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ABSTRACT

LARGE SCALE FINITE ELEMENT ANALYSIS

USING GPU PARALLEL COMPUTING

ASHKAN AKBARIYEH, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Brian H. Dennis

In the past years, graphic processing units have become a new abundant paral-

lel computing resource on personal computers. In this work parallel computation of

a typical case in finite element analysis for solids has been practiced. The solution

of 3-D linear elastic static problems with 3 degree of freedom is fully implemented

utilizing the current GPU technology. Discretization of the problem has been done

for two cases of: Tetrahedral and Hexahedral elements. Acceleration of the solution

has been realized using SIMT parallel algorithms. Sparse matrix storage formats as

well as matrix-vector operations are investigated for optimum hardware utilization.

preconditioned conjugate gradient method has been fully implemented on the GPU

device as the iterative solver. FEA GPU implementation is compared with the cor-

responding optimized serial version run on a conventional processor with the same

technology for various mesh sizes, sparse matrix storage schemes, and choice of basis

function.
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CHAPTER 1

INTRODUCTION

Graphic processing units have become a new resource for parallel computations.

The development of such processors was originally driven by consumer market demand

for better computer visualization in the video games. The different computation

requirements of computer graphics led to different processor architecture that makes

it a suitable device for scientific computing. The graphics card vendors have realized

the interest of scientists in the matter and developed the GPU technology to address

their need. The GPU technology has accelerated lots of applications with lower

cost and it continues to maintain the capacity to outperform the CPU. It is worth

mentioning that not all applications are suitable for GPU implementation. NVIDIA

has been the leading company in the GPU technology for the past years. They have

developed a GPU programming language specifically for scientific computation called

CUDA. Although CUDA is not portable between other graphic cards and parallel

platforms, yet it has been adopted by many scientists and engineers.

Work pertaining to GPUs has extended to a large variety of applications. The

following are just a handful of applications of GPU in mechanical engineering field.

Examples in the field of fluid mechanics can be found in [2][3][4]. Solids finite ele-

ment applications have also been a topic of interest in GPU computing. Nonlinear

finite element analysis of brain for surgical simulation has been done [5]. High-order

Earthquake finite element code has been ported to GPUs in single-precision and

mesh coloring technique has been utilized for conflict free global array updates [6].

Implementation of parallel assembling process of stiffness matrix in FEM solution

1



procedure is done in [7] and minimum residual method has been used as iterative

solver. Taylor et al [8] claim to have the first GPU implementation of a nonlinear

finite element solver using total Lagrangian explicit finite element formulation. They

have reported real-time solution of models with up to 16000 4-node tetrahedral el-

ements. Fast implementation of the conjugate gradient iterative method with field

multilevel preconditioning applied to solving real symmetric and sparse systems has

been done [9]. Hybrid CPU-GPU solution for FEM problems using domain decom-

position methods is presented in [10]. Parallel explicit finite element for sheet metal

forming has been developed [11]. Implementation of conjugate gradient method on

GPU clusters has been studied [12]. Block compressed sparse row matrix format has

been used in a general purpose linear solver [13].

In this thesis a finite element analysis of 3-D solid objects with linear elastic

material model is studied. This type of problems end up with large sparse system

of equations after finite element discretization. These systems can potentially exceed

millions of degrees of freedoms. The solution of such problems using iterative methods

are often time consuming, which makes them a good candidate for parallel processing.

There is no argue that faster solution with lower cost is always an engineering desire.

It gives engineers access to more case studies. Also use of optimization techniques

are more justifiable for larger systems.

In this work, a whole finite element problem is implemented on the CPU using C

programming language while the solution procedure is ported into GPU using parallel

programming techniques. Sparse matrix formats and sparse matrix operations have

also been investigated for optimized GPU implementations. An optimized GPU code

will utilize the hardware more efficiently and results in more acceleration.

2



1.1 GPU hardware

Graphic processor unit or GPU in a desktop computer is a separate circuit board

specially designed to handle computer graphics. Over time, driven by market demand,

the GPU has evolved into a highly parallel, multithreaded, manycore processor with

tremendous computational power and very high memory bandwidth [1]. Figures (1-

1 from the book) compares same generations of GPU and CPU technology. The

reason behind the dramatic difference between GPU and CPU is that the GPU is

designed such that more transistors are devoted to data processing rather than data

caching [1]. Understanding the parallel architecture of the GPU hardware is essential

to write efficient and compatible software code. In this section the current NVIDIA

GPU architecture compute capability 2.x is briefly introduced to those who are not

exposed to the matter. All information are extracted from the company references

[1] [14] [15].

1.1.1 CUDA architecture

The multicore CPUs and manycore GPUs have become the mainstream com-

puting systems. These chips are parallel systems and their parallelism continues to

scale with Moore?s law. Developing application software that transparently scale its

parallelism and compatibility with the increasing number of processor cores has be-

come a challenge. The CUDA parallel programming model is designed to overcome

this challenge while maintaining a low learning curve for programmers familiar with

standard programming languages such as C. CUDA at its core has three key abstrac-

tions - a hierarchy of thread groups, shared memories, and barrier synchronization

that are simply exposed to the programmer as a minimal set of language extensions

[1]. These abstractions guide the programmer to partition the problem into coarse

sub-problems that can be solved independently in parallel by blocks of threads. Each

3
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This decomposition preserves language expressivity by allowing threads to 
cooperate when solving each sub-problem, and at the same time enables automatic 
scalability. Indeed, each block of threads can be scheduled on any of the available 
processor cores, in any order, concurrently or sequentially, so that a compiled 
CUDA program can execute on any number of processor cores as illustrated by 
Figure 1-4, and only the runtime system needs to know the physical processor 
count. 

This scalable programming model allows the CUDA architecture to span a wide 
market range by simply scaling the number of processors and memory partitions: 
from the high-performance enthusiast GeForce GPUs and professional Quadro and 
Tesla computing products to a variety of inexpensive, mainstream GeForce GPUs 
(see Appendix A for a list of all CUDA-enabled GPUs). 

 

 

A multithreaded program is partitioned into blocks of threads that execute independently from each 
other, so that a GPU with more cores will automatically execute the program in less time than a GPU 
with fewer cores. 

Figure 1-4. Automatic Scalability 

  

GPU with 2 Cores 

 
Core 1 Core 0 

GPU with 4 Cores 

 
Core 1 Core 0 Core 3 Core 2 

Block 5 Block 6 

Multithreaded CUDA Program 

Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 

  Block 1  Block 0 

  Block 3  Block 2 

  Block 5  Block 4 

  Block 7  Block 6 

  Block 0  Block 1  Block 2  Block 3 

  Block 4  Block 5  Block 6  Block 7 

Figure 1.1. Scalable architecture [1].

sub-problem partitions into finer pieces that can be solved cooperatively in parallel

by all threads within the block. This decomposition allows threads to cooperate when

solving each sub-problem, and at the same time enables automatic scalability. In-

deed, each block of threads can be scheduled on any of the available processor cores,

in any order and only the runtime system needs to know the physical processor count.

Figure 1.1 depicts the automatic scalability of this decomposition.

1.1.2 CUDA language

CUDA is the hardware and software architecture that enables NVIDIA GPUs to

execute programs written with C, C++, Fortran, and other languages[ Fermi paper].

CUDA allows software developers to use C as a high-level programming language.

CUDA C enables users familiar with the C programming language to easily write

programs executable by the device. The CUDA C introduces programming language

extensions that allow users to define a kernel as a C function and use some new

4



syntax to specify the parallel execution properties each time the kernel function is

called.

1.1.3 Kernels and threads

As mentioned earlier, kernels are the user defined parallel functions defined in

CUDA C. A kernel executes in parallel across a set of parallel threads. The GPU

instantiates a kernel program on a grid of parallel threadblocks. Each thread within a

thread block executes an instance of the kernel, and has a thread ID within its thread

block that is accessible within the kernel through the built-in threadIdx variable.

A thread block is a set of concurrently executing threads that can cooperate among

themselves through barrier synchronization and shared memory. A thread block has

a blockID within its grid. A grid is an array of thread blocks that execute the

same kernel, read inputs from global memory, write results to global memory, and

synchronize between dependent kernel calls.

