNAcomK ]
dt

= 0

d[mRNAcomS∗ ]
dt

= 0

d[ComS∗]
dt

= 0

d[MecAK ]
dt

= 0

d[MecAS ]
dt

= 0

, (2.32)

without considering d[ComK]
dt

= 0, and use the same grid-by-grid searching strategy.
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To get the fixed points in 6D-ODE system, we solve the 6-equation system:

d[mRNAcomK ]
dt

= 0

d[mRNAComS∗ ]
dt

= 0

d[ComK]
dt

= 0

d[ComS∗]
dt

= 0

d[MecAK ]
dt

= 0

d[MecAS ]
dt

= 0

. (2.33)

The scheme is also to search grid-by-grid for solutions in the given range of

ComK-ComS∗ phase space. We calculate the eigenvalues of 6×6 Jacobian matrix and

determine the types of the fixed points based on the relationships of all 6 eigenvalues

[35].

It is noticed that the solutions approach to zero with different orders of magni-

tude, which may correspond to their potential gradients or the residency probabilities.

The 2D-ODE nullclines, equivalent ones obtained in 6D-ODE system and fixed

points are shown in Figure 2.2.

We notice that the 4-th fixed point is not exactly on the intersection of ComK

and ComS∗ nullclines. It is due to its relatively high speed, compared with other fixed

points. In the stochastic simulation there is a minor dwelling around this “quasi”

hyperbolic fixed point.

Below the 4-th fixed point there is an intersection of ComK and ComS∗ null-

clines, but no label of the fixed point is shown. In fact, there are solutions detected

around the intersection, but all of them are abandoned because each solution contains

negative values of the concentrations, which is not biologically meaningful.
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2.7 Stochastic Search

When we plot the nullclines, if the nullclines are not ideal, e.g., not in the

biologically meaningful region, we usually have to modify a set of parameters by trial

and error until we get an acceptable one, if we are lucky enough.

Here, we managed to obtain the optimal parameters using a stochastic searching

method based on the simulated annealing (SA) algorithm (see Figure 2.4).

2.7.1 Simulated Annealing (SA) algorithm

SA algorithm is a heuristic Monte Carlo method frequently used in the global

optimization. The globally optimal solution can be achieved without solving the

derivative of the objective function or a big array of equations.

The implementation of the algorithm is relatively easy, but usually time-consuming.

The workflow of the Metropolis SA algorithm [36, 37] is followed:

1. Given the variation range for each parameter of the model, select the initial

parameter set, m0, and calculate the corresponding objective function value,

E(m0).

2. Generate a new parameter set, m, by perturbating the current parameter set,

m0; calculate the corresponding objective function value, E(m), and get ∆E =

E(m)− E(m0).

3. If ∆E < 0, then the probability of acceptance p = 1, otherwise p = exp(−∆E/T ),

where T is the temperature. Generate a pseudorandom value r drawn from the

standard uniform distribution on the open interval (0, 1). If p > r, then the

new parameter set m is accepted, and set m0 = m, E(m0) = E(m).

4. At the temperature T , repeat step 2 and 3 for several rounds.

5. Gradually lower the temperature T .

6. Repeat step 2-5 until the convergence condition is satisfied.
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Figure 2.4. Plot of stochastic search using SA algorithm. Red spots correspond
to the locally optimal solutions, blue spots correspond to the accepted solutions in
Metropolis sense, and the green star corresponds to the globally optimal solution.

2.8 Calculation of Time in Competence (TIC)

To analyze data in a uniform way, we exclude the head and the tail of a data

series such that the truncated data all start from the first trough of the oscillations.

To remove some extremely high peaks, we first detect all the peaks in the data,

and calculate the mean and standard deviation of the peaks, called µpeak and σpeak,

respectively. If the absolute difference between a peak and µpeak is less than 3σpeak,

the peak is accepted, otherwise rejected. The tallest peak, peak0, in the remaining

“normal” peaks is selected for normalization.
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CHAPTER 3

RESULTS AND DISCUSSIONS

3.1 Results

3.1.1 Behavior in the Excitable Regime

Excitability is a desired feature for the competence phenotype because it allows

random duration of competence occurring at random times. This was shown to be

an optimal evolutionary design feature [24] since it permits optimal sampling of a

randomly changing growth and living environment of the organism.

