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ABSTRACT 

 

A STUDY OF THE VISCOUS INTERACTION BETWEEN  

THE SOLAR WIND AND EARTH'S  

MAGNETOSPHERE USING  

AN MHD SIMULATION 

 

Robert Jeffrey Bruntz, PhD 

 

The University of Texas at Arlington, 2012 

 

Supervising Professor:  Ramon E. Lopez 

The solar wind interacts with Earth’s magnetosphere largely through magnetic 

reconnection and a “viscous-like” interaction that is not fully understood.  The 

ionospheric cross-polar cap potential (ΦPC) component due to reconnection (ΦR) is 

typically much larger than the viscous component (ΦV) and very dynamic, making 

detailed studies of the viscous potential difficult.  We used the Lyon-Fedder-Mobarry 

(LFM) magnetohydrodynamic (MHD) simulation to study the viscous potential by 

running LFM for a variety of solar wind density and velocity values and ionospheric 

Pedersen conductance (ΣP) values, but no solar wind magnetic field, so that ΦPC was 

entirely due to the viscous interaction.  We found that ΦV increased with solar wind 
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density, scaling as n0.439 (n in cm-3), and ΦV increased with solar wind velocity, scaling 

as V1.33 (V in km s-1); these results were combined to create a formula for ΦV in LFM, 

using a ΣP value that produces realistic potentials: ΦV = (0.00431)n0.439V1.33 (in kV), 

which matches simulation results very well.   ΦV also varied inversely with ΣP, as 

predicted by previous theory.  The form of this formula is similar to results from the 

Newell et al. [2008] empirical study, which tested a list of viscous coupling functions 

and found that n1/2V2 worked best (but did not create a formula to predict potentials, so 

actual viscous potential values could not be compared). 

The Bruntz et al. formula was also compared to LFM results from a run with 

real solar wind input, from the Whole Heliosphere Interval (WHI), which lasted from 

20 March to 16 April 2008.  LFM was first run with the full solar wind from the WHI, 

then with the same solar wind but zero interplanetary magnetic field (IMF), which 

meant that ΦPC = ΦV for that run.  These runs were performed with the empirical 

ionospheric solver, using the average F10.7 flux value from the WHI as input.  This 

empirical ionosphere is known to produce potentials that are higher than observations, 

so the output was scaled down to match the range of the Bruntz et al. formula with a 

scaling factor γ = 1.542, which was found from 11 steady periods in the WHI.  Those 

same periods were also used to calibrate the Newell et al. viscous scaling factor, turning 

it into a predictive formula: ΦV = (6.39×10-5)n1/2V2 (in kV).  Both viscous potential 

formulas were compared to ΦPC from the zero-IMF run, producing ΦV values that were 

very close to the LFM ΦPC values, differing in opposite ways in some places, but with 

essentially identical correlation coefficients. 
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We also used the γ factor to scale ΦPC from the full-IMF LFM run down, then 

compared it to ΦPC from the Weimer05 empirical model.  The two matched well in the 

higher ΦPC values, but the Weimer05 ΦPC values reached a minimum “floor” value, 

while the LFM ΦPC has no such floor, and so dropped much lower in some places.  The 

fact that γ scaled the full-IMF LFM down to match the Weimer05 values, even though γ 

was derived from very different runs and conditions, is interpreted to support the idea 

that the cause of high LFM potentials is in the ionospheric conductivity, since γ is 

derived from the higher-conductivity-based Bruntz et al. formula.  
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CHAPTER 1  

INTRODUCTION 

1.1 The Sun and solar wind 

Just like weather on Earth, space weather is constantly occurring above our 

heads and around us in all directions.  It is generally invisible to the naked eye, but not 

necessarily without consequences for life on Earth.  This dissertation looks at a very 

small slice of space weather – the interaction between Earth and some of the mass and 

energy emitted by the Sun.  This sliver, the viscous interaction, is generally just a 

whisper in the maelstrom swirling and flowing around Earth; but sometimes it’s more 

than a whisper.  

1.1.1 The Sun’s energy - the driver of space weather 

The Sun is the ultimate source of almost all space weather in our solar system.  

Nuclear fusion in the Sun’s core provides the energy to keep the Sun’s surface (the 

photosphere) at a steady-state temperature of approximately 6,000 K (Figure 1-1).  A 

few thousand kilometers farther out, though, through processes that are not yet fully 

understood, the temperature of the Sun’s atmosphere rises to the range of 1,000,000 K.  

This superheated plasma is nearly completely ionized for all elements that comprise it 
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and forms the basis of the solar wind, which flows out from the Sun in all directions 

throughout the solar system, continuously though not uniformly. 

The Sun generates its own magnetic field.  Since the Sun is made almost entirely 

of plasma, in which almost every atom has had at least some of its electrons separated 

from it, the solar atmosphere and magnetic field interact.  The plasma can move parallel 

to magnetic field lines easily, but due to its high electrical conductivity, it cannot easily 

move perpendicular to magnetic field lines, with the plasma instead gyrating around the 

field line, due to the Lorentz force.  In plasma physics, this is known as “frozen-in 

flux,” meaning that the magnetic field and the plasma are frozen together (at least on the 

timescales we typically care about).  The ratio of thermal pressure to magnetic pressure, 

commonly referred to as the plasma’s “beta,” β = nkT/(B2/2µ0), determines whether the 

plasma motion moves the magnetic field with it (β >> 1), the magnetic field constrains 

which directions the plasma can go (β << 1), or something in between (β ~ 1).  Near the 

surface of the Sun, the magnetic pressure dominates, typically guiding the motion of the 

plasma, but in the much hotter plasma of the corona, the thermal pressure dominates, 

and so the plasma drags the magnetic field with it as it flows out into the solar system. 
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Figure 1-1.  Structure of the Sun and solar atmosphere.  
[Image source: NSO/GONG.] 

 

1.1.2 Typical characteristics of the solar wind and typical ranges 

The solar wind tends to have different characteristics near the Sun’s poles versus 

its equatorial plane, which is angled about 7° off from the plane of the ecliptic and 

Earth’s orbit.  The solar wind that reaches Earth is typically moving at around 400 km/s, 

though it will sometimes drop down to the range of 300 km/s, and on occasion rise to 

the range of 1000 km/s.  The average density is about 5 particles per cubic centimeter 

(#/cc), but can fluctuate quickly and by several orders of magnitude – dropping well 

below 1/cc or up into the 10’s of particles per cm3.  The dominant ion species is 

hydrogen, at about 95% (by particle count, not mass), with around 4% helium, and 

traces of other elements.  The plasma temperature is typically around 100,000-300,000 

K, depending on particle species.  The typical sound speed (a compressional wave) in 
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the solar wind is around 60 km/s – thus, the solar wind’s flow past the Earth is highly 

supersonic.  All of these values [Kivelson and Russell, 1995; Kallenrode, 2004] are 

averages for typical, steady-state conditions; extreme conditions, of course, can produce 

much higher or lower values. 

The magnetic field in the solar wind, also known as the interplanetary magnetic 

field or IMF, varies greatly in both magnitude and direction.  Typical magnitude is 

around 5 nT, but the direction is highly variable.  The direction is very important, as 

will be discussed later, since the component of the field parallel to Earth’s magnetic 

dipole axis has a strong effect on the rate at which energy is transferred from the solar 

wind to Earth and its surroundings. 

One common coordinate system used in magnetospheric physics the Geocentric 

Solar Magnetospheric (GSM) system.  In this coordinate system, the x-axis points from 

the center of the Earth to the center of the Sun; the z-axis is in a plane defined by the x-

axis and the Earth’s magnetic dipole axis, with positive z pointing in the same sense as 

the south magnetic pole (which is about 11° displaced from the north geographic pole), 

and the y-axis completes a right-hand system.  This coordinate system thus makes a 

small rotation around the x-axis every 24 hours, as the magnetic pole rotates with the 

Earth around the rotational axis.  There is also an annual variation, as the Earth orbits 

the Sun and so the rotational axis changes its orientation to the Sun.  One major benefit 

of using this coordinate system is that it lines Earth’s magnetic dipole up with the z-axis 

of the IMF, which will be important in the discussion of solar wind-magnetosphere 

interaction. 
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1.2 Earth’s magnetosphere 

1.2.1 Earth’s dipole; modification of shape by flow of solar wind 

The Earth’s magnetic field can be approximated as a dipole, and for a few RE (1 

RE = 1 Earth radius ≈ 6371 km), that geometry describes the field well.  Farther out, 

however, the flow of the solar wind distorts and confines Earth’s magnetic field.  This 

“bubble” in the solar wind is called Earth’s magnetosphere, inside which the magnetic 

field and plasma are dominated by Earth’s influence, and outside of which the magnetic 

field and plasma are dominated by the solar wind (Figure 1-2).   

 

Figure 1-2.  Solar wind flowing around Earth’s magnetosphere (not to scale).   
[Source: NASA/SEC.] 

 

When the solar wind reaches Earth, its speed relative to the Earth is almost 

always greater than the fastest wave that can propagate through it.  Thus, the 

information that there is an obstacle to go around (Earth’s magnetosphere) cannot be 

transmitted upstream, and so a shockwave must form (Figure 1-3).  The sunward edge, 

the bow shock, transitions the solar wind into a region in which the flow speed is 
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decreased and the wave speed is increased, allowing information to propagate 

throughout the shocked region, the magnetosheath.  This allows for diversion of the 

magnetosheath plasma, which is still entirely of solar origin, to flow around the obstacle 

of Earth’s magnetosphere [Kivelson and Russell, 1995].  The transition from the 

undisturbed solar wind to the magnetosheath slows the solar wind plasma, compresses 

it, and heats it.  As the magnetosheath plasma flows around the magnetosphere, it is 

reaccelerated, expanded, and cooled – though not back to its original values, due to 

energy lost by the transition.  The magnetosphere, in turn, is compressed on the 

sunward side and extended on the antisunward side, forming a comet-like or tear-drop-

like shape.  The antisunward portion of the magnetosphere is commonly referred to as 

the magnetotail. 

 

Figure 1-3.  Meridional cut of the Earth, magnetosphere, and solar wind.  [Image source: NASA.] 
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The boundary between the magnetosphere and the magnetosheath is the 

magnetopause, a “surface” (actually a thin region) on which the necessary currents flow 

to match the magnetic shear across the boundary, and across which the plasma velocity 

and density parameters begin to transition from magnetosheath conditions to 

magnetospheric conditions.  In the sunward direction, the magnetopause location is 

determined by the balance of pressure between the magnetosheath momentum, which is 

typically much larger than the solar wind magnetic pressure, and the magnetospheric 

magnetic pressure, which is typically much larger than the magnetospheric plasma 

pressure.  Under nominal solar wind conditions, the bowshock is located at about 15 RE, 

while the sunward magnetopause is located at about 10 RE. 

Laterally, the magnetosheath plasma velocity becomes more aligned with the 

Sun-Earth line, and so exerts less dynamic pressure on the magnetopause; as a result, 

the total pressure inside the magnetosphere pushes the magnetopause out to the point 

where the two are in balance.  Directly in the dawn and dusk directions, the 

magnetopause is typically located at about 16 RE [Sibeck et al., 1991], and continues to 

flare outward for several tens of RE in the antisunward direction.  The distance to the 

antisunward magnetopause is highly variable, since both the solar wind and 

magnetospheric pressures are very low in that region, and thus fluctuations in one can 

easily overbalance the other, but the distance is typically several hundreds of RE and can 

reach 1000 RE or more. 
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1.2.2 Brief anatomy of the magnetosphere 

The Earth’s magnetosphere is a highly complicated system, with a large number 

of current systems and regions of plasma populations, some of which can overlap and 

pass through each other.  An idealized section of the magnetosphere is shown in Figure 

1-4.  Most of the currents and plasma populations are not relevant to this study, and so 

will not be discussed here, with the exception of the low-latitude boundary layer 

(LLBL), which forms through interaction between the magnetosphere and the solar 

wind (in the magnetosheath).  This system will be discussed in more detail in a later 

section of this introduction. 

