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ABSTRACT 

IMPLEMENTATION OF A FAST INTER-PREDICTION MODE DECISION  

  IN H.264/AVC VIDEO ENCODER 

Amruta Kulkarni, M.S 

 

The University of Texas at Arlington, 2011 

 

Supervising Professor:  K.R. Rao   

 H.264/MPEG-4 Part 10 or AVC (advanced video coding) is currently one of the most 

widely used industry standards for video compression. There are several video codec solutions, 

both software and hardware, available in the market for H.264. This video compression 

technology is primarily used in applications such as video conferencing, mobile TV, blu-ray 

discs, digital television and internet video streaming.  

 This thesis uses the JM 17.2 reference software [15], which is available for all users and 

can be downloaded from http://iphome.hhi.de/suehring/tml. The software is mainly used for 

educational purposes; it also includes the reference software manual which has information 

about installation, compilation and usage. 

 In real time applications such as video streaming and video conferencing it is important 

that the video encoding/decoding is fast. It is known, that most of the complexity lies in the 

H.264 encoder, specifically the motion estimation (ME) and mode decision process introduces 
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high computational complexity and takes a lot of CPU (central processing unit) usage. The 

mode decision process is complex because of variable block sizes (16X16 to 4x4) motion 

estimation and half and quarter pixel motion compensations. 

Hence, the objective of this thesis is to reduce the encoding time while maintaining the 

same quality and efficiency of compression.  

The Fast adaptive termination (FAT) [30] algorithm is used in the mode decision and 

motion estimation process. Based on the rate-distortion (RD) cost characteristics all the inter 

modes are classified as either skip modes or non-skip modes. In order to select the best mode 

for any macroblock, the minimum RD cost of these two modes is predicted. Further, for skip 

mode, an early-skip mode detection test is proposed; for non-skip mode a three-stage scheme 

is proposed to speed up the mode decision process. Experimental results demonstrate that the 

proposed technique has good robustness in coding efficiency with different quantization 

parameters (QP) and various video sequences. It is able to achieve encoding time saving by 

47.6% and loss of only 0.01% decrease in structural similarity index matrix (SSIM) with 

negligible degradation in peak signal to noise ratio (PSNR) and acceptable increase in bit rate.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Significance 

Innovations in communication systems have been tremendous in the last decade. 

Technology in communication systems has transformed. In the early days,analog television 

would have very few channels. Mobile phones used to make voice calls or send SMS (short 

message service). Internet connections were slow, mostly connected through dial –up modem 

connected via telephone lines. Data was stored on floppy disks, magnetic tapes and bulky hard 

drives.  

Today the world has transformed into the so called “digital age” or “electronic age”, 

where mobile phones are called smart phones because they can not only make phone calls but 

are also used for  web browsing, sending emails, watching videos , transfering data, navigation 

purposes and as camera. Digital television sets have become more compact with availability of 

regional and international channels with HD (High Definition) quality. Data is stored on re-

writable DVDs, Blu-ray discs and hard disks which are light weight, portable with huge space for 

storage. Internet connection is blazing fast with wireless routers and modems operating at faster 

speeds [4]. In this fast growing world of communications, data compression is still one of the 

most essential components in any multimedia system. Modern data compression techniques 

offer the possibility to store or transmit  a vast amount of data necessary to represent digital 

videos and images in an efficient and robust way.  

Compression is the process of removing redundant information and representing data 

with fewer bits than the original information would use. It is useful because it helps to reduce the
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consumption of expensive resources such as data storage on hard disks/servers and 

transmission bandwidths. Hence, still lot of research is being done on compression techniques 

to continuously improve real-time data transmission using less resources. Compression 

techniques are categorized as lossless or lossy.Lossless compression is possible because most 

of the real-world data has statistical redundancy. If the data has been compressed in a lossless 

way, the original data can be recovered with no loss. Lossless compression exploits statistical 

redundancy and represents data with more fidelity and less error[4]. It is beneficial in areas like 

text compression and audio compression. Lossy compression involves some information loss, 

so the data cannot be recovered exactly.It is applied in areas where data distorion is tolerable 

like video compression, image compression and some types of audio compression. Lossy 

image compression is used in digital cameras, to increase the storage capacity with less 

degradation of picture quality than original. Similarly lossy video compression is used on DVDs, 

Blu-ray disks [38],Internet telephony using MPEG-2 [39], H.264 video codec. 

Video sequences conatin a significant amount of statistical and subjective redundancies 

within and between frames. The ultimate goal of a video source coding is bit rate reduction for 

storage and tranismission by exploring both statistical (spatial) and subjective (temporal) 

redundancies and to encode a “minimum set” of infromation using entropy coding 

tecniques[5].The volume of data in multimedia signals is very high, For example, to represent 2 

minutes of CD-quality music (44,100 samples per second, 16 bits per sample) requires more 

than 84 million bits.For video signals to represent 1 second of video without compression (using 

the CCIR 601 format) [40], more than 20 Mbytes or 16Mbits is required.[6] This data indicates 

the importance of compression for multimedia signals.  

Multimedia consumer applications have a very large market. The revenue involved in 

digital TV broadcasting and DVD, Blu-ray distrubtions are substantial. Thus standardization of 

video coding is essential. Standards simplify inter-operability between encoders and decoders 



3 

 

from different manufacturers, they make it possible for different vendors to build platforms that 

incorporate video codecs, audieo codecs, security and rights management interact in well 

defined and consistent ways. There are numerous video compression standards both open 

source and proprietary depending on the applications and end-usage. The moving pictures 

experts group (MPEG) and video coding experts group (VCEG) joined together to form the joint 

video team (JVT) in 2001, which developed the ITU-T Rec. H.264 | ISO/IEC 14496-

10,commonly referred as “H.264” / “MPEG-4 Part 10” / “Advanced Video Coding (AVC) ” 

published by the International Telecommunication Union (ITU) and the International Standards 

Organisation (ISO) [15].   

1.2 Why is complexity reduction important in H.264/AVC ?  

H.264/AVC has very efficient compression methods, which allow it to compress video 

much more efficiently than older standards and provide more flexibility for application to a wide 

variety of network enviornments. To achieve highly efficient compression, the computational 

cost associated with it is also very high. This is the reason why, these increased compression 

effeciencies cannot be exploited across all application domains. Resource constrained devices 

such as cell phones and other embedded systems use simple encoders or simpler profiles of 

the codec to tradeoff compression efficieny and quality for reduced complexity [6]. Video coding 

standards specify the decoding process and bitstream syntax of the compressed video. The 

encoding process or the process of producing a standard compliant video is not specified. This 

approach leaves room for innovation in the encoding algorithm development. The work in this 

thesis focuses on such a low complexity mode selection encoding algorithm .  

1.3 Summary 

The research presented here proposes a reduced complexity H.264 encoder by making 

use of JM 17.2 reference software [4].  A new technique is implemented for reducing encoding 

complexity in H.264. The results show reduction in complexity in terms of encoding time for 
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different videos contexts, with acceptable deterioration in the PSNR (Peak Signal to Noise ratio) 

and bit-rates. 
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CHAPTER 2 

H.264 VIDEO CODING STANDARD 

2.1 Introduction 

H.264/AVC standard was first published in 2003, with several revisions and updates 

published since then. It builds on the concepts of earlier standards such as MPEG-2 [40] and 

MPEG-4 [3] visual and offers the potential for better compression efficiency, i.e. better-quality 

compressed video, and greater flexibility in compressing, transmitting and storing video [4].The 

Joint Video Team (JVT) then developed extensions to the original standard that are known as 

the fidelity range extensions (FRExt) [7]. The new functionalities provided by the FRExt 

amendment include higher quality video coding by supporting increased sample bit depth 

precision and higher-resolution color information,adaptive switching between 4x4 and 8x8 

integer transforms. The other important tools FRExt added are scaling matrices for perceptual 

tuned frequency –dependent quantization, lossless coding capability and residual color 

transform.[8] 

H.264/AVC like any other motion-based codecs, uses the following basic principles of 

video compression[9]: 

• Transform for reduction of spatial correlation.  

• Quantization for controlling the bitrate.  

• Motion compensated prediction for reduction of temporal correlation.  

• Entropy coding for reduction in statistical correlation.  

 

Inherently there is a lot of redundancy in digital videos, video compression uses both 

spatial and temporal compresion to represent a digital video with less data. A video is basically 
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a stack of frames attached one after the other, in most real world video data the difference 

between successive frames is minimal and thus data reduction is possible. The video frames 

are called picture types or frame types. The frame types are classified as I, P and B frames. I 

frames are intra coded frames, which do not use any other video frames for compression and 

thus are least compressible, P frames are predictive frames which use data from previous 

frames for compression and are more compressible than I-frames. B frames are bi-predictive 

frames ,which use both past and future frames for compression and thus are the most 

compressible frames. A frame is divided into multiple blocks known as macroblocks which are 

typically 16x16 pixels, on Y plane of the original image. A macroblock can be represented in 

several ways in YCbCr space. Figure 2.1 shows different formats for YCbCr color space.  

