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ABSTRACT

A STUDY ON THE TWO COMPONENT PERIODIC SHALLOW WATER

SYSTEMS

Caixia Chen, Ph.D.

The University of Texas at Arlington, 2012

Supervising Professor: Yue Liu

In this dissertation we study the generalized periodic two-component Camassa-

Holm system and the generalized periodic two-component Dullin-Gottwald-Holm sys-

tem, which can be derived from the Euler equation with nonzero constant vorticity in

shallow water waves moving over a linear shear flow. The precise blow-up scenarios

of strong solutions and several results of blow-up solutions with certain initial profiles

are described in detail. The exact blow-up rates are also determined. Finally, the

sufficient conditions for global solutions are established.
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CHAPTER 1

BACKGROUND

1.1 Early Developments

In this section we note the historical development of nonlinear shallow wa-

ter wave theory following Ablowitz and Clarkson [1]. Over one hundred and fifty

years ago, while conducting experiments to determine the most efficient design for

canal boats, a young Scottish engineer named John Scott Russell (1808-1882) made

a remarkable scientific discovery. As he described it in his “Report on Waves”. In

Russell’s own words: “I was observing the motion of a boat which was rapidly drawn

along a narrow channel by a pair of horses, when the boat suddenly stopped - not so

the mass of water in the channel which it had put in motion; it accumulated round

the prow of the vessel in a state of violent agitation, then suddenly leaving it behind,

rolled forward with great velocity, assuming the form of a large solitary elevation, a

rounded, smooth and well-defined heap of water, which continued its course along

the channel apparently without change of form or diminution of speed. I followed it

on horseback, and overtook it still rolling on at a rate of some eight or nine miles an

hour, preserving its original figure some thirty feet long and a foot to a foot and a

half in height. Its height gradually diminished, and after a chase of one or two miles

I lost it in the windings of the channel. Such, in the month of August 1834, was

my first chance interview with that singular and beautiful phenomenon which I have

called the Wave of Translation”.

Scott Russell was convinced that he had observed an important phenomenon,

and he built an experimental tank in his garden to continue his studies of what he
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Figure 1.1. Soliton on the Scott Russell Aqueduct on the Union Canal.

dubbed the ‘Wave of Translation’ (see Figure 1.1). Unfortunately the implications

which so excited him (he described the day he made his original observations as the

happiest of his life) were ill-understood and largely ignored by his contemporaries,

and Scott Russell was remembered instead for his considerable successes in ship hull

design, and for conducting the first experimental study of the ‘Doppler shift’ of sound

frequency as a train passes.

Especially, two results of Russell’s are of importance to motivate the develop-

ment of the nonlinear partial differential equations for modeling fluids, etc. i.e. one

is that he observed solitary waves and hence deduced their existence. The other one

is that he found the speed of propagation c of the solitary wave in a channel of depth
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h to be c =
√

g(h+ α), where α is the amplitude of the wave ad g the force due to

gravity.

The ‘Wave of Translation’ itself was regarded as a curiosity until the 1960s when

scientists began to use modern digital computers to study non-linear wave propaga-

tion. Then an explosion of activity occurred when it was discovered that many

phenomena in physics, electronics and biology can be described by the mathematical

and physical theory of the ‘soliton’, as Scott Russell’s wave is now known. This work

has continued and currently includes modeling high temperature superconductors and

energy transport in DNA, as well as in the development of new mathematical tech-

niques and concepts underpinning further developments.

1.2 Recent Developments

1.2.1 The Camassa-Holm Equation

In 1993, Camassa and Holm [7] proposed the following new equation (CH) for

shallow water waves:

ut − uxxt + 3uux = 2uxuxx + uuxxx. (1.1)

The Camassa-Holm equation is a well-known integrable equation describing the

unidirectional propagation of shallow water waves over a flat bottom [7, 21, 32, 34], as

well as water waves moving over an underlying shear flow [35]. The CH equation (1.1)

also arises in the study of a certain non-Newtonian fluids [6] and also models finite

length, small amplitude radial deformation waves in cylindrical hyperelastic rods [24].

The CH equation (1.1) was first obtained by Fokas and Fuchssteiner [27, 28] as a bi-

Hamiltonian generalized of KdV. The novelty of Camassa and Holm’s work was the
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physical derivation of (1.1) and the discovery that the solitary wave solutions to this

equation are solitons.

The CH equation (1.1) has caught a lot of attention in recent years due to

two remarkable features. The first is the presence of solutions in the form of peaked

solitary waves or “peakons” [2, 7, 39]: u(t, x) = ce−|x−ct|, c ̸= 0, which are smooth

except at the crest, where they are continuous, but have a jump discontinuity in

the first derivative. The peakons replicate a feature that is characteristic for the

waves of great height waves of the largest amplitude that are exact solutions of the

governing equations for water waves [11, 19, 51]. These peakons are shown to be stable

[22, 23, 39]. It is worth mentioning that recently it was point out by Lakshmanan

[38] that the Camassa-Holm equation could be relevant to the modeling of tsunami

waves (see also the discussion in Constantin and Johnson [15] and Segur [46]).

Another remarkable property of the CH equation is the presence of breaking

waves (see Figure 1.2. i.e., the solution remains bounded while its slope becomes

unbounded in finite time [7, 12, 13, 14, 17, 43, 52]). In [3] and [4], the authors show

that the solutions can be uniquely continued after breaking as either global conserva-

tive or global dissipative weak solution. It is noted that the KdV equation does not

have wave-breaking phenomena [37, 48]. Wave breaking is one of the most intriguing

long-standing problems of water wave theory [52]. As mentioned by Whitham [52],

it is intriguing to know which mathematical models for shallow water waves exhibit

both phenomena of soliton interaction and wave breaking. It is found that the CH

equation could be the first such equation and has the potential to become the new

master equation for shallow water wave theory, modeling the soliton interaction of

peaked traveling waves, wave breaking, admitting solutions as permanent waves, and

being integrable Hammiltonian systems.
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Figure 1.2. An example of wave breaking with velocity c > 0.

1.2.2 The Two-component Camassa-Holm System

The Camassa-Holm equation also admits many integrable multi-component

generalizations. The most popular one is mt − Aux + umx + 2uxm+ ρρx = 0, m = u− uxx,

ρt + (uρ)x = 0.
(1.2)

Notice that the CH equation can be obtained via the obvious reduction ρ ≡ 0 and

A = 0. System (1.2) was derived in 1996 [45] (also see [47]). Recently, Constantin-

Ivanov [18] and Ivanov [33] established a rigorous justification of the derivation of

system (1.2). Mathematical properties of the system have been also studied further

in many works, for example [8, 26, 29, 30, 41]. Chen, Liu, and Zhang [8] established

a reciprocal transformation between the two-component Camassa-Holm system and

the first negative flow of the AKNS hierarchy. Escher, Lechtenfeld, and Yin [26]

investigated local well-posedness for the two-component Camassa-Holm system with

initial data (u0, ρ0−1) ∈ Hs(R)×Hs−1(R) with s ≥ 2 by applying Kato’s theory [36]

and provided some precise blow-up scenarios for strong solutions to the system. The

local well-posedness is improved by Gui and Liu [30] to the Besov spaces (especially
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in the Sobolev space Hs(R)×Hs−1(R) with s > 3/2), and they showed that the finite

time blowup is determined by either the slope of the first component u or the slope

of the second component ρ. The blow-up criterion is made more precise in [41] where

the authors showed that the wave breaking in finite time only depends on the slope

u. In other words, the wave breaking in u must occur before that in ρ. This blow-up

criterion is further improved in [29] to the lowest Sobolev space Hs(R) × Hs−1(R)

with s > 3/2.

1.2.3 The Dullin-Gottwald-Holm Equation

In 2001, Dullin, Gottwald and Holm [25] studied the following 1+1 quadratically

nonlinear equation

mt + c0ux + umx + 2mux + γuxxx = 0, x ∈ R, t > 0, (1.3)

where m = u − α2uxx is a momentum variable. This equation was derived using

asymptotic expansions directly in the Hamiltonian for Euler’s equation in the shallow

water regime, and it is completely integrable with a bi-Hamiltonian as well as a Lax

pair in [25].

Using the notation m = u− α2uxx, Eq.(1.3) can be written as

ut − α2utxx + 2ωx + 3ux + γuxxx = α2(2uxuxx + uuxxx), x ∈ R, t > 0, (1.4)

where ω and α are two positive constants. Formally, when α2 = 0, Eq.(1.4) becomes

the Korteweg-de Vries (KdV) equation

ut + 2ωux + 3uux + γuxxx x ∈ R, t > 0.

While when γ = 0, Eq.(1.3) turns into the Camassa-Holm equation [7, 21, 27]

ut + 2ωx − α2utxx + 3ux = α2(2uxuxx + uuxxx), x ∈ R, t > 0. (1.5)
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Recently, many papers were devoted to the study of the Dullin-Gottwald-Holm

(DGH) equation. Gui [49] studied the well-posedness of the Cauchy problem and

the scattering problem for the DGH equation. Moreover, the issue of passing to the

limit as the dispersive parameter tends to zero for the solution of DGH equation was

investigated, and the scattering data of the scattering problem for the equation were

explicitly expressed in [49]. And in [54], Yin investigated the local well-posedness,

global existence and some blow-up phenomena for the DGH eqaution. Octavian G.

Mustafa [44] investigated the low regularity conditions need for the Cauchy problem

of the DGH equation via the semigroup approach of quasilinear hyperbolic equations

of evolution and the viscosity method. Li and Olver [40] studied the well-posedness,

blow-up and the low regular solutions for an integrable nonlinearly dispersive model

wave equation. In [20], Adrian Constantin and Jonathan Lenells presented a simple

algorithm for the inverse scattering approach to the Camassa-Holm equation. Y. Liu

[42] investigated the problems of the existence of global solutions and the formation of

singularites for the DGH equation. And the second author et al. [50] studied the limit

behavior of the solution to a class of nonlinear dispersive wave equations, which can

be seen as some extension of DGH equation. More recently, Christov and Hakkaev

[10] computed the Poisson brackets for the scattering data of the DGH equation, and

then, the action-angle variables were expressed in terms of the scattering data.
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CHAPTER 2

GENERALIZED PERIODIC TWO-COMPONENT CH SYSTEM

2.1 Introduction

In this section, we are concerned with the Cauchy problem of the generalized

periodic two-component Camassa-Holm system

mt − Aux + σ(2mux + umx) + 3(1− σ)uux + ρρx = 0, t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R,

ρ(t, x+ 1) = ρ(t, x), t ≥ 0, x ∈ R,

(2.1)

where m = u− uxx, or equivalently, in terms of u and ρ,

ut − utxx − Aux + 3uux − σ(2uxuxx + uuxxx) + ρρx = 0, t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R,

ρ(t, x+ 1) = ρ(t, x), t ≥ 0, x ∈ R.

(2.2)

The generalized two-component Camassa-Holm system was recently derived in

[9], following Ivanov’s modeling approach [33]. Here u(t, x) describes the horizontal

velocity of the fluid, ρ(t, x) is in connection with the horizontal deviation of the

surface from equilibrium, and A ≥ 0 characterizes a linear underlying shear flow, all
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measured in dimensionless units [9]. We see the appearance of a new free parameter

σ. When σ = 1, it recovers the standard two-component Camassa-Holm system [45].

Notation. Throughout this chapter, we identity all spaces of periodic functions with

function spaces over the unit circle S in R2, i.e. S = R/Z. The norm of the Lebesgue

space Lp(S), 1 ≤ p ≤ ∞, is denoted by ∥ · ∥Lp and the Sobolev space Hs(S), s ∈ R,

by ∥ · ∥Hs . Since all space of functions are over S, for simplicity, we drop S in our

notations of function spaces if there is no ambiguity.

2.2 Preliminaries

In this section, we briefly give the needed results to pursue our goal. We first

present the local well-posedness for the Cauchy problem of system (2.2) in Hs(S) ×

Hs−1(S), s > 3/2, with S = R/Z.

Denote the Fourier transform of a function f in the torus S by f̂(k) with the fre-

quency k ∈ Z. Then we have ̂((1− ∂2
x)

−1f)(k) = (1+ k2)−1f̂(k) = Ĝ · f̂ = ̂(G ∗ f)(k),

where G(x) := cosh(x−[x]−1/2)
2 sinh(1/2)

, x ∈ R, [x] stands for the integer part of x ∈ R, and

Ĝ(k) = (1+ k2)−1. Hence (1− ∂2
x)

−1f = G ∗ f =

∫
S
G(x− y)f(y) dy for all f ∈ L2(S)

and G ∗m = u. Our system (2.2) can be written in the following “transport” type

ut + σuux = −∂xG ∗ (−Au+ 3−σ
2
u2 + σ

2
u2
x +

1
2
ρ2), t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R,

ρ(t, x+ 1) = ρ(t, x), t ≥ 0, x ∈ R.

(2.3)
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Applying the transport equation theory combined with the method of the Besov

spaces, one may follow the similar argument as in [30] to obtain the following local

well-posedness result for the system (2.2).

Theorem 2.2.1. If (u0, ρ0) ∈ Hs(S) × Hs−1(S), s > 3/2, then there exists a max-

imal time T = T (∥(u0, ρ0)∥Hs×Hs−1) > 0 and a unique solution (u, ρ) of (2.2) in

C([0, T );Hs(S)×Hs−1(S))
∩

C1([0, T );Hs−1(S)×Hs−2(S)) with (u, ρ)|t=0 = (u0, ρ0).

Moreover, the solution depends continuously on the initial data, and T is independent

of s.

Now, we consider the following two associated Lagrangian scales of the gener-

alized two component system (2.2)
∂q1
∂t

= u(t, q1), 0 < t < T,

q1(0, x) = x, x ∈ R,
(2.4)

and 
∂q2
∂t

= σu(t, q2), 0 < t < T,

q2(0, x) = x, x ∈ R,
(2.5)

where u ∈ C1([0, T ), Hs−1) is the first component of the solution (u, ρ) to (2.2). Notice

that when σ = 1, the two characteristics q1(t, x) and q2(t, x) are the same.

Lemma 2.2.1. [9, 18, 26] Let (u, ρ) be the solution of system (2.2) with initial data

(u0, ρ0) ∈ Hs(S) × Hs−1(S), s > 3/2, and T the maximal time of existence. Then

Eq.(2.4) has a unique solution q1 ∈ C1([0, T ) × R,R), and Eq.(2.5) has a unique

solution q2 ∈ C1([0, T )×R,R). These two solutions satisfy qi(t, x+1) = qi(t, x)+1, i =

1, 2. Moreover, the map q1(t, ·) and q2(t, ·) are increasing diffeomorphisms of R with

q1,x(t, x) = exp

(∫ t

0

ux(τ, q1(τ, x))

)
dτ > 0, (t, x) ∈ [0, T )× R,

and

q2,x(t, x) = exp

(∫ t

0

σux(τ, q2(τ, x))

)
dτ > 0, (t, x) ∈ [0, T )× R.

10



The above Lemmas indicate that q1(t, ·) : R → R and q2(t, ·) : R → R are

diffeomorphisms of the line for each t ∈ [0, T ). Hence, the L∞ norm of any function

v(t, ·) ∈ L∞(S), T ∈ [0, t) is preserved under the family of diffeomorphisms q1(t, ·) and

q2(t, ·) with t ∈ [0, T ), that is

∥v(t, ·)∥L∞(S) = ∥v(t, q1(t, ·))∥L∞(S) = ∥v(t, q2(t, ·))∥L∞(S), t ∈ [0, T ). (2.6)

Similarly, we have

inf
x∈S

v(t, x) = inf
x∈S

v(t, q1(t, x)) = inf
x∈S

v(t, q2(t, x)), t ∈ [0, T ), (2.7)

sup
x∈S

v(t, x) = sup
x∈S

v(t, q1(t, x)) = sup
x∈S

v(t, q2(t, x)), t ∈ [0, T ). (2.8)

Lemma 2.2.2. [26] Let (u, ρ) be the solution of system (2.2) with initial data (u0, ρ0) ∈

Hs(S)×Hs−1(S), s > 3/2, and T the maximal time of existence. Then we have

ρ(t, q(t, x))qx(t, x) = ρ0(x), (t, x) ∈ [0, T )× R. (2.9)

Moreover if there exists x0 ∈ S such that ρ0(x0) = 0, then ρ(t, q(t, x0)) = 0 for all

t ∈ [0, T ).

We may use the following proposition derived in [29] to study the regularity

property of solution to (2.2).

Proposition 2.2.1. Let 0 < s < 1. Suppose that f0 ∈ Hs, g ∈ L1([0, T ];Hs),

and v, vx ∈ L1([0, T ];L∞) and that f ∈ L∞([0, T ];Hs)
∩

C([0, T ];S ′) solves the one-

dimensional linear transport equation ft + vfx = g,

f(0, x) = f0(x).
(2.10)

Then f ∈ C([0, T ];Hs). More precisely, there exists a constant C depending only on

s such that the following estimate holds:

∥f(t)∥Hs ≤ ∥f0∥Hs + C
(∫ t

0

∥g(τ)∥Hsdτ +

∫ t

0

∥f(τ)∥HsV ′(τ)dτ
)
. (2.11)
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Hence,

∥f(t)∥Hs ≤ eCV (t)
(
∥f0∥Hs + C

∫ t

0

∥g(τ)∥Hsdτ
)
, (2.12)

where V (t) =
∫ t

0
(∥v(τ)∥L∞ + ∥vx(τ)∥L∞)dτ.

