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ABSTRACT 

 
HIGH ORDER LES FOR SUPERSONIC RAMP  

FLOW CONTROL WITH MVG 

 

Yonghua Yan, PhD 

 

The University of Texas at Arlington, 2012 

 

Supervising Professor:  Chaoqun Liu 

 An implicitly implemented large eddy simulation by using the fifth order bandwidth-

optimized WENO scheme is applied to make comprehensive studies on ramp flows with and 

without control at Mach 2.5 and Re=5760. Flow control in the form of microramp vortex 

generators (MVG) is applied. The results show that MVG can distinctly reduce the separation 

zone at the ramp corner and lower the boundary layer shape factor under the condition of the 

computation.  

 A series of new findings are obtained about the MVG-ramp flow including the three-

dimensional vortex structure generated by MVG. The mechanism about the formation vortex 

ring structure and its interaction with shock wave at the ramp corner is deeply studied. Vortex 

rings strongly interact with the flow and play an important role in the separation zone reduction. 

It shows that the ring structure does not break down and keeps it topology after penetrating the 

strong shock wave and the oblique shocks is influenced a lot by the induced flow field from 

rings. The bump of the 3D shock wave surface is discovered and its mechanism is explained.   
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CHAPTER 1 

INTRODUCTION 

 Micro vortex generators (VG) are a kind of low-profile passive control device designed 

for the boundary layer control. In contrast to the conventional VG (widely used in aviation 

applications and with height (h) of the order of the boundary-layer (δ)), micro VG has a height 

approximately 20-40% (more or less) of the boundary layer. As we know, in the supersonic 

ramp flows, shock boundary layer interaction (SBLI) can significantly reduce the quality of the 

flow field by triggering large-scale separation, causing total pressure loss, and making the flow 

unsteady and distorting. The consequences of the interaction often degrade the performance of 

the engine and even make an engine unable to start. Micro VG is a new device which is 

designed to alleviate or overcome such difficulties and, therefore, to improve the “health” of the 

boundary layer. There are more than one kind of micro VG, like the micro vane and micro ramp 

VG (MVG). Because MVG has a more robust structure, it becomes more attractive to the inlet 

designer. Intensive computational and experimental studies have been made on it recently. 

 In Lin’s review [1] on the low-profile vortex generator, it was mentioned that a device 

like MVG could alleviate the flow distortion in compact ducts to some extent and control 

boundary layer separation due to the adverse pressure gradients. Similar comments were made 

in the review by Ashill et al [2]. The formal and systematic studies about the micro VGs 

including micro ramp VG can be found in the paper of Anderson et al [3]. Micro-actuators 

including MVG were found to have comparable effects as the boundary layer bleeding 

technique, and so MVG was considered to be very practical for the flow control in supersonic 

inlets. A series of experimental and computational investigations have been carried out since 

then. The most prominent experimental studies reported are those by Babinsky [4-7]. He made 

a series of experiments on different kinds of mirco VGs and investigated their control effects in 
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detail. The mechanism of MVG flow control from his work concludes that a pair of counter-

rotating primary streamwise vortices is generated by MVG, which are mainly located within the 

boundary layer and travel downstream for a considerable distance. Secondary vortices are 

located underneath the primary ones and even more streamwsie vortices could be generated 

under suitable conditions. Streamwise vortices inside the boundary later bring low momentum 

fluid up from the bottom and high momentum fluid down to the boundary layer. A striking 

circular momentum deficit region is observed in the wake behind the MVG. The vortices keep 

lifting up slowly, which is thought to be the consequence of the upwash effect of the vortices.  

 Numerical simulations have been made on MVG for comparative study and further 

design purposes. Ghosh, Choi and Edwards [8] made detailed computations under the 

experimental conditions given by Babinsky. These numerical studies include RANS 

computations and hybrid RANS/LES computations using immersed boundary (IB) techniques. 

The fundamental structures, like the streamwise vortices and momentum deficit, were 

reproduced by the computation. Lee et al [9] also made computations on the micro VGs 

problems by using Monotone Integrated Large Eddy Simulations (MILES). In their computation, 

the MVG is placed in a domain with the configuration following the real wind tunnel. The 

fundamental wave system of the MVG were reproduced in the computation, which consists of 

the main shock, expansion waves and re-compression shock like that reported by Babinsky [6]. 

The momentum deficit was captured too. They [10] further tested several variations of the 

standard MVG and micro vane to enhance the control effect. 

 As we know, the purpose of the MVG is to control the shock induced separation and to 

improve the quality of the boundary layer velocity profile after the SBLI. Supersonic ramp flow is 

a typical prototype SBLI problem, and the ramp configuration often exists in the engine and 

control surfaces in high speed vehicles. The fundamental problem of the ramp flow includes the 

determination of characteristics and criteria of the flow separation and reattachment, the 

mechanism of the shock unsteadiness and the aerodynamic/thermal correspondence, etc. 
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Many experimental studies had been made on these problems. Some well recognized ones can 

be found from the work by Dolling [11-13], Settles [14], Dussauge [15], Andreopoulos [16], 

Loginov [17] and their collaborators. For numerical simulations, there are three basic categories, 

i.e., the RANS, LES and DNS. It is well-known that RANS models do not perform well for 

SWTBLI (Wilcox [18], 1993). According to Zheltovodov’s opinion [19], the existing RANS 

models cannot solve the strong SBLI problem accurately, including the supersonic ramp flow. 

About the numerical works of LES, Rizzetta and Visbal [20] made simulations on a compression 

corner by implicit LES using a high-order method; Kaenal, Kleiser, Adams, and Loginov et al 

conducted LES [21] on ramp flow using an approximate de-convolution model developed by 

Stolz. The comparisons were made and some agreement was obtained between the 

computational and the available experimental results. The first DNS on supersonic ramp flow 

was made by Adams for a 10 compression ramp at Mach 3 and Re=1685. In the work done by 

Adams [22] and his colleagues, the 5th order hybrid compact-ENO scheme was applied.  Later 

Martin and the collaborators made a series of remarkable investigations by using DNS [23-28]. 

Comparisons were made between the computation and the experiments from the low Reynolds 

number wind tunnel at Princeton University [29]. They used the fifth order bandwidth-optimized 

WENO scheme which is the same scheme that the current work uses.  The effect of low 

Reynolds number on the separation was studied. More work on MVG and other flow control 

tools have been done recently [30-35]. According to the experimental and numerical research, 

some flow mechanisms are recognized as: a) the amplification of the turbulence after the SBLI 

is thought to be caused by the nonlinear interaction between the shock wave and the coupling 

of turbulence, vorticity and entropy waves [36]; b) the unsteady motion of the shock is 

considered to be generated by the very long low-momentum coherent structures in logarithmic 

layer and such structures might be formed by the hairpin vortex packet. 

 Although there are experiments and computations on MVG and ramp problems, these 

investigations were carried out separately. The combination of MVG and ramp is not conducted 
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yet and it is unclear if the MVG can be used to control the supersonic ramp flow. In order to 

carry out flow control more effectively using MVG, the mechanism of the flow should be 

carefully studied first. There are at least three problems which should be clarified: a) what is the 

three-dimensional structures of the wave system caused by MVG. Till now, only two-

dimensional structural information was available and confirmed by experiment; b) what is the 

relation between the momentum deficit and the flow structure and where does the low speed 

fluid come from? c) Is there any new mechanism besides the pronounced momentum 

transportation and mixing by streamwise vortices? 

 In this study, we investigate the control effect of MVG on the supersonic ramp flow with 

a fully developed turbulent inflow by numerical simulations, and further explore the mechanisms 

related to those questions mentioned above. Numerical simulations are made on supersonic 

ramp flow with and without MVG control at Mach 2.5 and Re=5760. The trailing edge declining 

angle of the MVG is 70 in computation. In order to make simulations, a kind of large eddy 

simulation method is used by solving the unfiltered form of the Navier-Stokes equations (NSEs) 

with the 5th order bandwidth-optimized WENO scheme, which is generally referred to the so-

called implicitly implemented LES. Without explicitly using the subgrid scale (SGS) model as the 

explicit LES, the implicitly implemented LES uses the intrinsic dissipation of the numerical 

method to dissipate the turbulent energy accumulated at the unresolved scales with high wave 

numbers. There are two main subfields about this category, i.e., the MILES [39-40] by Boris, 

Fureby and Grinstein, et al, and the implicit LES [41, 42] by Visbal, Rizzetta and Gaitonde, et al. 

The first subfield is based on modified equation analysis, and typically uses the high order 

monotone scheme like flux-corrected transport (FCT) scheme or piecewise parabolic method 

(PPM). The ENO algorithm was also reported being used as the limiter in Ref. 41. This kind of 

method can be used to solve the supersonic problems with shock waves, but the order of the 

scheme should not be competitive to the modern high order schemes like the compact schemes 

or WENO schemes with 5th order of accuracy or higher. The second one [42] specifically uses 
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the high order compact scheme by Lele and the high order Pade-type low-pass spatial filter. 

However, the published applications of the method are only for the low speed flow. When the 

same numerical algorithms were used on supersonic problems [43-44], the Smagorinsky 

dynamic SGS model was incorporated in the simulation, which implies the existence of issues 

related to the numerical stability. A series of shock-capturing schemes were also tried for large 

eddy simulation [45-46], including the WENO scheme. As mentioned in Ref. 46, at low Mach 

number the investigated compact differencing and filter scheme formulation may give better 

results but as the Mach number increases the relative suitability of the ENO method increases. 

However, the ENO scheme still produces numerical turbulence thus stabilizing filters is need, 

while the WENO scheme does not need filtering. Recently, an evaluating computation was 

reported on circular cylinder flow using implicitly implemented LES by the 5th WENO scheme 

[47]. Comparisons were made between the computation and the experiment. The results show 

that the numerical algorithm is feasible and efficient. For the studied supersonic MVG controlled 

ramp flow problem, there are complex shock wave system, strong shock-vortex interaction and 

small scale structures. Considering the above status of implicitly implemented LES, the method 

by solving the NSEs with the 5th order bandwidth-optimized WENO scheme is used in the paper 

and considered as certain implicitly implemented LES.  

 The structure of the dissertation is as follows.  In Chapter 2, the Navier-Stokes 

equations are introduced. In Chapter 3, the numerical scheme, the grid information and the 

boundary conditions are discussed.  In Chapter 4, the computational results of supersonic ramp 

flow with and without MVG are presented; a series of new findings including the vortex ring 

structure generated by MVG is stated. In Chapter 5, the mechanism of vortex ring generation is 

analyzed in detail. Finally, in Chapter 6, a study on shock wave-vortex ring Interaction is made. 
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CHAPTER 2 

NAVIER-STOKES EQUATIONS 

 

2.1 Conservation Laws and the Equations 

 The motion of a fluid can be described by the conservation of mass, momentum, and of 

energy for an arbitrary small control volume. 

