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ABSTRACT 

 

AUTOMATED INTEGRATION OF BIOMEDICAL INFORMATION  

FOR THE SUPPORT OF GENOME-WIDE 

ASSOCIATION STUDIES 

 

 

Abhijit R. Tendulkar, M.S. 

 

The University of Texas at Arlington, 2008 

 

Supervising Professor:  Nikola Stojanovic, PhD 

 Genome-wide association studies of the genetic underpinnings of complex phenotypes, 

and human diseases in particular, have been steadily gaining momentum over the past several 

years. Yet, the number of polymorphic sites in the human genome, including, but not limited to, 

Single Nucleotide Polymorphisms (SNPs) is so large that identifying the combination of these 

few which have a significant effect on the condition of interest remains an overwhelming task. 

 The goal of this thesis work was to identify biologically and medically relevant SNPs 

which could be the best possible candidates for further association studies. In this thesis we 

present a new networked solution, and a program GeneNAB implementing it, to the 

computational identification and ranking of SNPs likely to be relevant for the phenotype of 

interest, genome-wide. The architecture of our system is similar to that of the Distributed 

Annotation System (DAS), proposed by a team of prominent bioinformaticians several years 

ago. However, not all of the resources we use could follow the DAS protocol, so we employed a 

variety of methods for accessing different resources on the Internet needed for our study. 
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We start with a gene or a cellular pathway previously associated with the condition of 

interest and find SNPs in all other genes participating in the same pathway. We then rank these 

SNPs according to their likelihood to be biomedically relevant for the condition and report the 

ranked list flagging the top entries as candidates for further experimental work. 

We have applied our system to the Toll-like receptor pathway which provides a 

mechanism for the development of inflammatory reaction in a variety of conditions, from 

infection to cell damage. Although many of our top-scoring SNPs still need experimental 

validation, we have indeed successfully located several which have been previously confirmed 

as medically relevant. We expect that the output of our software will be useful to guide further 

laboratory and clinical studies of groups of SNPs affecting any condition of interest. 
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CHAPTER 1 

INTRODUCTION  

1.1 Genetics 

The genetic information which plays a key role in determining the structure and 

functions of a living organism is stored in its Deoxyribonucleic Acid, or DNA. DNA is inherited in 

offspring from the parents (two in the case of diploid organisms). We use the term genetic 

information, because the DNA, i.e. the genome does not itself perform any active role in the 

structural formation and functioning of the organism. Instead, DNA sequence is used to produce 

proteins by the complex series of processes. Proteins can either form a part of a structure of the 

cell (and, by extension, the organism), have an enzymatic role in enabling various chemical 

processes to take place or serve as signals triggering cellular processes in response to 

conditions in their environment. 

1.1.1 DNA 

DNA is a component of a cell. In the higher organisms it is present in the form of 

nuclear and mitochondrial DNA, and the former is divided into chromosomes, visible during the 

division of the cell. A schematic of the structure of a cell and chromosomes in its nucleus is 

shown in the Figure 1.1 below. The general structure of DNA is that of a double helix, as shown 

in Figure 1.2. 
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Figure 1.1 Schematic of cell structure and chromosomes 

 In the double helical structure of DNA two strands of polymers run anti-parallel to each 

other, i.e. one strand runs 5’ to 3’ whereas the other strand runs in 3’ to 5’ direction. The 

backbone of the polymer consists of sugars and phosphate groups which are joined by ester 

bonds. One of four types of molecules called nitrous bases is attached to each sugar, forming a 

nucleotide. These four nucleotides are Adenine (A), Cytosine (C), Guanine (G) and Thymine 

(T). 

 Bases on the two strands pair with each other by hydrogen bonds. Adenine pairs with 

Thymine and Cytosine pairs with Guanine, as shown in Figure 1.3. 

Cell 

Nucleus 

Chromosomes 
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Figure 1.2 The structure of part of a DNA double helix (source: http://en.wikipedia.org) 



 

 
4 

 

Figure 1.3 Base pairing (Source: http://en.wikipedia.org) 

1.1.1.1 Genes and the genome 

 A gene is a discrete unit within the DNA polypeptide chain. It includes a region coding 

for a protein, as well as segments preceding and following the coding region (leader and trailer). 

In higher organisms it also contains intervening sequences (introns) between the individual 

coding segments (exons). 

The genome of an organism is the complete DNA molecule i.e. the complete sequence 

of nucleotides. In higher organisms most of the DNA is non-coding, and very small part of 

sequence consists of protein-coding genes. 

DNA information is first copied into mRNA by the process of transcription, and proteins 

are then synthesized using the information in mRNA by the process of translation. Proteins 
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consist of amino acids, and three nucleotide bases code for a single amino acid, as shown in 

Table 1.1 below. In mRNA, thymine (T) is replaced by uracil (U) and the deoxyribose sugar in 

the DNA backbone is substituted by ribose. 