1.1.3.1 Thread hierarchy

Threads can be identified using a one-dimensional, two-dimensional, or three-

dimensional thread index, forming a one-dimensional, two-dimensional, or three-

dimensional thread block. There is a limit to the number of threads per block, since

all threads of a block are expected to reside on the same processor core and must

share the limited memory resources of that core. However, a kernel can be executed

by multiple equally-shaped thread blocks, so that the total number of threads is equal

to the number of threads per block times the number of blocks. Blocks are organized

into a one-dimensional, two-dimensional, or three-dimensional grid of thread blocks

as illustrated by Figure 1.2. Threads within a block can cooperate by sharing data

5
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Figure 2-1. Grid of Thread Blocks 

 

The number of threads per block and the number of blocks per grid specified in the 
<<<…>>> syntax can be of type int or dim3.  Two-dimensional blocks or grids can 
be specified as in the example above. 

Each block within the grid can be identified by a one-dimensional, two-dimensional, 
or three-dimensional index accessible within the kernel through the built-in 
blockIdx variable. The dimension of the thread block is accessible within the 
kernel through the built-in blockDim variable. 

Extending the previous MatAdd() example to handle multiple blocks, the code 
becomes as follows. 

// Kernel definition 

__global__ void MatAdd(float A[N][N], float B[N][N], 

                       float C[N][N]) 

{ 

    int i = blockIdx.x * blockDim.x + threadIdx.x; 

    int j = blockIdx.y * blockDim.y + threadIdx.y; 

    if (i < N && j < N) 

        C[i][j] = A[i][j] + B[i][j]; 

Grid 

Block (1, 1) 

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0) 

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1) 

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2) 

Block (2, 1) Block (1, 1) Block (0, 1) 

Block (2, 0) Block (1, 0) Block (0, 0) 

Figure 1.2. Thread hierarchy [1].

through some shared memory and by synchronizing their execution to coordinate

memory accesses.

1.1.3.2 Memory hierarchy

CUDA threads may access data from multiple memory spaces during their

execution as illustrated by Figure 1.3. In the CUDA parallel programming model,

each thread has a per-thread private memory space used for register spills, function

calls, etc. Each thread has private local memory. Each thread block has shared

memory visible to all threads of the block and with the same lifetime as the block.

All threads have access to the same global memory. The CUDA programming

model assumes that the CUDA threads execute on a physically separate device that

operates as a coprocessor to the host running the C program. This is the case, for

6
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Figure 2-2. Memory Hierarchy 

2.4 Heterogeneous Programming 

As illustrated by Figure 2-3, the CUDA programming model assumes that the 
CUDA threads execute on a physically separate device that operates as a coprocessor 
to the host running the C program. This is the case, for example, when the kernels 
execute on a GPU and the rest of the C program executes on a CPU. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Global memory 

Grid 0 

Block (2, 1) Block (1, 1) Block (0, 1) 

Block (2, 0) Block (1, 0) Block (0, 0) 

Grid 1 

Block (1, 1) 

Block (1, 0) 

Block (1, 2) 

Block (0, 1) 

Block (0, 0) 

Block (0, 2) 

Thread Block  
Per-block shared 

memory 

Thread 

Per-thread local 
memory 

Figure 1.3. Memory hierarchy [1].

example, when the kernels execute on a GPU and the rest of the C program executes

on a CPU. The CUDA programming model also assumes that both the host and the

device maintain their own separate memory spaces in DRAM, referred to as host

memory and device memory, respectively.

1.1.3.3 Atomics

Parallel programmers must be aware of race condition when they access the

memory. A race condition refers to a state that two or more threads simultaneously

issue a read or write instruction to the same memory location. Race conditions are

programing mistakes and must be avoided by changing the parallel algorithm, using

synchronizing functions or using atomic function. Atomic functions solve the race

7



condition with the high penalty of serializing memory access and therefore massive

reduction in memory bandwidth.

1.1.4 Hardware execution

The CUDA architecture is built around a scalable array of multithreaded Stream-

ing Multiprocessors (SMs). When a CUDA program on the host CPU invokes a kernel

grid, the blocks of the grid are enumerated and distributed to multiprocessors with

available execution capacity. The threads of a thread block execute concurrently

on one multiprocessor, and multiple thread blocks can execute concurrently on one

multiprocessor. As thread blocks terminate, new blocks are launched on the vacated

multiprocessors [1]. CUDA’s hierarchy of threads maps to a hierarchy of processors

on the GPU; a GPU executes one or more kernel grids; a streaming multiprocessor

(SM) executes one or more thread blocks; and CUDA cores and other execution units

in the SM execute threads. [14]

1.1.4.1 Streaming multiprocessors

A multiprocessor is designed to execute hundreds of threads concurrently. To

manage such a large amount of threads, it employs a unique architecture called

SIMT (Single-Instruction, Multiple-Thread). The instructions are pipelined to lever-

age instruction-level parallelism within a single thread, as well as thread-level par-

allelism extensively with simultaneous hardware multithreading. Threads on a CPU

are generally heavyweight entities. The operating system must swap threads on and

off of CPU execution channels to provide multithreading capability. By comparison,

threads on GPUs are extremely lightweight. In a typical system, thousands of threads

are queued up for work (in warps of 32 threads each). If the GPU must wait on one

warp of threads, it simply begins executing work on another. Because separate reg-

8



isters are allocated to all active threads, resources stay allocated to each thread until

it completes its execution [15].

1.1.4.2 Warp

The multiprocessor creates, manages, schedules, and executes threads in groups

of 32 parallel threads called warps. Individual threads composing a warp start to-

gether at the same program address, but they have their own instruction set and

register state and are therefore free to branch and execute independently. When a

multiprocessor is given one or more thread blocks to execute, it partitions them into

warps that get scheduled by a warp scheduler for execution. Each warp contains

threads of consecutive, increasing thread IDs with the first warp containing thread 0.

A warp executes one common instruction at a time, so full efficiency is realized when

all 32 threads of a warp agree on their execution path. If threads of a warp diverge

via a data-dependent conditional branch, the warp serially executes each branch path

taken, disabling threads that are not on that path, and when all paths complete, the

threads converge back to the same execution path. Different warps execute indepen-

dently regardless of what they are executing. At every instruction issue time, a warp

scheduler selects a warp that has threads ready to execute its next instruction (the

active threads of the warp) and issues the instruction to those threads. In particu-

lar, each multiprocessor has a set of 32-bit registers that are partitioned among the

warps, and a parallel data cache or shared memory that is partitioned among the

thread blocks. The number of blocks and warps that can reside and be processed

together on the multiprocessor for a given kernel depends on the amount of registers

and shared memory used by the kernel and the amount of registers and shared mem-

ory available on the multiprocessor. There are also a maximum number of resident

blocks and a maximum number of resident warps per multiprocessor.

9



1.1.5 GPU programing guide lines

Because of the hardware implementation, there are a series of performance

guidelines that must be observed when programming a GPU using CUDA. The most

important ones refer to: memory transfers between host and device, memory latency

when accessing global and local memory, global memory access pattern , shared mem-

ory access patterns (to avoid memory bank conflicts), and execution configuration

(number of threads per block and number of thread blocks specified for a kernel

launch). When choosing the execution configuration, based on the advice given in

the programming guide, the number of threads per block should be a multiple of 64.

The fastest kernels minimize access to device memory, avoid non-coalesced accesses to

global memory, avoid bank conflicts when reading from or writing to shared memory,

and try to minimize register and/or shared memory usage to maximize occupancy.

At the same time, one strives to work with many blocks running per multiprocessor

to overlap the latencies of memory transfers. In the GPU memory the data can be

re-organized in order to obtain maximum memory access performances. The data

organization and alignment must ensure coalesced memory access as much as possi-

ble, especially for memory writes. The details on these guidelines are included in the

CUDA Programming Guide and should be observed during the software implemen-

tation in order to obtain maximum performance.

10



CHAPTER 2

FINITE ELEMENT METHOD

Most problems in engineering mechanics can be stated either as continuous or

discrete problems. Discrete problems involve finite number of degrees of freedom.

All discrete and continuous problems can be classified as equilibrium, eigenvalue, and

propagation problems. The finite element method is applicable for the solution of

all three categories of problems. The finite element method is a numerical procedure

that replaces a continuous problem by an equivalent discrete one. A finite element

solution process for a typical structural problem may be established by:

1. Using the virtual work (or weak form), equations for equilibrium equations

2. Introducing an approximation for the displacement field u in terms of shape

functions.

