
NEW DEVELOPMENTS IN COGNITIVE OPTIMIZATION

by

PARVATI ARUNA KANDALA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2012

Copyright c© by PARVATI ARUNA KANDALA 2012

All Rights Reserved

To my father K. Ch. A. V. S. N. Murthy,

and mother K. Annapurna

ACKNOWLEDGEMENTS

I would like to convey my deep gratitude to professor Dr. Alan Bowling for his

constant guidance and encourangement throughout my research. I am very grateful

to him for his trust and strong belief on me which helped in the completion of my

research. I would like to thank Dr. B. P. Wang and Dr. Manfred Huber for serving in

my thesis committee. I also extend thanks to Dr. Jay Rosenberger for his guidance

during my research.

It is my pleasure to thank each and every member of The Robotics, Biomechan-

ics, and Dynamic Systems Laboratory who tolerated, helped me by providing valuble

suggestions. Special thanks to Debi Barton for her help through out my study.

I would like to thank one of my close friends, Yashwanth M. Swamy for his

moral support and endless help. I would also like to thank my roomates Shravani

Dwarakapalli, Anitha Josephine Royappan, Santana Bala for making my life peaceful

and lively. My special thanks to Srider Comerica, Harin Pagidimunthala, Shravan

Neela, Mahesh Varrey, Vivek Reddy for being with me as a family and all my friends

here as well in India for standing by me during my tough times.

I owe my love and gratitude to my parents, my sister Lavanya, my brother

Chaitanya and brother-in-law Rathnakar Samavedam for their endless love, encour-

angement and boosting up my confidence without whom this wouldn’t have been

iv

possible. Sincere thanks to Kamalakar Ganti for being extremely supportive and

evaluating my performance during my research.

March 6, 2012

v

ABSTRACT

NEW DEVELOPMENTS IN COGNITIVE OPTIMIZATION

PARVATI ARUNA KANDALA, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Alan Bowling

This work presents an approach to solve function optimization problems using

cognitive optimization. A cognitive search algorithm which is developed mimics hu-

man cognition in structure and characteristics. This algorithm is developed based on

the key aspects of a cognitive system, namely, the use of prior knowledge, communi-

cation, and self-organization. The processes have the knowledge of how to solve the

optimization problems from traditional techniques such as bracketing, gradient search

and interval-halving methods. This search algorithm shows that, by passing messages,

the processes communicate, share information, and self-organize around the solution.

A matlab program is coded to perform the tests on difficult problems which are not

solved by the traditional bracketing and gradient search techniques alone. This work

will be applied on complex functions such as non-convex, multiple local optima and

discontinuous functions. The results for the different cases considered explore the

structure and characteristics of cognitive optimization, which provide guidelines for

the development of general cognitive systems for smart devices.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF ILLUSTRATIONS . x

LIST OF TABLES . xi

Chapter Page

1. INTRODUCTION . 1

1.1 Cognition . 1

1.2 Human Cognition and Optimality . 2

1.3 Model of Cognition . 3

1.3.1 Cognitive Characteristic Model 3

1.3.2 Cognitive Organizational Model 5

1.4 Evaluation Metrics . 6

2. BACKGROUND . 7

2.1 Traditional Vs Cognitive Optimization 7

2.1.1 Genetic Algorithm . 8

2.1.2 Ant colony optimization . 10

2.1.3 Particle swarm optimization 11

2.1.4 Social cognitive optimization 12

2.1.5 Simulated Annealing . 12

2.2 Literature . 13

2.3 Preliminary Work . 14

2.3.1 Inherited knowledge . 14

vii

2.3.2 Communication . 16

2.3.3 Synergism or Self-Organization 18

2.4 Increasing the Feasible Problem set 19

2.5 Limitations . 20

3. COGNITIVE SEARCH ALGORITHM . 21

3.1 Proposed Cognitive Search Algorithm 21

3.1.1 Non-sequential, Non-deterministic Implementation 22

3.1.2 Processes’ Functionality . 24

3.1.3 Messages in each process . 25

3.2 Faster Convergence and Feasible Problem Set 26

4. RESULTS & DISCUSSIONS . 28

4.1 Introduction . 28

4.2 Assumptions . 28

4.3 Case 1(a) : Multiple Local Maxima function (MLM) 30

4.3.1 Messages in each iteration . 32

4.3.2 Results of case 1(a) . 34

4.4 Case 1(b) : Multiple Local Maxima function (MLM) 36

4.4.1 Results of case 1(b) . 37

4.5 Case 2 : Discontinuous function . 40

4.5.1 Results of case 2 . 41

4.6 Summary . 44

4.7 Guidelines . 44

5. CONCLUSIONS . 45

Appendix

A. MATLAB CODE . 46

viii

REFERENCES . 54

BIOGRAPHICAL STATEMENT . 58

ix

LIST OF ILLUSTRATIONS

Figure Page

1.1 Model of Cognition . 4

1.2 Sequential Vs Non-Sequential . 5

2.1 Genetic Algorithm Flow chart [1] . 9

2.2 The ACO Frame Work [2] . 10

2.3 Bracketing Search . 14

2.4 Gradient Search . 15

2.5 (a) Marginal, (b) Simple, and
(c) Extensively communicative cognitive searches 17

2.6 Process Originating the Value Returned by Compare

at each Iteration . 19

3.1 Flow chart for developed cognitive algorithm 21

3.2 Two Different Cognitive Optimization Matlab Pseudo-Codes
(a) SBGCO and (b) GOBCS process calling sequences 22

4.1 Multiple Local Maxima for case 1(a) 30

4.2 Multiple Local Maxima for case 1(b) 36

4.3 Discontinuous function . 40

x

LIST OF TABLES

Table Page

2.1 Bracket, Gradient, and Cognitive Search Performance 20

2.2 Guidelines for Cognitive System Development 20

3.1 Message Processed . 26

4.1 Messages list for SBGCO . 33

4.2 Comparison of Bracket and Gradient Algorithms for case 1(a) 34

4.3 MLM function with different arrangements for case 1(a) 34

4.4 MLM function with different initial values for case 1(a) 35

4.5 Comparison of Bracket and Gradient Algorithms for case 1(b) 37

4.6 MLM function with different arrangements for case 1(b) 37

4.7 MLM function with different initial values for case 1(b) 38

4.8 Comparison of Bracket and Gradient Algorithms 41

4.9 Discontinuous function with different arrangements 41

4.10 Discontinuous function with different initial values 42

xi

CHAPTER 1

INTRODUCTION

The main objective of this research is to develop a search algorithm which

mimics human cognition in its structure and function. Function optimization is used

as a means for demonstrating this structure. This chapter introduces the various

definitions of what cognition means, of a cognitive model and its working, and of the

aspects of cognition considered and a cognitive approach to optimization.

1.1 Cognition

Cognition is an area within psychology that describes how humans acquire,

store, transform and use knowledge [3]. In simple words, cognition is defined as the

acquisition of knowledge [4]. It refers to knowing and thinking. It also involves per-

ception, awareness, judgement, the understanding of emotions, memory and learning

[5]. The definition of cognition given by different authors is listed below.

1. “In my view · · · , it is better to reserve the term cognition for the manipulation

of declarative knowledge ” [6, 7].

2. “ · · · Cognition refers to all the processes by which the sensory input is trans-

formed, reduced, elaborated, stored, recovered, and used [including] terms as

sensation, perception, imagery, retention, recall, problem solving and thinking

” [6, 8].

1

3. “Cognition is the collection of mental processes and activities used in perceiv-

ing, remembering, thinking and understanding, as well as the act of using those

processes ” [6, 9].

4. “The use and handling of knowledge. Those who stress the role of cognition

in perception underline the importance of knowledge - based processes in the

making sense of the ‘neurally coded’ signals from the eye and other sensory

organs. It seems that man is different from other animals very largely because

of the far greater richness of his cognitive processes. Associated with memory of

individual events and sophisticated generalizations, they allow subtle analogies

and explanations - and ability to draw pictures and speak and write” · · · [6, 10].

1.2 Human Cognition and Optimality

Human cognition is the study of how the human brain thinks. It has become

the major study area in the field of artificial intelligence to emulate the high-level

human capability [11]. It is far beyond that of machine cognition. It has the ability

to evaluate an ideal result depending on the outcomes. Therefore, the selection of

actions or perception of things further is based on the output of the resulted actions.