In Figure 3.1 we show the dynamical portrait at bs∗ = 5, just below the saddle-

homoclinic bifurcation. In this regime the system is excitable. In blue we show

tracks resulting from the integration of the 2-ODE system started at different initial

conditions. In magenta, we show one stochastic simulation of a track falling into the

stable node (#1). We note that the biochemical noise in the system is not sufficient

to cause the trajectory to exit the basin of attraction of fixed point (#1). Therefore,

although this regime is excitable, it does not promote competence excursions.

We combine two methods to make an excitable system excited: one is to reduce

the distance between the stable node and the separatrix, and the other is to increase

the intrinsic noise by reducing the number of molecules of MecA.

First, we elevated the plateau of the ComS* nullcline by increasing parameter

“αk” by 22%. This results in an intersection of the ComS* and ComK nullclines

to occur at higher ComS*, in the narrower part of the ComK peak, thus nearer to

the ComK maximum. For fixed level of intrinsic noise, a shorter distance (along
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Figure 3.1. Dynamical portrait at bs∗ = 5, just below the saddle-homoclinic
bifurcation. Parameter sets are the same as those in Figure 2.1(A). Point #1, #2
and #3 are stable node, saddle and unstable focus, respectively. The magenta curve
is a stochastically simulated trajectory falling into the stable node #1, and the two
blue curves are obtained by integration of the 2-ODE system starting at different
initial points.

the ComK axis) from fixed point (#1) to reach the separatrix promotes entry into

competence.

Second, we set the MecA initial conditions to 3, 1, 1 molecules (for the free

MecA, and the complexes of MecA with ComK or with ComS*: MecA ComK and

MecA ComS*). Compared to 100, 10, 10 molecules used in other simulations (e.g.,

Figure 3.1), these lower free and complexed MecA initial conditions move the system

to a lower region in the (ComK, ComS*) phase plane. This results in an increase of

the intrinsic noise, particularly in ComK because ComK is already approximately an

order of magnitude lower than ComS*.

26



The combined effect of the two methods makes an excitable system excited

because it lowers the threshold and raises the noise level.

Figure 3.2. Pure Excitability exists near the saddle-homoclinic bifurcation.
(A) Excitable trajectory (magenta) in the stochastic model is shown in the 2-D phase
plane. The separatrix (black dashed line) between stable fixed points #1 and #3,
the ComS* (cyan) and the ComK (red) nullclines of 2-ODE model are plotted in the
phase plane. Point #1 refers to the stable node, #2 the saddle and #3 the unstable
focus. (B) Excerpt of the time series from (A) shows “bursting” behavior.

In Figure 3.2(A), we show the result of increasing the intrinsic noise to promote

excursions beyond the boundary of the basin of attraction of fixed point (#1). This

boundary is called the separatrix. It is shown in dashed line. In the excitable case,

the system possesses a stable node (#1), a saddle (#2) and an unstable focus (#3).

If the initial point of the trajectory is on the right side of the separatrix, then this

will result in an immediate large excursion causing the trajectory to travel around

the unstable focus, and back into stable node (#1). If the initial point is on the left

side of the separatrix, and if the noise is large enough, the trajectory will dwell for

some time until it “escapes” from the basin of attraction of the stable node. It will

then be traveling beyond the unstable saddle, and around the unstable focus, to head
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back to the attractive fixed point (#1). Then the process may start again, causing

another large excursion. In this way, the time series exhibits a kind of “bursting”

behavior, as shown in Figure 3.2(B).

3.1.2 Behavior in the Oscillatory Regime

At bs∗ = 419.6, (6-ODE), a subcritical Hopf (HB) bifurcation occurs. There,

an unstable limit cycle is born initially with zero amplitude, and quickly grows as

bs∗ is increased to eventually collide and “annihilate” with the encircling stable limit

cycle at the Cyclic Fold (CF, bs∗ = 1696, 6-ODE) bifurcation.