Table 1.1 RNA codon table 

2nd base 
 

U C A G 

U 

UUU (Phe/F)  

UUC (Phe/F) 

UUA (Leu/L) 

UUG (Leu/L) 

UCU (Ser/S)  

UCC (Ser/S)  

UCA (Ser/S)  

UCG (Ser/S) 

UAU (Tyr/Y) 

UAC (Tyr/Y) 

UAA Ochre (STOP) 

UAG Amber (STOP) 

UGU (Cys/C)  

UGC (Cys/C)  

UGA Opal (STOP) 
UGG (Trp/W) 

C 

CUU (Leu/L)  

CUC (Leu/L)  

CUA (Leu/L)  

CUG (Leu/L) 

CCU (Pro/P)  

CCC (Pro/P)  

CCA (Pro/P)  

CCG (Pro/P) 

CAU (His/H)  

CAC (His/H)  

CAA (Gln/Q)  

CAG (Gln/Q) 

CGU (Arg/R)  

CGC (Arg/R)  

CGA (Arg/R)  

CGG (Arg/R) 

A 

AUU (Ile/I)  

AUC (Ile/I) 

AUA (Ile/I) 

AUG (Met/M) 

(START) 

ACU (Thr/T) 

ACC (Thr/T) 

ACA (Thr/T) 

ACG (Thr/T) 

AAU (Asn/N)  

AAC (Asn/N)  

AAA (Lys/K)  

AAG (Lys/K) 

AGU (Ser/S)  

AGC (Ser/S)  

AGA (Arg/R)  

AGG (Arg/R) 

1
st
 

base 

(5’ 

end) 

G 

GUU (Val/V)  

GUC (Val/V)  

GUA (Val/V)  

GUG (Val/V) 

GCU (Ala/A) 

GCC (Ala/A) 

GCA (Ala/A) 

GCG (Ala/A) 

GAU (Asp/D)  

GAC (Asp/D)  

GAA (Glu/E)  

GAG (Glu/E) 

GGU (Gly/G)  

GGC (Gly/G)  

GGA (Gly/G)  

GGG (Gly/G) 

 

 In a sequence of mRNA, the codon AUG (start codon) indicates the start of the coding 

region. The coding part of the gene ends with one of the stop codons UAA, UAG and UGA. 

Amino acids and their corresponding 1-letter and 3-letter codes are listed in Table 1.2. 
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Table 1.2 3-letter and 1-letter codes for amino acids 

Amino Acid 3-letter code 1-letter code 

Alanine Ala A 

Arginine Arg R 

Asparagine Asn N 

Aspartic acid Asp D 

Cysteine Cys C 

Glutamic Acid Glu E 

Glutamine Gln Q 

Glycine Gly G 

Histidine His H 

Isoleucine Ile I 

Leucine Leu L 

Lysine Lys K 

Methionine Met M 

Phenylalanine Phe F 

Proline Pro P 

Serine Ser S 

Threonine Thr T 

Tryptophan Trp W 

Tyrosine Tyr Y 

Valine Val V 
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1.1.2 Polymorphism 

The human genome consists of over 3 billion base pairs. Out of these about 1.5% are 

protein-coding genes and the remaining sequence contains RNA genes (non-coding RNA), 

regulatory sequences, introns and (controversially) “junk” DNA, which is by far its largest part. 

In any two individuals (humans), the genome sequence differs at approximately 3 

million bases (i.e. 0.1%). And the variations are due to Single Nucleotide Polymorphism (SNP), 

Deletion Insertion Polymorphism (DIP), repetitive sequences (which can sometimes be highly 

variable from person to person) and other sources which only recently started attracting the 

attention of the scientific community. 

SNPs are single base positions in the genome at which different sequence alternatives 

(alleles) exist. within the normal population. By some accounts, SNPs are the most common 

form of genetic variations in mammals [Brookes 1999], which exist in any part of genomic 

sequence including gene exons, introns, regulatory sequences or any other loci. An example of 

an SNP position in DNA sequence is shown in Figure 1.4. 

Allele frequencies indicate the proportion of variants in a particular population or the 

complete human population, and alleles are classified as major or minor depending on their 

frequency. For example, if “C” is located at a particular base position in 60% of population and 

“T” in 40%, then “C” is major allele and “T” is minor allele. The frequency corresponding to “C” 

(60%) is major allele frequency and that corresponding to “T” (40%) is minor allele frequency. 

 



 

 
8 

 

Figure 1.4 SNP (Image source: http://en.wikipedia.org ) 

The anticipation is that the allele information at SNP loci, referred to as a genotype, will 

provide a basis for assessing the individual's susceptibility to disease and perhaps the optimal 

choice for therapy [Hirschhorn et al. 2002; Hirschhorn et al. 2002]. A major challenge in 

realizing these expectations is in understanding precisely which of the millions of known SNPs 

affect disease. SNP sites are found approximately once in every 100 to 300 bases across the 

human genome [Kruglyak and Nickerson 2001] and complex traits such as most common 

diseases are influenced by combinations of loci which may not even lie on the same 

chromosome. 

 

 

Figure 1.5 Possible layout of SNPs relative to a hypothetical 3-exon eukaryotic gene. 

 The SNPs may cause a disease or a condition, increase the susceptibility to disease or 

they may be responsible for variable response to medications by different patients. And they 

may lie in an exon of a gene, in a promoter region which control regulation of a gene or in any 

other locus, as shown in Figure 1.5. 
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1.1.3 Genome Projects 

The Human Genome Project (HGP) [International Human Genome Sequencing 

Consortium, 2001] was an international effort with the primary focus to sequence the entire 

human genome, as it was believed that it would elucidate the molecular etiology of human 

disease. In the process many genes have been identified, and their number has been estimated 

at about 25,000. 

The International HapMap Project [The International HapMap Consortium, 2005], a 

sequel to the Human Genome Project,was an international effort to identify and catalog genetic 

differences in human beings. It recorded the location and linkage information for many common 

human genetic variants.  HapMap was a collaboration among scientists and funding agencies 

from Japan, the United Kingdom, Canada, China, Nigeria and the United States. All of the 

information generated by the project is available in the public domain. 