The inclusive knowledge helps for better outcomes of the options available for the

system’s progress. Von Neumann’s concept of cardinal utility function [12] suggests

and supports that the theory of optimization is the key aspect of cognition. In simpler

words, the ability to optimize is a key aspect of cognition [13]. Human cognition

is highly complicated and involves a complex structure. Intelligent systems or the

working models (cognitive architectures) are developed to the range where behavior

similar to human thoughts is demonstrated. A number of models were proposed that

2

describe how they might function [14]. One such cognitive model is considered in this

research [15].

1.3 Model of Cognition

The cognitive model attempts to recreate the way the brain carries out a par-

ticular task such as learning or making decisions. In this work, cognition is separated

into four broad functional categories, namely, perception, reason, decision and action.

The functionality of each area is discussed below.

Perception Collection of information about the world through available sensors.

Reason Drawing conclusions about the world from the data collected.

Decision Depending on the conclusions, a course of action is determined.

Action Suitable action is carried out upon the taken decision.

The result of the particular action taken is provided by the system’s perception sensors

and the cycle repeats accordingly. Each functional area shown in Fig. 1.1 is composed

of a set of processes that operate on the information passed in between. The proposed

research focuses primarily on the communication between processes. All processes

communicate with each other by passing messages in order to share information. The

arrow marks represent the possible routes of communication. The figure shows all

possible ways of communication between the areas as there is no specific path to

follow in order to share the information.

1.3.1 Cognitive Characteristic Model

The principle characteristic of this model is to break down the functional area

into a finite set of elements or processes. This approach involves deconstructing a

complex problem into simple processes whose inner workings should be as simple as

3

Perception

Reason

Decision

Action

Figure 1.1. Model of Cognition.

possible, which therefore simplifies the development of a cognitive system. Having

processes which function differently is a key element in a cognitive system that gen-

erates something like imagination, to fulfill this purpose [16]. Thus, the cognitive

approach uses this finite set of processes considered as inherited knowledge, which

communicate in order to self-organize around a particular action or solution. All

processes have freedom to interact with each other in this system. There is no higher

hierarchy involved. Although there are several different aspects of cognition, only the

following are considered here.

Aspects of Cognition

1. The use of inherited knowledge to arrive at a solution or an action,

2. The use of communication between different system components to facilitate

organization,

3. Synergism or self-organization [15].

4

1.3.2 Cognitive Organizational Model

The organization of the processes is synergistic in nature. Fig. 1.2 shows the

difference in the structures of Sequential and Non-sequential system

Objective

Extrema

Knowledge

Iterate

...

...

...

(a) Traditional Optimization, Non-Synergistic.

Knowledge

Iterate...

...

...

(b) Cognitive or Synergetic Optimization.

Objective Extrema

Figure 1.2. Sequential Vs Non-Sequential.

Sequential System A sequential system relies on explicit definitions of logic paths

between inputs and outputs. As shown in Fig. 1.2 (a), every possible path

between the input and output must be encoded. This system leads to complex

structures due to an enumerated set of logic paths. This is associated with

rule-based systems.

Non-Sequential system

These diagrams are more likely seen in psychology literature, describing how

sections of the brain map to different functions and process information in or-

5

der to self-organize around a particular action [17, 18]. These systems differ

from the standard representation as there is no pre-defined pathway between

the inputs and outputs. Fig. 1.2(b) shows a cognitive system. Messages pass-

ing through the processes follow different paths, in effect reorganizing them.

This self-organization is a key aspect of cognition. The number of logic paths

is formed by the number of permutations of the processes. This undirected

communication generates numerous combinations of logic paths, allowing the

system to handle the large number of inputs and outputs associated with human

cognition without encoding every single logic path.

1.4 Evaluation Metrics

The goal here is to develop a search algorithm to the extent that it displays

characteristics, behavior, and performance similar to human cognition using function

optimization. The Function optimization problem was chosen because its parameters

are clearly defined and a clear definition of a solution exists in order to analyze the

guidelines for the further development of cognitive systems. Human cognition has

the ability to choose a better result depending on the outcomes of that time and can

handle a wide range of tasks which drives the use of two performance metrics in the

development of the cognitive search, namely convergence rate and feasibility. The

idea is to increase the rate of convergence as well as the feasible problem set that

the algorithm can address. Here, the attempt is to show that cognitive optimization

can provide a viable approach to function optimization, but not to attempt the most

efficient, complete, comprehensive, or competitive search algorithm possible.

6

CHAPTER 2

BACKGROUND

Cognitive Optimization can be categorized as a non-traditional optimization

technique. These approaches work over wide range of problem sets and are more likely

to find global optima, unlike traditional techniques.

2.1 Traditional Vs Cognitive Optimization

Traditional optimization methods provide powerful tools for locating and charac-

terizing local extrema. But they are limited to finding local optimal points in

continuous and differentiable functions. These methods are analytical and make

use of the techniques of mathematical formalisms, geometry, statistics, calculus,

geometry in locating the optimum points. These techniques have limited scope

in practical applications.

Non-traditional optimization techniques primarily overcome some of the limi-

tations of the classical techniques and have greater chances of finding global

optima. These algorithms work on discontinuous functions over discontinuous

domains and deal with complex engineering optimization problems.

Local & Global Maxima: A local maximum value of a function is the highest

value of a function within a very small interval. Similarly, a global maximum is

the highest value of the function within the entire domain.

Well-known examples of non-traditional optimization are referred to as evo-

lutionary approaches such as genetic algorithms. Ant colony optimization,

7

Particle swarm optimization, Social cognitive optimization are different non-

traditional optimization techniques.

2.1.1 Genetic Algorithm

Genetic Algorithm (GA) belongs to the class of Evolutionary Algorithms. They

mimic the principles of natural genetics and natural selection to constitute search opti-

mization procedures [19]. They are generally applied in many fields as in engineering,

economics, chemistry, bioinformatics, computer science, etc.

In a GA, a population of strings (called chromosomes or genomes) define a

candidate solution to an optimization problem.

GA’s work in these following steps:

1. Initialisation: The initial population is generated randomly. The population

depends on the type of the problem.

2. Selection: A proportion of the existing population is selected to breed a new

generation. In the current population, individual solutions are selected through

a fitness-based process.

3. After selection, if the termination criterion is met, the best solution is returned,

else the second generation is selected through genetic operators (reproduction,

crossover, mutation) to these individuals.

4. Reproduction: The selected individuals, parents are set for breeding which re-

sult in child solution using the crossover and mutation methods which represent

characteristics similar to that of parent solution[20, 21].

5. Termination: This process continues till the termination conditions are reached.

Common termination conditions are:

• A solution is found that satisfies minimum criteria

8

• Fixed number of generations reached

• Allocated budget (computation time/money) reached

• The highest ranking solution’s fitness is reaching or has reached a plateau such

that successive iterations likely no longer produce better results

• Manual inspection

• Combinations of the above [22]

The Genetic Algorithm flow chart is shown in Fig. 2.1.

Figure 2.1. Genetic Algorithm Flow chart [1].

9

2.1.2 Ant colony optimization

Ant colony optimization (ACO) is a population based metaheuristic and the

first approximate technique which was inspired by the collective behavior of social

insect colonies [23, 24] designed for combinatorial optimization problems. ACO de-

rives inspiration from the foraging behavior of some ant species. This algorithm was

developed on aiming the optimal path, based on the behavior of ants seeking a path

between their nests and food sources through graphs [25]. The solution construction

process is stochastic and is biased by a pheromone model. [26, 27]. Ant colony op-

timization is applied in diversified fields such as, multi-objective functions, parallel

implementations, continuous optimization, dynamic optimization problems, stochas-

tic optimization problems, industrial problems, constraint satisfaction, bioinformatics

problems etc.[28]

CO problem

Solu!on

Components

Pheromone

Model

Probabilis!c

Solu!on

Construc!on

Pheromone

Value

Update

Pheromone

ini!aliza!on

Figure 2.2. The ACO Frame Work [2].

