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ABSTRACT

NEW RESULTS IN FINITE GEOMETRIES PERTAINING TO ALBERT-LIKE
SEMIFIELDS

Angela Michelle Brown, Ph.D.

The University of Texas at Arlington, 2012

Supervising Professor: Minerva Cordero

One of the most widely studied class of semifields are the generalized twisted
fields defined by Albert in the 50s and 60s. The collineation groups of generalized
twisted field planes have been completely described. In a series of papers Cordero and
Figueroa studied semifields with an autotopism that acts transitively on one side of
the autotopism triangle, equivalently the plane admits an autotopism which induces
a permutation on a side of the autotopism triangle of order a p-primitive divisor
of p" — 1. They showed that with some minor exceptions the plane is a generalized
twisted ﬁelld plane. These planes 7 are coordinatized by pre-semifields (K, +, o) where

e
roy= Z a;x Dyl for z,y € K = GF(p™). Hence either 7 is a generalized twisted
field plailzeoor there exist at least two non-zero indices u, v such that a, # 0 # a,. In
this case the pre-semifield has the product zoy = xy + a,z™y©) + a,z®y() In this
work we study in depth the case in which there are precisely two nonzero indices. In
this case the multiplication behaves much like a generalization of Albert’s generalized
twisted fields. For many of the cases, these semifields are generalized twisted fields.

We provide a variety of examples in which these semifields are not generalized twisted

vi



fields. For these we study the collineations of the semifield planes they coordinatize

to help shed some light into the classification of the semifield planes of this type.
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CHAPTER 1
INTRODUCTION

Semifields are algebraic structures that were first discovered by Dickson [17] in
1905. A literature review shows that the next known semifields were not discovered
until 1951. Among these semifields were Albert’s twisted fields, which are semifields
over GF(p") with the product x*y = xy?" —ca?"y where 1 < m < n and ¢ # a?" ! for
a € GF(p™)[1]. Albert computed the collineation groups of the corresponding semifield
planes in 1958 [2]. He then generalized these results in 1960 to semifields over GF'(p™)
with product z * y = zy — cx®y” where ¢ # 22 1y~ o and B € Aut(GF(p"), and z
and y € GF(p") [5]. Semifields of this type and the projective planes they coordinatize
have been studied extensively in the work of Albert [4] and the full collineation group
of these semifields was determined by Biliotti, Johnson, and Jha [7] in 1999.

Cordero and Figueroa, in a series of papers, [12]-[15] and [18], studied semifields
of order p”, p prime, with an autotopism that acts transitively on one side of the au-
totopism triangle. The plane also admits an autotopism which induces a permutation
« on a side of the autotopism triangle of order a p-primitive divisor of p” — 1, that
is, || | p* =1 but |a| 1 p'—1for 0 <i < n—1. They showed that in most cases
these planes are generalized twisted field planes.

More specifically, let V' denote the n-dimensional vector space over GF(p")
consisting of all the vectors of the form (z) = (¢, 2 ... z("=V) where 2 € GF(p")
and ) = 2" for ¢ = 0,1,--- ,n — 1 and p is a prime number. The group of all
automorphisms of V' over GF(p), Aut(V'), consists of the non-singular matrices of the

form as shown in [26]



ag Ay, 1 Gy
1 -1
a a(() ) ar =y
M =
(1) (n—1)
L . )
where ag, aq, -+ ,a,_1 € K; we denote this matrix by M = [ag, a1, ..., a, 1]

For0<k<n-—1andk € K, let

where ¢ is in the k-th position and the rest of the entries are zero. We will denote

0
any matrix of the form by diag(A, B).
0 B

Let 7 be a non-Desarguesian semifield plane of order p® # 2° that admits an
autotopism gg of order h where h is a prime p-primitive divisor of p™ — 1. We consider
V &V as the vector space associated to the affine plane 7 and V(c0) = {((0), (2))|z €
K} is a component of a spread of 7 in V @ V.

In [15] Cordero and Figueroa proved the following:

Theorem 1.1 (Result 1, [15]). Let m be a non-Desarguesian semifield plane of order
p". If m admits a collineation go of order h, a p-primitive prime divisor of p™ — 1, then
1. There exists a spread set {V(0),V(c0)} U{V(M(y))ly € K —{0}} for = in

V @V such that V(oo) is the shear azxis and fory € K,y # 0,

M(y) = [aoy(%), aly(el), . ,an,ly(e"‘l)]t € Aut(V).

2. go = diag(To(7), To(9)), where v and 0 are two different elements in K, both of

order h.



o\ g

3. (—) = —, for each i such that a; # 0.

¥ fy(l)

Notice that on Result 3.1 above the plane 7 is coordinatized by the pre-semifield

(K, +,0) where

n—1
1=0

for z,y € K. Hence either 7 is a generalized twisted field plane or there exist at
least two non-zero indices v and v such that a, # 0 # a,. In this work we study the
case in which there are precisely two nonzero coefficients, so the multiplication on
the pre-semifield behaves like a generalization of the multiplication of a pre-semifield

that defines the generalized twisted fields. Hence the product is of the form
zoy = xy+ AzWye) 4 Byv)y(eo) (1.1)

In [15] an example of such a product for GF(3°%) was given:

Theorem 1.2 (Result 2, [15]). Let m be a non-Desarguesian plane which is not a
generalized twisted field plane of order 35. Suppose 7 admits an autotopism gy of

order 7, a S-primitive prime divisor of 3% — 1. Then m can be coordinatized by the

pre-semifield GF (3% +,0), where
X O y — l’y _|_ f)/l'(l)y(g) + 713x(3)y(1)

and vy is a primitive element in GF(3%) that satisfies v* +~ +2 = 0. Moreover,
m has an autotopism of order 3 that normalizes gq.
They also showed that all semifields defined on GF(3*) with this product are

generalized twisted fields. In [13] they proved the following result.



Theorem 1.3 (Theorem 4.1, [13]). Let m be a non-Desarguesian semifield plane of
order p™, where p is an odd prime number and n > 3. Let A\ be an autotopism triangle

of ™ and let G be the group induced by the automorphism group G of @ on a side ¢ of

V12

A. If G has an element of order p where p is an integer dividing n, then m is a
generalized twisted field plane.

In Chapter 2 we introduce the terminology and theorems needed for under-
standing of the topic, including the terms given in the above description. Much of
this information is introduced in [19], but can also be found in [16],[20], and [21].

In Chapter 3 we discuss the motivation for our research, as well as give the
results and examples. Our goal is to provide information that will help in the classifi-

cation problems of semifields with an autotopism as described above. These semifields

are defined in GF(p") by the following product;

zoy=xy+ Az®y® + BaPy~

where S(K, a, 5, A, B) denotes a semifield with the above product. For this semifield,
K =GF@p"), a:z+— 2" and 8 : 2 — 2 are in Aut(K), and A, B € K. The
associated plane will be denoted 7(K, o, 8, A, B). First we discuss the autotopism
homologies of 7(K,«, 3, A, B). We then discuss the order of the nuclei. With the
ald of the computer we were able to find parameters that define semifields with
the product as above. For the semifields over GF(3%) we compute the elements in
the nuclei. For the ones defined over GF(3°%) following the method of Cordero and
Figueroa, we computed the normalizer of the group generated by the autotopism g
of order h, a p—primitive divisor of 35 — 1. We show that for certain coefficients these
semifields are not isomorphic to generalized twisted fields. The main motivation is to

be able to classify the semifields that correspond to the new product.



CHAPTER 2
PRELIMINARIES

2.1 Semifields

Definition 1. A semifield is a set S together with two binary operations + and -

such that
o S under addition is an abelian group.
e Fora,be Sifa-b=0,thena=0 orb=20
e The distributive laws hold; that is:
a-(b+c)=a-b+a-c.
(a+b)-c=a-c+b-c.
o There exist 1 € S such that1-a=a-1=a.

A semifield is proper if it is not a field; that is, if the multiplication is not
associative. Actually, under multiplication (5, -) forms an algebraic system called a
loop.

Definition 2. A loop is a set L with a binary operation * satisfying:
e There exists an element e € L such that axe =exa = a for all a € L.
o Given two of the elements a,b,c € L, the equation axb = ¢ uniquely determines
the third.
The element e is called the identity of L.

The set {e,a,b,c,d} with operation x as shown in Table 2.1 is a loop with
identity element e. Notice that ¢ (bxa) = a while (c*b) xa = ¢, so the operation is
not associative.

Definition 3. The order of a semifield S = (S, +, ) is the cardinality of the set S.

5



Table 2.1. Example of a Loop

*‘ e a b ¢ d
e‘ e a b ¢ d
al a e ¢ d b
bl b d e a c¢
c‘ c b d e a
d‘ d ¢ a b e

In this work we will be concerned exclusively with finite semifields, i.e. semi-
fields with a finite number of elements.
Theorem 2.1 (Theorem 6.1, [22]). Every proper finite semifield has order p", where
p is prime, n > 3, and p™ > 16.

If a semifield has prime order p then the semifield is actually isomorphic to the

field GF(p). Similarly a semifield of order p?, p prime, is isomorphic to GF(p?).

Other algebraic structures closely related to semifields are the pre-semifields.
Definition 4. A system S = (S, +,-) is a pre-semifield if it satisfies all the axioms
of a semifield except possibly having a multiplicative identity.

By redefining the multiplication on a pre-semifield (.S, +, -) we obtain a semifield
(S, +, *) as follows: choose an element e € S. For x,y € S there exist 2/,3 € S such
that © = 2/ -e and y = e- 3. Define z xy = (o' -¢e) * (e-y) = 2’ -y. With
this multiplication (S, +,*) is a semifield with multiplicative identity e - e. Notice
rxe=(2'-e)x(e-e)=a"-e=zandexy=(e-e)x(e-y)=e€e-y =y.

Since proper semifields are not associative and not necessarily commutative
structures, we study the degree of associativity and commutativity they possess.

These properties help distinguish between different semifields that have the same

order. The nuclei of a semifield define degrees of associativity and the center defines



the degree of commutativity. Each of the nuclei and the center are indeed fields and
the semifield is a vector space over each of these.
Definition 5. Let (S,+,%) be a semifield. The left, middle, and right nuclei are
defined as follows, respectively:

e Left nucleus: Ny ={zx €S :(r*xa)xb=xx(axb),a,be S}

e Middle nucleus: N, ={x € S: (axx)*xb=ax*(x*b),a,be S}.

e Right nucleus: N, ={zx € S: (axb)*xx=ax(bxx),a,be S}.

e The intersection of the three nuclei is called the nucleus and is denoted N .