 

Figure 2.1 Formats (4:4:4, 4:2:2 and 4:2:0) for YCbCr color space [1] 

The 4:4:4 represents 4 Y (luma) blocks, 4 Cb and 4 Cr blocks respectively , it represents 

a full bandwidth video and contains as much information as the data if it would be in RGB color 

space.  The 4:2:2  contains half as much the 4:4:4 chrominance information and 4:2:0 contains 

one quarter of the chrominance information. H.264/AVC and MPEG-2 video codecs can support 

all the chrominance formats, but most of the consumer level products use 4:2:0 mode. 
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 Intra (spatial) prediction compression uses only the current frame for prediction.It 

predicts, if there is any movement from the neighboring blocks. It reuses the mode information 

from adjacent blocks. Intra frame prediction is mostly used in uniform zones of the picture where 

there is not much movement.  

In inter prediction the encoder divides a frame into macroblocks and tries to find a block 

similar to the one it is encoding from a reference frame. Figure 2.2 shows block-based motion 

compensation in H.264 encoder. 

 

Figure 2.2 Block based motion compensation in H.264 [3] 

A reference frame is used to remove redundancy, this frame is strictly coded with raw 

pixel values so has full information stored. A reference frame is also known as a I-frame, it can 

be a past or a future frame from the video sequence. A block matching algorithm is used to find 

a similar block from the reference frame  to the one it is encoding. Most likely, the encoder will 

find such a block, but it may not be the perfect match and can introduce prediction error, so the 

algorithm takes difference of the reference frame block and the block it is encoding and 

calculates the prediction error. If the prediction error is above certain threshold value, the 

algorithm searches for another reference frame block with matching characteristics and 
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calculates prediction error. If a matching block with minimum prediction error is found, the 

encoder only transmits a vector, known as motion vector , which has co-ordinates that point to 

the block from the reference frame. Thus the encoder takes transform of the difference between 

reference and predicted frames, quantizes the transform coefficients followed by entropy coding 

which would be enough for reproducing the video frame at the decoder. It can so happen, that a 

similar block found from the reference frame introduces huge prediction error, which makes the 

overall size of motion vector and prediction error greater than raw encoded pixels of the block. 

In such cases, the algorithm makes an exception and sends raw encoded block.   

The inter frame types,commonly known as P and B-frames and intra frame,I-frame 

together form a  GOP (Group of Pictures). Fig. 2.3 shows a GOP structure for H.264/MPEG-4. 

 

Figure 2.3 GOP structure for H.264/MPEG-4 [3] 

 

A GOP (group of pictures)  always begins with an I-frame. It contains full information 

therefore any errors within the GOP structure are corrected using the I-frame. B-frames are 

primarily used for compression efficiency but they also propogate errors in H.264. P-frames 

contain motion compensated difference from the previous I-frame or P-frame. The distance 

between two I-frames is known as GOP length.  

The key features that make H.264/AVC a highly efficient codec are :  
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• Variable block size motion compensation with block sizes from 16x16 to 4x4, 

enabling precise segementation of moving regions.  

• Six tap filtering for sharper subpixel motion compensation. Quarter-pixel motion is 

derived from linear interpolation.  

• Weighted prediction , allowing encoder to specify the scaling and offset.  

• Lossless macroblock coding 

• An in-loop deblocking filter  

• Loss resilence features like network abstraction layer (NAL), flexible macroblock 

ordering (FMO) , redundant slices (RS) and data partitioning (DP)  

• An entropy coding design including context adaptive binary arithmetic coding 

(CABAC) , context adaptive variable length coding (CAVLC) and  variable length 

coding (VLC) 

• Switching slices like SI and SP slices.  

 

2.2 Profiles and Levels of H.264/AVC 

H.264/AVC standard defines 17 profiles , with different set of capabilities, targeting 

specific classes of applications. For example, error resilience tools are not important for 

networks with very little data loss or corruption. Forcing the decoder to implement all the tools 

makes its design unncessarily more complex. Segregation of the tools in different profiles helps 

the decoder to choose to implement only  a subset of the tools. Figure 2.4 shows different 

profiles defined in H.264/AVC  
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Figure 2.4 Profiles in H.264 with distribution of various coding tools [9] 

2.2.1 Profiles 

The following profiles were defined in the first standard and they still exist: 

• Baseline Profile (BP) 

The baseline profile contains I and P-slices, CAVLC and some error resilience tools such as 

FMO, ASO and RS. It does not contain B –slices The importance of this profile is in 

applications which require some data loss robustness; it is mainly used in low cost 

applications like video-conferencing and mobile applications. 

• Extended Profile (XP) 

Extended profile is a super set of baseline, it adds B, SP and SI-slices and interlace coding 

tools and further support in error resilience tool set in the form of data partitioning (DP). This 

profile is useful for video streaming applications; it has relatively high compression capability 

and extra robustness for data losses and server stream switching.  

• Main Profile (MP) 
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Main profile contains I, P and B slices, CAVLC and CABAC entropy coding, it does not 

include error resilience tools (FMO, ASO, RS and DP) or SI and SP slices. This profile is 

mainly popular in consumer applications like digital TV broadcasting for standard definition. 

However its importance faded when the high profile was developed as FRExt [11] 

amendment in 2004.  

The FRExt [11] amendment defined four new profiles:  

• High Profile (HP) 

• High Profile 10 (Hi10P) 

• High Profile 4:2:2 (Hi422P) 

• High Profile 4:4:4 (Hi444P) 

Figure 2.5 shows tools introduced in FRExt for high profiles. All of these profiles include three 

enhancements of coding efficiency: 

• Adaptive macroblock level switching between 8x8 and 4x4 transform block sizes.  

• Encoder specific perceptual based quantization scaling matrices. 

• Encoder specified separate control of the quantization parameter for each chroma 

component. 
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Figure 2.5 Tools introduced in FRExt and their classification under FRExt profiles [4] 

All the high profiles also support monochrome coded video sequences, in addition to typical 

4:2:0 video. The difference in capability among these profiles is primarily in terms of supported 

sample bit depths and chroma formats. However, the high 4:4:4 profiles also support residual 

color transform and predictive lossless coding features. [9]  

 

2.2.2 Levels 

Picture size and frame rate play main role in influencing the processing power and the 

memory size needed for implementation. Table 2.2.1 provides a comparison of the high profiles 

introduced in FRExts with a list of different coding tools utilized in the profile [11]. H.264/AVC 

defines 16 different levels, tied mainly to the picture size and frame rate. Levels also provide 

constraints on the number of reference frames and the maximum compressed bit rate that can 

be used. For primarily addressing the needs of 3G wireless environments the level “1B” was 

added in the FRExt amendment. The FRExt profiles are specified for more demanding high-

fidelity applications, with increased bit-rate capabilities. 
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Table 2.1 Comparison of the high profiles and corresponding coding tools introduced in the 
FRExts [11] 

 

Coding tools High High 10 High 4:2:2 High 4:4:4 

Main Profile tools x x X X 

4:2:0 Chroma format x x X X 

8 bit sample bit depth x x X X 

8x8 vs. 4x4 transform adaptively x x X X 

Quantization scaling matrices x x X X 

Separate Cb and Cr Quantization parameter (QP) 

control 
x x X X 

Monochrome video format x x X x 

9 and 10 bit sample depth  x X X 

4:2:2 Chroma format   X X 

11 and 12 sample bit depth    X 

4:4:4 Chroma format    X 

Residual color transform    X 

Predictive lossless coding    X 
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2.3 H.264 Encoder 

H.264 encoder works on the same principles as that of any other codec. Figure 2.6 

shows the basic building blocks of H.264 video codec.  

 

 

Figure 2.6 H.264 video coding and decoding process [4] 

The input to the encoder is generally an intermediate format stream, which goes through the 

prediction block; the prediction block will perform intra and inter prediction (motion estimation 

and compensation) and exploit the redundancies that exist within the frame and between 

successive frames. The output of the prediction block is then transformed and quantized. An 

integer approximate of the discrete cosine transform is used (DCT) for transformation [12]. It 

uses 4x4 or 8x8 integer transform, and outputs a set of coefficients each of which is a weighted 

value for a standard basis pattern. The coefficients are then quantized i.e. each coefficient is 

divided by an integer value. Quantization reduces the precision of the transform coefficients 

according to the quantization parameter (QP). Typically, the result is a block in which most or all 

of the coefficients are zero, with a few non-zero coefficients. Next, the coefficients are encoded 

into a bit stream. The video coding process creates a number of parameters that must be 

encoded to form a compressed bit stream [13]. These values include: 
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• Quantized transform coefficients. 

• Information to re-create prediction.  

• Information about the structure of compressed data and the compression tools used 

under encoding.  

  These parameters are converted into binary codes using variable length coding or 

arithmetic coding. Each of these encoding methods produces an efficient, compact binary 

representation of the information. The encoded bit stream can now be transmitted or stored.  