3. Computing strains from displacement field.

4. Computing stresses using material constitutive relation.

5. Performing the integrations over each element.

6. Assembling the element local matrices to form the global stiffness matrix and

load vector.

7. Imposing the known traction and displacement boundary conditions.

8. Solving the resulting stiffness and load matrices.

9. Reporting desired parts of the solution.

Finite element method formulations presented in this section are extracted from ref-

erence books [16] [17].

11



2.1 Galerkin formulation ’Weak form’

The Galerkin formulation is a method of weighted residuals which the original

shape (or basis) functions are used as weighting. The finite element approximation

is derived from applying Galerkin formulation of the weighted residual process to the

equilibrium equation. Galerkin method, often leads to symmetric matrices. The well-

known finite difference method of approximation is a particular case of collocation

with locally defined basis functions and is thus a case of a Galerkin scheme. The inte-

gral statement necessary for formulation in terms of the finite element approximation

is supplied via the principle of virtual work. Virtual work statement is a ’weak form’

of equilibrium equations. The following Equation is the three-dimensional equivalent

virtual work statement.

∫

Ω

δεTσ dΩ−
∫

Ω

δuTb dΩ−
∫

Γ

δuTt dΓ = 0 (2.1)

The first term of Eq.2.1 is the variation of the strain energy of the system:

δU =

∫

Ω

δεTσ dΩ (2.2)

For linear elastic materials without residual stress and strain we have:

σ = Dε (2.3)

Using Eq.2.3 we can write U as:

U =
1

2

∫

Ω

εTD ε dΩ (2.4)

The next two terms of Eq.2.1 represent variation of the potential energy of the external

loads:

δW = −δ(
∫

Ω

uTb dΩ +

∫

Γ

uTt dΓ) (2.5)

W = −
∫

Ω

uTb dΩ−
∫

Γ

uTt dΓ (2.6)

12



We can write variation of the total potential energy as:

δΠ = δ(U +W ) = 0 (2.7)

The above statement means that for equilibrium to be ensured the total potential

energy must be stationary for variations of the admissible displacements.The variation

with respect to displacements with the finite number of parameters u ≈ Nũ is now

written as:

Π =
1

2
ũTKũ + ũTf (2.8)

δΠ

δũ
=





δΠ
δũ1

δΠ
δũ2

...

δΠ
δũn





Kũ + f = 0 (2.9)

in which K and f are given by:

K =

∫

Ω

BTDB dΩ (2.10)

f = −
∫

Ω

NTb dΩ−
∫

Γ

NTt dΓ (2.11)

In the Eq.2.10, B is the appropriate matrix relating displacement and strain fields:

ε = S u = SNũ = Bũ (2.12)

where S is a suitable linear differential operator.

2.2 Displacement field approximation

After formulating the problem using variational principles, it is time to ap-

proximate displacement field. There are multiple choices for element types in finite

element method. Each element type has certain geometry and interpolating shape
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functions. Finite elements can be classified into three categories as simplex, complex,

and multiplex elements depending on the geometry of the element and the order of

the polynomial used in the interpolation function. The simplex elements are those

for which the approximating polynomial consists of constant and linear terms. Four-

node Tetrahedral is a 3-D simplex element. The complex elements may have the same

shapes as the simplex elements but will have additional nodes. For example Ten-node

Tetrahedral has interpolating polynomial including terms up to quadratic terms. The

multiplex elements are those whose boundaries are parallel to the coordinate axes.

Eight-node Hexahedral is an example of multiplex elements.

2.2.1 Tetrahedral elements

In this section the formulation of the tetrahedral elements with 3 degree of

freedom per node are derived. Tetrahedral element family starts with the linear four-

node tetrahedral following by the quadratic ten-node tetrahedral. All tetrahedral

elements have a complete set of the polynomial order they represent. Two types of

Tetrahedral elements are shown in Figure 2.1.

2.2.1.1 TET4

In the TET41 element, displacement field is approximated by first order linear

functions:

u = N1x1 +N2x2 +N3x3 +N4x4

v = N1y1 +N2y2 +N3y3 +N4y4

z = N1z1 +N2z2 +N3z3 +N4z4

1 = N1 +N2 +N3 +N4 (2.13)

14-node Tetrahedral

14



Figure 2.1. Tetrahedral elements.

Where Nk are natural functions defined by:

Nk =
ak + bkx+ cky + dkz

6V
k = 1, 2, 3, 4 (2.14)

6V = det

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.15)

V is the volume of the element. Displacement fields from Eq.2.13 are rewritten as

functions of (x, y, z):

u(x, y, z) = N1(x, y, z)x1 +N2(x, y, z)x2 +N3(x, y, z)x3 +N4(x, y, z)x4

v(x, y, z) = N1(x, y, z)y1 +N2(x, y, z)y2 +N3(x, y, z)y3 +N4(x, y, z)y4

w(x, y, z) = N1(x, y, z)z1 +N2(x, y, z)z2 +N3(x, y, z)z3 +N4(x, y, z)z4

(2.16)
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Using nodal coordinates we find the unknown coefficients in the natural function as

follow:

a1 = det

∣∣∣∣∣∣∣∣∣∣

x2 y2 z2

x3 y3 z3

x4 y4 z4

∣∣∣∣∣∣∣∣∣∣

a2 = det

∣∣∣∣∣∣∣∣∣∣

x3 y3 z3

x4 y4 z4

x1 y1 z1

∣∣∣∣∣∣∣∣∣∣

a3 = det

∣∣∣∣∣∣∣∣∣∣

x4 y4 z4

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣∣∣∣∣

a4 = det

∣∣∣∣∣∣∣∣∣∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣∣∣∣∣

(2.17)

b1 = − det

∣∣∣∣∣∣∣∣∣∣

1 y2 z2

1 y3 z3

1 y4 z4

∣∣∣∣∣∣∣∣∣∣

b2 = − det

∣∣∣∣∣∣∣∣∣∣

1 y3 z3

1 y4 z4

1 y1 z1

∣∣∣∣∣∣∣∣∣∣

b3 = − det

∣∣∣∣∣∣∣∣∣∣

1 y4 z4

1 y1 z1

1 y2 z2

∣∣∣∣∣∣∣∣∣∣

b4 = − det

∣∣∣∣∣∣∣∣∣∣

1 y1 z1

1 y2 z2

1 y3 z3

∣∣∣∣∣∣∣∣∣∣

(2.18)

c1 = − det

∣∣∣∣∣∣∣∣∣∣

x2 1 z2

x3 1 z3

x4 1 z4

∣∣∣∣∣∣∣∣∣∣

c2 = − det

∣∣∣∣∣∣∣∣∣∣

x3 1 z3

x4 1 z4

x1 1 z1

∣∣∣∣∣∣∣∣∣∣

c3 = − det

∣∣∣∣∣∣∣∣∣∣

x4 1 z4

x1 1 z1

x2 1 z2

∣∣∣∣∣∣∣∣∣∣

c4 = − det

∣∣∣∣∣∣∣∣∣∣

x1 1 z1

x2 1 z2

x3 1 z3

∣∣∣∣∣∣∣∣∣∣

(2.19)
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d1 = − det

∣∣∣∣∣∣∣∣∣∣

x2 y2 1

x3 y3 1

x4 y4 1

∣∣∣∣∣∣∣∣∣∣

d2 = − det

∣∣∣∣∣∣∣∣∣∣

x3 y3 1

x4 y4 1

x1 y1 1

∣∣∣∣∣∣∣∣∣∣

d3 = − det

∣∣∣∣∣∣∣∣∣∣

x4 y4 1

x1 y1 1

x2 y2 1

∣∣∣∣∣∣∣∣∣∣

d4 = − det

∣∣∣∣∣∣∣∣∣∣

x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣∣∣∣

(2.20)

{~U}
3×1

=





u(x, y, z)

v(x, y, z)

w(x, y, z)





= [N ]
3×12

{ ~Q(e)}
12×1

(2.21)

[N ] =




N1 0 0 N2 0 0 N3 0 0 N4 0 0

0 N1 0 0 N2 0 0 N3 0 0 N4 0

0 0 N1 0 0 N2 0 0 N3 0 0 N4




(2.22)

Equation 2.22 represent a symbolic matrix of shape functions and { ~Q(e)} is the nodal

displacement vector.