 

Figure 1-4.  Anatomy of the magnetosphere. [Figure modified from figure in Lopez, 1990.] 
 



 

9 
 

 

  

1.3 Modes of interaction between the solar wind and magnetosphere 

There are two main modes by which the solar wind transfers mass, energy, and 

momentum to the magnetosphere.  The first, reconnection, is dependent on magnetic 

fields, whereas the other, the viscous interaction, is more of a mechanical interaction. 

1.3.1 Reconnection 

Magnetic reconnection was first proposed as a driver for ionospheric current 

observations by Dungey [1961].  In this model, if two magnetic field lines which are 

oriented in opposite directions are pushed together, field lines from each field can be 

broken and then “reconnected” to the other field, thus allowing plasma trapped on one 

field line to move to another field line (Figure 1-5).  This process also energizes plasma 

in the reconnection region.   

 

Figure 1-5.  Reconnection on the sunward magnetopause and in the magnetotail. 
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Reconnection on the sunward magnetopause is strongest when the IMF is 

directed southward, opposite the direction of Earth’s magnetic field in the equatorial 

region.  In this case, a reconnection line will form near the intersection of Earth’s 

magnetic equatorial plane and the magnetopause.  At that line, “closed” magnetic field 

lines, which leave Earth’s south geographic pole (a north magnetic pole) and run 

directly to the north geographic pole (a south magnetic pole), are broken and reconnect 

with solar wind magnetic field lines in the magnetosheath.  These “open” field lines, 

which run from one terrestrial magnetic pole out into the solar wind, are pulled over the 

polar cap by the flow of the solar wind past the Earth.  The open field lines collect in the 

magnetotail, where the magnetic pressure of the accumulation of field lines pushes open 

field lines in the center of the tail together, where they again undergo reconnection, 

turning two open field lines back into a closed terrestrial field line and a free solar wind 

field line.  The terrestrial field line convects sunward, around the Earth, and back to the 

magnetopause, to continue the cycle.  The newly-restored solar wind field line is pulled 

down the magnetotail and back out into the solar wind. 

For northward IMF, the process is more complicated, with reconnection 

occurring at high latitudes, nearer the magnetic poles, but the reconnection process itself 

is the same.  The cycle transfers much less energy to the magnetosphere for northward 

IMF, with otherwise similar solar wind parameters, than for southward IMF.  An east-

west IMF produces a more complicated process than southward IMF, with less energy 

transfer, but more than for northward IMF.   
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Reconnection can produce very complicated phenomena in the magnetosphere, 

such as magnetic storms, substorms, auroral displays, etc., but since those are not 

pertinent to the study at hand, they will not be discussed here. 

1.3.2 Viscous interaction 

1.3.2.1 Origin 

The viscous interaction was first proposed by Axford and Hines [1961] as one 

possible driver for magnetospheric plasma circulation, which they proposed as the cause 

of ionospheric circulation (with Dungey’s reconnection cycle proposed in that same 

paper as another possible driver).  In the original idea, solar wind plasma flowing 

around the magnetosphere could interact with magnetospheric plasma on closed 

magnetic field lines, transferring energy and momentum, causing the magnetospheric 

plasma to move antisunward just inside the magnetopause, then circulate in toward the 

center of the tail, back toward and around the Earth to the sunward magnetopause, 

completing the cycle of plasma flow in a “viscous cell” (Figure 1-6).  Observations 

have since confirmed the existence of a layer of anti-sunward flowing plasma just inside 

the magnetopause, though the plasma has some characteristics of magnetosheath 

plasma, raising unresolved questions as to its origins [Eastman et al., 1976; Sundberg et 

al., 2008, and references therein]. 



 

12 
 

 

  

 

Figure 1-6.  Viscous interaction with a closed magnetosphere. [From Stern, 1996.] 
 

1.3.2.2 Mechanism 

While Axford and Hines [1961] set up the idea of a viscous interaction between 

solar wind and magnetospheric plasma, no actual mechanism was proposed for the 

interaction.  In a collisionless plasma (which describes most plasma between the Sun 

and Earth’s ionosphere), the transfer of energy and momentum through such an 

interaction is not guaranteed ab initio.  One leading theory for a physical mechanism is 

through the Kelvin-Helmholtz instability (KHI), which occurs when there is a velocity 

shear at the interface between two plasma populations [e.g., Hasegawa, 1975], 

producing rolled up layers of the two plasmas, known as Kelvin-Helmholtz vortices 

(KHVs).  Evidence of KHVs has been observed in both in situ data and simulation 

results [Claudepierre et al., 2008, and references therein]. 
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1.4 The polar ionosphere, plasma convection, and the cross polar cap potential 

The “frozen-in flux” condition of plasma and magnetic fields in the 

magnetosphere implies that the motion of plasma requires motion in the magnetic field, 

as well.  Indeed, the motion of reconnected open field lines over the polar cap (Figure 

1-7, for southward Bz) and then newly-closed field lines back to the sunward 

magnetopause can be traced along field lines to the ionosphere and observed in the 

motion of ionospheric plasma on those field lines, as can the circulation of plasma in 

viscous cells.  Figure 1-8 shows the motion of ionospheric plasma circulation for an 

idealized case with southward Bz.  (This motion is often called “convection,” even 

though it is now known that it is not driven by temperature.)  In the fixed frame of 

reference of the non-rotating Earth, plasma moving in a magnetic field must have an 

associated electric field [Vasyliunas, 2001], given by E=-v×B.  Since the terrestrial 

magnetic field is approximately radial at high-latitudes, the convective electric field 

points approximately horizontally, perpendicular to the plasma flow at all points. 

 

Figure 1-7.  Magnetic field and plasma flow due to reconnection (blue) and viscous interaction (green). 
[Modification of figure from Cowley, 1982.] 



 

14 
 

 

  

 

 

Figure 1-8.  Ionospheric plasma flow due to reconnection (blue) and viscous interaction (green).   
[Modification of figure from Cowley, 1982.] 

 

The electric field E can be expressed as the negative gradient of the electrostatic 

potential, E=-∇Φ, and conversely the electrical potential between any two points can be 

found by integrating along the path thus: Φ=∫(E∙dl).  Thus, with the electric field 

defined at all points over the polar ionosphere, a potential map can also be constructed.  

Since potentials are only defined to within an additive constant (E=-∇Φ=-∇(Φ+C)), a 

reference point must be chosen in order for the potential map to assume unique values.  

In the polar ionosphere, a low-latitude point where convective electric fields are close to 

zero (~50°), is often chosen as Φ=0, with all other points defined with reference to that 

point [Hairston et al., 1998; Merkin and Lyon, 2010]. 
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Figure 1-9.  Sample ionosphere from the LFM-MIX simulation.  The image has been rotated to match the 
orientation of Figure 1-8.   [From Merkin and Lyon, 2010.] 

 

Figure 1-9 shows an ionospheric potential pattern from the LFM simulation, for 

fairly standard conditions (solar wind n = 5 cm-3, Vx = -500 km s-1, Bz = -5 nT).  The 

potential difference between the two extrema defines the cross-polar cap potential 

(CPCP or ΦPC): ΦPC = Φmax – Φmin.  ΦPC is often used as a proxy for magnetospheric 

convection.  Note that the potential extrema occur in the regions defined in Figure 1-8 

as mapping to the viscous cells, but that much of the potential difference occurs in the 

region mapping to reconnection-driven flow.  Thus, for southward Bz, ΦPC is a 

combination of contributions from both the viscous interaction (the “viscous potential” 

or ΦV) and reconnection (the “reconnection potential” or “merging potential” or ΦR). 
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While southward Bz produces two cells of circulating plasma in the ionosphere, 

northward Bz produces four cells – two reconnection-driven cells near the magnetic pole 

and two viscous-driven cells at lower latitudes.  The potential extrema in this case are 

usually on either the two viscous cells or on the two reconnection cells, with the 

potential due to the other two cells being “eclipsed” by the two dominant cells, and so 

making no contribution to ΦPC [Bhattarai et al., 2012 and references therein]. 

1.5 Previous studies involving the viscous interaction 

The cross-polar cap potential can be measured using a variety of methods, 

including low-altitude satellite passes through the ionosphere (such as the DMSP 

satellites [e.g., Hairston et al., 1998]), ground-based radar signals backscattered from 

ionospheric plasma (such as the SuperDARN network, [e.g., Shepherd and Ruohoniemi, 

2000]), and algorithms which assimilate electromagnetic data from a variety of sources 

(such as AMIE, the Assimilative Mapping of Ionospheric Electrodynamics [Richmond 

and Kamide, 1988; Ridley and Kihn, 2004]).  Each method has relative advantages and 

disadvantages, but none of these techniques can separate the viscous and reconnection 

potentials from each other, as can be seen in Figure 1-9.  There are several methods that 

have been useful in finding the viscous potential, though. 

1.5.1 Observations, direct and indirect 

1.5.1.1 Extrapolation of CPCP to zero Bz 

The first technique which yielded a value for the viscous potential was to collect 

a number of ΦPC values measured by satellite passes through the ionosphere and plot 
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them against the solar wind Bz value or some function of it, then extrapolate to Bz = 0 

nT, at which point there should be no reconnection of the north-south components.  

Reiff et al. [1981] were the first to use this technique, using only southward Bz 

observations.  They found that out of a dataset with potentials ranging from about 30-

140 kV, merging could not account for about 35 ± 10 kV.  Doyle and Burke [1983] used 

a similar technique with a different dataset and also found a residual potential of about 

40 kV which could not be accounted for by merging, though they pointed out that if the 

analysis by Wygant et al. [1983] is correct, the ionosphere needs time to “spin down” 

after high levels of activity, and so the non-merging component could be as low as 20 

kV.  Boyle et al. [1997] took this into account by looking only at periods with quasi-

steady solar wind conditions, which yielded a dataset with potentials in the range of 

about 5-170 kV.  They also fitted the non-merging component data, and found that it 

was best accounted for by a term equal to 10-4 V2, where V is the magnitude of the solar 

wind velocity.  For comparison, a solar wind speed of 400 km s-1 yields a non-merging 

potential of 16 kV with this formula, and a solar wind speed of 600 km s-1 yields a non-

merging potential of 36 kV.  Burke et al. [1999] looked at datasets from two satellites 

and found non-merging residuals of 32.6 kV and 34.4 kV, but those data were not 

restricted to steady solar wind conditions, and so could be influenced by other sources, 

such as the neutral flywheel effect.  Shepherd et al. [2003] fit SuperDARN data to the 

Hill model [Siscoe et al., 2002] and found a residual value of 17 kV that could not be 

explained by reconnection (though it is worth noting that potentials measured by 

SuperDARN tend to be lower than those measured by satellites for the same conditions, 
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so that residual potential would also presumably be lower than a satellite would 

measure by the same factor (see discussion in Wilder et al. [2011])). 

1.5.1.2 Satellite passes through the LLBL 

Another method of measuring the viscous potential is by using data from 

satellite passes through the LLBL.  Mozer [1984] used satellite passes through the 

LLBL near the local dusk sector to measure the electric field in that region, and thus 

calculate the potential across the LLBL (which should be mapped to the ionosphere, 

producing a viscous cell and the same potential there).  They found that the LLBL was 

thinner than expected and had weaker electric fields than expected, resulting in an 

average total potential from the LLBL on both flanks of about 5 kV, which is less than 

10% of what they consider to be the typical CPCP of 60 kV (though values did reach as 

high as 16 kV).  Heikkila [1986] disputed the analysis, providing an alternate analysis 

that came up with a boundary layer potential around 30 kV, though Mozer [1986] did 

not agree with that reinterpretation, but also pointed out that there is considerable 

difficulty in studies of this type, due to frequent rapid motion of the LLBL as a satellite 

traverses it, plus difficulties in finding the actual edges of the LLBL from data.  

Hapgood and Lockwood [1993] examined some of those difficulties, and also found 

very low potentials in a single satellite pass through the dawnside – around 3 kV.  