 The term haplotype has different meanings in different contexts. Haplotype is the 

genetic constitution of an individual chromosome, and it may refer to a single locus or an entire 

genome. In diploid organisms, haplotype is one member of the pair of alleles for each locus. In 

the context of the HapMap project, the term haploytpe refers to a set of SNPs on a single 

chromatid (one of the two copies of chromosome) that are statistically associated, i.e. the set of 

SNPs whose alleles can be determined by its subset, called tag SNPs. 

 Individuals who carry a particular SNP allele at one site often predictably carry specific 

alleles at other nearby variant sites. This correlation is known as linkage disequilibrium (LD). A 

tag SNP is representative single SNP in a region of the genome with high linkage 

disequilibrium. It is thus possible to identify genetic variation without genotyping every SNP in a 

chromosomal region. For example, consider following sequences: 

……AAAGTCGTA….. 

……AAGGTCCTA….. 

……AAAGTCCTA….. 
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……AAGGTCCTA….. 

……AAGGTCCTA….. 

……AAAGCCCTA….. 

Whenever there is “G” at 3
rd

 position, there is always “C” at 7
th
 position. Thus “G” at 3

rd
 

position alone determines the neighboring sequence. Hence “G” can be used as a tag SNP in 

this case of linkage disequilibrium.  

 HapMap i.e. Haplotype Map is a catalog of common genetic variants in human beings. 

HapMap describes what these variants are, where they occur in our DNA, and how they are 

distributed among people within populations, and among populations in different parts of the 

world. 

HapMap data can be used for finding genetic variants which affect health, disease, and 

individual responses to medications and environmental factors. It can also help biomedical 

researchers find genes involved in disease and responses to therapeutic drugs. 

 In Phase I of the HapMap project more than one million SNPs for which genotypes 

have been obtained in 269 DNA samples from four populations have been recorded. The data 

also included ten 500-kilobase regions in which essentially all information about common DNA 

variation has been extracted. The four considered populations were Yoruba people of Ibadan, 

Nigeria, Japanese from Tokyo, Chinese from Beijing and US residents from Utah having 

northern & western European ancestry. 

 Phase II of HapMap genotyped another 4.6 million SNPs in the HapMap samples and 

ENCODE [The ENCODE Project Consortium, 2007] regions in additional members of each 

HapMap population, as well as in samples from additional populations. These results should 

provide an insight at the robustness and transferability of LD inferences and previously selected 

tag SNPs. 
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1.1.4 Genome-Wide Association Studies (GWAS) 

Genome-Wide Association Studies (GWAS) concern the association between the 

SNPs or combinations of SNPs and the condition they affect. . The HapMap project, was driven 

towards finding genetic variants that influence health, disease and individual response to 

medications. 

The candidate gene approach has been used frequently in allelic association studies of 

complex disease. This methodology employs knowledge of disease pathobiology together with 

results of animal, molecular, cellular and other basic science studies to select genes which are 

likely to be involved in disease etiology. Polymorphisms within candidate genes are then 

identified and evaluated for correlation with disease. Many studies over the past decade have 

used this strategy to establish that genetic polymorphism explains a significant portion of the 

individual variation in susceptibility to common illnesses such as hypertension, vascular 

disease, cancer, diabetes, and autoimmune disorders [Lander and Kruglyak 1995; Lander 

1996]. Using a candidate gene approach, it has also been demonstrated that an individual’s 

genetic background significantly influences susceptibility to environmental triggers [Lander and 

Kruglyak 1995]. For example, polymorphisms in methylene tetrahydrofolate reductase, Factor 

V, angiotensin converting enzyme, and CKR-5 genes are associated, respectively, with neural 

tube defect risk, arteriosclerosis, venous thrombosis, heart disease, and HIV resistance [Lander 

1996]. 

In contrast, genome–wide association methods screen SNPs without prior assumptions 

regarding the biological role of particular genes or pathophysiology of the disease. Until 

recently, this approach was impractical due to the expense associated with the large number of 

assays required for such a study. Methods that do not focus on a particular subset of candidate 

genes require the determination of large numbers of genotypes (7.5X10
8
 genotypes in a sample 

of 1500 to 2000 subjects). Although recent advances in high–throughput genotyping 

methodology have made genome–wide association scans (GWAS) more technically and 
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financially practicable, prioritization of SNPs that are most likely to cause disease is still of great 

benefit in studies subsequent to the initial GWAS. In addition, while genome wide surveys have 

become relatively inexpensive, they remain too costly for many researchers and require more 

subjects than may be available for rare diseases. Therefore, the candidate gene approach 

remains an important tool in the armamentarium of biologists concerned with resolving the 

molecular basis of human diseases. 

In order to identify disease causing SNPs, we use the hypothesis that disease causing 

SNPs are located in highly conserved regions of the genome. To find highly conserved regions, 

we need to compare human genome sequences with sequences of other species using 

sequence alignment tools like BLAST [Altschul et al. 1990]. We also need to consider 

phylogenetic distance of human from species whose sequence is to be compared. Phylogenetic 

distance is the measure of diversity between two species. When a SNP causes change in 

amino acid, we evaluate significance of that change using BLOSUM62 [Henikoff and Henikoff 

1992] substitution matrix which assigns substitution score for all pairs of amino acids. 