3.1.2.1 Butterfly Mixing Effect

Figure 3.3 shows a stochastic simulation run at bs∗ = 350, below the HB. In

this region, the continuous dynamics presents stable oscillations about an unstable

focus (see Figure 2.1(A)); thus we observe a stable limit cycle. The key feature that

stochasticity imparts is mixing about that stable orbit. This mixing shows systematics

however, and is not completely random. The noise in the upper part of the limit cycle

is insufficient to cause transitions between the inner and outer regions of the stable

limit cycle. Interestingly, at the bottom of the oscillations, the molecular numbers

are smaller and stochastic variations of sufficient size occur causing stochastic mixing

about the stable limit cycle. The stochastic system therefore has a tendency to orbit

the upper part of the stable limit cycle on one side (inner or outer), mix in the lower

region, and transit the orbit on the other side (outer or inner) of the stable limit

cycle. We dubbed this crisscrossing effect “Butterfly Mixing”.
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Figure 3.3. The “Butterfly Mixing” effect. (A) Stochastic simulation at bs∗ =
350. The blue and green curves are trajectories of the 6-ODE and 2-ODE model,
respectively. The curve in magenta is the stochastic trajectory. (B) Excerpt of the
stochastic trajectory shows the “Butterfly Mixing” effect. We switch the color of
the stochastic trajectory from magenta to purple in order to clearly show where the
dynamics crosses from outside to inside the stable limit cycle.

3.1.2.2 Stochastic Shield Effect

Figure 3.4(A) shows the phase portrait of the continuous dynamics at bs∗ = 500,

thus in the region beyond the Hopf (HB), but before the CF. In this region, we observe

coexistence of the periodic oscillatory behavior with a shielded attractive focus. The

stable focus is effectively shielded by the presence of an unstable limit cycle. That

unstable limit cycle hence splits the phase space in the inner part of the stable orbit

region into two sub-regions with very different dynamics. The location of the unstable

limit cycle is shown in converging green spiral from the 2-ODE model. This trajectory

is computed by integrating the differential equation set backwards in time.

From a radius smaller than that of the unstable limit cycle, thus within it, all

trajectories travel inwards along a spiral and fall into fixed point (#1) (see Figure
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3.4(B)). From outside the unstable limit cycle, but at a radius still smaller than that

of the encircling stable orbit, all trajectories are attracted outward to the stable limit

cycle (see Figure 3.4(A)). And, finally, from outside the stable limit cycle, dynamics

is attractive everywhere to that limit cycle, as shown in Figure 3.4(A) and Figure

3.4(B). A medium length stochastic simulation is shown in magenta. The stochastic

trajectory does not penetrate inside the unstable limit cycle; the attractive fixed point

is therefore shielded.

Figure 3.4(C) and Figure 3.4(D) are two stochastic simulations with same free

MecA=100 molecules, the first one performed at bs∗ = 500 and the second one at

bs∗ = 1000. At high bs∗, the system is noisier, and importantly, the unstable and

stable limit cycles are of comparable size so the presence of the unstable limit cycle

is not felt in the stochastic dynamics. But at lower bs∗, the unstable limit cycle’s

associated raised potential creates a very effective barrier to the circling dynamics

and, in effect, the inner region of the unstable limit cycle is shielded from entry.

Trajectories repeatedly attempt and fail to “ride uphill” over the unstable limit cycle.

We dubbed this effect “Stochastic Shield”. Importantly, at lower bs∗, the unstable

limit cycle has a much smaller size than its stable counterpart.

We have performed complementary simulations (data not shown) at other values

of bs∗ from 350 to 1696 (near the location of the CF) confirming the trend that, as

the relative size of the unstable limit cycle to that of the stable limit cycle approaches

unity at the CF, so does the relative height of the underlying potentials. In other

words, stochastic shielding is most efficient when the unstable limit cycle is much

smaller than the stable limit cycle; stochastic shielding becomes inefficient as the CF