Similar results were also obtained in Mozer et al. [1994]. 
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1.5.1.3 Mapping the LLBL to the ionosphere 

One more method of measuring the viscous potential is by looking at the 

properties of plasma on field lines in the ionosphere, in an attempt to determine which 

regions map to the viscous cells.  Newell et al. [1991] set out a system for identifying 

the LLBL based on particle data in the ionosphere, finding a related potential that 

averaged around 5 kV, though the largest of the 9 cases analyzed reached 15 kV.  

Sundberg et al. [2008] performed a similar type of analysis for a large number of cases 

with negative Bz and ran statistical analyses on the results.  They found an average low-

latitude potential of only 1-2 kV, though the results of that paper raise some questions, 

since their high-latitude (reconnection-driven) potentials do not extrapolate to near zero 

at zero Bz, as expected, but rather extrapolate to around 40 kV, which is similar to the 

Reiff et al. [1981] analysis and results.  Sundberg et al. [2009] examined northward Bz, 

and found a larger potential associated with the boundary layer – averaging around 9.8 

kV, with a solar wind dependence that best matched n1/2V2.  This is significant in that it 

matches the form of the viscous scaling factor found by Newell et al. [2008], which will 

be discussed later in this dissertation (though it is not clear that the higher viscous 

potential for northward Bz is compatible with very recent results by Bhattarai et al. 

[2012] which find that the viscous potential is constant for southward Bz but decreases 

for northward Bz).  Drake et al. [2009] made a detailed comparison of the dawn and 

dusk LLBLs for southward Bz, finding an average total potential of 7.6 kV, but they also 

noted that for some conditions, the potential from the LLBL can be up to 30%, with an 

implication that the peak in the potential might not be along the dawn-dusk line.  
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Blomberg et al. [2004] provided some possible clues as to the discrepancy between the 

different ranges of potentials ascribed to the viscous interaction by different study 

methods.  They studied magnetospherically active times, using a different dataset (6 

passes of the Freja satellite), and found that the LLBL contributed, on average, at least 

⅓ of the CPCP (around 20 kV) and possibly as much as ½ of the CPCP (around 30 kV), 

with high values possibly up to 48 kV (out of 83 kV total).  They suggest that one 

possible reason that these values are so much higher than Mozer [1984] (and by 

implication, some other studies) is that the center of the viscous cells might be farther 

down the tail than the dawn-dusk line, where the passes that Mozer [1984] analyzed 

were located.  Unfortunately, Blomberg et al. [2004] has received little attention, so this 

possibility has not been explored up to this point in time. 

1.5.2 Simulation results 

There are very few simulation studies of the viscous interaction.  Sonnerup et al. 

[2001] ran the ISM MHD code with near-zero IMF, for a number of solar wind velocity 

values and ionospheric Pedersen conductance (ΣP) values.  Their results found a 

velocity dependence given by ΦPC = 3.5(VSW - 185)0.4 at ΣP = 6 mhos.  For VSW = -400 

km s-1, this gives the value 29.9 kV.  The conductance dependence is slightly more 

complicated: ΦPC = 109.6/(8.1 + ΣP)1/2 at VSW = -400 km s-1.  Watanabe et al. [2010] 

also looked at the viscous interaction in simulations, using the BATS-R-US MHD code, 

with runs using solar wind conditions of VSW=-400 km s-1, n=5 cm-3, Bx=0 nT, By=4 nT, 

Bz=2 nT, ionospheric ΣP=1 mho, and 3 different dipole tilt angles.  The purpose of the 
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study was to look at ionospheric and magnetospheric morphology, not the viscous 

potential itself, but the simulation results did show clear viscous cells, and for zero 

dipole tilt (which is often the value used in simulations), ΦV=~10 kV, which was ~20% 

of the total ΦPC=~50 kV.  Since ΣP was very low (MHD simulations are often run with a 

value of ΣP in the range of 5-10 mhos), the potentials in the simulation are probably 

higher than would be observed in reality, but the relative ratios would likely be the 

same.  ΦV showed a linear response to dipole tilt angle over most of the range tested (-

35°, -20°, 0°, +20°, and +35°), with a maximum of ~15 kV at -20° and a minimum of 

~3 kV at +35°.  It is worth noting that the simulation was run with northward Bz, which 

is now known to reduce the viscous interaction (see Chapter 0 4.2); it is unknown at this 

point if By affects the viscous interaction, but indications from Mitchell et al. [2010] 

imply it does not.  Thus, it is not clear how comparable these viscous potential values 

are to values obtained from southward Bz conditions.  There are many other publications 

based on MHD simulations of the magnetosphere, but they generally do not examine 

the viscous potential. 

1.6 Motivation for this research 

In nature, conditions which would produce a purely viscous cross-polar cap 

potential seldom occur, and even a viscous-dominant CPCP is seldom steady and 

persistent enough to get an unambiguous measurement, much less to find a functional 

dependence on solar wind parameters.  Since the viscous and reconnection potentials 

are generally mixed for southward Bz, uncertainty in the value of the viscous potential 
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means increased uncertainty in the reconnection potential and the energy transfer that it 

represents.  Computer simulations, on the other hand, allow us to input arbitrary 

conditions and get results with whatever temporal and spatial resolution the simulation 

runs at.  We can also run the simulation for a planned range of parameters to 

systematically study the dependence of the viscous interaction to a variety of solar wind 

and ionospheric parameters. 

1.7 Preview of the rest of this document 

The rest of this dissertation is organized as follows.  Chapter 2 looks at the 

Lyon-Fedder-Mobarry (LFM) MHD simulation, as well as several techniques for 

finding the viscous potential using LFM.  Chapter 3 systematically analyzes the effect 

of several solar wind and ionospheric parameters on the viscous potential in LFM, 

culminating with a semi-empirical formula for the viscous potential in LFM.  Chapter 4 

compares that formula first to an empirical scaling relation for the viscous potential, 

then compares the viscous potential formula to an LFM run with real solar wind input 

and finds a scaling factor to bring the LFM results down to more realistic values.  

Chapter 4 also uses LFM results to turn the empirical scaling factor into an independent 

formula for the viscous potential and compares it to the viscous potential formula and 

the scaled-down LFM run, and finally compares the scaled-down LFM potentials to the 

results of an independent empirical CPCP model.  Chapter 5 summarizes this work and 

discusses possible directions for future research. 
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CHAPTER 2  

FINDING THE VISCOUS POTENTIAL IN THE LFM SIMULATION 

2.1 Overview of the LFM MHD simulation 

2.1.1 Magnetohydrodynamics (MHD) 

Magnetohydrodynamics (MHD) is a branch of plasma physics in which the 

plasma is treated as an electrically charged and conducting fluid, which thus reacts to 

magnetic fields, as well.  This allows for treatment of much larger quantities of plasma 

to be simulated (such as the magnetosphere) than could be handled if every particle’s 

motion had to be calculated, but at the expense of effects that are based on individual 

particles.  The equations are modifications of standard hydrodynamics, with Maxwell’s 

equations and Ohm’s law included [Kallenrode, 2004].  These equations are 

prohibitively impractical to solve analytically except for some very simple cases.  

Fortunately, the advancement of computer technology has made it not only possible to 

perform simulations based on the MHD equations [e.g., Lyon et al., 2004; Powell et al., 

1999; Raeder et al., 2008; Palmroth et al., 2005], but in the past decade that technology 

has become readily and inexpensively available. 
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2.1.2 A Global, 3-D simulation; the LFM grid 

The model we have used in this study is the Lyon-Fedder-Mobarry (LFM) 

global 3-D MHD simulation.  It has been in development since the mid-1980s [Lyon et 

al., 2004], with constant refinements and improvements being added regularly.  LFM is 

based on a distorted spherical grid, with its axis of symmetry aligned with the GSM x-

axis (Figure 2-1).  The rest of the grid is modified to concentrate grid points in regions 

where higher levels of detail are known, a priori, to be needed – such as the sunward 

magnetopause and magnetosheath - at the expense of regions that are known to be less 

significant for the simulation development – such as the distant magnetotail (Figure 

2-2). 
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Figure 2-1.  The LFM grid, with density mapped to lines connecting grid points. 
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Figure 2-2.  Closer view of the equatorial plane of the distorted grid, showing the increased resolution at 
the sunward magnetopause and magnetosheath. 

 

Grid resolution and dimensions can be changed, but the LFM grid typically 

extends about 25 RE sunward from the center of the Earth, 100 RE laterally, and about 

300 RE antisunward.  The timestep in LFM is partially determined by the speed of the 

fastest wave in the simulation, so a spherical boundary is removed from the center of 

the grid, inside of which higher wave speeds would make timesteps too short to find 

solutions in a reasonable amount of time.  For the simulations analyzed here, that 

boundary is 2.8 RE.  The grid itself extends 50 points radially, 32 points azimuthally, 

and 24 points latitudinally, for 38,400 points in the “single resolution” grid.  Higher 

resolution grids can be used, with the highest resolution grid currently containing 8 
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times as many grid points in each direction as this version, but each doubling of grid 

resolution incurs at least a 16-fold increase in computation time – 2-fold for each spatial 

dimension, plus a 2-fold increase for the necessary reduction in the timestep.  Current 

desktop/server computer technology, using 8 computer cores, allows the single-

resolution version to run approximately 3 times faster than real time (1 hour on the 

computer produces 3 hours of simulation time).  Since most codes and computer 

architectures do not scale linearly as the number of cores increases, it is not surprising 

that the 8x resolution code is only run on multi-thousand core supercomputers.  (We 

would point out that a 4-processor computer that our lab purchased 7 years ago for $16k 

could only run this code at ½ real time.  The current computer cost 1/10 as much (2 

years ago) and runs 6x faster, so the limitations described here will probably seem 

antiquated within 10 years.) 

2.1.3 Boundary conditions and the ionospheric simulation 

The LFM grid has two boundary surfaces: an external, roughly cylindrical 

surface composed of the points on the outer surface of the distorted spherical grid, and 

an internal sphere, closest to the Earth.  The external boundary receives its inflow 

conditions on the sunward surface and the sides from the solar wind file, which can 

come from a variety sources, so long as it provides the required data.  Common sources 

include idealized solar wind conditions (which were used to produce the results in 

Chapter 3 of this dissertation), real solar wind data from satellite measurements (such as 

from ACE or WIND) or modifications thereof (which were used to produce the results 
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in Chapter 4), and the output of solar wind computer models.  The latter – chaining a set 

of computer models together, with the output of one feeding the input of another, from 

the Sun to the Earth – has been the mission of the Center for Integrated Space Weather 

Modeling (CISM) [Hughes and Hudson, 2004].  While the solar wind bounds the front 

and sides of the LFM grid, the tail – the antisunward “cap” of the cylinder – provides 

supersonic and super-Alfvénic outflow only, so plasma can exit through that surface, 

but no inflow is allowed. 

The internal boundary in LFM maps directly along magnetic field lines to a 2-D 

ionospheric simulation.  Field aligned currents (Birkeland currents) reaching the inner 

boundary of LFM are mapped to the ionospheric simulation and provide the source term 

(j||) in the equation 

∇ ∙ Σ ∙ ∇ Φ = j|| sin δ 

Equation 1 

 
where Σ is the conductivity tensor, Φ is the electrostatic potential, and δ is the 

magnetic inclination or dip angle (the angle between the magnetic field direction and a 

horizontal line). 

In a resistive plasma, such as the ionosphere, conductivity takes finite values, 

which generally differ in the directions parallel to or perpendicular to the ambient 

magnetic field.  An external electric field further breaks the symmetry.  Conductivity 

and currents that are perpendicular to the magnetic field but parallel to the electric field 

are called Pedersen conductivity and currents (Figure 2-3).  Hall conductivity and 
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currents are perpendicular to both the magnetic and electric fields.  Birkeland (or field-

aligned) conductivity and currents are parallel to the magnetic field.  Typically, field 

aligned conductivity in the ionosphere is several orders of magnitude larger than either 

Hall or Pedersen conductivity, which can vary in relation to each other depending on 

height.  Hall currents generally form closed loops within the ionosphere, whereas 

Birkeland currents flow into the ionosphere, turn into Pedersen currents as they flow 

through the ionosphere (due to the existence of the ionospheric convective electric 

field), and then flow back out as Birkeland currents again. 