1.2 Bioinformatics Databases 

For GWAS we need biological information such as cellular pathways related to 

condition of interest, genes participating in these pathways, SNPs in these genes, information 

about SNPs such as population diversity data etc. All this information is not available at any 

single source, and hence we need to access various databases such as KEGG (Kyoto 

Encyclopedia of Genes and Genome), NCBI (National Center for Biotechnology Information) 

databases, dbSNP in particular, and Ensembl and UCSC genome browsers. 

1.2.1 Kyoto Encyclopedia of Genes and Genomes (KEGG) 

KEGG, The Kyoto Encyclopedia of Genes and Genomes [Kanehisa et al. 2008], is a 

computer database of biological networks hosted by the Bioinformatics Center at the Institute 

for Chemical Research, Kyoto University, and supported by grants from the Bioinformatics 

Research and Development of the Japan Science and Technology Agency, the Japan Ministry 
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of Education and the NIH/NIGMS Consortium for Functional Glycomics. It is comprised of 

numerous building blocks, including genes and proteins (KEGG GENES), endogenous and 

exogenous chemical building blocks (KEGG LIGAND), cell signaling and enzymatic networks 

(KEGG PATHWAY), as well as hierarchies of various biological objects (KEGG BRITE). This 

suite provides a robust reference base for linking genomes to biological systems, and we use it 

in order to identify SNPs lying within the genes participating in our target pathways. 

1.2.1.1. KEGG Pathway and KGML (KEGG Markup Language) 

KGML is an XML representation of the KEGG graph objects, especially KEGG pathway 

maps which are created and updated manually. It enables automatic drawing of KEGG 

pathways, as well as computational analysis and modeling of protein networks and chemical 

networks. 

KEGG pathway maps are images representing networks of interacting molecules 

responsible for specific cellular functions. KEGG pathways are of two types: 

1. reference pathways (manually drawn) 

2. organism-specific pathways (computationally generated based on reference pathways). 

 

Figure 1.6 Example of a KEGG pathway (Source: www.genome.jp/kegg) 
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A KGML file contains the information about graphical objects and their relations in 

KEGG pathways. It also links the information in the KEGG GENES database. 

In KGML the pathway element specifies one graph object with the entry elements as 

its nodes and the relation and reaction elements as its edges. The relation and reaction 

elements indicate the connection patterns of rectangles (gene products) and the connection 

patterns of circles (chemical compounds), respectively. Two types of graph objects, consisting 

of entry and relation elements and entry and reaction elements, are respectively called the 

protein network and the chemical network. Since a metabolic pathway can be viewed both as a 

network of proteins (enzymes) and as a network of chemical compounds, another distinction of 

KEGG pathways is: 

• metabolic pathways can be viewed as both protein networks and chemical networks  

• regulatory pathways can be viewed as protein networks only. 

The pathway element is a root element, and one pathway element is specified for one 

pathway map in KGML. The entry, relation, and reaction elements specify the graph 

information, and additional elements are used to specify details about the nodes and edges of 

the graph. 

An overview of KGML can be shown in Figure 1.7. 
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Figure 1.7 KGML overview (Source: http://www.genome.jp/kegg/docs/xml/ ) 

Each KGML file may be acquired from: http://www.genome.jp/kegg/xml/ 

The KEGG pathway maps are divided into the following six categories. 

1. KEGG reference metabolic pathways - enzymes are linked to the ENZYME database. 

2. KEGG reference regulatory pathways - proteins are linked to the ENZYME database. 

3. KEGG reference metabolic pathways linked to KO - enzymes are linked to the KO 

database. 

4. KEGG reference regulatory pathways linked to KO - proteins are linked to the KO 

database. 

5. KEGG organism-specific metabolic pathways - enzymes are linked to the GENES 

database. 

6. KEGG organism-specific regulatory pathways - proteins are linked to the GENES 

database. 
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KGML files are updated daily and they are available for download at: 

ftp://ftp.genome.jp/pub/kegg/xml/  

1.2.1.2. Communication with KEGG 

KEGG provides several mechanisms for accessing the information, and our method of 

choice was through the use of its Applications Programmer Interface (API). KEGG API is based 

on SOAP, a popular information exchange protocol based on the Extended Markup Language 

(XML) technology. It is implemented as a set of functions working through the Remote 

Procedure Call (RPC) mechanism. KEGG API enables users to develop software which allows 

the access to above mentioned databases and associated computational services. KEGG API 

has been tested with Ruby and Perl languages. However, it should work with any language that 

can handle SOAP/WSDL, such as Python and Java. 

The WSDL file to create a SOAP client driver is available at: 

http://soap.genome.jp/KEGG.wsdl  

Communication through the KEGG API involves use of a number of codes and 

identifiers, of which the following were of special interest for us: 

'org' is a three-letter (or four-letter) organism code. The codes list can be found 

at:http://www.genome.jp/kegg/catalog/org_list.html 

• 'db' is a database name used in GenomeNet service. 

• 'entry_id' is a unique identifier whose format is a combination of the database name and the 

identifier of an entry joined by a colon sign as 'database:entry' (for instance, 'embl:J00231' 

means an EMBL entry 'J00231'). 'entry_id' includes 'genes_id', 'enzyme_id', 'compound_id', 

'drug_id', 'glycan_id', 'reaction_id', 'pathway_id' and 'motif_id'. 

• 'genes_id' is a gene identifier used in KEGG/GENES which consists of 'keggorg' and a gene 

name (for instance, 'eco:b0001' means an E. coli gene 'b0001'). 

