
CONSTRAINT OPTIMAL SELECTION TECHNIQUES (COSTs)

FOR LINEAR PROGRAMMING

by

GOH SAITO

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2012

Copyright c� by Goh Saito 2012

All Rights Reserved

To all who brought me here.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervising professors Dr. H.W.

Corley and Dr. Jay M. Rosenberger for providing support and guidance through

weekly research meetings towards the dissertation work, while accommodating my

work schedule. I would also like to thank the remaining members of the dissertation

committee Dr. Victoria Chen and Dr. Erick Jones for their interest and taking the

time to serve on the committee.

I am grateful for the fellow students of the COSMOS lab for allowing me to

constantly run CPLEX on the workstation and Richard Zercher and Ann Hoang for

IT assistance.

Finally, I would like to express my appreciation to my supervisors and coworkers

at Alcon Research, Ltd. for their understanding and encouragement in my pursuit of

the degree.

April 19, 2012

iv

ABSTRACT

CONSTRAINT OPTIMAL SELECTION TECHNIQUES (COSTs)

FOR LINEAR PROGRAMMING

Goh Saito, Ph.D.

The University of Texas at Arlington, 2012

Supervising Professors: H.W. Corley, Jay M. Rosenberger

Simplex pivoting algorithms remain the dominant approach to solve linear pro-

gramming (LP) because they have advantages over interior-point methods. However,

current simplex algorithms are often inadequate for solving a large-scale LPs because

of their insufficient computational speeds. This dissertation develops the significantly

faster simplex-based, active-set approaches called Constraint Optimal Selection Tech-

niques (COSTs). COSTs specify a constraint-ordering rule based on constraints’

likelihood of being binding at optimality, as well as a rule for adding constraints.

In particular, new techniques for adding multiple constraints in an active-set frame-

work, and an efficient constraint-ordering rule for LP are proposed. These innovations

greatly reduce computation time to solve LP problems.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . ix

Chapter Page

1. INTRODUCTION . 1

1.1 Linear Programming Problem . 1

1.2 Objectives of the Work . 3

1.3 Brief Description of COSTs . 3

1.4 Contributions . 3

1.5 Overview of the Dissertation . 4

2. BACKGROUND . 5

2.1 Introduction . 5

2.2 Preliminaries . 5

2.3 Historical Perspective . 6

2.4 Primal-Dual Relationship . 8

2.5 The Primal Simplex Method . 10

2.6 The Dual Simplex Method . 12

2.7 Large-scale Linear Programming . 14

2.8 Active-set Methods . 15

2.9 Related Literature . 15

3. CONSTRAINT OPTIMAL SELECTION TECHNIQUES (COSTs) 17

vi

3.1 Introduction . 17

3.2 NNLP . 17

3.3 Active-set Framework . 17

3.4 The COST NRAD for NNLP . 20

3.4.1 Constraint Selection Criterion 20

3.4.2 NRAD in an Active-set Framework Utilizing Multiple Cuts . . 21

3.4.3 Geometric Interpretation . 23

3.5 The COST GRAD for General LP . 25

3.5.1 Constraint Selection Criterion 25

3.5.2 GRAD in an Active-set Framework Utilizing Multiple Cuts . . 27

4. COMPUTATIONAL EXPERIMENTS . 32

4.1 Introduction . 32

4.2 CPLEX Preprocessing . 32

4.3 Equipment . 33

4.4 Problem Instances . 33

4.4.1 NNLP . 33

4.4.2 LP . 35

4.5 Computational Results . 37

4.5.1 NNLP . 37

4.5.2 LP . 47

5. CONCLUSIONS . 57

Appendix

A. CODE EXAMPLE FOR THE COST NRAD 59

B. CODE EXAMPLE FOR THE COST GRAD 73

REFERENCES . 78

BIOGRAPHICAL STATEMENT . 82

vii

LIST OF ILLUSTRATIONS

Figure Page

3.1 Geometric presentation of NNLP example (3.1) 18

3.2 Binding constraints at optimality in NNLP example (3.1) 19

3.3 Factor I and Factor II in NNLP example (3.1) 20

3.4 Geometric interpretation of NRAD . 24

3.5 Geometric interpretation of NRAD in NNLP Example (3.1) 24

4.1 Binding constraints at optimality found in NRAD-sorted
list of constraints on NNLP problem Set 1 44

4.2 Graphical representation of CPU times for CPLEX barrier and
COST NRAD presented in Table 4.10 49

viii

LIST OF TABLES

Table Page

4.1 Randomly Generated NNLP Problem Set 1 34

4.2 Randomly Generated NNLP Problem Set 2 35

4.3 Randomly Generated General LP Problem Set 36

4.4 Comparison of Computation Times of CPLEX and COST NRAD
Methods on NNLP Problem Set 1 . 38

4.5 Comparison of Computation Times of CPLEX and COST NRAD
Methods on NNLP Problem Set 2 . 39

4.6 Comparison of Computation Times to Illustrate the Effects of
Applying an Active-set Method on NNLP Problem Set 1 40

4.7 Comparison of Computation Times to Illustrate the Effects of
COST NRAD, Multi-bound and Multi-cut on NNLP Problem Set 1 . 41

4.8 Comparison of Computation Times of SUB, COS, F
II

, and NRAD on
NNLP Problem Set 1 . 42

4.9 Comparison of Computation Times of COST NRAD and
Non-COST Methods, SUB and VIOL on NNLP Problem Set 1 46

4.10 Comparison of Computation Times of CPLEX and COST NRAD
Methods on Random NNLP Problem Set 3, Varying m/n Ratio . . . 48

4.11 Comparison of Computation Times of CPLEX and COST GRAD
Methods on General LP Problem Set 50

4.12 Comparison of Computation Times to Illustrate the Effects of
Muti-cut, NRAD and GRAD on General LP Problem Set 52

4.13 Comparison of Computation Times of NRAD and GRAD
on NNLP Problem Set 1 . 53

4.14 Comparison of Computation Times of COST GRAD and
Non-COST Methods, SUB and VIOL on General LP Problem Set . . 56

ix

CHAPTER 1

INTRODUCTION

1.1 Linear Programming Problem

Linear programming is a tool for optimizing numerous real world problems such

as the allocation problem. Consider a general linear program (LP) as the following

problem P

maximize z = c

T

x (1.1)

subject to Ax b (1.2)

x � 0, (1.3)

where z represents an objective function for n variables

c

T

x =

c
1

c
2

· · · cn

�

2

6

6

6

6

6

6

6

4

x
1

x
2

...

xn

3

7

7

7

7

7

7

7

5

,

1

and the expression (1.2) describes m rows of constraints for n variables

2

6

6

6

6

6

6

6

4

a

T

1

a

T

2

...

a

T

m

3

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

4

x
1

x
2

...

xn

3

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

4

a
11

a
12

· · · a
1n

a
21

a
22

· · · a
2n

...
...

am1

am2

· · · amn

3

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

4

x
1

x
2

...

xn

3

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

4

b
1

b
2

...

bm

3

7

7

7

7

7

7

7

5

.

A column vector of zeros of appropriate dimension according to context is written as

0. The dual of P is considered the standard minimization LP problem. We focus here

on the maximization case.

Problems where ai � 0 and ai 6= 0, 8i = 1, . . . ,m; b > 0; and c > 0 are

called nonnegative linear programs (NNLPs). In general linear programs (LPs), the

components of A, b and c are not restricted to be nonnegative numbers.

Though simplex pivoting algorithms and polynomial interior-point barrier-function

methods represent the two principal solution approaches to solve problem P [1], there

is no single best algorithm. For either method, we can always formulate an instance

of P for which the method performs poorly [2]. Nevertheless, simplex methods re-

main the dominant approach because they have advantages over interior-point meth-

ods, such as efficient post-optimality analysis of pivoting algorithms, application of

cutting-plane methods, and delayed column generation. However, current simplex

algorithms are often inadequate for solving a large-scale LPs because of their insuf-

ficient computational speeds. In particular, emerging technologies require computer

solutions in nearly real time for problems involving millions of constraints or vari-

ables. Hence faster techniques are needed. The COSTs of this dissertation represent

a viable such approach.

2

1.2 Objectives of the Work

A unifying framework of algorithm termed Constraint Optimal Selection Tech-

nique (COST) was defined by Sung [3], and Corley and Rosenberger [4]. There are

two classes of COSTs, Prior and Posterior. This dissertation focuses on Prior COSTs,

which utilize global information obtained from P of (1.1)–(1.3) prior to solving re-

laxed LP subproblems of P. Specifically the focus is on improving and generalizing

COSTs based on the RAD constraint selection metric involving Factor I and Factor II

proposed by Sung [3]. The RAD for NNLPs is renamed NRAD in this dissertation.

1.3 Brief Description of COSTs

In COSTs presented in this dissertation, all constraints are initially ordered by

a certain measure of their likelihood of being binding at optimality. Next, a bounded,

relaxed subproblem P
0

of P is formed from (1.1), one or more sorted constraints

of (1.2), a non-negativity requirement on variables (1.3), and possibly an artificial

bounding constraint. For a subproblem P
r

of a subsequent active-set iteration r,

COSTs specify the particular constraints to be added from the ordered constraints.

Active-set iterations continue until the solution to P
r

is the optimal solution to P. In

other words, this dissertation specifies an initial constraint-ordering rule as well as a

rule for adding constraints.

1.4 Contributions

A new technique of adding multiple cuts is incorporated into the COST NRAD

for NNLPs. The COST NRAD is then developed further to the COST GRAD for

LPs. The key contributions of this dissertation are

3

(i) a bounding technique for the initial problem P
0

in which multiple constraints

are added according to NRAD until each variable xj is bounded (multi-bound),

(ii) a method of adding multiple cuts that bound every variable xj in each active-set

iteration (multi-cut), to enhance NRAD and efficiently solve the problem P,

(iii) development of a constraint selection metric involving Factor I and Factor II

for general LP (GRAD) based on the insights gained from NRAD,

(iv) a technique for adding multiple constraints for each active-set iteration with

general LP, extending the multi-bound and multi-cut techniques of (i) and (ii),

(v) creation of extensive sets of randomly generated large-scale NNLP and LP prob-

lems, and evaluation of COST methods on these problems.

1.5 Overview of the Dissertation

Chapter 2 presents a review of the relevant literature. A historical perspective,

theoretical background, and the primal and dual simplex methods of linear program-

ming are given. Chapter 3 describes COSTs and defines COST NRAD, COST GRAD,

and the technique of adding multiple cuts. Chapter 4 gives the random NNLP and

LP problems generated, experimental procedure, and results of computational evalu-

ations. Finally, conclusions are stated in Chapter 5, and the Appendix gives example

programming code.

4

CHAPTER 2

BACKGROUND

2.1 Introduction

The aspects of linear programming relevant to this research are summarized in

this chapter.

2.2 Preliminaries

In P from Chapter 1, a feasible point is a point that satisfies all constraints

(1.2). A set of all feasible points forms the feasible region. In (1.2), a set of points

x that satisfies a

T

i x bi defined by constraint i is a half-space. A hyperplane a

T

i x =

bi divides a space into two half-spaces. The intersection of half-spaces defined by

multiple constraints constitutes a polyhedron. A polytope is a bounded polyhedron.

The problem P is infeasible if and only if the polyhedron defined by (1.2) is empty.

A set is convex if every line segment between two points is in the set. The

intersection of convex sets is also convex. Since half-spaces are convex, the polyhedron

defined by (1.2) is convex. A point in a convex set is said to be an extreme point if it

does not lie in any open line segment between two points in the set. Extreme points

cannot be expressed as a linear combination of other points in the set. Note that an

extreme point of the polyhedron defined by (1.2) is a feasible point at an intersection

of two or more linearly independent hyperplanes.

For P, a solution space is defined by k simultaneous equations a

T

i x = bi, 8i =

1 . . . k and n variables xj, 8j = 1 . . . n represented by the vector x. Then x is a

basic solution if x is obtained by setting n � k variables equal to zero and solving k

5

equations. If n = k, P has only one solution but the majority of LP problems have

n > k. If a basic solution also satisfies the non-negativity constraint (1.3), it is a basic

feasible solution. A basic feasible solution is an extreme point of {Ax � b, x � 0}.