{ ~Q(e)} =





u1

v1

w1

...

w4





(2.23)
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Matrix [B] is the appropriate derivative matrix relating nodal displacement to the

strain field vector.

{~ε}
6×1

=





εxx

εyy

εzz

εxy

εyz

εzx





=





∂u/∂x

∂v/∂y

∂w/∂z

∂u
∂y

+ ∂v
∂x

∂v
∂z

+ ∂w
∂y

∂w
∂x

+ ∂u
∂z





= [B]
6×12

{ ~Q(e)}
12×1

(2.24)

[B] =
1

6V




b1 0 0 b2 0 0 b3 0 0 b4 0 0

0 c1 0 0 c2 0 0 c3 0 0 c4 0

0 0 d1 0 0 d2 0 0 d3 0 0 d4

c1 b1 0 c2 b2 0 c3 b3 0 c4 b4 0

0 d1 c1 0 d2 c2 0 d3 c3 0 d4 c4

d1 0 b1 d2 0 b2 d3 0 b3 d4 0 b4




(2.25)

~σ = [D]~ε (2.26)

~σT =

{
σxx σyy σzz σxy σyz σzx

}
(2.27)

For isotropic elastic materials matrix [D] is given by:

[D] =
E

(1 + ν)(1− 2ν)




1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2

0 0

0 0 0 0 1−2ν
2

0

0 0 0 0 0 1−2ν
2




(2.28)
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The stiffness matrix of the element in global coordinate system can be obtained as:

[K(e)] =

∫∫∫

V (e)

[B]T[D][B] dV (2.29)

2.2.2 Hexahedral elements

We consider the simplest hexahedron element having eight corner nodes with

three degrees of freedom per node. This element is also known as Brick with eight

nodes. As shown in Figure 2.2, the natural coordinates are r s and t with the origin

of the system taken at the centroid of the element. In the natural coordinates, the

element is a cube, although in the global Cartesian coordinate system it may be an

arbitrarily warped and distorted six-sided solid. The relation between global and

natural coordinate is:





x

y

z





= [N ]





x1

y1

z1

...

z8





(2.30)

[N ] =




N1 0 0 N2 · 0

0 N1 0 0 · 0

0 0 N1 0 · · · N8




(2.31)

Ni(r, s, t) =
1

8
(1 + rri)(1 + ssi)(1 + tti) i = 1, 2, · · · , 8 (2.32)
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Finite element approximation 203

2 3

41

6 7

85

Fig. 6.8 8-node brick element. Local node numbering.

the interpolation into Eq. (6.5) gives

ε =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εx
εy
εz
γxy
γyz
γzx

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

≈ ε̂ =
∑

a

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Na

∂x
0 0

0
∂Na

∂y
0

0 0
∂Na

∂z

∂Na

∂y

∂Na

∂x
0

0
∂Na

∂z

∂Na

∂y

∂Na

∂z
0

∂Na

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎨
⎩
ũa
ṽa
w̃a

⎫
⎬
⎭ =

∑

a

Baũa (6.55)

A similar expression may be written for virtual strains.

Example 6.2: Strains for 8-node brick. As an example we consider the 8-node brick
element shown in Fig. 6.8. The shape functions are given by

Na = 1
8 (1 + ξaξ)(1 + ηaη)(1 + ζaζ )

for which the derivatives with respect to ξ , η, ζ are given by

t

r

s

Figure 2.2. Hexahedral element.

Displacement field is approximated by Eq.2.33 where (ui, vi, wi) denote the displace-

ments of node i for i = 1, 2, . . . , 8.

{~U}
3×1

=





u

v

w





= [N ]





u1

v1

w1

...

w8





= [N ]{ ~Q(e)} (2.33)

~ε = [B]
6×24

{ ~Q(e)}
24×1

(2.34)

[B]
6×24

=

[
[B1] [B2] · · · [B8]

]
(2.35)
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[Bi]
6×3

=




∂Ni

∂x
0 0

0 ∂Ni

∂y
0

0 0 ∂Ni

∂z

∂Ni

∂y
∂Ni

∂x
0

0 ∂Ni

∂z
∂Ni

∂y

∂Ni

∂z
0 ∂Ni

∂x




i = 1, 2, . . . , 8 (2.36)

By applying the chain rule of differentiation we have:




∂Ni

∂r

∂Ni

∂s

∂Ni

∂t





=




∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t








∂Ni

∂x

∂Ni

∂y

∂Ni

∂z





= [J ]





∂Ni

∂x

∂Ni

∂y

∂Ni

∂z





(2.37)

[J ]
3×3

=




∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t




=




8∑
i=1

(∂Ni

∂r
xi)

8∑
i=1

(∂Ni

∂r
yi)

8∑
i=1

(∂Ni

∂r
zi)

8∑
i=1

(∂Ni

∂s
xi)

8∑
i=1

(∂Ni

∂s
yi)

8∑
i=1

(∂Ni

∂s
zi)

8∑
i=1

(∂Ni

∂t
xi)

8∑
i=1

(∂Ni

∂t
yi)

8∑
i=1

(∂Ni

∂t
zi)




(2.38)

The derivatives of interpolation functions are:

∂Ni

∂r
= 1

8
ri(1 + ssi)(1 + tti)

∂Ni

∂s
= 1

8
si(1 + rri)(1 + tti)

∂Ni

∂t
= 1

8
ti(1 + rri)(1 + ssi)





i = 1, 2, . . . , 8 (2.39)





∂Ni

∂x

∂Ni

∂y

∂Ni

∂z





= [J ]−1





∂Ni

∂r

∂Ni

∂s

∂Ni

∂t





i = 1, 2, . . . , 8 (2.40)

Now that we derived the derivatives of the shape functions, we can populate matrix

[B] and the element stiffness matrix given Eq.2.41. Since the matrix [B] is expressed
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in natural coordinates, it is necessary to carry out the integration in Eq.2.41, in

natural coordinates. The Gaussian quadrature has been proven to be the most effi-

cient method of numerical integration for this class of problems. Using the two-point

Gaussian quadrature, yields to sufficiently accurate results.

[K(e)] =

∫∫∫

V (e)

[B]T[D][B] dV (2.41)

dV = dx dy dz = det[J ]dr ds dt (2.42)

[K(e)] =

1∫

−1

1∫

−1

1∫

−1

[B]T[D][B] det[J ] dr ds dt (2.43)

2.3 Solving an FEM problem

When the finite element method is used for the solution of equilibrium problems,

we get a set of simultaneous linear equations. The governing finite element equations

for various types of field equilibrium problems can be expressed in matrix form as

follows:

[A]{x} = {b} (2.44)

[A]
n×n

=




a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
...

an1 an2 . . . ann



, {x}

n×1

=





x1

x2

...

xn





, {b}
n×1

=





b1

b2

...

bn





(2.45)

In finite element analysis, the size of the matrix [A] will be very large. The solution

of some of the practical problems involves matrices of order 10,000 or more. The

methods available for solving systems of linear equations can be divided into two

types: direct and iterative. Direct methods are those that, in the absence of round-

off and other errors, will yield the exact solution in a finite number of elementary
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arithmetic operations. In practice, sometimes the direct methods do not give good

solutions because a computer works with a finite precision. The errors arising from

round-off and truncation may lead to extremely poor or even useless results. The

fundamental method used for direct solutions is Gaussian elimination. The Choleski

method is also a direct method for solving a linear system that makes use of the

fact that any square matrix [A] can be expressed as the product of an upper and

a lower triangular matrix. Iterative methods are those that start with an initial

approximation and that by applying a suitably chosen algorithm lead to successively

better approximations. When the process converges, we can expect to get a good

approximate solution. The main advantages of iterative methods are the simplicity

and uniformity of the operations to be performed. Matrices associated with linear

systems are also classified as dense or sparse. Dense matrices have very few zero

elements, whereas sparse matrices have very few nonzero elements. Fortunately, in

most finite element applications, the matrices involved are sparse and symmetric.
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CHAPTER 3

SPARSE MATRIX

A matrix populated primarily with zeros is called a sparse matrix. Sparse

matrices are vastly used in commercial computing software packages. The idea of

sparse matrix storage is to store non-zeros only. This way we use computer memory

efficiently and we avoid unnecessary processing of zeros. Sparse matrix operations

have a key role in the solution procedure of finite element analysis.