The above proposition was proved using the Littlewood-Palay analysis for the

transport equation and the Moser-type estimates. Using this result and performing

the same argument as in [29], we can obtain the following blow-up criterion.

Theorem 2.2.2. Let (u, ρ) be the solution of system (2.2) with initial data (u0, ρ0) ∈

Hs(S)×Hs−1(S), s > 3/2, and T the maximal time of existence. Then

T < ∞ ⇒
∫ T

0

∥ux(τ)∥L∞dτ = ∞. (2.13)

We then give several useful conservation laws of strong solutions to (2.2)

Lemma 2.2.3. Let (u, ρ) be the solution of system (2.2) with initial data (u0, ρ0) ∈

Hs(S) × Hs−1(S), s > 3/2, and T the maximal time of existence. Then for all t ∈

[0, T ), we have ∫
S
u(t, x)dx =

∫
S
u0(x)dx,∫

S
ρ(t, x)dx =

∫
S
ρ0(x)dx.

Proof. Integrating the first equation of (2.3) by parts, in view of the periodicity of u

and G, we get

d

dt

∫
S
udx = −

∫
S
σuuxdx−

∫
S
∂xG ∗ (−Au+

3− σ

2
u2 +

σ

2
u2
x +

1

2
ρ2)dx = 0.

On the other hand, integrating the second equation of (2.3) by parts, in view of the

periodicity of u and ρ, we get

d

dt

∫
S
ρdx = −

∫
S
(uρ)xdx = 0.

This completes the proof of the lemma.
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Lemma 2.2.4. Let (u, ρ) be the solution of system (2.2) with initial data (u0, ρ0) ∈

Hs(S) × Hs−1(S), s > 3/2, and T the maximal time of existence. Then for all t ∈

[0, T ), we have∫
S
(u2(t, x) + u2

x(t, x) + ρ2(t, x))dx =

∫
S
(u2

0(t, x) + u2
0x(t, x) + ρ20(t, x))dx.

Proof. Multiplying the first equation of (2.2) by 2u and integrating by parts, we have

d

dt

∫
S
(u2(t, x) + u2

x(t, x))dx =
d

dt

∫
S
ux(t, x)ρ

2(t, x)dx.

Multiplying the second equation of (2.2) by 2ρ and integrating by parts, we get

d

dt

∫
S
ρ2(t, x) = − d

dt

∫
S
ux(t, x)ρ

2(t, x)dx.

Adding the above two equalities, we obtain

d

dt

∫
S
(u2(t, x) + u2

x(t, x) + ρ2(t, x))dx = 0.

This completes the proof of the lemma.

Lemma 2.2.5. [16] Let T > 0 and v ∈ C1([0, T );H2(R)). Then for every t ∈ [0, T ),

there exists at least one point ξ(t) ∈ R with

m(t) := inf
x∈R

[vx(t, x)] = vx(t, ξ(t)).

The function m(t) is absolutely continuous on (0, T ) with

dm(t)

dt
= vtx(t, ξ(t)) a.e. on (0, T ).

Lemma 2.2.6. [53] For every f ∈ H1(S), we have

max
x∈[0,1]

f2(x) ≤ e+ 1

2(e− 1)
∥f∥2H1(S),

where the constant e+1
2(e−1)

is sharp.

13



By the conservation law stated in Lemma 2.2.4 and Lemma 2.2.6, we have the

following corollary.

Corollary 2.2.1. Let (u, ρ) be the solution of system (2.3) with initial data (u0, ρ0) ∈

Hs(S) × Hs−1(S), s > 3/2, and T the maximal time of existence. Then for all t ∈

[0, T ), we have

∥u(t, ·)∥2L∞(S) ≤
e+ 1

2(e− 1)
∥u(t, ·)∥2H1(S) ≤

e+ 1

2(e− 1)
∥(u0, ρ0)∥2H1×L2 .

Lemma 2.2.7. [31] If f ∈ H3(S) is such that
∫
S f(x)dx = a0

2
, then for every ϵ > 0,

we have

max
x∈S

f 2(x) ≤ ϵ+ 2

24

∫
S
f2
xdx+

ϵ+ 2

4ϵ
a20.

2.3 Wave-breaking Phenomenon

In this section, we investigate the wave-breaking phenomena of strong solution

to system (2.3). First, we give the wave-breaking criterion for σ ̸= 0.

Theorem 2.3.1 (Waving-breaking criterion ). Let σ ̸= 0 and (u, ρ) be the solution of

(2.2) with initial data (u0, ρ0) ∈ Hs(S)×Hs−1(S), s > 3/2, and T the maximal time

of existence, then the solution blows up in finite time if and only if

lim inf
t→T−

{inf
x∈S

σux(t, x)} = −∞. (2.14)

To prove this wave-breaking criterion, we use the following lemma to show that

indeed σux is uniformly bounded from above.

Lemma 2.3.1. Let σ ̸= 0 and (u, ρ) be the solution of (2.2) with initial data (u0, ρ0) ∈

Hs(S)×Hs−1(S), s > 3/2, and T the maximal time of existence. Then

(1) If σ > 0, then

sup
x∈S

ux(t, x)≤∥u0,x∥L∞ +

√
∥ρ0∥2L∞ + C2

1

σ
. (2.15)
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(2) If σ < 0, then

inf
x∈S

ux(t, x)≥− ∥u0,x∥L∞ − C2√
−σ

. (2.16)

The constants above are defined as follows.

C0 =∥(u0, ρ0)∥2H1×L2 ,

C1 =C0

√
(−1 + sinh 1)A2

4 sinh2(1/2)
+
[ |3− σ|(e+ 1)

2(e− 1)
+

cosh(1/2)(|3− σ|+ |σ|)
2 sinh(1/2)

+
1

2

]
,

C2 =C0

√
(−1 + sinh 1)A2

4 sinh2(1/2)
+

cosh(1/2)(4− σ)

2 sinh(1/2)
, for σ < 0.

(2.17)

Proof. The local well-posedness theorem and a density argument imply that it suffices

to prove the desired estimates for s ≥ 3. Thus, we take s = 3 in the proof. Also,

we assume that u0 ̸≡ 0. Otherwise, the results become trivial. Note that if G(x) :=

cosh(x−[x]−1/2)
2 sinh(1/2)

, x ∈ R, then (1 − ∂2
x)

−1f = G ∗ f for all f ∈ L2(S) and G ∗ m = u.

Hence, we can rewrite the first equation in (2.3) as

ut + σuux = −∂xG ∗
(
−Au+

3− σ

2
+

σ

2
u2
x +

1

2
ρ2
)
. (2.18)

Differentiating the above with respect to x and using the identity

−∂2
xG ∗ f = f −G ∗ f , we obtain

utx+σuuxx+
σ

2
u2
x = A∂2

xG∗u+ 1

2
ρ2+

3− σ

2
u2−G∗ (3− σ

2
u2+

σ

2
u2
x+

1

2
ρ2). (2.19)

(1) When σ > 0, using Lemma 2.2.5 and the fact that

sup
x∈S

[vx(t, x)] = −inf
x∈S

[−vx(t, x)],

we can consider m̄(t) and η(t) as follows:

η(t) ∈ S and m̄(t) := ux(t, η(t)) = sup
x∈S

(ux(t, x)), t ∈ [0, T ). (2.20)
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Hence,

uxx(t, η(t)) = 0, a.e. t ∈ [0, T ). (2.21)

Take the trajectory q1(t, x) defined in (2.4). Then we know that q1(t, ·) : R → R is a

diffeomorphism for every t ∈ [0, T ). Therefore, there exists x1(t) ∈ R such that

q1(t, x1(t)) = η(t), t ∈ [0, T ). (2.22)

Now, let

ξ̄ = ρ(t, q1(t, x1)), t ∈ [0, T ). (2.23)

Therefore, along the trajectory q1(t, x1), equation (2.19) and the second equation of

(2.2) become

m̄′(t) =− σ

2
m̄2 +

1

2
ξ̄2 + f(t, q1(t, x1)),

ξ̄′(t) =− ξ̄m̄,

(2.24)

for t ∈ [0, T ), where ′ denotes the derivative with respect to t and f(t, q1(t, x1)) is

given by

f = A∂2
xG ∗ u+

3− σ

2
u2 −G ∗ (3− σ

2
u2 +

σ

2
u2
x +

1

2
ρ2). (2.25)

We first derive the upper and lower bounds for f for later use in getting the wave-

breaking result. Using that ∂2
xG ∗ u = ∂G ∗ ∂xu, we have

f(t, x) =
3− σ

2
u2 + A∂xG ∗ ∂xu−G ∗ (3− σ

2
u2 +

σ

2
u2
x)−

1

2
G ∗ ρ2

≤ 3− σ

2
u2 + A|Gx ∗ ux|+ |G ∗ (3− σ

2
u2 +

σ

2
u2
x)|,

for any x ∈ S and t ∈ [0, T ). Applying Young’s inequality and G = cosh(x−[x]−1/2)
2 sinh(1/2)

,

leads to

A|Gx ∗ ux| ≤ A∥Gx∥L2∥ux∥L2 = A

√
1
2
(−1 + sinh 1)

2 sinh(1
2
)

∥ux∥L2

≤ (−1 + sinh 1)A2

8 sinh2(1/2)
+

1

4
∥ux∥2L2 ,

(2.26)
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|G ∗ (3− σ

2
u2 +

σ

2
u2
x)| ≤ ∥G∥L∞∥3− σ

2
u2 +

σ

2
u2
x∥L1

=
cosh(1/2)

2 sinh(1/2)
∥3− σ

2
u2 +

σ

2
u2
x∥L1

≤ cosh(1/2)|3− σ|
4 sinh(1/2)

∥u∥2L2 +
cosh(1/2)|σ|
4 sinh(1/2)

∥ux∥2L2 ,

(2.27)

and

∥u(t, ·)∥2L∞(S) ≤
e+ 1

2(e− 1)
∥u(t, ·)∥2H1(S) ≤

e+ 1

2(e− 1)
∥(u0, ρ0)∥2H1×L2 . (2.28)

Therefore, we obtain the upper bound of f for any x ∈ S and t ∈ [0, T ),

f(t, x) ≤ |3− σ|
2

∥u∥2L∞ +
(−1 + sinh 1)A2

8 sinh2(1/2)
+

1

4
∥ux∥2L2

+
cosh(1/2)|3− σ|

4 sinh(1/2)
∥u∥2L2 +

cosh(1/2)|σ|
4 sinh(1/2)

∥ux∥2L2

≤ |3− σ|(e+ 1)

4(e− 1)
∥(u0, ρ0)∥2H1×L2 +

(−1 + sinh 1)A2

8 sinh2(1/2)
+

1

4
∥ux∥2L2

+
cosh(1/2)|3− σ|

4 sinh(1/2)
∥u∥2L2 +

cosh(1/2)|σ|
4 sinh(1/2)

∥ux∥2L2

≤ (−1 + sinh 1)A2

8 sinh2(1/2)
+
[ |3− σ|(e+ 1)

4(e− 1)

+
cosh(1/2)(|3− σ|+ |σ|)

4 sinh(1/2)
+

1

4

]
∥(u0, ρ0)∥2H1×L2

=
1

2
C2

1 .

(2.29)

Now, we turn to the lower bound of f . Similar as before, we get

−f ≤ |3− σ|
2

∥u∥2L∞ + A|Gx ∗ ux|+ |G ∗ (3− σ

2
u2 +

σ

2
u2
x)|+

1

2
G ∗ ρ2

≤ |3− σ|(e+ 1)

4(e− 1)
∥(u0, ρ0)∥2H1×L2 +

(−1 + sinh 1)A2

8 sinh2(1/2)
+

1

4
∥ux∥2L2

+
cosh(1/2)|3− σ|

4 sinh(1/2)
∥u∥2L2 +

cosh(1/2)|σ|
4 sinh(1/2)

∥ux∥2L2 +
cosh(1/2)

4 sinh(1/2)
∥ρ∥2L2

≤ (−1 + sinh 1)A2

8 sinh2(1/2)
+
[ |3− σ|(e+ 1)

4(e− 1)

+
cosh(1/2)(|3− σ|+ |σ|+ 1)

4 sinh(1/2)
+

1

4

]
∥(u0, ρ0)∥2H1×L2 .

(2.30)
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When σ < 0, we have a finer estimate

−f ≤ A|Gx ∗ ux|+ |G ∗ (3− σ

2
u2 +

σ

2
u2
x)|+

1

2
G ∗ ρ2

≤ (−1 + sinh 1)A2

8 sinh2(1/2)
+

1

4
∥ux∥2L2 +

cosh(1/2)(3− σ)

4 sinh(1/2)
∥u∥2L2

− cosh(1/2)σ

4 sinh(1/2)
∥ux∥2L2 +

cosh(1/2)

4 sinh(1/2)
∥ρ∥2L2

≤ (−1 + sinh 1)A2

8 sinh2(1/2)
+

cosh(1/2)(4− σ)

4 sinh(1/2)
∥(u0, ρ0)∥2H1×L2

=
1

2
C2

2 .

(2.31)

Combining (2.29) and (2.30), we obtain

|f | ≤ (−1 + sinh 1)A2

8 sinh2(1/2)
+
[ |3− σ|(e+ 1)

4(e− 1)

+
cosh(1/2)(|3− σ|+ |σ|+ 1)

4 sinh(1/2)
+

1

4

]
∥(u0, ρ0)∥2H1×L2 .

(2.32)

Since now s ≥ 3, we have u ∈ C1
0(S). Therefore,

inf
x∈S

ux(t, x) ≤ 0, sup
x∈S

ux(t, x) ≥ 0, t ∈ [0, T ). (2.33)

Hence, m̄(t) > 0 for t ∈ [0, T ). From the second equation of (2.24), we obtain that

ξ̄(t) = ξ̄(0)e−
∫ t
0 m̄(τ)dτ . (2.34)

Hence,

|ρ(t, q1(t, x1))| = |ξ̄(t)| ≤ |ξ̄(0)| ≤ ∥ρ0∥L∞ .

Now define

P1(t) = m̄(t)− ∥u0,x∥L∞ −
√

∥ρ0∥2L∞ + C2
1

σ
.

Note that P1(t) is a C1− differentiable function in [0, T ) and satisfies

P1(0) ≤ m̄(0)− ∥u0, x∥L∞ ≤ 0.

We will show that

P1(t) ≤ 0, t ∈ [0, T ). (2.35)
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If not, then suppose there is a t0 ∈ [0, T ) such that P1(t0) > 0. Define

t1 = max{t < t0 : P1(t) = 0}.

Then P1(t1) = 0 and P ′
1 ≥ 0, or equivalently,

m̄(t1) =∥u0,x∥L∞ +

√
∥ρ0∥2L∞ + C2

1

σ
,

m̄′(t1) = ≥ 0.

On the other hand, we have

m̄′(t1) = −σ

2
m̄2(t1) +

1

2
ξ̄2(t1) + f(t1, q(t1, x))

≤ −σ

2

[
∥u0,x∥L∞ +

√
∥ρ0∥2L∞ + C2

1

σ

]2
+

1

2
∥ρ0∥2L∞ +

1

2
C2

1

< 0,

which is a contradiction. Therefore, P1(t) ≤ 0, for t ∈ [0, T ), and we obtain (2.15).

(2) To derive a lower bound for ux in the case of σ < 0, we consider the

functions m(t) and ξ(t) ∈ S as in Lemma 2.2.5

m(t) := ux(t, ξ(t)) = inf
x∈S

(ux(t, x)), t ∈ [0, T ). (2.36)

Hence,

uxx(t, ξ(t)) = 0, a.e. t ∈ [0, T ). (2.37)

Similar as before, we take the characteristic q1(t, x) defined in (2.4) and choose x2(t) ∈

R such that

q1(t, x2(t)) = ξ(t) t ∈ [0, T ). (2.38)

Let

ζ = ρ(t, q1(t, x2)), t ∈ [0, T ). (2.39)
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Hence, along the trajectory q1(t, x2), equation (2.19) and the second equation of (2.2)

become

m′(t) =− σ

2
m2 +

1

2
ζ2 + f(t, q1(t, x2)),

ζ ′(t) =− ζm.

(2.40)

We now define

P2(t) = m(t)− ∥u0,x∥L∞ +
C2√
−σ

.

Then P2(t) is also C1− differentiable in [0, T ) and satisfies

P2(0) ≥ m(0) + ∥u0,x∥L∞ ≥ 0.

We now claim that

P2(t) ≥ 0, t ∈ [0, T ). (2.41)

If not, then suppose there is a t̄0 ∈ [0, T ) such that P2(t̄0) < 0. Define

t2 = max{t < t̄0 : P2(t) = 0}.

Then P2(t2) = 0 and P ′
2(t2) ≤ 0, or equivalently,

m(t2) = −∥u0,x∥L∞ − C2√
−σ

and m′(t2) ≤ 0.

On the other hand, we have

m′(t2) = −σ

2
m2(t2) +

1

2
ζ2(t2) + f(t2, q(t2, x))

≥ −σ

2
(∥u0,x∥L∞ +

C2√
−σ

)2 − 1

2
C2

2

> 0.