is approached.
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Figure 3.4. Periodic oscillation and the effect of the unstable limit cycle. (A)
Stochastic behavior shown on the 2-ODE deterministic phase portrait at bs∗ = 500.
The deterministic system has a stable focus surrounded by an unstable limit cycle
and a circumventing stable limit cycle. Two 2-ODE model trajectories shown in
blue arise from different initial points in the phase plane. The green curve is the
trajectory computed by integrating the differential equation set backwards in time.
The stochastic trajectory (magenta) oscillates about the stable limit cycle. The values
of other parameters are the same as those in Figure 2.1(A). (B) Stochastic behavior
shown in the 2-ODE deterministic phase portrait at bs∗ = 1000. (C) Residency
diagram of the stochastic system at bs∗ = 500. The stable limit cycle (solid blue
loop) and the unstable limit cycle (dashed white loop) of 6-ODE model are overlaid.
These orbits are circling an attractive fixed point at their center (not shown for
clarity). Residency profiles are shown as yellow jagged lines. The profile at the
bottom (fixed ComS*) shows the unstable limit cycle as a looping low residency
trough. This is a “Stochastic Shield” because entry into the basin of attraction of
the stable fixed point is prevented. (D) Residency diagrams of the stochastic system
at bs∗ = 1000. The unstable limit cycle is represented by the dashed blue loop. The
residency profile at the bottom is generally flat. The stochastic trajectories can switch
between the attractive regions of the stable focus and that of the stable limit cycle.
The “Stochastic Shield” is removed. (E) The dynamical phase portrait at bs∗ = 1650,
slightly below the CF. The stable limit cycle is represented by the solid black loop.
The unstable limit cycle is shown by a dashed black loop. (F) Enlargement of (E).
The trajectory escapes from the basin of attraction because of noise.
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3.1.2.3 Sailing Against the Wind Effect

The behavior of the system in the region between the Hopf (HB) and the Cyclic

Forld (CF) is heavily influenced by the presence of the unstable limit cycle. In the

biologically meaningful noise regime, the key behavior is the unintuitive stochastic

escape from the attractive fixed point. An example of this behavior is shown on Figure

3.5 (bs∗ = 425) and on Figure 3.4(E) and detailed on Figure 3.4(F) (bs∗ = 1650).

Even if the stochastic simulation is started in very close vicinity of the attractive fixed

point, sufficient noise in the system makes the dynamics diverge in a characteristic

way. We dubbed the manner in which the escape occurs “Sailing Against the Wind”

because the stochastic system may be thought to skip from one inwardly going arc of

the continuous limit trajectory to another arc, at higher radius. This behavior thus

effectively counters the effect of the underlying vector field of the continuous limit

model, doing it in a manner somewhat reminiscent of well-known sailing maneuver.

Figure 3.5. “Sailing Against the Wind” effect. Stochastic simulation at bs∗ =
425. (A) The 6-ODE system has a stable limit cycle (the black solid loop), unstable
limit cycle (small black dashed loop) and a stable focus (the green dot in (B), which
is the intersection point of ComK and ComS* nucllines). The stochastic trajectory
(in magenta) escapes from the basin of attraction of a stable focus due to the noise.
(B) The enlargement near the unstable limit cycle of the (A).
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To verify that the escape behavior is noise-driven, for all species in the system,

we artificially increased the number of molecules and the volume of the stochastic

system, keeping the ratio unchanged. Thus concentrations are the same, but as the

thermodynamic limit is approached, these concentrations arise from larger numbers

of molecules in a proportionally bigger volume. This condition is approximating

the thermodynamic limit [28, 38]. Figure 3.6 shows the result of comparing the

thermodynamic limit of the stochastic system with the 6-ODE continuous model

predictions. This simulation expectedly shows that the behavior of stochastic escape

from the attractive fixed point is reversed in the thermodynamic limit. Thus, in the

limit of high molecular numbers and volume, with concentrations held constant, both

the stochastic system and its 6-ODE continuous limit present a stable focus.

3.1.3 Behavior above the Cyclic Fold (CF)

In the 2-ODE adiabatic approximation, the encircling stable limit cycle annihi-

lates with the inner unstable limit cycle at bs∗ = 1622 (2-ODE model); beyond this

point the dynamics should solely be driven by the presence of a single stable focus.

Figure 3.7(A) shows the expected dynamics there, for the 2-ODE model. The blue

track is an inwardly falling spiral to the only fixed point in the system. We note

the presence of a denser region on the track (higher pitch), which we refer later as

“Dwelling in Pitch”. The track in magenta is the result of the stochastic simulation.