 Consider a closed surface S whose position is fixed with relation to the coordinate axes 

and encloses a volume V completely filled with fluid. Given the density of the fluid , the 

momentum u, the total energy E at a position x and at time t, the Navier-Stokes equations can 

be derived as follows from the conservation laws of mass, momentum and energy: 

  0

 u

t  
                                                                                                           (2.1) 

     



 uuu

t
                                                                                       (2.2) 

        0 


 uu  TkE
t
E                                                                (2.3) 

With  

2
uu 

 eE                                                                                                                (2.4) 

and 

    Tp uuIu 



  

3
2                                                                           (2.5) 

 Here, is the internal shear stress, e is the internal energy per unit mass of the fluid, p 

denotes the pressure, T represents the temperature, k is the thermal conductivity and  is the 
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dynamic viscosity. Stokes(1845) assumption (linear relation between the stress and the rate of 

strain of the fluid ) is used in obtaining the equation (2.5).  

 In three dimensions, the system above contains five equations (the conservation of 

momentum equation becomes three separate equations). Two extra equations are needed to 

solve the system for the unknown variables , u, p, E, and T.  These equations are the equation 

of state, for a thermally perfect gas,  

RTp                                                                                                                        (2.6) 

where R is a gas constant, and the equation for internal energy equation, 

Tce v                                                                                                                         (2.7) 

 

2.2 Non-Dimensional Form 

 Equations (2.1)-(2.6) can be reduced to a non-dimensional form. This can be achieved 

by dividing each variable by an appropriate dimensional reference parameter. Those reference 

parameters are defined as follows, where ∞ indicates incoming or free stream values: 

L is the characteristic length; 

V∞ is the speed; 

∞ is the density; 

p∞ is the pressure; 

T∞ is the temperature; 

∞ is the dynamic viscosity; 

k∞ is the thermal conductivity. 

 With these reference parameters, the non-dimensional variables are given by 




VL
tt * , 

L
*xx  , 




V

*uu , 2

*




V

pp


, 2

*




V
σσ                                                   (2.8) 
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where * represents the dimensional variables. 

 We can rewrite the equations of section 2.1 in non-dimensional form, obtaining: 

 
  0


 u

t                                                                                                             
 (2.9) 

      



 uuu

t
                                                                                    (2.10) 

         2 1 0
E

E T M
t RePr
 

   


        


u u

                              
 (2.11) 

       TTTp uuIu 



  

ReRe
11

3
2                                                           (2.12) 

T
M

p 
 2

1



                                                                                                            (2.13) 

 The Reynolds number is defined as 






 LV
Re

                                                                                                             
 (2.14) 

while the Prandtl number evaluated at the reference conditions is given by 

0.72pc
k




 Pr                                                                                                        (2.15) 

and the Mach number is defined as  




 

RT
V

M
                                                                                           

(2.16) 

 The dynamic viscosities coefficient is given by Sutherland’s equation:  

CT
CT





12

3

 , 



T

C 4.110                                                                                          (2.17) 
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2.3 Expansion in Curvilinear Coordinates 

 In vector form, we may rewrite the equations as  

z
G

y
F

x
E

z
G

y
F

x
E

t
Q vvv


























                                                      (2.18) 

where 

u
Q v

w
e






 
 
 
 
 
 
  
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u
u p

E uv
uw
e p u







 
  
 
 
 
  

 2

( )

v
vu

F v p
vw

e p v







 
 
 
  
 
 
  

 

2

( )

w
wu

G wv
w p

e p w







 
 
 
 
 

 
                                                  

 (2.19) 

0

1
Re

xx

xyv

xz
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u v w q





  

 
 
 
 
 
 
    

                                                                         (2.20) 
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F
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


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 
 
 
 
 
 
    

                                                                                 (2.21) 
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1
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zz
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u v w q




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 
 
 
 
 
 
    

                                                                       (2.22) 

2( 1) Prx
Tq

M x


 




 
, 2( 1) Pry

Tq
M y


 




 
, 2( 1) Prx

Tq
M z


 




 
       (2.23) 
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T
M

p 
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1



                                                                                                                   (2.24) 
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

                     (2.25) 

 

 Let us assume that the position frame of reference is fixed in time, that is, the 

generalized coordinates do not change with time. Then, we can define the curvilinear 

coordinates in relation to the Cartesian coordinates as 

 
 
 












zyx
zyx
zyx

,,
,,
,,





                                                                                                           (2.26) 

 The Navier-Stokes equations can be transformed to the system using generalized 

coordinates: 

 
























 vvv GFEGFEQ ˆˆˆˆˆˆˆ

                                                                  (2.27) 

Where QJQ 1ˆ   and 

)(ˆ 1 GFEJE zyx   

                                                                                 (2.28) 

)(ˆ 1 GFEJF zyx                                                                                           (2.29) 

)(ˆ 1 GFEJG zyx                                                                                           (2.30) 

)(ˆ 1
vzvyvxv GFEJE                                                                                        (2.31) 

)(ˆ 1
vzvyvxv GFEJF                                                                                     (2.32) 

)(ˆ 1
vzvyvxv GFEJG                                                                                    (2.33) 
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 
 











 ,,
,,det1 zyxJ

                                                                                        
 (2.34) 
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CHAPTER 3 

NUMERICAL METHODS FOR SUPERSONIC RAMP FLOW 

 

3.1 Numerical Scheme 

3.1.1. The 5th Order Bandwidth-optimized WENO Scheme for the Convective Terms 

For integrity, the 5th order WENO will be described as follows. Considering the one 

dimensional hyperbolic equation, 

0)(


x
uf

t
u





                                                                                                      (3.1) 

The semi-discretized equation by the conservative scheme can be expressed as, 

x

hh

t
u jj

j 




 2
1

2
1

)(

                                                                                                (3.2) 

where 






 2
1

2
1 jj

fhh  and for second order scheme, 
2

1
2

1 


jj
fh . 

The basic ideas of the weighted schemes like WENO are as follows, 

(1) Apply basic grid stencils and difference schemes on them 

(2) Combine these schemes on different stencils and get linear weights to obtain higher order 

(3) Obtain nonlinear weights to make the scheme adaptive to discontinuity like shock waves.  

Fig. 3.1 shows the basic grid stencils for standard 5th order WENO scheme [48] 

 

Figure 3.1 Grid Stencils for 5th Order WENO 
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 Considering the positive flux, the three upwind-biased schemes on three candidates 

can be given as, 
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                                                                            (3.3) 

The mark ‘+’ refers to the positive flux after flux splitting. 3rd order is obtained for each individual 

scheme. Schemes on basic stencils are symmetric to the one with respect to xj+1/2. Weighting 

and the linear weights to obtain higher order: 

3322112
1,








 


 hhhh jLinear                                                                     (3.4) 

The optimal order for the weighted scheme is 2r+1, where r is the number of the stencil. 

The order of the scheme is 5th order. When the optimal order is realized, the i  must be 

determined as: 

),,( 321  =(0.1,0.6,0.3)                                                                                            (3.5) 

 The nonlinear weighted schemes can be expressed as: 

3322112
1








 


 hwhwhwh j                                                                      (3.6) 

where iw   is changing from place to place, and  

)( 321 bbbbw ii                                                                                              (3.7) 

2)( iii ISb                                                                                                   (3.8) 

and  is a small quantity to prevent the denominator from being zero, which should be small 

enough in supersonic problems with shocks (10-6~10-10). ISi is the smoothness measurement. 

 In order to make the nolinear scheme still pertain the same optimal order, i.e., 5th order, 

ISi should have the property: 

))(1( 2hOCISk                                                                                              (3.9) 
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where C is the same number for three ISi. 

 ISi  for 5th order WENO scheme has the following form: 
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                                           (3.10) 

 The scheme for 
 2

1j
h  has a symmetric form of 

 2
1j

h  to the point xj+1/2 

  Comparing to the standard 5th order WENO scheme discussed above, the 5th order 

Bandwidth-optimized WENO scheme uses one more point on the right, thus it has one more 

grid stencil [24], 

 

Figure 3.1 Grid Stencils for 5th Order Bandwidth-optimized WENO 
 

 Considering the positive flux, the four upwind-biased schemes on three candidates can 

be given as: 
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                                                                           (3.11) 

In the same way, we have, 
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332211002
1,











 


 hhhhh jLinear                                                       (3.12) 

when the optimal order is realized, the i  must be determined as: 

),,,( 3210  = (0.05, 0.45, 0.45, 0.01)                                                                              (3.13) 

 The final nonlinear weighted schemes can be expressed as: 

332211002
1











 


 hhhhh j                                                                     (3.14) 

where  
)( 3210 bbbbbii                                                                                       (3.15) 

2)( iii ISb                                                                                                 (3.16) 

ISi has the following form: 
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                                      (3.17) 

 In order to make the scheme stable, further modification is made as: kk
ISIS

303 max


 . 

 Further improvement for k   by Martin et al is: 

max( ) / min( ) 5 max( ) 0.2k k k k
i

i

if TV TV and TV
otherwise





 

 


                                         (3.18) 

where TVk stands for the total variation on each candidate stencil. 

 As mentioned in Ref. 48, the large eddy simulation based on the WENO scheme was 

thought to be slightly more dissipative than other implicit LES methods. In order to reduce the 

dissipation of the scheme, the less dissipative Steger-Warming flux splitting method is used in 

the computation, instead of the commonly-used more dissipative Lax-Friedrich splitting method. 
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3.1.2 The Difference Scheme for the Viscous Terms 

Considering the conservative form of the governing equations, the traditional 4th order 

central scheme (Equation (3.19)) is used twice to compute the 2nd order derivatives in viscous 

terms. 

x
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12
88 2112                                                                (3.19) 

 

3.1.3 The Time Scheme 

 The basic methodology for the temporal terms in the Navier-Stokes equations adopts 

the explicit 3rd order TVB-type Runge-Kutta scheme [49]: 
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 (3.20) 

 

3.2 Grid Generation 

 In order to make comparison between the supersonic ramp flow with and without MVG 

control, two cases are designed. In the first case, the configuration consists of an MVG mounted 

upstream of the ramp (MVG-ramp) while the second configuration is a ramp without MVG 

control. Both the cases have the same streamwise and spanwise lengths. In order to preserve 

the accuracy of the geometry to reduce numerical errors as much as possible while using 5th 

order bandwidth-optimized WENO scheme, the strategy of body-fitted grids is adopted. Results 

in later parts of the paper testify that such grid frame is very helpful to obtain the high resolution 

of the flow structure. 
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 The geometry of MVG is shown in Fig. 3.3. In order to alleviate the difficulty to grid 

generation caused by original vertical trailing-edge, a modification is made by declining the 

edge to 70. The other geometric parameters in the figure are the same as those given by 

Babinsky6, i.e., c=7.2h, =24 and s=7.5h, where h is the height of MVG and s is the distance 

between the center lines of two adjacent MVGs. So the distance from the center line to the 

spanwsie boundary of the computation domain is 3.75h. 