Definition 6. Let (S,+,*) be a semifield. The center of S is the set Z = {x € N :
xxy=yxx forall y € S}.
In the finite case, by Wedderburn’s Theorem (Result 1.3, [19]), associativity

implies commutativity; hence the nucleus and the center coincide.

2.2 Planes

Finite geometries consist of a finite set of points and lines satisfying certain
axioms. We define two finite geometries and in the next section we will use semifields
to coordinatize these.

Definition 7. A finite affine plane consists of a finite set of points together with
a collection of its subsets, called lines, such that:
o Two distinct points are on only one line.
e For line ¢ and a point p ¢ { there is a unique line m containing p such that
mN{=1(.
e There are three points not all of which are collinear.
Definition 8. A finite projective plane is a set of elements, called points, together

with a collection of certain subsets called lines such that:



o Any two distinct points lie on only one line.
o Any two lines intersect at only one point.
o There exist four points no three of which are collinear.

Notice that in a finite projective plane parallel lines do not exist.

Regarding the number of points in a line and the number of lines through a
point of a projective or affine plane we have the following result:
Theorem 2.2 (Theorem 3.5, [19]). For a projective plane P there exists an integer
n such that:
o Fvery line has exactly n + 1 points.
o Fuvery point is in n + 1 lines.
e There are n® +n + 1 points and n? +n + 1 lines.
Definition 9. If P is a finite projective plane then the integer n is called the order
of P.
Just as we can discuss relationships between algebraic structures, we have sim-
ilar definitions for projective planes.
Definition 10. Two projective planes Py and Py are tsomorphic if there ezists a
bijection o of the points of P1 onto the points of Py mapping lines of Py onto lines of
Py and satisfying p € € if and only if o(p) € o(€) for all points p of Py and all lines

¢ of P1. An isomorphism of a plane onto itself is called a collineation.

The set of collineations of a projective plane P form a group under composition
denoted Aut(P). Collineations of finite projective planes have the following property:
Theorem 2.3 (Theorem 4.9, [19]). If P is a projective plane and o # 1 is a
collineation of P fixing a line ¢ pointwise then there is a point V' in P that is fived

linewise by o. Furthermore o fizes no other line or point.



In the above result the mapping « is said to fix a line ¢ pointwise if for every
point A in the line, «(A) = A. Similarly « is said to fix a point B linewise if for
every line ¢ through B, «(¢) = ¢. Notice the image of a point A under a mapping «
is usually denoted A®.

Definition 11. If a collineation « fizes a line ¢ pointwise and a point V linewise,
then « is called a (V,{)-perspectivity. The line { is called the axis of o and the
point V' is called the center of «.

Definition 12. Let o be a (V, £)-perspectivity. Then

o I[fV €/, «is called an elation. See Figure 2.1.

Figure 2.1. Elation.

o [fV &/, v is called a homology. See Figure 2.2.

Let P(S) be a semifield plane coordinatized by the semifield S = (.S, +, *)
and let II = Aut(P(S)) be the collineation group of P(S). Under composition the
following subsets form subgroups of II = Aut(P(S)).

Lemma 2.1 (Lemma 4.7, [21]). Let P be a projective plane and let P be a point of

P and { be a line of P. The following statements hold:
9
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i \ N

Figure 2.2. Homology.

(i) The set of all perspectivities of P with axis £ forms a group under composition.
(i1) The set of all perspectivities of P with center P forms a group under composition.
(11i) The set of all perspectivities of P with center P and azis { forms a group under

composition.
(iv) The set of all elations of P with azis ¢ forms a group under composition.

(v) The set of all elations of P with center P forms a group under composition.

2.3 Relationship between Semifields and Projective Planes

Finite fields are not the only algebraic structures that can be used to coordina-
tize a projective plane. In fact we can use any set R:
For a finite projective plane P of order n let U, V., O, I be four points of P, no three of
which are collinear. Take a set R of n elements such that: 0,1 € R and choose a point
oo ¢ R. Fix a 1-1 correspondence « between R and the points in O — (UV N OI)
where a(0) = O and (1) = 1.

To a point P € OI — (UV N OI) assign the coordinates (b,b) where b € R

corresponds to P under the correspondence a.

10



If P ¢ OI, and P ¢ UV, consider the lines PU and PV. To P assign the
coordinates (a,b) where PV N OI = (a,a) and PUNOI = (b,b). For P € UV and
P # V| assign to P the coordinate (m), where OP NIV = (1,m).

To point V assign the coordinate (co) where oo ¢ R. The whole plane is

coordinatized as shown in figure 2.3:
)=V

0,0)=0 )=U

Figure 2.3. Coordinization of the Projective Plane.

The line through (m) and (0, k) has coordinates [m, k], where we say that m =
is the slope of the line and k is the y— intercept. The line through (0co) and (k,0) has
coordinates [oo, k|; we say it has slope oo = and z— intercept k. The line through
the points U and V is called the line at infinity and is denoted by /., or [c0].

We can coordinatize a projective plane with elements from a semifield as we
have shown above. We want to know what information we can obtain concerning the

collineations of projective planes coordinatized by semifields.

11



The following result from [19] gives the relationship between the homologies of
the plane and the nuclei of the semifield that coordinatizes the plane.
Theorem 2.4 (Theorem 8.2, [19]). Let P(S) be a projective plane coordinatized by
the semifield S.
(i) The group Ilv,ouy of (V,OU)- homologies of P(S) is isomorphic to N*.
(ii) The group Iliyov) of (U, OV)- homologies of P(S) is isomorphic to N, ™.
(iii) The group o vy of (O,UV)- homologies of P(S) is isomorphic to N,*.

If we can find the structure of the different groups of homologies, we can then
find the order of each of the nuclei. Conversely, if we know the order of the nuclei,
then we can find the order of the group of homologies.

For the elations of a semifield plane, we have the following definitions and
results:

Definition 13. If P(S) is a semifield plane coordinatized by the semifield S =
(S,+,%) and I1 = Aut(P(S)) is the collineation group of P(S), then any elation
with center (c0) and affine azis is called a shear. The group of shears with axis OV
is denoted 11 (s0) 0v)-

Definition 14. If P(S) is a proper semifield plane, then any elation with center any
point on Lo, and azis L 15 called a translation. The group of translations is denoted
I (ool foo))-

Lemma 2.2 (Lemma 7.10, [19]). Let P(S) be a semifield plane coordinatized by the
semifield S = (S, +, %) and let I1 = Aut(P(S)) be the collineation group of P(S).Then
foo) o)) = (S5 +) @ (S, +)-

In Chapter VI of [19] the authors define the dual plane of a projective plane.
For any projective plane P the dual of the plane, P*, is defined by taking the points

of the new plane to be the lines of the given plane and the lines of the new plane to be

12



the points of the given plane. Notice that a projective plane P can be coordinatized
by a semifield if and only if P is a translation plane with respect to [oo] and the dual
of a translation plane with respect to (00). Planes coordinatized by fields, which are
called Desarguesian planes, fall in this category. Since a proper semifield plane is
not Desarguesian, we have the following lemma:

Lemma 2.3 (Lemma 8.3, [19]). If P(S)is a proper semifield plane, then Aut(P(S))
fizes (00) and l.

To proof the above lemma, if one assumes that either the point or the line
at oo are not fixed by a collineation of the plane, then the plane is forced to be
Desarguesian, which is then not a proper semifield plane. Since the point (co) and
the line /., are fixed, then the only types of elations in a semifield are the shears and
elations as defined above.

If P(S) is a semifield plane coordinatized by the semifield S = (S, +, %) then
IT = Aut(P(S)), the full collineation group of P(S), has the following decomposition:
Lemma 2.4 (Lemma 8.4, [19]). Let P(S) be a proper semifield plane and let 11 =
Aut(P(S)) be its collineation group. If ¥ = (o] jo0)) - (o0),0v), then

(i) 3 is a group.
(i) Tfoo) o)y <2
(113) W(joc joc]) N (o) 0v) = 1.

Because X contains all the elations, it is generated by these elation and we have
the following lemma:

Lemma 2.5 (Lemma 8.5, [19]). If S is a proper semifield, then ¥ < I where I1 =
Aut(P(S)).
Definition 15. For a semifield plane P(S), the group of collineations fixing the points

A, B, and C on a triangle where A = (00), B is a point on U, and C' is any point

13



not on Uy, is called the autotopism group of P(S), denoted A. The fized triangle
15 called the autotopism triangle.

Notice that the set of collineations fixing a triangle form a group under compo-
sition as it is the stabilizer of the points that form the triangle.
Theorem 2.5 (Theorem 8.6, [19]). Let P(S) be a proper semifield plane and let

II = Aut(P(S)). If ¥ = I (jeq] joc)) - L((o0),0v), and A is the autotopism group of P(S),

then
(i) I =XA
(i) SAA =1.

From this theorem it follows that ¥ and A have no elements in common except
for the identity. Since they are distinct and ¥ contains all the elations, then A does
not contain any elations. To be able to find the autotopism group of a semifield
plane, we need to first discuss what autotopisms look like for a semifield and what
information autotopisms provide about the plane.

Since (00) and [oco] are fixed by any collineation of a semifield plane, then this
essentially determines the autotopism triangle. We already have (co), another point
on [o¢0], and since we want three points that are not collinear, the third point will not
be in the line [oo]. It is standard convention to use the points O = (0,0),U = (0),
and V' = (oc0), and the lines that correspond to them, OU,UV, and [co|. Now let
a € A. The points and lines just given are fixed by «a, so « acts as a permutation on
the lines. Then « defines three permutations F, G, and H as follows: For (m) € [0,
(m)* = H(m); for (a,0) € [0,0] (a,0)* = (F(a),0); and for (0,b) € [0], we have
(0,0)* = (0,G(b)), where F'(0) = G(0) = H(0) = 0. For any point (x,y) in the plane,
(x,y)* = (F(x),G(y)) and for any line [m, k] of the plane, [m, k] = [H(m), G(k)].
It follows that F, G, and H are additive functions in S. (See [19], page 175. ) If the

point [z, y] is on the line [m, k| then the point (F'(z), G(y)) is on the line [H(m), G(k)].
14



Therefore we have xxm+y = k and F(z)*xH(m)+G(y) = G(zxm-+y). Lettingy = 0
we get H(m) x F(z) = G(xm). Conversely if we have a triple of nonsingular additive
maps with H(m)* F(x) = G(xm) we can define an autotopism by (m)* = H(m) and
(x,y)* = (F(x),G(y)). An analogous proof is given on [19] where right actions are
used instead of left actions as above.