In general application of variational principles, we build a mathematical model

by discretizing the specified domain. Then we use formulation derived from varia-

tional calculus to form local matrices for each cell individually. Afterward we assem-

ble all the local matrices into a global matrix, and turn the problem into a system

of equations. The matrix arising from such discretization is very sparse due to loose

coupling of cells. In the case of a problem in structural mechanics, we call this matrix

the stiffness matrix of the system. The sparsity of stiffness matrix depends on the

generated grid and the type of the elements used. More specifically the number of

non-zeros per row in the global matrix depends on the number of cells which share

the same node, and the size of the local stiffness matrix.

When the problem size scales by N , the stiffness matrix size scales by order of

N2. Fortunately the sparse nature of the stiffness matrix, allow the required memory

space to scale with N .
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3.1 Sparse matrix storage

Sparse matrices can be stored in multiple ways. Each storage format has its own

computational properties. Choosing the right method plays a key role in performance

of the future matrix operations. Familiarity with different sparse matrix storage is

essential to proceed with the rest of this thesis. Hereby I demonstrate common well

known sparse matrix storage schemes plus an altered version, specifically chosen for

GPU computing application.

3.1.1 Coordinate

Coordinate format is the simplest storage scheme for sparse matrices. The data

structure consists of three arrays:(1) a real array containing all the real values of

nonzero elements in A in any order;(2) an integer array containing their row indices;

and (3) a second integer array containing their column indices. All three arrays are

of the same length equal to the number of nonzero elements [18]. An example matrix

and its COO storage is provided in Figure 3.1.

3.1.2 Compressed sparse row

Compressed sparse row format is very similar to the COO format. The data

structure consists of the same arrays. The first array contains real values of nonzero

elements in order, row by row. The second array contains column indices of each

nonzero value. The third array contains pointers to the beginning and the end of

each row. Figure 3.2 demonstrates CSR storage scheme for an example sparse matrix.

CSR format use less memory space compared to COO by avoiding to store redundant

information. CSR is also a preferred choice due to better performance in typical

matrix computations [18].
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1.1 Sparse matrix storage

Sparse matrices can be stored in multiple ways. Each storage format has its own

computational properties. Choosing the right method plays a key role in performance

of the future matrix operations. Familiarity with different sparse matrix storage is

essential to proceed with the rest of this thesis. Hereby I demonstrate common well

known sparse matrix storage schemes plus an altered version, specifically chosen for

GPU computing application.

1.1.1 Coordinate

Coordinate format is the simplest storage scheme for sparse matrices. The data

structure consists of three arrays:(1) a real array containing all the real values of

nonzero elements in A in any order;(2) an integer array containing their row indices;

and (3) a second integer array containing their column indices. All three arrays are

of the same length equal to the number of nonzero elements [saad].

Here put the example matrix A for all the storage schemes.

Then demonstrate COO format.

A =




1 2 0 3

0 4 5 0

6 0 7 8

0 0 0 9




data =

[
1 2 3 4 5 6 7 8 9

]

rows =

[
0 0 0 1 1 2 2 2 3

]

cols =

[
0 1 3 1 2 0 2 3 3

]
(1.1)

2Figure 3.1. Coordinate storage format.

1.1 Sparse matrix storage

Sparse matrices can be stored in multiple ways. Each storage format has its own

computational properties. Choosing the right method plays a key role in performance

of the future matrix operations. Familiarity with different sparse matrix storage is

essential to proceed with the rest of this thesis. Hereby I demonstrate common well

known sparse matrix storage schemes plus an altered version, specifically chosen for

GPU computing application.

1.1.1 Coordinate

Coordinate format is the simplest storage scheme for sparse matrices. The data

structure consists of three arrays:(1) a real array containing all the real values of

nonzero elements in A in any order;(2) an integer array containing their row indices;

and (3) a second integer array containing their column indices. All three arrays are

of the same length equal to the number of nonzero elements [saad].

Here put the example matrix A for all the storage schemes.

Then demonstrate COO format.

A =




1 2 0 3

0 4 5 0

6 0 7 8

0 0 0 9




data =

[
1 2 3 4 5 6 7 8 9

]

rows =

[
0 0 0 1 1 2 2 2 3

]

cols =

[
0 1 3 1 2 0 2 3 3

]
(1.1)

2Figure 1.1. Coordinate storage format.

computations [saad].

A =




1 2 0 3

0 4 5 0

6 0 7 8

0 0 0 9




vals =

[
1 2 3 4 5 6 7 8 9

]

cols =

[
0 1 3 1 2 0 2 3 3

]

rows =

[
0 3 5 8 9

]
(1.1)

CSR demonstration goes here.

3

Figure 3.2. Compressed sparse row storage format.
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A =




1 2 0 3

0 4 5 0

6 0 7 8

0 0 0 9




data =




1 2 3

4 5 ∗

6 7 8

9 ∗ ∗




cols =




0 1 3

1 2 ∗

0 2 3

3 ∗ ∗




(1.1)

1.1.4 Compressed sparse row block

Compressed sparse row block format is an altered version of the popular CSR

scheme [Reference our paper]. The main goal of developing CSRB was to achieve

higher performance in multi degree of freedom problems compared to CSR method.

In a single DOF problem, when we generate local stiffness matrix, coupling between

nodes is represented by one number. However in multi-DOF problems, this coupling

happens to be a square matrix. The idea behind compressed sparse row block is to

store data block by block, row by row. The CSRB storage format is very similar to

CSR in data structure. It consists of three vectors. The first vector vals contains all

non-zero values in the sparse matrix. The next vector cols stores the column indices of

nonzero blocks of each row. The last vector rows stores the pointers to the beginning

of each row of blocks. CSRB stores less number of column indices compared to CSR

method. This will improve indirect memory access time on the GPU.

CSRB demonstration goes here.

4

Figure 3.3. Ell storage format.

3.1.3 Ellpack-Itpack

This storage format is a general scheme popular on vector machines. The

assumption in this scheme is that the maximum of nonzero elements per row Nd is

small [18]. The data structure consists of two rectangular arrays of dimensions n∗Nd.

The first array contains all the nonzero elements of matrix A. For those rows which

number of nonzero elements are less than Nd, the row is completed by zeros. The

second array contains column position of each entry in the first array. Figure 3.3

represents an example matrix stored in Ell format.

3.1.4 Compressed sparse row block

Compressed sparse row block format is an altered version of the popular CSR

scheme. The main goal of developing CSRB was to achieve higher performance in

multi degree of freedom problems compared to CSR method. In a single DOF prob-

lem, when we generate local stiffness matrix, coupling between nodes is represented
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Figure 3.4. Compressed sparse row block storage format.

by one number. However in multi-DOF problems, this coupling happens to be a

square matrix. The idea behind compressed sparse row block is to store data block

by block, row by row. The CSRB storage format is very similar to CSR in data struc-

ture. It consists of three vectors. The first vector vals contains all non-zero values in

the sparse matrix. The next vector cols stores the column indices of nonzero blocks

of each row. The last vector rows stores the pointers to the beginning of each row

of blocks. CSRB stores less number of column indices compared to CSR method.
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This will improve indirect memory access time on the GPU. CSRB storage scheme is

presented in Figure 3.4 for a block sparse matrix with 2× 2 blocks.

3.2 Matrix vector multiplication parallel schemes

Matrix-vector multiplication (Ax = y) is the most computationally intensive

operation used by iterative methods when solving sparse linear systems with simple

preconditioning. For example, the Jacobi preconditioned conjugate gradient (PCG)

method has one MVM operation per iteration which is the most time consuming part

of the solution. It is a logical choice to focus on improving the performance of this

operation for parallel computing. Two different approaches are implemented in this

thesis to parallelize matrix vector multiplications. Assembled method is used for

linear systems and assemble-free is developed for systems with nonlinear stiffness

matrix.

3.2.1 Assembled

The assembled method is the common matrix vector multiplication, applicable

to linear systems iterative solvers. The name refers to the stiffness matrix being

assembled before the multiplication takes place. In the solution procedure of a linear

finite element analysis, we assemble the global stiffness matrix once, and then store

it in our choice of sparse matrix format.