Again, this is a contradiction. Therefore, P2(t) ≥ 0, for t ∈ [0, T ). This in turn

implies that (2.16) holds. This completes the proof of Lemma 2.3.1.

It is found that if σux is bounded from below, we may obtain the following

estimates for ∥ρ∥L∞(S).
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Proposition 2.3.1. Let σ ̸= 0 and (u, ρ) be the solution of (2.2) with initial data

(u0, ρ0) ∈ Hs(S) × Hs−1(S), s > 3/2, and T the maximal time of existence. If there

is an M ≥ 0, such that

inf
(t,x)∈[0,T )×S

σux ≥ −M, (2.42)

then

1. If σ > 0, then

∥ρ(t, ·)∥L∞ ≤ ∥ρ0∥L∞eMt/σ. (2.43)

2. If σ < 0, then

∥ρ(t, ·)∥L∞ ≤ ∥ρ0∥L∞eNt. (2.44)

Where N = ∥u0,x∥L∞ + (C2/
√
−σ) and C2 is given in (2.17).

Proof. (1) For σ > 0, we define for any give x ∈ S

U(t) = ux(t, q1(t, x)), γ(t) = ρ(t, q1(t, x)), (2.45)

with q1(t, x1(t)) = x, for some x1(t) ∈ R, t ∈ [0, T ). Then the ρ equation of system

(2.2) becomes

γ′ = −γU. (2.46)

Thus,

γ(t) = γ(0)e−
∫ t
0 U(τ)dτ . (2.47)

From the assumption (2.42) and σ > 0, we see

U(t) ≥ −M

σ
, t ∈ [0, T ).

Hence,

|ρ(t, q1(t, x1))| = |γ(t)| ≤ |γ(0)|e−
∫ t
0 U(τ)dτ ≤ ∥ρ0∥L∞eMt/σ,

21



which together with (2.6), leads to (2.43).

(2) For σ < 0, we perform a similar argument as before. Using (2.45), (2.47)

and the lower bound (2.16), we have

|ρ(t, q1(t, x1))| = |γ(t)| ≤ |γ(0)|e−
∫ t
0 U(τ)dτ ≤ ∥ρ0∥L∞eNt.

Combining the above estimate with (2.6), which implies that (2.44) holds.

Proof of Theorem 2.3.1. Assume that T < ∞ and (2.14) is not valid. Then there is

some positive number M > 0 such that

σux(t, x) ≥ −M, ∀(t, x) ∈ [0, T )× S.

It follows from Lemma 2.3.1 that |ux(t, x)| ≤ C, where

C = C(A,M, σ, |(u0, ρ0)∥2Hs×Hs−1). Therefore, Theorem 2.2.2 in turn implies that

the maximal existence time T = ∞, which contradicts the assumption that T < ∞.

Conversely, the Sobolev embedding theorem Hs(S) ↪→ L∞(S) with s > 1/2 implies

that if (2.14) holds, the corresponding solution blows up in finite time. This completes

the proof of Theorem 2.3.1.

Now, we give the following series of theorems that provide some cases that wave

breaks in finite time.

Theorem 2.3.2. Let σ ̸= 0 and (u, ρ) be the solution of (2.2) with the initial data

(u0, ρ0) ∈ Hs(S)×Hs−1(S), s > 3/2, and T the maximal time of existence.

1. When σ > 0, assume that there is some x0 ∈ S such that

ρ0(x0) = 0, u0,x(x0) = inf
x∈S

u0,x(x),

and

u0,x(x0) < − C1√
σ
, (2.48)
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where C1 is defined in (2.17). Then the corresponding solution to system (2.2)

blows up in the following sense: there exists a T1 with

0 < T1 ≤ − 2

σu0,x(x0) +
√

−σ3/2C1u0,x(x0)
, (2.49)

respectively, such that

lim inf
t→T−

1

{inf
x∈S

σux(t, x)} = −∞.

2. When σ < 0, assume that there are some x0 ∈ S such that

u0,x(x0) > − C2√
σ
, (2.50)

where C2 is defined in (2.17). Then the corresponding solution to the system

(2.2) blows up in finite time in the following sense: there exists a T2 with

0 < T2 ≤ − 2

σu0,x(x0)−
√
(−σ)3/2C2u0,x(x0)

, (2.51)

such that

lim inf
t→T−

2

{sup
x∈S

σux(t, x)} = ∞.

Proof. (1) When σ > 0, similar to the proof of Lemma 2.3.1, it suffices to consider

s ≥ 3. So in the following of this section s = 3 is taken for simplicity of notation. We

consider along the trajectory q1(t, x2) defined in (2.4) and (2.38). In this way, we can

write the transport equation of ρ in (2.2) along the trajectory of q1(t, x2) as

dρ(t, ξ(t))

dt
= −ρ(t, ξ(t))ux(t, ξ(t)). (2.52)

Form the assumption of the theorem, we see

m(0) = ux(0, ξ(0)) = inf
x∈S

u0,x(x) = u0,x(x0).
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Hence, we can choose ξ(0) = x0 and then ρ0(ξ(0) = ρ0(x0) = 0. Thus, from (2.52) we

see that

ρ(t, ξ(t)) = 0, t ∈ [0, T ). (2.53)

Differentiating equation (2.18) with respect to x, evaluating the result at x = ξ(t)

and using (2.37) and (2.53), we deduce from Lemma 2.2.5 that

m′(t) = −σ

2
m2(t) + f(t, q1(t, x2)). (2.54)

Using the upper bound of f in (2.29), we see that

m′(t) ≤ −σ

2
m2(t) +

1

2
C2

1 , t ∈ [0, T ).

By assumption (2.48), m(0) = u0,x(x0) < −C1/
√
σ, we see that m′(0) < 0 and m(t)

is strictly decreasing over [0, T ). Set

δ =
1

2
− 1

2

C2
1

u2
0,x(x0)σ

∈ (0,
1

2
).

Using that m(t) < m(0) = u0,x(x0) < 0, we obtain

m′(t) ≤ −σ

2
m2(t) +

1

2
C2

1 ≤ −δσm2(t), t ∈ [0, T ).

Integrating on both sides, we obtain

m(t) ≤ u0,x(x0)

1 + δσu0,x(x0)t
→ −∞ as t → − 1

δσu0,x(x0)
.

Hence,

T ≤ − 1

δσu0,x(x0)
,

which proves (2.49).

(2) Similarly as in (1), we consider the function m̄(t)and η(t) as defined in (2.20).

Then we have

m̄′(t) = −σ

2
m̄2(t) +

1

2
ρ2(t, η(t)) + f(t, q1(t, x1)) ≥ −σ

2
m̄2(t) + f(t, q1(t, x1)). (2.55)

24



Using the lower bound of f as in (2.31), we have

m̄′(t) ≥ −σ

2
m̄2(t)− 1

2
C2

2 , t ∈ [0, T ).

By assumption (2.50), m̄(0) = u0,x(x0) > C2/
√
−σ, we see that m̄′(0) > 0 and m̄(t)

is strictly increasing over [0, T ). Set

θ =
1

2
− 1

2

C2
2

σu2
0,x(x0)

.

Using that m̄(t) > m̄(0) = u0,x(x0) > 0, we obtain

m̄′(t) ≥ −σ

2
m̄2(t)− 1

2
C2

2 ≥ −θσm̄2(t), t ∈ [0, T ).

Therefore,

m̄(t) ≥ u0,x(x0)

1 + θσu0,x(x0)t
→ ∞ as t → − 1

θσu0,x(x0)
.

Hence,

T ≤ − 1

θσu0,x(x0)
,

which proves (2.51).

The following theorem provides another condition for blowup of ux.

Theorem 2.3.3. Let σ > 0 and (u, ρ) be the solution of (2.2) with the initial data

(u0, ρ0) ∈ Hs(S) ×Hs−1(S), s > 3/2, and T the maximal time of existence. Assume

that
∫
S u0dx = a0

2
. If there is some x0 ∈ S such that ρ0(x0) = 0, u0,x(x0) = inf

x∈S
u0,x(x),

and for any ϵ > 0

u0,x(x0) < − C3√
σ
. (2.56)

Then the corresponding solution to system (2.2) blows up in the following sense: there

exists a T1 with

0 < T ≤ − 2

σu0,x(x0) +
√

−σ3/2C3u0,x(x0)
, (2.57)
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respectively, such that

lim inf
t→T−

1

{inf
x∈S

σux(t, x)} = −∞.

The constant above is defined as follows

C3 =
((−1 + sinh 1)A2

4 sinh2(1/2)
+

|3− σ|(ϵ+ 2)a20
4ϵ

+
[ |3− σ|(ϵ+ 2)

24
+

cosh(1/2)(|3− σ|+ |σ|)
2 sinh(1/2)

+
1

2

]
∥(u0, ρ0)∥2H1× L2

) 1
2
.

Proof. By Lemma 2.2.3, we have
∫
S u(t, x)dx =

∫
S u0(x)dx = a0

2
. Using Lemma 2.2.7

and the above conservation law, we have

∥u∥L∞(S) ≤
√

ϵ+ 2

24
∥(u0, ρ0)∥2H1(S)×L2(S) +

ϵ+ 2

4ϵ
a20. (2.58)

Similarly as the proof of Theorem 2.3.2(1), we can also get

m′(t) = −σ

2
m2(t) + f(t, q1(t, x2)). (2.59)

Using (2.58), we obtain a new upper bound of f

f =
3− σ

2
u2 + A∂xG ∗ ∂xu−G ∗ (3− σ

2
u2 +

σ

2
u2
x)−

1

2
G ∗ ρ2

≤ 3− σ

2
u2 + A|Gx ∗ ux|+ |G ∗ (3− σ

2
u2 +

σ

2
u2
x)|

≤ |3− σ|
2

∥u∥2L∞ +
(−1 + sinh 1)A2

8 sinh2(1/2)
+

1

4
∥ux∥2L2

+
cosh(1/2)|3− σ|

4 sinh(1/2)
∥u∥2L2 +

cosh(1/2)|σ|
4 sinh(1/2)

∥ux∥2L2

≤ |3− σ|(ϵ+ 2)

48
∥(u0, ρ0)∥2H1×L2 +

|3− σ|(ϵ+ 2)a20
8ϵ

+
(−1 + sinh 1)A2

8 sinh2(1/2)

+
1

4
∥ux∥2L2 +

cosh(1/2)|3− σ|
4 sinh(1/2)

∥u∥2L2 +
cosh(1/2)|σ|
4 sinh(1/2)

∥ux∥2L2

≤ (−1 + sinh 1)A2

8 sinh2(1/2)
+

|3− σ|(ϵ+ 2)a20
8ϵ

+
[ |3− σ|(ϵ+ 2)

48
+

cosh(1/2)(|3− σ|+ |σ|)
4 sinh(1/2)

+
1

4

]
∥(u0, ρ0)∥2H1× L2

=
1

2
C2

3 .

(2.60)
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By assumption (2.56), m(0) = u0,x(x0) < −C3/
√
σ, we see that m′(0) < 0 and m(t)

is strictly decreasing over [0, T ). Set

δ =
1

2
− 1

2

C2
3

u0,x(x0)2σ
∈
(
0,

1

2

)
.

Using that m(t) < m(0) = u0,x(x0) < 0, we obtain

m′(t) ≤ −σ

2
m2(t) +

1

2
C2

3 ≤ −δσm2(t), t ∈ [0, T ).

Integrating on both sides, we obtain

m(t) ≤ u0,x(x0)

1 + δσu0,x(x0)t
→ −∞ as t → − 1

δσu0,x(x0)
.

Hence,

T ≤ − 1

δσu0,x(x0)
,

which proves (2.57). This complies the proof of Theorem 2.3.3.

Next, we give a blow-up result if u0 is odd and ρ0 is even.

Theorem 2.3.4. Let 0 < σ ≤ 3 and (u, ρ) be the solution of (2.2) with the initial data

(u0, ρ0) ∈ Hs(S) ×Hs−1(S), s > 3/2, and T the maximal time of existence. Assume

that u0 is odd, ρ0 is even, u0,x < 0, and ρ0(0) = 0. Then the corresponding solution

to the system (2.2) blows up in finite time. More precisely, there exists a T0 with

0 < T0 ≤ −(2/σu0,x(0)) such that

lim inf
t→T−

0

{inf
x∈S

σux(t, x)} = −∞.

Proof. Similar to the proof of Lemma 2.3.1, it suffices to consider s ≥ 3. Since u0 is

odd and ρ0 is even, the corresponding solution (u(t, x), ρ(t, x)) satisfies that u(t, x) is

odd and ρ(t, x) is even with respect to x for given 0 < t < T. Hence, u(t, 0) = 0 and

ρx(t, 0) = 0. Thanks to the transport equation of ρ in (2.2), we have ρt(t, 0) + ρ(t, 0)ux(t, 0) = 0,

ρ(0, 0) = 0.
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Thus, ρ(t, 0) = 0. Evaluating (2.19) at (t, 0) and denoting M(t) = ux(t, 0), we obtain

M ′(t) +
σ

2
M2(t) = A(∂2

xG ∗ u)(t, 0)−G ∗ (3− σ

2
u2 +

σ

2
u2
x +

1

2
ρ2)(t, 0). (2.61)

Notice that u(t, x) is odd and G(x) is even, so

A(∂2
xG ∗ u)(t, 0) = 0.

Using 0 < σ ≤ 3,

M ′(t) +
σ

2
M2(t) ≤ 0.

Hence,

M(t) ≤ M(0) = u0,x(0) < 0, for t ∈ [0, T ),

and

− 1

M(t)
+

1

M(0)
≤ −σ

2
t,

and then

ux(t, 0) = M(t) ≤ 2M(0)

2 + σM(0)t
→ −∞, t → − 2

σM(0)
, (2.62)

which indicates that the maximal existence time T ≤ −2(2/σu0,x(0)) and hence it

completes the proof of the theorem.

2.4 Blow-up Rate

We now address the question of the blow-up rate of the slope to a breaking

wave for system (2.2) .

Theorem 2.4.1. Let σ ̸= 0. If T < ∞ is the blow-up time of the solution (u, ρ)

to (2.2) with the initial data (u0, ρ0) ∈ Hs(S) × Hs−1(S), s > 3/2, satisfying the

assumption of Theorem 2.3.2, then

lim
t→T−

[(
inf
x∈S

ux(t, x)
)
(T − t)

]
= − 2

σ
, for σ > 0. (2.63)

lim
t→T−

[(
sup
x∈S

ux(t, x)
)
(T − t)

]
= − 2

σ
, for σ < 0. (2.64)
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Proof. We may again assume s = 3 to prove the theorem. Now, let’s consider the

first case. Let σ > 0. From (2.54) we have

m′(t) = −σ

2
m2(t) + f(t, q1(t, x2)).

Using (2.32) and denote

K =
(−1 + sinh 1)A2

8 sinh2(1/2)
+
[ |3− σ|(e+ 1)

4(e− 1)
+
cosh(1

2
)(|3− σ|+ |σ|+ 1)

4 sinh(1
2
)

+
1

4

]
∥(u0, ρ0)∥2H1×L2 .

(2.65)

We know

−σ

2
m2(t)−K ≤ m′(t) ≤ −σ

2
m2(t) +K. (2.66)

Choose 0 < ε < σ/2. Since m(t) → −∞ as t → T−, we can find t0 ∈ (0, T ) such that

m(t0) < −
√

2σK +
K

ε
.

Since m(t) is absolutely continuous on [0, T ). It is then inferred from the above

differential inequality that m(t) is strictly decreasing on [t0, T ) and hence

m(t) < −
√
2σK +

K

ε
< −

√
K

ε
t ∈ [t0, T ).

Then (2.66) implies that

σ

2
− ε <

d

dt

( 1

m(t)

)
<

σ

2
+ ε, a.e. t ∈ [t0, T ).

Integrating the above relation on (t, T ) with t ∈ [t0, T ) and noticing that m(t) → −∞

as t → T−, we obtain

(
σ

2
− ε)(T − t) < − 1

m(t)
< (

σ

2
+ ε)(T − t).

Since ε ∈ (0, σ/2) is arbitrary, in view of the definition of m(t), the above inequality

implies (2.63).

29



Next, we consider the second case. Let σ < 0. From (2.55) we have

m̄′(t) ≥ −σ

2
m̄2(t)−K,

where K is defined in (2.65). Since m̄(t) → ∞ as t → T−, we can choose a t0 ∈ (0, T )

such that

m̄(t) >
√
−2σK.

Therefore, we have that m̄(t) is strictly increasing on [t0, T ) and

m̄(t) > m̄(t0) >
√
−2σK > 0.

Using the transport equation for ρ, we have that

ρ′(t, η(t)) = −m̄(t)ρ(t, η(t)).

Hence,

ρ(t, η(t)) = ρ(t0, η(t0))e
−

∫ t
t0

m̄(τ)dτ
, t ∈ [t0, T ).

Then

ρ2(t, η(t)) ≤ ρ2(t0, η(t0)), t ∈ [t0, T ).