The autotopism group of a semifield plane P(S) is isomorphic to the autotopism
group of its coordinatizing semifield S as the next result shows.
Lemma 2.6 (Lemma 8.8, [19]). If S is a semifield, then the autotopism group of S
is isomorphic to the autotopism group of P(S).
Definition 16. Two semifields (S, +,0) and (S',+,*) are isotopic if there is a set

of bijective additive mappings (F,G,H) from S onto S’ such that

F(x)oH(n) =G(xxy) for all x,y € S.

The following theorem due to Albert ([4]) gives the relationship between two
different semifields and the planes they coordinatize.
Theorem 2.6 (Theorem 6, [4]). Two semifield planes are isomorphic if and only if

the semifields that coordinatize them are isotopic.

2.4 Some Known Semifields

In 1906 Dickson discovered the first semifields which are now referred to as
Dickson semifields. These semifields are defined as follows: Let K = GF(p") where
p is an odd prime and n > 1. Let f be any element of K that is not a square. Let
S be a two-dimensional vector space over K with basis elements 1 and A. If 6 is the

automorphism of K given by 2/ = 27", 1 < r < n, define a multiplication in K by
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(a 4+ Ab)(c + M) = (ac + f(bd)?) + A ad + be). Then with this operation and field
addition, S becomes a semifield. For more information see [17].

In 1958 Albert first discovered what he called twisted fields. For more informa-
tion see [2]-[5]. Let K = GF(p") where p is prime and define a new multiplication on
K as follows:

m m
roy=ay’® —cal y

where 1 < m < n,c # "' for a € GF(p") With the field addition and this
multiplication K becomes a pre-semifield. In 1961 Albert further generalized this
result by defining a new multiplication on K; the pre-semifields with this new product
are called generalized twisted fields. The new multiplication in K was defined as
follows:

roy=xy — cx®y’

where o, 8 € Aut (GF(p")),c # 2 1y#~! and x,y € GF(p"). Here %! stands for

«

x—. With the field addition and this multiplication K becomes a pre-semifield.
x
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CHAPTER 3
RESULTS

3.1 Introduction

In this chapter we present the results of our study of semifield planes that are

coordinatized by the pre-semifield with product

roy=zy+ Az®y® + BxPy®. (3.1)

From this point on, we will name these semifields by their defining components.
Namely we will call them S(K,«, (3, A, B) where K = GF(p"), a : x + 27" and
B:x— a? € Aut(K), and A,B € K. The associated plane will be denoted
(K, a,p,A,B).

The product from 3.1 arose from a series of papers by Cordero and Figueroa[12]-
[15] and [18]. Recall Albert’s generalized twisted fields which have multiplication
defined by

zoy=uxy—cx®y’

where a, 3 € Aut (GF(p")),c # 2 1y#~! and x,y € GF(p"). These are one of
the most widely studied class of semifields. Albert began with a specific case which
he called twisted fields as shown in [3] in 1959. He then further generalized these
examples in [5] in 1961. The collineation groups of generalized twisted field planes
were studied in [2] and [4] and were completely described in [7].

Cordero and Figueroa studied semifields with an autotopism that acts tran-

sitively on one side of the autotopism triangle. Equivalently the plane admits an
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autotopism which induces a permutation on a side of the autotopism triangle of order
a p-primitive divisor of p” — 1. They showed that with some minor exceptions the
plane is a generalized twisted field plane.

More specifically, let V' denote the n-dimensional vector space over GF(p")
consisting of all the vectors of the form (z) = (2, 2® ... 2(=V) where x € GF(p")
and z® = z*' for i = 0,1,--- ,n — 1 and p is a prime number. The group of all
automorphisms of V' over GF(p), Aut(V'), consists of the non-singular matrices of the

form as shown in [26]

ap A, a
1 -1
a aé ) agn )
M =
1) (n—1)
L . )
where ag, ay, -+ ,a,_1 € K; we denote this matrix by M = [ag, a1, ..., a, 1]

For0<k<n-—1andk € K, let

where ¢ is in the k-th position and the rest of the entries are zero. We will denote

0
any matrix of the form by diag(A, B).
0 B

Let 7 be a non-Desarguesian semifield plane of order p” # 2° that admits an
autotopism go of order h where h is a p-primitive divisor of p™ — 1, i.e. h|p™ — 1, but
h ¢ pt —1for1 <i<n-—1. We consider V @V as the vector space associated to
the affine plane 7 and V' (o0) = {((0), (z))|x € K} is a component of a spread of 7 in
VaV.

18



In [15] Cordero and Figueroa proved the following:

Theorem 3.1 (Result 1, [15]). Let m be a non-Desarquesian semifield plane of order
p". If m admits a collineation go of order h, a p-primitive prime divisor of p™ — 1, then
(i) There exists a spread set {V(0),V (c0) }U{V (M (y))|ly € K—{0}} form in V&V

such that V(00) is the shear axis and fory € K,y # 0,

M(y) = [aoy®, a1y, ..., an_1y )t € Aut(V).

(i1) go = diag(To(7y), To(0)), where v and 6 are two different elements in K, both of

order h.
N\ g
(111) (—) = o for each i such that a; # 0.
Y Y

Notice that in Theorem 3.1 above the plane 7 is coordinatized by the pre-

semifield (K, +, o) where

n—1
1=0

for x,y € K. Hence either 7 is a generalized twisted field plane or there exist at least
two non-zero indices v and v such that a, # 0 # a,. We study the case in which
there are precisely two nonzero coefficients, so the multiplication on the pre-semifield
behaves as a generalization of the multiplication of a pre-semifield that defines the

generalized twisted fields. Hence the product is of the form

zoy=ay+ Az Wyl 4 Bpyle), (3.2)

In [15] an example of such a product for GF(3°%) was given:

19



Theorem 3.2. (Result 2, [15]) Let m be a non-Desarguesian plane which is not a
generalized twisted field plane of order 35. Suppose m admits an autotopism gy of
order 7, a S-primitive prime divisor of 3% — 1. Then m can be coordinatized by the

pre-semifield GF (3%, +,0), where

13,,3),,(1)

zoy=azy+yry® +~220y

and v is a primitive element in GF(3%) that satisfies v* 4+~ +2 = 0. Moreover, 7 has

an autotopism of order 3 that normalizes gq.

In this work we study in general (pre)semifields with a product as in (3.2) above.
First, we show that § is indeed a pre-semifield with the product in equation

3.1.

Lemma 3.1. S = (S, +, 0) is a pre-semifield with product xoy = zy+ Ax®yP + BaPy®

for a, B € Aut(GF(p")) and z,y, A, B € GF(p") provided Az®'y’~! + Baf~1ya=1 £

—1.

Proof. Since addition is the field addition (.5, 4) forms an abelian group. Now assume
x,y # 0. Then x oy = zy + Ax®y’® + BaPy®, that is, v oy = ay(1 + Az*~1yP~1 +
BxP~1y*1) where 2971 = %a Now zy # 0 because x and y are non-zero elements
in the field. Thus if 2 oy = 0 we must have 1 + Az® 'y#~! + Bz#~1y*~1 = 0. Hence

there are no zero divisors provided Az®'y#~! + Bxf=lyo=1 £ 1.

It remains to be shown that the distributive laws hold:

zo(y+z)=ax(y—+z)+Az*(y+2)" + Bal(y + 2)°

= a2y +xz + Az (y° + 2°) + Ba®(y* + 2%)
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=2y + xz + Az*y® + Az®2P + BaPy® + BaP 2o
= xy + Az*y’ + BaPy® + x2 4+ Az®2® + BaP2®
=roy+zxoz
and
(x+y)oz=(v+y)z+ Alx+y)*" + Bz +y)"2*

=2z +yz + Az 4+ y*)2° + B2’ + ¢%)2°

= z2 4+ yz + Az®2? + Ay*2P + BaP 2 + ByP 2
=z + Ax“2P + BaP 2 + xz + Ay®2P + Byf 2~

=xoz+yoz.

Therefore (S, +,0) is a pre-semifield.

3.2 General Results

Let § = S(K,a, 3, A, B) be a semifield with product given by z oy = zy +
Ax*y? + BaPy® where z,y € K = GF(p"), a : x +~ 27" and 8 : x 27", Assume
o £ 1ifaf =1. Let # = (K, a, 3, A, B) be the semifield plane coordinatized by S.

From Hughes and Piper [19], all of the elations of 7 are either shears or trans-
lations and thus are in ¥. See Lemma 2.4 above. The full automorphism group, II,
is [T = X - A where ¥ is the group generated by the shears and the translations and
A is the autotopism group. We also know that ¥ N A = 1, so there are no elations in
the autotopism group. In the following discussion we expand on the ideas presented
in [6].

First we discuss the autotopism collineations of 7(K, «, 3, A, B).
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3.2.1 Autotopisms

Theorem 3.3. Let 1 = n(K,«, 5, A, B) be a semifield plane with product x oy =
ry + Ax®y® + BaxPy®. Assume that o® # 1 when af = 1. If (F,G,H) is an au-
totopism collineation of ™ with F(z) = cx® and G(y) = dy’, then o = 0,dcPA? =

d
AcvdP dc®B? = BcPd®, and H(n) = —n’.
c

Proof. From G(z on) = F(x) o H(n) we get d(x on)’ = cx® o H(n). Expand-
ing this equation we get: d(zn + Az°n® + Bxn®)? = ca®H(n) + A(ca®)*H(n)? +
B(cx®)?H(n)®. Therefore,

dz’n® + dA°z*'n’ + dB%2%'n®® = ca®H(n) + Ac®2°H(n)? + BcP2°P H(n)™. (3.3)

Let B, = da'n®, By, = dA%2%%° By = dB%2%n® E, = ca®H(n),E; =
Ac®2°®H (n)?, and Eg = BcPx°P H(n)®. We analyze the possibilities for equality in

(3.3):

Suppose Ey = E,,Fy = E5 and F3 = Eg. From dzn’ = cx®H(n) we get
2’ = 27, hence 6 = 0. From dn’ = cH(n), we get H(n) = —n’.
c

d B
By substituting into By = Fj5 we get: dA%2nf% = Acoz® (—ne) , that is,
c

d? «
dAx°9nPY = Ac¥go (—ﬂn%). From here we get dA? = Ad® C—ﬂ
c c

[0}

d
By substituting into E5 = Eg we get: dB?2n*® = BclyoP —n(’) , that is,
c

4o 8
AB% 250000 — Bebyob (—anea). This implies dB? = Bd® (C—) .