Figure 3.7(B) shows the dynamics above the CF, at bs∗ = 1700. In this region,

bifurcation analysis predicts a single attractive fixed point. The spiraling trajectory

behavior just near the CF bifurcation is of high interest. Dynamics presents a region

of narrower pitch, in essence the “ghost” of the previously annihilated stable limit

cycle . We dubbed this “Dwelling in Pitch” effect. We observe that the “ghost” that

is present for bs∗ > CF eventually disappears by bs∗ ≈ 2000.
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Figure 3.6. Comparing the thermodynamic limit of the stochastic system
with the 6-ODE continuous model predictions. The “Sailing Against the
Wind” effect is the noise-induced escape from the basin of attraction of the fixed
point located at the intersection of the two nullclines. Here we show the effect at
bs∗ = 500. The white arrows show the direction of rotation. The vector field (not
shown for clarity) of the continuous 6-ODE model develops an inwardly spiraling tra-
jectory (blue). Due to noise, the stochastic trajectory (black) systematically escapes
from the basin of attraction. This behavior is reversed in the thermodynamic limit
(magenta, high molecular numbers and volume held in fixed ratio). The agreement
between the 6-ODE model and the stochastic model is recovered.

Figure 3.7. Stochastic dynamic behavior above the cyclic fold bifurcation.
(A) Stochastic behavior is shown in the 2-ODE deterministic phase portrait at bs∗ =
1700, just slightly above the CF. (B) The “Dwelling in Pitch” phenomenon in the
2-ODE phase plane at bs∗ = 1700, just slightly after the disappearance of the stable
limit cycle. The trajectory in green results from the 6-ODE model prediction.
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3.1.4 Probability of Entering Competence

One of the main measures for the phenotype of competence is the probability of

initiation of competence excursions. The standard way of defining this quantity is in

terms of a mean waiting time to transition. Thus we define the probability of entering

competence for a long trajectory going in and out of competence repeatedly, as the

ratio of the total number of completed excursions into competence during the course

of that trajectory, divided by the sum of time spent outside of competence, i.e. the

total waiting time to transitions in the process. Furthermore, we divide by the cell

cycle time for normalization. Figure 3.8 shows this quantity versus bs∗ statistically.

The general trend is decreasing as bs∗ increases.

3.1.5 Stochastic Trap Effect

In the region between the Hopf (HB) and the Cyclic Fold (CF) bifurcations,

the dynamics of the system presents an unstable limit cycle coexisting with a large

encircling stable limit cycle. The unstable limit cycle is an especially interesting

dynamical feature. The most intuitive way to understand this feature is in terms

of the underlying vector field (dComK/dt, dComS*/dt) of the continuous model.

The unstable limit cycle is a loop in phase space from which the vector field always

points away from. For illustration purposes, we show in Figure 3.9 how a track

inwardly falls away for the unstable limit cycle, into the stable attractor located at

the intersection of the ComS* and ComK nullclines. We also show how a track with

slightly different initial point also falls away from the unstable limit cycle, but in an

outwardly direction, towards the other attractor in the system, the encircling stable

limit cycle. For completeness, we show how a track started outside the stable limit

cycle also falls into that attractor.
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Figure 3.8. The probability of entering competence vs. bs∗. The probability of
entering competence is computed as the number of competence excursions divided by
the total time out of competence, normalized to the cell cycle time. Thus, the time out
of competence is a waiting time for an entry event. Entry into competence is defined
as the ComK signal rising above a fixed threshold excluding rare large excursions
at the 3σ level. The red dashed lines refer to two bifurcation points, left Hopf and
right Cyclic Fold. As the time out of competence increases with bs∗, the probability of
initiation decreases. The error bar was obtained from several statistically independent
repeats at each bs∗. Because the simulation time is much larger than the cell cycle
time, this plot represents the behavior of an ensemble (population) of cells.