Therefore, using (2.55) again, we have

−σ

2
m̄2(t)− 1

2
ρ2(t0, η(t0))−K ≤ m̄′(t) ≤ −σ

2
m̄2(t) +

1

2
ρ2(t0, η(t0)) +K. (2.67)

Now let

K̄ =
1

2
ρ2(t0, η(t0)) +K,

and choose 0 < ε < −σ/2. We can pick a t0 ∈ [t0, T ) such that

m̄(t1) >

√
−2σK̄ +

K̄

ε
.

Then

m̄(t) > m̄(t1) >

√
−2σK̄ +

K̄

ε
>

√
K̄

ε
.
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Hence, (2.67) implies that

σ

2
− ε <

d

dt

( 1

m̄(t)

)
<

σ

2
+ ε, a.e. t ∈ [t1, T ).

Integrating the above relation on (t, T ) with t ∈ [t1, T ) and noticing that m̄(t) → ∞

as t → T−, we obtain

(
σ

2
− ε)(T − t) < − 1

m̄(t)
< (

σ

2
+ ε)(T − t).

Since ε ∈ (0,−σ/2) is arbitrary, in view of the definition of m̄(t), the above inequality

implies (2.64).

2.5 Global Existence

In this section, we provide a sufficient condition for the global solution of system

(2.2) in the case when 0 < σ < 2 and σ = 0.

Theorem 2.5.1. Let 0 < σ < 2 and (u, ρ) be the solution of (2.2) with the initial

data (u0, ρ0) ∈ Hs(S)×Hs−1(S), s > 3/2, and T the maximal time of existence. If

inf
x∈S

ρ0(x) > 0, (2.68)

then T = +∞ and the solution (u, ρ) is global.

We need the following lemma to prove the above theorem.

Lemma 2.5.1. Let 0 < σ < 2 and (u, ρ) be the solution of (2.2) with the initial data

(u0, ρ0) ∈ Hs(S) ×Hs−1(S), s > 3/2, and T the maximal time of existence. Assume

that inf
x∈S

ρ0(x) > 0.

1. If 0 < σ ≤ 1, then ∣∣∣inf
x∈S

ux(t, x)
∣∣∣ ≤ 1

infx∈S ρ0(x)
C5e

C4t, (2.69)∣∣∣sup
x∈S

ux(t, x)
∣∣∣ ≤ 1

infx∈S ρ
σ

2−σ

0 (x)
C

1
2−σ

5 e
C4t
2−σ , (2.70)
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2. If 1 ≤ σ < 2, then ∣∣∣inf
x∈S

ux(t, x)
∣∣∣ ≤ 1

infx∈S ρ
σ

2−σ

0 (x)
C

1
2−σ

5 e
C4t
2−σ , (2.71)

∣∣∣sup
x∈S

ux(t, x)
∣∣∣ ≤ 1

infx∈S ρ0(x)
C5e

C4t. (2.72)

The constants C4 and C5 are defined by

C4 = 1 +
(−1 + sinh 1)A2

8 sinh2(1/2)
+
[ |3− σ|(e+ 1)

4(e− 1)
+

cosh(1
2
)(|3− σ|+ |σ|+ 1)

4 sinh(1
2
)

+
1

4

]
∥(u0, ρ0)∥2H1×L2 ,

(2.73)

C5 = 1 + ∥u0,x∥2L∞ + ∥ρ0,x∥2L∞ . (2.74)

Proof. Similar as before, a density argument indicates that it suffices to prove the

desired results for s ≥ 3. Thus, we have

inf
x∈S

ux(t, x) < 0, sup
x∈S

ux(t, x) > 0, t ∈ [0, T ).

(1) First we will derive an estimate for | infx∈S ux(t, x)|. Define m(t) and

ξ(t) as in (2.36), and consider along the characteristics q1(t, x1(t)) as in (2.4) and

(2.22). Thus, from (2.33),

m(t) ≤ 0 for t ∈ [0, T ). (2.75)

Let ζ(t) = ρ(t, ξ(t)) and evaluate (2.19) and the second equation of the system (3.2)

at (t, ξ(t)). We have

m′(t) = −σ

2
m2(t) +

1

2
ζ2(t) + f(t, q1(t, x1)),

ζ ′(t) = −ζm,

(2.76)

for t ∈ [0, T ) where f is defined in (2.25). The second equation above implies that

ζ(t) and ζ(0) are of the same sign.
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Now, we want to construct a Lyapunov function for our system, as in [15]. Since

here we have a free parameter σ, we could not find a uniform Lyapunov function.

Instead, we will split the case 0 < σ ≤ 1 and the case 1 < σ < 2. From the

assumption of the theorem, we know that ζ(0) = ρ(0, ξ(0)) > 0.

When 0 < σ ≤ 1, we define the following Lyapunov function

w1(t) = ζ(0)ζ(t)− ζ(0)

ζ(t)

(
1 +m2(t)

)
, (2.77)

which is always positive for t ∈ [0, T ). Differentiating w1(t) and using (2.76), we

obtain

w′
1(t) = ζ(0)ζ ′ − ζ(0)

ζ2
(1 +m2)ζ ′ +

2

ζ
ζ(0)mm′

=
2ζ(0)m

ζ

[1− σ

2
m2 +

1

2
+ f(t, q1(t, x1))

]
≤ ζ(0)

ζ
(1 +m2)

[
|f(t, q1(t, x1))|+

1

2

]
≤ C4w1(t),

(2.78)

where we have used (2.75) and the bound (2.32) for f . Hence,

w1(t) ≤ w1(0)e
C4t = [ζ2(0) + 1 +m2(0)]eC4t

≤ (1 + ∥u0,x∥2L∞ + ∥ρ0∥2L∞)eC4t = C5e
C4t.

(2.79)

Recalling that ζ(t) and ζ(0) are of the same sign, we have

ζ(0)ζ(t) ≤ w1(t) and |ζ(0)||m(t)| ≤ w1(t).

Then from (2.79), we have∣∣∣inf
x∈S

ux(t, x)
∣∣∣ = |m(t)| ≤ w1(t)

ζ(0)
≤ 1

infx∈S ρ0(x)
C5e

C4t, for t ∈ [0, T ),

which proves (2.69).

If 1 ≤ σ < 2, we may define the Lyapunov function to be

w2(t) = ζσ(0)
ζ2(t) + 1 +m2(t)

ζσ(t)
. (2.80)
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Differentiating w2(t) and using (2.76), we obtain

w′
2(t) =

2ζσ(0)m

ζσ

[σ − 1

2
ζ2 +

σ

2
+ f(t, q1(t, x1)

]
≤ ζσ(0)

ζσ
(1 +m2)[|f(t, q1(t, x1)|+

σ

2
] ≤ C4w2(t).

(2.81)

Thus,

w2(t) ≤ w2(0)e
C4t = [ζ2(0) + 1 +m2(0)]eC4t

≤ (1 + ∥u0,x∥2L∞ + ∥ρ0∥2L∞)eC4t = C5e
C4t.

(2.82)

Applying Young’s inequality ab ≤ ap/p+ bq/q to (2.80) with

p =
2

σ
and q =

2

2− σ
,

we have

w2(t)

ζσ(0)
= [ζ

σ(2−σ)
2 ]2/σ +

[(1 +m2)
2−σ
2

ζ
σ(2−σ)

2

]2/(2−σ)

≥ σ

2
[ζ

σ(2−σ)
2 ]2/σ +

2− σ

2

[(1 +m2)
2−σ
2

ζ
σ(2−σ)

2

]2/(2−σ)

≥ (1 +m2)
2−σ
2 ≥ |m(t)|2−σ.

Therefore,∣∣∣inf
x∈S

ux(t, x)
∣∣∣ ≤ [w2(t)

ζσ(0)

] 1
2−σ ≤ 1

infx∈S ρ
σ

2−σ

0 (x)
C

1
2−σ

5 e
C4t
2−σ , t ∈ [0, T ),

which proves (2.71).

(2) Next we try to control | supx∈S ux(t, x)|. Similarly as before, we consider

m̄(t), η(t), q1(t, x2(t)) as in (2.20) and (2.38). Then (2.76) becomes

m̄′(t) = −σ

2
m̄2(t) +

1

2
ζ̄2(t) + f(t, q1(t, x2)),

ζ̄ ′(t) = −ζ̄m̄,

(2.83)

for t ∈ [0, T ), where ζ̄(t) = ρ(t, η(t)). From (2.33), we have

m̄(t) ≥ 0, t ∈ [0, T ). (2.84)

34



When 0 < σ ≤ 1, the corresponding Lyapunov function is

w̄1(t) = ζ̄σ(0)
ζ̄2(t) + 1 + m̄2(t)

ζ̄σ(t)
. (2.85)

Then from (2.81) and (2.84), we see that

w̄′
1(t) ≤ C4w̄1(t), then w̄1(t) ≤ C5e

C4t.

Hence, by the similar argument as before, we obtain

w̄1(t)

ζ̄σ(0)
≥ |m(t)|2−σ.

Therefore,∣∣∣sup
x∈S

ux(t, x)
∣∣∣ ≤ [ w̄1(t)

ζ̄σ(0)

] 1
2−σ ≤ 1

infx∈S ρ
σ

2−σ

0 (x)
C

1
2−σ

5 e
C4t
2−σ , t ∈ [0, T ),

which proves (2.70).

When 1 ≤ σ < 2, consider the Lyapunov function

w̄2(t) = ζ̄(0)ζ̄(t) =
ζ̄(0)

ζ̄(t)

(
1 + m̄2(t)

)
. (2.86)

From (2.78) and (2.84), it follows that w̄′
2(t) ≤ C4w̄1(t). This in turn implies that

w̄1(t) ≤ C5e
C4t.

Thus, we have∣∣∣sup
x∈S

ux(t, x)
∣∣∣ = |m̄(t)| ≤ w̄1(t)

ζ̄(0)
≤ 1

infx∈S ρ0(x)
C5e

C4t, t ∈ [0, T ),

which proves (2.72).

Proof of Theorem 2.5.1. Assume on the contrary that T < ∞ and the solution blows

up in finite time. It then follows Theorem 2.2.2 that∫ T

0

∥ux(t, x)∥L∞dt = ∞. (2.87)
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However, from the assumption of the theorem and Lemma 2.5.1, we have

|ux(t, x)| < ∞,

for all (t, x) ∈ [0, T )× S, a contradiction to (2.87). Thus, T = +∞, and the solution

(u, ρ) is global.

We are now in a position to consider the case σ = 0.

Theorem 2.5.2. Let σ = 0. If (u0, ρ0) ∈ Hs(S)×Hs−1(S), s > 3/2, then there exists

a unique solution (u, ρ) of system (2.2) with the initial data (u0, ρ0). Moreover, the

solution depends continuously on the initial data. Then T = +∞ and the solution

(u, ρ) is global.

When σ = 0, we can rewrite system (2.3) as

ut = −∂xG ∗ (−Au+
3

2
u2 +

1

2
ρ2),

ρt + uρx = −uxρ,

u(0, x) = u0(x),

ρ(0, x) = ρ0(x),

u(t, x+ 1) = u(t, x),

ρ(t, x+ 1) = ρ(t, x).

(2.88)

To prove Theorem 2.5.2 of global well-posedness of solutions, we need the fol-

lowing estimates for ux.

Lemma 2.5.2. Let σ = 0 and (u, ρ) be the solution of (2.88) with the initial data

(u0, ρ0) ∈ Hs(S)×Hs−1(S), s > 3/2, and T the maximal time of existence. Then

sup
x∈S

ux(t, x) ≤ sup
x∈S

u0,x(x) +
1

2
(sup
x∈S

ρ20(x) + C2
6)t, (2.89)

inf
x∈S

ux(t, x) ≥ inf
x∈S

u0,x(x) +
1

2
(inf
x∈S

ρ20(x)− C2
7)t, (2.90)
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where the constants C6 and C7 are defined as follows

C6 =

√
(−1 + sinh 1)A2

4 sinh2(1/2)
+

3(e+ 1) + 1

4(e− 1)
∥(u0, ρ0)∥2H1×L2 , (2.91)

C7 =

√
(−1 + sinh 1)A2

4 sinh2(1/2)
+

3 cosh(1/2) + 1

4 sinh(1/2)
∥(u0, ρ0)∥2H1×L2 . (2.92)

Proof. The local well-posedness theorem and a density argument implies that it suf-

fices to prove the desired estimates for s ≥ 3. Thus, we take s = 3 in the proof. Also

we may assume that

u0 ̸≡ 0, (2.93)

otherwise the results become trivial. Since now s = 3, we have u ∈ C1
0(S). Therefore

inf
x∈S

ux(t, x) ≤ 0, sup
x∈S

ux(t, x) ≥ 0, t ∈ [0, T ). (2.94)

Differentiating the first equation of (2.88) with respect to x and using the iden-

tity −∂2
xG ∗ f = f −G ∗ f we obtain

utx =
1

2
ρ2 +

3

2
u2 + A∂2

xG ∗ u−G ∗ (3
2
u2 +

1

2
ρ2). (2.95)

Using Lemma 2.2.5 and the fact that

sup
x∈S

[ux(t, x)] = −inf
x∈S

[vx(t, x)],

we can consider m̄(t) and ξ̄(t) as follows

m̄(t) := ux(t, ξ̄(t)) = sup
x∈S

(ux(t, x)), t ∈ [0, T ). (2.96)

Hence

uxx(t, ξ̄(t)) = 0, a.e. t ∈ [0, T ). (2.97)

Take the trajectory q(t, x) defined in (2.4). Then we know that q(t, ·) : R → R is a

diffeomorphism for every t ∈ [0, T ). Therefore, there exists x1(t) ∈ S such that

q(t, x1(t)) = ξ(t), t ∈ [0, T ). (2.98)

37



Now let

ζ̄(t) = ρ(t, q(t, x1)), t ∈ [0, T ). (2.99)

Therefore along this trajectory q(t, x1), equation (2.95) and the second equation of

(2.88) become

m̄′(t) =
1

2
ζ̄2 + f(t, q(t, x1)),

ζ̄ ′(t) = −ζ̄m̄,

(2.100)

for t ∈ [0, T ), where ′ denotes the derivative with respect to t and f(t, q(t, x1)) is

given by

f = A∂2
xG ∗ u+

3

2
u2 −G ∗ (3

2
u2 +

1

2
ρ2). (2.101)

We first derive the upper and lower bounds for f for later use in getting the

wave-breaking result. Using that ∂2
xG ∗ u = ∂xG ∗ ∂xu, we have

f =
3

2
u2 + A∂xG ∗ ∂xu−G ∗ (3

2
u2)− 1

2
G ∗ ρ2 ≤ 3

2
u2 + A|Gx ∗ ux|.

Using (2.26) and (2.28), we obtain the upper bound of f

f ≤ 3

2
∥u(t, ·)∥2L∞(S) +

(−1 + sinh 1)A2

8 sinh2(1/2)
+

1

4
∥ux∥2L2

≤ 3(e+ 1)

4(e− 1)
∥(u0, ρ0)∥2H1×L2 +

(−1 + sinh 1)A2

8 sinh2(1/2)
+

1

4
∥ux∥2L2

≤ (−1 + sinh 1)A2

8 sinh2(1/2)
+

3(e+ 1) + 1

4(e− 1)
∥(u0, ρ0)∥2H1×L2 =

1

2
C2

6 .

(2.102)

Now we turn to the lower bound of f . Similarly as before, we get

−f ≤ A|Gx ∗ ux|+
3

2
|G ∗ u2|+ 1

2
G ∗ ρ2

≤ (−1 + sinh 1)A2

8 sinh2(1/2)
+

1

4
∥ux∥2L2 +

3 cosh(1/2)

4 sinh(1/2)
∥u∥2L2 +

cosh(1/2)

4 sinh(1/2)
∥ρ∥2L2

≤ (−1 + sinh 1)A2

8 sinh2(1/2)
+
(3 cosh(1/2) + 1

4 sinh(1/2)
∥(u0, ρ0)∥2H1×L2

)
=

1

2
C2

7 .

(2.103)

Combining (2.102) and (2.103), we obtain

|f | ≤ (−1 + sinh 1)A2

8 sinh2(1/2)
+

3 cosh(1/2) + 1

4 sinh(1/2)
∥(u0, ρ0)∥2H1×L2 . (2.104)

38



From (2.94) we know m̄(t) ≥ 0 for t ∈ [0, T ). From the second equation of

(2.100) we obtain that

ζ̄(t) = ζ̄(0)e−
∫ t
0 m̄(τ)dτ . (2.105)

Hence

|ρ(t, q(t, x1)) = |ζ̄(t)| ≤ |ζ̄(0)|.

Therefore, we have

m̄′(t) =
1

2
ζ̄2(t) + f ≤ 1

2
ζ̄2(0) +

1

2
C2

6 ≤ 1

2

(
sup
x∈S

ρ20(x) + C2
6

)
.

Integrating the above over [0, t], we prove (2.91).

To obtain a lower bound for infx∈S ux(t, x), we use the similar idea. Consider

the function m(t) and ξ(t) as in Lemma 2.2.5

m(t) := ux(t, ξ(t)) = inf
x∈S

(ux(t, x)), t ∈ [0, T ). (2.106)

Hence

uxx(t, ξ(t)) = 0, a.e. t ∈ [0, T ). (2.107)

Again take the trajectory q(t, x) defined in (2.4) and choose x2(t) ∈ S such that

q(t, x2(t)) = ξ(t) t ∈ [0, T ). (2.108)

Now let

ζ̄(t) = ρ(t, q(t, x2)), t ∈ [0, T ). (2.109)

Hence along this trajectory q(t, x2), equation (2.95) and the second equation of (2.88)

become

m′(t) =
1

2
ζ2 + f(t, q(t, x2)),

ζ ′(t) = −ζm.