An optimal solution x

⇤ of P is a basic feasible solution that maximizes the

objective function (1.1). A constraint i is said to be binding at optimality if x

⇤

satisfies a

T

i x = bi.

2.3 Historical Perspective

A chronological list of key events on the development and research on linear

programming is given below.

1717 — The idea of LP can be traced back to the concept of virtual velocity by

Bernoulli.

1824 — Fourier generalized the idea of Bernoulli to the algebraic formulation utilizing

inequalities and the geometric interpretation utilizing polyhedra. [5].

1910–1911 — de la Vallée Poussin presented an analogue of Fourier’s method for

solving LP [6].

1932 — A matrix structure was proposed by Leontief in the Interindustry Input-

Output Model of the American Economy [7].

1936 — Motzkin published his dissertation on inequality systems [5].

1939 — A Soviet mathematician Kantorovich formulated LP, but his work was not

known until the late 1950s [5].

1941 — Hitchcock authored a paper describing LP. The paper was not known to

Dantzig [5].

1940s — There was an increase in interest in planning operation and optimization

during wartime (1941-1945).
6

late 1940s — The development of computers was supported by the Pentagon.

1947 — G.B. Dantzig developed the simplex method and published his work “Pro-

gramming in a Linear Structure” the following year [5].

1948 — A theorem known as the Fritz-John conditions is published. This theorem

is principally related to nonlinear programming to develop later [5].

1950s — The field of mathematical programming emerged and network flow theory

began to evolve.

1951 — Karush-Kuhn-Tucker conditions, which described necessary conditions for

optimality were published. The field of non-linear programming began around

this time.

1952 — Charnes, Cooper, and Mellon began utilizing a commercial application of LP

in blending petroleum.

1954 — Frisch developed a nonlinear interior point method for solving LP [7].

1954 — First commercial grade software was developed by William Orchard-Hays of

the Rand Corporation to solve linear programs, according to Dantzig [7].

1954 — Network flow theory’s connection to graph theory was developed by Flood,

Ford, and Fulkerson.

1955 — Large-scale methods were introduced by Dantzig’s paper “Upper Bounds,

Block Triangular Systems, and Secondary Constraints,” leading to development

of Dantzig-Wolfe decomposition and Benders Decomposition, and their appli-

cations in mixed integer programs and stochastic programming.

1955 — Beale and Dantzig independently proposed stochastic programming [7].

1956 — Network flow theory’s connection to graph theory was developed by Hoffman

and Kuhn [7].

late 1950s — Charnes and Cooper contributed to stochastic programming by their

use of chance constraints [7].

7

1958 — Integer programming began when Gomory proposed an algorithm for gener-

ating cutting planes.

1962 — Benders published a dual method of Dantzig-Wolfe decomposition.

1960s — Application of duality was extended in nonlinear programming.

1960s — Stochastic programming was developed further by Wets [7].

1972 — Klee and Minty showed that at worst the simplex algorithm has exponential-

time complexity [8].

1977 — Goldfarb proposed a steepest-edge rule for selecting the leaving variable at

each dual simplex iteration, which led to more powerful implementation of dual

simplex [9, 10].

1979 — Khachian developed an interior method using ellipsoids. The method was a

polynomial-time algorithm for solving LP [11].

1980s — Stochastic programming was developed further by Birge [7].

1984 — Karmarkar [12] improved on the polynomial time algorithm of Khachian for

solving LP.

1988 — Dual approach to interior method was shown by Renegar [7].

1988 — An optimization software CPLEX was first distributed [10].

to present — Development of variants of the simplex method and interior algorithms

continues.

2.4 Primal-Dual Relationship

If the problem P defined by (1.1) – (1.3) is considered to be the primal problem,

then the dual problem D is

8

minimize w = b

T

y (2.1)

subject to A

T

y � c (2.2)

y � 0, (2.3)

where w represents an objective function for m variables

b

T

y =

b
1

b
2

· · · bm

�

2

6

6

6

6

6

6

6

4

y
1

y
2

...

ym

3

7

7

7

7

7

7

7

5

,

and the expression (2.2) describes n rows of constraints for m variables

2

6

6

6

6

6

6

6

4

a

1

T

a

2

T

...

a

nT

3

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

4

y
1

y
2

...

ym

3

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

4

a
11

a
21

· · · am1

a
12

a
22

· · · am2

...
...

a
1n a

2n · · · amn

3

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

4

y
1

y
2

...

ym

3

7

7

7

7

7

7

7

5

�

2

6

6

6

6

6

6

6

4

c
1

c
2

...

cn

3

7

7

7

7

7

7

7

5

,

where a

j is a jth column of A.

The important results of the relationship are weak duality, strong duality, and

complementary slackness theorems.

Weak duality theorem says that the relationship between feasible solutions x

and y is b

T

y � c

T

x. If bT

y = c

T

x, then x and y are optimal solutions to P and D

respectively.

The strong duality theorem observes that a) if either problem P or D has a

feasible solution, the other problem also has a feasible solution; b) if either problem P

9

or D has an unbounded solution, the other problem is infeasible; and c) it is possible

that both problems P and D are infeasible.

Necessary and sufficient conditions for both x and y to be optimal are given by

complementary slackness theorem. The conditions are

a

jT
y = cj OR xj = 0 8j = 1, 2, . . . , n

AND

a

T

i x = bi OR yi = 0 8i = 1, 2, . . . ,m.

Dual variables for binding constraints of P with an optimal solution x can be calcu-

lated by solving the following system of equalities

a

jT
y = cj for {j |xj > 0} .

2.5 The Primal Simplex Method

The primal simplex method described below is generically known as the revised

simplex method. This method was developed in 1954 by Dantzig and Orchard-Hays

in “The product form for the inverse in the simplex method” [13, 14]. The revised

simplex improves over the standard simplex method by finding a new solution at

each iteration from the original data rather than referring to the dictionary, which

gets updated at every simplex iteration.

10

Rewrite problem P with equality constraints by adding m slack variables

(P0) maximize z = c

T

x (2.4)

subject to Ax = b (2.5)

x � 0. (2.6)

Separate the basic and nonbasic columns to write (2.4) as

z = c

T

BxB + c

T

NxN , (2.7)

and (2.5) as

BxB +ANxN = b. (2.8)

Rearrange (2.8) to get

xB = B

�1

b�B

�1

ANxN , (2.9)

where B

�1

b represents the current basic solution x

⇤
B. From primal-dual relationship,

y

T = c

T

BB
�1. (2.10)

Substitute (2.9) and (2.10) in (2.7) to obtain

z = c

T

BB
�1

b+
�

c

T

N � y

T

AN

�

xN . (2.11)

A positive coefficient for xN is desired for a pivot column. When choosing an entering

column from AN , find column j such that
�

c

T

N � y

T

AN

�

j
> 0, where (v)j denotes jth

11

element of vector v. The variable xj is the entering variable, and a

j is the entering

column. Substituting the entering variable and entering column in (2.9) gives

xB = x

⇤
B � xjB

�1

a

j. (2.12)

The expression (2.12) shows that as the entering variable xj is increased by t, xB

changes from x

⇤
B to [x⇤

B � (t) (B�1

a

j)], eventually causing one of the variables in xB

to reach zero. The variable that first drops to zero becomes the leaving variable.

The revised simplex algorithm is summarized as follows.

1. Choose an initial feasible basis B for solving y

T

B = c

T

B. If a primal feasible

basis not found, P’ is infeasible.

2. Solve y

T

B = c

T

B.

3. Choose an entering or pivot column a

j of AN such that
�

c

T

N � y

T

AN

�

j
> 0. If

no a

j exists, xB is an optimal solution.

4. Find the largest t that satisfies x⇤
B�tB�1

a

j � 0. If no t exists, P’ is unbounded.

5. Choose a leaving variable xk such that (x⇤
B � tB�1

a

j)k = 0 using t from the

previous step.

6. Update x

⇤
B with x

⇤
B � tB�1

a

j except for the entering variable. Use t for the

entering variable.

7. Update B by replacing the leaving column a

k with the entering column a

j. Go

to step 2.

2.6 The Dual Simplex Method

The dual simplex method was developed by Lemke [15] in 1954. While the

steps in primal simplex move from a primal-feasible solution to another, the dual

simplex starts with a primal-infeasible solution. The dual simplex keeps the dual-

12

feasible basis, while searching for a primal feasible solution. Therefore the method

is useful when a dual-feasible solution is easily found while a primal-feasible solution

is not. Examples include sensitivity analysis where new constraints are introduced,

and active-set methods where constraints are added iteratively to a relaxed problem.

The dual simplex algorithm is summarized as follows.

1. Choose an initial dual-feasible basis B such that cTBB � 0. If a feasible basis is

not found, P’ is infeasible.

2. Choose a leaving variable xk such that (xB)k < 0. If no such xk exists, xB is an

optimal solution. Set p to the position number of xk in xB.

3. Choose an entering column j such that

j 2 argmin
j2N

"

cj
(eTB�1

AN)j

�

�

�

�

�

�

e

T

B

�1

AN

�

j
< 0

#

,

where N is a set of original indexes belonging to nonbasic variables, e is the pth

column of an identity square matrix. If no such j is found, the dual problem is

unbounded and P’ is primal-infeasible.

4. Update x

⇤
B with

x

⇤
B �

x⇤
k

(eTB�1

AN)j

!

B

�1

a

j,

except for the entering variable. Use

x⇤
k

(eTB�1

AN)j

!

for the entering variable.

5. Update cN with

� cj
(eTB�1

AN)j

13

for ck, and

cs + ck
�

e

T

B

�1

AN

�

k

for the rest of the elements cs| s 2 N\ {j} .

6. Update B by replacing the leaving column a

k with the entering column a

j. Go

to step 2.

2.7 Large-scale Linear Programming

General strategies for solving large-scale linear programming include division

of the problem into subproblems, delayed column generation, and delayed constraint

generation. Dividing of the original problems into subproblems is possible when the

constraints have a special structure. In a maximization problem P, the delayed column

generation approach adds column j to a subproblem of P only after determining that

column j’s reduced cost ajT
y� cj is negative. For the delayed constraint generation

approach, row i is added to a subproblem of P only after determining that the row’s

violation check a

T

i x� bi is positive. In particular, Dantzig-Wolve decomposition is a

method that divides the original problem into subproblems and applies delayed col-

umn generation. Benders decomposition also forms subproblems but applies delayed

constraint generation.

Cutting-plane methods are delayed constraint generation techniques applied to

convex optimization problems but they may add constraints that are not part of the

original constraint set (1.2). COSTs are cutting-plane methods utilizing only (1.2).

14

2.8 Active-set Methods

Active-set methods divide the system of inequalities in (1.2) into operative and

inoperative sets. LP is solved iteratively by strategically updating each set. Con-

straints in inoperative set are ignored in an active-set iteration.

2.9 Related Literature

The COSTs are active-set methods in which a series of relaxations Pr, r =

0, 1, 2, . . . , of P is formed by adding one or more violating constraints from set (1.2).

Active-set approaches have been studied in the past, including those by Stone [16],

Thompson et al. [17], Adler et al. [18], Zeleny [19], Myers and Shih [20], and Curet

[21], with the term “constraint selection technique” used in Myers and Shih [20].

Adler et al. [18] added constraints randomly, without any selection criteria. Zeleny

[19] added a constraint that was most violated by the problem Pr to form Pr+1

.

These methods are called SUB and VIOL here, respectively. Also, VIOL, which is a

standard pricing method for delayed column generation in terms of the dual [22], is

identical to the Priority Constraint Method of Thompson et al. [17]. In all of these

approaches, constraints were added one at a time.

