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ABSTRACT

POINT OF GAZE APPLICATIONS FOR ASSISTIVE INTERACTION

JONATHAN WALTER RICH, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Fillia Makedon

Eye tracking has many useful applications in human-machine interfaces and

assistive technologies. Traditional input methods, such as the keyboard and mouse,

are not practical in certain situations and can be completely ineffective for users with

physical disabilities. Since many computing interfaces contain a strong visual com-

ponent, it follows that knowledge of the user’s point-of-gaze (PoG) can be extremely

useful. Several approaches to PoG tracking have been described with various results

and associated costs. Commercially available tracking devices have proven to be very

useful for some disabled users, though often the systems can be cost prohibitive.

Many computing applications could be enhanced via reliable yet inexpensive PoG

tracking devices. Ordinary consumers as well as the disabled could greatly benefit

from the combined technologies.

In the past there has been a void in a publicly available eye tracking dataset

which combined the information of the head position with the eye tracking video and

gaze points. Such a dataset was needed as a standard for comparing accuracy of

methods. Many eye tracking devices did not account for head tracking and relied on

users remaining still relative to the monitor. Systems which do not allow shift in head
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position work better in theory than in reality due to inevitable head movement. A

low-cost head and eye tracking solution was needed to show such devices are practical

without being cost prohibitive.

Presented in this thesis is a new publicly available dataset, and a low-cost

head and eye tracking solution. To further environment interaction, a structured

light sensor was added to the eye tracking solution. A structured light sensor allows

for depth mapping of the environment. Combining the depth mapping with the

user’s PoG offers more efficient and reliable model segmentation. Ultimately the goal

of such a system is to allow for natural human-machine interaction with assistive

technologies.
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CHAPTER 1

INTRODUCTION

1.1 Background

Eye tracking has many useful applications in human-machine interfaces and

assistive technologies. Traditional input methods, such as the keyboard and mouse,

are not practical in certain situations and can be completely ineffective for users with

physical disabilities. Since many computing interfaces contain a strong visual com-

ponent, it follows that knowledge of the user’s point-of-gaze (PoG) can be extremely

useful.

A key requirement for estimating PoG is detection of the pupil. This is generally

done by applying computer vision techniques, such as the ”Starburst” algorithm [1],

to captured video data. The video data can be obtained using either wearable or

remotely mounted recording equipment. Commercial eye tracking equipment tends to

be expensive, though low-cost solutions are presented in several works. One approach

for building a mobile eye tracking headset is presented in [2]. Another approach

integrated with the ”Starburst” pupil tracking algorithm is presented in [3]. A

system designed for ALS patients using readily available components is described in

the ”EyeWriter” project [4].

Such systems have been shown to be tremendously helpful as user input devices

and can work in situations where no other device would be practical. Most commer-

cially available eye tracking devices are cost prohibitive. However, using off the shelf

sensors, low-cost eye tracking devices can be built with a reliable degree of accuracy.
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As eye trackers become more accessible the interest in their applications will grow

rapidly.

1.2 Purpose

In the past there has been a void in a publicly available eye tracking dataset

which combined the information of the head position with the eye tracking video and

gaze points. Such a dataset was needed as a standard for comparing accuracy of

methods. Similarly, many eye tracking devices did not account for head tracking, and

relied on users remaining motionless relative to the monitor. Systems which do not

allow shift in head position work better in theory than in reality due to inevitability

of head movement being inevitable. A low-cost head and eye tracking solution was

needed to show such devices are practical without being cost prohibitive.

To further environment interaction, a structured light sensor was added to the

eye tracking solution to provide depth mapping of the environment. Combining the

depth mapping with the user’s PoG allows for more efficient and reliable model seg-

mentation. Providing segmented models to caretakers will allow for more natural

interaction with an environment versus only providing the point in space where the

user is focused.

1.3 Thesis Organization

This thesis is broken down into five remaining chapters: chapter 2 focuses on

the hardware used throughout the thesis; chapter 3 presents the publicly available

dataset for standardizing comparisons of head and eye tracking methods; chapter

4 presents a low-cost head tracking solution to improve point of gaze estimation;

chapter 5 discusses a method for combining the PoG information for efficient model

2



segmentation, and chapter 6 provides final thoughts and concluding remarks on the

work.