 According to experiments by Babinsky [7], the ratio h/0 of the models has the range 

from 0.3~1. The appropriate distance from the trailing-edge to the control area is around 

19~56h or 8~190. So in this study, the height of MVG h is assumed to be 0/2 and the 

horizontal distance from the apex of MVG to the ramp corner is set to be 19.5h or 9.750. The 

distance from the end of the ramp to the apex is 32.2896h. The distance from the starting point 

of the domain to the apex of MVG is 17.7775h. The height of the domain is from 10h to 15h 

while the width of the half domain is 3.75h. The geometric relation of the half of the domain can 

be seen in Fig. 3.4, where the symmetrical plane is the centre plane. 

 

 
Figure 3.3 The Geometry of MVG 
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Figure 3.4 The Schematic of the Half Grid System of Case 1 
 

 Because the singularity of the geometry, it is difficult to use one technique to generate 

the whole grid system. A general grid partition technique is used in this grid generation. As 

shown in Fig. 3.4, three regions are divided as: the ramp region, MVG region and fore-region. 

Between each two regions, there is a grid transition buffer. Because of the symmetry of the grid 

distribution, only half of the grids need to be generated. The grid number for the whole system 

is: nspanwisennormal nstreamwise=1371921600. 

 The grid generation includes two steps: first using analytical methods [22, 23] to 

generate the algebraic grids; next using elliptic grid generation equation to improve the 

orthogonal and smooth property of the grid. 

 The schematic figure can be shown in Fig. 3.5. The procedures for grid generation are: 

first generating the boundary grids of the lower and upper boundaries; next generating the inner 

grids by interpolation. Figure 3.6 shows the generated mesh with a grid interval of 8 in 

streamwise and of 6 in normal directions. 

 

Figure 3.5 The Geometry Sketch of the Ramp 
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Figure 3.6 The Grid System of Case 1 
 

 Because of the specification of the boundary conditions on the body surface, an 

orthogonal grid is very important to ensure the high accuracy of the computation. This is 

particularly important to the case with complex geometry, where the zero normal gradient 

condition is usually realized by using the derivative along the normal grid line. To make grids 

orthogonal and smooth, a grid solver was developed by the group of the second author based 

on Laplace equations and algebraic transformations (see Ref. 50).   

 

Figure 3.7 The Local View of Grids around the Trailing-edge 

 

Figure 3.8 The Surface Grids of MVG in Patches 
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 In order to generate the complete grids of MVG, it is essential to generate the surface 

grids. According to our experience, the quality of the surface grids will directly influence the 

quality of the 3-D volume grids, and the accurate description of the geometry by the surface 

grids can enhance the accuracy of the computation. Because the surface of MVG is of high 

singularity, it failed to use the automatic grid generation technique like projection by some 

commercial software. In this study, some manual work had to be done by the following steps: 

first a modification is made by smoothing the trailing-edge using a very small arc (see the yellow 

part in Fig. 3.7); next the surface is divided into many small patches so that the singularity of the 

shape is reduced in each patch; thirdly, the skeleton grid lines are constructed manually in the 

patch using some grid generation software in an interactive manner. Afterwards the lines are 

discretized into grid points. Careful adjustments are made to make the distribution of grids as 

smooth as possible; Finally, optimizations are made to let grid lines transit fluently between 

patches. The final surface grids can be seen in Fig. 3.8. 

 The final grids can be seen in Fig. 3.9-3.10. More details can also be found in Ref. 51. 

 

Figure 3.9 The Grids in Certain Cross-section 
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Figure 3.10 The Grids at the Foot of the Trailing-edge 
 

 

Figure 3.11 The Grids at the Ramp Corner 
 

 In order to make comparison with case 1, the grids of case 2 is generated by some 

modification to the grids of case1. Fig. 3.11 shows a local view of the grids at the ramp corner. 

Using the inflow flow profile described in the next section, a summary is given in table 1 about 

the geometric parameters of the grid system. Because the existence of MVG geometry, there 

are inevitable grid deformation and local clustering at the location where the shape changes 

discontinuously. To void such extreme cases, the grid intervals in wall unit are gauged at the 

entrance of the domain of case 1, the results of case 2 is the same as that of case 1. 

Table 3.1 The Geometric Parameters for the Computation 
 

Lx Ly Lz x+ y+ z+ 
3.750 5-7.50 25.030 26.22 1.36-38.38 12.79 
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3.3 Boundary Conditions 

 The adiabatic, zero-gradient of pressure and non-slipping conditions are used for the 

wall as: 

0 nT , 0 np , U=0                                                                              (3.21) 

The non-reflecting boundary conditions are applied for far field and periodic boundary 

conditions are adopted in the spanwise direction. No visible artificial reflections are observed by 

the shock waves. 

  It is a challenging topic about how to get fully developed turbulent inflow comparable to 

the experimental conditions? There is a large body of published work on generating turbulent 

inflow boundary condition for simulation of complex spatially developing external flows; the most 

representative paper is perhaps that of Lund, Wu & Squires (1998). Lund et al [52]. (1998) 

developed a simplified version of the Spalart method by invoking only the transformation on 

independent variables at two streamwise stations without altering the Navier-Stokes equations. 

This method and its subsequent variations have been shown to yield reasonable inflow 

conditions for complex, spatially developed flows because quite often the downstream pressure 

gradients and geometrical variations mask any major defects of the inflow. However, because of 

their semi-empirical nature, even with DNS resolution, it would be quite challenging for these 

methods to generate results that can be considered as experimental data quality for the 

turbulent boundary layer. Therefore, in present work, the turbulent mean profile and velocity 

fluctuations have been obtained from a separate DNS computation of compressible turbulent 

boundary layer. 

  The inflow conditions are generated using the following steps: 

 a) A turbulent mean profile is obtained from previous DNS simulation result from Ref. 53 for the 

streamwise velocity (w-velocity) whose distribution is scaled by using the local displacement 

thickness and free stream velocity. The DNS work was done for a laminar-turbulent transition on 

a flat plate with 60 millions of grids. The Reynolds number is 1000 based on the inflow boundary 
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layer thickness of displacement. At the first grid point in normal direction has  0 43y .  . The log 

law was checked and fully developed turbulent flow was confirmed to be obtained.    The basic 

transfer is based on the assumption that the same distribution exists between the relation of 

*
eU / U ~ y /  . The averaged streamwise velocity of MVG case can be got by smooth 

interpolation (3rd spline interpolation). 

 b) The pressure is uniform at inlet which is same as the free stream value. We treat the inflow 

pressure as a constant without fluctuations.  The temperature profile is obtained using Walz’s 

equation for the adiabatic wall:  

  The adiabatic wall temperature wT  is determined by  22)1(1 eew MrTT   , where 

the subscript ‘e’ means the edge of the boundary layer and r is the recovery factor with value 

0.9. The temperature profile is obtained by Walz’s equation, 

        222)1( eeewe UUMrTTTT                                                                 (3.22) 

c) The fluctuation components of the velocity are separated from the velocity at every 

instantaneous data file (total 20,000 files). The fluctuations are extracted by comparison of the 

mean flow and the instantaneous flow at each time step. The instantaneous data were recorded 

on three sections in the fully developed turbulent zone, which are used as the inflow data for the 

current work. Such fluctuations are rescaled in the same way. Because

   221 2e w e e eT T T T r M U U    , we can get   21 edT r M UdU    by ignoring the eT  and eU in 

the non-dimensional form, or   21 eT r M U U      .  Density fluctuation is determined by

T
T

 
 


. 

d) Finally, the transformed parameters are u U u   , v V v   , w w  ,    , 2

Tp
M





,  T T T   . 
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 Such inflow conditions are, of course, not the exact solutions of the Navier-Stokes 

equations. The flow solver will adjust and modulate the flow into fully developed turbulent flows 

while propagating downstream. 

 

3.4 Code Validation 

 Because the 5th order bandwidth-optimized WENO scheme is a quite mature method 

and the problem studied in this paper contains shock waves, a supersonic inviscid flow around 

the half cylinder at M=4 was selected as the validating test. The test can demonstrate the 

scheme’s ability for shock capturing and confirm the correctness of the code system. Fig. 3.12 

shows the isobar contour in the middle section in the spanwise direction, which indicates that 

the scheme can capture shock waves with essentially free of oscillations. 

 

Figure 3.12 The Contour of the Pressure 

 

Figure 3.13 The Comparison of  the Pressure 
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Figure 3.14 The Comparison of the Shock Location with that of Rusunov 
 

 Fig. 3.13 and 3.14 show the comparison between the numerical results and the 

asymptotic solution from Rusunov, which is usually considered as the “theoretical” solution of 

that problem. A good agreement is obtained between the two results. The convergence rate in 

Fig. 3.15 shows a reduction of about 6 orders of the residual was obtained. 

 Additional computations were made by rotating the curvilinear coordinates system 

alternatively to make the problem three-dimensional. The results prove the correctness of the 

current codes. 

 

Figure 3.15 The Converging History of the 5th WENO Scheme 
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Figure 3.16 The Pressure Contour at the Central Plane and Body Surface 
 

 

Figure 3.17 The Spatial Streamlines 
 

 Another small case is set up for computation on a MVG controlling laminar ramp flow 

with M=3 and Re=4800, where a very coarse grid number was selected as 

nstreamwisennormalnspanwise=42012164. The purpose of that test is to check if the computation 

can qualitatively capture the main flow structures of the problem. It can be found in Fig.  3.16 

that the main shock and expansion waves are captured by the simulation; the reflecting shock 

wave generated by ramp is clearly distinguished as well.  There is a hint about the possible re-

compression shock wave. The pair of primary counter-rotating streamwise vortices is visualized 

by streamlines in Fig. 3.17. The preliminary results show that the main flow structures 

qualitatively agree with the results by Babinsky [7]. So this means the primary structures are 

captured and correctly described by the computation qualitatively, although there are few small 

scaled structures lost due to the reason that the grids are too coarse. The code system can be 
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used for the subsequent LES with much more grids. The validation made here is just for 

evidence that out LES code and scheme are correct for the Euler solver. The further validation 

for SBLI is made for a compression corner by comparing our LES results and experimental 

results [7,17] (see Figures 3.18 and Figures 3.19). We believe it is better to compare our LES 

results with experiment for the validation purpose. 