More recent work on constraint selection has focused on choosing the violated

inoperative constraints considered most likely to be binding at optimality for the

original problem P according to a particular constraint selection criterion. In the

cosine criterion, the angle between normal vector ai of (1.2) and normal vector c

of (1.1) as measured by the cosine, COS (ai, c) =
aT
i c

kaikkck , was considered. Naylor

and Sell [23][pp. 273–274], for example, suggested that a constraint with a larger

cosine value may be more likely to be binding at optimality. Pan [24, 25] applied

the cosine criterion to pivot rules of the simplex algorithm as the “most-obtuse-angle”

15

rule. The cosine criterion has also been utilized to obtain an initial basis for the

simplex algorithm by Trigos et al. [26], Junior and Lins [27]. Corley and Rosenberger

[28], Corley et al. [4] chose for Pr+1

a single inoperative constraint a

T

i x bi of Pr

violating x

⇤
r and having the largest cos (ai, c).

16

CHAPTER 3

CONSTRAINT OPTIMAL SELECTION TECHNIQUES (COSTs)

3.1 Introduction

In this chapter, the COST NRAD for nonnegative linear programs (NNLPs)

is first developed, then the COST GRAD for LPs is developed loosely based on the

intuition gained from NRAD.

3.2 NNLP

NNLP is a special case of P where ai � 0 and ai 6= 0, 8i = 1, . . . ,m; b > 0; and

c > 0. Useful properties of NNLPs include a) the origin x = 0 is guaranteed to be a

feasible point that minimizes the objective function; b) variable xj is bounded if and

only if aj > 0; and c) the upper bound on xj is min
i=1,...,m

n

bi
aij

�

�

�

aij > 0
o

8j = 1, . . . , n.

3.3 Active-set Framework

An active-set framework utilized for COSTs begins with a relaxation of P, with

initial bounding constraint(s). A bounded P
0

could be formed by adding a single

artificial bounding constraint such as 1x M or c

T

x M for sufficiently large M

so as not to reduce the feasible region of P.

A series of relaxations Pr, r = 0, 1, 2, . . . , of P is formed by adding one or more

violating constraints from set (1.2). The constraints that have been added are called

operative constraints, while constraints that still remain in (1.2) are called inoperative

constraints. Eventually a solution x

⇤
r of P is obtained when none of the inoperative

constraints are violated, i.e., for no inoperative constraint i is a

T

i x
⇤
r � bi > 0. In

17

x1

x2

(0, 0) (4, 0) (6, 0)

(4, 3)

x2 = 4

x1 = 4

Geometric Observation

feasible region

(0, 4)

(8, 0)

Figure 3.1. Geometric presentation of NNLP example
(3.1).

the COSTs of this dissertation, the following is explored: a) the ordering of a set of

inoperable constraints for possibly adding them to the current operable constraints;

and b) the actual selection of a group of such constraints to be added at an iteration.

Take a simple 2-dimensional NNLP example presented in (3.1) below and Fig-

ure 3.1

maximize z = 3x
1

+ 5x
2

(3.1)

subject to x
1

 4

x
2

 4

3x
1

+ x
2

 18

3x
1

+ x
2

 24

x
1

, x
2

� 0.

Figure 3.2 shows that as the objective function z = 3x
1

+ 5x
2

is increased,

18

x1

x2

(0, 0) (4, 0) (6, 0)

(4, 3)

x2 = 4

x1 = 4

Geometric Observation

feasible region

(0, 4)

(8, 0)

z = 30

z = 27

z = 12

z = 0

z = 3x1+5x2

Figure 3.2. Binding constraints at optimality in NNLP
example (3.1).

the optimal objective value of 30 is achieved at x

⇤ =

3.3 4

�

, with the binding

constraints x
2

 4 and 3x
1

+ x
2

 18.

From the work described in Section 2.9, the selection of constraints likely to be

binding at optimality seems to be influenced by the following two geometric factors.

Factor I is the angle that the constraint’s normal vector ai forms with the normal

vector c of the objective function. Factor II is the depth of the cut that constraint

i removes as a violated inoperative constraint of Pr. Figure 3.3 illustrates this ob-

servation. A COST NRAD incorporating both Factor I and Factor II is developed

below.

19

x1

x2

(0, 0)

Geometric Observation

feasible region

θ2

a2

θ3

a3

θ4

a4

c
θ1 a1

Figure 3.3. Factor I and Factor II in NNLP example
(3.1).

3.4 The COST NRAD for NNLP

3.4.1 Constraint Selection Criterion

Define a constraint selection metric

NRAD(ai, bi, c) =
a

T

i c

bi
. (3.2)

Since the elements of A are nonnegative and the elements of c and b are strictly

positive for NNLPs, NRAD > 0. In COST NRAD, one or more violating inopera-

tive constraints that have the highest values of NRAD are selected to become op-

erative constraints. In other words, NRAD seeks constraint a

T

i⇤x bi⇤ such that

i⇤ 2 argmax
i/2OPERATIV E

�

NRAD(ai, bi, c)| aT

i x
⇤
r > bi

�

. Writing NRAD as

a

T

i c

bi
=
kaik
bi

a

T

i c

kaik kck
kck / kaik

bi
COS (ai, c)

20

illustrates that it consists of a Factor I term COS (ai, c) of Corley et al. [28] and a

Factor II term kaik
bi

.

3.4.2 NRAD in an Active-set Framework Utilizing Multiple Cuts

Since a

j � 0 and a

j 6= 0 8j = 1, . . . , n assures boundedness for NNLPs, P
0

is bounded by adding multiple constraints from (1.2) in decreasing order of NRAD

until aj � 0 and a

j 6= 0 8j = 1, . . . , n in P
0

(Step 1: multi-bound). A solution x

⇤
0

to

P
0

is found by the primal simplex method (Step 2). To form Pr, r = 1, . . . , multiple

inoperative constraints that violate x

⇤
0

are added in decreasing order of NRAD until

a

j � 0 and a

j 6= 0 8j = 1, . . . , n, where a

j is the jth column newly added set of

constraints (lines 8-15 of Step 3: multi-cut). Problem Pr is solved iteratively by the

dual simplex method until there are no more violating inoperative constraints. The

following pseudocode summarizes the steps for the COST NRAD.

Step 1 — Identify constraints to initially bound the problem.

1: a

⇤ 0

2: while a

⇤ 6> 0 do

3: Let i⇤ 2 argmax
i/2BOUNDING

NRAD(ai, bi, c)

4: if 9j| a⇤j = 0 and ai⇤j > 0 then

5: BOUNDING BOUNDING [{i⇤}

6: end if

7: a

⇤ a

⇤ + ai⇤

8: end while

Step 2 — Using the primal simplex method, obtain an optimal solution x

⇤
0

for

the initial bounded problem P
0

21

maximize z = c

T

x (3.3)

subject to a

T

i x bi 8i 2 BOUNDING (3.4)

x � 0. (3.5)

Step 3 — Perform the following iterations until an optimal solution to problem

P is found.

1: r 0

2: STOP false

3: OPERATIV E BOUNDING

4: while STOP = false do

5: if a

T

i x
⇤
r bi 8i /2 OPERATIV E then

6: STOP true // x

⇤
r is an optimal solution to P.

7: else

8: a

⇤ 0

9: while a

⇤ 6> 0 and OPERATIV E ⇢
�

i| aT

i x
⇤
r > bi

do

10: Let i⇤ 2 argmax
i/2OPERATIV E

NRAD
�

ai, bi, c| ai
T

x

⇤
r > bi

�

11: if 9j| a⇤j = 0 and ai⇤j > 0 then

12: OPERATIV E OPERATIV E [{i⇤}

13: end if

14: a

⇤ a

⇤ + ai⇤

15: end while

16: r r + 1

22

17: Solve the following Pr by the dual simplex method to obtain x

⇤
r.

maximize z = c

T

x (3.6)

subject to a

T

i x bi 8i 2 OPERATIV E (3.7)

x � 0. (3.8)

18: end if

19: end while

3.4.3 Geometric Interpretation

A geometric representation of a constraint for problem P with two variables is

shown in Figure 3.4. When P is an NNLP, the value of NRAD = a

T

i c is positive.

Note that the distance between the origin and the intersection of the hyperplane

a

T

i x = bi and the normal vector c is bikck
aT
i c

. As depicted in Figure 3.5, NRAD may be

interpreted as approximating the feasible region by nested spheres. The name RAD

in NRAD (NNLP-RAD) comes form this observation. The figure also shows that the

two binding constraints at optimality have the highest values of NRAD, 1.250 and

1.056.

However, since ai may include zeros in certain components, the hyperplane

may include some zeros in certain components, therefore, the hyperplane from a

single constraint aT

i x bi may not effectively form an angle in every dimension of c.

Consequently, adding multiple constraints to Pr in which there is at least one positive

coefficient for each variable xj will add cutting planes forming a geodesic-like dome

cutting off the current x⇤
r in a more efficient manner than a single cutting plane.

23

- x

1

6

x

2

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

a

T

i x = bi

⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣⇣1 c

u

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
ai

u
bi
aT
i c
c

d = bi||c||
aT
i c

Figure 3.4. Geometric interpretation of NRAD.

x1

x2

(0, 0)

c 1.250

1.056

0.792

0.750

Figure 3.5. Geometric interpretation of NRAD in NNLP
Example (3.1).

24

3.5 The COST GRAD for General LP

An active-set framework for solving general LPs will be analogous to that for

NNLPs. However, GRAD (General-LP RAD) is not an immediate extension of NRAD

since LP does not have some of the useful properties of NNLP problems. For example,

the origin x = 0 is no longer guaranteed to be feasible for LP problems. Moreover, the

optimal solution x

⇤ may not lie in the same orthant as the normal ai to a constraint.

We must thus modify NRAD for NNLP to GRAD for LP in order to emulate efficiently

the underlying reasoning of NRAD based on Factors I and II.

3.5.1 Constraint Selection Criterion

Boundedness of NNLP could be assured by adding multiple constraints from

(1.2) until no column of A is a zero vector. However, this is not the case for LP. There-

fore an initial bounded problem P
0

is formed by adding a bounding constraint such

as c

T

x M , along with some constraints from (1.2), as described in Section 3.5.2.

P
0

is then solved to obtain an initial solution x

⇤
0

. Pr+1

is generated by adding one

or more inoperative constraints of Pr that maximize the constraint selection metric

for LP among all inoperative constraints of Pr violating x

⇤
r. Define this constraint

selection metric as

GRAD(ai, bi, c) =
n
X

j=1,cj>0

aijcj
b+i
�

n
X

j=1,cj<0

�aij
b+i

, (3.9)

where

b+i =

8

>

<

>

:

bi � min
k=1,...,m

[bk] + ", if min
k=1,...,m

[bk] < 0

bi, otherwise.

(3.10)

Thus GRAD seeks i⇤ 2 argmax
i/2OPERATIV E

�

GRAD(ai, bi, c)| aT

i x
⇤
r > bi

�

.

25

The first term in (3.9) is a quantity that invokes Factor I and Factor II analogous

to NRAD, while the second term is a quantity that invokes Factor II. In (3.10), values

of bi are shifted by min
k=1,...,m

[bi] if the minimum value is negative. Hence b+i is always

positive, and each term in (3.9) contributes additively to the criterion. The GRAD

(3.9) becomes the same as the NRAD (3.2) when b > 0 and c > 0. Therefore it could

be utilized to effectively solve NNLPs as well. Although equality constraints are not

considered here, it should be noted that equality constraints could be included in P
0

.

Figure 3.4 depicted a two-dimensional example of an NNLP, always resulting

in a positive value for a

T

i c. However for LP, as described above in Section 3.5, the

intersection of c, drawn from the origin, and a

T

i x = bi may not necessarily lie in

the feasible region. Furthermore, unlike in an NNLP, the origin may not be a feasi-

ble solution for LP. Therefore calculating values based upon the origin may provide

irrelevant criteria.

The intuition for judging a general LP constraint’s likelihood of being binding

at optimality may be described as follows. Given an objective function max z =

c
1

x
1

+ c
2

x
2

+ . . .+ cnxn, observe that the objective is maximized when cj and xj are

large. Hence, a larger value of cj is more likely to yield a larger value of xj. This

relationship implies that the left-hand side of the constraint is likely to be larger for

larger values of
n
P

j=1,cj>0

aijcj. For aj with cj < 0, it is hard to predict the likely value of

xj in a solution. Consequently, we assume that the xj in which cj < 0 are all equally

likely to be a nominal value of 1. The left-hand side is now
n
P

j=1,cj>0

aijcj +
n
P

j=1,cj<0

aij.