• 'pathway_id' is a pathway identifier consisting of 'path' and a pathway number used in 

KEGG/PATHWAY. Pathway numbers prefixed by 'map' specify the reference pathway and 
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pathways prefixed by the 'keggorg' specify pathways specific to the organism (for instance, 

'path:map00020' means a reference pathway for the cytrate cycle and 'path:eco00020' 

means the same pathway with E. coli genes marked). 

KEGG API contains a large number of methods. Some of them, of special interest for 

us, are: 

• Meta information: list_pathways 

• PATHWAY  

o Objects in the pathway: get_genes_by_pathway 

o Pathways by objects: get_pathways_by_genes 

o Relation among pathways: get_linked_pathways 

1.2.2 NCBI databases 

 NCBI (National Center for Biotechnology Information, USA) is a comprehensive 

resource for the biotechnology and molecular biology information. NCBI maintains public 

databases, conducts research in computational biology, develops software tools for analysis of 

genome data, and releases the biomedical information enabling a better understanding of 

molecular processes affecting human health and disease. 

Various databases and tools maintained by NCBI include Literature Databases, Entrez 

Databases, Nucleotide Databases, Genome-Specific Resources, Tools for Data Mining, Tools 

for Sequence Analysis, Tools for 3-D Structure Display and Similarity Searching, Maps (various 

genetic and physical maps) and many more. Entrez is a retrieval system designed to search 

several linked databases. Various Nucleotide databases include GenBank, EST (Expressed 

Sequence Tags) Database, GSS (Genome Survey Sequences) Database, HomoloGene (gene 

homology tool), HTG (High-Throughput Genome Sequences) database, dbSNP (SNP 

database), RefSeq, STS (Sequence Tagged Sites) database, UniSTS and UniGene. 

 

 



 

 
18 

1.2.2.1 dbSNP 

dbSNP is a comprehensive, and freely accessible, repository of information about both 

single base nucleotide variations and short insertion/deletion polymorphisms. The dbSNP 

database does not impose any requirement or assumption about the minimal allele frequency in 

its definition of a SNP. The current build of dbSNP contains over 10 million SNPs [The 

International HapMap Consortium, 2007], including a large number located within coding 

regions of genes. 

1.2.2.2 Communication with dbSNP 

The EFetch utility (http://eutils.ncbi.nlm.nih.gov/entrez/query/static/efetch_help.html) 

from the NCBI toolkit provides a convenient method of access to SNP records. Another way of 

communication with dbSNP is using get() function of Perl LWP (Library for WWW in Perl, Burke 

2002). The get() function takes the URL as argument, and returns the contents of URL in HTML 

format. We need to parse this data in HTML format to extract the information we are interested 

in. 

1.2.3 Ensembl Genome Browser 

 Ensembl is a comprehensive genome information system featuring an integrated set of 

genome
 
annotation, databases and other information for chordate and

 
selected model organism 

and disease vector genomes [Flicek et al. 2008]. As of October 2007 Ensembl fully supports 35 

species, with preliminary
 
support for six additional species. It provides visualization for genome 

annotations, alignments, variation and functional genomics data and supporting additional data 

integration through DAS [Dowel et al. 2001] protocol. 

1.3 Distributed Annotation System (DAS) 

In order to integrate the information from different databases we have designed our 

system with an architecture similar to DAS (Distributed Annotation System) [Dowel et al. 2001], 

which allows the integration of sequence annotations on client side from various annotation 
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servers. Sequences are annotated by third party investigators at server sites, and these 

annotations are integrated as needed by the client-side software. 

Communication between the client and server is defined by DAS XML specification. 

Any client or server has to adhere to this specification in order to participate in the system. The 

schematic of DAS is shown in Figure 1.8. In this figure, one server is the designated reference 

server (Washington University Genome Sequencing Center) and one or more are the 

annotation servers (Ensembl, Whitehead, and the Sean Eddy Laboratory) providing annotations 

relative to the reference sequence. The client, at Cold Spring Harbor Laboratory in this 

example, fetches data from multiple servers and automatically generates an integrated view.  

 

 

 

 

Figure 1.8 Basic Distributed Annotation System architecture. (Source: Dowel et al. 2001) 
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CHAPTER 2 

METHODS 

2.1 Architecture of GeneNAB 

 

   
Figure 2.1 GeneNAB architecture 

 

The architecture of our system, GeneNAB, is shown in Figure 2.1. GeneNAB uses different 

methods for the communication with different databases. It uses the Internet platform to 

communicate with public online databases, located worldwide. The GeneNAB system is 

implemented in Perl (ActivePerl 5.10.0) since resources like KEGG and Ensembl provide Perl 

API as an interface. However, in the Decision and Classification Module, methods for sorting 

the SNPs according to their scores are programmed in C++. 
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2.2 Steps in the Execution of GeneNAB 

We start with a gene or pathway of interest as initial “bait”. Generally, this gene or 

pathway is selected based on its previously determined association with the condition for which 

we would like to identify relevant SNPs. If we start with a gene, we find the list of pathways that 

gene participates in, and perform the further analysis for each of them separately. For all 

pathways we find the list of all genes participating in them. For this purpose we first use the 

RPC calls get_pathways_by_genes from KEGG API, and then get_genes_by_pathway, to 

locate all other genes participating in the same pathway as our gene of interest. Our postulate 

was that because complex traits, and diseases in particular, are influenced by sets of SNPs 

scattered throughout the genome (and thus subject to genome–wide association studies), one 

link between them is likely in that they may affect genes along the same molecular pathway. 