 

Figure 2.7 Basic coding structure of H.264/AVC for a macroblock [9] 

2.3.1 Intra prediction 

Intra prediction exploits the spatial correlation among pixels, there are three basic types 

defined: 

• Full macroblock prediction for 16x16 luma or the corresponding chroma size 

• 8x8 for luma prediction in FRExt [11] defined profiles 
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• 4x4 luma prediction 

In full macroblock prediction, the edge pixels of the neighboring previously decoded 

macroblocks are used to predict the pixel values of an entire macroblock of luma or chroma. Full 

macroblock intra prediction is used for luma in a macroblock type called the intra 16x16 intra 

macroblock type. Because of the differences in sizes for chroma arrays, the macroblock in 

different chroma sizes are used i.e.8x8 chroma in 4:2:0 macroblocks, 8x16 chroma in 4:2:2 

macroblocks and 16x16 chroma in 4:4:4 macroblocks. The prediction type for 16x16 macroblock 

is shown in Fig 2.8. 

 

Figure 2.8 Intra prediction blocks for 16x16 luma macroblocks [4] 

 Full macroblock prediction can be performed in one of four different ways that can be used by 

the encoder to select the prediction of each macroblock:  

(i) Vertical: For vertical prediction the pixel values of a macroblock are predicted from 

the pixels just above the macroblock. Vertical mode is commonly referred as the 

mode 0 for intra prediction.   

(ii) Horizontal: In horizontal prediction the pixel values of a macroblock are predicted 

from the pixels just left to the macroblock. Horizontal mode is commonly referred as 

the mode 1.  

(iii) DC: The luma values of the neighboring pixels are averaged and that average is 

used as predictor. DC is commonly referred to as the mode 2.  
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(iv) Planar: In planar prediction, a three curve fitting equation is used to form a prediction 

block having a brightness, slope in horizontal direction and slope in vertical direction 

that approximately matches the neighboring pixels.  

  

 

Figure 2.9 4x4 Luma intra prediction modes in H.264 [4] 

In Figure 2.9, Pixels A to M are previously reconstructed and coded. In spatial 4x4 prediction 

mode, the values of each 4x4 block of luma samples are predicted from the neighboring pixels 

above or left of a 4x4 block. The encoder can select from the nine differential directional ways of 

performing the prediction for a 4x4 intra prediction block for luma as shown in Figure 2.9 [4]. 

Each prediction direction corresponds to a particular set of spatially dependent linear 

combinations of previously decoded samples for use as the prediction of each input sample. In 

mode 0, the samples of the macroblock are predicted from the neighboring samples on the top. 

In mode 1, the samples of the macroblock are predicted from the neighboring samples from the 

left. In mode 2, the mean of all the neighboring samples is used for prediction. Mode 3 is in 

diagonally down-left direction. Mode 4 is in diagonal down-right direction. Mode 5 is in vertical-

right direction. Mode 6 is in horizontal-down direction. Mode 7 is in vertical-left direction. Mode 8 

is in horizontal up direction. The predicted samples are calculated from a weighted average of 

the previously predicted samples A to M. 
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In FRExt profiles, 8x8 luma prediction can be selected, which uses basically the same concepts 

as 4x4 predictions. The 8x8 luma prediction has the block size as 8x8 and uses low-pass 

filtering of the predictor to improve prediction performance.  

 

 2.3.2 Inter Prediction 

Inter prediction creates a prediction model from one or more previously encoded video 

frames. The temporal correlation between the neighboring frames along with motion estimation 

and compensation algorithms is used for encoding. An inter coded frame is divided into 16x16 

size macroblocks; each macroblock is divided into 16x16, 16x8 8x16 and 8x8 sized blocks. The 

8x8 sub-macroblock can further be partitioned into 8x4, 4x8, 4x4 sized blocks. Figure 2.10 

illustrates the partitioning of a macroblock and sub-macroblocks [9]. A smaller block size 

ensures less residual data; however smaller block sizes also mean more motion vectors and 

hence more number of bits required to encode these motion vectors [1]. 

 

(i) 

 

(ii) 
Figure 2.10 Macroblock portioning in H.264 for inter prediction [2] (i) (L-R) 16x16, 16x8, 8x16, 

8x8 blocks; (ii)(L-R) 8x8,8x4,4x8 4x4 blocks  
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2.3.3 Inter prediction of macroblocks in P-slices 

The H.264 video codec used block based motion compensation, the same principle 

adopted by every major video coding standard. H.264 provides some important differences like 

block sizes down to 4x4 and fine sub-pixel motion vectors up to quarter pixel in luma component 

[14].  

These partitions and sub-partitions give rise to a large number of possible combinations 

within each macroblock. This method of partitioning the macroblock into motion compensated 

macroblocks of varying sizes is known as tree structure motion compensation. The choice of 

partition is important as it has a significant impact on compression performance. Generally for 

homogenous regions in a frame large partition size is appropriate, for non-homogenous areas 

small partition size may be beneficial.  

Choosing a large partition size (16x16, 16x8, 8x16 and 8x8) means only few bits are required to 

signal the choice for motion vector (s) and types of partition; however, the motion compensated 

residual may contain a significant amount of energy in frame areas with high detail. Choosing a 

small partition size (8x4, 4x8 and 4x4) may give a lower-energy residual after motion 

compensation but requires a large number of bits to signal the motion vectors and choice of 

partition(s) [14]. 

The resolution of each chroma component in a macroblock (Cr and Cb) is half that of the 

luminance (luma) component. Each chroma block is partitioned in the same way as the luma 

component,  

except that partition sizes have exactly half the horizontal and vertical resolutions. An 8x16 

partition in luma corresponds to a 4x8 in chroma [14]. 

2.3.4 Sub-pixel motion vectors 

Each partition in an inter-coded macroblock is predicted from an area of the same size in 

a reference picture. The offset between two areas, the motion vectors, have quarter pixel 



20 

 

resolution for luma component. In sub-pixel motion vector prediction, the reference pictures do 

not have sub-pixel positions and so it is necessary to create them using interpolation from 

nearby image samples [14]. 

Sub-pixel motion compensation can provide significantly better compression performance than 

integer-pixel compensation, but adds to the complexity. Quarter pixel accuracy outperforms half-

pixel accuracy [14]. In the luma component, the sub-pixel samples at half-pixels are generated 

first and interpolated from neighboring integer pixel samples using a six-tap finite impulse 

response filter. Figure 2.11 and 2.12 shows the six-tap filter weights [4] (1, −5, 20, 20, −5, 1)/32 

is used to derive half-pel luma sample predictions, for sharper sub pixel motion-compensation. 

Quarter-pixel motion is derived by linear interpolation of the half-pel values, to save processing 

power. 

 

Figure 2.11 Interpolation of luma half-pel positions [4] 
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Figure 2.12 Interpolation of luma quarter-pel positions [4] 

This means that each half-pixel sample is a weighed sum of six neighboring integer samples. 

Once all the half-pixel samples are available, each quarter pixel sample is produced using 

bilinear interpolation between neighboring half or-integer pixel samples [14]. Figure 2.13 shows 

an example of integer and sub-pixel prediction. A 4x4 sub-partition in the current frame can be 

predicted from neighboring region of the reference frame. If both the horizontal and vertical 

components of the motion vectors are integers, then the relevant samples in the reference block 

actually exist, as shown in Figure 2.13(b). If both or one of the vector components are fractional 

values, the prediction samples are to be interpolated from the adjacent samples in the reference 

frame.  

 

 

Figure 2.13 Example of integer and sub-pixel predictions [14] 
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2.3.5 Transform and Quantization 

A block of residual samples is transformed using a 4x4 or 8x8 integer transform, an 

approximate form of the discrete cosine transform (DCT) [4].The discrete cosine transform 

outputs a set of coefficients, each of which is a weighting value for a standard basis pattern. 

When combined, the weighted basis patterns re-create the block of residual samples.  

The output coefficients of the transform are quantized. Quantization reduces the precision of the 

transform coefficients according to the quantization parameter (QP). Quantization parameter is 

the number by which each transformed coefficient is divided by an integer value.  

 

2.3.6 In –Loop De-blocking Filter  

H.264 employs an adaptive in-loop de-blocking filter after the inverse transform in the 

encoder and decoder respectively. The filter is applied to every decoded macroblock to reduce 

blocking distortion [4]. The de-blocking filter is applied after the inverse transform in the encoder 

before reconstructing and storing the macroblock for future predictions and in the decoder 

before reconstructing and displaying the macroblock. The filter smoothes block edges, 

improving the appearance of decoded frames. The filtered image is used for motion-

compensation of future frames and this generally improves compression performance because 

the filtered image is a more faithful reproduction of the original frame than a blocky, unfiltered 

image.  

The operation of de-blocking filter can be divided into three main steps i.e. filter strength 

computation, filter decision and filter implementation respectively.  

2.3.6.1 Filter strength 

The filter strength i.e. the amount of filtering is computed with the help of parameter 

boundary strength. The boundary strength of the filter depends on the current quantizer, 

macroblock type, motion vector, gradient of the image samples across the boundary and other 
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parameters. The boundary strength is derived for each edge between 4x4 neighboring blocks 

and for each edge, boundary strength parameter is assigned an integer value 0 to 4.  There are 

rules for selecting the boundary strength parameter. The filter is stronger at places where there 

is likely to be significant blocking distortion, such as the boundary of an intra coded macroblock 

or a boundary between blocks that contain coded coefficients [16].  