C c®

Similarly, if £y = FE4, Es = Eg, and E3 = FEs, as in the previous case, we

d
get § = o and H(n) = —n’. Replacing H(n) with the above we get: dA%2r®nf? =
c
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d N\ d>
BcP B (—n9> , that is, dA%2*nf% = BcPzxB (—aneo‘) . This implies z*? = 277,
c C

hence a = . However, this is not possible because a # .

Now if By = Es, By = E4, and E5 = Eg from E, = E,, we have dA?z°nf =

0

cx? H(n). This implies z*° = 27 and therefore a = 0. Thus

dAPnH?
H(n) = 3.4

) = 22 (3.4
dARS\°
In E;, = Es substituting for H(n) from (3.4) we get dz?n? = Ac*zo® ( ) :

c

I8 A9B 50
that is, dzn? = Ac*z7® (—;l . This implies 2% = 2°%, hence
c

0 =oa. (3.5)
dA'nPo\
Using (3.4) and (3.5), we get from F3 = Fg that d B’2/'n*?=Bc’ 278 ( ) .

c

daA@anBOOz

COL

That is, dB?2%'n®® = BcPxoP ( ) . This implies 2%’ = 2% hence 6 = o.
Also n®® = nf% This implies S = 1, which is not possible since /3 is a nontrivial

automorphism.

If By = E5, B3 = Ey, and Ey = Eg from E3 = E; we get dB2%n® = cx®H (n),

hence 2% = 7. This implies 36 = o and

(3.6)
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dB'n*®\"”
From E, = E; and using equation 3.6, we get da/n? = Ac®x°® ,

c
that is, dzfn? = Ac*zo® <d63i¢) . Hence dzn? = Ac®aP% (M) . This
implies 2% = 2°0a; therefore

1 = fa. (3.7)
From E, = Eg and using equation (3.6) and (3.7) we get dA%2*nf?=BcP 2P dBinae
that is, A2 =Bl 2P <M> . Hence d A% 2*9n%=BcP % (M).

c* c®

This implies ¢ = x*329; hence

a=p3 (3.8)
and from n?? = n**? we get

B =a’ (3.9)

From equations (3.8) and (3.9) we get a® = 1, which can not happen since
af = 1.

If By = Es, By = Ey, and E5 = E5 beginning with Ey = E,, we have dA%2%nf? =
cx® H(n). Hence 2% = 27; therefore af = 0. Also,

dA%nP?
N c

H(n) (3.10)

docA@an,BGa
Using equation (3.10), from E; = Eg we get da’n’ = BcPxo? (—) . This
Ca
implies 2% = 2°7; hence

0 =08 (3.11)

and n’ = n?%* which implies

Ba = 1. (3.12)
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dA%nP?
Now using (3.10) and (3.11), from B3 = E5 we get d B27/n*0=Ac*x°® )
c
dP A? BP0
that is, dB%2%n®? = Ac*ao® (# . This implies n®? = nﬁge, hence
c
o= B2 (3.13)

From (3.12) and (3.13) we get 3% = 1, which can’t happen, since 3* = 1 implies
1=ab

If £, = Eg,Fy, = Ej5, and B3 = E,, using Fy = E5, we get dA%2z%%nf? =
Ac®2°®H (n)? which implies 22? = 27%; hence 0 = o.

Using this fact in F5y = E,, we get 2% = 27; this is equivalent to 2%’ = 2%, This
implies = 1 which cannot happen since § cannot be a trivial automorphism.

The cases considered above are the only possibilities to get equality in (3.3).

]

We now look at the homologies of 7. In the following results we let O = (0, 0),
I'=(1,1), U =(0), and V = (00).

Theorem 3.4. Let S = S(K,a, 3, A, B) be a semifield with product given by x oy =
ry+ Ax®yP+ BaPy® where z,y € K = GF(p"), a: x> 2" and §: x 2P, Assume
£ 1ifaf=1. Let m = n(K,a, 3, A, B) be the semifield plane coordinatized by S.
Let (F,G, H) be an autotopism collineation of m. Then (F,G,H) is a homology with
center U and axis OV if and only if F(x) = cx;G(y) = y; and H(n) = ¢ 'n, where

c€K,c#0, and c® = cP.

Proof. Let (F,G, H) be a homology with center U and axis OV. Then G(y) = y since
(z,y) — (F(z),G(y)) and G(y) acts on the points of OV the line from (0,0) to (o),

which is fixed pointwise.
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Now, G(x on) = F(x) o H(n) by definition, so let m = H(n). Thus we have
G(zon) = F(z)om. From here we get G(zn+Az“n+BxPn®) = F(z)y+AF (x)*m’+
BF(x)m®. This yields zn + Az“n® + Baxfn® = F(z)y + AF(x)*m”? + BF(x)°m®,
since G(y) = v.

Since F'(x) is additive, it can be written as

F(z)=Y_ fia""

r—1 r—1 r—1
So, AF(z)*mFf = Amﬁsz‘:vplxpa = AmﬁZfiaa:plﬂ = Amﬁfo‘_axpt,
. =0 i=0 =0
where t = a + 1.

r—1
Thus AF(x)*mFf = Z AmPfe o
=0

r—1 r—1 r—1
Similarly, BF (z)’m® = Bm® Z ffxplpr = Bm*~ Z ffaprer = Bm*® Z ftﬁ_biﬁpt’

=0 =0 t=0
r—1

where t = i + b. Thus BF(x)’m® = Z Bm® [P a?.

t=0

We then have

r—1 r—1 r—1
an + Az®n® + BaPn® = Z mfa? + Z Amﬁff_axpt + Z Bmo‘fﬁbx”t
t=0 =0 =0

r—1

=S (mfi + AmPfe, + Bm® f7)a?

t=0

For t = 0 on the left hand side of the above equation, there is no 2?° term, so

the coefficient of this term will be 0. Thus mf, + Am? &, + Bm® ffi , = 0. Hence
r—1

fi =0, fi_a =0, and f;_y, = 0 since zn + Ax°n® + BaPn® = Z(mft + AmP e+
=0

Bmo‘fﬁb)xpt holds for all n and m = H(n) is bijective. If a+b # r thent =a+b # 0

mod 7, s0 f_ o = fy=0and f,_, = f, = 0. For a4+ b = r, if 2a = r then 20 = r
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because a = b, but a < b, so 2a # 0 mod r and 2b # 0 mod r. If 2a = b mod r or
2b = a mod r then 3a = r but o® # 1 when o8 = 1. So from t = 2a mod r we get
Ozft_a:fga_a:fa andOth_b:fgb_b:fb if ¢t =2b mod r.

Therefore F(z) = for?' + fiz” + fox? + -+ fr_2? ', which implies F(z) =
all zero since ftv =0forallt#0

Jox.

Now an + Az*n® + BzPn® = foxr om = form + A(fox)*mP + B(foz)’me.

From n = fom = foH(n) we get f;'n = H(n). From n® = f&m? and n® =
Fome we get f& = fJ. Letting ¢ = fo, we get F(z) = cx,G(y) =y, ¢ 'n = H(n),
and ¢ = ¢°.

Conversely, suppose (F,G, H) is an autotopism collineation of = with F(z) =
cr, G(y) =y, and H(n) = ¢ 'n. Then, since G(y) = y, OV is fixed pointwise. Also
U = (0) is the only point fixed linewise. Moreover G(z on) = F(x) o H(n). Thus

(F,G, H) is a homology with center U and axis OV,

In the next theorem we discuss the homologies with center O and axis UV .

Theorem 3.5. Let 7 = n(K, «, 3, A, B) be a semifield plane with the product x oy =
ry + Ax®y® + BxPy® where o x + 2" and B v a? . Assume o3 #+ 1 if
af = 1. Let (F,G,H) be an autotopism collineation. Then (F,G,H) is a homology
with center O and azis UV if and only if F(x) = cx,G(y) = cy,and H(n) = n, where
c€ K,c# 0 and c® = ¢ = ¢, except when o* = 1 and aff = 1. If o* = 1 and
af =1, then (F,G, H) is a homology if and only if G(y) = goy + gay® + guy”, F(x) =
JoT + %xQQ, and H(n) = n, where C = A*AP — BB, and g9, ga, g» € K are such
that g§ = go = gg,gb = %ga,gaBo‘ = —C?APg%, and if g, # 0 then CC* = —1.

27



Proof. The point (z,y) maps into the point (F'(z),G(y)), and for n € UV, H(n) =n
since the “slopes” are fixed. We also have G(x on) = F(x) on,for all z,n € K.

Since G is additive, then

r—1
Gly) = Zgﬂpz~
1=0

Thus, G(x on) = F(x) on, so we have

r—1

Z gi(zn + Az®n® + Ba®n®)' = F(z)n + AF(z)*n” + BF(z)’n®.
i=0

r—1
Z(gifﬂplnpl + g AP 2P PP 1 g, BP 1P 0"y = F(x)n + AF(2)*n® + BF(x)’n®.
i=0

(3.14)

For t =b+1 and t = a + 7, we get, repsectively,

Z(thptnpt+gt—bApt_bxpa+t_bnpt+gt—aBpt_apr+t_anpt):F(x)n"‘AF(x)a"ﬁ‘i‘BF(x)ﬁ”a‘
Z(gtl’pt + gtfbAptib:EpaHib + gtfaBptiaprHiu)npt = F(z)n + AF(x)anﬁ + BF(x)ﬁna'
Equation (3.14) holds for all n, so for t ¢ {0, a, b}, we have

b+t—a

ga? + gy AP P g B 2P = 0. (3.15)

If 2a # 2b mod r, that is a — b # b — a then the individual terms have different
degrees and thus ¢, = 0,9, = 0, and ¢;—, = 0 for ¢t > 0 and G(y) = goy.
Now assume 2a = 2b mod r. That is o® = 3%. Then ¢, = 0 for t # 0, a, or b.