As for the right-hand side of the constraint, a small bi makes a constraint more likely

to be binding. We thus divide the left-hand side by bi to measure the ith constraint’s

likelihood of being binding at optimality, resulting in
n
P

j=1,cj>0

aijcj
bi

+
n
P

j=1,cj<0

aij
bi

, which

is essentially GRAD.

26

GRAD can also be derived from NRAD by incorporating the term
n
P

j=1,cj>0

aijcj

b+i

that results in a higher GRAD value when aij and cj take large positive values with

a small b+i . This term considers only dimensions of j for which the components of c

are positive, making the interpretation analogous to the NNLP case.

To incorporate dimensions of j for which the components of c are negative to

NRAD, consider the following metric analogous to NRAD

n
X

j=1,cj>0

aijcj
b+i
�

n
X

j=1,cj<0

aijcj
b+i

. (3.11)

The second term in (3.11) makes sense from the point of view that the expression

(3.11) results in a higher value when aij and cj are both negative, and bi is large.

However, it is found in Section 4.5.2.1 that the constraint selection metric performed

better when the second term was
n
P

j=1,cj<0

�aij

b+i
, as shown in (3.9). With this second

term, RAD will maximize the intercept bi
aij

of the hyperplane a

T

i x = bi and the axis

for
�

xj

�

�cj < 0

.

3.5.2 GRAD in an Active-set Framework Utilizing Multiple Cuts

Boundedness for NNLP is guaranteed by adding multiple constraints from (1.2)

ordered by decreasing value of NRAD until no column of A is a zero vector. Although

this approach does not guarantee boundedness for LP, a generalization was found to

be effective here.

For the COST GRAD, an initial bounded problem P
0

is formed by adding

an artificial bounding constraint such as c

T

x M and multiple constraints from

(1.2) ordered by decreasing value of GRAD until all columns of A has at least one

positive and at least one negative coefficient (Step 1). After an optimal solution

to the initial bounded problem is obtained by the primal simplex method (Step 2),
27

subsequent iterations are solved by the dual simplex method (Step 3). Moreover, after

the solution of P
0

and each subsequent Pr, constraints are again added in groups. Pr+1

is formed by selecting inoperative constraints in decreasing order of GRAD until a

positive coefficient and a negative coefficient is included for each variable xj (Step

3, lines 7–29). The following pseudocode depicts the COST GRAD with the new

multi-cut technique.

Step 1 — Identify constraints to form the initial problem P
0

.

1: for i = 1! m do

2: if 9j| aij > 0 then

3: POSITIV Ea POSITIV Ea [{i}

4: end if

5: if 9j| aij < 0 then

6: NEGATIV Ea NEGATIV Ea [{i}

7: end if

8: end for

9: a

⇤positive 0

10: a

⇤negative 0

11: while a

⇤positive 6> 0 and a

⇤negative 6> 0 and OPERATIV E ⇢ {i} do

12: Let i⇤ 2 argmax
i/2OPERATIV E

GRAD(ai, bi, c)

13: if 9j| a⇤positivej = 0 and ai⇤j > 0 then

14: OPERATIV E OPERATIV E [{i⇤}

15: if OPERATIV E ⇢ POSITIV Ea then

16: a

+
⇥

a+i⇤1 . . . a
+

i⇤n

⇤

where a+i⇤j =

8

>

<

>

:

1, if ai⇤j > 0

0, otherwise
8j = 1 . . . n

17: else

18: a

+ 1 // case if there are no more constraints with aij > 0

28

19: end if

20: end if

21: if 9j| a⇤negativej = 0 and ai⇤j < 0 then

22: OPERATIV E OPERATIV E [{i⇤}

23: if OPERATIV E ⇢ NEGATIV Ea then

24: a

�
⇥

a�i⇤1 . . . a
�
i⇤n

⇤

where a�i⇤j =

8

>

<

>

:

1, if ai⇤j < 0

0, otherwise
8j = 1 . . . n

25: else

26: a

� 1 // case if there are no more constraints with aij < 0

27: end if

28: end if

29: a

⇤positive a

⇤positive + a

+

30: a

⇤negative a

⇤negative + a

�

31: end while

Step 2 — Using the primal simplex method, obtain an optimal solution x

⇤
0

for

the initial bounded problem P
0

maximize z = c

T

x (3.12)

subject to c

T

x M (3.13)

a

T

i x bi 8i 2 OPERATIV E (3.14)

x � 0. (3.15)

Step 3 — Perform the following iterations until an optimal solution to problem

P is found.

1: r 0

29

2: STOP false

3: while STOP = false do

4: if a

T

i x
⇤
r bi 8i /2 OPERATIV E then

5: STOP true // x

⇤
r is an optimal solution to P.

6: else

7: a

⇤positive 0

8: a

⇤negative 0

9: while a

⇤positive 6> 0 and a

⇤negative 6> 0 and OPERATIV E ⇢
�

i| aT

i x
⇤
r > bi

do

10: Let i⇤ 2 argmax
i/2OPERATIV E

GRAD
�

ai, bi, c| ai
T

x

⇤
r > bi

�

11: if 9j| a⇤positivej = 0 and ai⇤j > 0 then

12: OPERATIV E OPERATIV E [{i⇤}

13: if OPERATIV E ⇢ POSITIV Ea then

14: a

+
⇥

a+i⇤1 . . . a
+

i⇤n

⇤

where a+i⇤j =

8

>

<

>

:

1, if ai⇤j > 0

0, otherwise
8j = 1 . . . n

15: else

16: a

+ 1 // case if there are no more constraints with aij > 0

17: end if

18: end if

19: if 9j| a⇤negativej = 0 and ai⇤j < 0 then

20: OPERATIV E OPERATIV E [{i⇤}

21: if OPERATIV E ⇢ NEGATIV Ea then

22: a

�
⇥

a�i⇤1 . . . a
�
i⇤n

⇤

where a�i⇤j =

8

>

<

>

:

1, if ai⇤j < 0

0, otherwise
8j = 1 . . . n

23: else

24: a

� 1 // case if there are no more constraints with aij < 0

30

25: end if

26: end if

27: a

⇤positive a

⇤positive + a

+

28: a

⇤negative a

⇤negative + a

�

29: end while

30: r r + 1

31: Solve the following Pr by the dual simplex method to obtain x

⇤
r.

maximize z = c

T

x (3.16)

subject to c

T

x M (3.17)

a

T

i x bi 8i 2 OPERATIV E (3.18)

x � 0. (3.19)

32: end if

33: end while

31

CHAPTER 4

COMPUTATIONAL EXPERIMENTS

4.1 Introduction

The COST NRAD and COST GRAD were compared with the CPLEX primal

simplex method, the CPLEX dual simplex method, the polynomial interior-point

CPLEX barrier method, as well as the previously defined constraint selection tech-

niques SUB, COS and VIOL. NRAD, GRAD, SUB, COS, and VIOL utilized the

CPLEX primal simplex solver to solve P
0

and the CPLEX dual simplex solver to

solve each new relaxed problem Pr+1

.

4.2 CPLEX Preprocessing

The CPLEX preprocessing parameters PREIND (preprocessing presolve indica-

tor) and PREDUAL (preprocessing dual) had to be chosen appropriately. The default

parameter settings of PREIND = 1 (ON) and PREDUAL = 0 (AUTO) were used for

CPU times of the CPLEX primal simplex method, the CPLEX dual simplex method,

and the CPLEX barrier method when comparing against the COSTs. No CPLEX

preprocessing was implemented [used PREIND = 0 (OFF) and PREDUAL = �1

(OFF)] by the CPLEX primal simplex and dual simplex solvers as part of NRAD,

GRAD, SUB, and VIOL.

The first parameter PREIND turns on and off the CPLEX’s proprietary “pre-

processing presolve” routine. The routine significantly decreases the computation

time of CPLEX by reducing problem size in dimensions of m and n before the primal

simplex, dual simplex method, and the barrier algorithms are applied.

32

The second parameter PREDUAL (preprocessing dual) has three settings: on,

auto, and off. The parameter which determines if CPLEX takes the dual of the

problem also greatly affects the computation time.

The default settings for the two preprocessing parameters are PREIND = 1

(preprocessing presolve ON) and PREDUAL = 0 (preprocessing dual AUTO). With-

out turning them off explicitly, CPLEX automatically alters the LPs. However, for

the CPLEX barrier solver, the prosolve routine is an integral part of the CPLEX algo-

rithm, because even with PREIND = 0 (OFF), the problem is altered with “restricted

presolve.”

Results presented in Section 4.5.1.1 show the effect of CPLEX preprocessing on

CPU times.

4.3 Equipment

Comparisons of computational methods were performed with the IBM CPLEX

12.1 callable library on an Intel Core 2 Duo E8600 3.33GHz workstation with a Linux

64-bit operating system and 8 GB of RAM. Computational test results of Tables 4.4

through 4.14 were obtained by calling CPLEX commands from an application written

in the programming language C. In these tables, each CPU time presented is an

average computation time of solving five instances of randomly generated LP.

4.4 Problem Instances

4.4.1 NNLP

Three sets of randomly generated NNLPs were constructed. In the first set,

NNLPs with 1,000 variables (n) and 200,000 constraints (m) were generated at various

densities ranging from 0.005 to 1. Randomly generated real numbers between 1 and

33

Table 4.1. Randomly Generated NNLP Problem Set 1

Number of Variables 1,000
Number of Constraints 200,000
Range of aij 1 Random Real 5
Range of bi 1 Random Real 10
Range of cj 1 Random Real 10

Average of 5 instances of LPs at each density

Problem
Instance

Density Minimum
number of
nonzero aij in
a constraint

Maximum
number of
nonzero aij in
a constraint

Average
number of
nonzero aij in
a constraint

Total number
of nonzero aij

Number of
binding con-
straints at
optimality

1 – 5 0.005050 2.0 17.8 5.1 1,009,980 726.2
6 – 10 0.006019 2.0 19.8 6.0 1,203,860 717.0
11 – 15 0.007005 2.0 22.4 7.0 1,401,005 701.6
16 – 20 0.008001 2.0 23.8 8.0 1,600,161 673.6
21 – 25 0.009004 2.0 27.0 9.0 1,800,698 668.4
26 – 30 0.009999 2.0 27.4 10.0 1,999,898 665.2
31 – 35 0.020001 3.6 43.8 20.0 4,000,270 571.4
36 – 40 0.029999 10.0 57.6 30.0 5,999,746 513.4
41 – 45 0.040007 15.4 71.8 40.0 8,001,314 488.0
46 – 50 0.049997 22.6 85.2 50.0 9,999,341 460.4
51 – 55 0.060002 29.4 100.0 60.0 12,000,361 433.2
56 – 60 0.069995 37.4 110.0 70.0 13,998,950 422.6
61 – 65 0.080009 44.4 122.4 80.0 16,001,832 396.6
66 – 70 0.089990 51.2 134.2 90.0 17,998,055 384.0
71 – 75 0.099997 61.2 146.6 100.0 19,999,422 372.4
76 – 80 0.199993 146.6 261.6 200.0 39,998,674 310.8
81 – 85 0.300012 235.0 369.6 300.0 60,002,460 262.2
86 – 90 0.399997 333.4 472.0 400.0 79,999,452 233.0
91 – 95 0.499983 429.0 572.6 500.0 99,996,701 202.6
96 – 100 0.750009 684.6 809.0 750.0 150,001,816 158.0
101 – 105 1.000000 1,000.0 1,000.0 1,000.0 200,000,000 111.0

5, 1 and 10, 1 and 10 were assigned to elements of A, b, and c respectively. The

number of nonzero aij in each constraint was binomially distributed B(n, p = density).

Additionally, we required each constraint to have at least two nonzero aij, so that a

constraint would not become a simple upper bound on a variable. At each of the 21

densities, 5 random LPs were generated. Table 4.1 summarizes the NNLPs generated

for Set 1.