(2.110)
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Since m(t) ≥ 0, we have from the second equation of the above that

|ρ(t, q(t, x2)) = |ζ(t)| ≥ |ζ(0)|.

Then

m′(t) =
1

2
ζ2(0)− 1

2
C2

7 ≥ 1

2

(
inf
x∈S

ρ20(x) + C2
7

)
.

Integrating the above over [0, t], we obtain (5.90). This completes the proof of the

Lemma 2.5.2.

Proof of Theorem 2.5.2. Similarly as the proof of Lemma 2.5.1, assume on the con-

trary that T < ∞ and the solution blows up in finite time. It then follows Theorem

2.2.2 that ∫ T

0

∥ux(t, x)∥L∞dt = ∞. (2.111)

However, from the assumption of the theorem and Lemma 2.5.2, we have

|ux(t, x)| < ∞,

for all (t, x) ∈ [0, T )×S, a contradiction to (2.111). Thus, T = +∞, and the solution

(u, ρ) is global.
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CHAPTER 3

GENERALIZED PERIODIC TWO-COMPONENT DGH SYSTEM

3.1 Introduction

In this section, we are concerned with the Cauchy problem of the generalized

periodic two-component Dullin-Gottwald-Holm (DGH) system

mt − Aux + σ(2mux + umx) + 3(1− σ)uux + γuxxx + ρρx = 0, t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R,

ρ(t, x+ 1) = ρ(t, x), t ≥ 0, x ∈ R,
(3.1)

where m = u− uxx, and σ is a real parameter. It is a model from the shallow water

theory with nonzero constant vorticity, where u(t, x) is the horizontal velocity and

ρ(t, x) is related to the free surface elevation from equilibrium. The scalar A > 0

characterizes a linear underlying shear flow and hence the system in (3.1) models

wave-current interactions. The real dimensionless constant σ is a parameter which
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provides the competition, or balance, in fluid convection between nonlinear steepening

and amplification due to stretching. System (3.1) can be written in terms of u and ρ,

ut − utxx − Aux + 3uux − σ(2uxuxx + uuxxx) + γuxxx + ρρx = 0, t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R,

ρ(t, x+ 1) = ρ(t, x), t ≥ 0, x ∈ R.
(3.2)

System (3.2) has the following two Hamiltonians:

H1 =
1

2

∫
S
(u2 + u2

x + ρ2)dx,

H2 =
1

2

∫
S
(u3 + σuu2

x − Au2 − γ2
x + 2uρ+ uρ2)dx.

Notation. Throughout this chapter, we identity all spaces of periodic functions with

function spaces over the unit circle S in R2, i.e. S = R/Z. The norm of the Lebesegue

space Lp(S), 1 ≤ p ≤ ∞, is denoted by ∥ · ∥Lp and the Sobolev space Hs(S), s ∈ R,

by ∥ · ∥Hs . Since all space of functions are over S, for simplicity, we drop S in our

notations of function spaces if there is no ambiguity.

3.2 Derivation of the Model

In this section, we will follow Ivanov’s approach in [33] to derive system (3.1).

Consider the motion of an inviscid incompressible fluid with a constant density ρ

governed by Euler’s equations: v⃗t + (v⃗ · ∇)v⃗ = −1
ρ
∇P + g⃗,

∇ · v = 0,
(3.3)
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Figure 3.1. A fundamental shallow water wave model.

where v⃗(x, y, z, t) is the velocity of the fluid at the point (x, y, z) at the time t,

P (x, y, z, t) is the pressure, and g⃗(0, 0,−g) is the gravity acceleration.

Using the shallow water approximation and non-dimensionalization, the above

equations can be written as

ut + ε(uux + wuz) = −px,

δ2(wt + ε(uwx + wwz)) = −pz,

ux + wz = 0,

w = ηt + εuηx, p = η on z = 1 + εη,

w = 0 on z = 0,

where now v⃗ = (u, 0, w), p(x, z, t) is the pressure variable measuring the deviation

from the hydrostatic pressure distribution, η(t, x) is the deviation from the mean level

z = h of the water surface, and ε = a
h
and δ = h

λ
are the two dimensionless parameters

with a being the typical amplitude of the water and λ being the typical wavelength

of the wave (see Figure 3.1.).

Let us consider waves in the presence of a shear flow. In such case the horizontal

velocity of the flow will be u+U(z), where u = U(z), 0 ≤ z ≤ h, w ≡ 0, p ≡ 0, η ≡ 0
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is an exact solution of the governing equation (3.3) and this solution represents an

arbitrary underlying shear flow. Taking the simplest case : Ũ(z) = Az where A > 0

is a constant.

In the case of constant vorticity ω = A, one obtains at the order of O(ε, δ2) the

following equations for u0 and η, where u0 is the leading order approximation for u(
u0 − δ2

1

2
u0xx

)
t
+ εu0u0x + ηx − δ2

A

3
u0xxx = 0, (3.4)

and

ηt + Aηx +
[
(1 + εη)u0 + ε

A

2
η2
]
x
− δ2

1

6
u0xxx = 0. (3.5)

Let both the parameters ε and δ go to 0, one obtains from (3.4)-(3.5) the system

of linear equations

u0t + ηx =0,

ηt + Aηx + u0x =0,

hence,

ηtt + Aηtx − ηxx = 0. (3.6)

This equation has a traveling wave solution η = η(x− ct) with a velocity c satisfying

c2 − Ac− 1 = 0.

This gives the same solution for c that follows the Burns condition [5].

Introducing a new variable

ρ = 1 + εαη + ε2βη2 + εδ2µu0xx,

for some constants α, β and µ satisfying

µ

α
=

1

6(c− A)
,

α =1 +
Ac

2
+

β

α
,
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equation (3.4) and (3.5) become
mt + Amx − Au0x + δ2(A

6
− 1

6(c−A)
)u0xxx

+ε(1− α2+2β
α

c2)u0u0x +
ρρx
εα

= 0,

ρt + Aρx + αε(ρu0)x = 0.

(3.7)

where m = u0 − 1
2
δ2u0xx. At the order of O(1), we may break u0u0x as

u0u0x = s(2mu0x + u0mx) + (1− 3s)u0u0x +O(δ2),

for any s ∈ S. Thus, the first equation of the system (3.7) can be written at the order

O(ε, δ2) as

mt + Amx − Au0x −
1

6c
δ2u0xxx + ε(1− α2 + 2β

α
c2)s(2mu0x + u0mx)

+ε(1− α2 + 2β

α
c2)(1− 3s)u0u0x +

ρρx
εα

= 0.

Using the scaling : u0 → 1
αε
, x → δx, t → δt, then system (3.7) becomes

mt + Amx − Au0x − 1
6c
u0xxx +

1
α
(1− α2+2β

α
c2)s(2mu0x + u0mx)

+ 1
α
(1− α2+2β

α
c2)(1− 3s)u0u0x + ρρx = 0,

ρt + Aρx + (ρu0)x = 0.

Now if we choose

1

3α
(1− α2 + 2β

α
c2) = 1

and denote σ = 3s and γ = − 1
6c
, then we arrive at mt + Amx − Au0x + σ(2mu0x + u0mx) + 3(1− σ)u0u0x + γu0xxx + ρρx = 0,

ρt + Aρx + (ρu0)x = 0.

(3.8)
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Thus, the constants α, β, µ and c satisfy

α =
1

3(1 = c2)
+

c2

3
,

β = α2 − α(1 +
Ac

2
),

µ =
α

6(c− A)
,

c2 − Ac− 1 = 0.

With a further Galilean transformation x → x − At, t → t, as used in (3.8),

we can drop the terms Amx and Aρx in (3.8) and hence get the generalized periodic

two-component DGH system (3.1).

3.3 Preliminaries

In this section, we briefly give the needed results to pursue our goal. We first

present the local well-posedness for the Cauchy problem of system (3.2) in Hs(S) ×

Hs−1(S), s > 3/2, with S = R/Z.

Let G(x) := cosh(x−[x]−1/2)
2 sinh(1/2)

, x ∈ R. Then (1 − ∂2
x)

−1f = G ∗ f for all f ∈ L2(S)

and G ∗m = u. Our system (3.2) can be written in the following “transport” type

ut + (σu− γ)ux = −∂xG ∗ [3−σ
2
u2 + σ

2
u2
x + (γ − A)u+ 1

2
ρ2], t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R,

ρ(t, x+ 1) = ρ(t, x), t ≥ 0, x ∈ R.
(3.9)

Applying the transport equation theory combined with the method of the Besov

spaces, one may follow the similar argument as in [29] to obtain the following local

well-posedness result for the system (3.2).
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Theorem 3.3.1. If (u0, ρ0) ∈ Hs(S) × Hs−1(S), s > 3/2, then there exists a max-

imal time T = T (∥(u0, ρ0)∥Hs×Hs−1) > 0 and a unique solution (u, ρ) of (3.2) in

C([0, T );Hs(S)×Hs−1(S))
∩

C1([0, T );Hs−1(S)×Hs−2(S)) with (u, ρ)|t=0 = (u0, ρ0).

Moreover, the solution depends continuously on the initial data, and T is independent

of s.

Now, we consider the following two associated Lagrangian scales of the gener-

alized two component system (3.2)
∂q1
∂t

= u(t, q1), 0 < t < T,

q1(0, x) = x, x ∈ R,
(3.10)

and 
∂q2
∂t

= σu(t, q2)− γ, 0 < t < T,

q2(0, x) = x, x ∈ R,
(3.11)

where u ∈ C1([0, T ), Hs−1) is the first component of the solution (u, ρ) to (3.2).

Lemma 3.3.1. [9, 14, 26] Let (u, ρ) be the solution of system (3.2) with initial data

(u0, ρ0) ∈ Hs(S) × Hs−1(S), s > 3/2, and T the maximal time of existence. Then

Eq.(3.10) has a unique solution q1 ∈ C1([0, T ) × R,R), and Eq.(3.11) has a unique

solution q2 ∈ C1([0, T )×R,R). These two solutions satisfy qi(t, x+1) = qi(t, x)+1, i =

1, 2. Moreover, the map q1(t, ·) and q2(t, ·) are increasing diffeomorphisms of R with

q1,x(t, x) = exp

(∫ t

0

ux(τ, q1(τ, x))

)
dτ > 0, (t, x) ∈ [0, T )× R,

and

q2,x(t, x) = exp

(∫ t

0

σux(τ, q2(τ, x))

)
dτ > 0, (t, x) ∈ [0, T )× R.

The above Lemmas indicate that q1(t, ·) : R → R and q2(t, ·) : R → R are

diffeomorphisms of the line for each t ∈ [0, T ). Hence, the L∞ norm of any function
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v(t, ·) ∈ L∞(S), T ∈ [0, t) is preserved under the family of diffeomorphisms q1(t, ·) and

q2(t, ·) with t ∈ [0, T ), that is

∥v(t, ·)∥L∞(S) = ∥v(t, q1(t, ·))∥L∞(S) = ∥v(t, q2(t, ·))∥L∞(S), t ∈ [0, T ). (3.12)

Similarly, we have

inf
x∈S

v(t, x) = inf
x∈S

v(t, q1(t, x)) = inf
x∈S

v(t, q2(t, x)), t ∈ [0, T ). (3.13)

sup
x∈S

v(t, x) = sup
x∈S

v(t, q1(t, x)) = sup
x∈S

v(t, q2(t, x)), t ∈ [0, T ). (3.14)

Lemma 3.3.2. [26] Let (u, ρ) be the solution of system (3.2) with initial data (u0, ρ0) ∈

Hs(S)×Hs−1(S), s > 3/2, and T the maximal time of existence. Then we have

ρ(t, q(t, x))qx(t, x) = ρ0(x), (t, x) ∈ [0, T )× R. (3.15)

Moreover if there exists x0 ∈ S such that ρ0(x0) = 0, then ρ(t, q(t, x0)) = 0 for all

t ∈ [0, T ).

We may use the following proposition derived in [29] to study the regularity

property of solution to system (3.2).

Proposition 3.3.1. Let 0 < s < 1. Suppose that f0 ∈ Hs, g ∈ L1([0, T ];Hs),

and v, vx ∈ L1([0, T ];L∞) and that f ∈ L∞([0, T ];Hs)
∩

C([0, T ];S ′) solves the one-

dimensional linear transport equation ft + vfx = g,

f(0, x) = f0(x).
(3.16)

Then f ∈ C([0, T ];Hs). More precisely, there exists a constant C depending only on

s such that the following estimate holds:

∥f(t)∥Hs ≤ ∥f0∥Hs + C
(∫ t

0

∥g(τ)∥Hsdτ +

∫ t

0

∥f(τ)∥HsV ′(τ)dτ
)
. (3.17)
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Hence,

∥f(t)∥Hs ≤ eCV (t)
(
∥f0∥Hs + C

∫ t

0

∥g(τ)∥Hsdτ
)
, (3.18)

where V (t) =
∫ t

0
(∥v(τ)∥L∞ + ∥vx(τ)∥L∞)dτ.

The above proposition was proved using the Littlewood-Palay analysis for the

transport equation and the Moser-type estimates. Using this result and performing

the same argument as in [29], we can obtain the following blow-up criterion.

Theorem 3.3.2. Let (u, ρ) be the solution of system (3.2) with initial data (u0, ρ0) ∈

Hs(S)×Hs−1(S), s > 3/2, and T the maximal time of existence. Then

T < ∞ ⇒
∫ T

0

∥ux(τ)∥L∞dτ = ∞. (3.19)

We then give several useful conservation laws of strong solutions to system (3.2).

Lemma 3.3.3. Let (u, ρ) be the solution of system (3.2) with initial data (u0, ρ0) ∈

Hs(S) × Hs−1(S), s > 3/2, and T the maximal time of existence. Then for all t ∈

[0, T ), we have ∫
S
u(t, x)dx =

∫
S
u0(x)dx,∫

S
ρ(t, x)dx =

∫
S
ρ0(x)dx.

Proof. Integrating the first equation of (3.9) by parts, in view of the periodicity of u

and G, we get

d

dt

∫
S
udx = −

∫
S
(σu− γ)uxdx−

∫
S
∂xG ∗ [3− σ

2
u2 +

σ

2
u2
x − (γ − A)u+

1

2
ρ2]dx = 0.

On the other hand, integrating the second equation of (3.12) by parts, in view of the

periodicity of u and ρ, we get

d

dt

∫
S
ρdx = −

∫
S
(uρ)xdx = 0.

This completes the proof of the lemma.
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Lemma 3.3.4. Let (u, ρ) be the solution of system (3.2) with initial data (u0, ρ0) ∈

Hs(S) × Hs−1(S), s > 3/2, and T the maximal time of existence. Then for all t ∈

[0, T ), we have∫
S
(u2(t, x) + u2

x(t, x) + ρ2(t, x))dx =

∫
S
(u2

0(t, x) + u2
0x(t, x) + ρ20(t, x))dx.

Proof. Multiplying the first equation of (3.2) by 2u and integrating by parts, we have

d

dt

∫
S
(u2(t, x) + u2

x(t, x))dx =
d

dt

∫
S
ux(t, x)ρ

2(t, x)dx.

Multiplying the second equation of (3.2) by 2ρ and integrating by parts, we get

d

dt

∫
S
ρ2(t, x) = − d

dt

∫
S
ux(t, x)ρ

2(t, x)dx.

Adding the above two equalities, we obtain

d

dt

∫
S
(u2(t, x) + u2

x(t, x) + ρ2(t, x))dx = 0.

This completes the proof of the lemma.

Lemma 3.3.5. [16] Let T > 0 and v ∈ C1([0, T );H2(R)). Then for every t ∈ [0, T ),

there exists at least one point ξ(t) ∈ R with

m(t) := inf
x∈R

[vx(t, x)] = vx(t, ξ(t)).

The function m(t) is absolutely continuous on (0, T ) with

dm(t)

dt
= vtx(t, ξ(t)) a.e. on (0, T ).

Lemma 3.3.6. [53] For every f ∈ H1(S), we have

max
x∈[0,1]

f2(x) ≤ e+ 1

2(e− 1)
∥f∥2H1(S),

where the constant e+1
2(e−1)

is sharp.
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By the conservation law stated in Lemma 3.3.4 and Lemma 3.3.6, we have the

following corollary.

Corollary 3.3.1. Let (u, ρ) be the solution of system (3.9) with initial data (u0, ρ0) ∈

Hs(S) × Hs−1(S), s > 3/2, and T the maximal time of existence. Then for all t ∈

[0, T ), we have

∥u(t, ·)∥2L∞(S) ≤
e+ 1

2(e− 1)
∥u(t, ·)∥2H1(S) ≤

e+ 1

2(e− 1)
∥(u0, ρ0)∥2H1×L2 .

Lemma 3.3.7. [31] If f ∈ H3(S) is such that
∫
S f(x)dx = a0

2
, then for every ε > 0,

we have

max
x∈S

f 2(x) ≤ ε+ 2

24

∫
S
f2
xdx+

ε+ 2

4ϵ
a20.