 

(a)                                                             (b)  

Figure 3.18 (a) The Instantaneous Digital Schlieren at Central Plane (ramp angle is 24 degree) 
and (b) The Schlieren Pictures from the Experiment (ramp angle is 25 degree) 

 

Figure 3.19 (a) The Schlieren Picture from Babinsky and (b) The Numerical Schlieren Picture at 
the Central Plane 
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CHAPTER 4 

NUMERICAL RESULTS FOR SUPERSONIC RAMP FLOW 

4.1 Inflow Boundary Layer Profiles 

 The inflow profiles are checked ahead of the MVG after long periods of computation. In 

order to define a reference coordinate system in this and following sections, the apex of the 

MVG is selected as the original point. The section for checking is located at 11.97h from the 

inlet in the streamwise direction. At this section, the Pitot pressure recovery coefficient and 

incompressible shape factor Hi are calculated and averaged in the spanwise direction. The Pitot 

pressure recovery coefficient used in this work is defined as: 

    
H

Ptot dyppHC
rc

0
001                                                                                  (4.1) 

where H can be a value approximately as the height of the domain. The definitions of 

displacement thickness (*) and momentum thickness () are given as:                                                                                                              
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











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







H

H

dyUUUU

dyUU

0

0

*

)/1(/

)/1(





                                                                              

 (4.2) 

 Here, the averaged 
rcPtotC  is 0.9912, and the averaged Hi =  /* =1.35. As well 

known, the Hi for the laminar flow is around 2.6 and for the standard turbulent flow is about 

1.2~1.4. So, the results indicate that the methods described in Chapter 3 produce a fully 

developed turbulent inflow.  

 Fig. 4.1 shows the inflow boundary layer velocity profile in log - coordinates. There is a 

well-defined log region and the agreement with the analytical profile is well throughout. These 
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results are typical for a naturally grown turbulent boundary layer in equilibrium (see Guarini [54] 

et al).  

 

(a)                                                                         (b)  
Figure  4.1  Inflow Boundary-layer Profile Comparison with GUARINI et al’s  (a) Inflow Velocity 

Profile by Our Computation  (b) Inflow Velocity Profile by Guarini [54] ( ** 2.5 log 4.7U y  ) 
 

4.2 Results of the Supersonic Ramp Flow (without MVG) 

 For comparison with the MVG-ramp flow, the computation is made first on the ramp 

flow without MVG. 

 

4.2.1 Flow Structures of the Instantaneous and Averaged Flow 

 A typical instantaneous flow structure is shown in Fig. 4.2 using certain instantaneous 

data. The basic shock structures are comprised of the separation shock and the reflection shock 

by the ramp. The compression or weak waves generated in the region of separation are a result 

of the gradual thickening of the boundary-layer before it finally separates and not just because 

of the flow fluctuations generated by the convective structures. In fact the fluctuations of these 

weak waves are a result of the breathing motion of the separation bubble. Further a 

reattachment shock is also formed on the ramp section. The separation and reattachment 

shocks merge over the ramp into a single reflection shock.  
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Figure 4.2 The Pressure Contour at the Central Plane and Body Surface 
 

 

Figure 4.3 The Cross-section Streamlines at the Central Plane 
 

 The surface and cross section pressure contour clearly illustrate that the flow 

demonstrates turbulent features qualitatively within and after the separation. This infers that the 

separation has the effect on amplification of turbulence. It is believed that the recirculation of the 

flow makes the fluctuations reiterate within a finite region and develop nonlinearly. From the 

numerical simulation, it can be found that from the development of the separation flow, the initial 

structures are quasi two-dimensional (2-D) for spanwise vortices; however, when the upstream 

three-dimensional (3-D) disturbances arrive, the flow quickly becomes three dimensional. The 

instantaneous vortex structure in the separation zone appears to contain several large vortices 

accompanied by many small ones, as shown in Fig. 4.3.  
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 The instantaneous numerical schlieren image of the central plane is given in Fig. 

3.18(a), which uses the value of ||. In order to get the clear picture of the structures, only the 

small value region is used for visualization. For qualitative comparison, an experimental picture 

of ramp flow at M=2.9 with large Reynolds number is given in Fig. 3.18(b) obtained from the 

experiment by Zheltovodov [19]. The experimental picture should be spanwise averaged in the 

path of the light and time averaged due to the film exposure so that less tiny structures can be 

observed. The comparison of experimental and LES results shows they are not exactly same, 

but pretty much have similar structure. From both pictures, we can observe that the separation 

shock wave has a declining angle which is a little lager but nearly same to the ramp angle which 

is almost aligned with the reflection shock (which is more obvious in the picture of the 

experiment); complex compressive waves are generated underneath the shock by vortices in 

the boundary layer. In contrast to the case of the laminar flow, the separation shock is 

completely separated from the reflection shock with an angle which is much smaller than the 

ramp angle. 

 

4.2.2 The Length of the Separation Zone by SBLI 

 The size of the separation is illustrated by the length from the start of the separation to 

the ramp corner. Because the attachment position from the statistic results of the MVG-ramp 

flow is still scattering, the length from the attachment to the corner is not considered here 

temporarily. The determination about the position of the separation uses surface-limiting 

streamlines and further validated by the rising position of the pressure distribution. Finally, the 

length is estimated at around 4.1~4.20, which is in consistency with that of P. Martin [24], i.e., 

4.20. 
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4.2.3 The Quality of the Downstream Boundary Layer After the Separating Corner 

 The averaged data at the location 1.070 in font of  the outlet along the ramp surface is 

used to make analysis of the characteristics of the boundary layer. The incompressible 

displacement thickness, momentum thickness and shape factor are calculated based on the 

time-averaged flow field. The definitions for the thickness can be seen in Equation (4.2),  “H” in 

the equation is selected as a height within the reflection shock wave, and “U” uses the value 

after the shock wave, i.e., (w/U,v/U)=(0.7384, 0.292).  The final results are: the 

incompressible displacement thickness is 0.6946150, the incompressible momentum thickness 

is 0.4635100, the shape factor Hi is 1.49860. The Pitot pressure recovery coefficient is about  

0.787.                                                                                                                                                                                                                                                                    

 

4.3 Results of the MVG Controlled Ramp Flow 

 

 As already mentioned, numerical simulations are made with M=2.5 and Re=5760, but 

the experiment of Babinsky has a much larger Re, i.e., about 28800. So the comparison 

between the computation and experiment in this paper should mainly be qualitative. 

 

4.3.1 Velocity Profile Behind MVG 

 Fig. 4.4 gives a qualitative comparison with experiment (Babinsky et al [7], 2009) in the 

time and spanwise averaged velocity profile behind MVG. Qualitative agreement is achieved. 
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(a) 

 

(b)  
Figure 4.4 Qualitative Comparison of Averaged Velocity Profile behind MVG with Experiment (a) 

Averaged Velocity Profile behind MVG  (b) Averaged Velocity Profile by Babinsky et al 
 

4.3.2 The Three Dimensional Shock/Expansion Wave System of the MVG-ramp Flow 

 Because of the supersonic boundary layer inflow, it is expected that MVG will lead to 

strong disturbances like shock waves. Based on the schlieren picture of the experiment, 

Babinsky [7] presented the structure of the wave system, i.e., the first reflection shock, the 

expansion wave system and the re-compression shock, as shown in Fig. 3.18a. The first shock 

will bend within the incoming boundary layer due to “the change in Mach number”, and “a 

second shock wave then turns the flow back to horizontal”. A subtle oblique “” structure is 



 

34 
 

observed at the foot of the re-compression shock from the picture. In Fig. 3.18b, we present the 

numerical schlieren picture of the time-averaged flow field at the central plane. In the figure, the 

two shock waves are well described by the computation. The bending of the main shock to the 

wall can be distinguished; the oblique “” structure can be found on the foot of the second shock 

as well. The measured shock angles from Babinsky’s experiment are: 26.869 for the first 

shock, and 21.93 for the re-compression shock. In contrast, the computational values are: 

26.988 for the first shock, and 24.656 for the re-compression shock. Considering the declining 

angle of the trailing-edge is 70, not the 90 as in the experiment, the computational results 

show a reasonable agreement with experiment. Note that the experiment work does not include 

a ramp, but the computation does. 

 Although the clear presentations are given by both experiment and computation, there 

is no available information about the possible 3-D structure of the shocks which will be given 

below. In Fig. 4.5, the spatial structures of the wave system are given by instantaneous cross-

section pressure contours. From the first section in Fig. 4.5, the wave system is found to be the 

main MVG ramp shock wave and the expansion wave emanating from the edge of the MVG. 

The remaining sections show an arc-like structure of the re-compression shock wave, which is 

located behind the MVG ramp shock wave. The size of the arc keeps growing while moving 

downstream. The curve shape of the re-compression shocks implies the function of the re-

compression shock wave is to make the expansion flow satisfy the “virtual” boundary condition 

created by the streamwise vortices, at least at the initial stage of the formation of the shock 

wave. Detailed investigations show that, the head and feet of the arc-like shock are separated 

from each other in the initial stage (see Fig. 4.6a). They begin to connect to form a complete arc 

curve at a certain downstream location, as shown in Fig. 4.6b. The mechanism about this 

phenomenon will be discussed in the next sub-section. 
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Figure 4.5 The Overview of the 3-D Structure of the Shock Waves 

 
 (a) 

 

(b) 

Figure 4.6 The 3-D Structure at the Inter-mediate Section 1 (a) and 2 (b) 
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Figure 4.7 The Time-averaged (upper) and Instantaneous (lower) Surface Pressure 
 

 Fig. 4.7 shows the surface pressure structure by the time-averaged and instantaneous 

surface pressure contour respectively. From these figures, the surface pressure structure can 

be described: there are low pressure regions on both sides of the MVG, which obviously results 

from the suction effect of the primary streamwise vortices. After the foot of the trailing-edge, 

there is an isolated high pressure region, which corresponds to the stagnation point of the flow 

near the wall. Afterwards there is a pair of oblique high pressure slots, which are followed by 

low pressure slots. In the region around the center line, another high pressure region (in the 

sense of average) appears again. The mechanism about the structures will be discussed in the 

next sub-section. 

 

4.3.3 The Topology of the Separation and Vortices of the MVG Flow 

 From the experiment of Babinsky [7], useful information is given by surface oil flow. For 

comparison, the pictures of the surface oil flow from experiment and limiting streamlines from 

the computation are given in Fig. 4.8-4.9. The topology of the two figures is essentially the 

same. The separation lines of the horseshoe vortex, the secondary separation lines beside the 

MVG and the ones after the MVG are clearly described by computation. Such lines are the most 

obvious traces found in experiment due to the deposit of the oil. Some differences exist 
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between the computation and the experiment. The biggest difference between the results is 

that, the separation ahead of the MVG in experiment is smaller than that of computation. The 

reason might be that the Reynolds number in computation is not as large as in experiment. The 

horseshoe vortex in computation has a stable or a little shrinking region, whereas the region in 

experiment seems to be enlarged beside the MVG.  

 

Figure 4.8 The Surface Oil Flow by Babinsky 
 

 

Figure 4.9 The Surface Limiting Streamlines by Computation 
 

 In order to explore the mechanism of the separation topology, further investigations are 

made on the separation pattern at the end and the side of the MVG. In Fig. 4.10 and 4.11, 

surface limiting streamlines are depicted on the wall surface. It can be seen that the separation 

pattern of the primary streamwise vortices is an open-typed separation (see Fig. 4.11(a)). The 

separation lines locate on the upper edge of the MVG and end at a degenerate nodal point (NP) 

near the top of the MVG. This indicates that the separation completely departs form the surface 

and becomes a fully three-dimensional separation. Beside the MVG, there are two pairs of 

secondary separations, the one lies on the bottom wall, and the other lies on the side of MVG. 