3.2.2 Assembly-free

The assembly-free matrix vector multiplication method applies to systems with

nonlinear stiffness matrix. During the solution procedure of a nonlinear iterative

solver, it is required to update the stiffness matrix, multiple times. Similar to linear

system iterative solvers, matrix vector operations are also required in the solution
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procedure. These two steps are the most time consuming parts of the solution pro-

cess. Although considerable improvement in speed can be achieved by only utilizing

aforementioned assembled matrix vector multiplication method, but the nonlinear

iterative solver still suffers from assembling the global stiffness matrix at every itera-

tion step. There is no escape for updating the stiffness matrix in a nonlinear system;

however parallel algorithms can be utilized to reduce the computation time. There

are two known solutions to this problem. In this thesis both solutions are developed

and compared. In the first solution, assembly process of the stiffness matrix is paral-

lelized and assembled parallel MVM technique is used in the iterative solver. In the

second one, the assembly process is combined with matrix vector multiplication into

one assembly-free parallel kernel.

3.3 Iterative solver

Applying finite element method to linear elastic structural problem results in

linear system of equation in the form of Ax = b. When using elements such as TET4

and HEX8 for discretizing a 3-D problem, large number of elements are required in

order to get an accurate solution. As mentioned in chapter 2, this approach will result

in a system of equations with a very large and sparse matrix and iterative methods

are the suitable choice for solving such systems. In iterative solution method, the

solver tries to generate a better approximation of the solution vector in every other

iteration. The approximation of the solution produces a residual vector. As the

approximation gets closer to the exact solution, the residual values become smaller.

Ideally the exact solution is achieved when the residual vector is zero, but due to

the limited precision of real numbers in computers, achieving zero residual is not

practical. After calculating the residual vector, the solver extracts a total residual
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estimate out of the residual vector and uses this number as a convergence criterion.

A tolerance is usually chosen for the stopping criterion of the algorithm.

3.3.1 Jacobi preconditioning

The rate of the convergence of the solution in iterative methods depends on the

properties of the system matrix A. Preconditioned solvers, take advantage of the fact

that the solution of the system defined by Eq.3.1 is identical to the solution of the

original system. Matrix M is called the preconditioning matrix in Eq.3.1.

M−1Ax = M−1 b (3.1)

Appropriate preconditioning of a system of equations can lead to faster convergence

of the solution without jeopardizing the result. Using preconditioning technique in-

troduces a calculation overhead in general cases. As an example, in preconditioned

conjugate gradient method, this calculation overhead is one matrix-by-matrix multi-

plication and one matrix-by-vector operation, per iteration. The appropriately pre-

conditioned system converges in fewer iterations compared to the original system,

however the iteration cost is definitely higher and therefor care must be taken. Choos-

ing the appropriate preconditioning matrix is more of an advanced topic in matrix

algebra and iterative solvers and it is out of the scope of this thesis.

We utilized Jacobi preconditioning for our implementation because of its sim-

plicity. Jacobi preconditioning matrix is a diagonal matrix containing the main di-

agonal of the original systems matrix A. Since the preconditioning matrix (M) is

diagonal, inverse of M is simply another diagonal matrix containing inverse of the

diagonal elements of matrix M . The Jacobi preconditioning method may not have

the highest reduction in the number of required iterations, however, the fact that

the matrix M−1 is diagonal, drops the calculation overhead which preconditioning
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methods generally introduce to the solver. More precisely, the extra calculations are

only one matrix-by-vector operation and one vector product, per iteration.
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CHAPTER 4

GPU IMPLEMENTATION

4.1 Preconditioned conjugate gradient iterative solver

The Conjugate gradient algorithm is one of the best known iterative solvers

for sparse symmetric positive definite linear systems. Conjugate gradient methods

are well studied by mathematicians and they are categorized under Krylov subspace

methods [18].The preconditioned conjugate gradient (PCG) method has been chosen

as the iterative solver for the linear elastic structural problem in hand. The precon-

ditioned conjugate gradient algorithm [18] [19] steps are listed under Algorithm 1.

To achieve higher performance for the PCG method, one inner product per itera-

tion is eliminated simply by reordering steps in the algorithm. An additional inner

product operation is used to calculate the norm of the residual vector to gauge solu-

tion convergence. In order to study the rate of convergence of the PCG method for

different grid sizes we also need to make the norm of the residual non-dimensional

with respect to the number of unknowns which have direct relation with number of

nodes. All vector quantities in the appear in pairs in the original algorithm for ease

of understanding. It is not necessary to reserve extra memory for these quantities in

the computer implementation. Instead of keeping both vectors in the memory, we

use one vector and simply overwrite old values in the vector operations. Optimum

implementation of PCG method is listed under Algorithm 2.

In GPU implementation of PCG iterative solver, memory transfers between host

and device should be minimized. As mentioned earlier, matrix-vector multiplication

is a common time consuming step in iterative methods. The Jacobi PCG method has
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Figure 4.1. GPU preconditioned conjugate gradient flowchart.

one Matrix-vector multiplication (Ap) per iteration. The first solution to accelerate

the solver speed is to use the GPU device as a coprocessor for the host. In this case the

device is used to carry on the matrix-vector multiplication and the CPU is responsible

for the rest of the algorithm. Simply electing to utilize the GPU only for Matrix-

vector operations, results in excessive number of memory transfers and hence poor

solver performance. But if we also do the inner product operations on the GPU, there

is no need to transfer data back and forth between host and device. Bolz et al [20]

found that for conjugate gradient solver, increased performance could be realized by

utilizing GPU to compute inner products as well as matrix-vector products. We chose

standard NVIDIA cuBLAS library to carry out our inner products and level 1 blas

operations [21]. Fig.4.1 presents the program flow of the PCG method implemented

for the GPU.
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Algorithm 1:Original PCG algorithm [18]

Compute r0 = b− Ax0, z0 = M−1r0, and p0 = z0

For j = 0, 1, ..., until convergenc Do

αj = (rj, zj)/(Apj, pj)

xj+1 = xj + αj pj

rj+1 = rj − αj pj
zj+1 = M−1rj+1

βj = (rj+1, zj+1)/(rj, zj)

pj+1 = zj+1 + βj pj

αi = (ri, ro)/(Api, ro)

EndDo

Algorithm 2:Modified Implementation of PCG Algorithm

r = Ax

r = b− r

z = M−1r

p = z

For j = 0, 1, ... until convergence Do

If j = 0 Then

temp1 = (r, z)

Else

temp1 = (r, z)

β = temp1/temp0

p = z + βp

EndIf

temp2 = (p,A p)
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αj = temp1/temp2

x = x+ α p

r = r − α temp2

z = M−1r

EndDo

4.2 Sparse matrix storage

Two different sparse matrix structures are implemented for the GPU device.

The first is the compressed sparse row (CSR) method and the second is compressed

sparse row block (CSRB) method. Details about the both data structures are ex-

plained in chapter 3. In order to increase data access efficiency in the matrix vector

multiplication kernel both data structures are padded. In this process all the rows are

padded with extra zeros to have the same length. The padding changes the CSR and

CSRB into Ellpack storage scheme. The main reason behind using Ellpack method is

the fixed row size. Fixed row length results in less indirect addressing and faster mem-

ory access. More details for each storage method are presented in the corresponding

sub sections.

4.2.1 CSRB-Ellpack

Compressed sparse row block matrix storage is utilized to store the stiffness

matrix of a 3-D linear elastic problem with 3 degree of freedoms per node. Each

block is a 3 × 3 square matrix. In the global stiffness matrix, each row of blocks

represents one node. A block with row = i and column = j indices, represents

the coupling between node i and node j in all 3 degrees of freedom. The length

of a row of blocks represents number of neighboring nodes including node i itself.
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Figure 4.2. GPU compressed sparse row block data structure.

These neighbor counts are stored in a vector called NC. According to vector NC

values, node i has NC(i) blocks to be stored. The order we store the data is very

important for memory access time considerations. Stride memory access pattern has

to be avoided as a general principle. Optimum memory access is achieved when the

stride is unit. The following principles are considered for storing the data:

• The first block of each row is the diagonal block

• Off-diagonal blocks are sorted by column index for each row

• Blocks are stored in a vector using a weaving method compatible with the GPU

parallel memory access pattern

Figure 4.2 represents the order of storing blocks for the same example matrix in section

3.1.4 using weaving mechanism. Figure 4.3 shows the corresponding vals, rows and

cols vectors for the padded CSRB and vals after the weaving process. The example

matrix is repeated for convenience. An appropriate reordering scheme is presented
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for storing the data values. Weaving or reordering the data is depicted in Figure 4.2.