 

Figure 2-3.  Typical ionospheric currents: Hall, Pedersen, and Birkeland (field-aligned). 
[Source: The Comet Program.] 

 

In LFM, ionospheric conductivity can either be set to a constant value or be 

determined by an empirical model.  For constant conductivity, the input value is the 

Pedersen conductivity, which is constant and uniform over the entire ionosphere.  

Alternately, the Hall and Pedersen conductivity can be defined for each point on the 
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ionosphere by an empirical model, which uses solar F10.7 flux as input and allows 

modifications to the conductivity from particle precipitation [Fedder et al., 1995; 

Wiltberger et al., 2009]. 

The procedure LFM follows is that the MHD simulation completes the 

calculations for one timestep, which determines the Birkeland currents impinging on the 

inner boundary.  Those currents are mapped down to the ionospheric grid at 1 RE along 

magnetic field lines, and the ionospheric calculation above is solved for Φ at each point 

on the grid.  Those values are then mapped back out to the LFM inner boundary along 

field lines, and the next LFM timestep uses the new potentials in its calculations. 

Unless otherwise stated, all LFM runs described here have been run with a 

uniform Pedersen conductance of 10 mhos (1 mho = 1 S = 1 siemen).  This value was 

found to give more realistic results than the more common value of 5 mhos [Lopez et 

al., 2010] and to provide the most realistic magnetopause shape [unpublished work by 

Kevin Pham, by comparing to results in Sibeck et al., 1991]. 

2.2 Evidence of the viscous interaction in LFM 

Ideal MHD does not, in fact, have a viscosity term, as normal hydrodynamics 

does.  This raises the question of whether an MHD code can be used to study the 

viscous interaction.  There are several reasons why we are convinced it can. 

First, MHD codes were initially expected to fail to produce any reconnection-

driven processes, since ideal MHD does not produce magnetic reconnection.  And yet 

numerical effects inherent in the encoding of the MHD equations for calculation by 
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computers produces a reconnection-like process that has, at least so far, proven to yield 

results that are remarkably similar to real reconnection [e.g., Goodrich et al., 1998; 

Wiltberger et al., 2000].  This does not mean that a viscous interaction can be 

guaranteed to appear in the LFM output, but it certainly means that such a possibility 

cannot be dismissed a priori. 

Secondly, the lack of an explicit viscosity term does not preclude a viscous 

interaction.  Since the exact mechanism behind the viscous interaction is unknown, it is 

not clear whether that mechanism is, in fact, modeled by the MHD code.  If the 

mechanism is the Kelvin-Helmholtz instability, then it is entirely possible that LFM and 

other MHD codes are capturing the viscous process, as KH vortices have been seen in 

LFM [Claudepierre et al., 2008; also see Figure 2-4]. 

Furthermore, physical processes expected to result from a viscous interaction 

can very clearly be seen in the output of the LFM code.  Figure 2-4 shows two cut 

planes with velocity mapped to them, from an LFM run with fairly typical solar wind 

and ionospheric conditions.  These show anti-sunward plasma flow inside the 

magnetopause, which is a predicted result of a viscous-like interaction.  That figure also 

shows a velocity field, in which arrows show direction of plasma velocity but not 

magnitude; structures that may be Kelvin-Helmholtz vortices are clearly visible.  The 

shape of one such vortical structure is traced by a red velocity streamline, which is 

shown to be inside the magnetosphere by the closed magnetic field line, in green.  Note 

that the streamline shows the path a particle would take if the velocity field were static; 

a real particle would likely take a different path, as the velocity field evolved in time. 
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Figure 2-4.  Velocity cut planes from an LFM run.  The vector field shows direction but not magnitude.  
Vortical structures are visible along the magnetopause.  The vertical structure traced by the red velocity 
streamline is shown to be inside a closed magnetic field line (green), and thus inside the magnetosphere.  

[From Bruntz et al., 2012a] 
 

One final piece of evidence for the a viscous interaction in the LFM code is that 

the cross-polar cap potential does not drop to zero as the IMF goes to zero, as would be 
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expected if magnetic reconnection were the only driver of magnetospheric convection.  

This result will be explored further in the next section. 

2.3 Methods of finding the viscous potential in LFM 

We have used several methods of finding the viscous potential in the LFM 

simulation.  Each will be discussed in turn here, then they will be compared, and we 

will explain why we chose the method used in Chapter 3. 

2.3.1 Extrapolating the CPCP to zero Bz 

Following the general idea of Reiff et al. [1981], we should be able to plot the 

CPCP for several small values of negative IMF Bz (small enough that the 

magnetosphere responds linearly, and stays out of the saturation regime – see, e.g., 

Russell et al. [2001]), which will include potentials from both reconnection and viscous 

interaction.  We then extrapolate those points to zero Bz, at which point the reconnection 

contribution will also be zero.  The CPCP corresponding to a given set of solar wind 

conditions is not a simple matter, though. 

Figure 2-5 shows the time series of the CPCP (ΦPC = Φmax - Φmin, where the 

extrema are found over the entire polar ionosphere) for an LFM run with solar wind 

conditions n = 5 cm-3, Vx = -400 km s-1, and Bz = -3 nT.  The simulation initializes the 

LFM grid from 00:00-00:50 ST (simulation time) with minimal solar wind input, to 

initialize the grid and allow the magnetosphere to take shape, then switches to Bz = -5 

nT for 2 hours, which turns on reconnection, quickly raising the CPCP.  At 02:50 ST 

the IMF switches to Bz = +5 nT for 6 hours, which quickly decreases reconnection and 
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the CPCP.  At 08:50 ST the IMF switches to the Bz value to be studied (in this example, 

-3 nT) and the CPCP soon settles on a steady-state value.  The solar wind density and 

velocity are held constant throughout the run. 

 

Figure 2-5.  Polar cap potential for an LFM run, with the averaging period marked.   
[From Bruntz et al., 2012a.] 

 

As can be seen, the CPCP does not always settle down to a constant value after 

the initialization period.  The “steady-state” value might in some cases be more properly 

called a “quasi-steady-state” value.  As a result, the CPCP must be averaged over a time 

period, rather than simply picking one arbitrary point in time.  Any averaging period 

should exclude the initialization period, as well as the initial response to the new solar 
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wind values.  We tried several averaging time periods, starting at 14:00, 16:00, and 

18:00 ST, then averaging for 2, 4, or 6 hours, but not past 20:00 ST.  We performed 

these averages over the output from several different LFM runs, which had different 

amounts of variability in the CPCP values. 

In all runs tested, we found that the averages for these time periods tend to 

cluster in a very small range, and that the range of averages (largest minus smallest) was 

always less than 10% of the smallest average value (and thus an even smaller 

percentage of the other values).  This shows that the average CPCP is not sensitive to 

the starting time or length of the averaging window, within this range.  For comparison, 

the largest average CPCP for the run shown in Figure 2-5 was 71.96 kV, while the 

smallest was 69.90 kV – a difference of only 2.06 kV, which is only 2.9% of the 

smallest value.  The fluctuations of the CPCP within those windows are actually 

relatively small as well – the standard deviations of the data in each window ran from a 

low of 0.9511 kV to a high of 1.5816 kV, compared to a mean around 70 kV.  All 

datasets tested had similar results.  We chose to average over the 6 hour window from 

14:00 ST to 20:00 ST, in order to minimize the effects of any fluctuations. 

Applying this technique to each LFM run, we get a single data point for every 

set of solar wind conditions (density, velocity, IMF Bz value).  We can run four LFM 

runs with Bz = -1, -2, -3, and -4 nT and constant solar wind density and velocity, and 

from those four data points extrapolate back to Bz = 0 nT, to predict the expected 

viscous potential for those solar wind and ionospheric conditions (following the method 

used in Lopez et al., [2010]) (Figure 2-6). 
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 Figure 2-6.  Extrapolation of -1 to -4 nT Bz data points to Bz = 0 nT.  Vx = -400 km s-1, n = 5 cm-3 for 
these runs. 

 

2.3.2 Zero IMF method 

Another method for finding the viscous potential in LFM is to simply run the 

simulation with zero IMF.  In this case, there is no solar wind magnetic field to 

reconnect with the terrestrial magnetic field, so the entire CPCP is from the viscous 

interaction.  This method has the advantage that it takes about ¼ the time of the 

extrapolation method (and less than that, if the extrapolation method includes the 0 nT 

point), since only one LFM run needs to be completed, rather than 4 (or 5).  One 

disadvantage is that the extrapolation method will tend to reduce the effect of a single 
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data point that takes a particularly high or low value when the fit is performed; the zero 

IMF method has no such method to mitigate the effects of wayward data points.  

Nevertheless, the standard deviation from the potential averaging step tends to be very 

small in LFM runs, as was mentioned previously, so this hazard is not considered to be 

large. 

2.3.3 Streamline tracing method 

One last method that we have used is to find the outer ends of the reconnection 

line on the magnetosphere and trace them sunward, back into the solar wind, and find 

the projection parallel to the interplanetary electric field (IEF), which is found from E = 

-V ˟ B.  For a solar wind velocity parallel to the x-axis and magnetic field parallel to the 

z-axis, E = -VxBz.  The geoeffective length LG times the IEF should give the potential 

that is applied across the reconnection line – the reconnection potential ΦR (Figure 2-7).  

For southward Bz, the CPCP (ΦPC) is the sum of reconnection and viscous potentials: 

ΦPC = ΦR + ΦV, so it follows that ΦV = ΦPC - ΦR.  Having found ΦR from tracing field 

lines and ΦPC from the ionosphere, we now have ΦV, as well. 
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Figure 2-7.  Geoeffective length (LG) in the solar wind maps to the reconnection line on the 
magnetopause.  [From Burke et al., 1999] 

 

This method was used by Merkin et al. [2005] to find a rough value for the 

extent of the reconnection line; Lopez et al. [2010] refined the technique to get more 

precise values of LG. 

There are a few disadvantages to the streamline tracing method of finding the 

viscous potential.  One large disadvantage is that it is time-consuming, requiring careful 

consideration of the system being analyzed, and we have so far been unsuccessful in 

finding a method to automate the process.  This also brings some subjectivity into the 
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results, since two people analyzing the system might not come up with the exact same 

values for LG.  As seen in Lopez et al. [2010] and Bruntz et al. [2012a], however, it can 

provide reliable results. 

2.4 Comparing results of each method 

Table 2-1 shows a comparison of the viscous potential found through the three 

methods described here.  Columns 1 through 3 tell the solar wind conditions for which 

the various viscous potential values are calculated.  Column 7 shows the viscous 

potential calculated based on the streamline tracing (geoeffective length) method; 

column 8 comes from the zero IMF (0 Bz) method; and column 9 comes from the 

extrapolation to 0 Bz method.  Note that columns 4-6 are used in the calculation of 

column 7 (streamline tracing).  Also note that the zero IMF method (column 8) is based 

on Bz = 0 nT, not the Bz value in column 1; and the extrapolation method (column 9) is 

independent of IMF, so their values don’t change in rows 1 and 2, nor do their values 

change in rows 3 and 4. 

Table 2-1.  Comparison of viscous potential found by various methods:  
Streamline tracing (column 7), Zero IMF (column 8), and Extrapolation of Bz to 0 nT (column 9). 