Both separations are open-typed dominant ones and ended in spiral points (SPP). This also 

implies the end of the surface separation and the lift up of secondary vortices. After that, there is 

a newly generated pair of secondary separation on the bottom wall surface after MVG, which is 
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started from a pair of saddle points (SDP). After the trailing-edge, there is a source-typed nodal 

point (NP) on the wall, which corresponds to the stagnation point in the back dead-air region. 

There are other small separations as well, like the ones started form saddle points and ended in 

spiral points. Their length scale is in general quite small and they are thought to play a minor 

role.  

 

Figure 4.10 The Separation Pattern near the end of MVG 
 

 

(a) 
 

 

(b) 
Figure 4.11 The Various Views of Surface Separation Pattern (SSP)  a) SSP on the Side of 

MVG  b) SSP Backgrounded using the Pressure Contour 
  

Horseshoe 

Horseshoe 
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 In summary, according to the above analyses, a dynamic vortex model can be obtained 

and shown in Fig. 4.12 in the one-half of the symmetric domain: there are mainly 5 pairs of 

vortices in the flow field near MVG, i.e., one pair of horseshoe vortices; one pair of primary 

vortices by inflow separation beside the MVG; two pairs of secondary vortices on the side of 

MVG and underneath the primary vortices, which will leave the body surface later to become 

fully 3-D separations by the way of spiral points in the body surface, and interact with the 

primary vortices when propagating downstream; and one pair of newly generated secondary 

vortices above the bottom wall surface, which are located after the dead-air region behind the 

MVG and caused by the strong primary vortex.  

 

Figure 4.12 The Dynamic Vortex Model 
 

 

Figure 4.13 The Comparison between the Computation and the Validating Experiment 
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 This 5-pair-vortex model near MVG is different from the one reported in Ref. 7 by 

Babinsky. The difference mainly exists in the secondary vortex structures. In Ref. 6, the first 

secondary beside the MVG and the new secondary vortex under the primary vortices in Fig. 

4.12 were thought to be the same vortex, while the current model shows the first one will end in 

a pair of spiral points, lift up and mix with the primary vortices, while a pair of new secondary 

vortex will be generated under the primary ones. So the critical point to validate the current 

model is the existence of the spiral points due to the surface separation. Recently in April 2010, 

after being told the predictions and required for validation about the spiral points, the 

experimentalists at the University of Texas at Arlington (UT Arlington) repeated their experiment 

at the same Mach number [56,57]. Instead of only checking the oil flow after the run of the wind 

tunnel, they took a video from the top view to record the process of the MVG oil flow. A distinct 

pair of oil accumulating points was found in the video (see the experimental snapshot in Fig. 

4.13). The points just correspond to the spiral points, and this verification justifies the vortex 

model presented in the paper. 

 Surface separation pattern can explain the surface pressure structure to some degree. 

Around the stagnation point at the end of MVG, the flow moves down while decelerating 

towards the wall. This process will transfer the kinetic energy to the potential energy of the fluid, 

i.e., reduction of velocity results in the increase of the pressure. That’s why there is a high 

pressure spot at the centerline after the MVG (see Fig. 4.7 and 4.11(b)). The fact that the 

secondary separations beside the MVG end in spiral points indicate the secondary vortexes will 

lift up and interact with the outer high speed flow. This interaction will decelerate the fast flow 

and lead to compression. In the supersonic flow, the disturbances will produce a shock wave, 

which propagates approximately along the Mach line, and result in a pair of high pressure slots. 

The re-acceleration of the flow after the compression generates the accompanied low pressure 

slots. The structures of the surface pressure show a reasonable correspondence to the flow 

structure. 
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 In order to study the 3-D structures of the vortices, the cross-section streamlines are 

drawn at several sections with constant streamwise grid indices, as shown in Figs. 4.14-4.19. 

The streamwise positions of the cross-sections are Lfrom  apex/h 1.15, 3.04, 6.45, 14.95, 18.78 

and 27.41, where Lfrom  apex is the streamwise distance measured from the apex of MVG. The 

time-averaged velocity field is used for drawing streamlines, and the streamwise velocity 

contour is used for background. From these figures, it can be seen that: a) the so-called 

momentum deficit is related to the streamwise vortices, which will be discussed later; b) the 

streamwise vortices initially locate in a lower position, but then gradually lift up when 

propagating downstream. Secondary vortices are observed under the primary ones. The result 

is in consistency with the referenced computations and experiments. The mechanism is thought 

to be the “upwash” effect induced by the vortex; c) the streamwise vortices are not symmetric to 

the central plane in the downstream position. The asymmetric leeward separation flow occurs 

elsewhere in fluid dynamics, like that of the slender body at high attack angle, where the 

mechanism is thought to be the structural instability of the cross-section topology. Further 

knowledge is recommended to related references; d) the streamwise vortices become weak 

when moving downstream and further degenerate within the SBLI region (see Fig. 4.18). After 

that location, there is a recovery about the vortex structure, as shown in Fig. 4.19, but the 

circular cross-section streamlines do not mean the existence of a strong vortex. 

 

Figure 4.14 The Locations of the Cross Sections (Lfrom  apex/h 1.15, 3.04, 6.45, 14.95, 18.78 and 
27.41) 
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Figure  4.15 The Streamlines at Cross Section 2 

 

Figure 4.16 The Streamlines at Cross Section 3 

 

Figure 4.17 The Streamlines at Cross Section 4 
 

 

Figure 4.18 The Streamlines at Cross Section 5 
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Figure 4.19 The Streamlines at Cross Section 6 
 

4.3.4 The Formation of the Streamwise Momentum Deficit After the MVG 

 The momentum deficit is a unique phenomenon which was first observed in the 

experiment by Babinsky [7], which is later confirmed by the computation of Ghosh, Choi and 

Edwards [8] and Lee [9]. For clarity, the typical structure of the deficit is shown again in Fig. 4.20 

using the averaged streamwise velocity at Section 2 in Fig. 4.14. In the region near MVG, the 

shape of deficit appears to be a circle, with a root connected to the boundary layer usually 

(mushroom shaped). Underneath the circle, there are two high streamwise velocity regions. 

About the mechanism of the deficit, Babinsky thought it is the wake of MVG, and Lee only 

mentioned “the two vortical tubes merge together to create a larger tube with two counter-

rotating vortices inside”. What is the relation of the deficit to the flow structure? What does the 

low speed flow come from? The existing explanations did not provide a clear mechanism about 

the formation of the deficit. 

 In order to investigate the origins of the deficit, a heuristic analysis is made by 

investigating specific streamlines that are defined in certain cross-sections of the momentum 

deficit. Firstly, a cross-section after the MVG is selected as a reference plane as shown in Fig. 

4.21, in which the momentum deficit on the plane is shown by using the contour of the 

instantaneous streamwise velocity, which appears in a green circular region. Next, we put some 

seeds around the boundary of deficit and within the deficit. Then we draw the 3-D streamlines 

starting from the seeds in both backward and forward directions. Because the seeds surround 
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or locate within the deficit, the distribution of the backward streamlines qualitatively reflects the 

origins of the deficit. It can be seen from Fig. 4.21 that: a) all backward streamlines rotate 

around the primary streamwise vortex, which indicates the formation of the deficit is caused by 

primary vortices; b) all backwards streamlines come from the upper surface of the MVG, which 

indicates the main source of the deficit is the shedding of the upstream low-speed boundary 

layer, but is not the boundary layer flow around the MVG and after the MVG. 

 

Figure 4.20 The Contour of the Averaged Streamwise Velocity at Section 2 

 

Figure 4.21 The Spatial Stream-lines passing through the Boundary of Deficit 

 

Figure 4.22 The Cross-section Streamlines 
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Figure 4.23 The Streamwise Velocity Contour at two Streamwise Computational Planes 

 

Figure 4.24 The Streamwise Velocity Contour at a Horizontal Computational Plane 

 

Figure 4.25 The Iso-surface of the Streamwise Velocity 
 

 To further validate the first conclusion given above, the cross-section streamlines are 

drawn at the same section as shown in Fig. 4.22, where the aforementioned seeds are drawn to 

show the boundary of the deficit. The results show that there is a pair of counter-rotating 

vortices, and the deficit is approximately within the vortex region.  

 We also draw streamwise velocity contours in the streamwise and horizontal 

computational sections, as shown in Figs. 4.23 and 4.24. From these figures, it can be found 
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that: a) the slow fluid in deficit is mainly the results of the shedding of the upstream MVG 

boundary layer, but not the ejection from the bottom of the local boundary layer through the so-

called mushroom mechanism; b) the boundary layer in outer spanwise location will be carried 

along by vortices into region closer to the center line. That is why the streamwise velocity 

contour in Fig. 4.24 seems to start from a finite distance after MVG. This phenomenon is also 

consistent with the trace of the spatial streamlines in Fig. 4.21. At last, an iso-surface of 

streamwise velocity is drawn in Fig. 4.25 by choosing a value of the deficit at its boundary. The 

surface wraps the MVG and forms a distorting cylinder, i. e., the 3-D surface of the deficit. The 

results again agree with the above two conclusions. 

 

4.3.5 Vortex Rings - A New Mechanism in MVG-ramp Flow Control 

 According to the up-to-date knowledge from the experiment and computation, a pair of 

primary counter-rotating streamwise vortices and the underneath attached secondary ones are 

considered to be the mechanism of the flow control. The primary vortices will bring about high 

speed momentum entrainment to the location near to the floor [9], which is favorable to 

resistance of the adverse gradient of the pressure. According to our computation and the results 

from other authors [8], the rotation of the streamwise vortices becomes weak quickly (see Fig. 

4.26) and streamlines oscillate in the space due to the shear layer instability around the 

momentum deficit circle. It suggests that there might be some other mechanism in the MVG 

controlled flow, besides the only pair of streamwise vortex tubes to cause the momentum 

exchange. 

 Because the vortex axis is usually the location with the minimum pressure, the iso-

surface of pressure is an easy tool to visualize the vortex tube. In Fig. 4.27, we draw the iso-

surface of pressure using the same instantaneous data as that of Fig. 4.26. Besides the 

expansion wave and the surface wrapping the tube near the trailing-edge, the ring-like 

structures are found in the subsequent downstream region. Such rings appear initially not far 
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away from the trailing-edge, and become larger and irregular when moving downstream; in the 

meanwhile the streamwise vortex tubes become weaker and less observable at certain 

locations. 