Once we identify the genes associated with our bait, we look for all SNPs lying within 

the exons of these genes. These SNPs are then sorted by the Decision and Classification 

Module of GeneNAB, to identify SNPs which are biologically and medically more important. The 

flowchart of the GeneNAB system is given in Figure 2.2. 
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Figure 2.2 Flowchart of GeneNAB 

 

 

 

 

 

 

 

 

 

  
 

Find all the genes associated 

with initial “bait” using 

KEGG Pathway database. 

Find all the SNPs from NCBI 

dbSNP in all genes found. 

Filter SNPs on the basis of 

minor allele frequency 

threshold of 5%. 

Sort filtered SNPs on the 

basis of normalized 

conservation score. 

Sort SNPs having the 

maximal conservation score 

(i.e. 1) on the basis of 

BLOSUM62 score. 
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2.3 Communication Methods used by GeneNAB 

2.3.1 Communication with KEGG 

GeneNAB uses KEGG API to communicate with the KEGG database. We use the RPC calls 

get_pathways_by_genes, to retrieve all molecular pathways our gene of interest participates in, 

and get_genes_by_pathway, to locate all other genes participating in the same pathway as our 

gene of interest. The RPC call get_pathways_by_genes accepts a gene or list of gene IDs as 

an argument. The Gene IDs are in the format <KEGG organism code> : <NCBI Gene ID> (for 

instance, hsa:1147, where hsa is the organism code for human). This list has to be converted 

into SOAP array before it can be communicated. 

The RPC call get_genes_by_pathway accepts a pathway ID as an argument. Pathway 

ID is in the format <KEGG organism code> : KEGG pathway id (for instance,  hsa:04620). 

2.3.2 Communication with NCBI dbSNP 

Even if NCBI provides the EFetch utility to access its databases, including dbSNP, it 

scales down the record contents and omits some fields which we are interested in. Hence, we 

have implemented the connection to dbSNP using the Perl LWP [Library for WWW in Perl, 

Burke 2002], using the gene identifiers (GeneID, rs#) we have obtained from KEGG as 

parameters to the URL string in the get function. In response, the dbSNP server returns an 

HTML document which we need to parse. Since this document is intended for the presentation 

to a human viewer, rather than a program, our parsing is somewhat heuristic, but we expect that 

NCBI will soon provide more automation–friendly interfaces to this resource. The major 

subsections of the returned document are: Submission, Fasta, Resource, GeneView, Map, 

Diversity, and Validation, out of which we are at this time interested in Diversity only, and in 

particular in the allele frequency data. 
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2.4 SNAPPER 

SNAPPER is a program which assigns conservation scores to SNPs [Kulkarni et. al 

2008]. Conservation score is assigned on the basis of the sum of phylogenetic distances within 

the alignment of homologous genes from several related species in the immediate 

neighborhood of the SNP. 

SNAPPER assigns a probabilistic score to each SNP in coding regions, and this score 

represents the likelihood of its importance in affecting the phenotype. Its assumption is that 

evolutionarily conserved bases are important for proper protein function, so SNPs at these 

positions are more likely to be important than those in non-conserved regions. This postulate 

has been validated by correlating the SNAPPER results with HGMD (Human Gene Mutation 

Database), [Cooper et al. 1998] a database of SNPs which have been implicated in the 

development of diseases. The overall SNP score has also been based on several other factors 

known or suspected to be markers for medically relevant alleles in other published studies, such 

as the length of gene, type of residue change and favorability of substitution. The SNAPPER 

engine is based on an SVM (Support Vector Machine) classifier to predict probable medically 

relevant alleles, incorporating all the abovementioned factors. 

Two major components of SNAPPER are: 

1. Alignment of HGMD SNPs with rest of the SNPs (i.e. SNPs within the coding regions of 

genes which are not in HGMD). 

2. Computation of a variety of metrics for each nucleotide. 

The datasets resulting from these two considerations were merged, and relative importance of 

each metric for differentiating SNPs with low or high impact was measured using the SVM. 

These metrics were applied to every coding nucleotide by extrapolation. Alignments have been 

computed for every orthologous gene using the human genome along with eight well 

sequenced vertebrate genomes. The procedure for evaluating the conservation was 

implemented as follows: 
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1. For every human sequence from RefSeq (a nucleotide sequence depository in NCBI 

GenBank [Benson et al. 2008]), an ortholog was found in other species, using 

Megablast [Zhang et al. 2000]. 

2. Nucleotide conservation was represented by scores calculated for each human base 

position as a function of its conservation in other species. 

3. For map back the SNPs from HGMD and dbSNP to their corresponding locations within 

the genes, each SNP and 50 bases upstream and downstream were BLASTed 

[Altschul et al. 1990] against the entire genome, and only sequences with 100% identity 

to the reference were retrieved. The SNPs were then positioned using the BLAST 

coordinates. 

The SNP distribution for dbSNP SNPs was found to be most similar to that of randomly 

selected base positions, which indicates that most of the SNPs in dbSNP are indeed neutral. 

Majority of HGMD SNPs were found to lie in the most conserved regions. When only non-

synonymous SNPs in dbSNP were considered the normalized nucleotide conservation score 

was higher, which confirmed the hypothesis that medically relevant SNPs are disproportionately 

distributed in most conserved regions within genes. 

The pre-made list of SNP conservation scores generated by SNAPPER can be 

substituted by extracting the sequences of different species from the Ensembl genome browser 

and automatically comparing them to find the conserved regions. 