3.4 Wave-breaking Phenomenon

In this section, we investigate the wave-breaking phenomena of strong solution

to system (3.2). First, we give the wave-breaking criterion for σ ̸= 0.

Theorem 3.4.1 (Waving-breaking criterion ). Let σ ̸= 0 and (u, ρ) be the solution of

(3.2) with initial data (u0, ρ0) ∈ Hs(S)×Hs−1(S), s > 3/2, and T the maximal time

of existence, then the solution blows up in finite time if and only if

lim inf
t→T−

{inf
x∈S

σux(t, x)} = −∞. (3.20)

To prove this wave-breaking criterion, we use the following lemma to show that

indeed σux is uniformly bounded from above.

Lemma 3.4.1. Let σ ̸= 0 and (u, ρ) be the solution of (3.2) with initial data (u0, ρ0) ∈

Hs(S)×Hs−1(S), s > 3/2, and T the maximal time of existence. Then

(1) If σ > 0, then

sup
x∈S

ux(t, x)≤∥u0,x∥L∞ +

√
∥ρ0∥2L∞ + C2

9

σ
. (3.21)
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(2) If σ < 0, then

inf
x∈S

ux(t, x)≥− ∥u0,x∥L∞ − C10√
−σ

. (3.22)

The constants above are defined as follows.

C8 =∥(u0, ρ0)∥2H1×L2 ,

C9 =C8

√
(−1 + sinh 1)|γ − A|2

4 sinh2(1/2)
+
[ |3− σ|(e+ 1)

2(e− 1)
+

cosh(1/2)(|3− σ|+ |σ|)
2 sinh(1/2)

+
1

2

]
,

C10 =C8

√
(−1 + sinh 1)|γ − A|2

4 sinh2(1/2)
+

cosh(1/2)(4− σ)

2 sinh(1/2)
, for σ < 0.

(3.23)

Proof. The local well-posedness theorem and a density argument imply that it suffices

to prove the desired estimates for s ≥ 3. Thus, we take s = 3 in the proof. Also,

we assume that u0 ̸≡ 0. Otherwise, the results become trivial. Note that if G(x) :=

cosh(x−[x]−1/2)
2 sinh(1/2)

, x ∈ R, then (1 − ∂2
x)

−1f = G ∗ f for all f ∈ L2(S) and G ∗ m = u.

Hence, we can rewrite the first equation in (3.9) as

ut + (σu− γ)ux = −∂xG ∗
(
3− σ

2
+

σ

2
u2
x + (γ − A)u+

1

2
ρ2
)
. (3.24)

Differentiating the above with respect to x and using the identity

−∂2
xG ∗ f = f −G ∗ f , we obtain

utx+(σu−γ)uxx+
σ

2
u2
x =

1

2
ρ2+

3− σ

2
u2−(γ−A)∂2

xG∗u−G∗(3− σ

2
u2+

σ

2
u2
x+

1

2
ρ2).

(3.25)

(1) When σ > 0, using Lemma 3.3.5 and the fact that

sup
x∈S

[vx(t, x)] = −inf
x∈S

[−vx(t, x)],

we can consider m̄(t) and η(t) as follows:

η(t) ∈ S and m̄(t) := ux(t, η(t)) = sup
x∈S

(ux(t, x)), t ∈ [0, T ). (3.26)
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Hence,

uxx(t, η(t)) = 0, a.e. t ∈ [0, T ). (3.27)

Take the trajectory q1(t, x) defined in (3.10). Then we know that q1(t, ·) : R → R is

a diffeomorphism for every t ∈ [0, T ). Therefore, there exists x1(t) ∈ R such that

q1(t, x1(t)) = η(t), t ∈ [0, T ). (3.28)

Now, let

ξ̄ = ρ(t, q1(t, x1)), t ∈ [0, T ). (3.29)

Therefore, along the trajectory q1(t, x1), equation (3.25) and the second equation of

(3.2) become

m̄′(t) =− σ

2
m̄2 +

1

2
ξ̄2 + f(t, q1(t, x1)),

ξ̄′(t) =− ξ̄m̄,

(3.30)

for t ∈ [0, T ), where ′ denotes the derivative with respect to t and f(t, q1(t, x1)) is

given by

f =
3− σ

2
u2 − (γ − A)∂2

xG ∗ u−G ∗ (3− σ

2
u2 +

σ

2
u2
x +

1

2
ρ2). (3.31)

We first derive the upper and lower bounds for f for later use in getting the wave-

breaking result. Using that ∂2
xG ∗ u = ∂G ∗ ∂xu, we have

f(t, x) =
3− σ

2
u2 − (γ − A)∂xG ∗ ∂xu−G ∗ (3− σ

2
u2 +

σ

2
u2
x)−

1

2
G ∗ ρ2

≤ 3− σ

2
u2 + |γ − A||Gx ∗ ux|+ |G ∗ (3− σ

2
u2 +

σ

2
u2
x)|,

for any x ∈ S and t ∈ [0, T ). Applying Young’s inequality and G = cosh(x−[x]−1/2)
2 sinh(1/2)

,

leads to

|γ − A||Gx ∗ ux| ≤ |γ − A|∥Gx∥L2∥ux∥L2 = |γ − A|

√
1
2
(−1 + sinh 1)

2 sinh(1
2
)

∥ux∥L2

≤ (−1 + sinh 1)|γ − A|2

8 sinh2(1/2)
+

1

4
∥ux∥2L2 ,

(3.32)
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|G ∗ (3− σ

2
u2 +

σ

2
u2
x)| ≤ ∥G∥L∞∥3− σ

2
u2 +

σ

2
u2
x∥L1

=
cosh(1/2)

2 sinh(1/2)
∥3− σ

2
u2 +

σ

2
u2
x∥L1

≤ cosh(1/2)|3− σ|
4 sinh(1/2)

∥u∥2L2 +
cosh(1/2)|σ|
4 sinh(1/2)

∥ux∥2L2 ,

(3.33)

and

∥u(t, ·)∥2L∞(S) ≤
e+ 1

2(e− 1)
∥u(t, ·)∥2H1(S) ≤

e+ 1

2(e− 1)
∥(u0, ρ0)∥2H1×L2 . (3.34)

Therefore, we obtain the upper bound of f for any x ∈ S and t ∈ [0, T ),

f(t, x) ≤ |3− σ|
2

∥u∥2L∞ +
(−1 + sinh 1)|γ − A|2

8 sinh2(1/2)
+

1

4
∥ux∥2L2

+
cosh(1/2)|3− σ|

4 sinh(1/2)
∥u∥2L2 +

cosh(1/2)|σ|
4 sinh(1/2)

∥ux∥2L2

≤ |3− σ|(e+ 1)

4(e− 1)
∥(u0, ρ0)∥2H1×L2 +

(−1 + sinh 1)|γ − A|2

8 sinh2(1/2)
+

1

4
∥ux∥2L2

+
cosh(1/2)|3− σ|

4 sinh(1/2)
∥u∥2L2 +

cosh(1/2)|σ|
4 sinh(1/2)

∥ux∥2L2

≤ (−1 + sinh 1)|γ − A|2

8 sinh2(1/2)

+
[ |3− σ|(e+ 1)

4(e− 1)
+

cosh(1/2)(|3− σ|+ |σ|)
4 sinh(1/2)

+
1

4

]
∥(u0, ρ0)∥2H1×L2

=
1

2
C2

9 .

(3.35)

Now, we turn to the lower bound of f . Similar as before, we get

−f ≤ |3− σ|
2

∥u∥2L∞ + |γ − A||Gx ∗ ux|+ |G ∗ (3− σ

2
u2 +

σ

2
u2
x)|+

1

2
G ∗ ρ2

≤ |3− σ|(e+ 1)

4(e− 1)
∥(u0, ρ0)∥2H1×L2 +

(−1 + sinh 1)|γ − A|2

8 sinh2(1/2)
+

1

4
∥ux∥2L2

+
cosh(1/2)|3− σ|

4 sinh(1/2)
∥u∥2L2 +

cosh(1/2)|σ|
4 sinh(1/2)

∥ux∥2L2 +
cosh(1/2)

4 sinh(1/2)
∥ρ∥2L2

≤ (−1 + sinh 1)|γ − A|2

8 sinh2(1/2)

+
[ |3− σ|(e+ 1)

4(e− 1)
+

cosh(1/2)(|3− σ|+ |σ|+ 1)

4 sinh(1/2)
+

1

4

]
∥(u0, ρ0)∥2H1×L2 .

(3.36)
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When σ < 0, we have a finer estimate

−f ≤ |γ − A||Gx ∗ ux|+ |G ∗ (3− σ

2
u2 +

σ

2
u2
x)|+

1

2
G ∗ ρ2

≤ (−1 + sinh 1)|γ − A|2

8 sinh2(1/2)
+

1

4
∥ux∥2L2 +

cosh(1/2)(3− σ)

4 sinh(1/2)
∥u∥2L2

− cosh(1/2)σ

4 sinh(1/2)
∥ux∥2L2 +

cosh(1/2)

4 sinh(1/2)
∥ρ∥2L2

≤ (−1 + sinh 1)|γ − A|2

8 sinh2(1/2)
+

cosh(1/2)(4− σ)

4 sinh(1/2)
∥(u0, ρ0)∥2H1×L2

=
1

2
C2

10.

(3.37)

Combining (3.35) and (3.36), we obtain

|f | ≤ (−1 + sinh 1)|γ − A|2

8 sinh2(1/2)

+
[ |3− σ|(e+ 1)

4(e− 1)
+

cosh(1/2)(|3− σ|+ |σ|+ 1)

4 sinh(1/2)
+

1

4

]
∥(u0, ρ0)∥2H1×L2 .

(3.38)

Since now s ≥ 3, we have u ∈ C1
0(S). Therefore,

inf
x∈S

ux(t, x) ≤ 0, sup
x∈S

ux(t, x) ≥ 0, t ∈ [0, T ). (3.39)

Hence, m̄(t) > 0 for t ∈ [0, T ). From the second equation of (3.30), we obtain that

ξ̄(t) = ξ̄(0)e−
∫ t
0 m̄(τ)dτ . (3.40)

Hence,

|ρ(t, q1(t, x1))| = |ξ̄(t)| ≤ |ξ̄(0)| ≤ ∥ρ0∥L∞ .

Now define

P1(t) = m̄(t)− ∥u0,x∥L∞ −
√

∥ρ0∥2L∞ + C2
9

σ
.

Note that P1(t) is a C1− differentiable function in [0, T ) and satisfies

P1(0) ≤ m̄(0)− ∥u0, x∥L∞ ≤ 0.

We will show that

P1(t) ≤ 0, for t ∈ [0, T ). (3.41)
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If not, then suppose there is a t0 ∈ [0, T ) such that P1(t0) > 0. Define

t1 = max{t < t0 : P1(t) = 0}.

Then P1(t1) = 0 and P ′
1 ≥ 0, or equivalently,

m̄(t1) =∥u0,x∥L∞ +

√
∥ρ0∥2L∞ + C2

9

σ
,

m̄′(t1) = ≥ 0.

On the other hand, we have

m̄′(t1) = −σ

2
m̄2(t1) +

1

2
ξ̄2(t1) + f(t1, q(t1, x))

≤ −σ

2

[
∥u0,x∥L∞ +

√
∥ρ0∥2L∞ + C2

9

σ

]2
+

1

2
∥ρ0∥2L∞ +

1

2
C2

9

< 0,

which is a contradiction. Therefore, P1(t) ≤ 0, for t ∈ [0, T ), and we obtain (3.21).

(2) To derive a lower bound for ux in the case of σ < 0, we consider the

functions m(t) and ξ(t) ∈ S as in Lemma 3.3.5

m(t) := ux(t, ξ(t)) = inf
x∈S

(ux(t, x)), t ∈ [0, T ). (3.42)

Hence,

uxx(t, ξ(t)) = 0, a.e. t ∈ [0, T ). (3.43)

Similar as before, we take the characteristic q1(t, x) defined in (3.10) and choose

x2(t) ∈ R such that

q1(t, x2(t)) = ξ(t) t ∈ [0, T ). (3.44)

Let

ζ = ρ(t, q1(t, x2)), t ∈ [0, T ). (3.45)
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Hence, along the trajectory q1(t, x2), equation (3.25) and the second equation of (3.2)

become

m′(t) =− σ

2
m2 +

1

2
ζ2 + f(t, q1(t, x2)),

ζ ′(t) =− ζm.

(3.46)

We now define

P2(t) = m(t)− ∥u0,x∥L∞ +
C10√
−σ

.

Then P2(t) is also C1− differentiable in [0, T ) and satisfies

P2(0) ≥ m(0) + ∥u0,x∥L∞ ≥ 0.

We now claim that

P2(t) ≥ 0, for t ∈ [0, T ). (3.47)

If not, then suppose there is a t̄0 ∈ [0, T ) such that P2(t̄0) < 0. Define

t2 = max{t < t̄0 : P2(t) = 0}.

Then P2(t2) = 0 and P ′
2(t2) ≤ 0, or equivalently,

m(t2) = −∥u0,x∥L∞ − C10√
−σ

and m′(t2) ≤ 0.

On the other hand, we have

m′(t2) = −σ

2
m2(t2) +

1

2
ζ2(t2) + f(t2, q(t2, x)) ≥ −σ

2
(∥u0,x∥L∞ +

C10√
−σ

)2 − 1

2
C2

10 > 0.

Again, this is a contradiction. Therefore, P2(t) ≥ 0, for t ∈ [0, T ). This in turn

implies that (3.22) holds. This completes the proof of Lemma 3.4.1.

It is found that if σux is bounded from below, we may obtain the following

estimates for ∥ρ∥L∞(S).
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Proposition 3.4.1. Let σ ̸= 0 and (u, ρ) be the solution of (3.2) with initial data

(u0, ρ0) ∈ Hs(S) × Hs−1(S), s > 3/2, and T the maximal time of existence. If there

is an M ≥ 0, such that

inf
(t,x)∈[0,T )×S

σux ≥ −M, (3.48)

then

1. If σ > 0, then

∥ρ(t, ·)∥L∞ ≤ ∥ρ0∥L∞eMt/σ. (3.49)

2. If σ < 0, then

∥ρ(t, ·)∥L∞ ≤ ∥ρ0∥L∞eNt. (3.50)

Where N = ∥u0,x∥L∞ + (C10/
√
−σ) and C10 is given in (3.23).

Proof. (1) For σ > 0, we define for any give x ∈ S

U(t) = ux(t, q1(t, x)), α(t) = ρ(t, q1(t, x)), (3.51)

with q1(t, x1(t)) = x, for some x1(t) ∈ R, t ∈ [0, T ). Then the ρ equation of system

(3.2) becomes

α′ = −αU. (3.52)

Thus,

α(t) = α(0)e−
∫ t
0 U(τ)dτ . (3.53)

From the assumption (3.48) and σ > 0, we see

U(t) ≥ −M

σ
, t ∈ [0, T ).

Hence,

|ρ(t, q1(t, x1))| = |α(t)| ≤ |α(0)|e−
∫ t
0 U(τ)dτ ≤ ∥ρ0∥L∞eMt/σ,
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which together with (3.12), leads to (3.49).

(2) For σ < 0, we perform a similar argument as before. Using (3.51), (3.53)

and the lower bound (3.22), we have

|ρ(t, q1(t, x1))| = |α(t)| ≤ |α(0)|e−
∫ t
0 U(τ)dτ ≤ ∥ρ0∥L∞eNt.

Combining the above estimate with (3.12), which implies that (3.50) holds.

Proof of Theorem 3.4.1. Assume that T < ∞ and (3.20) is not valid. Then there is

some positive number M > 0 such that

σux(t, x) ≥ −M, ∀(t, x) ∈ [0, T )× S.

It now follows from Lemma 3.4.1 that |ux(t, x)| ≤ C, where

C = C(A,M, σ, |(u0, ρ0)∥2Hs×Hs−1). Therefore, Theorem 3.3.2 in turn implies that

the maximal existence time T = ∞, which contradicts the assumption that T < ∞.

Conversely, the Sobolev embedding theorem Hs(S) ↪→ L∞(S) with s > 1/2 implies

that if (3.20) holds, the corresponding solution blows up in finite time. This completes

the proof of Theorem 3.4.1.

Now, we give the following series of theorems that provide some cases that wave

breaks in finite time.

Theorem 3.4.2. Let σ ̸= 0 and (u, ρ) be the solution of (3.2) with the initial data

(u0, ρ0) ∈ Hs(S)×Hs−1(S), s > 3/2, and T the maximal time of existence.

1. When σ > 0, assume that there is some x0 ∈ S such that

ρ0(x0) = 0, u0,x(x0) = inf
x∈S

u0,x(x),

and

u0,x(x0) < − C9√
σ
, (3.54)

59



where C9 is defined in (3.23). Then the corresponding solution to system (3.2)

blows up in the following sense: there exists a T1 with

0 < T1 ≤ − 2

σu0,x(x0) +
√

−σ3/2C9u0,x(x0)
, (3.55)

respectively, such that

lim inf
t→T−

1

{inf
x∈S

σux(t, x)} = −∞.