Since b — a # 0,a, or b mod r, then ¢g,_, = 0 and g, = 0.
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Comparing the coefficients of n, n”, and n® and using the fact that 2a = 2b we

get a —b=b—a mod r,. Therefore

a+0—>b b+0—a

F(x) = gow + 90—bAp07b$p + 90—aBp07a$p

a

= gox + g,bAp7b$pa7b + g,aBp7a$pb7

= gox + (g_bAp_b + g_aBp_a)xpa_b, (3.16)

a+b—>b b—a b+b—a

AF(z)* = gyap’ + gpp AP 2P + gp—aBY 2

b+b—a

b—a

= gbl’pb + goApol’pa + gp—oBY a?

—a

= gbl’pb + goAI'pa + gb_apr_al’p

= gbpr + goAxP", since gp_q = 0, (3.17)

and

a+a—b a—a b+a—a
P .Tp

BF(2)® = goap® + gas AP 2" 4 go_oB

2a—

= gal’pa + ga_bApa_bxp ’ + gono,I‘pb

= guxp® + goBa?", since go_p = 0. (3.18)

If =b # a mod r, then —b # 0,a, or b mod r and g_, = 0. This implies that
b# —a mod r so g_, = 0 and hence F(z) = gox.
Thus AF(2)* = A(gox)® = Aggaz® = goa?’ + goAz"; hence, g& = go and g, = 0.

Also, BF(z)? = B(goz)? = ngxﬂ = g,2"" + goBa® . Therefore, gOB = g and g, = 0.

29



a+b

If 2a = 2b, and —b = @ mod 7 we get a3 = p?p® = p*™* = p® 2 = p® = 1 and

(e PN BN} 2a—2b _ ,2a—2a

ot = ppip'pt = pipptp Tt =p p = p? = 1. In this case, equation (3.16)

becomes F(x) = gox + (g A~ + 9,B%)z®”. Then from equation (3.17) above we get,

AF(2)" = Algor + (9aA” + 9,B%)a"]" = gy’ + go Ax®
= Alg5a® + (e A™ + g7 B™)a"]
= Algga® + g A™ ™ + gy BP ]
= Algga® + g A" 4 g B

= Algga® + g7 A" 2" + gy B*2”|
This implies

98 = g, and A[(g,A” + gB°)?] = g, (3.19)
From equation (3.18) above we get,
BF(z)” = Blgox + (9.4% + 9,B%)2")° = gu2® + go Bz’
(03 2 a2
= Blgya’ + (9, A + g, B” )2

= B[ggxﬂ R ggB*BQxO‘]

= B[ggarﬁ + g;anBa:a + 95352350‘]

This implies

o = B(gngz + gbBﬁ)B and gg = go. (3.20)

Since 2a # 0,a, or b mod r, taking t = 2a, from equation (3.15) we have
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a+2a—b 2a—a b+2a—a

ganp% + gQa—bApzaibxp + g?a—aBp P =0.

G + g3 AP 2" 4 g, BY 2P = 0.

b

g ggaAp3axp4“ + gaB”aa:pb_ = 0.

Ga—pr”
Jas7”" " + g3 AP 2P + g, B 27 = 0.
gafbxpaib + gbApb:E + gaBpa-T = 0.

Gast™ "+ g APz + g, Bz = 0.

o B :
So g A? + g,B* = 0 and hence g, = _gAB . Also, g,B* + g,B* = 0, which
o B
implies g, = —gaﬁ.

From (3.19) we get

o

A (9. A+ gB")" = gy
B \° Be
A <gaAa - gaﬁBﬁ) = _gam

AN [ e BB\
Ba Aﬁa ga_ga

AP (AA&"’AM — AB®* pba

_ﬁ ABQ ga = ga
AP [AA®A— AB”BY\ ince Ba = 1
- = ¢, since po =
Bo A Ja =9
Aﬁ 2 2
2 (aA— B B) o« _ g
Ba < ga g
B
_A_ (Aa2(7B)A7B _ Baz(ﬂ)86>ﬁ ga g g
Be a e
AP 5 . \P
o AOC Aa o BO[ BOt) (e} — u
Be ( Ja = 9
AP
o (A0 - B°B*) g2 = g, (3.21)
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and from (3.20) we get

B (9uA” + 9,B%)" = g,

B B
B (gaAa o g Bﬂ) — ga

AR
B (AQAB;@BQBﬁY 90 = 9a
At; (4°A° - B*B?)" g = g,
Aj}; (A*A° — B“Bﬁ)ﬁgg = g4, since o = (% (3.22)

Let C' = A“A® — B®B# in equations (3.21) and (3.22). Then we have

ABCB BCS
— ¢ an W:A—g;'

Equation (3.21) yields g, = vg® and equation (3.22) gives g, = wg®. Thus
g% = 1vPg2# = 1vPg,. This implies g, = wv’g,; hence 1 = wv’.
BC? APCPN” [ BCP AP P _
Now, 1 = wvf= (Aa2 ) (— Ba ) = (AQQ ) — e ™ —OBCB if
9a 7 0.
Since —CPCH* =1, we get —CPCP* = 1. By direct computation we get 1 =

—CCe
Conversely, since H(n) = n, then UV is fixed pointwise. Since UV is fixed

pointwise, then QU and OV are fixed linewise. Also O is the center.

In the next theorem we discuss the homologies with center V and axis OU.
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Theorem 3.6. Let 1 = n(K, a, 3, A, B) be a semifield plane with the product x oy =
2y + Az®yP® + BaPy® where o x— 2P and B x — 2P . Assume o® # 1 if aff = 1.
Let (F, G, H) be an autotopism collineation. Then (F,G, H) is a homology with center
V' and axis OU if and only if F(z) = x, G(y) = cy and H(n) = cn, c € K,c # 0,c* =
c=c? except when o* =1 and aff = 1. Ifa* =1 and aB = 1, (F, G, H) is a homology
if and only if F(z) = 2,G(y) = goy + gox® + go”, H(n) = gon — %nQQ where
C = A“AP — B*B? and gy, ga, g € K such that gg =g0=95,9% = _a = —A*Cy,,

BA
and if g, # 0, then CC* = —1.

Proof. Let (F,G, H) be an autotopism collineation that maps (z,y) into (F(z), G(y))
and fixes each line through V. Then F(z) = x. So G(x on) = x o H(n). Assume
first that G(y) = goy for some gy € K, gy # 0. Then go(zn + Az*n® + BaPn®) =
xH(n) + A:):O‘Hl(n)ﬂ + Ba®H(n)*. This implies gon = H(n). Since G is additive we

have G(y) = Zgia:pi, for some g; € K. From G(zon) =x o H(n) we have

i=0

r—1 )

Z gi(zn + Az°n® + B2Pn®)P" = 2 H(n) + Az*H (n)® + BaP H(n)>. (3.23)
i=0

That is,

r—1

7 7 7 a—+1 b+1 7
E (gix® n? + g; AP 2P nP + g;BP 2P
i=0

b+

n?"") = zH(n) + Az H(n)? + Bz’ H(n)".

Fort=i,t=a+41, andt =b+1,

Z(thptnpt—i—gt—aApt_axptnpb+t_a+gt—bet_b$pt"pa+t_b):xH(n)“‘AxaH(n)ﬂ"‘BxﬁH(n)a
t=0
r—1

—a —a —-b a+t—b
Z(gmpt + gt_aApt n? T g gt_bet nt"" ).CEpt =xzH(n)+ Az®H(n)? + BxﬂH(n)o‘
t=0

(3.24)
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Equation (3.23) holds for all z, so for ¢ # a,b, or 0

b+t—a a+t—b

gtnpt + gt,aApt_anp + gt,bet_bnp =0 (3.25)

If 2a # 2b mod r then the terms in equation (3.25) have different degrees.

Therefore g, = 0,9, = 0, and g,_, = 0 for t # 0, a,b. Therefore, g = 0 for t > 0

and G(y) = goy.

From G(xon) = F(z) o H(n), we get goxn + goAz*n® + goBx’n® = xH(n) +
Az®H(n)? + Bz’ H(n)".

This implies H(n) = gon, gon® = H(n)? and gon® = H(n)?.

Assume now 2a = 2b mod r and g; = 0 for t # 0,a, or b. Since b—a # 0,a,or b
mod 7, then g,—, = 0 and g,—, = 0. So from (3.23) and (3.24) we get

b b

H(n) = gon + g_oA” 0" + g, B" 0" (3.26)

Therefore,

AH(n)? = g,n®" + GoAn?" + go_y, B 0" = g.n?" + goAn”” since g,_, = 0. (3.27)
and

BH(n)* = gbnpb + gb_aApbianpa + goBn?" = gbnpb + goBn?" since gy_, = 0. (3.28)

Now assume 2a = 2b and —b=a mod r (i.e. o = 1 and a* = 1).
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From equation (3.26) we get

b b

H(n) = gon+ g_o A" "n?"™" + g_, B 'n?""

= gon + g A" n?”’ + g, B” n””".

From equation (3.27)

AH(n)? = gyn® + goAn”
— A(gon + g A”'nP”" + g, B n?*")? from (3.29)
= Agbn® + A(gAPn"" + g, B*n®")?

= Agin® + A(g,A®)Pn® + A(g,B*)’n®
This implies
9o = A(GA® + g, B%)? and gy = gg.
From (3.28)

BH(n)* = gyn” + goBn®

= B(gon + gy A" 0" + goB” n?™")* from (3.29)

= ngno‘ + B(gbAﬁnﬂz 4 gaBana2)a

= Bgin® + B(g, AP + g.B*)*n”

This implies
g = B(gA” + g.B*)* and gy = g
35

(3.29)

(3.30)

(3.31)

(3.32)



Since 2a # 0,a, or b mod r by taking t = 2a in (3.25) we get

3a—b

92anp2a + gaApanpb+a + gQa_be2a7bnp _ 0

a+ 2a+a

Hence goan”" + ga A" 17" + gr040B

I 0, since -b=a.
Therefore gganp2a + g AP + gbebn =0, since 3a = b and 4a = 0.

Thus gZan“2 + g, A%n + gbBﬂn =0.
The coefficient of n®* has to be 0; hence,
G A® + g,B = 0.