Bz 
(nT) 

Vx 
(km/s) 

n 
(#/cc) 

LG 
(RE) 

LG*Vx*Bz 
*(6.371) 
(kV) 

ΦPC 
(kV) 

ΦV =  
ΦPC - 
LG*Vx*Bz 
(kV) 

ΦV  
(0 Bz 
method) 
(kV) 

ΦV 
(extrapolation 
method) 
(kV) 

         

-7.5 -400 5 6.7 128.0 153.1 25.1 27.2 24.6 
-15 -400 5 5 191.1 207.3 26.2 27.2 24.6 
-7.5 -400 10 6.4 122.3 156.1 33.8 33.0 26.1 
-15 -400 10 5 191.1 228.6 36.5 33.0 26.1 
-15 -800 5 2.5 191.1 255.0 64.1 58.6 57.4 
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Even though the solar wind Bz, velocity, and density cover a range of values, 

each row shows a fairly consistent clustering of ΦV values.  Comparisons for most pairs 

of viscous potential values, for the same solar wind conditions, are within about 10% of 

each other.  The extreme cases include one streamline value exceeding the comparable 

extrapolation value by 30% (of the extrapolation value, which is smaller) and another 

reaching almost 40%.  Sometimes all three values are close to each other, but in the 

cases with the largest range of values, the zero Bz values are intermediate between the 

more extreme values.  Thus, since none of these methods are definitive, we will be 

using only the zero IMF method for the remainder of this work.  
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CHAPTER 3  

VARIABLES FOUND TO AFFECT THE VISCOUS POTENTIAL IN LFM 

In this chapter, several factors are examined which affect the viscous potential in 

LFM, as well as one factor that does not at this time seem to have any effect.  An 

equation is produced which predicts the viscous potential when solar wind conditions 

are provided. 

Here is a table of viscous potential values found for a range of solar wind 

density and velocity (Vx) values, using the “zero Bz” method described in Section 2.3, 

with ionospheric Pedersen conductivity (ΣP) set to 10 mhos, as explained in Section 2.1. 

Table 3-1.  Viscous potential values (in kV) for a variety of solar wind velocity and density values. 

 Solar wind velocity 

-300 
km/s 

-400 
km/s 

-500 
km/s 

-600 
km/s 

-700 
km/s 

-800 
km/s 

 

Solar 

wind 

density 

1 cm-3 7.9 11.7 18.3 23.4 26.3 31.3 

5 cm-3 18.0 27.2 31.8 39.6 52.5 59.4 

8 cm-3 22.3 29.4 39.5 53.2 59.7 92.9 

10 cm-3 25.2 33.0 47.4 57.7 71.9 85.6 

15 cm-3 29.0 39.0 51.1 66.8 90.9 109.4 
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3.1 Solar wind velocity 

Figure 3-1 plots the rows from Table 3-1, showing how the viscous potential 

changes with changes in the solar wind velocity, from Vx = -200 km s-1 up to Vx = -800 

km s-1, but holding density constant.  Values found from the same solar wind density 

are connected by lines. There is a clear increasing trend in ΦV as Vx increases, but the 

increase is faster than linear.  To find the exponent of a non-linear trend, we plot the 

same data on a log10-log10 plot, as seen in Figure 3-2, then add a linear fit to each 

dataset.  In this type of plot, the slope of the linear fit for each series of data gives the 

exponent for that series from Figure 3-1.  The exponents range from 1.202 to 1.434, 

with no clear trend as density changes.  The average of the five values is 1.33, with a 

standard deviation of 0.084. 
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Figure 3-1.  Viscous potential for constant solar wind density, varying solar wind velocity. 
[From Bruntz et al., 2012a.] 
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Figure 3-2.  A log10-log10 plot of the data in Figure 3-1. 
[From Bruntz et al., 2012a.] 

 

3.2 Solar wind density 

Figure 3-3 shows a plot of the columns in Table 3-1, showing how the viscous 

potential changes with changes in the solar wind density, from n = 1 cm-3 up to n = 15 

cm-3, but holding solar wind velocity constant.   

Values found from the same solar wind velocity are connected by lines. There is 

a clear increasing trend in ΦV as n increases, but the increase is less than linear.  To find 

the exponents, we again plot the same data on a log10-log10 plot, as seen in Figure 3-4, 

then add a linear fit to each dataset.  The slopes of the linear fits for each series give the 
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exponent for each series from Figure 3-3.  The exponents range from 0.389 to 0.490, 

again with no clear trend as velocity changes.  The average of the six values is 0.439, 

with a standard deviation of 0.0347. 

 

Figure 3-3. Viscous potential for constant solar wind velocity, varying solar wind density. 
[From Bruntz et al., 2012a.] 
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Figure 3-4. A log10-log10 plot of the data in Figure 3-3. 
[From Bruntz et al., 2012a.] 

 

3.3 Ionospheric conductivity 

We also tested the viscous potential for a variety of ionospheric Pedersen 

conductivity values, using standard solar wind conditions (n = 5 cm-3, Vx = -400 km s-1, 

Bz = 0 nT).  Lopez et al. [2010] predicted that there would be an inverse relationship 

between conductivity and the viscous potential, and showed some limited results 

supporting that prediction in LFM results.  The theory behind the idea is that the 

velocity shear in magnetospheric viscous cells also produces a magnetic shear, since the 

plasma and field are tied together.  That magnetic shear is transmitted to the ionosphere 



 

47 
 

 

  

through field-aligned currents [Sonnerup, 1980].  A lower conductivity in the 

ionosphere makes it “stiffer,” and thus requires a higher potential to match the current 

driven by the viscous interaction.  Fuller support for this prediction is presented in 

Table 3-2 and plotted in Figure 3-5.  The data show a clear inverse relationship between 

ΦV and Pedersen conductance, which is further explored in Figure 3-6, which plots 

(1/ΦV) vs. Pedersen conductance.  A linear fit to those data shows a very high 

correlation coefficient: R2 = 0.991.  Inverting the formula for the fit to the data produces 

an equation for ΦV as a function of ΣP:   

ΦV = (0.002×ΣP + 0.019)-1 (in kV) 

Equation 2  

 
This implies that in the low extreme of conductivity (0 mhos – which is 

unlikely, if not impossible), ΦV could go as high as 50 kV, or for extremely high 

conductivity, ΦV would drop to virtually 0 kV, all with the same solar wind conditions.  

Unfortunately, it is extremely difficult to measure ionospheric conductivity directly; 

combined with the difficulty in any sort of direct measurement of the viscous potential, 

any empirical support for these conductivity results may be a long way off. 

Table 3-2.  Viscous potentials for various ionospheric Pedersen conductances (standard solar wind 
conditions). 

Pedersen 
Conductivity 
(mhos) 

1 2.5 5 7.5 10 12.5 15 20 25 30 

ΦV (kV) 42.7 38.2 36.1 32.0 27.2 22.6 20.3 16.8 14.1 12.9 
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Figure 3-5.  Viscous potential for various Pedersen conductances, from data in Table 3-2. 
[From Bruntz et al., 2012a.] 
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Figure 3-6. Plot of data in Figure 3-5, plotted as (1/VP) vs. Pedersen conductance. 
[From Bruntz et al., 2012a.] 

 

3.4 A note on Bz dependence 

After seeing that the viscous potential is a function of solar wind density, solar 

wind velocity, and ionospheric Pedersen conductivity, it might be natural to ask whether 

ΦV might also be dependent on solar wind magnetic field, as well.  The answer at this 

point is a definite “probably not.”  The strongest argument against a Bz dependence 

comes from Lopez et al. [2010], Figure 7, which is presented below as Figure 3-7.  In 

this figure, ΦPC has been calculated by two different methods, then plotted against solar 

wind VBz; since V was constant for these runs, that factor does not affect the results.  
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The first method simply finds ΦPC from the LFM ionosphere, without concern for the 

ΦR and ΦV components.  The second method calculated ΦV using the extrapolation 

method, then uses the streamline analysis to find ΦR, then adds the two together to get 

ΦPC.  If ΦV had a Bz-dependence, then the composite ΦPC would become increasingly 

larger or smaller than ΦPC from the ionosphere, since the ionospheric ΦPC would 

incorporate the variable ΦV as Bz increased, whereas the composite ΦPC uses a constant 

ΦV.  Yet looking at the plot, the two datasets are remarkably close to each other 

throughout the range of Bz.  If there is any effect, it might be that ΦV increases with 

increasing Bz, since the composite ΦPC tends to be slightly smaller than ΦPC from the 

ionosphere when the two differ – but that effect could also be random variability in the 

data. 
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Figure 3-7.  Cross-polar cap potential vs. VBz, calculated by two different methods. 
[From Lopez et al., 2010,.] 

 

Another way of looking for a Bz-dependence is through the data in Table 2-1.  

Column 7 gives ΦV based on the streamline analysis method, while column 8 gives ΦV 

from the zero Bz method.  Using these data, we can create two series of three ΦV 

datapoints, with constant solar wind velocity and density, and Bz = 0, -7.5, and -15 nT, 

plus one series of two ΦV datapoints for Bz = 0 and -15 nT.  Any Bz dependence should 

show up as a trend in ΦV, as plotted in Figure 3-8, along with linear fits to the data.  

Looking at the data, though, we see that there is no strong evidence for a trend.  For the 

three n = 5 cm-3, Vx = -400 km s-1 datapoints, ΦV first drops significantly, then rises 

slightly.  For the three n = 10 cm-3, Vx = -400 km s-1 datapoints, ΦV rises throughout, but 
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by a very small amount – about 10% over a range of 15 nT (which is a significant range 

in the IMF).  For the two n = 5 cm-3, Vx = -800 km s-1 datapoints, ΦV again rises, but 

again only by about 10% over a range of 15 nT. 

  

Figure 3-8.  Three series of viscous potential data (constant conditions) versus Bz.  Datapoint values and 
linear fits are shown, as well. 

 

So in the final analysis, there is no clear indication of a Bz dependence in ΦV.  

Our data do not preclude such a possibility, and most of the data hint that such a 

dependence would be of the form of an increase in ΦV as Bz becomes more negative.  

But our data are clear that any such dependence would have to be very small, and such a 

small signal is currently beyond our ability to easily and reliably draw out.  (It would 

probably take a skilled person dozens of hours to collect enough data using the 



 

53 
 

 

  

streamline method to make any confident statements.  Such a large investment for such 

a small *possible* payoff is simply not warranted for the current project.) 

3.5 A formula for the viscous potential in LFM, incorporating velocity and density 

We can combine the results of the velocity and density dependence into a 

predictive formula for the viscous potential as follows.  We take the following equation 

as the form of an equation to calculate the viscous potential: 

ΦV = δnαVβ 

Equation 3 

 
where ΦV is the unknown viscous potential, which is equal to an unknown 

density n raised to a power α multiplied by an unknown velocity V raised to a power β 

multiplied by an unknown proportionality constant δ.  We now repeat the equation with 

known values: 

ΦV0 = δn0
αV0

β 

Equation 4 

 
where n0 andV0 are known values that produce a known viscous potential ΦV0, 

and δ is still an unknown constant.  Dividing Equation 3 by Equation 4, moving ΦV0 to 

the right hand side, and cancelling δ yields: 

ΦV = ΦV0(n/n0)α(V/V0)β = μnαVβ 

Equation 5 
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where μ = ΦV0(1/n0)α(1/V0)β.  Using α = 0.439 from Section 3.2 and β = 1.33 

from Section 3.1, μ becomes a constant that depends on a reference set of solar wind 

velocity and density values and the corresponding viscous potential, from Table 3-1.  

We chose n0 = 8 cm-3 and V0 = 600 km s-1, which corresponds to ΦV0 = 53.2 kV.  This 

yields μ = 0.00431 (units omitted), which can be substituted into Equation 5, along with 

the values of α and β to produces the equation 

ΦV = (0.00431)n0.439V1.33  (in kV) 

Equation 6 

 
This equation can be used to find realistic viscous potential values for any solar 

wind density and velocity combination.  We will refer to it, when necessary, as the 

“Bruntz et al. viscous potential formula”.  (This equation and a brief form of the 

derivation were first published in Bruntz et al. [2012a].) 

We can plot the 30 values of ΦV found by LFM and listed in Table 3-1 versus 

the ΦV values predicted by Equation 6 for the same solar wind conditions, to see how 

accurate the equation is.  These data are plotted in Figure 3-9.  The predicted values 

match the measured values extremely well – the correlation coefficient is R2 = 0.9795.  