10

2.1.3 Particle swarm optimization

Particle swarm optimization (PSO) is a population based, stochastic approach,

self-adaptive search optimization technique which was first introduced by Kennedy

and Eberhart [29, 30]. PSO belongs to the class of swarm intelligence techniques

that are used to solve continuous and discrete optimization problems. The simula-

tion of social behavior of the bird flock, fish schooling etc are the motivations for

the development. Though PSO shares many similarities with that of GA, the for-

mer has no evolutionary operators such as crossover and mutation. In PSO simple

software agents, the potential solutions called particles, move in the search space of

an optimization problem. The position of a particle represents a candidate solution

to the optimization problem at hand. Each particle searches for better positions in

the search space by changing its velocity (accelerating) according to its rules towards

pBest and nBest locations (local versions of PSO). pBest is the particle’s location at

which the best fitness so far has been achieved and nBest is the neighbor’s best loca-

tion at which the best fitness in a neighborhood so far has been achived. Acceleration

is weighted by a random term, with separate random numbers being generated for

acceleration towards pBest and nBest locations each particle [31, 32].

Advantages

• Insensitive to scaling of design variables

• Simple implementation

• Easily parallelized for concurrent processing

• Derivative free

• Very few algorithm parameters

• Very efficient global algorthimic search

Disadvantages

11

• Slow convergence in refined search stage (weak local search ability) [33].

The applications of PSO are in different fields, such as multi-objective optimiza-

tion, medicine and emergent system identification, electronics and training neural

networks etc [34].

2.1.4 Social cognitive optimization

Social Cognitive Optimization (SCO) is a simple optimization model based on

the observational learning mechanism in human social cognition [35, 36]. The indi-

viduals who simulate the human cognition are social cognitive agents. Each agent

possesses a personal memory and a set of simple search rules. Rules of operation are

encoded in each agent. The agents cooperate with their peers through the social shar-

ing of information from an external library, that all the agents have access to, instead

of from the personal memory of other agents [15, 35]. This algorithm implements a

more sophisticated form of interaction. It also converges faster and in fewer function

evaluations than the genetic algorithm or particle swarm [37].

2.1.5 Simulated Annealing

Simulated Annealing is one of the non-traditional search algorithms which rely

on random sampling. It is a stochastic optimization procedure [38]. The search

procedure here is that, the algorithm mimics the cooling phenomenon of molten

metals. It operates by simulating the cooling of a physical system whose possible

energies correspond to the values of the objective function being minimized [39].

These are simple and highly efficient in resolving the global optimization of a given

function in large discrete search space. The main goal is to find a good solution in a

fixed amount of time, rather than finding the best solution [40].

12

2.2 Literature

In the proposed research, the cognitive model is structured with a finite number

of simple processes which are unique and deterministic in nature.

A similar kind of work is done by Rodney A. Brooks, MIT Professor and member

of M.I.T’s Artificial Intelligence Lab who developed the subsumption architecture for

controlling mobile robots in 1986. The idea is the deconstruction of complicated

intelligent behavior into many simple behavior modules. Each module does a simple,

low-level task and all these simple action modules put together can be organized into

more complex behaviors.

A layering methodology in increasing levels of competence is built to operate the

robot control system. In simple words, the approach is to incrementally build up the

capabilities of the intelligent system [41]. Each layer is made of simple and connected

processors called Augmented Finite State Machines. Inputs can be supressed and

outputs can be inhibitated internally. Each layer acts asynchronously ; The structure

can be considered hierarchical because the higher levels subsume the function of the

lower levels. This architecture is robust and flexible.

In the cognitive model, the processes interact or communicate with each other

by sharing the information through message passing, whereas in the subsumption

architecture, the basic idea is the emergent behavior, which means cognition emerges

as a result of different layers of architecture acting together.

The key attribute in the cognitive model is communication between processes

in all possible paths, replicating non-sequential design. This implies that there is

no particular order for the processes to follow. They reorganize by themselves to

obtain output. The logical paths are not pre-defined which makes the structure non-

deterministic as well as flexible.

13

2.3 Preliminary Work

In order to avoid complications and uncertainites raised by choosing a complex prob-

lem, a simple problem is choosen. Problem Statement :

max
x

f(x) := 1− x2 df(x)

dx
= −2x (2.1)

The optimal solution is (x, f(x)) = (0, 1). The first derivative equals zero at this

solution, which will be used as the optimality condition for the cognitive search.

2.3.1 Inherited knowledge

Bracketing and gradient search algorithms [42] are used as inherited knowledge

in developing the search algorithm.These techniques search in different ways.

x

f(
x)

0
x2x1 x3x3b

Figure 2.3. Bracketing Search.

14

Bracketing Search The bracketing search jumps discontinuously around the

function’s domain. The bracketing search starts with two initial guesses that

define a bracket or region that includes an extremum. This is true if the first

derivatives of the initial guesses have opposite signs. The goal is to continually

reduce the region within the bracket until it surrounds the extremum to within

a given tolerance. This process is shown in Fig. 2.3 where x1 and x2 are the

initial guesses and x3b = (x1 + x2)/2 is the midpoint of the bracket. The first

derivative at x3b is calculated and if its sign equals that of x1, then x3b replaces

it in the bracket; The new bracket is defined between x3b and x2. The next step

would be to consider x4b = (x2 + x3b)/2 and so on until the region within the

bracket becomes small enough to conclude that the extremum has been found.

This bracketing search is different than the one traditionally used in root finding

[42].

x

f(
x)

0
x2x3x3g

Figure 2.4. Gradient Search.

15

Gradient Search The gradient search uses the gradient, or first derivative,

to find a candidate x which is closer to the maximum. The gradient gives the

direction in which the function is most increasing, as shown in Fig. 2.4. If the

initial guess is x2, the next value to check is:

x3g = x2 + s ∇xf(x2) (2.2)

where ∇xf(x2) is the gradient of f(x) evaluated at x2, and s is an arbitrary

number which moves x3g away from the initial guess x2 in the direction of the

gradient.The performance of the gradient approach is highly dependent on the

choice of s. The gradient at x3g is used to find x4g and so on [42].

2.3.2 Communication

Bracketing and Gradient techniques are used to formulate different cognitive

systems below, which can best utilize the communication between the processes.

Marginal Cognitive System These bracketing and gradient search algorithms can

be combined to form the marginally cognitive system shown in Fig. 2.5a. The

searches run independently and a new Compare process returns the solution

with the largest function value.

Performance Comparison of the independent solutions must wait until both

algorithms have finished, and thus the search converges at the rate of the slowest

one. It is possible to stop the search when the first search ends, but this is not

effective since the other search might find a solution nearer the optimum.

Simple Cognitive System Fig. 2.5b shows the algorithm where in order to im-

prove the performance, the communication in between can be increased by re-

moving the optimality check from the individual searches. The bracketing and

gradient searches are reduced to single iteration processes for simplification.

16

x
2

x 1
x 2

Start

Bracketing Gradient

x
3

b x 3 g

Compare
f(x3b

) > f(x3g
)

Stop

yes

no

x3b

x3g

x
2

x 1
x 2

Start

Bracketing

Iteration

Gradient

Iteration

x
3

b x 3 g

Compare
f(x3b

) > f(x3g
)

Stop

yes

no

x3b x4 x5

Optimal?

x3g

yes

x3b

x3g

x
2

x 1
x 2

Start

Bracketing

Iteration

Gradient

Iteration

x
3
b

x 3 g

Compare
f(x3b

) > f(x3g
)

Stop

yes

no

x3b x4 x5

Optimal?

x3g

yes

no

x3g

x3g

x3b

(a) (b) (c)

Figure 2.5. (a) Marginal, (b) Simple, and (c) Extensively communicative cognitive
searches.

The variables x4 and x5 define the new bracket after each iteration. The result

of each iteration must be fed back into the algorithm so that it may continue

the search. In psychology these are referred to as re-entrant processes, because

they accept their own output as input; re-entrant processes are an important

characteristic of cognition[17]. The result of each iteration is compared and the

largest value is checked for optimality. If the solution is optimal, the cognitive

search terminates.

Performance This search converges at the rate of the fastest search algorithm,

an improvement over Fig. 2.5a which converged at the rate of the slowest search

algorithm.

17

Extensively Communicative Cognitive System In order to facilitate better com-

munication between processes and improve the convergence rate, the algorithm

is modified. This is simple for the gradient search which can begin its next itera-

tion at the value provided by Compare. Since the concept behind the bracketing

search is to reduce the bracket’s size, the incoming information is also used to

reduce the bracket. The details of this alteration are not discussed in detail, but

the gist is that the bracketing process attempts to move the current bracket to

center around the new best result. The bracketing processes in Fig. 2.5b and

Fig. 2.5c are slightly different.

Performance The system in Fig. 2.5c can find the optimal solution in fewer

iterations than either the gradient or bracketing searches can alone. When

other performance measures are considered, such as the number of function

evaluations and the run time, the cognitive approach lies in the middle.