Set 2 was prepared using the same method as in Set 1, but with different

parameters. Here n and m were increased to 5,000 and 1,000,000, respectively; and

randomly generated real numbers between 1 and 100 were assigned to elements of b,

and c. Since computer memory was limited to approximately 3⇥106 nonzero aij, 0.06

34

Table 4.2. Randomly Generated NNLP Problem Set 2

Number of Variables 5,000
Number of Constraints 1,000,000
Range of aij 1 Random Real 5
Range of bi 1 Random Real 100
Range of cj 1 Random Real 100

Average of 5 instances of LPs at each density

Problem
Instance

Density Minimum
number of
nonzero aij in
a constraint

Maximum
number of
nonzero aij in
a constraint

Average
number of
nonzero aij in
a constraint

Total number
of nonzero aij

Number of
binding con-
straints at
optimality

1 – 5 0.000508 2.0 12.4 2.5 2,540,864 3,641.0
6 – 10 0.000574 2.0 13.2 2.9 2,868,363 3,437.6
11 – 15 0.000650 2.0 14.4 3.3 3,249,509 3,244.0
16 – 20 0.000733 2.0 15.6 3.7 3,667,001 3,149.2
21 – 25 0.000822 2.0 17.0 4.1 4,108,983 3,054.2
26 – 30 0.000914 2.0 17.6 4.6 4,570,717 2,967.8
31 – 35 0.001009 2.0 18.8 5.1 5,047,736 2,891.2
36 – 40 0.002000 2.0 28.4 10.0 9,998,206 2,475.2
41 – 45 0.003000 2.0 38.4 15.0 15,001,505 2,227.6
46 – 50 0.004000 2.8 45.2 20.0 19,999,272 2,068.2
51 – 55 0.004999 5.4 52.6 25.0 24,996,828 1,936.4
56 – 60 0.006000 7.8 59.4 30.0 30,000,841 1,861.2
61 – 65 0.007001 10.0 68.6 35.0 35,003,724 1,766.2
66 – 70 0.008000 13.0 74.4 40.0 40,000,970 1,692.2
71 – 75 0.009001 17.6 79.8 45.0 45,002,765 1,630.8
76 – 80 0.009999 20.2 87.6 50.0 49,996,022 1,598.4
81 – 85 0.020000 56.8 150.6 100.0 99,999,172 1,288.2
86 – 90 0.030000 94.4 211.8 150.0 150,001,867 1,146.8
91 – 95 0.039999 137.2 271.6 200.0 199,995,504 1,028.6
96 – 100 0.050000 175.8 328.2 250.0 249,999,857 968.6
101 – 105 0.060002 224.4 388.4 300.0 300,008,499 901.6

was the maximum possible density allowed. Hence, much smaller density increments

were chosen. Table 4.2 summarizes the NNLPs generated for Set 2.

The third set, in which the ratio m/n was varied from 200 to 1, is described

below in Section 4.5.1.5.

4.4.2 LP

A set of 105 randomly generated LP was constructed. The LP problems were

generated with 1,000 variables (n) and 200,000 constraints (m) having various densi-

ties ranging from 0.005 to 1. Randomly generated real numbers between 1 and 5, or

between -1 and -5 were assigned to elements of A. In order to assure that the ran-

35

Table 4.3. Randomly Generated General LP Problem Set

Number of variables 1,000
Number of constraints 200,000
Range of aij 1 random real 5, or -5 random real -1
Fraction of positive aij 0.5

Average of 5 instances of LP at each density

Problem Density Number of nonzero bi cj Number of
instance aij in a constraint binding

constraints
at optimal-
ity

mean min mean max min mean max min mean max mean

1 – 5 0.00505 2.0 5.1 17.6 -2.5 1.0 4.4 -19.2 -1.0 16.0 836.0
6 – 10 0.00602 2.0 6.0 19.6 -2.4 1.0 4.3 -18.2 -0.9 15.1 834.2
11 – 15 0.00701 2.0 7.0 23.0 -2.2 1.0 4.2 -19.0 -0.9 13.7 827.6
16 – 20 0.00801 2.0 8.0 23.2 -2.0 1.0 4.1 -19.8 -1.0 14.6 812.4
21 – 25 0.00900 2.0 9.0 25.4 -1.8 1.0 3.9 -17.7 -1.1 14.8 803.6
26 – 30 0.01000 2.0 10.0 27.6 -1.8 1.0 3.8 -17.1 -0.9 13.1 807.0
31 – 35 0.02000 4.0 20.0 43.2 -1.6 1.0 3.6 -15.2 -1.0 12.9 754.0
36 – 40 0.03001 8.8 30.0 60.2 -1.3 1.0 3.3 -13.3 -1.0 11.6 723.0
41 – 45 0.04000 15.8 40.0 70.6 -1.3 1.0 3.2 -11.6 -1.1 9.5 694.4
46 – 50 0.04999 22.0 50.0 82.8 -1.2 1.0 3.2 -13.1 -0.9 10.0 696.0
51 – 55 0.06000 29.8 60.0 97.8 -1.0 1.0 3.0 -11.1 -1.0 9.7 659.8
56 – 60 0.07000 38.0 70.0 110.4 -1.1 1.0 3.1 -9.9 -1.0 9.4 664.8
61 – 65 0.08001 43.8 80.0 123.6 -1.0 1.0 2.9 -12.0 -1.0 9.3 647.4
66 – 70 0.08999 53.2 90.0 133.6 -0.9 1.0 2.9 -9.7 -1.0 8.2 630.0
71 – 75 0.10000 61.0 100.0 145.0 -0.9 1.0 2.9 -11.5 -1.0 9.2 633.6
76 – 80 0.20001 146.2 200.0 261.4 -0.8 1.0 2.8 -9.2 -1.0 8.1 578.6
81 – 85 0.30001 236.8 300.0 369.6 -0.6 1.0 2.6 -7.9 -1.0 5.6 546.6
86 – 90 0.40000 332.6 400.0 471.4 -0.6 1.0 2.6 -9.1 -1.0 6.8 530.0
91 – 95 0.50001 429.6 500.0 574.0 -0.7 1.0 2.6 -8.6 -1.0 6.6 514.0
96 – 100 0.75000 688.8 750.0 811.4 -0.6 1.0 2.5 -8.4 -1.0 5.8 472.2
101 – 105 1.00000 999.0 1,000.0 1,000.0 -0.6 1.0 2.6 -6.5 -1.0 5.1 432.6

domly generated LP had a feasible solution, a feasible solution x

⇤ (not all elements

of x⇤ were nonzero) was randomly generated to derive random b, where Ax

⇤ b.

Then a feasible solution y

⇤ (having the same number of nonzero elements as x⇤) was

randomly generated to derive random c, where y

⇤
A � c. The ratio of the number of

positive and negative elements of A was one. The number of nonzero aij in each con-

straint was binomially distributed B(n, p = density). Additionally, we required each

constraint to have at least two nonzero aij, so that a constraint would not become a

simple upper or lower bound on a variable. At each of the 21 densities, 5 random LP

were generated. Table 4.3 summarizes the generated LP.

36

4.5 Computational Results

4.5.1 NNLP

Table 4.4 presents the results for the three CPLEX algorithms for the test

problem Set 1. CPU times for NRAD are also shown for comparison. At all den-

sities (ranged from 0.005 to 1), the CPU times for COST NRAD were faster than

the CPLEX primal simplex, the CPLEX dual simplex, and the CPLEX barrier linear

programming solvers. The average time for NRAD was 3.9 seconds, which was ap-

proximately 15 times faster than the fastest CPLEX time of 57.3 seconds by CPLEX

primal simplex.

The test results for NNLP set 2 are presented in Table 4.5. CPU times of greater

than 2,400 seconds are not reported. The cut-off was based on the approximate sum

of the NRAD CPU times over all densities. CPU times for the COST NRAD were

faster than the three CPLEX methods again. The average time for NRAD was 78.5

seconds, which was approximately 8 times faster than the fastest CPLEX time of

610.3 seconds by CPLEX primal simplex. NRAD was stable across all densities

compared to CPLEX methods. The decrease in NRAD CPU times at densities above

0.02 reflects NRAD’s increased discrimination in constraint selection at high density,

which is further discussed in Section 4.5.1.3.

4.5.1.1 Influences of the Active-set Approach, COST NRAD, Multi-bound and Multi-

cut

The COST NRAD, which incorporates the multi-bound and multi-cut tech-

niques into the active-set approach, achieved significantly fast CPU times in Ta-

bles 4.4 and 4.5. The contribution of the NRAD constraint selection metric, active-set

approach, and multiple cuts is examined in Tables 4.6 and 4.7.

37

Table 4.4. Comparison of Computation Times of CPLEX and COST
NRAD Methods on NNLP Problem Set 1 (Random NNLP with 1,000
Variables and 200,000 Constraints, aij = 1 to 5, bi = 1 to 10, cj =
1 to 10)

CPLEX Primal
Simplex

CPLEX Dual
Simplex

CPLEX Barrier NRAD

Presolve On On On Off
Predual Auto Auto Auto Off

Density CPU TIME†(std. dev.), sec

0.005056 6.8 (0.2) 50.0 (6.2) 2.7 (0.1) 2.1 (0.1)
0.006023 10.1 (0.8) 58.8 (5.5) 3.2 (0.1) 2.4 (0.1)
0.007014 12.6 (0.9) 87.0 (3.6) 4.2 (0.2) 2.7 (0.1)
0.007999 15.3 (0.8) 99.2 (6.1) 5.2 (0.4) 2.5 (0.1)
0.009007 18.6 (0.6) 113.4 (5.8) 7.3 (0.4) 2.8 (0.2)
0.010000 22.5 (1.1) 124.8 (7.1) 9.8 (0.5) 2.8 (0.2)
0.019991 40.8 (2.0) 195.5 (8.3) 36.9 (4.5) 3.1 (0.2)
0.029987 46.4 (2.3) 221.9 (6.7) 59.0 (6.4) 3.3 (0.4)
0.040024 50.9 (4.1) 238.1 (13.0) 82.6 (7.8) 3.4 (0.3)
0.050009 52.4 (3.9) 251.7 (25.8) 111.8 (15.7) 3.4 (0.3)
0.059995 58.1 (5.4) 237.0 (12.9) 134.4 (19.0) 3.2 (0.3)
0.069983 62.2 (3.4) 241.1 (15.8) 168.9 (17.5) 3.4 (0.2)
0.080011 64.9 (4.1) 255.0 (21.4) 207.7 (42.9) 3.3 (0.3)
0.089992 63.9 (4.0) 246.8 (15.8) 263.2 (62.2) 3.4 (0.4)
0.099989 68.3 (6.2) 277.4 (41.2) 308.3 (60.0) 3.3 (0.3)
0.199977 79.8 (5.9) 289.8 (5.5) 774.1 (83.1) 4.3 (0.4)
0.300018 87.1 (2.8) 339.0 (27.4) 1,547.2 (160.9) 4.9 (0.6)
0.399917 96.1 (3.6) 383.0 (27.0) 2,379.5 (246.4) 5.6 (0.5)
0.499921 97.4 (2.8) 427.9 (29.0) 3,551.3 (240.1) 6.7 (0.4)
0.750024 116.6 (4.6) 407.7 (25.1) 7,184.4 (486.0) 7.9 (1.0)
1.000000 132.4 (13.3) 315.6 (32.4) 10,628.8 (197.5) 8.1 (0.1)

Average
(pooled stan-
dard deviation)

57.3 (4.5) 231.5 (19.5) 1,308.1 (144.2) 3.9 (0.4)

†Average of 5 instances of LPs at each density.