In terms of the stochastic model, the unstable limit cycle is a loop of zero

residency, in a residency diagram of ComS* vs. ComK. If the system is started on

the unstable limit cycle, it will move away, either inwards or outwards, but always

towards an attractor. Figure 3.10(B) displays a stochastic simulation in presence of

high free MecA. High free MecA results in lower noise in the system, because the entire

system dynamics is shifted upwards to higher values of ComK and ComS*. Entry

into and exit from the inner region of the unstable limit cycle occur on a stochastic

basis. If entry occurs, dwelling inside the unstable limit cycle for some period of

time is favored; therefore the dynamics is confined to inside the unstable limit cycle.
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Figure 3.9. The gradient plus curl effect. Vector field of 2-ODE model at bs∗ =
1000. The system has a stable limit cycle, an unstable limit cycle and a stable focus.
The magenta arrows show the gradient effect, while the black arrows show the curl
effect. Within the unstable limit cycle all trajectories fall into the stable focus, and
outside the unstable limit cycle all trajectories fall into the stable limit cycle. In
effect, the stable focus and the stable limit cycle provide a variation of the common
bistable system which contains two stable fixed points.

We dubbed this effect a “Stochastic Trap”. The time series of the stochastic trap

is shown in Figure 3.10(A). In Figure 3.10(C), we show a similar simulation but a

condition of low free MecA, which shifts the entire dynamics to lower values of ComK

and ComS*, and results in higher noise in the system. In this regime, entry into and

exit from the trap is unimpeded, i.e., the stochastic trap is removed.

To better understand the enabling of the stochastic trap, we computed the

residency profiles at fixed ComK and ComS*. As shown in Figure 3.10(B) and Figure

3.10(C), these profiles clearly show the edges of the unstable limit cycle in the high

MecA simulation, whereas the presence of the unstable limit cycle in the high noise

simulation is hardly visible. The profile in Figure 3.10(C), is essentially flat and the

profile in Figure 3.10(B) traces out the “canyons” of low residency of the unstable
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limit cycle. The unstable limit cycle can be seen as a looping ridge of an associated

potential function, both in the continuous limit of the model [39] and in the stochastic

model [40]. A high potential corresponds to a low residency: the dynamics is unlikely

to visit near or at the exact location of the unstable limit cycle and trajectories fall

away from the unstable limit cycle in either directions: inwardly towards the stable

fixed point, or outwardly towards the stable limit cycle.

Stochastic trapping of the competence excursions has profound implications

on the phenotype. Foremost is the observation that the depth of the trap is under

direct biological regulation of the organism via adjustment of the number of free MecA

molecules. So, it is possible that an organism with the regulation of CircuitOne would

dynamically implement stochastic trapping via adjustment of MecA. In the event

that MecA remains fixed, as shown above, a trap of a definite depth is implemented.

Depending on the ComK threshold for competence, trapping into competence or out-

of-competence can therefore occur, for the time duration of stochastic dwelling of the

dynamics inside the unstable orbit. CircuitOne regulation thus allows the organism

to modify the sampling program of its environment for presence of exogenous DNA;

hence stochastic trapping is a form of biological control of the competence phenotype.

3.2 Discussions

3.2.1 Importance of Added Positive Feedback

CircuitOne represents a modest modification of the wild-type (WT) MeKS

model [22]. The core topology between these two circuits is similar with the exception

of the added positive feedback of ComS onto itself (denoted ComS* in CircuitOne).

To compare the expected dynamics in terms of the strength of the feedback parame-

ter (bs in MeKS model and bs∗ in CircuitOne), we generated the 2-ODE bifurcation
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diagram of the MeKS model (see Figure 3.11). Most strikingly, and differing from the

dynamics of CircuitOne, the WT regulation presents a super-critical Hopf bifurcation,

rather than the sub-critical Hopf seen in CircuitOne. This leads to the one major

difference between the two circuit dynamics: in WT dynamics, there is no unstable

limit cycle. But there is also a significant similarity between these two models: most

of the dynamical range is oscillatory. In a fair fraction of the dynamic range, the WT

dynamics is mainly driven by a stable limit cycle of large amplitude, whereas the Cir-

cuitOne dynamics is not only controlled by a stable limit cycle, but also intricately

regulated by an unstable limit cycle. Both models point to one common mystery:

Why Nature only selects a very narrow region to obtain excitability? If the narrow

excitable region is the WT feature, then the big remaining region can be viewed as

pathological, which means the system is prone to be pathological, which contradicts

the expectation of the robustness of Nature Design.