In the weaving scheme, blocks are stored in groups of column-blocks. As mentioned

earlier, the first block of each row is the diagonal block of the corresponding row

number. All diagonal blocks are stored in the column-block j = 0. Eq.4.1 calculates

the size of column blocks. Since all the rows are padded to have fixed number of

blocks, all of the column-blocks have the same size.

column-block size = blocksize× n n = number of nodes (4.1)

The first element of each diagonal block is the first value to be stored. As it is shown

in Figure 4.2, the first n values stored in the column-block array are the first elements

of diagonal block in row order. In the case of 3 degree of freedoms, each column block

consists of 9× n values. Eq.4.2 gives the memory location and the actual position of

component (k, l) of the 2-D block (i, j).

global component location : row = i× dof + k

column = cols[rows[i] + j]× dof + l

location in vals :(k × dof + l)× i+ n× blocksize× j (4.2)

Storing the stiffness matrix with weaving scheme, enforces unit stride memory access

and therefor it has the maximum performance. More detail about stride memory

access pattern is provided in the GPU matrix-vector multiplication section.

4.3 Matrix vector multiplication parallel schemes

Parallel matrix-vector operation kernels are bandwidth limited. It means the

memory bandwidth between GPU global memory and the computing cores in SMs,

is the bottle neck of the performance. Hence any reduction in memory access results

in higher performance. CSRB matrix format only stores row and column pointers of
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Figure 4.3. GPU compressed sparse row block example matrix.
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Figure 4.4. Block MVM.

blocks which not only save memory storage but it is the key to better performance

in the matrix vector multiplication.

4.3.1 Assembled

Matrix-vector multiplication procedure is investigated for optimum implemen-

tation on the GPU. As being said, MVM is one of the most computationally intensive

operations used by iterative methods when solving sparse linear systems. A GPU

kernel is designed specially to handle CSRB MVM operations. In the FEM solution

procedure we are interested in operations on the stiffness matrix. Stiffness matrix

is stored in a sparse matrix format which unifies all degrees of freedom associated

with each node in blocks. Figure 4.4 depicts the multiplication for a single block.

The GPU CSRBMVM kernel assigns one node to one parallel thread to do the mul-

tiplication and return the results for all DOF associated with that node. As it is

40



 

thread 0    thread 0 

thread 1    thread 1 

thread 2    thread 2 

thread 3    thread 3 

…    … 

 

Coalesce 

access 

   

Stride 

access 
  

  
     

     

  …   

 

Figure 4.5. Stride and coalesce memory access.

shown in Figure 4.4, for a 3 DOF problem, same values of vector x have to be fetched

from memory for each line of a block. Putting stiffness matrix in CSRB matrix for-

mat and assigning nodes instead of lines to the MVM kernel, eliminates redundant

memory access to the vector x. Also CSRB matrix format reduces the time required

for resolving row and column indices compared to CSR. This is due to less memory

reads from rows and cols vector. Another way to interpret this is that the CSRB

GPU kernel has higher instruction intensity compared to a CSR kernel. The ratio

between instructions and memory read in CSRB is higher than the regular CSR. The

parallel GPUMVM kernel tends to diverge in execution due to variable number of

non-zero blocks per row. This means in each threadblock, all threads have to wait

for the longest row to finish multiplying. One way to get around the thread block

divergence is to schedule the nodes with the same row length together. It requires a

simple reordering of the nodes based on number neighboring nodes. But scheduling

nodes in a scattered pattern would have a penalty in accessing vector x.
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When developing bandwidth limited GPU kernels, global coalesced memory

access is the most important factor to consider. Coalesced memory access in simple

words, means there is no gap or stride between requested data. Typically in parallel

codes, multiple threads make requests to access different memory locations at the

same time. If these requests happen to point to a series of memory locations, memory

access will be so called coalesce. Un-coalesced memory access usually happens when

there is a stride in the access pattern. Figure 4.5 depicts the two patterns.

In the CSRBMVM CUDA code we have to access global memory three times

during execution. The first access is reading stiffness matrix data. We addressed this

by reordering and padding our CSRB data structure similar to an Ellpack structure to

assure global memory access coalescing. The second global memory access is reading

vector x. Each parallel thread has to deal with multiple blocks and has to read 3

values from vector x per block. In general there is no guarantee to have coalesce

reads from vector x for each row. However most of the mesh generators use re-

numbering techniques to reduce stiffness matrix bandwidth. In CSRB case when we

execute multiple threads which are accessing memory locations that are physically

close to each other, the Fermi GPU will automatically line them up and manage the

memory access the best possible way. Therefore memory access to vector x could be

considered partially coalesce as long as we keep the neighboring nodes together or in

other words keep the matrix bandwidth as low as possible. Back to the divergence

of thread executions, we decided to avoid reordering the nodes. Since the kernel is

bandwidth limited and not instruction limited, we believe the penalty of scattered

memory access to vector x is higher than execution divergence. And finally the third

global memory access is writing results back to vector y. Since each CUDA block

multiplies consecutive rows at once and synchronize all threads, writing to vector y

in global memory is fully coalesce.
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4.3.2 Assembly-free

Assembly-free matrix multiplication refers to a procedure in which matrix mul-

tiplication is combined with calculation of stiffness matrix into one step. This unified

task has higher performance in certain case studies compared to separated assembly

and multiplication. The size of the global stiffness matrix in FEM problems is tied to

the number of unknowns. For large FEM simulations, the size of the stiffness matrix

becomes a limiting factor on memory resources. Assembly-free kernels reduce the

memory space requirement per DOF and thus increase the capacity of the device.

In the assembly process of stiffness matrices, local matrices are generated using the

input mesh data and each local matrix is mapped to the correct corresponding loca-

tions in the global matrix. In concept, the stiffness matrix represents the same data

provided in the mesh inputs in an expanded usable data structure. This expansion of

data requires computations and extra memory space for storage. The assembly-free

kernel takes mesh data as the input matrix, instead of the global stiffness matrix and

therefore less memory space is required to do the same matrix-vector operation for

the same problem size.

In a simple linear FEM problem, stiffness matrix is used many times during

the solution process and hence storing the matrix avoids redundant calculations.

For example the PCG iterative solver needs to access stiffness matrix for each matrix

vector operation. On the other hand there are nonlinear FEM problems which require

updating the stiffness matrix per iteration. Since the data is not reused, there is no

need to store the whole matrix. In this case the assembly-free kernel has higher

performance than the regular method.

The Assembly-free method is developed for simplex tetrahedral elements with 4

nodes. The GPU kernel parallel model maps one element to every thread. Each thread

calculates the local stiffness matrix. Then it calculates the partial multiplication

43



result and store the result in a global result vector. Storing the partial results in the

global result vector is similar to assembly process. To get correct results, one must be

careful to avoid race condition. The race condition happens when multiple threads

try to access the same global memory location simultaneously. This can happen if

multiple threads try to insert the partial result of the same node number into the

result vector. The general remedy to overcome race conditions are atomic operations

(section 1.1.3.3). Since the atomic operations serialize memory access to the global

memory, the performance will drop significantly and therefore the coloring technique

instead. The coloring technique produces packets containing conflict-free elements.

Two elements are conflict free when they have no common node. Each matrix-vector

multiplication is broken down into packets of elements with the same color. Color

packs are launched on separate GPU grids using sequential kernel calls. Utilizing

coloring technique over atomic operations on global memory has proven to have better

performance. The coloring step is done on the CPU as a preprocessing step. The

element data is reordered to provide better memory access on the GPU. Coalesced

global memory access is ensured by using extra memory to store redundant nodal

coordinates. By using extra memory space we organize element data in separate

packets. These independent packets provide coalesced global memory access and

scalable parallel algorithm. The element data packets include node numbers and

nodal coordinates for each element. The amount of extra memory usage is provided

in the equation below:

Original memory for nodal coordinates = n×DOF

Extra memory for nodal coordinate = m× (nodes per element)×DOF

n = number of nodes m = number of elements (4.3)
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CHAPTER 5

RESULTS

In this section the GPU is applied to the solution of systems of equations re-

sulting from finite element discretization. The relative performance of the GPU to

the CPU is reported as well as the GPU computing performance indices. All calcu-

lations are done in double precision. For the serial timing, C codes were compiled

with the optimization flag ”-O3” and run using a single core on a quad-core Intel i5

2.66GHz processor with 4GB of system memory. GPU computations were done in

double precision utilizing CUDA C codes. An NVIDIA Quadro 5000 GPU with 352

cores and 2.5GB of memory was used as the GPU.