While it might not at first seem surprising that a dataset would match well against 

predictions from a formula derived from those same data, this level of accuracy was by 

no means guaranteed, especially over such a large range of input values (density from 1 

cm-3 to 15 cm-3 and velocity from -300 km s-1 to -800 km s-1). 
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Figure 3-9.  Plot of viscous potential values measured in LFM runs (Table 3-1) versus viscous potential 
values predicted by Equation 6. 
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CHAPTER 4  

COMPARISON WITH OTHER RESULTS  

4.1 Comparison with an empirical scaling factor for the viscous interaction 

4.1.1 The Newell et al. [2008] viscous scaling factor 

Newell et al. [2008] tested a variety of coupling functions for the viscous 

interaction using ten magnetospheric characterizations, such as geomagnetic indices and 

magnetic cusp latitude (though ΦPC was not one of them).  They found that n1/2V2 

performed best (out of 20 candidate functions) in accounting for some of the variance in 

the data.  This result only gives the form of the response of the viscous interaction to 

changes in solar wind density and velocity; it does not return a potential due to the 

viscous interaction – though it is reasonable to expect that the viscous potential would 

follow the same scaling as the viscous coupling function.  As the most recent and most 

mathematically detailed empirical characterization of the viscous interaction, it is likely 

to provide the most fruitful comparison to our semi-empirical (i.e., derived from 

simulation results) viscous potential formula. 
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4.1.2 Comparing the Newell et al. and the Bruntz et al. viscous scaling factors 

In comparing the functional form of the Bruntz et al. viscous potential formula 

and the Newell et al. [2008] viscous coupling function, it is convenient to represent both 

as nαVβ.  In this form, the Bruntz et al. values are α = 0.439, β = 1.33, while the Newell 

et al. values are α = 0.5, β = 2.  Both are sub-linear in n and supra-linear in V.  The 

Newell et al. function, however, increases faster for both variables than the Bruntz et al. 

function, as can be seen in Figure 4-1 and Figure 4-2. 

 

Figure 4-1.  Comparison of the density factor in the Newell et al. and Bruntz et al. viscous scaling 
functions. 
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Figure 4-2.  Comparison of the velocity factor in the Newell et al. and Bruntz et al. viscous scaling 
functions. 

 

One result of this difference in scaling is that the value returned by the Newell et 

al. scaling factor will increase or decrease by more than the Bruntz et al. scaling factor, 

for the same change in solar wind conditions.  As an example, going from the lowest 

density and velocity values in Table 3-1 (n = 1 cm-3, V = 300 km s-1) to the highest (n = 

15 cm-3, V = 800 km s-1), the value of the Bruntz et al. scaling factor increases by a 

factor of 12.1.  The value of the Newell et al. scaling factor increases by a factor of 27.5 

for the same change in solar wind conditions – more than twice the increase shown by 

the Bruntz et al. scaling factor. 
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Examining the values of α and β more closely, we note that Newell et al. [2008] 

tested a list of 20 candidate viscous coupling functions, which were all functions of 

solar wind density, velocity, and pressure.  Table 2 in that paper ranks the relative 

success of the different viscous coupling functions at accounting for variations in the 

magnetospheric variables (which were also dependent on reconnection, so the viscous 

interaction was not expected to account for all of the variation).  The most successful, of 

course, was n1/2V2, accounting for 22.3% of the variation, but the second most 

successful was n1/3V2, at 21.8%.  In terms of nαVβ, α for the Bruntz et al. viscous 

coupling function is between the most successful and second-most successful functions 

from the Newell et al. [2008] list: 0.333 < 0.439 < 0.5.  For β, in the Newell et al. [2008] 

list, the two best-performing functions contained β = 2, but the list did not have any 

functions of the form nαVβ with β < 2 (except for the trivial and dismally-performing 

nV); whereas the Bruntz et al. function has β = 1.33 < 2. 

The implications of these relations can be drawn more clearly from Figure 4-3, 

where we see that the two most successful α-β pairs from Newell et al. [2008] are also 

the two that are closest to the Bruntz et al. α-β pair.  It is possible that best Newell et al. 

function is not at a local maximum, but rather near a local maximum, and that the 

Bruntz et al. function might be even nearer to that maximum, in the undersampled 

region of β < 2. 
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Figure 4-3.  Plots of alpha-beta pairs in Newell et al. [2008] and Bruntz et al. [2012a]. 
 

4.2 Comparison with an LFM run performed with real solar wind data 

For further testing of the Bruntz et al. viscous potential formula, we performed 

several LFM runs with real solar wind data and specific modifications of that data.  The 

modification discussed here was chosen to reveal what portion of ΦPC from the full run 

was contributed from ΦV, so that that portion could be compared to the Bruntz et al. 

formula.  We performed several other comparisons to the LFM runs, as well, using 

other viscous potential formulae and ΦPC from an empirical model. 

4.2.1 Overview of the Whole Heliosphere Interval 

The period we chose to analyze was the Whole Heliosphere Interval (WHI): 

Carrington Rotation 2068, which lasted from 20 March 2008 (DOY (Day of Year) 87) 

through 16 April 2008 (DOY 107).  The WHI was planned in order to improve our 

understanding of the Sun and the heliosphere through intensive and coordinated 
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observations and modeling [e.g., Gibson et al., 2009].  The previously-mentioned 

Center for Integrated Space Weather Modeling (CISM) used several models that it has 

helped develop, to simulate the WHI, with a number of papers being published in a 

special issue of the Journal of Atmospheric and Solar-Terrestrial Physics (JASTP), 

including the WHI-related research presented here (in Bruntz et al. [2012b]; others 

include Lopez et al. [2012], and Wiltberger et al. [2012], both of which have ties to this 

work, and vice-versa). 

 

Figure 4-4.  Components of the solar wind during the WHI. 
[From Bruntz et al., 2012b.] 
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Figure 4-4 shows the most pertinent components of the solar wind during the 

WHI, taken from the OMNI database of solar wind data, and plotted in the GSM 

coordinate system.  Worth noting are the two blue bands, marking co-rotating 

interaction regions (CIRs) in the solar wind, starting on DOY 85 and the end of DOY 

94, in which high speed solar wind pushes the slower wind ahead of it, similar to a 

snowplow – note the observed increase in solar wind mass density (ρ) as the CIRs pass 

Earth.  The two yellow regions after the CIRs are the high speed streams (HSSs) 

themselves, which drive the CIRs.  The increased speed is noticeable in the panel with 

Vx, but notice that Vx is negative away from the Sun, so speed past the Earth increases 

toward the bottom of that panel, not the top.  The IMF components By and Bz also show 

larger amplitudes during both the CIR and the indeterminate time period between the 

CIR and the HSSs (grey), which may belong to either the CIR or the HSS.  Just as the 

CIR piles up solar wind plasma, it also piles up the magnetic field, increasing the 

components transverse to its direction of motion. 

4.2.2 Full solar wind run and zero IMF run 

We ran the standard LFM code with the full solar wind input file for the WHI, 

using the empirical ionosphere and an F10.7 value of 74 SFU (solar flux units), which is 

the average for the WHI interval.  This setup matched a run of the CMIT (Coupled 

Magnetosphere-Ionosphere-Thermosphere) model, run by Wiltberger et al.  CMIT 

[Wiltberger et al., 2004; Wang et al., 2004] uses the LFM code, coupled to the 

Thermosphere-Ionosphere Nested Grid (TING) model, which provides a more detailed 
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model of the Earth’s ionosphere.  Comparing the results of the CMIT and stand-alone 

LFM models (the top two panels in Figure 4-5) verifies that the outputs are largely the 

same.  More detailed analysis found that ΦPC from the two runs tended to differ slightly 

in some of the large ΦPC spikes, but those regions are not important for this study.  

Verifying that the two runs produce similar enough results was important because our 

lab can run LFM locally, on our own computers, whereas we do not currently have the 

capability of running CMIT locally.  We would have had a much harder time running 

the multiple specially-modified runs that we needed for this and some other studies, but 

these results show that none of the essential physics for this study are lost by running 

LFM alone, rather than CMIT. 
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Figure 4-5.  CPCP for the CMIT run, the stand-alone LFM run with full solar wind, and the stand-alone 
LFM run with zero IMF (“B0”).  Note that the scale on the B0 run is different.  [From Bruntz et al., 

2012b.] 
 

In addition to the full solar wind LFM run, we performed another LFM run in 

which we set all of the IMF components in the WHI solar wind file to zero (thus the 

term “B0 run”); all other aspects of the solar wind file and the LFM setup were 

identical.  The CPCP values for the B0 run are shown in the third panel of Figure 4-5.  

In this run, the entire CPCP is a product of the viscous interaction, since there is no IMF 

to reconnect with Earth’s magnetic field.  The CPCP values from the two runs are 

overplotted in Figure 4-6 for easier comparison. 
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Figure 4-6.  CPCP for the full-solar wind LFM run and the zero-IMF LFM run, for the entire WHI 
interval.  [From Bruntz et al., 2012b.] 

 

One feature of Figure 4-6 that might at first seem puzzling is that there are 

numerous time intervals in which the LFM potential actually drops lower than the B0 

potential.  This has been explained by a recent discovery by Shree Bhattarai and Ramon 

E. Lopez [Bhattarai et al., 2012; Lopez et al., 2012] which has found that the viscous 

interaction, and thus the viscous potential, is reduced with increasing northward Bz 

(though as discussed in Section 3.4, the viscous potential stays constant for southward 

Bz).  This is shown clearly for the WHI in Lopez et al. [2012], in which it is shown that 

the periods in which the LFM CPCP is lower than the B0 CPCP all correspond to 

periods of prolonged northward Bz (Figure 3 in that paper).  The explanation suggested 

in that paper involves the different polar cap potential distribution for northward Bz.  As 
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discussed in Section 1.4, for southward Bz, the idealized polar cap has two circulation 

cells, with the cell due to the viscous interaction nested inside the cell due to 

reconnection (Figure 1-8), and the potentials from the two processes add together to 

form the cross-polar cap potential (ΦPC = Φmax - Φmin).  For northward Bz however, the 

viscous and reconnection cells are separated into a four-cell pattern [e.g., Burke et al., 

1979] and do not add together.  Instead, the largest positive potential will be found 

either in one of the viscous cells or in one of the reconnection cells, with the other 

positive cell making no contribution to the CPCP, and likewise for the largest negative 

potential; the larger potential of each polarity essentially “eclipses” the smaller potential 

of the same polarity.  This is shown in Figure 4-7, in which the outer peaks, from the 

viscous potential, are seen to shrink as northward Bz increases, from panel a-d, while the 

inner peaks, from reconnection, grow.  In panels a-c, the viscous potential exceeds the 

reconnection potential, and so is the sole source for the CPCP; in panel d, the 

reconnection potential has grown enough that it now eclipses the still-shrinking viscous 

potential, and so it is now the sole source for the CPCP.  For most of the WHI, the 

reconnection potential is smaller than the viscous potential, so measurements of the 

CPCP for northward Bz are usually measurements of the (reduced) viscous potential 

[Lopez et al., 2012].  The physical reason suggested in that paper for the reduced 

viscous potential is that unlike southward Bz, northward Bz produces sunward plasma 

flow across the center of the polar cap, and that the return flow from that convection 

must flow antisunward just outside the magnetopause.  Thus, the antisunward flow 

provides a buffer between the quiescent magnetospheric plasma and the fast-moving 
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magnetosheath plasma.  This reduces the velocity shear at the magnetopause, which 

reduces the viscous interaction and thus the viscous potential.   

 

Figure 4-7.  How the CPCP is formed for northward Bz.  In panels a-c, the viscous potential alone 
determines the CPCP; in panel d, the reconnection potential alone determines the CPCP.  [From Lopez et 

al., 2012.] 
 