Solving for g, we get
ga A"

9 = BA

Now substituting this on equation (3.31) we get

9o = A(gpA® + g, B*)?

o A”
= A(-2E AP 4 g+ B g = gf)

BB

o Y B
:A(B B — A Aﬁ) .
BP “

=—-A (%) g%, where C' = A*AP — B*B”.

C

B
= vg;f; where v = —A (ﬁ)
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and equation (3.32) becomes:

gaAa gaAoz « ¢ «
[ A®AP — BaBA\“
= — By, ( 55 )

c\"
— _ R~ — AYAP _ poph
= Bga( B) , where C' = A*A” — B“B".

Rearranging this equation we get:
B? C\“
o= —Bg) | =
Jo = "ga Y (Bﬁ)

BF ce
— = _Bg®
Ao (Bﬁa)

BA ce
= EBQS (—) ; since aff =1

B
B
— acvoz
At
C «
= wg?; wh =B(—) .
wg,; where w (A)

From here we get g° = w’¢*® = wPg, and g, = vw’g,.

Now,

) (= (%))

Cr 2 (C
A( 52)3 <A>’ since aff = 1

= 080, if g, #0.
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This implies
cct =-1.

Conversely, since F(z) = x, the line OU is fixed pointwise. Thus UV and OV
are fixed lines and the only point they have in common is V' = (00). Thus we have a

homology with center V' and axis OU. O

3.2.2 The Nuclei of S

Recall that the nuclei of a semifield measure degrees of associativity. In the
next theorem we give the order of the nuclei of the semifields under consideration.
Theorem 3.7. Let 7 = 7(K, «, 3, A, B) be a semifield plane. Assume that o # 1
if af = 1. Let S be a semifield that coordinatizes w. Then the order of the middle

(rb—a

nucleus of S is p ). The left and right nuclei have the same order p™*®) where

(n,m) = ged(n,m), except when a* = 1,a8 =1, and g, # 0 in the above theorems.

Proof. By Theorem 8.2 in [19] N,% is isomorphic to Il 0v), the group of homologies
with axis OV and center U. By Theorem(3.4), the coefficients of the mappings
F,G,H are the ¢ € K where ¢ # 0,c* = . Thus & = . From this we get
1 = @@ "1 8o the order of Iy,ov) must divide p*~® — 1. Now, since K* is cyclic
and is of order p” — 1, then the order of IIy vy must also divide p" — 1, since
Il (y,0vy is isomorphic to the multiplicative group of the middle nucleus and this is
a subgroup of the whole multiplicative group. Thus the order of Iy oy is p* — 1,
where s = ged(r,b — a).

The arguments for the left and right nuclei are similar. For each of these, the

order of the corresponding isomorphic homology group is equal to the number of ¢’s in

K, where ¢ # 0, such that ¢® = ¢® = ¢. From this relationship we get, @ = @ = ¢,

therefore ¢®~! = 1 and similarly "' = 1. Thus the order of the corresponding

38



homology groups divide both p® — 1 and p® — 1. Now since the group of homologies
with center O and axis UV (respectively, center V' and axis OU) is isomorphic to
the multiplicative group of the right(left) nucleus and the multiplicative group of the
right(left) nucleus is a subgroup of the multiplicative group K*, then the order of the
corresponding homology group will divide the order of K*. Therefore the order is

p° — 1, where s = ged(r, a, b).

Now we apply these results to some specific examples.

3.3 Examples

Examples of semifields S(K,«, 3, A, B) for different fields K = GF(p™) were
found using a computer program. In Table 3.1, we list the parameters that yield semi-
fields with the product under study. In the table ~ is a primitive element in K, that
is, v is a generator of the multiplicative group K*. For all the orders under study this
is not a complete listing, but for 3%, 3%, and 35, with the exception of a change in prim-
itive elements, this is an exhaustive list. Of the fields of small order we investigated
no parameters were found to yield semifields over GF(37), GF(3%), GF(3'%), GF(57),
GF(5%),GF(5), GF(77), GF(11°), GF(13%).

Note that for any pre-semifield with the product x oy = zy + Az*y® 4+ BaPy*,
if o> = 1 when af = 1, then the corresponding semifield is a generalized twisted
field. Since the semifields corresponding to rows #14, 18, 20 and 22 in Table 3.1 have
a® =1 when af = 1 they are generalized twisted fields.

The semifields corresponding to rows #1, 2, 3, 4, 9, 10, 11, 15, 16, 17, 19, 21,
and 23 have a® = 1 when af = 1. Of these, the semifields corresponding to rows

#1, 2,3, 4, 11, 16, and 23 have CC* = —1, so g, # 0 for these. For the semifields
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Table 3.1. Parameters for the Semifields Under Study

’#‘Pm’me‘Power\a‘b‘u‘ v ‘Irreducible Polynomial for’y‘
1 3 4 1(3[0] 10 |2*+22+2

2 3 4 113]0| 14 |2*+22+2

3 3 4 11310 2 |2*+22%34+2

4 3 4 1[3/0] 6 |2*+2234+2

5 3 5 20410 11 |2°4+22+1

6 3 5 21411] 10 |2°+2z+1

7 3 5 21411] 21 |2°4+22+1

8 3 6 1(3/1]13 |28%+2+2

9 3 8 2160 28 |28+ 223 +2

10 3 12 13|90 82 |22 4+22* +223 + 222 + 2+ 2
11 5 4 11312 6 |z*+422+42+3
12 5 5 3141220 | 2°+4x+3

13 5 6 315197 |2 +32+3

14 5 6 21410 24 | 25+32x+3

15 5 8 216/0| 0 |2®+42% +42+3
16 7 4 113/0| 6 |2*+6224+42+5
17 7 4 113]2] 18 |2*+6224+4x+5
18 7 6 21410 48 | 254622 +4x+5
19| 11 4 1(3/0| 54 |z*+6x+8

20| 11 6 2140|120 | 2% + 422 + 72 + 8
21| 13 4 1130 56 | 2%+ 12224 92 + 11
22| 13 6 21410(168 | 254+ 1122 + 92 + 11
23| 17 4 1031016 |2*+162%+ 11z + 14

corresponding to rows # 9, 10, 15, 17, 19, and 21, CC* # —1 which implies g, = 0.
In these cases the homologies are of the first forms given in Theorems 3.4, 3.5, and

3.6. So the order of the middle nucleus is p(""*=% = p(4a3a—a) — p2a The left and right

rab) _ o (4a,a,3a)

nuclei are of order p! = p®. Thus the semifield as a vector space over its

p
nuclei has dimension 4 over its left and right nuclei and dimension 2 over its middle
nucleus. It should be noted that all of the p-primitive semifields of order p* with right

nucleus isomorphic to the left nucleus have been characterized by Cordero in [8]-[11].

However, for the semifields of order p* in Table 3.1 the left and right nucleus are not
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isomorphic. In [13] Cordero and Figueroa proved explicitly that all of the semifields
of order 3* with the product under study are generalized twisted fields.

It remains to look at the semifields corresponding to rows # 5, 6, 7, 8, 12,
and 13. For these we show that they are not generalized twisted fields. All of the
autotopisms of these semifields are of the form found in Theorem 3.3. First let
G(y) = dy’ and F(z) = c2’. Recall H(n) = %ln(’. Since ¢ and d are in K, and v
generates the multiplicative group K, there exist positive integers k and j such that
c =¥ and d = 77. Using the equations from Theorem 3.3, that is, dc®A? = Ac*d®
and dc®B? = BcPd®, we have the values for k and j given in Table 3.2. In this table,
the first column gives the corresponding row in Table 3.1. For the first four rows in
Table 3.2 , t can be 0 or 1 and for the remaining rows 0 < t < 3. When # = 1 and
t =0, sg gives the values of ¢ and d that define an autotopism of order a p—primitive

divisor of p™ — 1.

Table 3.2. Values for powers of v

’ # ‘ k ‘ J \ range of s \ S0 ‘
5 MJrlls 01 | g5+ 1010 1<s<22 |12
6 | 18(0 —1)+ 11s w + 1435+ 121t | 1<s5<22 |12
71 5060—1)+11s 113<798_ ) +143s+ 121t | 1<s<22 |12
s | =14 s O=1 | 5794+ 364t 1<s<56 |8
12 M+713 w+17043+781t 1<s<44 |24
13 @ + 93s w +2790s + 3906t | 1 < s < 168 | 24

Theorem 3.8. The semifields corresponding to the parameters in Table 3.2 are not

generalized twisted fields.
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Proof. Assume that 7(K, «, 3, A, B) is a semifield plane coordinatized by a general-
ized twisted field. The left and right nuclei of m have the same order. From [7], A(m),
the full autotopism group of 7 , admits a cyclic group that acts transitively on the non
vertex points on the line OU. Also from [7], A(7) is a subgroup of 'L(1, K)xI'L(1, K).
Now each pre-semifield under consideration admits an autotopism (Fy, Gg, Hy) with
Fy(z) = cx and Go(y) = dy where ¢,d € K have order a p—primitive prime divisor of
p" — 1. Since the subgroup generated by this autotopism is normal in A(7), and for a
generalized twisted field, Liebler [23] showed the normalizer is all of A(7), then every
element in A(7) is of the form given in Theorem 3.3 and is transitive. However, from
the table above, we see that none of the elements have order p" — 1.

]

By Albert’s Isomorphism Theorem in [4], two semifield planes are isomorphic if
and only if the semifields that coordinatize them are isotopic. The following theorem

gives the conditions for the semifields under study to be isotopic.

Theorem 3.9. Let (F,G, H) be an isotopism of S(K, «, B,A,B) onto S(K, o', 3',A",B’)
where o # 1 when af = lwith F(x) = cx’,G(y) = dy’ and H(n) = hn™. Then one
of the following must occur:

(i) a=ao,B=p,A =d"BcA% and B' = d*'cPBY.

(ii) B=a',a=p, A =d'"~*c*PBY and B' = d*~Pcl~>A?
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Proof. Suppose that S(K, «, 5, A, B) and S(K, o/, 5, A’, B") are isotopic; let (F, G, H)

where F'(z) = c2?,G(y) = dy’, and H(n) = hn" be an isotopism between them. Then

G(xon) = F(x)o H(n)
Therefore, G(xn+Az®n’+Bx’n®)=F(z)H (n)+A'F¥ (z)H" (n) + B'F” (x)H® (n)
and dz'n® + dA%2n® + dB%2'n® = ca®hn” + A'(cx”) (hn™)? + B'(ca®)? (hn™)*
da®n® + dA%z°n? 4 dB%2P'n® = ca”hn + A'c¥ 27 0™ B/ 17 hn

da®n? + dA 2P 1+ dB%2Pn*? = cha®n™ + A WP 27 0™ + B/ e xo8 pe

E, + Ey, + Es = B, + Es + Es (3.33)

We now check the different possibilities for this to be true.