2.3.3 Synergism or Self-Organization

Fig. 2.6 shows the originator of the value returned from Compare at each itera-

tion of the cognitive search. It continually switches between bracketing and gradient

searches, except at the label Both which indicates when the difference between x3b and

x3g is small enough that f(x3b) and f(x3g) are numerically indistinguishable; how-

ever, the first derivatives, evaluated in Optimal?, are distinguishable. No discernible

pattern to this switching exists, implying that the cognitive search automatically

adjusts to converge to a solution. This implies that the cognitive search is synergis-

tic and self-organizes around the solution procedure that quickly finds the optimum.

All examples discussed were run on A DELL Precision T3400 with a 266GHz Dual

Core processor and 3.25 GB of RAM with S = 0.1 and a optimality tolerance of

18

0 10 20 30 40 50 60

Iteration

P
ro

cc
es

s

Bracket

Gradient

Both

Figure 2.6. Process Originating the Value Returned by Compare at each Iteration.

2.22× 10−14. The optimizations in Table 2.1 started with initial values of x1 = −632

and x2 = 700. Since a simple, continuous function is used here, its derivative can be

used to check optimality.

2.4 Increasing the Feasible Problem set

The cognitive search algorithm developed [15] could solve problems with mul-

tiple local maximas, discontinuous functions and also non-convex problems which

are not addressed by standalone bracketing and gradient algorithms.The guidelines

deduced from this work are listed in Table 2.2 below [15].

19

Table 2.1. Bracket, Gradient, and Cognitive Search Performance

Function evals

Method Steps f(x) df(x)
dx

time (sec)

Gradient 194 196 390 1.15× 10−2

Bracketing 62 64 64 4.71× 10−3

Cognitive 49 128 213 6.74× 10−3

Table 2.2. Guidelines for Cognitive System Development

Guidelines

1 Processes should implement different methods to search for a solution
2 The component processes should be as simple and deterministic as possible
3 Processes should be formulated to fully utilize shared information
4 Processes should broadcast information as often as possible
5 Multiple messages should be passed and operated on simultaneously
6 Communication should be re-entrant
7 One or more processes must evaluate the system’s progress

2.5 Limitations

The limitations of this work are as follows :

1. The nature of the processes in the preliminary work allowed the algorithm to

be implemented sequentially.

2. Extensive use of the inherited knowledge, beyond the composition of processess

was provided; specifically, the regions to search to find extrema is based on the

knowledge of the function.

The search algorithm developed in this thesis addresses the limitations of the previous

work.

20

CHAPTER 3

COGNITIVE SEARCH ALGORITHM

The search algorithm is developed from the general guidelines listed in Table

2.2 which are recognized as a part of preliminary work. The developed algorithm

overcomes the limitations of the previous work and improves the system’s performance

further. Here, the goal is to improve the search algorithm by adding more aspects

that mimic human cognition.

3.1 Proposed Cognitive Search Algorithm

The developed cognitive search algorithm is shown below in Fig. 3.1.

Optima

 (O)

Gradient

Compare

 (C)

Splitter

 (S)

Bracket

(G)

(B)

Figure 3.1. Flow chart for developed cognitive algorithm.

21

3.1.1 Non-sequential, Non-deterministic Implementation

New processes were added to the proposed algorithm and original ones were

modified, as seen in Fig. 3.1. The processes can run asynchronously such that each

process operates independently of other processes and in parallel. But due to time

limitations, the implementation was made sequential and working made similar to

parallel processing. This algorithm can address complex optimization functions and

is more likely to locate global optima.

M is the formatted message string. B, C, G, O & S are Bracketing, Compare, Gradi-

ent, Optima & Splitter processes respectively.

...
while (chk==0)
[S]=splitter(M);
[B]=brac(M);
[G]=grad (M);
[C]= compare(M);
[O,chk]= optima(M);

M=[S; B; G; C; O];
end

...

(a)

...
while (chk==0)
[G]=grad (M);
[O,chk]= optima(M);
[B]=brac(M);
[C]= compare(M);
[S]=splitter(M);

M=[G; O; B; C; S];
end

...

(b)

Figure 3.2. Two Different Cognitive Optimization Matlab Pseudo-Codes, (a) SBGCO
and (b) GOBCS process calling sequences.

Pseudo codes in Fig. 3.2a and 3.2b represent two different calling sequences of

the processes. Irrespective of the arrangement of processes, the algorithm yields the

same result.

22

Communication

• Processes communicate by passing messages. Since these messages do not follow

any specific path, they can be combined and sequenced in numerous ways.

• Processes communicate extensively and use the information from other pro-

cesses. This undirected communication results in a non-sequential search algo-

rithm.

Messages

• In this work, the messages are formatted only for single variable functions. All

messages have a standard format. M is the input message string.

{

xguess, xlo, xup, f(xguess), f(xlo), f(xup),
df(xguess)

dx
,
df(xlo)

dx
,
df(xup)

dx
, tag

}

(3.1)

where xguess is the guess, xlo and xup are the upper and lower bounds for the

bracket, f(xi) is the function value at xi, and
df(xi)
dx

is the derivative/gradient

at xi. The numerical representation of messages’ characteristic is tag :

– tag = 1 repesents the messages containing extrema within xlo and xup.

– tag = 0 represents the messages which may or may not contain extrema

between xlo and xup .

– tag = 2 represents the messages with highest function value calculated at

xguess.

• Every process acts on the initial message, xlo and xup that are user inputs and

lists a set of output. All the processes take the message list, M in Fig. 3.2, as

input, work on them and generate output messages. An output message is an

altered form of the input which has been operated on by each process.

23

• The processes have knowledge of the part of the message to be acted upon. Ev-

ery function/process may not utilize every element of a message. The incoming

messages may be altered, used to produce new messages, or discarded.

• The output message list is the input for the next iteration. This continues until

the extreme is achieved.

3.1.2 Processes’ Functionality

This new type of search algorithm shown in Fig. 3.1 has 5 processes (consid-

ered inherited knowledge). These processes are simple, deterministic, and function

differently.

1. Bracketing & Gradient search These are the traditional optimization search

techniques discussed in Sec. 2.3.1.

2. Splitter This works on an interval halving method [42]. The discarded region

from the bracketing search technique is the input for the splitter. The interval

is successively divided into four equal length sections consisting of five points.

These five points are the two boundary points and the points between them at

the distance of one-fourth, two-fourths, and three-fourths between the boundary

points respectively. At these five points, considering every two points as a

region, if the width tolerance ≥ 0.01, the first derivatives are evaluated. For

each region considered, if the first derivatives have opposite signs, they are

tagged as tag=1 or otherwise tag=0.

3. Compare In this process, as the name suggests, the input messages in the list

are compared . The process outputs a message with highest/largest function

value.

24

4. Optima This process evaluates the system’s performance. The messages sent

are checked for the optimality tolerance and the algorithm terminates if the

necessary condition is achieved.

3.1.3 Messages in each process

Each process works on a particular message in the list. These are indicated by

tags.

Bracketing acts on messages with tag = 1 in the message list and outputs two

messages with new brackets one, containing extrema, and the other having the

discarded bracket, tagged 1 and 0, respectively.

Gradient works on messages with tag= 2 in the message list. The gradient value is

calculated at the xguess .

Splitter operates on messages with tag = 0 in the entire list and outputs four mes-

sages which are tagged 1 or 0 depending on the signs of their first derivatives.

Compare works only if there are two or more messages in the list. This process

outputs a message having highest function value at xguess which is tagged 2.

Optima acts as a stopping condition for the algorithm. This process checks for

messages with tag = 2 and verifies if df(xguess)
dx

has reached the tolerance value

and terminates the algorithm.

Table 3.1 shows the message tags each function acts on.

25

Table 3.1. Message Processed

Function Messages processed No.of messages output messages

Gradient tag = 2 1 or Ø tag = 1

Optima tag = 2 1 or Ø tag = 2

Compare No.ofmessages ≥ 2 1 or Ø tag = 2

Bracketing tag = 1 2 or Ø tag = 1, tag= 0

Splitter tag = 0 4 or Ø tag = 1, tag = 0

3.2 Faster Convergence and Feasible Problem Set

The efficiency of the developed cognitive algorithm is evaluated by perfomance

metrics as discussed in Sec. 1.4.