2. When σ < 0, assume that there are some x0 ∈ S such that

u0,x(x0) > −C10√
σ
, (3.56)

where C10 is defined in (3.23). Then the corresponding solution to the system

(3.2) blows up in finite time in the following sense: there exists a T2 with

0 < T2 ≤ − 2

σu0,x(x0)−
√
(−σ)3/2C10u0,x(x0)

, (3.57)

such that

lim inf
t→T−

2

{sup
x∈S

σux(t, x)} = ∞.

Proof. (1) When σ > 0, similar to the proof of Lemma 3.4.1, it suffices to consider

s ≥ 3. So in the following of this section s = 3 is taken for simplicity of notation.

We consider along the trajectory q1(t, x2) defined in (3.10) and (3.44). In this way,

we can write the transport equation of ρ in (3.2) along the trajectory of q1(t, x2) as

dρ(t, ξ(t))

dt
= −ρ(t, ξ(t))ux(t, ξ(t)). (3.58)

Form the assumption of the theorem, we see

m(0) = ux(0, ξ(0)) = inf
x∈S

u0,x(x) = u0,x(x0).
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Hence, we can choose ξ(0) = x0 and then ρ0(ξ(0) = ρ0(x0) = 0. Thus, from (3.61) we

see that

ρ(t, ξ(t)) = 0, t ∈ [0, T ). (3.59)

Differentiating equation (3.24) with respect to x, evaluating the result at x = ξ(t)

and using (3.43) and (3.59), we deduce from Lemma 3.3.5 that

m′(t) = −σ

2
m2(t) + f(t, q1(t, x2)). (3.60)

Using the upper bound of f in (3.35), we see that

m′(t) ≤ −σ

2
m2(t) +

1

2
C2

9 , t ∈ [0, T ).

By assumption (3.57), m(0) = u0,x(x0) < −C9/
√
σ, we see that m′(0) < 0 and m(t)

is strictly decreasing over [0, T ). Set

δ =
1

2
− 1

2

C2
9

u2
0,x(x0)σ

∈ (0,
1

2
).

Using that m(t) < m(0) = u0,x(x0) < 0, we obtain

m′(t) ≤ −σ

2
m2(t) +

1

2
C2

9 ≤ −δσm2(t), t ∈ [0, T ).

Integrating on both sides, we obtain

m(t) ≤ u0,x(x0)

1 + δσu0,x(x0)t
→ −∞ as t → − 1

δσu0,x(x0)
.

Hence,

T ≤ − 1

δσu0,x(x0)
,

which proves (3.55).

(2) Similarly as in (1), we consider the function m̄(t)and η(t) as defined in (3.26).

Then we have

m̄′(t) = −σ

2
m̄2(t) +

1

2
ρ2(t, η(t)) + f(t, q1(t, x1)) ≥ −σ

2
m̄2(t) + f(t, q1(t, x1)). (3.61)
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Using the lower bound of f as in (3.40), we have

m̄′(t) ≥ −σ

2
m̄2(t)− 1

2
C2

10, t ∈ [0, T ).

By assumption (3.56), m̄(0) = u0,x(x0) > C10/
√
−σ, we see that m̄′(0) > 0 and m̄(t)

is strictly increasing over [0, T ). Set

θ =
1

2
− 1

2

C2
10

σu2
0,x(x0)

.

Using that m̄(t) > m̄(0) = u0,x(x0) > 0, we obtain

m̄′(t) ≥ −σ

2
m̄2(t)− 1

2
C2

10 ≥ −θσm̄2(t), t ∈ [0, T ).

Therefore,

m̄(t) ≥ u0,x(x0)

1 + θσu0,x(x0)t
→ ∞ as t → − 1

θσu0,x(x0)
.

Hence,

T ≤ − 1

θσu0,x(x0)
,

which proves (3.57).

The following theorem provides another condition for blowup of ux.

Theorem 3.4.3. Let σ > 0 and (u, ρ) be the solution of (3.2) with the initial data

(u0, ρ0) ∈ Hs(S) ×Hs−1(S), s > 3/2, and T the maximal time of existence. Assume

that
∫
S u0dx = a0

2
. If there is some x0 ∈ S such that ρ0(x0) = 0, u0,x(x0) = inf

x∈S
u0,x(x),

and for any ε > 0

u0,x(x0) < −C11√
σ
. (3.62)

Then the corresponding solution to system (3.2) blows up in the following sense: there

exists a T1 with

0 < T ≤ − 2

σu0,x(x0) +
√
−σ3/2C11u0,x(x0)

, (3.63)
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respectively, such that

lim inf
t→T−

{inf
x∈S

σux(t, x)} = −∞.

The constant above is defined as follows

C11 =
((−1 + sinh 1)A2

4 sinh2(1/2)
+

|3− σ|(ε+ 2)a20
4ε

+
[ |3− σ|(ε+ 2)

24
+

cosh(1/2)(|3− σ|+ |σ|)
2 sinh(1/2)

+
1

2

]
∥(u0, ρ0)∥2H1× L2

) 1
2
.

Proof. By Lemma 3.3.3, we have
∫
S u(t, x)dx =

∫
S u0(x)dx = a0

2
. Using Lemma 3.3.7

and the above conservation law, we have

∥u∥L∞(S) ≤
√

ε+ 2

24
∥(u0, ρ0)∥2H1(S)×L2(S) +

ε+ 2

4ϵ
a20. (3.64)

Similarly as the proof of Theorem 3.4.2(1), we can also get

m′(t) = −σ

2
m2(t) + f(t, q1(t, x2)). (3.65)

Using (3.64), we obtain a new upper bound of f

f =
3− σ

2
u2 − (γ − A)∂xG ∗ ∂xu−G ∗ (3− σ

2
u2 +

σ

2
u2
x)−

1

2
G ∗ ρ2

≤ 3− σ

2
u2 + |γ − A||Gx ∗ ux|+ |G ∗ (3− σ

2
u2 +

σ

2
u2
x)|

≤ |3− σ|
2

∥u∥2L∞ +
(−1 + sinh 1)|γ − A|2

8 sinh2(1/2)
+

1

4
∥ux∥2L2

+
cosh(1/2)|3− σ|

4 sinh(1/2)
∥u∥2L2 +

cosh(1/2)|σ|
4 sinh(1/2)

∥ux∥2L2

≤ |3− σ|(ε+ 2)

48
∥(u0, ρ0)∥2H1×L2 +

|3− σ|(ε+ 2)a20
8ε

+
(−1 + sinh 1)|γ − A|2

8 sinh2(1/2)

+
1

4
∥ux∥2L2 +

cosh(1/2)|3− σ|
4 sinh(1/2)

∥u∥2L2 +
cosh(1/2)|σ|
4 sinh(1/2)

∥ux∥2L2

≤ (−1 + sinh 1)|γ − A|2

8 sinh2(1/2)
+

|3− σ|(ε+ 2)a20
8ε

+
[ |3− σ|(ε+ 2)

48
+

cosh(1/2)(|3− σ|+ |σ|)
4 sinh(1/2)

+
1

4

]
∥(u0, ρ0)∥2H1× L2

=
1

2
C2

11.

(3.66)
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By assumption (3.62), m(0) = u0,x(x0) < −C11/
√
σ, we see that m′(0) < 0 and m(t)

is strictly decreasing over [0, T ). Set

δ =
1

2
− 1

2

C2
11

u0,x(x0)2σ
∈
(
0,

1

2

)
.

Using that m(t) < m(0) = u0,x(x0) < 0, we obtain

m′(t) ≤ −σ

2
m2(t) +

1

2
C2

11 ≤ −δσm2(t), t ∈ [0, T ).

Integrating on both sides, we obtain

m(t) ≤ u0,x(x0)

1 + δσu0,x(x0)t
→ −∞ as t → − 1

δσu0,x(x0)
.

Hence,

T ≤ − 1

δσu0,x(x0)
,

which proves (3.63). This complies the proof of Theorem 3.3.3.

Next, we give a blow-up result if u0 is odd and ρ0 is even.

Theorem 3.4.4. Let 0 < σ ≤ 3 and (u, ρ) be the solution of (3.2) with the initial data

(u0, ρ0) ∈ Hs(S) ×Hs−1(S), s > 3/2, and T the maximal time of existence. Assume

that u0 is odd, ρ0 is even, u0,x < 0, and ρ0(0) = 0. Then the corresponding solution

to the system (3.2) blows up in finite time. More precisely, there exists a T0 with

0 < T0 ≤ −(2/σu0,x(0)) such that

lim inf
t→T−

0

{inf
x∈S

σux(t, x)} = −∞.

Proof. Similar to the proof of Lemma 3.4.1, it suffices to consider s ≥ 3. Since u0 is

odd and ρ0 is even, the corresponding solution (u(t, x), ρ(t, x)) satisfies that u(t, x) is

odd and ρ(t, x) is even with respect to x for given 0 < t < T. Hence, u(t, 0) = 0 and

ρx(t, 0) = 0. Thanks to the transport equation of ρ in (3.2), we have ρt(t, 0) + ρ(t, 0)ux(t, 0) = 0,

ρ(0, 0) = 0.
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Thus, ρ(t, 0) = 0. Evaluating (3.28) at (t, 0) and denoting M(t) = ux(t, 0), we obtain

M ′(t)+
σ

2
M2(t) = −(γ−A)(∂2

xG∗u)(t, 0)−G∗ (3− σ

2
u2+

σ

2
u2
x+

1

2
ρ2)(t, 0). (3.67)

Notice that u(t, x) is odd and G(x) is even, so

(γ − A)(∂2
xG ∗ u)(t, 0) = 0.

Using 0 < σ ≤ 3,

M ′(t) +
σ

2
M2(t) ≤ 0.

Hence,

M(t) ≤ M(0) = u0,x(0) < 0, for t ∈ [0, T ),

and

− 1

M(t)
+

1

M(0)
≤ −σ

2
t,

and then

ux(t, 0) = M(t) ≤ 2M(0)

2 + σM(0)t
→ −∞, t → − 2

σM(0)
, (3.68)

which indicates that the maximal existence time T0 ≤ −2(2/σu0,x(0)) and hence it

completes the proof of the theorem.

3.5 Blow-up Rate

We now address the question of the blow-up rate of the slope to a breaking

wave for system (3.2) .

Theorem 3.5.1. Let σ ̸= 0. If T < ∞ is the blow-up time of the solution (u, ρ)

to (3.2) with the initial data (u0, ρ0) ∈ Hs(S) × Hs−1(S), s > 3/2, satisfying the

assumption of Theorem 3.4.2, then

lim
t→T−

[(
inf
x∈S

ux(t, x)
)
(T − t)

]
= − 2

σ
, for σ > 0. (3.69)

lim
t→T−

[(
sup
x∈S

ux(t, x)
)
(T − t)

]
= − 2

σ
, for σ < 0. (3.70)

65



Proof. We may again assume s = 3 to prove the theorem. Now, let’s consider the

first case. Let σ > 0. From (3.60) we have

m′(t) = −σ

2
m2(t) + f(t, q1(t, x2)).

Using (3.38) and denote

K =
(−1 + sinh 1)|γ − A|2

8 sinh2(1/2)

+
[ |3− σ|(e+ 1)

4(e− 1)
+

cosh(1
2
)(|3− σ|+ |σ|+ 1)

4 sinh(1
2
)

+
1

4

]
∥(u0, ρ0)∥2H1×L2 .

(3.71)

We know

−σ

2
m2(t)−K ≤ m′(t) ≤ −σ

2
m2(t) +K. (3.72)

Choose 0 < ε < σ/2. Since m(t) → −∞ as t → T−, we can find t0 ∈ (0, T ) such that

m(t0) < −
√

2σK +
K

ε
.

Since m(t) is absolutely continuous on [0, T ). It is then inferred from the above

differential inequality that m(t) is strictly decreasing on [t0, T ) and hence

m(t) < −
√
2σK +

K

ε
< −

√
K

ε
t ∈ [t0, T ).

Then (3.72) implies that

σ

2
− ε <

d

dt

( 1

m(t)

)
<

σ

2
+ ε, a.e. t ∈ [t0, T ).

Integrating the above relation on (t, T ) with t ∈ [t0, T ) and noticing that m(t) → −∞

as t → T−, we obtain

(
σ

2
− ε)(T − t) < − 1

m(t)
< (

σ

2
+ ε)(T − t).

Since ε ∈ (0, σ/2) is arbitrary, in view of the definition of m(t), the above inequality

implies (3.69).
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Next, we consider the second case. Let σ < 0. From (3.61) we have

m̄′(t) ≥ −σ

2
m̄2(t)−K,

where K is defined in (3.71). Since m̄(t) → ∞ as t → T−, we can choose a t0 ∈ (0, T )

such that

m̄(t) >
√
−2σK.

Therefore, we have that m̄(t) is strictly increasing on [t0, T ) and

m̄(t) > m̄(t0) >
√
−2σK > 0.

Using the transport equation for ρ, we have that

ρ′(t, η(t)) = −m̄(t)ρ(t, η(t)).

Hence,

ρ(t, η(t)) = ρ(t0, η(t0))e
−

∫ t
t0

m̄(τ)dτ
, t ∈ [t0, T ).

Then

ρ2(t, η(t)) ≤ ρ2(t0, η(t0)), t ∈ [t0, T ).

Therefore, using (3.64) again, we have

−σ

2
m̄2(t)− 1

2
ρ2(t0, η(t0))−K ≤ m̄′(t) ≤ −σ

2
m̄2(t) +

1

2
ρ2(t0, η(t0)) +K. (3.73)

Now let

K̄ =
1

2
ρ2(t0, η(t0)) +K,

and choose 0 < ε < −σ/2. We can pick a t0 ∈ [t0, T ) such that

m̄(t1) >

√
−2σK̄ +

K̄

ε
.

Then

m̄(t) > m̄(t1) >

√
−2σK̄ +

K̄

ε
>

√
K̄

ε
.
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Hence, (3.76) implies that

σ

2
− ε <

d

dt

( 1

m̄(t)

)
<

σ

2
+ ε, a.e. t ∈ [t1, T ).

Integrating the above relation on (t, T ) with t ∈ [t1, T ) and noticing that m̄(t) → ∞

as t → T−, we obtain

(
σ

2
− ε)(T − t) < − 1

m̄(t)
< (

σ

2
+ ε)(T − t).

Since ε ∈ (0,−σ/2) is arbitrary, in view of the definition of m̄(t), the above inequality

implies (3.70.

3.6 Global Existence

In this section, we provide a sufficient condition for the global solution of system

(3.2) in the case when 0 < σ < 2 and σ = 0.

Theorem 3.6.1. Let 0 < σ < 2 and (u, ρ) be the solution of (3.2) with the initial

data (u0, ρ0) ∈ Hs(S)×Hs−1(S), s > 3/2, and T the maximal time of existence. If

inf
x∈S

ρ0(x) > 0, (3.74)

then T = +∞ and the solution (u, ρ) is global.

We need the following lemma to prove the above theorem.

Lemma 3.6.1. Let 0 < σ < 2 and (u, ρ) be the solution of (3.2) with the initial data

(u0, ρ0) ∈ Hs(S) ×Hs−1(S), s > 3/2, and T the maximal time of existence. Assume

that inf
x∈S

ρ0(x) > 0.

1. If 0 < σ ≤ 1, then ∣∣∣inf
x∈S

ux(t, x)
∣∣∣ ≤ 1

infx∈S ρ0(x)
C13e

C12t, (3.75)∣∣∣sup
x∈S

ux(t, x)
∣∣∣ ≤ 1

infx∈S ρ
σ

2−σ

0 (x)
C

1
2−σ

13 e
C12t
2−σ , (3.76)
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2. If 1 ≤ σ < 2, then ∣∣∣inf
x∈S

ux(t, x)
∣∣∣ ≤ 1

infx∈S ρ
σ

2−σ

0 (x)
C

1
2−σ

13 e
C12t
2−σ , (3.77)

∣∣∣sup
x∈S

ux(t, x)
∣∣∣ ≤ 1

infx∈S ρ0(x)
C13e

C12t. (3.78)

The constants C12 and C13 are defined as follows

C12 = 1 +
(−1 + sinh 1)|γ − A|2

8 sinh2(1/2)
(3.79)

+
[ |3− σ|(e+ 1)

4(e− 1)
+

cosh(1
2
)(|3− σ|+ |σ|+ 1)

4 sinh(1
2
)

+
1

4

]
∥(u0, ρ0)∥2H1×L2 (3.80)

C13 = 1 + ∥u0,x∥2L∞ + ∥ρ0,x∥2L∞ . (3.81)

Proof. Similar as before, a density argument indicates that it suffices to prove the

desired results for s ≥ 3. Thus, we have

inf
x∈S

ux(t, x) < 0, sup
x∈S

ux(t, x) > 0, t ∈ [0, T ).

(1) First we will derive an estimate for | infx∈S ux(t, x)|. Define m(t) and

ξ(t) as in (3.42), and consider along the characteristics q1(t, x1(t)) as in (3.10) and

(3.28). Thus, from (3.39),

m(t) ≤ 0 for t ∈ [0, T ). (3.82)

Let ζ(t) = ρ(t, ξ(t)) and evaluate (3.25) and the second equation of the system (3.2)

at (t, ξ(t)). We have

m′(t) = −σ

2
m2(t) +

1

2
ζ2(t) + f(t, q1(t, x1)),

ζ ′(t) = −ζm,

(3.83)

for t ∈ [0, T ) where f is defined in (3.31). The second equation above implies that

ζ(t) and ζ(0) are of the same sign.
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Now, we want to construct a Lyapunov function for our system, as in [15]. Since

here we have a free parameter σ, we could not find a uniform Lyapunov function.