Ensembl provides a Perl API to extract data from public Ensembl databases. Perl API is 

one of the many ways of accessing Ensembl data. It provides a level of abstraction over the 

Ensembl core databases. Perl API is used by the Ensembl web interface, pipeline, and gene-

build systems. External users can use Perl API to automate the extraction of data, to customize 

Ensembl to fulfill a particular purpose, or to store additional data in Ensembl. Methods related to 

the communication with Ensembl are implemented in Bio::EnsEMBL module of BioPerl. 
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2.5 Decision and Classification Module 

Once we identify the list of relevant SNPs participating in the same pathway as our 

starting gene, we need to rank them according to their potential relevance. First, we retain for 

further analysis only these whose alleles appear sufficiently often in the population. We have set 

a cutoff at a typically used minimum minor allele frequency (MAF) of 0.05 (5% or more within 

the considered population). Traditionally, this threshold is chosen based on the power 

considerations. For example, in a typical genome-wide association scan, a sample of 1500 to 

2000 patients is sufficient to detect a clinically reasonable effect size (odds ratios of 1.5 to 2.0) 

associated with alleles that have a MAF greater than 5% [Dupont and Plummer, 1997]. It is 

possible to accrue this number of patients in a reasonable period for most traits. If the MAF is 

dropped to 1%, the minimum sample size increases to over 5000, which is frequently prohibitive 

even for multi–center studies. Furthermore, the MAF for SNPs in the Illumina 

[www.illumina.com] and Affymetrix [www.affymetrix.com] GWAS panels is 5%. Therefore, we 

used a MAF of 5% as a cutoff in GeneNAB to match the current standard for GWAS. 

Consequently, we parse the Diversity record obtained from dbSNP looking for the 

population percentage exhibiting the minor allele. In some records the frequency data were not 

available, so we had to unconditionally accept these SNPs. In others there was a 

comprehensive record for multiple human populations, and in these cases we checked whether 

at least one of the represented groups features the minor allele frequency of 5% or more. All 

parsing was performed using basic Perl functions and pattern matching. 

The last step of our pipeline involves the ranking of the identified SNPs and the 

selection of these likely to have a significant contributing effect on the phenotype of interest. 

Previous work [Kulkarni et al. 2008] has shown that the most medically relevant SNPs tend to 

lie in phylogenetically conserved regions, so we use the evolutionary conservation of the SNP’s 

environment as a primary criterion for its potential significance. For this purpose we normalize 

the conservation score for up to 5 bases upstream and downstream of the SNP locus, as 

described in Kulkarni et al. 2008. At present, we are performing this ranking using locally stored 
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databases on our machines, but in the future we shall extend this work to automatically connect 

to genome browsers such as Ensembl [Flicek et al. 2008] and UCSC [Karolchik et al. 2008]. 

Phylogenetic conservation per se is a good criterion for selection, but it suffers from 

several drawbacks. The biggest problem is in that the SNP position itself may not be conserved 

well (indeed, it is a polymorphic site, so it may appear quite poorly conserved), and it may 

represent a silent change (being in third codon position of a four–fold degenerate site, for 

instance). We thus look at the amino acids coded for by the major and minor alleles, whether 

they are different, and the BLOSUM62 [Henikoff and Henikoff 1992] score for the substitution. 

BLOSUM62, shown in Figure 2.2, is an amino acid substitution matrix, and it specifies 

substitution scores for each pair of amino acids - the higher the score, the more similar amino 

acids are. Our assumption was that high scoring substitutions are unlikely to significantly affect 

the phenotype, so our top candidates were these with low BLOSUM62 values. We deliver the 

ranked list of most significant candidate SNPs, which should then be checked by laboratory 

methods for their influence on the phenotype of interest, as the output of GeneNAB. 

 

 
 

Figure 2.3 BLOSUM62 substitution matrix 
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CHAPTER 3 

RESULTS 

3.1 Initial Bait 

 Given the importance of inflammation as an underlying process in complex human 

disease (including cancer, heart disease and the development of organ dysfunction after 

traumatic injury [Schwartz and Cook 2005; Engels 2008; Fairweather and Frisancho-Kiss 2008; 

Tsujimoto et al. 2008]), we have selected Toll–like receptor 4 (TLR4) signaling as the initial 

subject for the verification of our system. A receptor is a protein molecule in plasma membrane 

or cytoplasm, which binds to another molecule called ligand and is responsible for biochemical 

signaling reactions. Toll-Like receptors lie in the cell membrane, and they play an important role 

in initiating a signal for the immune system. 

TLR4 is the cellular receptor for lipopolysaccharide (LPS), a key component of the cell 

wall of Gram negative bacteria. It has recently been discovered that in addition to bacterial 

sensing, this protein also binds to endogenous ligands that are indicative of cellular damage or 

stress [Bianchi 2007]. It has been demonstrated convincingly that stimulation of Toll receptor 

signaling results in activation nuclear factor kappa B and a subsequent innate immune 

inflammatory response [Tsujimoto et al. 2008]. Since the inflammation as a response varies 

substantially between individuals, this pathway was a good sample case for the study of the 

effectiveness of GeneNAB. 