3.2.2 Stochastic Shield

The stochastic shield effect is understood based on a stochastic potential view

of transitions between the two attractors: the stable limit cycle and the fixed point.

As the control parameter bs∗ is varied from mid-range towards the CF, the potential

profile varies as illustrated in Figure 3.12. At lower values of bs∗, transitions from

the stable limit cycle basin of attraction to that of the fixed point are less likely than

the reverse, because of the difference in depth between the two wells in the system,

relative to barrier to overcome: the top of the hump underlying the unstable limit

cycle. Thus at lower bs∗ the fixed point is shielded, entry into the inside region of the

unstable limit cycle is not likely. But as bs∗ is increased the situation reverses.
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3.2.3 Stochastic Trap

In the trapping effect, the dynamics of the system is effectively captured inside

the unstable limit cycle at low noise conditions (Figure 3.10(B) and (C)). As the

noise in the system is reduced by increasing free MecA, the height of the potential

hump underlying the unstable limit cycle is increased. Asymmetry in the potential

profile leads to a difference between the probability of entry and exit. Exit from the

region inside the unstable limit cycle is less probable than entry, because the depth of

the fixed point stochastic potential well is greater than the depth of the stable limit

cycle well, relative to the height of the hump between the two attractors (the unstable

limit cycle). Equivalently, entry into the region inside the unstable limit cycle is more

probable than exit, because the height to overcome to pass the barrier between the

two attractors is less for entry, than the height to exit. Figure 3.13 shows a cartoon

representation of this.

In summary, both Stochastic Trapping and Stochastic Shielding are manifes-

tations of one single underlying principle: the presence of the unstable limit cycle

between the two attractors defining a barrier of varying height to overcome.
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Figure 3.10. Residency diagrams for “Stochastic Trap” effect. (A) Time series
at MecA= 250 nM shows the stochastic trajectory switching between two attractors,
the stable fixed point and the stable limit cycle. We dubbed this effect “Stochastic
Trap” Effect. (B) Residency diagrams at MecA= 250 nM in the phase plane of the
stochastic system: two-dimensional histograms of residency as a function of the state
variables ComK and ComS. Profiles in red correspond to the white dashed lines (side:
fixed ComK, bottom: fixed ComS*). Peaks in the profiles aligned with the cross-hair
demonstrate trapping. (C) Residency diagrams at MecA= 100 nM in the phase plane
of the stochastic system. Profiles in yellow are flatter than (B) because of higher noise
conditions. “Stochastic Trapping” is removed.
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Figure 3.11. Bifurcation diagram of MeKS model. The values of parameters
are the same as those in MeKS model, except αs = 0.2. We converted all the original
parameters in units of nM to units of µM. HB refers to a supercritical Hopf bifurcation.

Figure 3.12. Cartoons of the stochastic potential landscape with changing
bs∗. The stable limit cycle (SLC) and the stable fixed point (SFP) can be thought
of as two potential wells. The unstable limit (ULC) cycle acts as a shield between
them in the form of a hump separating the two wells. The system can be considered
to be “bistable” transiting between the two dynamical attractors. (A) At lower
bs∗, the underlying potential near the SLC is deep, and that of the SFP is shallow.
(B) As bs∗ is increased, it crosses a value (bs∗ ≈ 1000) at which the depths of
the underlying potential wells are equal. (C) As bs∗ is further increased towards
the CF, the potential underlying the SFP is deeper than that underlying the SLC.
Throughout, it is understood that transitions from the deep well to the shallow well
are less likely than the reverse.
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Figure 3.13. Cartoons of the potential landscape with different levels of
MecA (bs∗ = 1000). SFP denotes the stable fixed point, SLC the stable limit cycle,
and ULC the unstable limit cycle. (A) Under wild-type conditions, with less MecA,
the system has similar probability to fall into either the stable fixed point or the
stable limit cycle. (B) In condition of high MecA effectively reducing the noise, the
system prefers the stable fixed point to the stable limit cycle.
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CHAPTER 4

CONCLUSIONS

4.1 Summary of Work

In a wide range of bs∗ (see Figure 2.1) CircuitOne is a bistable system: a stable

limit cycle and stable fixed point separated by an unstable limit cycle with a varying

height of potential. The unstable limit cycle, together with the stable limit cycle, is

shown to be critical in controlling the probability of entering competence (see Figure

3.8 for a population-level view). As bs∗ increases, the unstable limit cycle inflates and

the stable limit cycle deflates. The driving effect of the stable limit cycle is lessened

with bs∗ increasing, as the system is less and less likely to reside in the potential well

of the stable limit cycle and, concomitantly, the system is more and more likely to be

in the underlying well of the stable fixed point. The closer the two limit cycles, the

lower the probability of entering competence. Throughout the range, the initiation

probability is below the expectation value for WT Bacillus subtilis (10% ∼ 25%, [13]).