El — E47E2 — E57E3 — E6

For this case we have dzn? = cha'n™, dA%2nf = A'¢®h® 27 n™ and
dB?zPn® = B'¢P he 178 n S0 § = o and 6 = 7. From the first equation we have
d = ch which implies h = %l By replacing 7 and o with 6, we get 2% = 2%? which
implies that af = o/6; hence o = . Similarly n®’ = n®"? implies 8 = /3.

From the coefficients of the second and third equations, we get:

dA® = Al n”
0
0
0

jaz;lzﬁ -4
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dA?

4y
(2
BB AP = A
and dB? = B’ h*’
dB?
22 g
b he’
dB?
e _p
cBhe
B’
5@
dl—aca—ﬁBe — B/
El = E47E2 == EG)E?) — E5
For this case we have dz?n? = cha'n™, dA%2°'nP? = B'¢P h® 2% n™ | and

dB?zPn = AP 27 n™ . Thus @ = o and 6 = 7. From the first equation we

d ,
have d = ch which implies h = —. By replacing 7 and ¢ with 6, we get z°? = 2%'?
c

which implies that af = £'6; hence o = 3. Similarly n?? = n®? implies § = o/

From the coefficients of the second and third equations, we have

dB? = A’ B?

dB? ,
s

dB?

cBhe =4

dB?

el
L
D

dl—aca—BBG — A/
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and

dA® = B'¢P e
dA? ,
Fhe =B
dA? )
c*hB B
dA’ B
ca(i)ﬁ -

[

dl—ﬁCB—OCAO — B/

E, = FEs, By = Ey, B3 = Eg

In this case we have dazfn’ = A'¢®h® 27n™ dA%29nP° = cha"n”, and
dB?zPn® = B¢ h* 2% n™ . From these equations we get: 6 = oo/, § = 7,
afd =0, 0 =71, 50 = o, and o = 7a/. From these we get 6 = afla’ which implies

' — /. Similarly we get 37! = 8’. Now afl = 7a~ !, so a® = 7671

1 = ad’. Hence o~
This gives o? = 300! so, a®> = . Also, 8 = 0B, so 2 = o0~ '. This gives
B2 = ahf~! so, B? = a. Since a® = B and B = a, we get o® = 1 when a3 = 1. By

the stated assumption this cannot happen.

E, = FE5, Ey = Eg, B3 = Ly

In this case dzfn? = A'c¢®hP 27 n™" | dA%2nP? = B'c¢P he' 278 n™  and
dB%2%n®® = chz®n™. From the powers on the variables, we get 0 = oo/, 0 = 73,
afd = of, B0 = 1a/, pO = o, and af = 7. From here we get § = [0’ and thus
Bt = Also 0 = a3’ so a~t = 3. Moreover, ol = B03"; hence af~! = ’. and
B0 = aba’ so Ba~! = o. From here we get a = 3% and 2 = «a. These last two
relationships lead to a® = 1 when a8 = 1. Therefore this case is not possible.

El — E67E2 — E47E3 — E5

In this case dzn? = B'¢P h® z78 n™ | dA%2°nP? = cha'n™, and dB?2P'n*? =

AP 27 n™" | From the powers on the variables, we get 6 = o', 0 = 7¢/, af = o,
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B0 =1, f = od/, and o = 73'. From these we get § = 0a’ and thus 7! = «'.
Moreover = aff’; hence a™' = 3. Also af = BB’ which implies af~! = /.
Therefore 30 = afla’; hence fa~! = o/. From these we get a = 3% and 5% = . These

last two relationships lead to a® = 1 when a3 = 1. Therefore this case is not possible.

El — E67E2 — E57E3 — E4

In this case dz?n? = B'¢® h®' 28 n™" | dA%209nP0 = A'¢® P 2o n™ | and
dB%2%n*% = chaz°n”. From the powers on the variables, we get § = o/, 0 = 7/,
af = od, B0 = 73, 0 = o, and af = 7. From these we get § = 63" and thus
B~ = p'. Now, 0 = afla’ so o=t = a/. Also af = B0a’ so aff~! = o’ and B0 = adf3';
hence Sa~! = /3. From these we get o = 32 and 32 = . These last two relationships
lead to o® = 1 when a8 = 1. Therefore this case is not possible either.

The cases considered above are the only possibilities to obtain equality in equa-

tion ( 3.33). Hence the result follows. O

As evident from Table 3.1 for GF(3*),GF(3%), and GF(7*), we have multiple
values of A and B that yield a semifield. This will happen in other cases as well.
By using the isotopism theorem, Theorem 3.9, since the values of a and f are the
same, we can explicitly see which values of A and B give isotopic semifields which

would then coordinatize isomorphic planes. For this case, A" = d'Pc?~*A? and

k\6
B = d* 1" PR so for GF(3%), A’ = d'BcP~2 A0 = @1=3 -3 (40)0 = E’yj))z'
gl

2. Now using ¢ = d = ~%, we get

By letting & and j be 0, we get A" = ~°.
B' = d*'c*#BY = B?. By choosing § = 3 we get B' = BY = (72)® = 45. Therefore
in Table 3.1 #3 and #4 are isotopic.

Notice that the semifield corresponding to the parameters listed in #15 is the
only semifield that coordinatizes a self dual plane. For a semifield with the product

o, the multiplication of the semifield that coordinatizes the dual plane is o'y = youx.
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Thus a plane will be self dual if x oy = y o z. For the semifields under study we have
the following result.

Lemma 3.2. A semifield plane ©(K,«, (3, A, B) coordinatized by a semifield with
product x oy = zy + Ax®y® + Bx*y® is self dual if and only if A = B. The only

self-dual planes m(K, «, 5, A, B) are the generalized twisted field planes.

Proof. A plane is self-dual if z o y = y o x. Therefore we must have zy + Az®y® +
BaPy® = yx + Ay*a® + ByPx®. That is, Az®y® + BaPy® = Ay“a’ + ByPze.

Thus either Az%y? = Ay®2z? and BaxPy® = By’z® in which case o = 3, which
cannot occur, or Ar®y® = BySz® and BzPy* = Ay°2® in which case A = B. If
A = B, we get from [7] that 7(K, a, 8, A, B) is a generalized twisted field. O

3.3.1 Semifields from GF(3%)

To begin we find an irreducible polynomial in GF(3%) over GF(3) and use the
polynomial to generate the elements of the pre-semifield. We chose f(z) = 2°+2z+1
where v € GF(3°) — GF(3) is a root of f. Using a computer program it was found
that the values for A, B,a, and b that give a pre-semifield with product x oy =
xy + Ax®yP + BaxPy® are A =1,B =", a =2, and b = 4. For the same irreducible
polynomial and the same a and 3, A = v with B = 4 or A = ~ with B = 7?! also
determine a pre-semifield. For any irreducible polynomial used to generate GF(3%),
these are the only possibilities for pre-semifields. Since a : z — 2" = 2%° and
B:x— 2 = 2%, then the middle nucleus has order prb=a) = 3(:4=2) — 31 hy
Theorem 3.7. To determine the group of homologies with center U and axis OV,
which is isomorphic to the middle nucleus, we find the values of ¢ € GF(3°) for which

(a7

c® = c? ¢ # 0. These elements are v° = 1 and 7'2'. The right and left nucleus have

order p("?) = 36:24) = 3! by Theorem 3.7.
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Since all the nuclei are isomorphic to the field GF(3), the center is also GF(3).
For the different semifields, the elements of the nuclei and the center are:
For A=~ B =~ :0,~4%6 and 4% are the elements of the nuclei and center.
For A=~ B =~:0,453! and 4'° are the elements of the nuclei and center.
For A=~ B =~%:0,~' and v*?® are the elements of the nuclei and center.
For every semifield of order GF(3%), regardless of the irreducible polynomial

used, these are the only choices.

3.3.2  Semifields from GF(3%)

To begin we find an irreducible polynomial in GF(3°) to generate the elements;
we chose f(x) = 2% + 2 + 2. Again a computer program was used to obtain the
parameters that define a pre-semifield with the product z oy = zy + Ax*y® + BaPy°.
These values are A =, B =~'3,a =1, and b = 3 and for this particular irreducible
polynomial, these are the only values possible.

Since av : z + 2" = 23 and B : z — 27" = 2%, then the middle nucleus has
order p("t=® = 3(6:3-1) — 32 To determine the group of homologies with center U and
axis OV, which is isomorphic to the middle nucleus, we find all of the values of ¢ €
GF(3% with ¢® = ¢?, ¢ # 0. These elements are 70 = 1,91 182 273 364 455 546,
7937, Together with 0 they form a field isomorphic to GF(3%). Doing the calcula-
tions for the middle nucleus we get that the elements of the middle nucleus are
0,245, 181 113 91 1662 1208 1282 4TT The multiplication table is given in Table
3.3.

Since o : z — 2" = 2% and f: z — 2" = 23 the right and left nucleus have
order p("@b) = 3(6:1.3) — 31 To determine the group of homologies with center © and
axis UV, which is isomorphic to the right nucleus, we find all the values of c € GF(35)

where ¢ = ¢® = ¢,¢ # 0. These elements are 4° = 1,364, Along with 0, they form

48



Table 3.3. Multiplication Table for Elements of the Middle Nucleus

% ,}/545 ,)/646 7662 7477 7181 7282 7298 7113
7545 7545 7646 7662 7477 ,7181 7282 ,7298 ,Yl 13
,Y646 7646 ,)/662 7477 ,)/181 7282 7298 7113 ,Y545
,7/662 7662 7477 7181 7282 7298 ’71 13 ,y545 ,7/646
7477 7477 7181 7282 7298 7113 ,Y545 7646 7662
7181 ,}/181 7282 ,}/298 ,)/113 7545 7646 7662 7477
7282 7282 7298 7113 7545 7646 7662 ,7477 7181
7298 7298 7113 7545 ,}/646 7662 7477 ,}/181 7282
7113 7113 7545 7646 7662 7477 7181 7282 7298

a field isomorphic to GF'(3). Doing the calculations for the right nucleus we get the
elements 0,y 4545 To determine the group of homologies with center V and axis
OU, which is isomorphic to the left nucleus, we find all the values of ¢ € GF(3°)
where ¢ = ¢® = ¢,¢ # 0. These elements are 4° = 1,73, Along with 0 they form
a field isomorphic to GF'(3). Doing the calculations for the left nucleus we get the
elements 0, v'®, v545. Thus the nucleus is GF(3). Based on the order of the nuclei,
we conclude that this semifield is not a generalized twisted field because the middle
nucleus of a generalized twisted field is of order 3, not 9.