The dataset presented in chapter 3 was submitted and accepted at ETRA 2012

(Eye Tracking Research and Applications) [5]. The low-cost head tracking solution

presented in chapter 4 was submitted to PETRA 2012 (PErvasive Technologies Re-

lated to Assistive Environments) [6]. Christopher Dale McMurrough and Dr. Vange-

lis Metsis were authors on both of the submitted papers, and An Nguyen contributed

on the low-cost head tracking project. Additionally, the work accomplished in chap-

ter 5 was completed with Christopher Dale McMurrough. All work was done under

the supervision of Dr. Fillia Makedon in the Heracleia Human-Centered Computing

Laboratory.
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CHAPTER 2

HARDWARE

2.1 Overview

This chapter discusses the hardware used throughout the experiments in this

thesis. The Vicon Motion Capture System was used as a tool for measuring ground

truth. The Applied Science Laboratory Mobile Eye XG captured the eye video data

for the eye tracking dataset presented in chapter 3. The Sony PlayStation Eye camera

was utilized in the low-cost head tracking hardware solutions presented in chapter 4

and was used as the camera for tracking the user’s eye. In the head tracking solution

presented in chapter 4, a Nintendo Wiimote stereo camera setup was implemented

to track four infrared LEDs. In chapter 5 the Asus Xtion Pro replaced the Wiimote

sensors, providing a depth mapping with its structured light sensor.

2.2 Vicon Motion Capture System

The motion capture system consists of 16 tracking cameras surrounding an

area measuring roughly 10 x 10 meters. The system is able to track the position

and orientation of multiple rigid structures equipped with reflective markers at a

rate of 100 Hz with sub-millimeter accuracy. Using this information, we are able

to reconstruct the homogeneous transformation matrix for each tracked structure at

each time step. Figure 2.1 shows the Vicon setup that was used during the data

collection process.
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Figure 2.1. Vicon Motion Capture System Setup At Heracleia Laboratory.

2.3 Applied Science Laboratories Mobile Eye XG

A commercially available eye tracker was used to obtain eye video data for the

dataset which is presented in chapter 3. The eye tracker used is an Applied Science

Laboratories Mobile Eye XG1. The video data is recorded with a resolution of 768 x

480 pixels at a frame rate of 29.97 Hz. The Mobile Eye projects a triangular infrared

glint pattern on the user’s eye during recording, which can be used as an additional

tracking feature.

2.4 Sony PlayStation Eye Camera

The Playstation Eye device was chosen based on the results presented in pre-

vious work on the EyeWriter project [4]. The device is capable of providing images

with a resolution of 640x480 at a rate of 60 Hz. The interface to the host computer is

1http://www.asleyetracking.com/
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Figure 2.2. Eye Camera View.

provided using the USB 2.0 standard, which removes the need for a dedicated video

capture interface for real-time streaming of images.

The Playstation Eye device comes equipped with an infrared filter and wide field

of view lens. In order to provide close-up infrared video of the pupil, the filter and

lens must be replaced. The modification process used in our approach is identical to

the method documented by the EyeWriter project. After replacing the factory lens

and image filter, two 850nm infrared LEDs were added to the camera in order to

illuminate the user’s eye outside of the visible light spectrum. This wavelength was

chosen to minimze the possibility of interference with the Wiimote sensors, which

are most sensitive to 940nm infrared light [7]. This resulting high-quality images

are robust to changing conditions in ambient light. A captured image using the eye

camera is shown in Figure 2.2.

6



2.5 Nintendo Wiimote Stereo Camera

These sensors consist of a CMOS camera with integrated vision processing,

capable of tracking up to four infrared light sources at a rate of 100 Hz. These

specifications allow for the creation of an effective stereo tracking solution for fixed

sources of infrared light, such as LEDs.

2.5.1 Stereo Calibration

Before the stereo camera subsystem can be used to obtain 3D positions, the

imaging sensors must undergo a calibration process. Through this process, an esti-

mation of the intrinsic parameters of both imaging devices, as well as the extrinsic

parameters of the stereo pair can be acquired. In our approach, the Camera Cali-

bration Toolbox for Matlab [8] is used to obtain the calibration constants. These

constants need only be computed once, assuming that the position and pose of the

two imaging devices relative to each other are fixed.

To calibrate the stereo pair using the Camera Calibration Toolbox, a calibration

grid must be created with a known distance between points. When calibrating a

standard video camera, a checkerboard pattern with known dimensions is generally

used. This will not work in our approach for two reasons: The Wiimote sensors can

view only 4 points at a time, and the sensors are capable of detecting only light in

the infrared spectrum. To address this problem, a 13 x 13 calibration grid , shown

in Figure 2.3, was created using a perforated board with small holes drilled on a

1 inch grid. Data from the Wiimotes is collected until all 169 distinct grid points

are detected as an infrared LED is moved along the back of the fixed board. Once

enough points are collected, the data is saved in an image file and the stereo pair is

moved to a different position and orientation. This process is repeated until enough

calibration images are acquired (in our case, 12 different positions). The resulting
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Figure 2.3. Calibration Grid.

image set is then used to estimate the intrinsic and extrinsic camera parameters using

the calibration toolbox. The position of the grid in each of the calibration images

relative to the stereo camera subsystem is shown in Figure 2.4.
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Figure 2.4. Stereo Camera Calibration Process.