 

Figure 4.26 The Instantaneous Spatial Streamlines 

 

Figure 4.27 The Iso-surface of the Instantaneous Pressure 
 
 

 To investigate the vortex structure within and after the separation, a technique [55] is 

used by the iso-surface of the 2 , which is the second eigenvalue of the 33 matrix comprised of 

velocity gradient, i.e.,   


3

1k kjikkjikij SSM  where  1 2ij i j j iS u x u x       and 

 1 2ij i j j iu x u x       . A small negative value is selected for visualization. It can be seen from 

Fig. 4.28 and 4.29 that there are a large amount of vortices with various length scales in the 

concerned region in which many of them are streamwise vortices. Moreover, hairpin vortices 

with ring-like head are found within the vortices. The absence of the inflow vortices at the 
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selected iso-surface value means that the intensity of the vortices is stronger in the separation 

zone. This provides an indirect proof of the amplification of the fluctuation by the flow 

separation. 

 The well-shaped rings are approximately perpendicular to the flat plate, and then begin 

to deform while propagating downstream. Finally, they hit the separation shock of SBLI and 

strongly interact with the separation shock. The lower part of the ring first hits the shock and the 

speed decelerates. Next, the upper part of the ring hits the shock. So the vortex rings on the 

ramp appear in an oblique posture. The rings maintain their existence until flowing out of the 

domain. 

 

Figure 4.28 Vortex Rings shown by the Iso-surface of 2 
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Figure 4.29 The Side View of Vortex Rings on the Ramp 
 

 

Figure 4.30 Surface Limiting Streamlines at SBLI Region 
 

 

Figure 4.31 The Time-averaged (left) and Instantaneous (right) Friction Coefficient Distribution 
at SBLI Region. 

 

4.3.6 The Characteristics of the Separation and the Comparison with the Ramp Flow without 

MVG 

 Fig 4.30 gives the time-averaged surface limiting streamlines at SBLI region. Fig. 4.31 

shows the The time-averaged (upper) and instantaneous (lower) friction coefficient distribution 
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at SBLI region. Because the attachment location is difficult to determine, the size of the 

separation is illustrated by using the length from the start of the separation to the ramp corner 

as defined before. From the figure, the shape of the separation zone looks like the “V” shape, 

the length of the separation at the two spanwise sides of the domain is estimated to be around 

6~6.5h and the length at the center line is estimated to be around 5h. Compared with the value 

8.2~8.4h (4.1~4.20) for the ramp only case, MVG distinctly reduces the length of the separation 

region. In Fig. 4.32, a comparison is given on the distribution of the time-averaged streamwise 

velocity of the two cases. The location of the distribution is on the center line and 4.56630 in 

front of the ramp corner. Although there is a dent in the distribution of MVG-controlled flow due 

to the momentum deficit, the shear of the streamwise velocity at the bottom of the boundary 

layer of case 1 is higher than that of the ramp flow without MVG. And as we know, larger 

streamwise velocity is favorable to separation resistance. In a recent paper [58], Manchester, 

Manisankar et al using micro ramps on a 24deg. compression ramp model (M=2.0) gave a 

possible explanation leading to the formation of corrugations with such flow control devices (that 

generate streamwise vortices). Further they also observed formation of striation pattern on the 

ramp surface with control. 

 

Figure 4.32 The Distribution of the Time-averaged Streamwise Velocity of the two Cases 
 

4.3.7 The Quality of the Downstream Boundary Layer and the Effect of the Control 

 Using the same method in Eq. 4.1 and 4.2, the incompressible displacement thickness, 

momentum thickness, shape factor and the Pitot pressure recovery coefficient are calculated at 
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the same section based on the time-averaged data. For comparison, we use the same value of 

“U” as is used in Eq. 4.2. The final results are: the incompressible displacement thickness is 

0.6788470, the incompressible momentum thickness is 0.4896460, the shape factor Hi is 

1.38640, and the Pitot pressure recovery coefficient is about 0.649. The results show that the 

MVG-ramp flow has a better shape factor but a lower Pitot pressure recovery coefficient 

compared to that of the ramp only case. Fig. 4.33 shows the centerline mean wall pressure 

distribution after the MVG for both cases. 

 

Figure 4.33 Comparison of the Mean Wall Pressure Distribution at the Centerline after the MVG 
(both on the base plate and the ramp surface). 
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CHAPTER 5 

NUMERICAL STUDY ON THE MECHANISM OF VORTEX RINGS 

5.1 Vortex Ring Structure 

 The rings are generated almost erectly at first and then be continuously distorted and 

enlarged while propagating downstream. These rings could be a dominant factor of the 

mechanisms of MVG in control of shock boundary layer interaction. 

 Fig. 5.1 demonstrates the instantaneous numerical schlieren at the central plane. We 

can see many vortex rings appear in circular shapes. Informed with the prediction of vortex 

rings, the experimentalists in UT Arlington used some technology to validate the discovery. 

They used the particle image velocimetry (PIV) and the acetone vapor screen visualization to 

track the movement of the flow. More specifically, the flash of a laser sheet is used to provide 

the light exposure at a time interval of micro seconds. Fig. 5.2 presents a typical image at the 

center plane using PIV and the acetone vapor technology(Lu et al [47]). It is clearly 

demonstrated that a chain of vortex rings exists in the flow field after the MVG, same as shown 

in LES results (see Fig. 5.1).  

 

Figure 5.1 The Numerical Shilieren at the Center Plane 
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(a)  
 

 

(b)  
Figure 5.2 The Laser-sheet Flash Image at the Center Plane (Lu et al 2010)  (a) Using PIV, (b) 

Using the Acetone Vapor 
 

 Our numerical discoveries of the vortex ring structures are also confirmed by 3-D PIV 

experiment (Fig. 5.3) conducted by Sun et al at Delft University [33]. Compared the two results, 

we can find the similar distribution of streamwise ( z ) and spanwise vorticity ( x ) components, 

which also proves the existence of ring structures. The Kevin-Helmholtz vortices part in Fig. 5.4 

corresponds with the ring head in Fig. 4.28. The underneath part which is illustrated as 

streamwise vortices are two counter rotating primary vortices which are considered to be the 

main source of the ring structure as explained later .  

 

Figure 5.3 K-H rings behind MVG by (Sun et al 2011) 
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Figure 5.4 Distribution of Kelvin-Helmholtz Vortices and Streamwise Vortices from LES 
  

 The vorticity component which revolves towards the vertical direction ( y  in our case) 

is not shown in Fig. 5.3 and 5.4. If this missing part was provided, we can see the vortex ring 

structure clearly by the combination of all the components of vorticity as shown in Fig. 5.5 which 

is in accordance with the structure in Fig. 4.28. 

 

(a)  

 

(b)  
Figure 5.5 Vortex Rings shown by the Components of Vorticity (a) Global view  (b) Close-up 

View 

1 

3 
2 
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 According to further analysis, we find that the ring structure is mainly composed by x  

and y  while the streamwise vorticity component z  is absolutely the major source of two 

counter-rotating primary vortex inside the ring structure. x  constitutes the head and part of the 

bottom of the rings and y  forms the two sides. Also, the ring structure is not the perfect one 

since it is not closed on the bottom, instead, the two feet of each ring penetrate inside and 

connect with the inner primary vortices, as shown inside the circles in Fig. 5.5. In Fig. 5.6, the 

ring structure is clearly illustrated by both the total vorticity magnitude and each vorticity 

components. Actually, the vortex tube of each ring changes its direction and  is connected to the 

two streamwise primary vorteics inside at the foot part which is clearlly shown in Fig. 15. Once 

the ring is generated, it will never break up into pieces or seperated parts and disconnect from 

the main vortex structure.  

 

Figure 5.6 Part of the Ring Structure shown by Total Vorticity Magnitude (left) and each 
Components (right) 

 
 To further support the conclusion that the ring structure never breaks up and each ring 

has the feet connected inside, a close-up bottom view of vortex structure illustrated by 2 is 

given in Fig. 5.7 by another transient data set at different time and different location. Here, only 

half of the spanwise domain is used to  make the vortex structure more clear. The iso-suface of 
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2 can show the vortex tubes accurately and it captures two adjacent vortex rings in Fig. 5.7, 

and it apparently visualized the vortex tubes connect to the ring feet inside the vortex structure. 

 

Figure 5.7 Part of the Ring Structure shown by 2(from the bottom view) 
 

 From the analysis of the magnitude of each vorticity component, x  and z  play the 

leading role during the process of propagating downstream. x  mainly origins from the 

shredding of the upstream MVG boundary layer, however, the other two components which 

forms the ring structure are separated from the viscous sub-layer underneath after about 1.1h 

away from the trailing edge of the MVG downstream. They are very likely following the vorticity 

conversion of the streamwise part. During the propagating, x is reduced gradually and the 

rings are extended. In the end of the evolution, the momentum deficit (caused by streamwise 

vortex) disappears and the ring structure is totally distorted.  

 Fig. 5.8 shows the velocity field on a cross section in which it is found that the low 

speed flow from the viscous sub-layer is inhaled into the momentum deficit area continuously as 
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a result of two counter rotating streamwise vortices inside the rings. This may explain why the 

momentum deficit area can survive such a long way and determines the development of the 

ring structure. Fig. 5.9 is the flow field close to the foot and the head of a vortex ring which 

shows the vortex ring is extended outside by the velocity field around it, and that velocity field 

also helps the conversion between the components of vorticity. 

 

 

Figure 5.8 The Velocity Field on the Cross Section 
 

 

Figure 5.9 The Velocity Field close to the Foot (left) and the Head (right) of a Vortex Ring 
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5.2 Conservation of Vorticity 

 Because the original streamwise vortices and new generated vortex rings are both 

located away from viscous sub-layer for some distance, new vorticity in K-H vortex rings can 

only be transported to from the primary streamwise vortices if the distance is not far away from 

the MVG. The conservation of vorticity should make the vortices closely related to each other. 

The vorticity of the shear layer which results in the generation of the vortex rings should be 

transported from the original streamwise vortices. In order to investigate the relationship among 

the vortices, we measured the distribution of the maximum value of both streamwise and 

spanwise vorticity in a specific region (as seen in Fig. 5.10) to avoid the possible affection from 

the viscous sub-layer. 

 

Figure 5.10 The Scope for Vorticity Magnitude Check 
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Figure 5.11 The Instantaneous Vorticity Distribution 
 

 Considering the pair of streamwise vortices are counter-rotating and vortex rings 

intersect the center plane in two locations, we only took the right half part and used positive 

values in Fig. 5.11. Since the grids are not uniform, it is more convenient to use streamwise grid 

position to mark the positions which range from about 1.0h to 9.5h after the trailing edge of 

MVG.  Fig. 5.11 gives the instantaneous distribution of the two quantities along streamwise 

position of grids. From the figure and analysis of the flow field, the following results can be 

obtained: 

1) The locations of the peaks of x,max represent the upper intersection of the K-H vortex rings 

and the center plane. The positions of those peaks are nearly the same as the locations of the 

upper cores of new generated K-H vortex ring tubes which means the maximun value of 

spanwise vorticity happens on the ring head and at the central spanwise plane. 

max,

max,

x

z




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2) The quantities of x,max and z,max both substantially oscillate along the streamwise direction. 