3.2 Pathway and Genes Identified 

 Our initial query to KEGG, for TLR4, returned a single pathway consisting of 102 genes, 

theToll-Like Receptor Signaling Pathway, as expected.  Its map has been shown as an example 

in Figure 1.6, Chapter 1. We have used these genes for the identification of SNPs in their 

coding regions. 
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3.3 SNPs Identified and Their Scores 

The subsequent communication with dbSNP resulted in a total of 25415 SNPs in the 

coding regions of the identified genes, out of which only 5707 exhibited minor allele frequency 

of more than 5% in any of the tested human populations (or for which the population data was 

not available). We have intersected this list with a catalog of 48362 SNPs which have been 

scored for phylogenetic conservation by SNAPPER. In this intersection we found 105 SNPs, out 

of which 39 had a maximum normalized conservation score of 1.0. We have calculated the 

BLOSUM62 scores for the substitutions of amino acids coded for by their major and minor 

alleles, and we show the top 13 SNPs identified in this analysis in Table 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
30 

Table 3.1 Top 13 SNPs in the Toll–like receptor pathway identified by the GeneNAB program. 
All listed SNPs scored 1.0 (maximum) for the phylogenetic conservation of their environments. 
The IDs of SNPs which were already clinically confirmed to be highly relevant are listed in bold. 

SNP Gene Amino 

Acid 

No. of 

amino acid  

Substituted 

amino acid 

BLOSUM62 

rs2232613 LBP Leu 333 Pro -3 

rs2060263 BCL2-L12 Val 47 Gly -3 

rs8177374 TIRAP Leu 180 Ser -2 

rs2066776 MAPK12 Met 244 Thr -1 

rs10127175 IRAK1 Ser 203 Cys -1 

rs2232607 LBP Gly 283 Asp -1 

rs11465829 IRAK1 Ile 113 Thr -1 

rs17875834 IFNAR1 Met 359 Thr -1 

rs2069830 IL-6 Ser 32 Pro -1 

rs11465830 IRAK1 His 104 Arg 0 

rs5744212 LBP Phe 339 Leu 0 

rs2232619 LBP Thr 445 Ala 0 

rs17177493 CD40 Gln 78 His 0 

 

 

The top scoring SNPs in our list turned out to be located within the coding regions of 

genes known to be critical for proper function of the innate immune response. For example, the 

LPS binding protein (LBP), whose coding gene contains our top scoring SNP, as well as three 

additional top 13 scoring SNPs, is the first protein to interact with LPS. LBP binds LPS in the 

blood stream and shuttles it to CD14, a cell surface protein which binds LPS and forms a 

signaling complex with TLR4 and MD2. Once the complex is assembled, TLR4 initiates a trans–

membrane signal which triggers a phosphorylation cascade that ultimately results in 

ubiquitination and degradation of IkB, which allows migration of NFkB into the nucleus. Once 
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NFkB enters the nucleus of the cell it activates transcription of the myriad number of genes 

responsible for inflammation and the innate immune response. The list of the top ten scoring 

SNPs also contained several loci that are critical to the above–mentioned phosphorylation 

cascade (IRAK1, MAPK12, TIRAP), as well as a key cytokine (IL-6) and a receptor for interferon 

alpha. Selection of these high–scoring candidate SNPs from the 25415 SNPs within the Toll–

signaling pathway would be a time consuming and frustrating task, even for an expert in Toll 

signaling and innate immunity. 
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CHAPTER 4 

DISCUSSION AND FUTHER WORK 

4.1 Discussion 

 The GeneNAB program should be helpful for the design of candidate–gene based 

studies, as well as the interpretation of results from a GWAS. While the utility of the program for 

the candidate gene approach is obvious, the role of GeneNAB in the analysis of GWAS data 

may not be as readily apparent. The current analysis of GWAS data involves a series of 

unadjusted chi–square calculations and while this method has been shown to be efficient in a 

number of GWAS, it does not allow consideration of the vast amount of biological knowledge 

regarding the genes or the disease of interest. It is our contention that GeneNAB will not only 

allow increased efficiency in the design of candidate gene studies, but will also aid in the 

analysis of genome wide association data. In addition, since our method is based on a different 

approach than that of currently used techniques, it can be used in a complementary way and 

improve the sensitivity of the computational analysis. While we feel that the limited validation we 

have performed so far well demonstrates the effectiveness of our method, we still need to 

perform the experimental check of all our top candidates. 

 From 25415 SNPs we couldn’t fetch dbSNP records of about 20 SNPs due to 

connection errors. This number is small enough so that there is very low probability of missing 

any significant SNP. As this process is automated, it highly depends on reliable internet 

connection. As it continuously keeps querying dbSNP server, it might have overloaded the 

server with queries. The dbSNP server is not designed to accept such large number of requests 

within a short time interval. It provides facility of batch query for large number of queries. 

However it does not return the results immediately. We will address this problem in future and 

expect to find solution. 
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4.2 Future Plan 

Computationally, there is still much work that can be done to extend GeneNAB. We 

plan to narrow the list of SNPs further from currently considered coding regions of genes, and 

attach more weight to these located within known active domains of their proteins. On the other 

hand, so far we have ignored the SNPs lying in the regulatory regions of the relevant genes, 

although these can substantially affect their behavior.  Consequently, these SNPs should be 

included in the analysis, too. 

Another possible extension concerns looking beyond just the pathways containing the 

candidate gene. By mining the Gene Ontology [The Gene Ontology Consortium, 2007] one can 

discover useful associations which may not be apparent from pathway information only, and we 

believe that these can further improve the quality of our ranking. Overall, our system is highly 

extensible, and even as it is producing good results in its current state we expect that in the 

future it can grow into one of the most powerful computational tools to aid in GWAS. 
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