The center, which is isomorphic to GF(3), consists of the elements 0, y!8!, and
7?45, For every semifield of order 3%, regardless of the irreducible polynomial used to

construct the field GF(3°%), the parameters are A =, B =73 a=1, and b = 3.

3.4 Autotopism Collineations

Let 1 = w(K,a, 3, A, B) where K = GF(p"),p prime. We will consider the

autotopisms of 7 that fix V(co) and V'(0). Each autotopism will then have a matrix
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A 0
of the form with A, B € G. Notice that as indicated before, 7 admits an
0 B

autotopism gg of order h where h is a p-primitive prime divisor of p™ — 1.

By the choice of gy and by a basis change in V & V' we can assume that

To(§) 0
0 To(n)

9o

where ¢ and n € K and " = 1 = n". Since 7 is not Desarguesian we have
¢ # nand [{] = h = |n|. Cordero and Figueroa [15] showed that since go is an
autotopism of 7 then there exist ag = 1, aq, a9, ..., a,_1 € K and nonnegative integers
eo =0,eq1,...,e,_1 such that
(1) M(y) = [aoy ), a1y, ... a1y V]t € G for y # 0.
(i) ¥ ={V(0),V(c0)} U{V(y)ly € K*} is a spread for = where
Viy) = {((z), (x)M(y))|z € K}.
(iii) (g) é = %, for each ¢, 0 < ¢ <n — 1 such that a, # 0. .
From (iii) above we have if i # j and a; # 0 # a;, then e; # e;, otherwise
Ui

é% = which implies £) = ¢U) and since |a| = h and h is a

p-primitive prime divisor of p"” — 1, then i = j.

we would have

Let A the the autotopism group of m. In [23] Liebler showed that if 7 is a
generalized twisted field plane, then the subgroup generated by gg is normal in A.

We now look at the normalizer of < gy > in A.

0
Theorem 3.10. Let H =< g = :g € A and g normalizes < go > p and
0 B

Tk(a) 0

let g € H. Then there exist a,b € K such that g =
0 Ty(b)
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For the proof we need the following lemma.

Lemma 3.3.
(i) (Ti(a))' = Tin(a;) where a; = aa®a®®) ... o=V gnd ik is taken modulo n.
(i) Tu@)! =T o

(i1) Ty(a)Ty(b) = Thye(aDb)

Proof.

(i) Label the columns and rows of Ty (a) by 0,1,2,...n — 1. Consider Ty(a)T;(a) =
C. Since every row and column of Ti(a) has only one non-zero element, then
the value of the non-zero position in the first column of C' is determined by the
product of the element in the s x k position of Tj(a) times the element in the
k x 0 position of Tj(a). The element in the first column of the Tj(a) matrix
on the left is in row k, so the element in the k™ column of matrix C will be in
row k + k = 2k. The power of the non-zero element corresponds to the column

k) in column k.

number, so this element in the matrix T;(a) on the left is a
Therefore in matrix C', the nonzero element is in row 2k and column 0 and will
be a®a. Thus (Ty(a))? = Tor(az) where ay = aa™.

Suppose this holds for m, that is, Ty (@) =T,k () where a,,=aa®a?). . .q((m=Dk),
Then Ty(a)™ = Ti(a)™Ty(a) = Thr(am)Ti(a) = Ty(c). Therefore since T}, (a)

is again the second matrix, the element in the ¢ x k position of the first matrix
times the element in the & x 0 position of the second matrix will give the element
in the first column of the new matrix. The element in the first column of the
first matrix is in the mk™ row, so the element in the k'* column will be in
row mk + k = k(m + 1). The non-zero element from the first matrix in the k™

column is agn) and the non-zero element from row k in the second matrix is a,

so the non-zero element in the first column of the new matrix will be aq(ﬁ) - Q.
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(i)

Thus the new matrix will be Ty 1 (ala) = Thgern) ((aa®a . .. g(m=DR) R )

(k)a(Qk)a(Sk) e a((m_l)k"’k)a) (aa/(k)a@k)a(gk) e a(m)>

= Tty (a = Ton(kt1)
= (k1) (A1)

Let Ty (a)T;(b) = Tp(1) where Tp(1) is the identity matrix. We need to find the
values of [ and b that make this true. Since Ty(a) matrices are named for the
row k of the non-zero element, a, of the first column, we need to determine

the element from row 0 and column [ of Tj(a) and the element from row [ and

column 0 of Ty(b). Then, the element in the first row of Tj(a) is a"* and is
1
k)"

in column number n — k. Thus | = n — k. Also, " ®p = 1, so b =

Therefore, Ty.(a)™" = T;(b) = Ty, (ﬁ)

Consider the product T} (a)T; (b). Clearly this is of the form T (c) for some
s € Z, and some ¢ € K. Then the non-zero element, ¢, will come from the row
s and column [ of the first matrix T;(a) and row [ and column 0 of matrix 7;(b).
The element in the row [ of Tj(a) is a®¥, so ¢ = a®b. We then have s = k +

since al¥) is in column [ and row k -+ [. This row position from Ty(a) defines the

row position for T;(c). Therefore, T} (a) Ty (b) = Ti4y (aVb) .

m
We now provide a proof of Theorem 3.10:
A 0 , A
Proof. Let g = normalize < go > . Then A7 TH(&)A = Ty(€)! = Ty(&Y)
0 B

and B~'Ty(n)B = Ty(n)? = Ty(n’)for some 1, j.

Using the fact that AT, (€)A = Ty(£') we get A = Ti(a) for some k and a.

Similarly since B~'Ty(n)B = Ty(n’) we get B = Ty(b) for some £ and b. If g€ HN A

To(®) 0

where A is the autotopism group of 7, then ¢ 1gyg = c A

0 To(n®)
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and since g,” g . we will have g7 gogg,” " is an autotopism
0 To(n™7")

of the form where [ is the identity. Since 7 is non-Desarguesian,
0 To(n” ")

7 does not admit an autotopism of the form with |¢| = h. Therefore
0 To(C)
npl_pk = 1 and together with |n| = h imply ¢ = k. Therefore the autotopisms of 7
Tk(a) 0
that normalize < gy > are of the form
0 Tk(b)
O
Tk(a) 0
Notice that if g = is an autotopism of 7, then
0 Ty(b)
V()" =g V(y)g = {((x), (2)Ti(a) " M(y)T(b))|x € K}
is also contained in X. Since
_ K O (k a k1t
Te(a) xg, 21, ..., 2p1) Th(a) = xé ), mxﬁ ) D et
and
Tio(a)™ M (y)Ti(b) = Ti(a)~" M (y)Tii(a) Ti(a) "' T (D)
we get that ¢ is an autotopism if and only if
b (ee) (k) b
Ay (a) =Qy m for all £. (334)
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3.4.1 Example of order 3¢

We study the autotopisms of the semifield S = S(K,a, 3, A, B) where K =
GF (3% = GF(3)[y] with 4 +~ + 2 = 0. The element v has order 3° — 1 = 728 =
23.7.13. The product in S is given by zoy = zy+y2>y*>"+~32*"y>. The corresponding

semifield plane admits an autotopism, gg of order 7, the only 3-primitive prime divisor

of 3¢ — 1.
T(](CL) 0
First we will look at autotopisms of the form . By equation
0 To(b)
3.34, we have (—) = —. Thus b* = ¢* and b* = a**. Therefore ( 12) =1
a a a~

and b = +a~12. With a = 7" we have 77122 = 424" and —12 - 26r = 24r mod (23 -

7-13) and therefore 13|r.

To(a 0 To(y13¢ 0
Hence o(@) = o(r™) with s € Z.
0 To(b) 0 ZETQ(’}/_H'BS)
Tk(C) 0
Now we look at the autotopisms of the form . From equation
0 Ti(d)
AN d d\’ d
3.34using k =1lwegety| -] =+~ and v3 (-] = 4¥3—. From this we
c c? c 27
Ty(c 0 Ty (yy~13s 0
get «(©) = ™) for some s € Z.
0 Ti(d) 0 £ (yy*1)
To(1 0 To(y"3 0
Now let fy = () , fi= (1) , and
0 —Tg(l) 0 To(’}/_lllg)
Ti(y) 0
f2=
0 Ti(v)

As above let H be the subgroup of A of all autotopisms that normalize < gg >
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To(a) 0 Te(c) 0

with |go| = 7. Let Hy = €eH,. If € H and
0 Ty(b) 0 Ty(d)
Tk(C) O i
k # 0, then fy ¥ € Hy, so H is generated by Hy and f,. Moreover,
0 Tk(d)
To(a 0 To (13 0 ,
(@) _ [ BO™) — fifs withi = 0ori = 1.
0  Ty(b) 0 +To(y~1213%)

Therefore Hy is generated by fo and fi. The order of f; =8 -7 = 56. If fy ¢< f1 >,
then |Ho| =2-8-7. If fo €< f1 >, then |Hy| = 8- 7. In either case, |[Hy| < 2-8-7.
On the other hand, f9 € Hy and since Hy is normal in H, |H| = 6|Hy| < 6-2-8-7 <
8.7-13=3°—1.

From here it follows that H is not transitive in OV, OU, or UV. Notice that
go = [¥ is of order 7 and corresponds to the values of k and j that we found for
GF(3%) in Table 3.2.

We have proven the following result:

Theorem 3.11. Let K = GF(3%) = GF(3)[y] where v +~v +2 = 0. Let § =
(K,a,B,A,B) = (GF(3%),a, 8,7,7') be the semifield of order 3° with product xoy =

xy + y23y* + yB32?"y3 where v,y € K and let A be its autotopism group. Let
To(¢) 0 . .
go = where & andn € K and & =1 =n" and let H = N4(< go >).
0 To(n)

Then |H| < 35 — 1.
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