The change of z,max is relatively greater,  while the quantity of the spanwise vorticity between 

the vortex rings appears relatively smaller. This is normal since the two counter rotating 

streamwise vortices are the main structure and almost only the streamwise vorticity is 

generated by MVG at very beginning. 

3) There are two stages of the evolution of the vorticity, which reflect the interaction or coupling 

between the streamwise vorticity and vortex rings: 

The first stage is the coupling stage from the beginning to about 700 (z5h after the trailing 

edge of MVG). In this stage, not only the falling down of x,max corresponds to the peaks of 

z,max, they also oscillate in the opposite directions. This is reasonable because in this period, 

the vortex rings, which are just generated, must obtain the vorticity from the primary streamwise 

vortex due to the vorticity conservation law. 

 The second stage, the post-coupling stage, starts from 700 to the end of box. In this 

stage, the momentum deficit area begins to disappear but the two curves still oscillate 

asynchronously. The interaction between streamwise and spanwise vorticity of course still 

exists, the quantity of the x,max is reduced and the frequency of the oscillation is also increased. 

However, they are not directly against each other. This is because each new generated K-H 

vortex ring is stretching and developing individually. They are no longer aligned with the root on 

the vortex ring bottom. 

 The variation of the quantity of streamwise and spanwise vorticity confirms that vorticity 

of the rings comes from the streamwise votex structure inside the momentum deficit. Without 

enough complement of vorticity from the subviscous layer underneath, new generated spanwise 

vorticity can only be transported from the primary streamwise vorticity. Also, at the very 

beginning part of the first stage, when the vortex structure is not seperated from the subviscous 

layer absolutely, the variation of the two vorticity components keeps the same rule. This 
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declares that the conservation of vorticity plays the leading law during the whole process of the 

ring structure generation. 

 

5.3 Stability Analysis to the Velocity Profile 

  In order to explore the mechanism of the vortex ring generation, the distributions of time 

and spanwise averaged streamwise-velocity are given in Fig. 5.12 along the normal grid lines at 

the central plane. The streamwise positions of the lines are Lfrom apex/h 3.3, 6.7, 10 and 11, 

where Lfrom apex is the streamwise distance measured from the apex of MVG. The dip of the lines 

corresponds to the momentum deficit. From the results, it can be seen clearly that there are at 

least two high shear layers in the central plane, one is located at the upper edge of the dip and 

the other is located at the lower edge. Within the shear layer, there is at least one inflection 

point. In order to demonstrate the existence of the inflection points, the second order derivative 

2w/y2 (w is the streamwise velocity and y is the normal direction) is calculated along the lines, 

and the result of the line at Lfrom apex/h  3.3 is plotted in Fig. 5.13 as an example. The existence 

and correspondence of the inflection points at the upper and lower shear layers is clearly 

illustrated as follow.  

 

 

Figure 5.12 Averaged Streamwise Velocity at Different Sections 
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(a) 

  

(b)  
Figure 5.13 Inflection Points (surface for 3-D)  (a) Averaged Streamwise Velocity at Lfrom apex/h 

3.3 (b) 2w/y2 
 

  It is obvious that the existence of the inflection point in shear layer will cause the flow 

losing the stability and generate vortex rollers by the Kelvin-Helmholtz instability (K-H) theory. 

So the mechanism for the vortex ring generation is a result caused by the K-H type instability, 

and the lost of the stability of the shear layer results in the roll-up of the vortex rings. In order to 

explore the mechanism of the vortex ring generation with viscous fluid, it is necessary to make 

analysis about stability upon the velocity profile. 
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5.3.1 Derivation of Linear Stability Equation 

 As discussed below, a linear stability analysis based on incompressible but viscous flow 

is conducted as following. First, the velocity profile of the upper boundary of the momentum 

deficit area (circled in Fig. 5.13a) is taken to study since the intensity of the upper shear layer 

appears to be stronger than that of the lower shear layer (Fig. 5.13a). If we can prove that, even 

for this temporal and spanwise averaged velocity profile, the flow is instable, and then the 

instantaneous velocity distribution should be unconditional instable.  
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 Equation (5.1) denotes the incompressible and non-dimensional Navier-Stokes 

equation in which, ( , , )V u v w  is the velocity vector. Considering that  

),,(')(),,( 0 tyxqyqtyxq                                                                                      (5.2) 

where q can be specified as ( , , , )u v w p , 0 0 0 0 0( , , , )q u v w P  which indicates the value of 

mean flow, and 'q denotes the corresponding linear perturbation. By eliminating the second 

order perturbation terms, the governing equation for small perturbations can be written as, 
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  As a first step, a localized 2-D incompressible temporal stability for shear layer is 

conducted. Actually, it relates to the distance among two neighboring vortices in the central 

streamwise plane. Assume the normal mode is 
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where the parameter  is given, which is real and set to be 0.5 according to the averaged 

distance between the new generated rings, and c should be a complex number. By plugging in 

Equation (5.3), Equation (5.2) can be rewritten as,  
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where )}Re()({ 0
222   uiDL , and 

dr
dD   

 Considering in 2D case (without w), and by eliminating ˆ ˆ,u p  , we can obtain the 

standard O-S equation on v̂ , 

2 2 2 2 2 2
0 0ˆ ˆ( ) Re[( )( ) ] 0D v i U c D D U v                                                   (5.5) 

 Equation (5.5) is about v̂ , but we need to get the value of c. The value of c determines 

the property of stability of the equation. Let r ic c ic  , if 0ic  , then the disturbance will 

continuously grow and the flow would be instable. Otherwise, the flow would be stable. 

 

5.3.2 Stability Analysis to the Averaged Velocity Profile 

If there is no disturbance at the boundary and it will be free stream outside the domain 

(a, b), then we have the corresponding boundary condition for function v̂  as ˆ ˆ( ) ( ) 0v a v b  and

ˆ ˆ( ) ( ) 0Dv a Dv b  . The second order central difference scheme (Equation (5.6)) is used to 

derive the finite different equation from Equation (5.4),  
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Apply (5.6) to Equation (5.5) we can get the generalized eigenvalue problem:  

0  BcA                                                                                                             (5.7) 
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Where A (symmetric pentadiagonal matrix) and B (symmetric tridiagonal matrix) are the 

coefficients’ matrix and the vector   denotes the values of v̂  at different position. c becomes 

the generalized eigenvalue of Equation (5.7). 
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In the mth line of matrix A and B,  
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 By solving the general eigenvalue problem (5.7), we can get the physical solution of the 

frequency c, whose imaginary part ic  is about 0.068 for our case. The positive value means 

this kind of flow is unstable. Fig. 5.14 shows the corresponding shape of the eigenvector 

function, v̂ . 

 

Figure 5.14 Eigenvector Function of v̂  
  

 The lost of the stability of the shear layer will result in the roll-up of the vortex, which 

appears in ring-like structure in a 3-D view. In Fig. 5.15, the 3D distribution of three components 

of vorticity is given right after the MVG. It shows that spanwise vorticity is first generated at the 

top of momentum deficit area where clusters the streamwise vortices. After that, the ring sides 

for the first ring are also generated on the boundary of momentum deficit. This confirms our 

assumption above. The top boundary of the momentum deficit has the most instable shear 
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layer, so the spanwise vorticity is first generated while the corresponding vortex directly connect 

to the streamwise vortex inside at first. Then the rings show up soon due to the evolution of the 

instable shear layer.  Also we can find that the whole ring is generated on the boundary of the 

momentum deficit, neither from inside nor outside region. So, the shear layer instability is the 

main mechanism of the ring generation. 

 

Figure 5.15 The Instantaneous Vorticity Distribution 
 

 The mechanism of the ring generation is a real 3D process. Study in non-linear, 3D and 

compressible stability analysis is needed to reveal the full mechanism of the shear layer 

instability behind MVG. The current study only involves temporal, linear, and incompressible 

stability analysis which can be considered as a first step to study the wake instability of MVG. 

 The interaction between the streamwise vortices and vortex rings shown by vorticity is a 

new interesting phenomenon. The interaction and vorticity conservation of the primary 

streamwise vortex and new generated K-H vortex ring needs validation by experiment and the 

mechanism is still under investigation. 
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CHAPTER 6 

NUMERICAL STUDY ON SHOCK WAVE-VORTEX RING INTERACTION 

 

 The new generated vortex ring discussed above will immediately interact with the shock 

wave induced by the ramp part. Vortex-shock wave interaction [59] has been studied a lot. Main 

concerned issues in this topic are: a) the deformation of the shock wave; b) the multistage 

features of the interaction caused by the vortex interacting with the primary shock and the 

reflection shocks, etc; c) the acoustic characteristics, which includes near- and far-field of 

acoustic, the dipole and quadruple acoustic pressure structure, etc.  

 Compared with the classic study Ref. 60-62, the vortex rings-shock interaction of the 

MVG controlled ramp flow is different case and could bring a new topic. The differences are: a) 

the interaction is a more complicated 3-D one than the 2-D counterpart, which happens  

between 3-D vortex rings and the oblique shock wave; b) the interaction happens within or close 

to the boundary layer and the separation region, where other flow structures exist like vortices 

with small scale besides the shock wave; c) the interaction is a continuous one, not a one-time 

event; d) besides the rings, components of the primary vortices still exist and make the 

interaction more complicated. Although differences are obvious, results obtained in the standard 

vortex ring-shock interaction can still give hints and suggestions to the current research. 

 

6.1 Influence on Ring Structure by the Interaction 

 In order to make further analyses, it is necessary to get the kinetic information of the 

vortex rings. According to the results of computation, it is found that vortex rings appear 

irregularly after the MVG and before the ramp. They are continuously distorted during 

propagating. Thus, only 3 of these rings (marked in Fig. 5.5b) are checked since they are 
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relatively regular at this stage. It shows that they almost propagate in the same speed and the 

averaged parameters are presented in table 6.1.  

 

Table 6.1  Characteristic Parameters of Vortex Rings on the Plate 

 

 

 

 The shape of vortex rings is badly deformed before they penetrate the shock wave and 

travel along the ramp. But it is still possible to obtain the rough speed of the two obvious vortex 

rings right in front of and behind the shock (see Fig. 6.1, marked as 1 and 2), the value of the 

streamwise velocity can be found as: Vring,1≈0.77U, Vring,2≈0.47U 

 

Figure 6.1 The Three Vortex Rings above the Ramp for Measurement 
  

 For the second ring, Vring,2 is only the streamwise velocity, it will become about 0.68U 

while evaluated along the direction of ramp. The value is in consistency with the known 

knowledge, i.e., typical convective structures usually travel at a speed around 0.7U. For the 

first velocity Vring,1, the result has the same quantity level as well. We can also find that the total 

sring Vring,1 Tring (h/U) Sth 

1.21h 0.78U 1.55 0.26 

1     2 
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speed of the ring dose not change much when it penetrates the shock wave. The little decrease 

to the velocity may be caused by the interaction between ring and viscous sub-layer since the 

rings merge into the lower layer in the boundary layer after they penetrate the shock. However, 

this phenomenon needs to be further verified.  