5.1 PCG on GPU

The cases considered here are composed of 8-node hexahedral elements for linear

elastic problems. The local element stiffness matrices are formed in the conventional

way explained in chapter 2. The local stiffness matrices are assembled into a global

matrix with CRSB format and then boundary conditions are enforced. The afore-

mentioned steps are completed on the CPU of the host computer while the solution

of the system of equations is performed on the GPU using the PCG method described

in previous chapters. Before executing the PCG function, the global stiffness matrix

and force vector are copied to the global memory on the GPU. Timing functions are

used to measure time required to perform a single matrix vector product and the time

to perform a single PCG iteration. Similar timing functions were used in the serial

version of the code running on the host CPU.

45



X Y

Z

Figure 5.1. Mesh for cantilever beam.

Table 5.1. Meshes used for cantilever beam case

Grids Total DOF Nodes Elements Non-zeros blocks
1 3000 1000 624 19942
2 30000 10000 9019 233632
3 500,400 166,800 152,627 4,246,528
4 1,081,344 360,448 332,661 9,228,544
5 1,520,640 506,880 485,100 13,292,020
6 2,010,624 670,208 642,033 17,586,400

We define the speedup, which is a measure of performance of the GPU relative

to the CPU, with the formula below:

speedup =
cpu execution time

gpu execution time
(5.1)

The speedup is used to assess the GPU performance for a simple geometry cases. A

cantilever beam is considered which is fixed at one end and has a uniform shear load

applied at the other. This problem has a known exact solution and can be meshed

with different resolutions quite easily. An example mesh is shown in Figure 5.1.
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Figure 5.2. Speedup for PCG on GPU using full-matrix CSRB on both GPU and
CPU for different mesh sizes.

The speedup is compared for the six different mesh sizes given in Table 5.1. The sizes

range from 3000 to more than 2 million degrees of freedom (DOF). The speedup for

the PCG solver for different grid sizes is shown in Figure 5.2. Note that in this case,

both the GPU and CPU code use full matrix CSRB, although the global stiffness

matrix is symmetric. Figure 5.3 compares the GPU speedup for the case where

more conventional symmetric CSRB storage is used on the CPU side. The PCG

results demonstrate the ability of the GPU CUDA code to significantly outperform

the serially executed C code in both cases. For grid sizes above 1 million DOF,

the CUDA implementation of the PCG algorithm shows the maximum and fairly

constant speedup in performance. The memory bandwidth is the performance limiting

factor. The small variation in performance gain for different grid sizes is normal

due to parallel nature of the code. A parallel kernel call on the GPU schedules a

grid of threadblocks. The speedup is sensitive to the total number of threadblocks

to be launched. The GPU distribute the threadblocks among available computing

resources which distinguish its heterogeneous architecture. A peak in speedup chart
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Figure 5.3. Speedup for PCG on GPU using full-matrix CSRB on GPU and symmetric
CSRB on CPU for different mesh sizes.

appears if the problem size scales perfectly to the number of target GPU streaming

multiprocessors.

5.2 Matrix-vector operation

The GPU results for this section are divided into two groups according to the

algorithm used.

5.2.1 Assembled

The impact of CSRB verses non-block CSR on MVM operations is considered

in this section. The same grids from Table.5.1 are used to generate the matrices. In

this case, MVM speedup is defined as

speedup =
CSR gpu execution time

CSRB gpu execution time
(5.2)

which effectively compares CSRB performance relative to CSR. Results are shown in

Figure 5.4. For larger meshes, the CSRB, results in MVM operations that are five

times faster than CSR MVM operations, which is most likely due to more efficient
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Figure 5.4. Speedup of MVM for CSRB vs CSR on GPU for different mesh sizes.

memory access explained in previous chapters. According to the results it is clear

that the choice of CSRB is essential for getting maximum performance from the

GPU hardware when solving matrices resulting from finite element discretization of

multidimensional problems.

5.2.2 Assembly-free

To demonstrate the assembly-free multiplication method, the performance of 4

different scenarios are compared:

• Serial assembly and MVM on the CPU

• Serial assembly on the CPU and parallel MVM on the GPU

• Parallel assembly and MVM on the GPU

• Assembly-free MVM on the GPU

Multiple grid sizes were used to carry out the computations. Table .5.2 provides grid

statistics of a rectangular beam structure meshed with 4-node tetrahedral elements.
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Table 5.2. Meshes used for assembly-free performance study

Grids Total DOF Nodes Elements Non-zeros blocks
1 30,000 10,000 40,095 162,028
2 240,000 80,000 359,195 1,405,268
3 810,000 270,000 1,257,295 4,869,708
4 1,920,000 640,000 3,034,395 11,695,348
5 3,000,000 1,000,000 4,789,995 18,410,988
6 10,143,000 3381000 16,398540 62,819,236

In all cases, the matrix is stored in CSRB format and corresponding MVM

code is utilized. In the first scenario, the CPU assembles the matrix and stores it

on system memory. Then it calculates the matrix-vector operation. In the second

scenario the matrix is assembled on the CPU in the same way and then the data

is reordered and transferred to the GPU for calculating MVM in parallel. In the

third case a parallel assembly algorithm is developed for the GPU. The matrix is first

stored in the GPU global memory and then assembled MVM kernel is utilized. In the

last case, mesh data is transferred to the GPU, and the assembly-free MVM kernel is

used. The performance of all cases is measured using CPU and GPU time functions

for one matrix-vector operation. In the last case the mesh data transfer from host to

device is excluded from timing. Figure 5.5 demonstrates the relative performance of

different scenarios while Table 5.3 lists actual computation time for each grid.

5.3 Conclusion

This work demonstrates the feasibility of using consumer GPUs to solve large

sparse systems arising from 3-D finite element discretization of multidimensional equa-

tions. The approach exploits the sparse block structure of the global stiffness matrix

to accelerate matrix vector multiplication and achieve higher performance compared
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Figure 5.5. Assembly-free method performance chart.

Table 5.3. Details of computation time in millisecond

Grids Assembly MVM GPU data MVM Assembly Assemble-Free
CPU CPU preparation GPU GPU MVM GPU

and transfer
1 40 2 14 0.35 17 1.9
2 460 18 138 2.7 115.4 9.5
3 1660 65 665 9.7 393.5 32
4 4100 156 1900 22.7 943 77
5 6615 246 2712 35 1491 122.5
6 - - - - - 418

to CPU serial implementation. Compressed sparse row block multiplication kernels

are developed to handle calculations. CSRB-MVM kernel is 5x faster than CSR on

the GPU for field problems with 3 unknowns per node. Implementation of Jacobi

preconditioned conjugate gradient iterative solver on the GPU with CSRB storage

demonstrates up to 7x speedup in comparison with the fastest serial version of the

code on CPU using symmetric compressed sparse row block structures.
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Parallel assembling process and matrix vector multiplication are combined into

one assembly-free kernel for 4-node tetrahedral element. The kernel achieved up to

50x performance speedup over CPU serial version and up to 12x performance gain

over separated assembly and multiplication on the GPU. Using assembly-free method,

matrix vector multiplication of a stiffness matrix with more than 10 million degrees

of freedom was successfully done on the GPU with 2.5 GB memory while for the

assembled method the largest problem size was 3 million DOF.

5.4 Future work

For the future work on the subject comparison of the matrix-vector operation

of CSRB with standard Nvidia sparse library is suggested. Development of more

sophisticated algorithms to handle unstructured grids matrix-vector operations are

possible. Implementing different iterative solvers and using better preconditioning

will definitely provide even faster solvers with fewer iterations to converge. Develop-

ing a nonlinear solver utilizing the provided assembly-free kernel would demonstrate

the applicability of the method. Developing a faster assembly-free kernel is possible

utilizing the shared memory architecture of the GPU. Texture memory spaces could

be utilized to provide more efficient memory access for all the kernels.
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