CPU times of CPLEX methods with and without preprocessing, SUB and

NRAD are presented in Table 4.6. The data supports the significant role that CPLEX

preprocessing plays in reducing computation time. SUB added one constraint per

active-set iteration in the order that constraints appeared in the original problem, es-

sentially resulting in a random active-set approach. The application of an active-set

approach by itself was sufficient to achieve CPU times faster than some preprocessing-

enabled CPLEX methods at high density and some without the presolve at lower

density. The computation speed of SUB was quite stable across all densities. NRAD,

38

Table 4.5. Comparison of Computation Times of CPLEX and COST
NRAD Methods on NNLP Problem Set 2 (Random NNLP with 5,000
Variables and 1,000,000 Constraints, aij = 1 to 5, bi = 1 to 100, cj =
1 to 100)

CPLEX Primal
Simplex

CPLEX Dual
Simplex

CPLEX Barrier NRAD

Presolve On On On Off
Predual Auto Auto Auto Off

Density CPU TIME†(std. dev.), sec

0.000508 11.6 (0.6) 13.7 (1.6) 23.6 (1.2) 7.7 (0.2)
0.000574 28.9 (5.1) 30.4 (1.9) 37.3 (3.9) 12.3 (0.3)
0.000650 14.2 (0.9) 99.4 (1.6) 48.5 (0.5) 16.4 (0.6)
0.000733 21.3 (1.8) 169.3 (3.6) 62.6 (2.3) 22.9 (0.7)
0.000822 31.9 (3.6) 249.2 (13.6) 65.8 (3.3) 28.5 (3.2)
0.000914 40.4 (1.8) 335.8 (8.3) 74.5 (3.5) 35.2 (2.0)
0.001009 50.6 (1.6) 420.8 (13.2) 83.8 (3.8) 41.8 (4.3)
0.002000 179.2 (9.9) 1796.3 (100.0) 160.1 (8.5) 96.2 (3.2)
0.003000 249.9 (8.4) ‡ 213.9 (14.6) 116.8 (7.9)
0.004000 305.3 (7.0) ‡ 221.7 (38.3) 126.8 (8.1)
0.004999 363.2 (10.2) ‡ 228.2 (27.7) 128.5 (11.7)
0.006000 423.1 (23.9) ‡ 259.2 (35.2) 136.4 (13.3)
0.007001 469.8 (18.8) ‡ 338.0 (21.3) 129.4 (7.8)
0.008000 523.2 (23.2) ‡ 325.7 (22.6) 125.3 (10.8)
0.009001 560.8 (22.6) ‡ 433.2 (47.9) 116.7 (4.2)
0.009999 619.2 (16.5) ‡ 483.4 (51.8) 123.0 (12.2)
0.020000 1235.0 (89.4) ‡ 1760.8 (409.4) 92.0 (8.4)
0.030000 1699.4 (73.3) ‡ ‡ 82.5 (3.0)
0.039999 1942.9 (76.7) ‡ ‡ 71.5 (4.8)
0.050000 1994.1 (197.7) ‡ ‡ 72.8 (2.0)
0.060002 2053.3 (60.9) ‡ out of memory 65.7 (5.5)

Average
(pooled stan-
dard deviation)

610.3 (55.5) n/a n/a 78.5 (6.8)

†Average of 5 instances of LPs at each density.
‡Runs with CPU times > 2, 400 seconds (total CPU time of NRAD for all densities) are not
reported.

shown for reference, had the additional advantage of the constraint selection metric

and multiple cuts.

In Table 4.7, two active-set methods utilizing SUB and NRAD are presented

with various combination of single-cut, multi-bound and multi-cut. Comparing SUB

and NRAD, the effect of sorting the constraints by the NRAD metric was about seven

to ten-fold reduction in CPU time.

39

Table 4.6. Comparison of Computation Times to Illustrate the Effects of
Applying an Active-set Method on NNLP Problem Set 1 (Random NNLP
with 1,000 Variables and 200,000 Constraints, aij = 1 to 5, bi = 1 to 10, cj =
1 to 10)

CPLEX Primal Simplex CPLEX Dual Simplex CPLEX
Barrier†

SUB‡ NRAD

Presolve On Off On Off On Off Off
Predual Auto Off Auto Off Auto Off Off

Density CPU TIME§, sec

0.005056 6.8 644.7 50.0 818.8 2.7 212.9 2.1
0.006023 10.1 627.0 58.8 1,005.2 3.2 236.2 2.4
0.007014 12.6 629.3 87.0 963.6 4.2 260.1 2.7
0.007999 15.3 647.7 99.2 999.8 5.2 257.3 2.5
0.009007 18.6 677.9 113.4 949.5 7.3 276.3 2.8
0.010000 22.5 660.1 124.8 986.4 9.8 282.6 2.8
0.019991 40.8 601.3 195.5 1,113.7 36.9 287.9 3.1
0.029987 46.4 553.6 221.9 1,126.1 59.0 267.6 3.3
0.040024 50.9 489.2 238.1 921.6 82.6 266.3 3.4
0.050009 52.4 263.5 251.7 504.9 111.8 246.4 3.4
0.059995 58.1 262.4 237.0 433.2 134.4 228.9 3.2
0.069983 62.2 272.7 241.1 386.2 168.9 236.6 3.4
0.080011 64.9 265.7 255.0 366.6 207.7 219.7 3.3
0.089992 63.9 265.5 246.8 366.5 263.2 217.9 3.4
0.099989 68.3 276.6 277.4 362.0 308.3 210.8 3.3
0.199977 79.8 304.6 289.8 346.5 774.1 227.7 4.3
0.300018 87.1 322.7 339.0 323.8 1,547.2 235.0 4.9
0.399917 96.1 373.9 383.0 471.3 2,379.5 260.8 5.6
0.499921 97.4 420.2 427.9 263.6 3,551.3 260.1 6.7
0.750024 116.6 596.7 407.7 202.7 7,184.4 264.3 7.9
1.000000 132.4 1,731.5 315.6 131.1 10,628.8 221.0 8.1

Average 57.3 518.4 231.5 621.1 1,308.1 246.5 3.9

†Ran only with presolve on, because it cannot be completely turned off for the CPLEX barrier method.
‡One constraint was added per iteration r. c

T
x M = 1010 was used as the bounding constraint.

§Average of 5 instances of LPs at each density.

For low density (0.03) problems, the introduction of multiple cuts reduced

the CPU times approximately 9% and 12% for SUB and RAD respectively. At high

density, however, the multi-cut algorithm adds fewer constraints per active-set iter-

ation r. Therefore the difference in CPU times between the single-cut and muti-cut

methods gets smaller as the density increases. Further details on the number of con-

straints added by the methods are given in Section 4.5.1.4. Note that multi-cut SUB

gets slower at high density by a much greater amount compared to multi-cut NRAD.

40

Table 4.7. Comparison of Computation Times to Illustrate the Effects of
COST NRAD, Multi-bound and Multi-cut on NNLP Problem Set 1 (Ran-
dom NNLP with 1,000 Variables and 200,000 Constraints, aij = 1 to 5, bi =
1 to 10, cj = 1 to 10)

SUB NRAD

bound single† multi single† multi single† multi single† multi
cut single single multi multi single single multi multi

Density CPU TIME‡, sec

0.005056 212.9 216.7 10.5 11.5 25.2 25.2 2.7 2.1
0.006023 236.2 240.3 12.0 11.9 29.0 30.0 3.0 2.4
0.007014 260.1 274.2 12.8 14.1 33.5 33.8 2.9 2.7
0.007999 257.3 269.8 13.0 13.5 37.1 32.5 2.8 2.5
0.009007 276.3 287.7 14.1 14.1 38.7 35.8 3.1 2.8
0.010000 282.6 294.9 14.8 15.0 36.5 36.9 3.1 2.8
0.019991 287.9 283.6 16.4 17.2 38.2 39.2 3.4 3.1
0.029987 267.6 272.5 16.3 18.2 37.9 40.5 3.5 3.3
0.040024 266.3 267.5 16.7 17.7 33.6 34.2 3.4 3.4
0.050009 246.4 246.0 15.9 16.8 32.4 33.4 3.5 3.4
0.059995 228.9 227.6 15.1 15.7 27.9 28.5 3.2 3.2
0.069983 236.6 231.1 15.5 15.8 27.0 27.1 3.4 3.4
0.080011 219.7 216.0 15.2 15.2 24.2 24.2 3.3 3.3
0.089992 217.9 215.2 15.0 15.0 22.4 22.2 3.4 3.4
0.099989 210.8 207.8 14.6 14.6 21.1 21.0 3.5 3.3
0.199977 227.7 229.9 18.0 17.8 15.0 15.1 4.2 4.3
0.300018 235.0 240.2 21.7 21.8 11.3 11.3 4.8 4.9
0.399917 260.8 268.3 28.3 28.6 10.3 10.4 5.2 5.6
0.499921 260.1 267.9 34.1 34.0 8.9 8.9 6.4 6.7
0.750024 264.3 272.0 57.7 57.6 8.5 8.5 8.1 7.9
1.000000 221.0 228.0 227.5 227.1 8.1 8.1 8.1 8.1

Average 246.5 250.3 28.8 29.2 25.1 25.1 4.0 3.9

†

c

T
x M = 1010 was used as the bounding constraint.

‡Average of 5 instances of LPs at each density.

The observation is attributed to the fact that NRAD’s sorting gets more efficient at

high density, as explained further in Section 4.5.1.3.

The effect of applying multi-bound is observed in multi-cut NRAD at low den-

sity (e.g. 2.7 seconds vs. 2.1 seconds at density 0.005), though the effect is much

smaller in magnitude than the other two factors.

4.5.1.2 Effects of Utilizing Factor I, Factor II, and Multiple Cuts

As discussed in Section 3.4.1, the parts of NRAD contributing to Factor I and

Factor II are COS and kaik
bi

respectively. A metric based on Factor II can be defined

41

Table 4.8. Comparison of Computation Times of SUB, COS, F
II

, and NRAD on
NNLP Problem Set 1

SUB COS FII NRAD

single
cuts†
[18]

multiple
cuts for
NNLP

single
cuts†
[28]

multiple
cuts for
NNLP

single
cuts†
[20]

multiple
cuts for
NNLP

single
cuts†

multiple
cuts for
NNLP

Density CPU TIME‡, sec

0.00506 212.9 11.5 113.9 6.4 28.7 2.4 25.2 2.1
0.00602 236.2 11.9 132.5 7.6 36.0 2.7 29.0 2.4
0.00701 260.1 14.1 130.2 7.7 41.1 3.2 33.5 2.7
0.00800 257.3 13.5 123.9 7.7 40.2 2.9 37.1 2.5
0.00901 276.3 14.1 130.9 8.1 43.7 3.2 38.7 2.8
0.01000 282.6 15.0 137.4 8.4 46.0 3.4 36.5 2.8
0.01999 287.9 17.2 115.9 8.2 49.9 3.8 38.2 3.1
0.02999 267.6 18.2 106.7 7.6 47.3 4.0 37.9 3.3
0.04002 266.3 17.7 90.3 7.0 44.4 4.1 33.6 3.4
0.05001 246.4 16.8 85.9 7.1 41.6 4.1 32.4 3.4
0.06000 228.9 15.7 73.9 6.6 36.1 4.0 27.9 3.2
0.06998 236.6 15.8 74.6 6.7 36.2 4.2 27.0 3.4
0.08001 219.7 15.2 65.3 6.5 31.8 4.0 24.2 3.3
0.08999 217.9 15.0 62.1 6.3 29.5 4.0 22.4 3.4
0.09999 210.8 14.6 62.8 6.6 27.7 4.1 21.1 3.3
0.19998 227.7 17.8 63.8 8.5 19.0 4.8 15.0 4.3
0.30002 235.0 21.8 70.6 11.0 14.6 5.4 11.3 4.9
0.39992 260.8 28.6 76.2 13.7 12.7 5.9 10.3 5.6
0.49992 260.1 34.0 81.0 16.9 10.8 6.8 8.9 6.7
0.75002 264.3 57.6 100.8 28.8 9.4 7.2 8.5 7.9
1.00000 221.0 227.1 102.7 102.6 8.4 8.4 8.1 8.1

Average 246.5 29.2 95.3 13.8 31.2 4.4 25.1 3.9
% of SUB [18] – 11.8 38.7 5.6 12.7 1.8 10.2 1.6

†One constraint was added per iteration r. c

T
x M = 1010 was used as the bounding constraint.