Instead, we will split the case 0 < σ ≤ 1 and the case 1 < σ < 2. From the

assumption of the theorem, we know that ζ(0) = ρ(0, ξ(0)) > 0.

When 0 < σ ≤ 1, we define the following Lyapunov function

w1(t) = ζ(0)ζ(t)− ζ(0)

ζ(t)

(
1 +m2(t)

)
, (3.84)

which is always positive for t ∈ [0, T ). Differentiating w1(t) and using (3.82), we

obtain

w′
1(t) = ζ(0)ζ ′ − ζ(0)

ζ2
(1 +m2)ζ ′ +

2

ζ
ζ(0)mm′

=
2ζ(0)m

ζ

[1− σ

2
m2 +

1

2
+ f(t, q1(t, x1))

]
≤ ζ(0)

ζ
(1 +m2)

[
|f(t, q1(t, x1))|+

1

2

]
≤ C12w1(t),

(3.85)

where we have used (3.81) and the bound (3.38) for f . Hence,

w1(t) ≤ w1(0)e
C12t = [ζ2(0) + 1 +m2(0)]eC12t

≤ (1 + ∥u0,x∥2L∞ + ∥ρ0∥2L∞)eC12t = C13e
C12t.

(3.86)

Recalling that ζ(t) and ζ(0) are of the same sign, we have

ζ(0)ζ(t) ≤ w1(t) and |ζ(0)||m(t)| ≤ w1(t).

Then from (3.85), we have∣∣∣inf
x∈S

ux(t, x)
∣∣∣ = |m(t)| ≤ w1(t)

ζ(0)
≤ 1

infx∈S ρ0(x)
C13e

C12t, for t ∈ [0, T ),

which proves (3.75).

If 1 ≤ σ < 2, we may define the Lyapunov function to be

w2(t) = ζσ(0)
ζ2(t) + 1 +m2(t)

ζσ(t)
. (3.87)
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Differentiating w2(t) and using (3.82), we obtain

w′
2(t) =

2ζσ(0)m

ζσ

[σ − 1

2
ζ2 +

σ

2
+ f(t, q1(t, x1)

]
≤ ζσ(0)

ζσ
(1 +m2)[|f(t, q1(t, x1)|+

σ

2
] ≤ C12w2(t).

(3.88)

Thus,

w2(t) ≤ w2(0)e
C12t = [ζ2(0) + 1 +m2(0)]eC12t

≤ (1 + ∥u0,x∥2L∞ + ∥ρ0∥2L∞)eC12t = C13e
C12t.

(3.89)

Applying Young’s inequality ab ≤ ap/p+ bq/q to (3.86) with

p =
2

σ
and q =

2

2− σ
,

we have

w2(t)

ζσ(0)
= [ζ

σ(2−σ)
2 ]2/σ +

[(1 +m2)
2−σ
2

ζ
σ(2−σ)

2

]2/(2−σ)

≥ σ

2
[ζ

σ(2−σ)
2 ]2/σ +

2− σ

2

[(1 +m2)
2−σ
2

ζ
σ(2−σ)

2

]2/(2−σ)

≥ (1 +m2)
2−σ
2 ≥ |m(t)|2−σ.

Therefore,∣∣∣inf
x∈S

ux(t, x)
∣∣∣ ≤ [w2(t)

ζσ(0)

] 1
2−σ ≤ 1

infx∈S ρ
σ

2−σ

0 (x)
C

1
2−σ

13 e
C12t
2−σ , t ∈ [0, T ),

which proves (3.77).

(2) Next we try to control | supx∈S ux(t, x)|. Similarly as before, we consider

m̄(t), η(t), q1(t, x2(t)) as in (3.26) and (3.44). Then (3.82) becomes

m̄′(t) = −σ

2
m̄2(t) +

1

2
ζ̄2(t) + f(t, q1(t, x2)),

ζ̄ ′(t) = −ζ̄m̄,

(3.90)

for t ∈ [0, T ), where ζ̄(t) = ρ(t, η(t)). From (3.39), we have

m̄(t) ≥ 0, t ∈ [0, T ). (3.91)
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When 0 < σ ≤ 1, the corresponding Lyapunov function is

w̄1(t) = ζ̄σ(0)
ζ̄2(t) + 1 + m̄2(t)

ζ̄σ(t)
. (3.92)

Then from (3.90) and (3.93), we see that

w̄′
1(t) ≤ C12w̄1(t), then w̄1(t) ≤ C13e

C12t.

Hence, by the similar argument as before, we obtain

w̄1(t)

ζ̄σ(0)
≥ |m(t)|2−σ.

Therefore,∣∣∣sup
x∈S

ux(t, x)
∣∣∣ ≤ [ w̄1(t)

ζ̄σ(0)

] 1
2−σ ≤ 1

infx∈S ρ
σ

2−σ

0 (x)
C

1
2−σ

13 e
C12t
2−σ , t ∈ [0, T ),

which proves (3.76).

When 1 ≤ σ < 2, consider the Lyapunov function

w̄2(t) = ζ̄(0)ζ̄(t) =
ζ̄(0)

ζ̄(t)

(
1 + m̄2(t)

)
. (3.93)

From (3.84) and (3.90), it follows that w̄′
2(t) ≤ C12w̄1(t). This in turn implies that

w̄1(t) ≤ C13e
C12t.

Thus, we have∣∣∣sup
x∈S

ux(t, x)
∣∣∣ = |m̄(t)| ≤ w̄1(t)

ζ̄(0)
≤ 1

infx∈S ρ0(x)
C13e

C12t, t ∈ [0, T ),

which proves (3.78).

Proof of Theorem 3.6.1. Assume on the contrary that T < ∞ and the solution blows

up in finite time. It then follows Theorem 3.3.2 that∫ T

0

∥ux(t, x)∥L∞dt = ∞. (3.94)
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However, from the assumption of the theorem and Lemma 3.6.1, we have

|ux(t, x)| < ∞,

for all (t, x) ∈ [0, T )× S, a contradiction to (3.93). Thus, T = +∞, and the solution

(u, ρ) is global.

We are now in a position to consider the case σ = 0.

Theorem 3.6.2. Let σ = 0. If (u0, ρ0) ∈ Hs(S)×Hs−1(S), s > 3/2, then there exists

a unique solution (u, ρ) of system (3.2) with the initial data (u0, ρ0). Moreover, the

solution depends continuously on the initial data. Then T = +∞ and the solution

(u, ρ) is global.

When σ = 0, we can rewrite system (3.2) as

ut − γux = −∂xG ∗ (3
2
u2 + (γ − A)u+

1

2
ρ2),

ρt + uρx = −uxρ,

u(0, x) = u0(x),

ρ(0, x) = ρ0(x),

u(t, x+ 1) = u(t, x),

ρ(t, x+ 1) = ρ(t, x).

(3.95)

To prove Theorem 3.6.2 of global well-posedness of solutions, we need the fol-

lowing estimates for ux.

Lemma 3.6.2. Let σ = 0 and (u, ρ) be the solution of (3.95) with the initial data

(u0, ρ0) ∈ Hs(S)×Hs−1(S), s > 3/2, and T the maximal time of existence. Then

sup
x∈S

ux(t, x) ≤ sup
x∈S

u0,x(x) +
1

2
(sup
x∈S

ρ20(x) + C2
14)t, (3.96)

inf
x∈S

ux(t, x) ≥ inf
x∈S

u0,x(x) +
1

2
(inf
x∈S

ρ20(x)− C2
15)t, (3.97)
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where the constants C14 and C15 are defined as follows

C14 =

√
(−1 + sinh 1)|γ − A|2

4 sinh2(1/2)
+

3(e+ 1) + 1

4(e− 1)
∥(u0, ρ0)∥2H1×L2 , (3.98)

C15 =

√
(−1 + sinh 1)|γ − A|2

4 sinh2(1/2)
+

3 cosh(1/2) + 1

4 sinh(1/2)
∥(u0, ρ0)∥2H1×L2 . (3.99)

Proof. The local well-posedness theorem and a density argument implies that it suf-

fices to prove the desired estimates for s ≥ 3. Thus, we take s = 3 in the proof. Also

we may assume that

u0 ̸≡ 0, (3.100)

otherwise the results become trivial. Since now s = 3, we have u ∈ C1
0(S). Therefore

inf
x∈S

ux(t, x) ≤ 0, sup
x∈S

ux(t, x) ≥ 0, t ∈ [0, T ). (3.101)

Differentiating the first equation of (3.97) with respect to x and using the iden-

tity −∂2
xG ∗ f = f −G ∗ f we obtain

utx − γuxx =
1

2
ρ2 +

3

2
u2 + A∂2

xG ∗ u−G ∗ (3
2
u2 +

1

2
ρ2). (3.102)

Using Lemma 3.3.5 and the fact that

sup
x∈S

[ux(t, x)] = −inf
x∈S

[vx(t, x)],

we can consider m̄(t) and ξ̄(t) as follows

m̄(t) := ux(t, ξ̄(t)) = sup
x∈S

(ux(t, x)), t ∈ [0, T ). (3.103)

Hence

uxx(t, ξ̄(t)) = 0, a.e. t ∈ [0, T ). (3.104)

Take the trajectory q(t, x) defined in (3.13). Then we know that q(t, ·) : R → R is a

diffeomorphism for every t ∈ [0, T ). Therefore, there exists x1(t) ∈ S such that

q(t, x1(t)) = ξ(t), t ∈ [0, T ). (3.105)
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Now let

ζ̄(t) = ρ(t, q(t, x1)), t ∈ [0, T ). (3.106)

Therefore along this trajectory q(t, x1), equation (3.101) and the second equation of

(3.94) become

m̄′(t) =
1

2
ζ̄2 + f(t, q(t, x1)),

ζ̄ ′(t) = −ζ̄m̄,

(3.107)

for t ∈ [0, T ), where ′ denotes the derivative with respect to t and f(t, q(t, x1)) is

given by

f = A∂2
xG ∗ u+

3

2
u2 −G ∗ (3

2
u2 +

1

2
ρ2). (3.108)

We first derive the upper and lower bounds for f for later use in getting the

wave-breaking result. Using that ∂2
xG ∗ u = ∂xG ∗ ∂xu, we have

f =
3

2
u2 + A∂xG ∗ ∂xu−G ∗ (3

2
u2)− 1

2
G ∗ ρ2 ≤ 3

2
u2 + A|Gx ∗ ux|.

Using (3.32) and (3.34), we obtain the upper bound of f

f ≤ 3

2
∥u(t, ·)∥2L∞(S) +

(−1 + sinh 1)|γ − A|2

8 sinh2(1/2)
+

1

4
∥ux∥2L2

≤ 3(e+ 1)

4(e− 1)
∥(u0, ρ0)∥2H1×L2 +

(−1 + sinh 1)|γ − A|2

8 sinh2(1/2)
+

1

4
∥ux∥2L2

≤ (−1 + sinh 1)|γ − A|2

8 sinh2(1/2)
+

3(e+ 1) + 1

4(e− 1)
∥(u0, ρ0)∥2H1×L2 =

1

2
C2

14.

(3.109)

Now we turn to the lower bound of f . Similarly as before, we get

−f ≤ A|Gx ∗ ux|+
3

2
|G ∗ u2|+ 1

2
G ∗ ρ2

≤ (−1 + sinh 1)|γ − A|2

8 sinh2(1/2)
+

1

4
∥ux∥2L2 +

3 cosh(1/2)

4 sinh(1/2)
∥u∥2L2 +

cosh(1/2)

4 sinh(1/2)
∥ρ∥2L2

≤ (−1 + sinh 1)|γ − A|2

8 sinh2(1/2)
+
(3 cosh(1/2) + 1

4 sinh(1/2)
∥(u0, ρ0)∥2H1×L2

)
=

1

2
C2

15.

(3.110)

75



Combining (3.108) and (3.109), we obtain

|f | ≤ (−1 + sinh 1)|γ − A|2

8 sinh2(1/2)
+

3 cosh(1/2) + 1

4 sinh(1/2)
∥(u0, ρ0)∥2H1×L2 . (3.111)

From (3.100) we know m̄(t) ≥ 0 for t ∈ [0, T ). From the second equation of

(3.106) we obtain that

ζ̄(t) = ζ̄(0)e−
∫ t
0 m̄(τ)dτ . (3.112)

Hence

|ρ(t, q(t, x1)) = |ζ̄(t)| ≤ |ζ̄(0)|.

Therefore, we have

m̄′(t) =
1

2
ζ̄2(t) + f ≤ 1

2
ζ̄2(0) +

1

2
C2

14 ≤
1

2

(
sup
x∈S

ρ20(x) + C2
14

)
.

Integrating the above over [0, t], we prove (3.97).

To obtain a lower bound for infx∈S ux(t, x), we use the similar idea. Consider

the function m(t) and ξ(t) as in Lemma 3.3.5

m(t) := ux(t, ξ(t)) = inf
x∈S

(ux(t, x)), t ∈ [0, T ). (3.113)

Hence

uxx(t, ξ(t)) = 0, a.e. t ∈ [0, T ). (3.114)

Again take the trajectory q(t, x) defined in (3.10) and choose x2(t) ∈ S such that

q(t, x2(t)) = ξ(t) t ∈ [0, T ). (3.115)

Now let

ζ̄(t) = ρ(t, q(t, x2)), t ∈ [0, T ). (3.116)

Hence along this trajectory q(t, x2), equation (3.101) and the second equation of (3.94)

become

m′(t) =
1

2
ζ2 + f(t, q(t, x2)),

ζ ′(t) = −ζm.

(3.117)
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Since m(t) ≥ 0, we have from the second equation of the above that

|ρ(t, q(t, x2)) = |ζ(t)| ≥ |ζ(0)|.

Then

m′(t) =
1

2
ζ2(0)− 1

2
C2

15 ≥
1

2

(
inf
x∈S

ρ20(x) + C2
15

)
.

Integrating the above over [0, t], we obtain (3.96). This completes the proof of the

Lemma 3.6.2.

Proof of Theorem 3.6.2. Similarly as the proof of Lemma 3.6.1, assume on the con-

trary that T < ∞ and the solution blows up in finite time. It then follows Theorem

3.3.2 that ∫ T

0

∥ux(t, x)∥L∞dt = ∞. (3.118)

However, from the assumption of the theorem and Lemma 3.6.2, we have

|ux(t, x)| < ∞,

for all (t, x) ∈ [0, T )×S, a contradiction to (3.117). Thus, T = +∞, and the solution

(u, ρ) is global.
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CHAPTER 4

CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

The goal of the present Chapter 2 is to derive some conditions of blow-up

solutions and determine blow-up rate for the system (2.2). The global existence of

solutions is also studied. Similarly as in [18, 26], we can use the method of Besov

spaces together with the transport equation theory to show that system (2.2) is locally

well posed in Hs(S) × Hs−1(S) with s > 3/2. For system (2.2) , when σ ̸= 1, it

has two different characteristics, which are described in (2.4) and (2.5). Since there

is no uniform characteristics, in order to obtain similar estimates, one needs more

regularity arguments. The way to resolve this issue is to employ the method of

characteristics along a properly chosen q1 which is showed in (2.4) to capture the

maximum/minimum of ux. Moreover, we use the method of characteristics together

with the use of the conservation laws to get the improved estimate of ux, which is

always uniformly bounded from above. To study the problem of the global existence

of solutions, we use the method of Lyapunov functions introduced in [18, 8]. We find a

sufficient condition for global solutions which is determined only by a positive profile

of the free surface component ρ of the system, in the case 0 < σ < 2 and σ = 0.

However, the case when σ < 0 or σ ≥ 2 still remain open at this moment.

The goal of the present Chapter 3 is to derive the generalized periodic two-

component DGH system (3.2) by the shallow water theory, then we derive some

conditions of blow-up solutions and determine blow-up rate for the generalized peri-

odic system (3.2). Similarly as in [18, 26], we can use the method of Besov spaces

78



together with the transport equation theory to show that system (3.2) is locally well

posed in Hs(S) × Hs(S) with s > 3/2. Moreover, we use the method of character-

istics together with the use of the conservation laws to get the improved estimate

of ux, which is always uniformly bounded from above. To study the problem of the

global existence of solutions, we use the method of Lyapunov functions introduced in

[18]. We find a sufficient condition for global solutions which is determined only by a

nonzero profile to the free surface component ρ of the system.

4.2 Future Work

• Specific analysis and numerical simulation of stability of solitary waves of the

generalized periodic two-component Camassa-Holm system and the generalized

periodic two-component Dullin-Gottwald-Holm System.

• Global weak solutions for the generalized periodic two-component Dullin-Gottwald-

Holm System with 0 ≤ σ < 2 .

• Global existence and global weak solutions for the generalized periodic two-

component Camassa-Holm system and the generalized periodic two-component

Dullin-Gottwald-Holm System as σ < 0 or σ ≥ 2.
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