Convergence rate

In the developed cognitive algorithm, Fig. 3.1, all the processes are simplified to

the point where the bracketing or gradient cannot solve the problem alone. The

architecture allows all the processes to cooperate in finding the extremum. Each

iteration of the cognitive search involves evaluation of all five: bracketing, gradient,

splitter, compare, and optima processes. The number of iterations is considered as

one of the performance metrics.

Feasibility

Optimization problems that are considered difficult for the bracketing and gradient

searches are attemped by the developed search algorithm. The developed algorithm

is less likely to get stuck in local maxima, that is it has a better chance of finding

global maxima in all the cases.

The following are the reasons for the algorithm to locate global maxima in most of

the cases :

26

• The Splitter process works on the discarded brackets from Bracketing and

selects the best bracket if any. In this way, the algorithm checks the discarded

brackets/regions in every iteration and it is likely that most of the function

domain is searched.

• It is prefered to calculate Gradient only at the highest function value’s xguess

which is returned by Compare on checking the entire message list, rather than

on every single xguess in the message list. This also reduces the overall run time.

• Optima operates on the message returned by Compare (highest function

value’s corresponding xguess in the entire message list) and terminates the search

if df(xguess)
dx

has reached optimality tolerance.

Thus, this search algorithm has increased the number of problems that can be solved

beyond the intersection of the ones that the individual bracketing, gradient, and

splitter (modified interval-halving) searches can address with most of the function

domain searched and better rate of convergence. This algorithm is run on various

cases and the results are discussed in the next chapter.

27

CHAPTER 4

RESULTS & DISCUSSIONS

4.1 Introduction

The developed cognitive search algorithm resulted in the desired cognitive be-

havior when a message passing structure was implemented. Cognitive search involves

a large number of processes and more information to be processed, so it is expected

to have longer runtime and function evaluations. Yet the cognitive approach is well

suited for parallel and asynchronous operations, which can significantly reduce the

overall runtimes. Thus, cognitive search is not used as a measure of performance.

For this reason, the number of iterations is used as the performance metric. This

algorithm allows more extensive search of the function domain and is likely to find

the global or more optimal solution, in a reasonable number of iterations and the

ability to address a broad set of dissimilar problems was also achieved. That is, the

increase in the feasible problem set using inherited knowledge, communication, and

self-organization are achieved.

In the following sections, the cognitive search algorithm is run on non-convex,

multiple local maxima and discontinuous functions and the results of all cases are

presented below.

4.2 Assumptions

For the cases considered,

• In Eq. 2.2, S=0.1 is an arbitrary guess taken for gradient algorithm.

28

• Optimality tolerance of 10−5 for continuous functions and 2−52 for discontinuous

functions is assumed.

• Ø indicates an empty element.

• The cases were run on A DELL Precision T3400 with a 2.49 GHz Dual Core

processor with 3.25 GB of RAM using uncomplied Matlab.

29

4.3 Case 1(a) : Multiple Local Maxima function (MLM)

For a better understanding of the developed cognitive algorithm, a multiple lo-

cal maxima function with Splitter, Bracket, Gradient, Compare, and Optima

as the order of arrangement and with initial guesses xlo, xup = (−5, 5) is shown below.

Properties : Continuous, Nonlinear, Unconstrained, Nonconvex, Multiple local Op-

tima, Univariable.

Problem Statement :

max
x

f(x) =
−1

14
(x+ 4)(x+ 1)(x− 1)(x− 3)− 0.5

df(x)/dx = −(4x3 + 3x2 − 26x− 1)/14 (4.1)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−35

−30

−25

−20

−15

−10

−5

0

5

 x

 f
(x

)

Figure 4.1. Multiple Local Maxima for case 1(a).

• This function has multiple local maxima at (x, f(x)) = (2.22, 0.86), (−2.94, 2.94)

30

• The optimality condition for the cognitive search is when the first derivative

equals zero at this solution.

31

4.3.1 Messages in each iteration

The message list over 3 iterations is shown in Table 4.1.

• Iter 0 is the initial message string with the user defined inputs which is basic

input to all the processes.

• Iter 1 is the output of the previous iteration and input to next iteration

R1 & R2 are the messages from bracketing process

• In Iter 2,

R1 - R4 are the messages from splitter process resulted from R2 of Iter 1

R5 - R6 are the messages from bracketing process resulted from R1 of Iter 1

R7 is the message from compare process

• In Iter 3 ,

R1 - R16 are the messages from splitter resulted from R1, R3, R4, R6

R17 - R20 are the messages from bracketing resulted from R2, R5

R21 is the message from gradient resulted from R6

R22 is the message from compare process

32

Table 4.1. Messages list for SBGCO

Iter Row
{

xguess, xlo, xup, f(xguess), f(xlo), f(xup),
df(xguess)

dx
,

df(xlo)
dx

,
df(xup)

dx
, tag

}

0 R1 5.00 −5.00 5.00 −31.3 −14.2 −31.3 −31.7 21.1 −31.7 1
1 R1 0.00 0.00 5.00 −1.35 Ø Ø 0.07 0.07 −31.7 1

R2 Ø −5.00 0.00 Ø Ø Ø Ø Ø Ø 0
2 R1 Ø −5.00 −3.75 Ø Ø Ø Ø 21.1 5.16 0

R2 −3.12 −3.75 −2.50 2.85 Ø Ø Ø 5.16 −1.44 1
R3 Ø −2.50 −1.25 Ø Ø Ø Ø −1.44 −2.02 0
R4 Ø −1.25 0.00 Ø Ø Ø Ø −2.02 0.07 0
R5 2.50 0.00 2.50 0.71 Ø Ø −1.08 0.07 −1.08 1
R6 Ø 2.50 5.00 Ø Ø Ø Ø Ø Ø 0
R7 0.00 0.00 5.00 −1.35 Ø Ø 0.07 0.07 −31.7 2

3 R1 Ø −5.00 −4.68 Ø Ø Ø Ø 21.1 16.0 0
R2 Ø −4.68 −4.37 Ø Ø Ø Ø 16.0 11.7 0
R3 Ø −4.37 −4.06 Ø Ø Ø Ø 11.7 8.14 0
R4 Ø −4.06 −3.75 Ø Ø Ø Ø 8.14 5.16 0
R5 Ø −2.50 −2.18 Ø Ø Ø Ø −1.44 −2.02 0
R6 Ø −2.18 −1.87 Ø Ø Ø Ø −2.02 −2.28 0
R7 Ø −1.87 −1.56 Ø Ø Ø Ø −2.28 −2.26 0
R8 Ø −1.56 −1.25 Ø Ø Ø Ø −2.26 −2.02 0
R9 Ø −1.25 −0.93 Ø Ø Ø Ø −2.02 −1.62 0
R10 Ø −0.93 −0.62 Ø Ø Ø Ø −1.62 −1.10 0
R11 Ø −0.62 −0.31 Ø Ø Ø Ø −1.10 −0.52 0
R12 Ø −0.31 0.00 Ø Ø Ø Ø −0.52 0.07 0
R13 Ø 2.50 3.12 Ø Ø Ø Ø −1.08 −4.93 0
R14 Ø 3.12 3.75 Ø Ø Ø Ø −4.93 −11.0 0
R15 Ø 3.75 4.37 Ø Ø Ø Ø −11.0 −19.8 0
R16 Ø 4.37 5.00 Ø Ø Ø Ø −19.8 −31.7 0
R17 −3.12 −3.12 −2.50 2.85 Ø Ø 0.89 0.89 −1.44 1
R18 Ø −3.75 −3.12 Ø Ø Ø Ø Ø Ø 0
R19 1.25 1.25 2.50 −0.13 Ø Ø 1.50 1.50 −1.08 1
R20 Ø 0.00 1.25 Ø Ø Ø Ø Ø Ø 0
R21 0.00 0.00 0.00 −1.35 0.00 0.00 0.08 0.00 0.00 1
R22 −3.12 −3.75 −2.50 2.85 Ø Ø Ø 5.16 −1.44 2

33

4.3.2 Results of case 1(a)

Table 4.2 shows the individual performance of bracketing and gradient algo-

rithms for the multiple local maxima function.