 

 

Figure 2.14 Edge filtering order in a macroblock [16] 

Filtering is applied to the vertical or horizontal edges of blocks in a macroblock excluding edges 

on slice boundaries. Figure 2.14 shows the order of the filtering at a macroblock level is filtering 

the four vertical boundaries of the luma component in order VLE (vertical luminance edge) 

VLE1, VLE2, VLE3 and VLE4 are filtered. Then horizontal edges of the luminance component 

i.e. (horizontal luminance edge) HLE1, HLE2, HLE3 and HLE4 are filtered. Finally, vertical and 

horizontal edges (vertical chrominance edge) VCE1, VCE2 and horizontal component 
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(horizontal chrominance edge) HCE1, HCE2 are filtered respectively. It is also possible for the 

filter to alter the filter strength or to disable the filter.  

 

Figure 2.15 Pixels adjacent to horizontal and vertical boundaries [16] 

Figure 2.15 shows the filtering operation affects three samples on either side of the boundary. 

The four samples on vertical edge or horizontal edge in adjacent blocks are p0, p1, p2, p3 and 

q0, q1, q2, q3 [16].  

 

2.3.6.2 Filter implementation 

H.264 employs deblocking process adaptively at the following three levels: 

• At slice level – global filtering strength is adjusted to the individual characteristics of the 

video sequence. 

•  At block-edge level – deblocking filter decision is based on inter or intra prediction of the 

block, motion differences and presence of coded residuals in the two participating 

blocks. 

• At sample level – it is important to distinguish between the blocking artifact and the true 

edges of the image. True edges should not be de blocked. Hence decision for 

deblocking at a sample level becomes important. 
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2.4 Entropy Coding 

A coded H.264 stream or an H.264 file consists of a series of coded symbols. These 

symbols make up the syntax and include parameters, identifiers and delimiting codes, prediction 

types, differentially coded motion vectors and transform coefficients. The H.264/AVC standard 

specifies several methods for coding the symbols i.e. converting each symbol into a binary 

pattern that is transmitted or stored as part of the bitstream. These methods are as follows: 

2.4.1 Fixed length code 

A symbol is converted into a binary code with a specified length (n bits). Every word in 

the code has fixed length.  In fixed length coding methods, data compression is only possible for 

large blocks of data, and any compression beyond the logarithm of the total number of 

possibilities comes with a finite probability of failure.   

 

2.4.2 Exponential-Golomb variable length code 

The symbol is represented as an Exp-Golomb [4] codeword with a varying number of 

bits. In general, shorter Exp-Golomb code words are assigned to symbols that occur more 

frequently.  

 

2.4.3 Context adaptive variable length coding (CAVLC) 

Context adaptive variable length coding, a specifically designed method of coding 

transform coefficients in which different sets of variable length codes are chosen depending on 

the statistics of recently-coded coefficients, using context adaptation.  

After prediction, transformation and quantization, blocks are typically sparse, often 

containing mostly zeros. CAVLC uses run-level coding to compactly represent strings of zeros. 

The highest non-zero coefficients after block scan are often sequences of +/-1 and CAVLC 
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signals the number of high frequency. The number of non-zero coefficients in neighboring 

blocks is correlated. The number of coefficients is encoded using a look-up table and the choice 

of look-up table depends on the number of non-zero coefficients in neighboring blocks. The 

level or magnitude of non-zero coefficients tends to be larger at the start of the scanned array, 

near the DC coefficients and smaller towards the higher frequencies.  

2.4.4 Context adaptive binary arithmetic coding (CABAC) 

Context adaptive binary arithmetic coding [4] is a method of arithmetic coding in which the 

probability models are updated based on previous coding statistics. CABAC is an optional 

entropy coding mode available in Main and High profiles. CABAC achieves good compression 

performance through: 

a) Selecting probability models for each syntax element according to the element’s context. 

b) Adapting probability estimates based on local statistics 

c) Using arithmetic coding rather than variable-length coding.  

 

 

Figure 2.16 Block diagram for CABAC [4] 

Figure 2.16 shows schematic for CABAC [4].Coding a data symbol involves the following 

stages: 
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Binarization: CABAC uses binary arithmetic coding which means that only binary decisions (1 or 

0) are encoded. A non-binary valued symbol is converted to a binary code prior to arithmetic 

coding. Context model selection: A “context model” is a probability model for one or more bits of 

the binarized symbol and is chosen from a selection of available models depending on the 

statistics of recently-coded data symbols.  

Arithmetic encoding: An arithmetic coder encodes each bin according to the selected probability 

model. Note that there are just two sub-ranges values 1 or 0.  

Probability update: The selected context model is updated based on the actual coded value.  

 

2.5 H.264 Decoder 

 

Figure 2.17 Basic coding structure H.264/AVC video decoder [4] 

Decoding process is the exact opposite of the encoding process. A video decoder 

receives the compressed H.264 bit stream, decodes the syntax elements and extracts 

information such as quantized transform coefficients, prediction information etc. This data is 

used to recreate the video sequence. The quantized transform coefficients are multiplied by the 
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quantization parameter. The quantization parameter is an integer value. After the transform 

coefficients are rescaled, the inverse transform combines the standard basis pattern, weighed 

by the rescaled coefficients, to re-create each block of residual data. These blocks are 

combined together to form the residual data macroblock. For each macroblock, the decoder 

performs prediction identical to the one created by the encoder. This is then added to the 

decoded residual data to reconstruct a decoded macroblock which can then be displayed as 

part of a video frame. 

2.6 Summary 

This chapter outlines the coding tools of H.264 codec. The intent of the H.264/AVC project 

was to create a standard capable of providing good video quality at substantially lower bit rates 

than previous standards (i.e., half or less the bit rate of MPEG-2, H.263, or MPEG-4 Part 2), 

without increasing the complexity of design so much that it would be impractical or excessively 

expensive to implement. The H.264 standard can be viewed as a "family of standards", the 

members of which are the profiles described in table 2.2. 
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CHAPTER 3 

FAST MOTION ESTIMATION TECHNIQUES 

3.1 Introduction 

The main goals of the H.264/AVC standardization effort have been to enhance 

compression performance and provide a “network-friendly” video representation. The 

H.264/AVC standard uses variable block sizes and quarter-pixel motion compensation with 

multiple reference frames to achieve high coding efficiency [20]. It has motion compensation 

units in sizes of 16x16, 16x8, 8x16, 8x8 and sub 8x8. Such wide block choices improve coding 

efficiency at the cost of largely increased motion estimation time [21].  In H.264/AVC encoding, 

the most computationally critical part is motion estimation. The H.264 standard also has quarter-

pixel motion vector accuracy as another of its important feature, which requires interpolation of 

pictures by a factor of four. This is done by a 2-tap bilinear filter and a 6-tap finite impulse 

response (FIR) filter as shown in figures 2.11 and 2.12  [21]. This increased accuracy of motion 

vectors and the subsequent coding gain is significant. On the other hand, the filtering process 

and the extra quarter-pixel motion estimation search demands substantial amount of 

computation. The computational complexity becomes even worse with larger search ranges or 

when multiple reference frames are used. Such high computational complexity is often a bottle-

neck for real-time conversational applications. It also causes inconvenience for researchers 

during codec optimization or evaluation [22].  

There are several techniques being researched for reducing the computational complexity in 

H.264 encoder. Complexity reduction algorithms propose improved and simplified fast motion
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 estimation schemes to speed up the encoding process and enhance the rate-distortion 

performance. This chapter explains some of these algorithms in detail. Motion estimation is 

generally conducted in two steps the first is integer pixel motion estimation and the other is 

fractional pixel motion estimation around the position obtained by the integer pixel motion 

estimation [23]. To achieve more accurate  motion description and higher compression 

efficiency, the H.264 [3] standard, the MPEG-1 standard, the MPEG-2 [39] standard and the 

MPEG-4 [2] standard use fractional pixel motion estimation while JVT uses ¼ and 1/8 pixel 

accuracies. Reference programs are primarily used for educational purposes. They are used by 

researchers as a benchmark because of their public availability. The Joint Model (JM) 17.2 for 

H.264/AVC [15] is one such publicly available program. JM reference software is optimized for 

coding efficiency rather than encoding speed. Rate distortion (R-D) performance is a paramount 

concern during the standardization process. 

The implementation of the H.264/AVC in JM reference software has implemented the following 

motion estimation algorithms:  

• Full search  

• Uneven multi grid hexagon search (UMhexagonS)  

• Enhanced predictive zonal search (EPZS) 

3.2 Full search algorithm 

Full search is based on the block matching algorithm for motion estimation. It is a way of 

locating matching blocks in a sequence of digital video frames for the purpose of motion 

estimation [24]. To remove inter frame redundancy and achieve high data compression, in a full 

search block matching algorithm (FBMA) , the current frame of a video sequence is divided into 

non overlapping square blocks of pixels of size N x N [24]. For each reference block in the 
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current frame, full search searches for the best matched block within a search window size of 

(2W+N) x (2W+N) in the previous frame where, W stands for maximum allowed displacement 

and N represents pixels in row or column. A non-negative matching error function Dp (i, j) is 

defined over all the positions to be searched. The equation is as shown below: 

D�(i,j) = ∑ ∑ |f��l + x, k + y� − f����l + i + x, k + j + y�|�������������  

p = 1 or 2   and – W ≤ i; j ≤ W 

where, ft (l, k) is the reference block of its upper left pixel at the coordinate (l, k) in the current 

frame, and ft-1 (l+I, k+j) is a candidate block of its upper left pixel at the coordinate (l+i,k+j) in the 

previous frame. The computations calculated in one complete measurement of Dp (i, j) are N2  

absolute values and 2N2 – 1 additions. The full search block matching algorithm which requires 

computation of the Dp (i, j)’s for all (2W + 1)2 positions of candidate blocks in the search window. 