 

 

Figure 6.2 The 3D View of the Propagating Rings at the Ramp part at Different Time 
 

 In Fig. 6.2, we tracked 3 different rings when they are moving. When the vortex ring is 

passing through the shock wave, the vortex structure is slightly distorted but not damaged; the 

vortex ring does not break down by penetrating the strong shock wave and even keeps the 

topology very well. Since the vortex ring is distorted continuously after it is created (as we can 
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find in Fig. 6.2, the first ring in circle), there's no conclusion that the interaction of vortex rings 

and shock makes the ring to be distorted. The distortion of rings could be induced by the 

particular flow field of inside and outside the ring structure, or the compressing effect of the 

ramp. In Fig. 6.2 and Fig. 6.3 we can also find that those vortex rings exist after penetrating the 

shock wave and their topology are well maintained to the end of the ramp. That means in this 

3D case, shock rarely affects the vortex structure. Fig. 6.4 shows the streamwise vorticity 

distribution at the central plane right before and after a vortex ring penetrates the shock wave, 

from which we can find that the shock rarely determines the evolution of the vortex rings at the 

head part and the vorticity distribution is not changed much. Those rings pass the shock wave 

rather smoothly. 

 

 

Figure 6.3 The Ring Structure at the Ramp part by 2 

 

Figure 6.4  Streamwise Vorticity Distribution at two Different Time Steps 
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 The interaction of vortex rings and shock wave can be explained with Richtmyer-

Meshkov instability (RMI) to some extent. It occurs when an interface between fluids of differing 

density is impulsively accelerated, e.g. by the passage of a shock wave. The vortex rings 

structure is a wave of differing densities, the process of passing the shock wave is the same 

with that in RMI theory. The key point of RMI is the baroclinic effection between  and p .  

 
))((

3
1)(1)()( 2 vvFvv 





p

dt
d

 
(6.1) 

 The quantity of || p  plays a very important role to the vorticity disturbance. 

Actually, it is the most important source term in the process of vorticity variation (Equation (6.1), 

where  denotes the vector of vorticity, F is the external volume force) in our case. Fig. 6.5 

shows the iso-surface of  || p with different values, we can find that : a) The greater 

value of || p  only exists in a small area, thus the flow field, especially the vortex 

structure is rarely affected. b) The small value of || p  mainly happens in the bottom of 

the boundary layer, so the shock wave will not change the vortex rings a lot while those rings 

only exist on the upper side of the boundary layer. That is the reason for why the ring structure 

is so robust and never break down even when it penetrates the strong shock wave. 
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(a) 

 

(b) 

 

(c) 

 

(d) 
Figure 6.5 Iso-surface of || p in the Ramp Part  (a) | | 80p    (b) | | 40p    

(c) | | 20p    (d) | | 10p    
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 From all discussed above, we can conclude that the interaction with strong shock wave 

dose not influence the ring structure much. Those rings keep their shapes, the quantity of 

vorticity, and also travel normally like the shock is missing. However, after penetrating the shock 

wave, the quantity of density and pressure gradient seems increased in the ring structure as 

seen in Fig. 6.6. This phenomenon needs to be further studied.  

 

Figure 6.6 Density Gradients (left) and Pressure Gradient (right) on the Central Plane 
 

 

6.2 Influence on Oblique Shock Wave 

 As newly found structure, the string of vortex rings are fully 3D structures. Thus the 

interaction with shock wave have different features from classic 2-D ones. 

 To better illustrate the process, two kinds of sections are investigated: the centre plane 

and then a series of spanwise computational planes with constant streamwise index. In Fig. 6.7, 

the gradient fields of density   and pressure p  at two different moments are employed to 

analyze the interaction. Fig. 6.8 gives the contour of   and p  of spanwise computational 

planes at the same three successive moments. In order to get the overall understanding of the 

interaction, it is also necessary to directly give the 3-D shape of the shock wave. In Fig. 6.9, six 

snapshots are obtained using the iso-value of pressure. The value of pressure is selected to 
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make the inner shock layer be exposed and seen from outside. The shape of the strong shock 

wave is given by p  in Fig 6.10.  

 
t1  

t1 

 
t2 

 
t2 

(a) (b)  
Figure 6.7 Contours  of a)    and (b) p at Two Moments at the Center Planes 

 

  
(a)  (b)  

Figure 6.8 The Contours of (a)  and (b) p at Spanwise Sections and at Four Successive 
Moments 
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t1 t2 

  
t3 t4 

  
t5 t6 

Figure 6.9 The Shock Wave Shape by the Iso-surface of Pressure and Ring Structure by 2 
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Figure 6.10 The 3D Shock Wave Shape by p   
 

 From the figures, the following features can be observed: 

1) In Fig. 6.7, it demonstrates that there are at two layers of shock wave or wave structures after 

the corner: upper one is the original but quite weaker separation/reflection shock; the other is 

the stronger interacting shock wave caused by the vortex rings. These two layers of shocks will 

merge into one shock wave afterwards, i.e., the oblique shock caused by ramp.  

 2) Comparing Fig. 6.7(a) and (b), it can be found that there is a slip line under the curved shock 

in the contour of  , which cannot be found in the contour of p . The slip line indicates the 

density change across the line, while the pressure keeps the same at the both sides of the line. 

After checking the movie about  , the slip line comes from the original connections between 

vortex rings. 
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 3) In Fig. 6.8 we can found that when a vortex ring penetrates into the shock wave, the 

interaction part of the shock is distorted and its intensity is also reduced a lot. 

 4) In Fig. 6.9, 6.10, it shows that the interaction between shock wave and vortex rings is in fully 

3D. The flow field lost its symmetry and it can be clearly illustrated by the shape of shock wave. 

Multilayer structures and the bump like 3-D shape is one of the typical characteristics of the 

shock-vortex interaction.  

 5) In Fig. 6.10 it can be observed that, at the corner of the ramp, there is no obvious sign of 

shock waves, and the original shock wave retreats to a downstream position on the ramp. This 

result shows that the separation/reflection shock wave is eliminated near the corner. We can 

see that it is induced by the interaction with vortex rings and the viscous sub-layer (Fig. 6.9). 

This kind of phenomenon is a complicated turbulence-shock wave interaction which should be 

studied further.  

 6) When the vortex rings pass through the shock wave (Fig. 6.9 at time t1), the shock wave will 

be distorted like a bump (Fig. 6.9 at time t3), and the bump will be gradually smoothed when 

propagating downstream. We can clearly see that this shape is caused by the vortex ring-shock 

wave interaction. When the vortex enters the shock wave and moves away from it, the distortion 

subsides quickly. The subsequent incoming vortices will repeat the process. At the fifth section 

in Fig. 6.9, the bump shape is less observable, which indicates the vortex combination moves 

far below the shock wave and have less influence on the separation/reflection shock wave. 

 To explain the mechanism of the bump shape of the 3D shock wave, in Fig. 6.11, the 

second ring in Fig. 6.1 (marked as 2) is taken out and the flow filed on a spanwise cross section 

which passes through the center of this ring is plotted. The velocity field is the tangent projection 

of the 3D velocity vector distribution on the cross section which ignores the velocity component 

along the ramp direction. The projection of free stream velocity moves towards the ramp since 

the cross section is vertical to the ramp surface. Meanwhile, as noticed in Fig. 6.1, when the 

vortex rings enter the shock wave, they incline to some degree to the ramp. What is very 
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interesting is that the vector field shown in the section clearly demonstrates the upward 

induction of the flow at the center position of the ring. The inducted flow will interact with the 

incoming free stream and make the surface of the interaction which is the location of the shock 

wave to be an obvious arc-like boundary. 

 

 

Figure 6.11 The Vector Field at a Spanwise Section with Vortex Structure shown by Total 
Vorticity 

 

 However, the interaction between the vortex ring structure and shock wave is a new 

interesting phenomenon. The existence of the interaction needs the verification of experiment, 

and the mechanism is still under discussion. 
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CHAPTER 7 

CONCLUDING REMARKS 

 In this work, by using the implicitly implemented large eddy simulation method with fifth 

order bandwidth-optimized WENO scheme, comparative studies are made on the MVG-ramp 

flow and the ramp flow without MVG at M=2.5 and Re=5760. A body-fitted grid scheme is 

adopted to make the computational accuracy as high as possible. 

 Through the computation on the ramp flow, the basic structures of the flow field are 

captured by the simulation such as the separation shock wave by the SBLI, instantaneous small 

scale vortices in the separation zone, stripe structure, etc. Statistics are made by taking time 

average to the flow field. Large scale streamwise vortices are found in the sense of averaging. 

The results can be used for comparison with those in the MVG-ramp flow. 

 Through the computation on the MVG-ramp flow, the same basic wave system is 

obtained as that given by Babinsky. Reasonable agreement in the shape of shocks between the 

computation and experiment is obtained. The subtle oblique “” structure of the re-compression 

shock wave is found in computation as well, which indicates the resolution in computation is 

high. 

 The comparison between the MVG-ramp flow and the ramp flow without MVG shows 

that, the MVG can distinctly reduce the separation zone and improve the shape factor. One 

possible disadvantage of MVG is that it may lower the value of the Pitot pressure recovery 

coefficient. 

 A number of new findings and new mechanisms are obtained through the LES 

simulation because of the high order accuracy and high resolution of the computation, which 

include: 



 

81 
 

i). The complete separation topology is obtained, a representative pair of spiral points are found 

on the plate beside the end of MVG, which implies a new five-pair-vortex model around the 

MVG, and the model is different from the one reported by previous literatures. 

ii). The mechanism of the formation of the momentum deficit is investigated. It is found that the 

deficit mainly comes from the shedding of the upstream boundary layer, which is entrained by 

the streamwise vortices to form the circular structure.  

iii). The structures of the surface pressure are described, and the 3-D structures of the re-

compression shock waves are presented. Especially, the head and leg of the re-compression 

shock waves are found to be separated in the initial stage but connected afterwards, and 

therefore the shock wave becomes arc shaped therefore. The connection between the shock 

waves, the flow structures and separations is discussed and obtained. 

iv). A new phenomenon and its mechanism are discovered in MVG-ramp flow control, i.e., the 

vortex rings generated by the high shear layer. Vortex rings are generated and strongly interact 

with the separation zone and the separation shock, and play an important role in the reduction 

of the size of the separation zone. 

 Base on numerical results, the vortex ring structure is studied in detail. The inflection 

points inside the momentum deficit area are found. The mechanism for the vortex rings was 

analyzed and found that, the existence of the high shear layer and inflection surface generated 

by the momentum deficit will cause the corresponding Kelvin-Helmholtz instability, which 

develops into a series of vortex rings. The interaction between vortex ring structure and the 

oblique shock by the MVG controlled ramp flow is also studied. It shows that the ring structure 

does not break down and keeps it topology after penetrating the strong shock wave, while the 

strong oblique shock is influenced a lot by the induced flow field from vortex rings. The 

mechanism during the interaction is also discussed. 
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