Table 4.2. Comparison of Bracket and Gradient Algorithms for case 1(a)

Initial Solution No.eval No. eval Run

bracket Method x, f(x) Iters f(x) df(x)
dx

time (sec)

(−5, 5) Bracketing 2.2237, 0.8613 16 18 18 0.00261
Gradient 2.2237, 0.8613 32 34 66 0.00426

(−10, 10) Bracketing 2.2237, 0.8613 17 19 19 0.00131
Gradient 2.2237, 0.8613 33 35 68 0.00214

(−20, 10) Bracketing −2.9354, 2.9377 22 24 24 0.00169
Gradient 2.2237, 0.8613 33 35 68 0.00227

(−100, 100) Bracketing 2.2237, 0.8613 25 27 27 0.00200
Gradient 2.2237, 0.8613 51 53 104 0.00343

The following Table 4.3 shows the results for case 1(a) with different arrange-

ments of processes where S-Splitter, B-Bracket, G-Gradient, C-Compare, O-Optima.

Table 4.3. MLM function with different arrangements for case 1(a)

Arrangement Tolerance Extrema

SBGCO 0.00001 −2.9353
BGOSC 0.00001 −2.9353
GOBCS 0.00001 −2.9353
CSGBO 0.00001 −2.9353
OCBSG 0.00001 −2.9353

34

The following Table 4.4 shows the results for case 1(a) with different initial

values. In all cases the global optimum was found.

Table 4.4. MLM function with different initial values for case 1(a)

Initial No.of No.eval No. eval Run

bracket Iters Arrangement messages f(x) df(x)
dx

time (sec)

(−5, 5) 20 SBGCO 2991 234 5764 0.10843
20 BGOSC 2775 234 5332 0.10821
20 GOBCS 2283 78 4426 0.11567
20 CSGBO 2283 81 4433 0.10644
20 OCBSG 2775 213 5273 0.10875

(−10, 10) 21 SBGCO 5293 256 10346 0.20795
21 BGOSC 4737 256 9234 0.18268
21 GOBCS 3995 82 7842 0.14651
21 CSGBO 3995 85 7849 0.15481
21 OCBSG 4737 234 9172 0.17526

(−20, 10) 23 SBGCO 11395 301 22505 0.65993
23 BGOSC 11179 301 22073 0.62084
23 GOBCS 9127 88 18092 0.55028
23 CSGBO 9127 110 18588 0.54835
23 OCBSG 10839 277 21325 0.60602

(−100, 100) 20 SBGCO 75719 323 151222 34.432
20 BGOSC 72007 232 143798 33.768
20 GOBCS 58591 76 117044 26.835
20 CSGBO 59177 95 118211 28.421
20 OCBSG 68939 211 137603 32.407

35

4.4 Case 1(b) : Multiple Local Maxima function (MLM)

Properties : Continuous, Nonlinear, Unconstrained, Nonconvex, Multiple local Op-

tima, Univariable

Problem Statement :

max
x

f(x) = x(x+ 10)(x+ 5)(x− 10)(x− 5)2

df(x)/dx = −6x5 + 25x4 + 500x3 − 1875x2 − 5000x+ 12500 (4.2)

-10 -5 0 5 10
-4

-2

0

2

4

6

8

10

12

14

16
x 10

4

x

f(
x)

Figure 4.2. Multiple Local Maxima for case 1(b).

Multiple local maxima’s

(x, f(x)) = (−8.3836, 150985.3) (1.8748, 12145.9) (8.7166, 39671.0)

36

• The optimality condition for the cognitive search is when the first derivative

equals zero at this solution.

4.4.1 Results of case 1(b)

Table 4.5 shows the individual performance of bracketing and gradient algo-

rithms for multiple local maxima function. The following Table 4.6 shows the

Table 4.5. Comparison of Bracket and Gradient Algorithms for case 1(b)

Initial Solution No.eval No. eval Run

bracket Method x, f(x) Iters f(x) df(x)
dx

time (sec)

(−10, 10) Bracketing 5, 0 2 4 4 0.00701
Gradient 5, 0 1 3 4 0.00180

(−50, 50) Bracketing 8.7166, 39671 25 27 27 0.00189
Gradient 5, 0 9 11 20 0.00072

(−100, 100) Bracketing 8.7166, 39671 26 28 28 0.00195
Gradient 5, 0 19 21 40 0.00135

results for case 1(b) with different arrangements of processes where S-Splitter, B-

Bracket, G-Gradient, C-Compare, O-Optima.

Table 4.6. MLM function with different arrangements for case 1(b)

Arrangement Tolerance Extrema

BOSGC 0.00001 −8.3836
GBSOC 0.00001 −8.3836
CBSOG 0.00001 −8.3836
OGBCS 0.00001 −8.3836
SOBCG 0.00001 −8.3836

37

The following Table 4.7 shows the results for case 1(b) with different initial

values. The global solution is found in all cases.

Table 4.7. MLM function with different initial values for case 1(b)

Initial No.of No.eval No. eval Run

bracket Iters Arrangement messages f(x) df(x)
dx

time (sec)

(−10, 10) 35 BOSCG 3209 634 5792 0.13936
35 GBSOC 1781 107 3337 0.14844
35 CBSOG 3075 570 4953 0.15524
35 OGBCS 1781 104 3332 0.09955
35 SOBCG 3209 600 5692 0.16565

(−50, 50) 40 BOSCG 40287 899 79695 18.524
40 GBSOC 36511 197 72699 17.447
40 CBSOG 40205 468 79800 18.472
40 OGBCS 36511 192 72688 17.487
40 SOBCG 45901 894 90768 19.993

(−100, 100) 41 BOSCG 65837 941 130753 40.039
41 GBSOC 59727 201 119123 37.254
41 CBSOG 65753 259 134365 39.667
41 OGBCS 59727 196 119112 36.711
41 SOBCG 78561 971 156009 47.816

Performance

To determine the general behavior of the developed algorithm, many trial cases were

run where initial guesses with large ranges of width were considered.

1. Results from Table 4.2 and Table 4.4 show that for the considered multiple

maxima function, the developed cognitive system converges to a solution in

fewer iterations than the individual performances of bracketing and gradient

algorithms for the case of higher bracket width and lies in the middle with

lower bracket widths.

38

2. Table 4.3 and Table 4.6 show the self-organization property of cognition in

converging to a better solution. Also, irrespective of the arrangement of the

processes, non-sequential behavior of the processes is implied.

3. Though the run time for the cognitive search algorithm is longer, it converges to

a global solution in all the cases whereas the bracketing and gradient searches

fail.

Conclusions

1. Table 4.2 and Table 4.5 show that the individual algorithms fail to find the

global maximum for the given initial guesses in most of the cases.

2. Table 4.3 and Table 4.6 conclude that irrespective of the arrangement of the

processes, for the assumed tolerance value, the algorithm finds a global solution.

3. The results in Table 4.4 and Table 4.7 show that for different arrangements,

there is a slight deviation in run time and also with the increase in the size of

the bracket, the run time increases as:

• The regions to search are more when compared to lower bracket widths.

• The number of function evaluations are more than in standalone algo-

rithms.

• The number of messages to operate on is multiplied in the splitter process

geometrically.

39

4.5 Case 2 : Discontinuous function

Properties : Discontinuous, Nonlinear, Unconstrained, Nonconvex, Local Optima,

Univariable.

Problem Statement :

f(x) =
2

x2 − x

df(x)/dx = −2(2x− 1)/(x2 − x)2 (4.3)

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−20

−15

−10

−5

0

5

10

15

20

f(
x)

x

Figure 4.3. Discontinuous function.

The extremum is at (x, f(x)) = (0.5,−8)

40

4.5.1 Results of case 2

Table 4.8 shows the individual performance of bracketing and gradient algo-

rithms for discontinuous function. The gradient is blank because it never converged

to a solution.

Table 4.8. Comparison of Bracket and Gradient Algorithms

Initial Solution No.eval No. eval Run

bracket Method x, f(x) Iters f(x) df(x)
dx

time (sec)

(−1, 3) Bracketing 0.5,−8 3 5 5 0.00726
Gradient

(−10, 10) Bracketing 0.5,−8 55 57 57 0.01064
Gradient

(−100, 100) Bracketing 0.5,−8 58 60 60 0.00200
Gradient

The following Table 4.9 shows the results of a discontinuous function with differ-

ent arrangement of processes where S-Splitter, B-Bracket, G-Gradient, C-Compare,

O-Optima.

Table 4.9. Discontinuous function with different arrangements

Arrangement Tolerance Extrema

BOSCG eps 0.5
SBGCO eps 0.5
GCBOS eps 0.5
CGOSB eps 0.5
OCBSG eps 0.5

41

The following Table 4.10 shows the results for a discontinuous function with different

initial values.