The full search is computationally intensive process, it needs (2W + 1)2 N2 absolute values or 

squaring, (2W + 1)2 (2N2 - 1) additions, and (2W + 1)2 comparisons for each reference block 

[24]. Full search, being computationally complex, has limited practical applications. It gives the 

best results when compared to other algorithms [24]. 

3.3 UMHEXAGONS search algorithm 

JM (joint model) [15] adopted a fast motion estimation method including unsymmetrical 

multi-hexagonal search (UMHexagon). UMHexagonS algorithm has fast integer-pixel search 

and fast fractional pixel search for sub-pixel search. It reduces the motion estimation time by 

about 55% on average when compared with Full search. In addition, the method yields bit rate 

reduction up to 18 % when compared to full search in low complexity mode [22]. H.264 is the 

new video coding standard targeted for a wide range of applications from QCIF to HD. 

Designing robust fast motion estimation (FME) to meet such wide applications can be a 
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challenging task. Unsymmetrical-cross multi hexagon-grid search (UMhexagonS) algorithm is 

also a kind of hierarchical motion search uses strategy. UMhexagonS is drawn from the basic 

idea that the movement in the horizontal direction is much heavier than that in the vertical 

direction and the distribution of motion vectors is zero centered. Figure 3.4 shows a typical 

search procedure in a search window with search range equals 16 (it is assumed the initial 

search point is (0, 0) vector here).  
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Figure 3.1 Search process of UMhexagonS algorithm [22] 

It is called a hybrid method because it has four steps with different search patterns: 1) Initial 

search point prediction; 2) Unsymmetrical-cross search; 3) Uneven multi-hexagon grid search; 

4) Extended hexagon based search. 

The following four steps give a brief review of the fast integer sample search algorithm: 

3.3.1 Initial search point prediction 

 Spatial median prediction, upper layer prediction, neighboring reference frame 

prediction, and temporal prediction are used to predict a current block’s motion vector (MV). 
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Figure 3.5 shows a median predictor that is calculated using the adjacent blocks on the top, left 

and top-left (or top-right) of the current block.  

 

 

Figure 3.2 Reference block location for prediction of motion vectors [22] 

The median predictor is used in median prediction of motion vectors and it is calculated as: 

pred_mv = median (mv_A, mv_B, mv_C) 

pred_mv = median predictor motion vector,  

mv_A = motion vector of left block A 

mv_B = motion vector of top block B 

mv_C = motion vector of top-right block C 

The predicted motion vector value has been defined in the editors proposed draft text 

modifications of the joint video specification [20]. If block A lies outside the group of blocks 

boundary, it is replaced by the (0, 0) motion vector; if block C lies outside the group of blocks 

boundary it is replaced by the motion vector of block D; when two blocks B and C lie outside, 

however, they are replaced by the motion vector of the third block. The prediction with the 

minimum cost among these candidates will be chosen as the initial search position of the next 

step search.  
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3.3.2 Unsymmetrical cross search 

 The unsymmetrical cross search across the x-y direction is based on the 

phenomenon that movement in the horizontal direction is much heavier than that in the vertical 

direction for natural picture sequences. As Figure 3.4 step 2 indicates an unsymmetrical-cross 

search with the horizontal search range equals W and vertical search range equals W/2. The 

unsymmetrical-cross search can be seen as a simple, but efficient prediction method to give an 

accurate starting search point for the next step [22]. In some special sequences with heavier 

vertical motion, the vertical search range can be expanded to W. The motion vector with the 

minimum cost will be chosen as the search center, i.e. the starting search point, of next search 

step.  

3.3.3 Uneven multi-hexagon-grid search 

 Two sub-steps include a square search, with search range equal to two, which is 

carried out around the search center as shown in Figure 3.4. Step 3-1 shows square search 

around the search center. Then multi-hexagon grid search strategy is applied as shown in 

Figure 3.4 step 3-2. The uneven multi-hexagon-grid is used to handle the large and irregular 

motion cases. A sixteen point hexagon search pattern is used as basic search pattern in this 

thesis, just as shown in Figure 3.6; there are more search points in the horizontal direction than 

in the vertical direction. 

 

Figure 3.3 Sixteen points hexagon pattern (16-HP) used in UMhexagonS [22] 



35 

 

An uneven multi hexagon grid is constructed with scale factors ranging from 1 to W/4. The 

search process starts from the inner hexagon to the outer hexagon [22]. The best motion vector 

derived in this step will be chosen as the search center of the next search step.  

3.3.4 Extended hexagon-based search 

 The two sub-steps include a hexagon search pattern and a diamond search pattern. The 

multi-grid search may obtain optimum accuracy of motion vectors according to the distance 

between the search window center and the search point. If the optimum motion vector in the 

previous steps locates in the outer concentric area, the search result has relatively low 

accuracy. Thus UMhexagonS uses the extended hexagon based search (EHS) algorithm as the 

center biased search algorithm. Thus, when switching from a larger to a smaller size of 

hexagon, as shown in Figure 3.4 step-4, the search continues until the minimum block distortion 

point is the center of the newly formed hexagon.  

Center Biased Fractional Pixel Search algorithm for fractional pixel search: The CBFPS 

algorithm is much faster and more accurate especially in case of 1/8 pixel search. Figure 3.6 

shows the implementation of the CBFPS algorithm, the following steps describe the whole 

algorithm:  

Step 1) Predict the motion vector of the current block by using equations (1) and (2). The 

predicted motion vector is (pred_x,pred_y) 

β)%_(__ mvmvpredmvpredfrac −=                                           (2) 

where, mv  is the integer motion vector of a block; mvpred _  is defined as the fractional pixel 

unit;             If pixel case is 1/8, then scale factor β  is equal to 8. If pixel case is ¼, scale factor  

β  is equal to 4. 
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Step 2) Cost of the original search center (0, 0) and (pred_x,pred_y) are compared. The point 

with the minimum matching error is chosen as the search center.  

Step 3) If the MBD (Minimum Block Distortion) point is located at the center, go to step 4; 

otherwise choose the MBD point in this step as the center of next search, then iterate this 

search step. 

Step 4) Choose the MBD point as the motion vector.  

Early termination scheme is also applied during the search process. It is based on detection of 

zero blocks.  
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Figure 3.4 Flow chart illustrating example for UMhexagonS [22] 

The early termination scheme is based on three cost prediction modes, namely, median 

prediction, upper layer prediction, and neighboring reference frame prediction. Following the 
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integer-pixel search, a full fractional pixel search is performed for the 16×16, 16×8 and 8×16 

blocks. A fast sub-pixel search is also performed only for other sub-partition blocks. 

3.4 Enhanced predictive zonal search (EPZS)  

Motion estimation (ME) techniques for video encoding took an entirely different direction 

with the emergence of zonal algorithms [23]. These algorithms helped reduce the tremendous 

computational overhead of motion estimation that has occurred in a video coding system, with 

little loss of video quality. Enhanced predictive zonal search (EPZS) further improves upon 

these algorithms by considering additional sets of predictors, improved early termination 

thresholds and simplifying the search pattern. It achieves better output quality and also reduces 

the complexity of motion estimation process [23].   

The three important steps in EPZS are:  

3.4.1 Predictor selection  

 The most important and key feature for zonal algorithms performance is prediction 

selection. The predictors are defined and examined within a set. Afterwards it is necessary to 

select the best candidate among the set and perform a local search with a predefined pattern for 

refining the prediction. It is observed that the motion vectors are highly correlated with the 

motion vectors of temporally and spatially adjacent blocks that have been previously calculated. 

These motion vectors can be considered as initial predictors [23]. The median predictor, 

calculated from the median value of the motion vectors of the three adjacent blocks, the blocks 

on the top, left and top-right from the current position, appears as the optimal predictor 

candidate. Thus, the median predictor candidate is considered as a part of Subset A. Subset B 

consists of the (0, 0) motion vector and all the other predictor candidates. EPZS technique also 

uses subset C, which includes other possible candidates on such candidate is the accelerator 
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motion vector in Figure 3.2 [23]. It is the differentially increased/decreased motion vector that is 

used in the motion vector of the previous frame and also the previous frame before that. The 

concept behind such a motion vector is that a block may not be following constant velocity but 

accelerating [23]. 

 

Figure 3.5 Acceleration information as a motion vector predictor [23] 

It is also possible that the current block may not only be correlated spatially within the current 

frame or temporally correlated from a co-located block in the previous frame but can also be 

highly correlated with adjacent blocks to the co-located block in the previous frame. In particular, 

it is quite possible that it has very fast motion, which may have caused it to become highly 

correlated with the co-located blocks from a previous frame and possibly be a better candidate 

for prediction phase. These additional predictors constitute a final third subset, called subset C.  