Whereas under the effect of the stable limit cycle and/or the unstable limit cycle, the

probability of entering competence is generally lower than 10%.

Moreover, we have shown that the consequences of the presence of the unstable

limit cycle and favorable noise conditions are profound. Through stochastic trapping

(Figure 3.10) lasting at least as long as the cell cycle, CircuitOne may latch individual

cells out of competence if the competence fixed point is below the threshold of com-

petence initiation, or alternatively, latch cells into competence, if it is above. Such

cells from an ensemble of cells, would be permanently competent or non-competent,

for their entire lifetime.
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Therefore, we conclude that as an in silico mutant of WT Bacillus subtilis,

CircuitOne has less capability to accommodate the severe environmental changes,

and this is probably the reason why Evolution selects the WT circuit rather than this

hypothetical one.

4.2 Future Work

Our model is a high-level abstraction of the molecular mechanisms of the com-

petence development in Bacillus subtilis. We make it as simple as possible and hope

it to manifest the main features of cell-fate decision under the environmental stresses.

And, it does provide some instructive results for experimentalists.

Next, we want to add more details to the current model so that it can take

into account more events during competence development. For example, we can add

quorum sensing mechanism by considering the indirect inhibition of ComS by ComK

in a RapH-dependent way [1] and study the effect of ComS levels on excitability.

We also hope to extend our study to differentiation of mammalian cells, espe-

cially in a cancerous context.
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induced stabilization of an unstable state,” Proc Natl Acad Sci U S A, vol. 105,

no. 41, pp. 15732–7, 2008.

[34] N. G. van Kampen, Stochastic processes in physics and chemistry. North-

Holland personal library, Amsterdam ; New York: North-Holland, 1992.

[35] M. Tabor, Chaos and integrability in nonlinear dynamics : an introduction. New

York: Wiley, 1989.

[36] S. Kirkpatrick, J. Gelatt, C. D., and M. P. Vecchi, “Optimization by simulated

annealing,” Science, vol. 220, no. 4598, pp. 671–80, 1983.

[37] D. B. Fogel, “An introduction to simulated evolutionary optimization,” IEEE

Trans Neural Netw, vol. 5, no. 1, pp. 3–14, 1994.

49



[38] D. T. Gillespie, “Approximate accelerated stochastic simulation of chemically

reacting systems,” Journal of Chemical Physics, vol. 115, no. 4, pp. 1716–1733,

2001.

[39] S. Bhattacharya, Q. Zhang, and M. E. Andersen, “A deterministic map of

waddington’s epigenetic landscape for cell fate specification,” BMC Syst Biol,

vol. 5, p. 85, 2011.

[40] C. Li, E. Wang, and J. Wang, “Landscape and flux decomposition for exploring

global natures of non-equilibrium dynamical systems under intrinsic statistical

fluctuations,” Chemical Physics Letters, vol. 505, no. 13, pp. 75–80, 2011.

50



BIOGRAPHICAL STATEMENT

The author Hongguang Xi was born in China. He received a Bachelor’s Degree

from China Agricultural University in the area of Applied Physics in 1996. He received

a Master’s degree from Tongji University in the area of Biomedical Engineering in

2007.

His research interests include numerical analysis, nonlinear dynamical systems,

gene regulation and cell-fate decision, etc.. During the Master study and this thesis, he

worked extensively on the study of complicated gene regulatory networks, algorithm

implementation, and data analysis.

After graduating with his Master, he would like to go on pursuing a doctoral

degree to further study the functionality of stochasticity in gene expression and to

find key controlling factors in manipulating the dynamical features of the underlying

gene circuits.

51