Table 4.10. Discontinuous function with different initial values

Initial No.of No.eval No. eval Run

bracket Iters Arrangement messages f(x) df(x)
dx

time (sec)

(−1, 3) 3 BOSCG 33 8 60 0.0153
3 SBGCO 33 9 61 0.0154
3 GCBOS 33 9 61 0.0157
3 CGOSB 33 8 60 0.0156
3 OCBSG 33 7 59 0.0151

(−5, 5) 56 BOSCG 5779 1545 9699 0.1904
56 SBGCO 5779 1546 9700 0.1897
56 GCBOS 2587 168 4798 0.1069
56 CGOSB 2587 167 4797 0.1095
56 OCBSG 5779 1544 9698 0.1938

(−10, 10) 57 BOSCG 7811 1601 13701 0.2811
57 SBGCO 7811 1602 13702 0.2532
57 GCBOS 3957 171 7531 0.1448
57 CGOSB 3957 170 7530 0.1386
57 OCBSG 7811 1600 13700 0.2615

(−100, 100) 61 BOSCG 78751 1835 155323 434.228
61 SBGCO 78751 1836 155324 33.968
61 GCBOS 58589 183 116767 26.449
61 CGOSB 58589 182 116766 27.149
61 OCBSG 78751 1834 155322 33.597

Performance

1. From Table 4.8 and Table 4.10, it is seen that though the number of iterations

of the cognitive search algorithm is greater than or equal to that of bracketing,

the former retains the self-organization property.

42

2. Table 4.9 shows that, irrespective of the arrangement of the processes, the

algorithm converges to a global solution implying the non-sequential behavior

of the processes.

43

Conclusions

1. Table 4.8 shows that the gradient algorithm completely fails as it repeatedly

travels up to the asymptotes of the function.

2. The results in Table 4.9 conclude that irrespective of the arrangement of the

processes, for the assumed tolerance value the algorithm guarantees a global

solution.

3. The results in Table 4.10 show that for different arrangements, there is a slight

deviation in run time and also with the increase in the size of the bracket, the

run time increases because the region to search is more when compared to lower

bracket widths.

4.6 Summary

Thus, these results above show the desired performance in terms of a feasible

problem set and rate of convergence as discussed in Sec. 1.4 and Sec. 3.2. The devel-

opment of the cognitive algorithm exhibits characteristics similar to human cognition

in structure and performance.

4.7 Guidelines

The guidelines deduced from the work done are :

• Processes do not work on every single message sent from other process.

Processes have knowledge of the message to be acted upon. Rather than calcu-

lating Gradient at every single xguess in the message list, it is calculated only

at the highest function value’s xguess. This inhibits unnecessary messages in the

list which reduced the over all run time drastically.

44

CHAPTER 5

CONCLUSIONS

In this paper, a cognitive algorithm is developed in the context of function

optimization which mimics human cognition in its structure and performance. This

is important because optimization has been identified as one of the key functions of

cognition. The algorithm has the prior knowledge of how to solve problems from

traditional optimization techniques. All the processes are simplified to the point

where none can solve the problem alone. Each process included is significant and

deterministic. These processes use inherited knowledge to communicate to get to a

solution in a form of formatted message lists. The distribution of the messages to

all the processes provided the synergistic approach to the algorithm. This message-

passing approach leads to the non-sequential form of the processes. The feasibility

of the problem set that the algorithm can address is achieved. The work provided

resulted in an output with no randomness involved. It was shown that the developed

cognitive algorithm is capable of addressing difficult optimization problems that are

not addressed by traditional optimization techniques. This search algorithm located

global solutions for non-convex multiple local maxima functions.

45

APPENDIX A

MATLAB CODE

46

A.1 Matlab code for MLM function case1(a)

function [opti,value,tend,iter]= cosgb(guess1,guess2)

tic;iter=0;

global B G S P O M Mo;

B=[];G=[];S=[];O=[];M=[];P=[];Mo=[];

format short g

xlo=guess1;fxlo= feval(guess1);dfxlo=dfeval(guess1);

xup=guess2;fxup=feval(guess2); dfxup=dfeval(guess2);

xguess=xup; % xguess should be either up or low

fxguess=feval(xguess); dfxguess=dfeval(xguess);

if (dfxlo>=0 && dfxup<=0)

tag=1;

else

tag=0;

end

M= [xguess,xlo,xup,fxguess,fxlo,fxup,dfxguess,dfxlo,dfxup,tag]

chk=0;

while (chk==0)

Mo=[];

[S]=spliter(M);

[O,chk]= optima(M);

if chk ~= 0

opti =O(1)

value=O(4)

break

47

end

[B]=brac(M);

[C]= compare(M);

[G]=grad (M);

Mo

iter=iter+1;

M=Mo;

end

tend=toc

iter

return

function fx = feval(x)

fx = -1/14*(x+4)*(x+1)*(x-1)*(x-3)-0.5; % function with 2 maxima’s

%fx=2/(x^2-x); % discontinuous function

% fx=-x*(x+10)*(x+5)*(x-10)*(x-5)^2; % 3 maxima’s function

return;

function dfx = dfeval(x)

dfx = (1/14)*(1 + 26*x - 3*x^2 - 4*x^3);

%dfx=(-4*x+2)/(x^2-x)^2;

%dfx=-6*x^5+25*x^4+500*x^3-1875*x^2-5000*x+12500;

return;

function [O,chk]=optima(M)

global Mo;

O=NaN(1,10);

48

for i=1:size(M,1)

If (M(i,10)==2)

h=abs(M(i,7));

if (h<=0.00001)

[O]= M(i,:) ; chk=1;

A= (size(Mo,1));

Mo(A+1,:)=O(1,:);

break;

else

O=[]; chk=0;

end

else

O=[]; chk=0;

end

end

return

function [C]= compare(M)

global Mo;

C=NaN(1,10);

if (size(M,1)>=2)

[funcC, I]=max(M(:,4));

[C]= M(I,:);

C(10)=2;

A= (size(Mo,1));

49

Mo(A+1,:)=C(1,:);

else

C=[];

end

return

function [B] = brac(M)

global Mo;

B1=NaN(1,10); B2=NaN(1,10);

for i=1:size(M,1)

if (M(i,10)==1)

B1(1)=(M(i,2)+M(i,3))*0.5;

B1(4)=feval(B1(1)); % func val at guess

B1(7)=dfeval(B1(1)); % diff @ xguess

if (sign(B1(7))==sign(M(i,8)))

B1(2)=B1(1); B1(3)=M(i,3); B1(10)=1;

B1(8)=dfeval(B1(2));B1(9)=dfeval(B1(3));

B2(2)=M(i,2); B2(3)=B1(1);B2(10)=0;

elseif (sign(B1(7))==sign(M(i,9)))

B1(2)=M(i,2);B1(3)= B1(1);B1(10)=1;

B1(8)=dfeval(B1(2));B1(9)=dfeval(B1(3));

B2(2)=B1(1);B2(3)=M(i,3);B2(10)=0;

else

end

B=[B1;B2];

50

A= (size(Mo,1));

Mo(A+1,:)=B(1,:); Mo(A+2,:)=B(2,:);

else

B=[];

end

end

return

function [G]= grad(M)

global Mo;

G=NaN(1,10);

for i=1:size(M,1)

if (M(i,10)==2)

G(1)=M(i,1)+0.1*M(i,7); G(4)=feval(G(1)); G(7)=dfeval(G(1)); G(10)= 1;

A= (size(Mo,1));

Mo(A+1,:)=G(1,:);

else

G=[];

end

end

return

function [S]=spliter(M)

global Mo;

S1=NaN(1,10);S2=NaN(1,10);S3=NaN(1,10); S4=NaN(1,10);

51

for i=1:size(M,1)

if ((M(i,10)==0)&& (M(i,3)-M(i,2))>=0.01)

P=(M(i,:));

m=(P(3)+P(2))*0.5; L= P(3)-P(2);

a=P(2)+0.25*L; b=P(3)-0.25*L;

S1(2)=P(2);S1(3)=a;S1(8)=dfeval(S1(2));S1(9)=dfeval(S1(3));

if (S1(8)>0 && S1(9)<0) S1(10)= 1;

S1(1)= (S1(2)+S1(3))*0.5; S1(4)=feval(S1(1));S1(7)=dfeval(S1(1));

else

S1(10)=0;

end

S2(2)=a; S2(3)=m; S2(8)=dfeval(S2(2));S2(9)=dfeval(S2(3));

if (S2(8)>0 && S2(9)<0)S2(10)= 1;