‡Average of 5 instances of LP at each density. Used CPLEX preprocessing parameters of Presolve = off and
Predual = off.

as F
II

(ai, bi) =
n
P

j=1

aij
bi
. A single-cut application of F

II

in an active-set framework

was proposed by Myers et al. [20]. CPU times in Table 4.8 show the effects of

utilizing Factor I, Factor II, and multiple cuts. Utilizing Factor I reduced the CPU

times to 39% of SUB. Utilizing Factor II further reduced the CPU times to 13%

of SUB. The application of both Factor I and Factor II achieved the reduction at

10%. Incorporating the multi-cut technique into the four methods further reduced

the computation time by 6 to 8 folds compared to single-cut version of each method.

42

4.5.1.3 Efficient Sorting of Constraints by the COST NRAD

The COST NRAD belongs to Prior COST as defined by Sung [3], Corley and

Rosenberger [4]. In Prior COST, all constraints are sorted accruing to the constraint

selection metric before iteratively solving Pr for x⇤
r. Thus NRAD does not depend on

x

⇤
r and does not need to be recalculated at each active-set iteration r.

Once the test problems were solved, the effectiveness of the prior sorting was

evaluated by plotting the distribution of constraints that were binding at optimality

against the NRAD sort order, as shown in Figure 4.1. At the highest density of 1,

NRAD was most efficient in sorting the likely binding constraints to the top. Binding

rows at optimality were found in the top 1.0% of the sorted list of constraints. The

distribution becomes wider at lower densities, but binding rows were found in the top

6.5% of the list even in the worst case. The steepness of the curves in Figure 4.1 is

notable as well. Across all densities, 95% of binding rows at optimality were found in

the top 1.8%, and 99% of binding rows at optimality were found in the top 3.0% of

the NRAD sorted constraints in the NNLP problem Set 1.

4.5.1.4 Number of Constraints Added

The active-set methods can also be compared by the number of constraints that

methods add. In Table 4.9, the COST NRAD is compared with the constraint selec-

tion methods SUB and VIOL of Adler et al. [18] and Zeleny [19], respectively. The

CPU times are provided as well for comparison. “Number of Constraints Added” rep-

resents the total added from (1.2), which includes constraints in both BOUNDING

and OPERATIV E sets. SUB and VIOL used a single bounding constraint as done

in previous work [18, 19]. NRAD utilized a multi-bound of Step 1 in the pseudocode.

43

0

20

40

60

80

100

0 1 2 3 4 5 6 7

%
 o

f B
in

di
ng

 C
on

st
ra

in
ts

 a
t O

pt
im

al
ity

Se

le
ct

ed
 b

y
N

R
A

D

% of NRAD Ordered List of Constraints

1.000 (1.0)
0.750 (1.4)
0.300 (2.2)
0.200 (2.5)
0.090 (2.7)
0.500 (2.7)
0.080 (2.8)
0.400 (2.8)
0.100 (3.1)
0.070 (3.2)
0.050 (3.3)
0.060 (3.3)
0.020 (3.4)
0.008 (3.9)
0.009 (3.9)
0.040 (4.0)
0.030 (4.2)
0.006 (5.1)
0.010 (5.9)
0.005 (6.4)
0.007 (6.5)

Legend:
Nominal density of
NNLP Set 1,
5 LPs at each density

(Top % of NRAD
ordered list of
constraints that
contained 100% of
binding constraints at
optimality)

Figure 4.1. Binding constraints at optimality found in NRAD-sorted list of con-
straints on NNLP problem Set 1 (random NNLP with 1,000 variables and 200,000
constraints, densities 0.005 to 1), average of 5 instances of LPs at each density.

Sorting was implemented by sorting arrays of pointers to the structures holding

row information using sort in ANSI C (Section A.5, line 10). Then a new block of

memory was allocated to copy the row structure in the order of the NRAD sorted

pointers (Section A.5, lines 17–43). This way, the steps in accessing the memory is

minimized during the active-set iterations, for example in violation check calculations.

For NNLP problem Set 1, the maximum CPU time required to calculate the NRAD

values, for the array of pointers, and copy the block of memory were 1.6, 0.1 and

3.3 seconds respectively. Their average times over all densities were 0.3, 0.1, and 0.7

seconds respectively.

44

Average computation times for SUB and VIOL were 246.5 and 118.5 seconds

respectively. They were faster than 518.4 and 621.1 seconds of CPLEX primal simplex

and dual simplex without the preprocessing. This shows the efficiency of utilizing an

active-set method itself for NNLP.

Among the three active-set methods, the COST NRAD which utilizes multiple

cuts had the shortest CPU time by an order of magnitude. Since NRAD adds a group

of constraints per iteration r, the total number of calls to the dual simplex algorithm

was much lower at 33.2 times on average, when compared to 3818.6 and 942.3 times

for SUB and VIOL respectively.

Although VIOL on average added about the same number of constraints as

NRAD and added a higher percentage of constraints that were binding at optimality,

the computation time was much slower. The reason is that VIOL depends on x

⇤
r thus

makes use of posterior information. The CPU time required to calculate VIOL at

each iteration r outweighed the benefit it gained from utilizing the local information

x

⇤
r. NRAD had an advantage as a prior COST.

The last set of columns labeled “% Reduction in # of Original Constraints at

Method’s Optimal Solution” shows the amount of constraints not added, or effectively

eliminated by each method. The three active-set methods did well in this measure.

Even the random SUB achieved 98.1% elimination on average.

4.5.1.5 Varying m/n Ratio

The third set of random NNLPs was generated to examine the effect of varying

the dimensions of the matrix A. Five problems were generated at each of the 21

densities at m/n ratios of 20, 2, and 1, resulting in additional 315 problem instances.

For all NNLP problems in the third set, i.e. problems with a square or narrow

(m � n) A matrix, NRAD was faster than any of the CPLEX methods, except

45

Ta
bl

e
4.

9.
C

om
pa

ris
on

of
C

om
pu

ta
tio

n
T

im
es

of
C

O
ST

N
R

A
D

an
d

N
on

-C
O

ST
M

et
ho

ds
,

SU
B

an
d

V
IO

L
on

N
N

LP
P

ro
bl

em
Se

t
1

(R
an

do
m

N
N

LP
w

ith
1,

00
0

Va
ria

bl
es

an
d

20
0,

00
0

C
on

st
ra

in
ts

,a
ij
=

1
to

5,
b i
=

1
to

10
,c

j
=

1
to

10
)

D
en

si
ty

C
P

U
T

IM
E
†

,
se

c
N

um
be

r
of

A
dd

ed
C

on
st

ra
in

ts
%

of
C

on
st

ra
in

ts
A

dd
ed

by
%

R
ed

uc
ti

on
in

#
of

O
ri

gi
na

l
(a

nd
nu

m
be

r
of

it
er

at
io

ns
r

fo
r

R
A

D
)†

M
et

ho
d

an
d

al
so

B
in

di
ng

at
C

on
st

ra
in

ts
at

M
et

ho
d’

s
O

pt
im

al
O

pt
im

al
it
y†

So
lu

ti
on

†

SU
B

‡

V
IO

L
‡

N
R

A
D

SU
B

‡

V
IO

L
‡

N
R

A
D

SU
B

‡

V
IO

L
‡

N
R

A
D

SU
B

‡

V
IO

L
‡

N
R

A
D

0.
00

50
56

21
2.

9
43

.3
2.

1
6,

54
2.

2
1,

68
5.

6
1,

58
8.

4
(7

.4
)

11
.1

43
.1

45
.7

96
.7

99
.2

99
.2

0.
00

60
23

23
6.

2
49

.0
2.

4
6,

38
5.

8
1,

64
7.

8
1,

55
1.

8
(7

.4
)

11
.2

43
.3

45
.9

96
.8

99
.2

99
.2

0.
00

70
14

26
0.

1
52

.4
2.

7
6,

32
2.

6
1,

58
8.

4
1,

50
8.

6
(7

.0
)

10
.9

43
.3

45
.6

96
.8

99
.2

99
.2

0.
00

79
99

25
7.

3
51

.8
2.

5
6,

05
8.

6
1,

50
3.

0
1,

44
0.

2
(7

.4
)

11
.1

44
.8

46
.7

97
.0

99
.2

99
.3

0.
00

90
07

27
6.

3
56

.9
2.

8
6,

11
1.

2
1,

49
8.

8
1,

42
4.

4
(8

.0
)

10
.9

44
.5

46
.8

96
.9

99
.3

99
.3

0.
01

00
00

28
2.

6
59

.1
2.

8
5,

92
7.

2
1,

46
2.

6
1,

39
6.

2
(7

.8
)

11
.0

44
.6

46
.8

97
.0

99
.3

99
.3

0.
01

99
91

28
7.

9
67

.3
3.

1
5,

01
4.

4
1,

19
6.

8
1,

18
1.

8
(9

.6
)

11
.5

48
.0

48
.7

97
.5

99
.4

99
.4

0.
02

99
87

26
7.

6
75

.8
3.

3
4,

40
5.

6
1,

07
8.

6
1,

07
4.

6
(1

0.
6)

11
.9

48
.7

48
.9

97
.8

99
.5

99
.5

0.
04

00
24

26
6.

3
81

.2
3.

4
4,

16
6.

0
98

3.
2

1,
01

0.
6

(1
2.

6)
11

.7
49

.7
48

.4
97

.9
99

.5
99

.5
0.

05
00

09
24

6.
4

88
.3

3.
4

3,
81

0.
0

92
8.

0
97

1.
4

(1
3.

4)
12

.5
51

.2
48

.9
98

.1
99

.5
99

.5
0.

05
99

95
22

8.
9

90
.9

3.
2

3,
55

8.
2

85
9.

4
91

0.
6

(1
4.

0)
12

.1
50

.3
47

.4
98

.2
99

.6
99

.5
0.

06
99

83
23

6.
6

99
.2

3.
4

3,
44

1.
2

83
2.

2
88

6.
0

(1
5.

8)
12

.2
50

.6
47

.5
98

.3
99

.6
99

.6
0.

08
00

11
21

9.
7

10
1.

4
3.

3
3,

22
1.

2
78

0.
4

85
7.

8
(1

6.
8)

12
.1

50
.0

45
.5

98
.4

99
.6

99
.6

0.
08

99
92

21
7.

9
10

7.
3

3.
4

3,
10

7.
0

75
3.

0
81

9.
8

(1
7.

6)
12

.6
51

.9
47

.7
98

.4
99

.6
99

.6
0.

09
99

89
21

0.
8

11
0.

4
3.

3
3,

00
3.

8
71

3.
4

80
2.

8
(1

8.
2)

13
.1

55
.1

49
.0

98
.5

99
.6

99
.6

0.
19

99
77

22
7.

7
16

6.
9

4.
3

2,
32

3.
2

56
9.

8
69

3.
2

(2
7.

8)
13

.4
54

.8
45

.0
98

.8
99

.7
99

.7
0.

30
00

18
23

5.
0

19
9.

9
4.

9
1,

92
5.

4
47

5.
4

60
3.

6
(3

5.
0)

13
.8

56
.0

44
.1

99
.0

99
.8

99
.7

0.
39

99
17

26
0.

8
22

7.
1

5.
6

1,
68

6.
2

41
5.

4
55

6.
0

(4
3.

4)
13

.7
55

.6
41

.5
99

.2
99

.8
99

.7
0.

49
99

21
26

0.
1

23
8.

6
6.

7
1,

46
8.

4
35

4.
2

49
8.

4
(5

0.
4)

14
.2

58
.7

41
.7

99
.3

99
.8

99
.8

0.
75

00
24

26
4.

3
27

5.
9

7.
9

1,
04

2.
2

27
8.

0
39

5.
2

(7
1.

8)
15

.5
58

.3
41

.0
99

.5
99

.9
99

.8
1.

00
00

00
22

1.
0

24
5.

3
8.

1
67

0.
6

18
5.

0
29

5.
6

(2
94

.6
)

16
.6

60
.0

37
.6

99
.7

99
.9

99
.9

A
ve

ra
ge

24
6.

5
11

8.
5

3.
9

3,
81

8.
6

94
2.

3
97

4.
6

(3
3.