2.6 Asus Xtion Pro

The Asus Xtion Pro is a device similar to the Microsoft Kinect, which has a

structured light sensor for retrieving depth maps and a standard RGB camera. For

the purpose of these applications the Xtion Pro was more ideal due to its smaller size

and the fact that it does not require an AC power source. These factors allowed it to

be more easily mounted to a pair of glasses.

2.6.1 Structured Light Sensor

The structured light sensor in the Xtion Pro provides a depth map with a

resolution of 640x480 at a rate of 30 Hz. This depth map gives a point cloud which

can be manipulated to further understand an environment more easily than images

which contain only RGB data. Such a sensor will provide data in environments that

have normal indoor lighting conditions to no lighting at all, but it will not function

properly in an outdoor setting.
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2.6.2 RGB Camera

The front facing RGB camera provides standard images at a resolution of

640x480 at a rate of 30 Hz. The data from the RGB camera is combined with the

point cloud from the structured light sensor, but can be manipulated separately as

well. This camera is important in the calibration of the system when combining with

the eye tracking information, and from this camera we can then infer which point in

the point cloud a user is gazing upon.
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CHAPTER 3

EYE TRACKING DATASET FOR POINT OF GAZE DETECTION

3.1 Overview

Some of the approaches try to detect the PoG at each time point by detecting

the pupil center or other features and some other approaches track the eye motion

over time. In all cases, the inherent difficulty of tracking the eye itself, plus the fact

that the head position has to be taken into consideration for the estimation of the

final PoG, prevent most systems from giving very accurate results. In addition, direct

comparison of the effectiveness of each of the proposed methods is not possible due

to the different parameters of the datasets on which each method has been tested.

Although many of the proposed methods manage to roughly estimate the PoG

on a computer display unit, none of them provides enough accuracy to allow conve-

nient input through eye motion in a standard visual computer interface, especially

when head motion is involved. Such fine grained detection of the PoG would be of

great benefit to people, for example, that cannot use their hands to interact with a

computer due to some type of disability.

This datasets aspires to provide a resource for the development of new, more

accurate eye tracking methods with focus on point of gaze detection, as well as a

benchmark for the comparison of such methods. The dataset includes a set of videos

recording the eye motion of 20 human test subjects as they looked at predefined

positions of a computer display or followed a target while it moved inside the display

dimensions.
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The ground truth of where the subject was looking at, at every time point,

is known in advance, as the subjects were advised to keep their eyes on the target

at all times. The subject’s head position and orientation relative to the display is

tracked in three dimensions using a Vicon Motion Capture System1, which provides

sub-millimeter and sub-degree accuracy for the translation and rotation of the tracked

object respectively, in the 3D space. This guarantees a virtually perfect ground truth

regarding the subject’s head pose and location, which allows researches to only worry

about dealing with the eye tracking accuracy when trying to determine the exact point

of gaze. In the collected data, the motion of the right eye of each subject as they

were staring at, or following, predefined targets on the display has been recorded using

an Applied Science Laboratories Mobile Eye XG, head mounted, infrared monocular

camera.

The synchronized and timestamped eye recordings and head tracking data have

been made publicly available to be used for educational and research purposes.

3.2 Data Collection Methodology

A total of 20 subjects (2 women and 18 men) participated in our data collection

sessions. The participants were graduate and and undergraduate students of the

University of Texas at Arlington. Some of them had normal vision and some of them

wore contact lenses or spectacles. The participants that normally wore spectacles did

not use them during the data collection process. However, their vision level was still

good enough to locate the displayed target on the monitor. The special characteristics

of each subject are given as metadata together with the dataset.

Each subject participated in two video recording sessions in which they looked

at (or followed) a target on a Samsung LN32C350 (32 Inch, 1360x768 pixels) display

1http://www.vicon.com/
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Figure 3.1. Subject Wearing Eye Video Recording Device.

unit. In the first session the subjects were allowed to move only their eyes while

keeping their head still, whereas in the second session, they were allowed to freely

move their heads and eyes at their convenience. Figure 3.1 shows a photo taken

during the data collection process. In the photo, the reader can see the experimental

setup used for the data collection.

In the first session the subjects were asked to keep their head still and their

eye motion while looking at different patterns of targets appearing on the computer

display was recorded. In the first pattern, a target appeared at 9 different positions of

the display for a few seconds and the subjects were instructed to look at the target as

soon as it appears and until it disappears. Note that since the human eye may require

a few milliseconds from the moment the target appears on display until the moment

the eye point of gaze moves to fall onto it, the target location and the point of gaze

13



Figure 3.2. Example 9 Target Location Pattern.

may not align for a few milliseconds after the appearance of each target. However,

they should be aligned soon after.