S2(1)= (S2(2)+S2(3))*0.5; S2(4)=feval(S2(1));S2(7)=dfeval(S2(1));

else

S2(10)=0;

end

S3(2)=m; S3(3)=b; S3(8)=dfeval(S3(2));S3(9)=dfeval(S3(3));

if (S3(8)>0 && S3(9)<0)

S3(10)= 1; S3(1)= (S3(2)+S3(3))*0.5;

S3(4)=feval(S3(1));S3(7)=dfeval(S3(1));

else

S3(10)=0;

end

S4(2)=b;S4(3)=P(3); S4(8)=dfeval(S4(2));S4(9)=dfeval(S4(3));

52

if (S4(8)>0 && S4(9)<0)

S4(10)= 1; S4(1)= (S4(2)+S4(3))*0.5;

S4(4)=feval(S4(1));S4(7)=dfeval(S4(1));

else

S4(10)=0;

end

S=[S1;S2;S3;S4];

A= (size(Mo,1));

Mo(A+1,:)=S(1,:); Mo(A+2,:)=S(2,:);

Mo(A+3,:)=S(3,:) ; Mo(A+4,:)=S(4,:);

else

S=[];

end

end

return

53

REFERENCES

[1] G. Renner and a. Ekart, “Genetic algorithms in computer aided design,” CAD

Computer Aided Design, vol. 35, pp. 709–726, 2003.

[2] B. C, “Ant colony optimization : Introduction and hybridizations,” in Proceed-

ings of the International Conference on Hybrid Intelligent Systems(HIS), Sep

2007, pp. 24–29.

[3] M. W. Matlin, Cognition. John Wiley & sons, 2008.

[4] S. K. Reed, Cognition theory and applications. Thomson Learning, 2007.

[5] A. F. Ashman and R. N.F.Conway, An Introduction to Cognitive education: the-

ory and applications. London;New York : Routledge, 2002.

[6] R. Pfeifer, “Cognition-perspectives from autonomous agents,” Robotics and Au-

tonomous Systems, vol. 15, pp. 47–70, 1995.

[7] D. McFarland, “Defining motivation and cognition in animals,” International

studies in the philosophy of science, vol. 5, pp. 153–170, 1991, p.160.

[8] U.Neisser, Cognitive Psychology. Appleton-Century Crofts,NewYork, 1967.

[9] M.H.Ashcroft, Human memory and Cognition, 2nd ed. Harper Collins College

Publishers, 1967.

[10] R.L.Gregory, The Oxford Companion to the mind. Oxford University

Press,Oxford, 1987.

[11] J. Youngdo and A. Younghwa, “Intelligent system modeling for human cogni-

tion,” in 5 th International conference on Convergence and Hybrid Information

Technology,ICHIT, vol. 206 CCIS, 2011, pp. 529–536.

54

[12] J. Neumann and O. Morgenstern, The theory of Games and Economic behavior.

Princeton NJ : Princeton U.Press, 1953.

[13] P. J. Werbos, “Using adp to understand and replicate brain intelligence: the

next level design,” in Proceedings of IEEE Symposium on Approximate Dynamic

Programming and Reinforcement Learing, 2007.

[14] J. R. Busemeyer and A. Diederich, Cognitive Modeling. SAGE publications,

2010.

[15] A. Bowling and F. Makedon, “Cognitive optimization in asistive living system

development,” in proceedings of Applied Bionics and Biomechanics, 2010.

[16] P. J. Werbos, “Intelligence in the brain:a theory of how it works and how to

build it,” Neural Networks, pp. 200–212, 2009.

[17] T. E., In:The Dynamical Systems Approach to Cognition. World Scientific Pub-

lishing Co.., 2003, vol. 10.

[18] T. W and D. JP, The Dynamical Systems Approach to Cognition (Studies of

Nonlinear Phenomena in Life Science). World Scientific, 2003, vol. 10.

[19] K. Deb, Optimization for Engineering Design: Algorithms and Examples.

Prentice-Hall of India Private Limited, 2005.

[20] A. Eiben, “Genetic algorithms with multi-parent recombination,” in Proceedings

of the International Conference on Evolutionary Computation, 1994, pp. 78–87.

[21] C.-K. Ting, “On the mean convergence time of multi-parent genetic algorithms

without selection,” Advances in Artificial Life, pp. 403–412, 2005.

[22] G. DE, Genetic Algorithms in search,Optimization & Machine Learning.

Addison-Wesley Publishing Company,Inc, 1989.

55

[23] G. W, “Study on immunized ant colony optimization,” in Proceedings of the

International Conference on Natural Computation (ICNC), August 2007, pp.

792–796.

[24] D. M and B. C, “Ant colony optimization theory: A survey,” Theoritical Com-

puter Science, vol. 344, pp. 243–278, 2005.

[25] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed optimization by ant

colonies,” in Proceedings of ECAL91-European Conference On Artifical Life,

1991, pp. 134–142.

[26] M. Dorigo, “Ant colony optimization,” Scholarpedia, vol. 2, no. 3, p. 1461, 2007.

[27] V. Maniezzo, “Ant colony optimization,” in Proceedings of the Third Metaheuris-

tics International Conference, 1999, pp. 299–303.

[28] B. M. Dorigo.M and S. .T, “Ant colony optimization,” in Proceedings of the

IEEE computational Intelligence Magazine, ser. 4, vol. 1, 2006, pp. 28–39.

[29] J. Kennedy and R.C.Eberhart, “Particle swarm optimization,” in Proceedings of

the International Conference on Neural Networks, 1995, pp. 1942–1948.

[30] C. Zeng, “A particle swarm optimization algorithm with rich social cognition,”

in Natural Computation, 2009.

[31] X. Hu, Y. Shi, and R. Eberhart, “Recent advances in particle swarm,” in In the

proceedings of IEEE congress on Evolutionary Computation, 2004.

[32] M. Dorigo, M. A. M. D. Oca, and A. Engelbrecht, “Particle swarm optimization,”

Scholarpedia, vol. 3, no. 11, p. 1486, 2008.

[33] J. F. Schutte, “The particle swarm optimization algorithm,” ufl, Tech. Rep.,

2005.

56

[34] M.-P. Song and G. C. Gu, “Particle swarm optimization,” in Proceedings of the

Third International Conference on Machine Learning and Cybernetics, August

2004, pp. 26–29.

[35] X.-F. Xie, W.-J. Zhang, and Z.-L. Yang, “Social cognitive optimization for non-

linear programming problem,” in Proceedings of the first International Confer-

ence on Machine Learning and Cybernetics, November 2000, pp. 4–5.

[36] L. Ma, R. xi Wang, and Y. ping Chen, “The social cognitive optimization algo-

rithm: Modifiability and application,” 2010, appeared in ICEEE.

[37] X.-F. Xie and W.-J. Zhang, “Solving engineering design problems by social

cognitive optimization,” in Genetic and Evolutionary Computation Conference

(GECCO), 2004, pp. 261–262.

[38] S.Kirkpatrick, C.D.Gelatt, and M.P.Vecchi, “Optimization by simulated anneal-

ing,” Science, vol. 220, pp. 671–680, 1983.

[39] P. Salamon, P. sibani, and R. Frost, Facts,Conjectures,and improvements for

simulated annealing. Society for industrial and Applied Mathematics, 2002.

[40] D. Bertsimas and J. Tsitsiklis, “Simulated annealing,” Statistical Science, vol. 8,

pp. 10–15, 1993.

[41] R. A. Brooks, “Intelligence without representation,” Artificial Intelligence,

vol. 47, pp. 139–159, 1991.

[42] H. Lieberman, Introduction to Operations Research. The McGraw-Hill Compa-

nies, 2001.

57

BIOGRAPHICAL STATEMENT

Parvati Aruna Kandala was born in Hyderabad, India on 8 th August 1988.

She received her Bachelor’s degree in Mechanical Engineering in the year 2009 from

Jawaharlal Nehru Technological University, Hyderabad, India. Her interests in Design

and Robotics made her choose Mechanical Engineering for her Master’s in Fall-2009

at the University of Texas at Arlington, Texas. Her Master’s degree in Mechancial

Engineering from The University of Texas at Arlington in 2012 has fulfilled her wish

in attaining a higher degree in advanced technology and engineering.

58