For southward Bz, though, (when the viscous and reconnection potentials add) 

there are many times when the CPCP from the B0 run is a significant fraction of the 

CPCP from the full-IMF LFM run.  The WHI has numerous extended-northward Bz 
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periods, but is unfortunately very sparse when it comes to uninterrupted southward Bz 

periods.  This comes into play in that northward Bz reduces the viscous potential, and so 

any average of the full-IMF LFM CPCP over a period with northward Bz will have a 

reduce average value, thus exaggerating the importance of the viscous potential.  We 

can find a few short periods, though, and look at the peak potentials. 

Figure 4-8 shows the CPCP for the full-IMF LFM and zero-IMF B0 runs for 

DOY 85-90, along with the IMF Bz value.  Note that the Bz value is plotted with the 

same numerical values (the scale on the left side) as the CPCP values, but different units 

(nT for Bz, versus kV for CPCP); the main purpose is to show Bz polarity – north or 

south – and general magnitude.  Also note that the CPCP values (but not the Bz values) 

have been scaled down to realistic values by dividing by the γ factor, described in 

section 4.2.3; this changes the absolute values of the potentials, but not the relative 

values.  Two yellow bars on the bottom scale mark time periods when Bz was mostly or 

completely southward, and two yellow arrows mark peaks in the LFM CPCP 

corresponding to those time periods.  For the first period, around DOY 86.2, the LFM 

CPCP peaked around 115 kV, while B0 at that time was around 45 kV, which means 

that the viscous potential was almost 40% of the LFM CPCP, with reconnection 

accounting for slightly over 60%.  This is significant in that the viscous potential is 

often considered to be a small percentage of the CPCP when it is discussed in the 

literature – sometimes small enough to be ignored during magnetospherically active 

times.  In the time period DOY 87.6-88.1 (also in Figure 4-8), the B0 run averages 
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around 30-35 kV; the LFM CPCP peaks at around 135 kV, at which point the B0 run is 

around 35 kV - so the viscous potential is over 25% of the CPCP at that point. 

 

Figure 4-8.  CPCP values for the full-IMF LFM and zero-IMF B0 runs for DOY 85-90. 
 

Figure 4-9 shows a similar plot for another time period from the WHI, DOY 95-

100, with DOY 95.7-95.8 highlighted.  This period had one spike of northward Bz, but 

strong reconnection due to a large southward Bz component – almost -15 nT (which 

goes off the plot, since the scale only goes down to -10).  The LFM CPCP is 

correspondingly large, reaching a peak of about 140 kV, which is one of the largest 

values recorded during the WHI.  The B0 CPCP during this time is about 45 kV, which 

means that the viscous potential contributed about 1/3 of the CPCP. 
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Figure 4-9.  CPCP values for the full-IMF LFM and zero-IMF B0 runs for DOY 95-100. 
 

These ratios of viscous potential to CPCP are not meant to represent the largest 

fraction that the viscous potential can take, or even typical values.  They simply show 

that even for times when there is moderate-to-strong magnetospheric and ionospheric 

convection due to reconnection, the viscous interaction can still play a significant role in 

the composition of the CPCP. 

4.2.3 Scaling the LFM potentials down to realistic values, using the Bruntz et al. 
formula 

Since the CPCP for the B0 run gives the viscous potential, it can be compared to 

other models of the viscous potential, such as the Bruntz et al. viscous potential 

formula.  Whereas the Bruntz et al. formula was derived from LFM runs using an 

ionospheric Pedersen conductance of 10 mhos, in order to produce realistic results, the 
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LFM and B0 runs used the empirical ionosphere with an F10.7 input value of 74 SFU, 

which was the average F10.7 for the WHI.  The result is that the B0 ionospheric 

potentials are too high, such as the CPCP value > 200 kV on DOY 86 in Figure 

1-1Figure 4-6, with only moderate driving.  Wiltberger et al. [2012] argue that the 

reason for the high potentials in LFM is that the conductivity model is not producing 

high enough conductivity.  Pedersen conductivity during the WHI typically fell in the 

range of 2-7 mhos, with larger values on the sunward part of the ionosphere and smaller 

values on the antisunward portion.  Since the LFM model is known to produce realistic 

morphology in the ionospheric potential values, but the values are too high, we can 

posit that the B0 potentials will be of the form  

ΦV-B0 = γΦV-Bruntz = γμn0.49V1.33 

Equation 7 

 
where γ is the factor by which the B0 potentials are too high and μ is the scaling 

term found in Section 3.5.  We can modify Equation 7 to read: 

γ = μn0
0.49V0

1.33/Φ0 

Equation 8 

 
where n0, V0 are input solar wind conditions and Φ0 is the corresponding value 

taken from the B0 run.  To avoid errors from Φ0 values not being matched exactly to the 

driving n0 and V0, we chose eleven periods from the WHI when the input density and 

velocity, and the output ionospheric potential, were all fairly steady (e.g., DOY 89.0-

89.5, 91.8-92.0, and 103.0-103.4). 
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Anticipating that we would also be using a similar technique to find a scaling 

factor to turn the Newell et al. [2008] coupling function into a predictive formula, ΦV-

Newell = νn1/2V2 (Section 4.2.4), the question arose as to whether V should be Vtotal or Vx, 

which can differ somewhat.  The Bruntz et al. [2012a] formula was derived using ideal 

solar wind data, where V = Vx = Vtotal, while the Newell et al. [2008] coupling function 

used V = Vtotal.  In order to answer this question, we used both the Bruntz et al. and 

Newell et al. formulas, with both Vx and Vtotal as input, then plotted the results against 

the B0 CPCP values.  The results are plotted in Figure 4-10, with a linear fit plotted for 

each of the four combinations.  Note that preliminary values of γ = 1.4 and ν = 8.92×10-

5 were used in these calculations, but that multiplying a dataset by a constant does not 

affect the R2 value, which tells how well the data match the line fit to them.  Since that 

is the purpose of this part of the analysis, the specific values of γ and ν are unimportant. 

It is also worth noting at this point that the Bruntz et al. and Newell et al. 

viscous potential formulae take solar wind input (from the OMNI data, plotted in Figure 

4-4) and produce viscous potential values corresponding to that input.  The OMNI data, 

however, represent the solar wind impinging on the point on the bow shock that is along 

the Sun-Earth line.  The physical solar wind-magnetosphere-ionosphere system has a 

time delay from when the solar wind reaches the bow shock to when the ionosphere 

responds, due to the propagation time of the solar wind through the magnetosheath and 

the finite response time of the magnetosphere and ionosphere to changes in the solar 

wind.  The full-IMF and zero-IMF LFM runs have this delay built-in, since they are 

modeling the physical system, but the Bruntz et al. and Newell et al. formulae do not.  
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Thus, in order for the LFM potentials to be compared to the Bruntz et al. and Newell et 

al. potentials, the formula-based potentials had to be time-shifted to match up with the 

LFM potentials.  We did this by interpolating the zero-IMF CPCP values to every 

integer minute value in simulation time, to match the cadence and number of data points 

of the Bruntz et al. formula output, which has the integer-minute cadence of the OMNI 

data input.  The formula value was then subtracted from the LFM value for each minute 

in the first 10 days of the WHI, that difference for each minute was squared, and those 

squared values were then averaged over the number of minutes involved, to give a 

single value for this time offset between the Bruntz et al. and LFM values (in this case, 

with zero offset).  The Bruntz et al. timestep was then offset by an integral number of 

minutes, and the process repeated, for all 1-minute values from -100 to +100 minutes, to 

get a value for each offset.  Those values were then examined to find a minimum, 

indicating the best correspondence between the Bruntz et al. values and the zero IMF 

LFM run.  That value was then used to time shift the OMNI solar wind data that was 

input into the Bruntz et al. and Newell et al. formulae, so that the morphology of their 

output will be closely matched, temporally, to the morphology of the LFM output. 

Looking at the results of the velocity comparisons in Figure 4-10, we see that for 

both the Bruntz et al. formula and the Newell et al. formula, Vx produced slightly better 

results (R2 = 0.91) than Vtotal (R2 = 0.88).  Physically, it is not surprising that the 

velocity that correlates best with the viscous potential is the component that is flowing 

antisunward and perpendicular to the Earth’s dipole axis.  It is also noteworthy that both 

formulas performed almost equally well, with their R2 values only differing at the third 
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decimal place and beyond (which are probably not significant).  More qualitative results 

will be explored in Section 4.2.5. 

 

Figure 4-10.  Results of the Bruntz et al. and Newell et al. equations, using Vx and Vtotal as input,  
plotted against the B0 CPCP.  [From Bruntz et al., 2012b.] 

 

Having determined that Vx should be used in Equation 7 (and Equation 8), we 

solved for γ, using the average n, Vx, and ΦPC from each of the 11 steady intervals to 

find 11 values of γ.  These values ranged from 1.154 to 1.803.  The 5 highest values 

corresponded to intervals during high speed streams (1.660-1.803) with the lowest 6 

corresponding to slower solar wind values (1.154-1.616).  Not wanting to use multiple γ 
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values, we took the simple average of the 11, yielding γ = 1.542.  This is the average 

multiplicative factor by which the B0 run is overpredicting the CPCP, so any CPCP 

value from the B0 run divided by γ should be a realistic value, such as in Figure 4-8 and 

Figure 4-9. 

4.2.4 Using the scaled zero IMF run to create a Newell et al. viscous potential formula 

The Newell et al. [2008] viscous coupling function (n1/2V2) tells how the viscous 

interaction changes with changes in the solar wind density and velocity; it does not 

return an actual viscous potential value.  If calibrated to a viscous potential value, 

however, the coupling function could be used to predict the viscous potential for any 

input solar wind density and velocity.  Following the procedure used in Section 3.5, we 

can produce the equation 

ΦV = (ΦV0/γ)(n/n0)1/2(V/V0)2 = νn1/2V2 

Equation 9 

 
Where ΦV0, n0, and V0 are values from the B0 run and ΦV0 is scaled down by γ, 

to yield realistic potentials.  In Equation 9, ν serves a comparable function to μ in the 

Bruntz et al. formula, though with a very different numerical value and even different 

units, due to differences in the density and velocity dependences.  Using ΦV0, n0, and V0 

from the 11 steady intervals described in Section 4.2.3 yields 11 values of ν, ranging 

from 5.816×10-5 to 7.419×10-5, with no clear trend with changing input density or 

velocity.  With no reason to choose any value or weighting over another, we assigned ν 

the value of the average of the 11: ν = 6.393×10-5.  This results in an equation for 
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predicting the viscous potential, using solar wind density and velocity as input, based on 

the Newell et al. [2008] viscous coupling function: 

ΦV-Newell = νn1/2Vx
2 = (6.393×10-5)n1/2Vx

2   (in kV) 

Equation 10 

 
Where appropriate, we will refer to this as the “Newell et al. viscous potential 

formula.” 

 

4.2.5 Comparing the Newell et al. and Bruntz et al. viscous potential formulas to the 
zero IMF run and each other 

Using the above results, we have created a comparison plot, given in Figure 

4-11 (which has been turned sideways, to enlarge the figure and give more detail).  The 

panels in that figure are as follows: 1) Comparison of the unscaled B0 CPCP (i.e., not 

scaled down by γ) and the Bruntz et al. viscous potential; 2) Comparison of the scaled 

B0 CPCP and the Bruntz et al. viscous potential; 3) Comparison of the scaled B0 CPCP 

and the Newell et al. viscous potential; 4) Comparison of the Bruntz et al. and Newell et 

al. viscous potentials; and 5) Comparison of the scaled B0 CPCP and the Boyle et al. 

viscous potential.  Note that the Boyle et al. viscous potential [Boyle et al., 1997] is 

simply: ΦV-Boyle = 10-4V2, where V = Vtotal. 
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Figure 4-11.  Comparisons of the B0 run CPCP, the Bruntz et al. viscous potential, the Newell et al. viscous potential, and the Boyle et al. 
viscous potential.  [From Bruntz et al., 2012b.] 
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Comparing the Bruntz et al. and the Newell et al. viscous potential formulae to 

the B0 run, we see that both do a remarkably good job of predicting the B0 CPCP 

values, which are composed of only the viscous potential.  This close match in results is 

a little surprising, considering that the Bruntz et al. formula was created based entirely 

on steady-state polar cap potentials with a uniform-conductance ionosphere, not the 

constantly-changing values seen in the WHI run, with the empirical ionosphere. 