Similarly, in the second pattern, 16 targets appeared on the display and the

subject had to repeat the same procedure. The number of targets and their location

on the display was chosen so as to resemble common calibration patterns used by eye

trackers. Figure 3.2 shows an example of targets appearing on different locations of

the display. The third pattern, instead of static targets, involved a target moving

inside the display and the subjects had to follow the target with their eyes at all

times. This patterns is particularly useful for eye tracking methods which do not

statically determine the point of gaze but follow the center of the pupil or other eye

features over time.

Since in real life people do not move only their eyes but also their heads to

look at different targets (or follow a target as it is moving), in the second session the

subjects repeated the same process as in the fist session, but this time they did not

have any constraints regarding their head motion. The exact position of the head

14



Figure 3.3. Vicon Motion Capture System Virtual Representation.

in the 3D space was tracked by the Vicon system using a set of markers attached

to the head mounted eye video recorder. For convenience, four markers were also

attached at the corners of the computer display. This allows us to determine the

exact location of the head and the display monitor in the same coordinate system.

Figure 3.3 visualizes the locations of the head and the computer display in the 3D

space as captured by the Vicon System.

Requiring from the users to keep their head still while moving only their eyes is

a common practice used by many eye tracking systems which incorporate some kind of

calibration before using the eye input. The accuracy of such systems deteriorates over

time even with subtle head movement and they need to be re-calibrated to become

usable again. One of the reasons that we included the session of trying to hold the

head still in our collected data was to consider such cases and provide the option

for experiments that evaluate the accuracy loss due the head position drifting. The

15



exact head pose and orientation is still tracked by the Vicon system and provided as

ground truth.

3.3 Hardware

This section describes the hardware setup used during data collection. In each

recording session, the user is instructed to visually track target points on a fixed

video display while wearing an eye recording device. This device collects video data

of the subject’s eye while being tracked in 3D within a motion capture system. The

data streams from the motion capture system are synchronized with the video frames

provided by the eye recording device, as well as the pixel coordinates of the video

display target points.

The Mobile Eye is used to obtain the eye video data, and is worn on each

subject’s head during data collection, and is positioned such that the user’s right eye

is centered in the video frame. The user head position and pose was measured during

the data collection process using a Vicon motion capture environment. The tracked

structures of interest in our case were the display unit and the subject’s head.

3.4 Coordinate System

In this section we describe the coordinate systems (CSs) used in the dataset.

We have the following CSs:

1. {W ;xw,yy, zw} The world reference frame

2. {M ;xm,ym, zm} attached to the center the display monitor

3. {E;xe,ye, ze} attached to the eye tracker

Each CS is defined using the right-hand notation. The origin of CS {W} is

located on the ground behind the test subject, with zw pointing up and xw pointing

16



Figure 3.4. Coordinate Systems: World (W), Eye (E) and Monitor (M).

to the right. CS {M} is attached to the center of the monitor, with zw pointing

up and xw pointing to the right. CS {E} is attached to the center of the MobileEye

device, with zw pointing up and xw pointing to the right. The transformation matrices

contained in the dataset are from CS {W} to CS {M} and from CS {W} to CS {E}.

Figure 3.4 shows the relative assignment of CSs used in the dataset.

3.5 Dataset Structure and Format Details

For every subject, the dataset includes six videos in avi format and correspond-

ing metadata. File sets 00001, 00002, 00003, come from the sessions in which the

subject was to remain as still as possible, and file sets 00004, 00005, 00006, come

from the session in which the subject was freely allowed to move their head. File sets

00001 and 00004 contain the videos of the first pattern of each session (a target ap-

pearing in 9 different locations of the display unit), file sets 00002 and 00005 contain

the second pattern (16 target locations), and file sets 00003 and 00006 contain the

17



videos coming from third pattern (target moving within the display). The metadata

includes two homography matrices, H from {W} to {M} and H from {W} to {E},

and it also includes the (i, j) pixel location of the target location for each video frame.

This data is packaged as a MATLAB (.mat) data file and as a CSV file. The .mat

file contains a structure which includes the two homography matrices and the pixel

locations. The data is written into the CSV file with each column corresponding

to a frame in the video, rows 1:16 represent the flattened homography matrix from

{W} to {E}, rows 17:32 represent the flattened homography matrix from W to M,

and rows 33:34 represent the flattened pixel locations. The homography matrices

are unflattened by their (i, j) value being the (((i − 1) × 4) + j) of their respective

columnar data. The pixel locations are unflattened by their (i, j) value being the first

and second values respectively.