3.4.2 Improved adaptive threshold  

 EPZS uses an improved adaptive threshold technique, in which it calculates the 

thresholding parameters by considering minimum SAD (sum of absolute differences) of the 

spatially located three adjacent blocks and the co-located block in the previous frame. 
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Calculating threshold parameter by considering the minimum of all these candidates 

significantly reduces the possibility of error and of erroneous inadequate early termination. The 

thresholding parameter could in general be seen as:  

Tk = ak + min (MSAD1, MSAD2,…., MSADn) + bk 

where,  

Tk = threshold  

ak = fixed parameter; bk = fixed parameter 

MSAD = minimum SAD 

 

3.4.3 Simplified search pattern 

 EPZS uses the small diamond or square search pattern, which simplifies the algorithmic 

design and implementation complexity. Figure 3.3 shows search patterns used in EPZS [23]. 

These methods can significantly improve the accuracy of the prediction and be quite beneficial 

for certain applications and especially hardware designs. The possible patterns selected for 

search can be a first order diamond pattern.  

 

Figure 3.6 Small diamond pattern used in EPZS [23]  
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Another possible pattern can be the 8-point square pattern around the current minimum. Both 

patterns are very simple and easy to implement in software and hardware. The EPZS 

implementation using square search pattern is called as EPZS2 (EPZS square).  

 

 

Figure 3.7 EPZS using the circular/square pattern [23] 

3.5 Summary 

This chapter briefly describes various motion estimation algorithms implemented in JM 

software for H.264/AVC. It describes full search, EPZS and UMhexagonS algorithms. The next 

chapter discusses the complexity reduction algorithm used in this thesis.  

 



42 

 

CHAPTER 4 

COMPLEXITY REDUCING FAST ADAPTIVE TERMINATION ALGORITHM 

4.1 Introduction 

As discussed in previously, the H.264/AVC [4] standard achieves better coding efficiency 

than the previous coding standards. It has more advanced coding features such as quarter pixel 

motion compensation, adaptive deblocking filter and variable block size mode selection. In order 

to provide coding accuracy, one macroblock is partitioned into several block sized including 

16x16,16x8,8x16,8x8,8x4,4x8 and 4x4, where small size blocks correspond to detailed regions 

or large motion areas while large size blocks correspond to homogeneous regions or relatively 

stationary motion areas [30]. In implementation of the H.264/AVC codec that is part of JM17.2 

[15], to find mode for one macroblock in a P frame, a P16x16 is first checked followed by P16x8, 

P8x16, P8x8 and so on. For each mode, a rate distortion-based mode selection is carried out to 

obtain the best candidate mode which has the minimum rate distortion cost. The rate distortion 

cost is calculated for all the modes and then the best one with the least cost is selected, this 

process for finding the best mode increases the computational complexity [30]. The increase in 

computational complexity poses implementation issues on portable devices with limited battery-

life. This thesis adopts a fast adaptive early termination mode decision algorithm [30]. It 

combines three different useful techniques for fast motion estimation as fast mode prediction, 

adaptive rate-distortion thresholds and homogeneity detection.  
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4.2 Fast adaptive early termination mode selection 

4.2.1 Fast mode prediction 

H.264/AVC video coding is performed on macro blocks from up-left to the right-bottom 

direction. The fast adaptive early termination mode selection approach is quick and correct 

mode prediction and avoid the large amount of computation associated with all checking modes. 

Macro blocks adjacent to each other in same frame may have same characteristics like similar 

motion or similar detailed regions. Figure 4.1 illustrates that the current macroblock X may have 

similar characteristics with its neighboring macro blocks from A through H.  

 

Figure 4.1 Spatial neighboring macroblocks [30] 

If most neighboring macro blocks have the skip mode, it means that the current macroblock also 

has more chance to have skip mode. There also exists temporal similarity between a current 

macroblock and the collocated macroblock PX in the previous frame and its neighbors as shown 

in Figure 4.2. A mode histogram from spatial and temporal macroblocks is obtained. After 

obtaining the mode histogram, the index corresponding to the maximum value in the mode 

histogram is selected as the best mode. The average rate distortion cost of each neighboring 

macroblock corresponding to the best predicted mode is selected as the prediction cost for the 
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current macroblock. For example, in Figure 4.1, if macroblocks A,B,C,D,E and P1,PX, P3 have 

P8x8 modes, which would also be the maximum value in the mode histogram, then P8x8 mode 

is the best predicted mode and the average rate distortion cost among A,B,C,D,E and P1,PX,P3 

is used as the predicted cost for the current macroblock.  

 

Figure 4.2 Temporal neighboring macroblocks [30] 

4.2.2 Adaptive rate distortion threshold 

Texture information obtained from current macroblock can be used to decide whether this 

macroblock is homogeneous or not. If a macroblock is homogeneous, only large block sizes can 

be used and small block sizes can be skipped, which helps to reduce the computation 

complexity. It is helpful because the motion estimation computation amount is unequal for 

different block sizes smaller block sizes like 8x8 block requires four times the motion estimation 

computation as compared to that of 16x16 block. Due to the importance of homogeneous 

regions they can be checked before considering small block sizes. This thesis adopts a method 

to identify homogeneous regions by calculating adaptive threshold levels which use the 

information of neighboring blocks around a current macro block. The adaptive threshold uses a 

modulator β, for reliable comparison based on the predicted cost to establish trade-off between 

complexity and accuracy. Assuming the minimum rate distortion cost for a current macroblock is 
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RDbest, and the predicted rate distortion cost according to the spatial and temporal correlations is 

RDpred, the rate distortion threshold RDthresh for early termination is defined according  to the 

formula given by  RDthresh = (1 + β) X RDpred  where,  

β = modulation coefficient,  

RDthresh = the rate distortion threshold,  

RDpred = the rate distortion prediction  

If the rate-distortion cost of the current macroblock for a specific mode is less than RDthresh, it will 

stop checking the other modes and exit the current macro block.  The Modulation coefficient β 

value should be appropriately assigned,following explains,how the value is assigned. Assuming 

the minimum SAD for a current macroblock is SADbest and the SAD for exiting is SADexit, the 

threshold SADthresh is defined to meet the requirement SADbest ≤ SADexit ≤ SADthresh. After motion 

estimation, the residual information is used for the discrete cosine transform (DCT) 

transformation using the following formula: 

F�u, v� = [2N]�. [ 2M]�. 0 0 diff�i, j�C�i�C�j� cos[πu2N
5��
6��

���
7��  �2i + 1�]  cos[ πv2M �2j + 1�] 

where 

C�i�  =  8 1√2 ; i = 01; i ≠ 0 < 
diff(I,j) denotes the pixel difference between the value in the current macroblock at (i, j) position 

and corresponding pixel value in the best matched block in the reference frame.   

Next, to quantize the DCT coefficients, Qstep is used. If the following condition | F (u, v) / Qstep | < 

1 is satisfied. Thus,  

|=��>, ?� − =.�>, ?�| ≤ @ABCD 
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→ |=��>, ?� − =.�>, ?�| = F.�GHI  F .5GHI  ∑ ∑ |Diff�J�i, j� − Diff.J�i, j�|C�i�C�j� cos KLM.� �2i +5��6�����7��
1�N cos KLO.5 �2j + 1�P    ≤  QR�S� 

=    ∑ ∑ |Diff�J�i, j�| −  ∑ ∑ TDiff.J�i, j�T5��6�����7��   ≤  QR�S�5��6�����7�� ∗ F�.GHI F5. GHI
 

where, F1 and F2 are predicted and best outcomes, respectively. Denoting,  

SAD�XYSRX =  0 0 TDiff�J�i, j�T5��
6��

���
7��  

SADZSR� =  0 0 TDiff.J�i, j�T5��
6��

���
7��  

 

By assuming SADpred ≈ SADbest, the modulator β can be written as follows: 

SAD�XYSRX − SADZSR�  ≤  QR�S� ∗ [N2\�. [M2 \�.
 