The Bruntz et al. formula seems to slightly underpredict the B0 run during high 

speed streams, while the Newell et al. formula slightly overpredicts the B0 run during 

the same time periods.  Plotting the two viscous potential formulae in the same panel, 

we see that the two give similar results for most of the WHI, but it is in fact during the 

periods of the highest solar wind velocity that the two predictions differ the most.  This 

is easily explained by the form of the two equations, which have very different 

dependences on V (as was seen in Figure 4-2).  The Boyle et al. formula captures the 

very general form of the B0 CPCP during the WHI, but misses most of the detailed 

structure, especially during the density enhancements associated with the CIRs (DOY 

85-86 and 94-95).  This is to be expected, since the Boyle et al. formula has no density 

dependence at all. 

4.2.6 Comparing the scaled LFM potentials to an empirical model; implications for 
LFM 

For the last analysis involving the WHI, we compared the full-solar wind LFM 

potentials to the Weimer05 model [Weimer, 2005], which is an empirical model that 
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calculates various electrodynamic properties of the high-latitude ionosphere, including 

the CPCP.  It is used as the background model for the Assimilative Mapping of 

Ionospheric Electrodynamics (AMIE) model [Richmond and Kamide, 1988; Ridley and 

Kihn, 2004], as well as serving as the high-latitude driver for several General 

Circulation Models (GCMs).  Figure 4-12 shows two comparisons: The unscaled CPCP 

values from the full solar wind LFM run and the CPCP values from the Weimer05 

model (also run from the full solar wind) in the first panel and the same comparison but 

with LFM scaled down by γ in the second panel. 

 

Figure 4-12.  Comparison of the unscaled and scaled LFM run CPCP with the Weimer05 model CPCP. 
[From Bruntz et al., 2012b.] 

 

As was mentioned before, the unscaled LFM CPCP values tend to be too high, 

and are noticeably higher than the peaks of the more-realistic Weimer05 model output.  

Despite that, the LFM model still drops to noticeably lower minimum values than the 

lowest Weimer05 values.  Lopez et al. [2012] explains this as a floor of ~25 kV in the 
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Weimer model, below which the model does not pass, regardless of the driving 

conditions.  LFM has no set lowest CPCP values, but simply produces a CPCP value 

based on the solar wind and ionospheric conditions. 

Since Weimer05 is an empirical model, it generally produces realistic CPCP 

values, and so, similar to the way we scaled the B0 run down to the levels of the 

realistic Bruntz et al. formula values using the γ factor, we might be able to scale the 

LFM values down to the Weimer05 level using γ.  The results of this are plotted in the 

second panel of Figure 4-12.  While the values do not match exactly, especially in the 

lower values of the LFM potentials, which were already lower than Weimer05, the 

higher CPCP values show remarkable agreement.  This is significant in that γ was 

created to scale a viscous-only version of LFM run with an empirical ionosphere down 

to the range of the results of steady-state viscous-only LFM runs performed with 

constant-conductance ionosphere, yet it automatically scales the results of a viscous-

plus-reconnection run down to the level of an empirical model that is in no way related 

to LFM.  This implies that the γ factor is more than just a “fudge factor” for conversion 

between two specific data sets, but rather that it is correcting some deeper issue in the 

output of the LFM runs.  We interpret this as support for the argument advanced by 

Wiltberger et al. [2012] that the ionospheric solver in LFM is producing conductances 

that are too low (due to insufficient auroral precipitation), and that that is the cause for 

the overly-high potentials in LFM.  The γ factor corrects the effects of the too-low 

conductances, after the simulation is run. 
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

The solar wind flows out from the Sun constantly, in all directions, but not 

without significant variations in density, velocity, and magnetic field.  As it flows past 

the Earth, the solar wind confines the Earth’s magnetic field into a bubble, called the 

magnetosphere.  The two main modes of energy transfer from the solar wind to the 

magnetosphere are magnetic reconnection and a viscous-like interaction.  Studying 

solar wind-magnetosphere-ionosphere interactions directly is difficult, due to the low 

availability of direct measurements – the small number of satellites collecting data can 

only tell us about their nearby region of space and only at the time the satellite is there.  

Computer simulations, on the other hand, can observe the effects from any conditions 

that can be input, with whatever spatial and temporal resolution the simulation can run 

at. 

We have used the Lyon-Fedder-Mobarry global 3-D magnetohydrodynamic 

(MHD) simulation to study the viscous interaction between the solar wind and Earth’s 

magnetosphere.  We ran the simulation with no interplanetary magnetic field (IMF), but 
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a variety of solar wind velocity values (Vx = -300 km s-1 to -800 km s-1, every 100 km s-

1) and density values (n = 1, 5, 8, 10, 15 cm-3), as well as a variety of ionospheric 

conductivity values (ΣP = 1, 2.5, 5, 7.5, 10, 12.5, 15, 20, 25, 30 mhos).  With no IMF, 

there is no reconnection, and so only the viscous interaction couples the solar wind and 

magnetosphere, to create the cross-polar cap potential (ΦPC), which is defined as the 

maximum potential across the polar ionosphere minus the minimum potential 

(regardless of their source).  By running the simulation until it reaches steady-state, we 

can find the ionospheric potential due to the viscous interaction – the viscous potential 

(ΦV).  We found that the viscous potential in LFM changes with solar wind velocity as 

V1.33, where V is in km s-1; it changes with solar wind density as n0.439, where n is in 

particles per cm3 (cm-3).  Combining these results with a carefully-chosen reference 

LFM run, we produced a formula for the viscous potential in LFM: ΦV = μn0.439V1.33, 

where ΦVP is in kV and μ = 0.00431 (units omitted).  Comparing the output of this 

“Bruntz et al. viscous potential formula” to the 30 runs performed with different 

velocity and density values shows that the formula is remarkably accurate at predicting 

the viscous potential in LFM.  These runs were all performed with a constant 

ionospheric ΣP = 10 mhos, which is known to produce realistic potentials.  The runs 

performed with various ΣP values (and identical, constant solar wind conditions) 

revealed that ΦV varies inversely with ΣP, as expected. 

We compared the form of the Bruntz et al. formula to the Newell et al. [2008] 

study of a variety of viscous coupling functions.  The form of the Bruntz et al. formula, 

n0.439V1.33, is closest in parameter space to the two best-performing coupling functions 
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(n1/2V2, then n1/3V2) and lies at the edge of an untested region of parameter space, and so 

might perform better than these functions if tested against the same dataset. 

We also looked at the viscous interaction during an LFM run using real solar 

wind data as input.  The data used were from the Whole Heliosphere Interval (WHI), 

which was 20 March – 16 April, 2008 (DOY 80-107).  The ionosphere used was the 

empirical model, with an F10.7 input of 74 solar flux units, which was the average for 

the WHI.  Two runs were relevant to this work: one with the full solar wind input and 

one with the same solar wind, but all IMF components set to zero.  The cross-polar cap 

potential (CPCP or ΦPC) values for the zero-IMF run were larger than realistic values, 

which is common with LFM, so we scaled them down by a factor γ = 1.54, which was 

found by matching ΦPC during 11 steady periods during the WHI to ΦV from the Bruntz 

et al. formula, using the solar wind density and velocity values during those periods.  

We also used those same 11 periods to find a scaling factor to turn the Newell et al. 

viscous coupling function into a viscous potential formula: ΦV = νn1/2V2, where ν = 

6.39×10-5 (units omitted).  Comparing the Bruntz et al. and Newell et al. viscous 

potential formulae to the zero-IMF run, we found that both did a very good job of 

predicting the zero-IMF (i.e., viscous) potentials, with one slightly overpredicting 

during high speed streams and the other slightly underpredicting, but both performing 

about equally well. 

Comparing the zero-IMF and full-IMF runs, we showed that the viscous 

potential can be a significant fraction of the CPCP during southward Bz, even with 

strong driving and high CPCP values; it was not difficult to find ΦV values that were 
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30-40% of the CPCP.  We also showed that ΦPC for the full-IMF run can drop lower 

than ΦV (from the zero-IMF run) when the IMF is northward, which is consistent with 

very recent reports that northward Bz actually reduces the viscous interaction, and that 

for small values of northward Bz, ΦPC = ΦV, with no contribution from reconnection 

(ΦR), which is different from the case for southward Bz, in which ΦPC = ΦV + ΦR. 

Finally, we compared the full-IMF CPCP to the output of an empirical model, 

Weimer05.  Like the zero-IMF run, the full-IMF run had to be scaled down by γ to 

produce realistic values.  When compared to CPCP values from Weimer05, we found 

that the scaled-down LFM CPCP matched well, except for values below Weimer05’s 

artificial “floor,” since LFM has no such minimum CPCP value.  This is noteworthy 

because the γ factor was derived from the Bruntz et al. formula (which used steady-state 

runs with no IMF and a constant-conductance ionosphere) and the zero-IMF LFM run 

(which used an empirical ionosphere), but neither dataset included effects from 

reconnection; whereas the full-IMF run included reconnection, and the Weimer05 

model is completely unrelated to LFM – yet γ scaled the first to match the second.  We 

take this as support for the idea that has been proposed, that the empirical ionosphere in 

LFM is producing conductances that are too low, and thus potentials that are too high; 

the γ factor was simply counteracting that effect. 

5.2 Future Work 

Some areas of future that might prove fruitful would include analyzing the 

LLBL in LFM, to try to calculate the viscous potential from the plasma flow.  Since 
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several studies have found viscous potentials in the LLBL in the range of 10 kV or less 

(sometimes much less), whereas ionospheric studies typically find several 10s of kV, it 

would be useful to find out if there is a mismatch between the two in the simulation, or 

if the issue is how the LLBL studies have been carried out (such as the location of the 

passes through the LLBL, as suggested by Heikkila [1986] and Blomberg et al. [2004]). 

It would also be useful to study the effect of northward Bz on the viscous 

interaction, to try to parameterize the reduction on ΦV as northward Bz increases, and 

perhaps look at the effect of east-west IMF (or verify that there is none).  An 

investigation of the physical mechanism behind the observed reduction in ΦV for 

northward Bz would also be very useful.  (It is likely that some work will be done by 

Shree Bhattarai in both these areas in the next year, as part of his dissertation.) 

It would be interesting to compare the Bruntz et al. and Newell et al. viscous 

potential formulae to direct ΦPC measurements if some satellite passes could be found 

that match to time periods with nearly zero reconnection, if such time periods and 

passes can be found (such as in DMSP data).  It would also be interesting to reexamine 

the data from some previous studies, such as Reiff et al. [1981] and Boyle et al. [1997], 

to see if removal of a viscous potential from the ΦPC values examined in those studies 

produced data that extrapolated to ΦPC = 0 kV at zero IMF (i.e., removal of a viscous 

term leaves only a merging term, which goes to zero at zero IMF) and produces a better 

fit to the data (since the variation due to solar wind density in the viscous term is 

removed). 
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We would like to apply the methodology used in Newell et al. [2008], using the 

viscous coupling factor in the Bruntz et al. [2012a] formula, to see whether the results 

from LFM produce an improved accounting for magnetospheric variability.  We plan to 

follow this line of inquiry as soon as the Bruntz et al. [2012b] paper has been published. 

Finally, analyses of multiple satellite passes through the LLBL could be very 

useful.  Passes at a variety of distances down the magnetopause could be analyzed for 

expected changes in the average LLBL plasma velocity and compared to LFM 

simulations for similar conditions.  These satellites could also be used to look for 

viscous cells in the magnetotail, and if possible, calculate the potential across sunward 

and antisunward portions of the cells (by integrating E∙dl).  Again, these results could 

be compared to similar results in LFM.  
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