3.6 Future Work

A resource still missing from the eye tracking community is a dataset where

objects located or moving in the 3D space, instead of a 2D computer display, are

followed by the human eye. Such a resource would be of great interest to robotics

applications where the communication of humans with robots involves interaction in

the 3D space. Future work will be to publish another dataset that covers this gap.

18



CHAPTER 4

HEAD POSITION TRACKING FOR GAZE POINT ESTIMATION

4.1 Overview

A key requirement for estimating PoG is detection of the pupil. This is generally

done by applying computer vision techniques, such as the ”Starburst” algorithm [1],

to captured video data. The video data can be obtained using either wearable or

remotely mounted recording equipment. Commercial eye tracking equipment tends to

be expensive, though low-cost solutions are presented in several works. One approach

for building a mobile eye tracking headset is presented in [2]. Another approach

which is integrated with the ”Starburst” pupil tracking algorithm is presented in [3].

A system designed for ALS patients created using readily available components is

described in the ”EyeWriter” project [4].

Another key requirement for PoG estimation is knowledge of the head position.

In order for a vector to be traced from the pupil of the subject to a 3D location

in the world, the position of the head in the world reference frame must be known.

While this can be ignored when the head maintains a fixed position and orientation,

most real-world applications require at least some degree of head movement, and thus

tracking becomes necessary. Head tracking using remote cameras has been previously

accomplished with computer vision techniques such as using intensity gradients and

color histograms [9] or known texture-mapped 3D models [10]. Position estimation

by tracking features in a visual scene from a head-mounted camera is described in

[11].

19



Head position and orientation tracking using standard camera images tend to

include some drawbacks. Issues such as lighting conditions and image quality can

make visual features harder to detect, resulting in reduced performance. Head track-

ing using infrared cameras and LEDs has been successfully demonstrated in [12].

Infrared tracking tends to be very robust to ambient lighting conditions, and can be

found in inexpensive commercial devices such as the Nintendo Wiimote. One ap-

proach for using the Wiimote sensor to track the head pose is presented in [13].

Tracking of 3D marker positions has been shown feasible when two Wiimote devices

are used as a stereo camera system in [14]. In [15], a similar approach is used to

track a person in a virtual reality application.

Presented in this section is a low-cost solution (roughly 120 USD) for real-time

tracking of a human user’s head position and eye gaze with respect to a video display

source. The display source is equipped with 4 infrared LEDs, which are tracked in

3D using a Wiimote stereo camera system. We describe the hardware integration of

stereo Wiimote head tracking and pupil tracking by building upon a pair of EyeWriter

glasses [4], in addition to providing mathematical methods for integration of gaze

estimation and head position.

4.2 Hardware

The head and eye tracking solution consists of four key subsystems: the stereo

camera assembly, eye tracking camera, video display with infrared markers, and the

host computer. The stereo camera and eye tracking components are both attached to

the headset worn by the user, while the video display and host computer are located

remotely. The headset structure is provided by a pair of modified sport sunglasses

for comfort. Figure 4.1 shows the assembled headset.
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(a) (b) (c)

Figure 4.1. Headset: a) Left View, b) Front View, c) Right View.

The eye tracking subsystem, consisting of a single camera, is used to extract

the pupil position during eye movements using computer vision techniques. In our

system, a Playstation Eye device is positioned in front of the left eye such that the

pupil image is as large as possible in the camera frame while minimizing the visual

obstruction to the user. The Playstation Eye device was chosen based on the results

presented in previous work on the EyeWriter project [4].

The stereo camera subsystem is used to obtain the 3D positions of the display

markers relative to the headset. These measurements, obtained using stereo triangu-

lation, are then used to estimate the position and orientation of the headset relative

to the monitor. Implementation of this subsystem was achieved using a pair of Pixart

imaging sensors extracted from Nintendo Wiimote controllers.

The Wiimote imaging sensors were mounted on the left and right sides of the

headset frame in such as way that they do not obstruct the view of the user. To save

and reduce the weight of the headset, the sensors were removed from the Wiimote

circuit board and mounted in a smaller plastic housing. A standard 8-pin networking

cable was used to bridge the connection between each of the sensor contacts and

their appropriate place on the circuit board. The length of cable used for each sensor

was approximately 4 feet, which allows the Wiimotes to be carried in a comfortable
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location away from the users head. The baseline distance between the Wiimote sensors

when mounted on the headset frame is approximately 6.5 inches.

4.3 Gaze Point Estimation

In this section we describe the coordinate systems (CSs) of the proposed setup.

We have the following CSs:

1. {M ;xm,ym, zm} attached to the upper left corner of the monitor, and coincides

with the world CS.