� SAD�YS]�1 + β� −  SADZSR� ≤  QR�S� ∗ F�.GHI F5. GHI
 

� β ≤  _`abc∗ �� .⁄ �HI �5 .⁄ �HI efgchbi  

The modulation coefficient β depends on two factors; the quantization step and the block 

size. Furthermore, the SAD threshold for a current macroblock can be obtained via SADthresh = 

SADpred x (1 + β). Similarly, replace SAD with RDcost, the following formula is obtained RDthresh = 

RDpred x (1 + β).The threshold values are adaptive as they depend on the predicted rate 

distortion cost derived from spatial and temporal correlations.  
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4.2.3 Homogeneity detection 

Smaller block sizes require more computation as compared with larger size blocks since 

such blocks often have more detailed regions or non-homogenous regions. Before checking for 

the smaller block sizes P4x4, P4x8 and P8x4, it is necessary to check whether large block sizes 

like P8x8, P8x16, P16x8 and P16x16 are homogeneous or not. Texture information of different 

blocks can be used to find if it reflects similar spatial properties. There are many techniques [25, 

26] to detect texture homogeneity in an image. In [25], it is shown that the statistics consisting of 

standard deviation, variation and skew are effective for detecting homogenous regions. In [26], 

textures are modeled by Gaussian Markov random fields. These techniques mentioned in [25, 

26] are effective, but computationally intensive, and thus are not suitable for real-time 

implementation. The proposed fast adaptive early termination algorithm uses edge detection 

based on homogeneous regions. This technique has been used for detecting homogeneous 

regions for fast intra mode prediction in [27] and this information obtained from intra mode 

detection is used as a guideline for selecting inter mode in [28]. However, the problem with 

these approaches lies in the fixed thresholds. Here adapting a method for adaptive threshold 

obtained from spatial neighboring blocks used to detect homogeneous textures. The proposed 

algorithm uses edge detection mentioned in [27]. First an edge map is created for each frame 

using Sobel operator [27]. For each pixel pm, n, an edge vector is obtained Dm,n ( dxm,n, dym,n)  

dxm, n = pm-1, n+1 + 2 * pm, n+1 + pm+1, n+1 - pm-1, n-1 – 2 * pm, n- 1 - pm+1, n-1                 4.1 

dym,n  = pm+1, n-1 + 2 * pm+1, n + pm+1, n+1 - pm-1, n-1 – 2 * pm-1, n  - pm-1, n+1                         4.2 

Here dxm, n and dym, n represent the differences in the vertical and horizontal directions 

respectively. The amplitude Amp (D (m, n)) of the edge vector is given by,  

Amp (D (m, n)) = │ dxm, n │+ │ dym, n │                                                                                            4.3 
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A homogeneous region is detected by comparing the summation of the amplitudes of edge 

vectors over one region with predefined threshold values [30]. In the proposed algorithm, such 

thresholds are made adaptive depending on the amplitude of left block, up blocks and mode 

information. The adaptive threshold is determined as per the following four cases:  

Case 1: If the left block and the up block are both P8x8  

jℎlmnℎopq = min
stu
tv 0 wxy�z�x, {���|,}�∈ �C�B����� 0 wxy�z�x, {���|,}�∈ �D����� 

< 

Case 2: If the left block is P8x8 and up block is not P8x8, then 

Threshold = ∑ wxy �z �x, {���|,}�∈ �C�B �����  

Case 3: If the left block is not P8x8 and up block is P8x8, then 

Threshold = ∑ wxy �z �x, {���|,}�∈ �D �����  

Case 4: If the left block is not P8x8 and up block is not P8x8, then  

jℎlmnℎopq = [∑ �|D���|,}����,��∈ ��������� ∑ �|D���|,}����,��∈ ��������� +\ 10  

4.3 Proposed fast adaptive mode selection algorithm 

The proposed fast adaptive mode selection algorithm is explained here. Figure 4.3 shows the 

flow chart of the proposed fast adpative early termination algorithm.  
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Figure 4.3 Fast adaptive early termination (FAT) algorithm flowchart [30] 

4.3.1 Fast adaptive early termination for mode decision algorithm 

The Fast adaptive early termination for mode decision algorithm is explained as follows:  

Step 1) If a current macroblock belongs to I slice, check I4x4 and I16x16 mode, go to step 10; 

otherwise, go to step 2.  
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Step 2) If a current macroblock belongs to the first macroblock in the P slice, check all inter 

modes and intra modes, go to Step 10; otherwise go to step 4. 

Step 3) Compute the mode histogram from neighboring spatial and temporal macroblocks; go 

to step 4. 

Step 4) Select the prediction mode as the index corresponding to the maximum value in the 

mode histogram and obtain two available adaptive thresholds: Adaptive Threshold I and 

Adaptive Threshold II. Go to step 5. 

Step 5) Always check over the P16x16 mode and check the conditions of skip mode, if the 

conditions of a skip mode are satisfied. Go to step 10; otherwise go to step 6. 

Step 6) If all the left, up, up-left and up-right macroblocks have skip modes, then check the 

skip mode against Adaptive Threshold I. If the rate distortion is less than Adaptive Threshold I 

the current macroblock is labeled as skip mode and go to step 10; otherwise, go to step 7. 

Step 7) First round check over the predicted mode; if the predicted mode is P8x8, go to step 8; 

otherwise, check the rate distortion cost of the predicted mode against Adaptive Threshold I. If 

the rate distortion of P8x8 is less than Adaptive Threshold I, go to step 10; otherwise, go to step 

8. 

Step 8) If a current 8x8 block is homogeneous, no further partition is required. Otherwise, 

further partitioning into smaller blocks 8x4, 4x8 and 4x4 is performed. If the rate distortion of 

P8x8 is less than Adaptive Threshold I; go to step 10; otherwise, go to step 9. 

Step 9) Second round check over the remaining modes against Adaptive Threshold II : If the 

rate distortion is less than Adaptive Threshold II , go to step 10; otherwise, continue checking all 

the remaining modes. Go to step 10. 

Step 10) Save the best mode and rate distortion cost.  

To summarize the proposed fast adaptive mode selection algorithm includes the following: 
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1) Skip mode detection: The algorithm has additional skip mode detection. If all neighboring 

macro blocks have skip mode and the rate distortion of skip modes for a current 

macroblock is less than the adaptive threshold then skip mode is the best mode for that 

block.  

2) Adaptive rate distortion threshold:  An adaptive rate distortion cost based on neighboring 

macro blocks through the parameter β, reflecting the quantization parameter.  

3) Two round checks for early termination during mode selection, where the first round 

check is done over predicted modes in comparison with Adaptive Threshold I, while the 

second round check is done based on other modes in comparison with Adaptive 

Threshold II.  

4) An adaptive threshold to check homogenity of video content.  

4.4 Experimental results 

In order to evaluate the proposed research, JM 17.2 [15] provided by JVT (Joint Video 

Team) under H.264/AVC baseline profile, using the fast motion estimation search called hybrid 

unsymmetrical cross multi-hexagon-grid [22]. In the original JM17.2 implementation, all modes 

including intra modes are checked and then the best mode is selected with the minimum rate 

distortion cost. The following encoding specifications are used in experiments listed below:  

1)  Motion estimation search range was set to 32 pixels for both CIF and QCIF. 

2) The Hadamard transform was used.  

3) The reference frame number was 5.  

4) The CABAC was enabled.  

5)  The GOP structure is IPPP (No B frames) 

6) The number of frames in the sequence is 30.  
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The proposed FAT mode selection algorithm was implemented based on JM17.2, and the 

platform used was a 2.1GHz Intel Core 2 Duo with a 4GB RAM. The mode histogram was 

computed based on spatial/temporal neighbors and two adaptive thresholds were computed 

based by RDthresh = RDpred x (1-8 x β) and RDthresh = RDpred x (1+10x β). The proposed algorithm 

was extensively tested using a wide range of QCIF and CIF format video sequences ranging 

from spatial content to motion content variations. The experiments were carried out on these 

sequences with different quantization parameters of QP = 22, 27, 32, 37.  

 

Figure 4.4 4:2:0 format for CIF and QCIF [35] 

The simulations for test sequences of bridge-close, bridge-far, akiyo, news, hall monitor, silent, 

coastguard, foreman, container and bus with QCIF (176x144) and CIF (352x288) resolutions 

was carried out.  
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Figure 4.5 Test sequences for CIF and QCIF [29] 

News Foreman 
Akiyo 

Coastgua Car phone 
Bus 
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Tables 4.1 through 4.4 show the simulation results of QCIF and CIF video sequences at various 

QP. From this table it can be observed that a maximum of 67.8 % of encoding time was saved 

in one of the cases with negligible change in PSNR, SSIM and bit-rate.  

Table 4.1 Simulation results for QCIF video sequences at QP = 22, 27 

Sequence 
(QCIF) 

QP = 22 QP = 27 

∆T (%) 
∆PSNR 

(dB) 
∆ Bit-rate 

(%) 

∆ 
SSIM 
(%) ∆T (%) 

∆PSNR 
(dB) 

∆ Bit-
rate (%) 

∆ 
SSIM 
(%) 

coastguard -42.113 -0.043 0.756 0.0309 -65.244 -0.118 1.035 0.151 

foreman -38.693 -0.005 3.933 0.1426 -40.779 -0.414 5.041 0.1347 

news -30.309 -0.002 -0.369 0.0507 -40.275 -0.243 1.311 0.0702 

silent -42.223 -0.176 2.999 0.0407 -39.686 0.032 5.407 0.0416 

akiyo -42.222 -0.223 -0.491 0.0303 -43.159 -0.051 4.49 0.0307 

container -47.233 -0.315 6.33 0.0517 -35.767 -0.28 6.804 0.0528 

carphone -37.888 -0.12 5.023 0.0812 -35.542 -0.122 5.703 0.1029 

hall -40.454 -0.043 -0.705 0.0305 -45.245 0.01 0.936 0 

 
 

Table 4.2 Simulation results for QCIF video sequences at QP = 32, 37 
 

Sequence 
(QCIF) 

QP = 32 QP = 37 

∆T (%) 
∆PSNR 

(dB) 
∆ Bit-rate 

(%) 

∆ 
SSIM 
(%) ∆T (%) 

∆PSNR 
(dB) 

∆ Bit-
rate (%) 

∆ 
SSIM 
(%) 

coastguard -66.548 -0.118 -2.689 0.440 -39.1 -0.56 -5.58 1.22 

foreman -67.602 -0.414 13.924 0.330 -40.785 -0.69 13.924 0.547 

news -67.884 -0.243 0.21 0.148 -39.419 -0.3 0.403 0.33 

silent -64.98 0.032 6.111 0.108 -34.95 -0.29 9.039 0.106 

akiyo -67.228 -0.051 -0.039 0.0740 -37.816 -0.21 1.694 0.0890 

container -65.772 -0.28 6.176 0.1512 -38.48 -0.52 6.351 0.2560 

carphone -67.128 -0.122 15.28 0.379 -38.617 -0.74 14.775 0.515 

hall -69.554 0.01 0.205 0.0312 -44.847 -0.09 1.306 0.064 
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Tables 4.3 through 4.5 show the simulation results of CIF videos at various QP values. From 

these tables it can be observed that, a maximum of 68.6% of encoding time was saved in one of 

the cases with negligible PSNR, SSIM and bit rate.  

Table 4.3 Simulation results for CIF sequences for QP = 22, 27 

Sequence 
(CIF) 

QP = 32 QP = 37 

∆T  
(%) 

∆PSNR 
(dB) 

∆ Bit-
rate 
(%) 

∆ 
SSIM 
(%) 

∆T  
(%) 

∆PSNR 
(dB) 

∆ Bit-
rate  
(%) 

∆ 
SSIM 
(%) 

bridge-
close -38.3 -0.134 -0.134 0.073 -38.225 -0.19 0.302 0.043 

bridge-far 
-

37.954 -0.08 -0.08 -0.63 -32.7 0 0 -0.851 

coastguard -56.69 0.185 23.36 0.071 -54.221 -0.93 12.923 1.461 

foreman -45.41 0.899 36.68 0.462 -38.67 0.75 8.425 0.82 

highway -40.52 -0.726 13.069 0.531 -33.35 -0.77 13.291 0.89 

container -68.6 -0.423 5.5 -0.180 -67.123 0.635 -6.209 -0.187 

 

 

Table 4.4 Simulation results for CIF videos at QP = 32, 37 

 
Sequence 

(CIF) 

QP = 32 QP = 37 

∆T 
(%) 

∆PSN
R 

(dB) 

∆ Bit-rate 
(%) 

∆ 
SSIM 
(%) 

∆T 
(%) 

∆PS
NR 
(d
B) 

∆ Bit-rate 
(%) 

∆ SSIM 
(%) 

bridge- 
close 

 
-38.3 

 
-0.134 

 
-0.134 

 
0.073 

 
-38.225 

 
-0.19 

 
0.302 

 
0.043 

bridge-far -37.954 -0.08 -0.08 -0.63 -32.7 0 0 -0.851 

coastguard -56.69 0.185 23.36 0.071 -54.221 -0.93 12.923 1.461 

foreman -45.41 0.899 36.68 0.462 -38.67 0.75 8.425 0.82 

highway -40.52 -0.726 13.069 0.531 -33.35 -0.77 13.291 0.89 

container -68.6 -0.423 5.5 -0.180 -67.123 0.635 -6.209 -0.187 

 

The results are compared with the case of exhaustive search in terms of change of PSNR 

(∆PSNR), bit-rate (∆ bit rate), SSIM (∆SSIM) and encoding time (∆ Time). Computational 

efficiency is measured by the amount of time reduction, which is computed as follows:  
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Time
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Delta Bit rate is measured by the amount of reduction which is computed by, 

 

 

Delta PSNR (Peak Signal to Noise Ratio) is measured by the amount of reduction which is 

computed by,  

 

 

Figure 4.6 Comparison of encoding time for QCIF sequences 
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Figures 4.6 and 4.7 show the comparison of encoding time taken by the JM17.2 original and 

fast adaptive termination encoder. The results are taken at QP = 27, which is the default 

configuration value. It can be observed that fast adaptive termination takes less time than the 

JM reference software.  

Figure 4.8 shows the comparison of PSNR values of the reference software JM and fast 

adaptive termination encoder. The results are taken at QP = 27, which is default configuration 

value. It can be observed that there is not much of decrease in PSNR value in fast adaptive 

termination algorithm encoder’s results when compared to JM reference software results.  

 

 

Figure 4.7 Comparison of encoding time for CIF sequences 
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Figure 4.8 Comparison of PSNR for QCIF sequences 

 

Figure 4.9 Comparison of PSNR for CIF sequences 
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Figure 4.10 shows the comparison of bit-rate values of the reference software JM and fast 

adaptive termination algorithm JM 17.2 encoder. The results are taken at QP = 27, which is the 

default configuration value. It can be observed that there is not much of increase in bit-rate in 

JM17.2-FAT encoder’s results when compared to JM reference software results.  

Figures 4.11 and 4.12 show the comparison of SSIM values of the reference software JM and 

fast adaptive termination JM encoder. The results were taken at QP = 27, which is the default 

configuration value. It can be observed that there is not much of decrease in SSIM in complexity 

reduced encoder’s results when compared to JM reference software results. 

 

Figure 4.10 Comparison of bit-rate for QCIF sequences 
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Figure 4.11 Comparison of bit-rate for CIF sequences 

 

Figure 4.12 Comparison of SSIM for QCIF sequences 

 



61 

 

 

Figure 4.13 Comparison of SSIM for CIF sequences 

Figure 4.13 shows a plot of PSNR Vs bit-rate, comparing PSNR and bit-rate for QCIF format, 

coastguard_qcif video sequence. It can be observed from the curve that on an average the 

complexity reduced encoder has less impact on performance when compared to reference JM 

software.  

Figure 4.14 shows plot of encoding time Vs QP, comparing encoding time of the reference JM 

software with fast adaptive termination based JM17.2 encoder against different values of QP for 

QCIF, coastguard_qcif video sequence.  
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Figure 4.14 PSNR Vs bit-rate for coastguard_qcif sequence  

 

 

Figure 4.15 Encoding time Vs quantization parameter (QP) for coastguard_qcif sequence 
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Figure 4.16 Comparison of SSIM Vs quantization parameter (QP) for coastguard_qcif sequence  

Figure 4.16 shows a plot of SSIM Vs QP. This compares SSIM values of the reference software 

JM and fast adaptive termination based JM 17.2 encoder against different values of QP for the 

QCIF format, coastguard_qcif video sequence. It can be observed from the graph that the SSIM 

values of fast adaptive termination based JM17.2 encoder [15] do not decrease significantly 

when compared to the JM reference software’s SSIM values.  

4.5 Observations 

From these simulation results it can be concluded that, the encoder with complexity 

reduction algorithm takes significantly less encoding time (around 43% reduction for QCIF 

format and around 40% reduction for CIF format) when compared to the JM reference software. 

It does not sacrifice the quality of the video (around 0.15% reduction in PSNR for QCIF format 

and around 0.26% reduction in PSNR for CIF format) nor does it increase the bit-rate 

significantly (around 6% increase in bitrate for QCIF format and around 9.5% increases in case 
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of CIF format). Hence, this approach of reducing the number of mode combinations in temporal 

domain using fast adaptive termination can find its application in low complexity devices like 

mobile or any handheld devices. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

From the simulation results described in Chapter 4, it can be concluded that the proposed fast 

adaptive termination algorithm based JM encoder is faster than the JM reference software. This 

is because the JM reference software uses rate distortion optimization (RDO) in which it 

examines all possible combinations of coding modes i.e. brute force. The complexity reduction 

algorithm makes use of early skip mode detection, adaptive thresholds and homogeneity 

detection.  

From Tables 4.1 through 4.4, it can be observed that there is an average of 43% reduction in 

encoding time when using the fast adaptive termination based encoder with negligible loss of 

PSNR and SSIM. The bite rate increases only slightly over JM reference software 

Figures 4.5 through 4.11, show plots of comparison of encoding time, PSNR, bit-rate and SSIM 

between the JM reference software and fast adaptive termination based JM encoder. The 

simulation was performed on CIF and QCIF sequences. Figures 4.12 through 4.15 show plots of 

comparison of PSNR, bit-rate, encoding time and SSIM between JM reference software and fast 

adaptive termination based JM encoder, using coastguard_qcif sequence at QP = 27. The 

simulation was performed for various values of QP = 22, 27, 32, 37. These simulation results 

again concur that, significant encoding time can be reduced by using the proposed complexity 

reduction algorithm and at the same time, fidelity of the input video stream is maintained. 
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5.2 Future work 

The fast adaptive termination based JM encoder was implemented for CIF and QCIF format 

video sequences. This idea can be extended further to other video formats like 4SIF and HD. 

Multi-view coding (MVC) an amendment to the H.264/MPEG-4 AVC video compression 

standard which enables efficient encoding of sequences captured simultaneously from multiple 

cameras using a single video stream also has high computing complexity [33]. Complexity 

reduction can be very useful in MVC as it contains large amounts of inter-view statistical 

dependencies. Also, the complexity reducing fast adaptive termination algorithm was integrated 

in to JM17.2 [15] reference software; it can also be integrated into other open source H.264 

softwares like X264 and Intel IPP [41]. Since the aim is to reduce the overall complexity suitable 

for handheld devices with limited computing resources, algorithms which reduce the mode 

combinations in intra prediction can also be integrated with this complexity reducing fast 

adaptive termination based encoder. 
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