2. {CL;xcl,ycl, zcl} attached to the left camera

3. {CR;xcr,ycr, zcr} attached to the right camera

4. {E;xce,yce, zce} attached to the camera that monitors the eye

We briefly denote as {A}, {B} the CS that we defined with origins the points

A, B; as ATB the homogeneous transformation matrix that gives the transformation

from CS {A} to CS {B} and as Ax the position vector in CS {A}. The left/right

cameras make a stereo pair and their calibration was performed using the matlab

stereo calibration toolbox. The calibration calculated the intrinsic parameters of the

cameras and the CLTCR from the left to the right camera.

On the four corners of the monitor we fixed four LEDs (their positions related

to {M} are known), which can be recognized in the images of our stereo cameras

after embedded processing. The next step is stereo triangulation of the identified

points. The matching of the points is simply done by matching the respective cor-

ners of the projected rectangle in both images, given that the distance between the

left/right camera is small and that they move together. Then we extract the transfor-

mation matrices CLTM , CRTM from {CL}, {CR} to the monitor respectively using

the method described in [16].

The center of the iris circle in the {M} CS is given by:
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Figure 4.2. Coordinate Systems {CL}, {CR}, {E} and {M} .

Mxiris = MTCL · CLTCE · CExiris (4.1)

where the position of the iris in the {CE} CExiris can be estimated along with

the supporting plane with an algorithm like the ”one circle” [17]. Knowing the sup-

porting plane and by taking the normal vector that passes through the image center

it is possible to find the intersection with the monitor plane, which gives the ac-

tually gazed point. The transformation matrix CLTCE can be estimated either by

mechanical means or by solving (1) for several points.

4.4 Experimentation

In this section, we describe the testing and evaluation of the head tracking

capabilities of the stereo camera subsystem.
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Figure 4.3. Setup With Reflective Markers.

4.4.1 Experimental Setup

Testing and evaluation of the headset tracking accuracy was performed within

the Vicon Motion Capture System in the Heracleia Lab at the University of Texas at

Arlington. The Vicon system was described in section 2.2. This provides a ground-

truth comparison for our solution. Transformation matrices for the marked headset

and monitor positions are saved along with the estimates provided by stereo triangu-

lation at each time-step. This data is synchronized such that the tracking error of the

triangulation estimate relative to the motion capture data can be computed offline.

4.4.2 Results

In order to compare the tracking estimate of the headset to with that of the

motion capture system, the individual roll, pitch, and yaw angles were extracted from
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the transformation matrices along with the corresponding position components. The

tracked position values by both the headset and motion capture system are shown

in in Figure 4.4, while the rotational components are shown in Figure 4.5. The

solid blue lines correspond to the headset tracking values, while the dashed red lines

correspond to the motion capture system.

Figure 4.4. Position Comparisons of Estimated and Actual.

The root-mean-square errors (RMSE) were computed individually for each po-

sition and orientation component and are shown in Table 4.1. The measurements

from the motion capture system and headset were not filtered prior to analysis, which

contributes to much of the error found in the results. A simple low-pass filter would

significantly reduce the error, as the Wiimote sensors readings to contain some noise.
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Figure 4.5. Angle Comparisons of Estimated and Actual.

Still, even with the amount of error present in the experiment data, the approach is

accurate enough to provide a useful degree of tracking capabilities.

Table 4.1. RMSE Of Position And Orientation Components

X Y Z φ θ ψ
(mm) (mm) (mm) (rad) (rad) (rad)

RMSE 31.465 57.829 55.516 0.045 0.038 0.0517

4.5 Future Work

In future work, we will complete the gaze vector estimation aspect of the system.

Once this task is completed, the point of regard on the monitor can be computed using
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the approach presented in this paper. The addition of inertial sensors to the headset,

such as accelerometers and gyroscopes, is also being investigated in order to improve

the tracking accuracy.

Additionally, work will be done to include an RGB camera into the headset,

in order to combine the estimate of the 3D gaze point and the utilization of a SIFT

based algorithm to detect what real-world objects are present within the field of view.

With such a setup, the current infrared sensors and LED beacons could potentially

be removed in favor of passive visual markers which are located via feature extraction

in the RGB camera image.
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CHAPTER 5

MODEL SEGMENTATION WITH GAZE POINT INTEGRATION

5.1 Overview

While PoG detection for interaction with 2D surfaces, such as monitors, can

provide an invaluable user interface for those who are unable to communicate via

traditional means, interaction within a 3D environment can provide a natural interface

for user interaction. Combing point clouds collected from depth mapping sensors with

the PoG information, can allow for interaction with caretakers or assistive robots.

When interacting with caretakers, providing a visual of the object being gazed

upon rather than simply a location, will give the information necessary for the care-

taker to properly aid the user. Objects of interest will need to be defined in such

a way that they can be readily segmenting from a point cloud. For the purposes of

this chapter cylinder models were segmented as they are defined with seven values,

enough to illustrate such models could be segmented quickly enough to provide the

information in a timely manner.

5.2 Hardware

The headset resembles the solution presented in section 4.2 with two main

alterations: the stereo camera is replaced with the Asus Xtion Pro, and the video

display with infrared markers is no longer necessary. The Xtion Pro camera and eye

tracking components are both attached to the headset worn by the user, while the

host computer is located remotely. The headset structure is provided by a pair of

modified sport sunglasses for comfort. Figure 5.1 shows the assembled headset.
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(a) (b) (c)

Figure 5.1. Headset: a) Left View, b) Front View, c) Right View.

The Xtion Pro is used to obtain both the depth mapping of the environment, as

well as using its front facing RGB camera for calibration and PoG mapping purposes.

The depth map will serve as the raw point cloud data to be used in the segmentation

process. The RGB camera allows the ”Starbust” algorithm to be run to track the

user’s pupil location, and provide an (i, j) location of the PoG in the RGB image

which correlates to a point in the depth map.

5.3 Integration of Gaze Estimation and Model Segmentation

Utilizing the PoG of the user allows for more efficient model segmentation, the

general flow is illustrated in figure 5.3. Taking a cube of space from the point cloud

which represents the area being gazed upon by the user allows for less down sampling

to be required, and removes false matches that are outside the scope of consideration.

Subsection 5.3.1 presents the algorithmic flow.

The PoG is found using a the open source implementation of the ”Starburst”

algorithm presented by [1, 3]. Using the front facing RGB camera, calibration points

can be manually selected, and the algorithm with use a linear mapping to determine

the gaze point when looking within the field of view. A future implementation will
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Figure 5.2. Data Flow For Model Segmentation.

30



possibly allow the user to select such points via blinking or another more automated

method.

5.3.1 Model Segmentation

Since the objects of interest will rarely follow the plane model, and planes make

up a considerable amount of the point cloud data, the first step will be to remove

planes from the original point cloud. Planes which will be present in the point cloud

include the walls, floor and ceiling. The removal process is described in algorithm

2. For object segmentation and general point cloud manipulation, the open source

point cloud library (PCL)1 was used [18]. The model segmentation in found in

the PCL implementation includes is performed by a RANSAC (RANdom SAmpling

Consensus) method to determine the number of inliers for a given model. Once the

planes are removed, the point cloud must be filtered to only contain points which

are within reasonable distance to the user’s PoG. The filtering process is shown in

algorithm 3. After finding the relevant points, a final extraction is made on the points

which represent cylinder models, as shown in algorithm 4. The entire process flow is

written in algorithm 1.

Algorithm 1 Find-Cylinder(cloud, point)

cloudDownsampled← Down-Sample(cloud)

cloudP laneless← Remove-Planes(cloud, cloudDownsampled)

cloudCubed← Find-Cube(cloud, point,minPoints,maxPoints)

cloudCylinders← Extract-Cylinders(cloud, cloudCubded)

1http://www.pointclouds.org/
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Algorithm 2 Remove-Planes(cloud, cloudDownsampled)

repeat

coefficients← Find-Plane(cloudDownsampled)

inliers← Find-Inliers(cloud, coefficients, PLANE)

if Size(inliers) ≤ THRESHOLD then

return

end if

Remove-Inliers(cloud, coefficients, PLANE)

inliersDS ← Find-Inliers(cloudDownsampled, coefficients, PLANE)

Remove-Inliers(cloudDownsampled, coefficients, PLANE)

until false
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Algorithm 3 Find-Cube(cloud, point,minPoints,maxPoints)

direction← neutral

distance← 1

repeat

cubedCloud← Filter-Distance(cloud, point, distance)

if Point-Count(cubedCloud) ≥ maxPoints then

maxDistance← distance

if direction IS neutral then

direction← shrink

distance← distance/2

else

distance← (minDistance+maxDistance)/2

end if

else if Point-Count(cubedCloud) ≤ minPoints then

minDistance← distance

if direction IS neutral then

direction← grow

distance← distance ∗ 2

else

distance← (minDistance+maxDistance)/2

end if

else

return cubedCloud

end if

until false
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Algorithm 4 Extract-Cylinders(cloud, cloudCubed)

clyinders← EMPTY

repeat

coefficients← Find-Cylinder(cloudCubed)

inliers← Find-Inliers(cloud, coefficients, CYLINDER)

if Size(inliers) ≤ THRESHOLD then

return

end if

cylinders← cylinders
⋃

Extract-Inliers(cloud, inliers, CYLINDER)

inlierscubed← Find-Inliers(cloudCubed, coefficients, PLANE)

Remove-Inliers(cloudCubed, inlierscubed, CYLINDER)

until false
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5.4 Experimentation

This section describes the testing and evaluation of the segmentation perfor-

mance when combined with the PoG information.

5.4.1 Experimental Setup

Comparisons to existing methods would be difficult, as PoG has not been com-

monly combined with point cloud manipulation, and segmenting models from unfil-

tered point clouds runs far too slowly to be feasible. When attempting to compare

the method presented in this chapter to different variations, it was difficult to allevi-

ate false positives, due to models matching a random set of points within thresholds

allowed, and when thresholds were lowered the models did not contain enough points

to be classified correctly.

Speeding up the process by allowing the appropriate down sampling combined

with inlier removal would yield similar results to those presented in the next section,

under the circumstances that the model was one of the only objects present within

the environment. As additional objects were added and the environment became less

planar, the PoG information began to show significant performance increases over

methods without such information. Primarily in the speed at which models could be

segmented, and the removal of most false positives. The results section illustrates the

example environments which where assessed during the experimentation.

5.4.2 Results

Figure 5.3 shows the example of the scene in the environment without additional

models. There were ten scenes similar to this one assessed, and they all yielded similar

results; knowing the PoG did not significantly improve performance.
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Figure 5.3. Empty Room Scene.

Again, this is due to the fact the majority of points will be removed during

the plane filtering process, and both methods are using the same process for plane

filtering. Although, due to noise in the sensor certain planar points remain, so it still

allowed slight performance increase. Figure 5.4 illustrates the scene once planes have

been removed, and figure 5.5 illustrates the scene once the model has been extracted

entirely from the scene.

Figure 5.6 shows the example of the scene in a more cluttered environment.

There were again ten scenes similar to the one shown. However, due to the fact a

large portion of the point cloud remains unfiltered after the plane removal process,

the PoG method ran quicker and had less false positives. Figure 5.7 illustrates the

scene once planes have been removed.

Due to the random factor of the RANSAC method, each test case was ran

a total of ten times and averaged out. Table 5.1 and table 5.2 shows the findings

from performing the segmentation with and without the PoG information. Instead of
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Figure 5.4. Empty Room Planes Filtered.

Figure 5.5. Empty Room Model Extracted.
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Figure 5.6. Cluttered Room Scene.

Figure 5.7. Cluttered Room Planes Filtered.
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Table 5.1. Comparisons Of Methods For Empty Room

TIME TRUE POSITIVE FALSE POSITIVE
(Seconds) (Average Per Set) (Average Per Set)

With PoG 1 0.98 0.00
Without PoG 2 0.95 0.20

Table 5.2. Comparisons Of Methods For Cluttered Room

TIME TRUE POSITIVE FALSE POSITIVE
(Seconds) (Average Per Set) (Average Per Set)

With PoG 1 0.90 0.05
Without PoG 10 0.65 1.85

providing the number of points which were a part of the cylinder as the true positives,

the model returned must simply match the cylinder model of interest. Similarly for

false positives, the models were considered as a whole, instead of separate points.

Each dataset had one cylinder model to be segmented, as such the true and false

negatives can be calculated from the tables. Segmentation times are linearly related

to the number of points in the point cloud, so the main performance gains is the

reduction of false positives and increase in true positives.

5.5 Future Work

In future work, the RGB camera will be utilized for SIFT object recognition.

Combining the efficient model segmentation presented in this chapter with SIFT

object recognition, further classification of the models can be made. With such a

method, accurate model segmentation becomes even more important to be able to

quickly compare the models of interest with their stored key points for recognition.
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CHAPTER 6

CONCLUSION

6.1 Final Thoughts

Presented was a publicly available dataset for standardizing comparisons of

head and eye tracking algorithms. During the data collection process, a Vicon Mo-

tion Capture System was used for the ground truth of headset positioning. Also

presented was a low-cost head and eye tracking solution which improves on eye track-

ing devices that lack the additional information of head tracking. Such a device

allows for more reliable tracking over time, since a user’s head position will inevitably

shift. Additionally, the work was extended to incorporate a structured light sensor

for depth mapping. This allows for models to be efficiently segmented and provides

more natural interaction with an environment.

6.2 Future Work

Combining RGB data to perform SIFT object recognition into the projects

is currently the priority on the future work. With object recognition, interaction

with assistive robots or caretakers will be taken to the next step in the process.

Demonstrating eye tracking as a viable user input for controlling of an assistive robot

will open up more possibilities of environment interaction. Related to this work, a

new 3D dataset needs to be collected containing a user’s head position, eye tracking

video, and the position in 3D space they are gazing upon.
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