2)
12

.5
50

.6
45

.7
98

.1
99

.5
99

.5

†

A
ve

ra
ge

of
5

in
st

an
ce

s
of

L
P

s
at

ea
ch

de
ns

it
y.

‡

O
ne

co
ns

tr
ai

nt
w

as
ad

de
d

pe
r

it
er

at
io

n
r

[1
8,

19
].

c

T
x

M

=
1
0
1
0

w
as

us
ed

as
th

e
bo

un
di

ng
co

ns
tr

ai
nt

.

46

for problems with a ratio of m/n = 20 and a density less than or equal to 0.009.

In this small fraction of problems, the CPLEX barrier was minimally faster. The

overall superior performance of NRAD is apparent across all densities and m/n ratios

if plotted as shown in Figure 4.2. For problems P with short-and-wide A matrix

(m < n), the dual of P with a corresponding dual version of NRAD can be used to

optimize P. The dual form of NRAD is

j⇤ 2 argmin
j /2OPERATIV E

a

jT
b

cj

�

�

�

�

�

a

jT
y

⇤
r < cj

!

,

where a

j is the jth column of A.

4.5.2 LP

Computational results for the CPLEX primal simplex, dual simplex, and barrier

solvers for the general LP set are presented in Table 4.11. CPU times for the COST

GRAD with multi-cut, as well as the COST NRAD with multi-bound and multi-

cut are shown for comparison. The CPU times for GRAD were faster than the

CPLEX primal simplex, the CPLEX dual simplex, and the CPLEX barrier linear

programming solvers at densities between 0.02 and 1. Between densities 0.005 and

0.01, CPLEX barrier was up to 4.0 times faster than GRAD. On average, GRAD was

7.0 times faster than NRAD and 14.6 times faster than the fastest CPLEX solver —

dual simplex.

4.5.2.1 Influences of the COST GRAD and Multi-cut

In constructing a constraint selection metric for general LPs, a natural strategy

might be to have the metric give priority to those constraints with either “as large

positive aij and large positive cj with small bi as possible,” or “as small negative aij

47

Ta
bl

e
4.

10
.

C
om

pa
ris

on
of

C
om

pu
ta

tio
n

T
im

es
of

C
P

LE
X

an
d

C
O

ST
N

R
A

D
M

et
ho

ds
on

R
an

do
m

N
N

LP
P

ro
bl

em
Se

t
3,

Va
ry

in
g
m
/n

R
at

io
(R

an
do

m
N

N
LP

w
ith

a
ij
=

1
to

5,
b i
=

1
to

10
,c

j
=

1
to

10
)

N
R

A
D

C
P

L
E

X
P

ri
m

al
Si

m
pl

ex
†

C
P

L
E

X
D

ua
l
Si

m
pl

ex
†

C
P

L
E

X
B

ar
ri

er
†

n
1,

00
0

3,
16

3
10

,0
00

14
,1

43
1,

00
0

3,
16

3
10

,0
00

14
,1

43
1,

00
0

3,
16

3
10

,0
00

14
,1

43
1,

00
0

3,
16

3
10

,0
00

14
,1

43
m

20
0,

00
0

63
,2

46
20

,0
00

14
,1

43
20

0,
00

0
63

,2
46

20
,0

00
14

,1
43

20
0,

00
0

63
,2

46
20

,0
00

14
,1

43
20

0,
00

0
63

,2
46

20
,0

00
14

,1
43

m
/
n

20
0

20
2

1
20

0
20

2
1

20
0

20
2

1
20

0
20

2
1

N
om

in
al

D
en

si
ty

C
P

U
T

im
e

(s
ec

),
av

er
ag

e
of

5
in

st
an

ce
s

of
L
P

s
at

ea
ch

de
ns

it
y

0.
00

5
2.

1
32

.3
12

4.
0

13
3.

9
6.

8
73

.4
51

7.
5

56
6.

1
50

.0
79

4.
5

1,
62

5.
3

1,
63

5.
3

2.
7

24
.9

62
6.

3
1,

69
3.

9
0.

00
6

2.
4

32
.1

10
7.

0
13

2.
6

10
.1

79
.5

47
7.

6
54

1.
2

58
.8

87
8.

1
1,

57
2.

8
2,

07
7.

5
3.

2
27

.1
63

1.
2

1,
77

1.
8

0.
00

7
2.

7
33

.0
10

7.
1

11
7.

7
12

.6
83

.1
48

4.
0

54
8.

3
87

.0
89

0.
8

1,
46

9.
0

1,
30

8.
9

4.
2

28
.2

63
4.

3
1,

65
3.

3
0.

00
8

2.
5

32
.5

98
.5

99
.4

15
.3

80
.8

48
3.

4
48

3.
6

99
.2

88
1.

0
1,

40
1.

7
2,

14
7.

7
5.

2
32

.3
62

1.
2

1,
69

5.
7

0.
00

9
2.

8
33

.5
93

.8
91

.9
18

.6
82

.9
46

3.
4

47
2.

8
11

3.
4

93
2.

1
1,

33
6.

8
2,

03
1.

4
7.

3
33

.0
62

5.
6

1,
67

9.
4

0.
01

2.
8

32
.0

85
.0

91
.1

22
.5

85
.0

44
0.

2
47

8.
9

12
4.

8
91

3.
7

1,
28

3.
9

2,
00

3.
2

9.
8

33
.8

62
8.

6
1,

64
0.

5
0.

02
3.

1
25

.2
54

.3
50

.9
40

.8
84

.7
40

7.
5

41
0.

8
19

5.
5

93
0.

4
77

7.
3

76
3.

9
36

.9
45

.2
68

7.
9

1,
78

0.
4

0.
03

3.
3

21
.3

38
.7

39
.5

46
.4

78
.0

40
8.

9
43

7.
1

22
1.

9
1,

21
9.

0
61

5.
1

60
9.

0
59

.0
67

.4
73

0.
4

1,
80

2.
6

0.
04

3.
4

19
.6

32
.6

34
.1

50
.9

72
.2

53
4.

2
49

9.
4

23
8.

1
1,

50
4.

6
45

3.
2

97
8.

7
82

.6
91

.8
81

7.
3

1,
92

2.
4

0.
05

3.
4

17
.3

29
.3

30
.3

52
.4

73
.4

63
1.

4
59

4.
7

25
1.

7
1,

97
8.

1
42

3.
8

57
7.

7
11

1.
8

12
3.

7
89

7.
4

2,
06

5.
0

0.
06

3.
2

16
.7

27
.0

27
.2

58
.1

71
.5

71
1.

8
69

2.
0

23
7.

0
2,

01
8.

3
36

2.
4

53
4.

0
13

4.
4

16
2.

0
97

1.
7

2,
29

4.
0

0.
07

3.
4

14
.5

25
.7

26
.4

62
.2

73
.2

81
4.

2
88

2.
2

24
1.

1
2,

48
1.

6
31

9.
3

43
9.

2
16

8.
9

19
5.

9
1,

14
4.

9
2,

44
2.

9
0.

08
3.

3
14

.7
22

.8
25

.1
64

.9
72

.4
91

9.
9

95
4.

7
25

5.
0

2,
85

5.
7

30
2.

4
68

2.
6

20
7.

7
23

7.
0

1,
24

4.
6

2,
64

1.
7

0.
09

3.
4

13
.0

24
.0

22
.9

63
.9

72
.4

1,
13

5.
1

81
4.

9
24

6.
8

2,
61

9.
2

27
7.

4
34

8.
9

26
3.

2
30

4.
6

1,
35

9.
9

2,
73

3.
1

0.
1

3.
3

13
.5

21
.6

22
.4

68
.3

75
.8

1,
16

3.
3

77
5.

8
27

7.
4

2,
22

6.
2

25
2.

7
39

5.
1

30
8.

3
34

3.
6

1,
47

0.
7

‡
0.

2
4.

3
10

.8
19

.5
20

.6
79

.8
75

.9
91

9.
2

62
0.

4
28

9.
8

1,
41

5.
1

18
9.

3
35

2.
0

77
4.

1
1,

10
4.

5
‡

‡
0.

3
4.

9
11

.1
18

.9
19

.9
87

.1
75

.2
83

1.
3

55
8.

7
33

9.
0

1,
26

7.
8

14
8.

9
27

1.
1

1,
54

7.
2

2,
44

0.
0

‡
‡

0.
4

5.
6

11
.4

19
.1

19
.1

96
.1

85
.4

79
3.

9
55

2.
3

38
3.

0
1,

30
9.

5
13

9.
0

22
8.

8
2,

37
9.

5
‡

‡
‡

0.
5

6.
7

10
.8

18
.6

19
.7

97
.4

84
.9

77
2.

6
50

7.
9

42
7.

9
1,

10
6.

9
14

2.
1

19
2.

1
‡

‡
‡

‡
0.

75
7.

9
10

.7
17

.1
18

.2
11

6.
6

10
2.

2
65

4.
2

49
2.

9
40

7.
7

1,
07

0.
8

14
1.

5
19

6.
2

‡
‡

‡
‡

1
8.

1
12

.8
17

.9
19

.9
13

2.
4

11
1.

5
44

0.
7

34
9.

7
31

5.
6

71
7.

1
16

9.
0

19
5.

9
‡

‡
‡

‡

A
ve

ra
ge

3.
9

19
.9

47
.7

50
.6

57
.3

80
.6

66
6.

9
58

2.
6

23
1.

5
1,

42
9.

1
63

8.
2

85
5.

7
n/

a
n/

a
n/

a
n/

a

†

P
re

so
lv

e
=

O
N

,
P

re
du

al
=

A
ut

o
‡

R
un

s
w

it
h

C
P

U
ti

m
es

>
3
,
0
0
0

se
co

nd
s

ar
e

no
t

re
po

rt
ed

.

48

0 50

10
0

15
0

20
0

25
0

30
0

35
0

0
0.

02

0.
04

0.

06

0.
08

0.

1

CPU Time (sec)

D
en

si
ty

n=
1,

00
0;

 m
=2

00
,0

00

B
ar

rie
r

R
A

D

0 50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

0
0.

02

0.
04

0.

06

0.
08

0.

1

CPU Time (sec)

D
en

si
ty

n=
3,

16
3;

 m
=6

3,
24

6

B
ar

rie
r

R
A

D

0
20

0
40

0
60

0
80

0
10

00

12
00

14

00

16
00

 0
0.

02

0.
04

0.

06

0.
08

0.

1

CPU Time (sec)

D
en

si
ty

n=
10

,0
00

; m
=2

0,
00

0

B
ar

rie
r

R
A

D

0

50
0

10
00

15
00

20
00

25
00

30
00

 0
0.

02

0.
04

0.

06

0.
08

0.

1
CPU Time (sec)

D
en

si
ty

n=
14

,1
43

; m
=1

4,
14

3

B
ar

rie
r

R
A

D

Fi
gu

re
4.

2.
G

ra
ph

ic
al

re
pr

es
en

ta
tio

n
of

C
P

U
tim

es
fo

rC
P

LE
X

ba
rr

ie
ra

nd
C

O
ST

N
R

A
D

pr
es

en
te

d
in

Ta
bl

e
4.

10

49

Table 4.11. Comparison of Computation Times of CPLEX and COST GRAD
Methods on General LP Problem Set

CPLEX Pri-
mal Simplex

CPLEX Dual
Simplex

CPLEX Bar-
rier

GRAD with
multiple cuts
for LP

NRAD with
multiple cuts
for NNLP

Presolve On On On Off Off
Predual Auto Auto Auto Off Off

Density CPU TIME†(std. dev.), sec

0.00505 41.1 (2.3) 21.6 (1.4) 2.4 (0.1) 9.4 (1.8) 15.0 (0.8)
0.00602 86.0 (8.2) 36.6 (1.1) 2.9 (0.1) 11.4 (1.8) 21.5 (4.7)
0.00701 134.8 (7.8) 49.3 (3.2) 4.6 (0.3) 15.3 (0.5) 27.4 (3.9)
0.00801 186.5 (11.1) 65.6 (4.3) 7.8 (0.4) 14.8 (2.3) 31.4 (3.6)
0.00900 215.3 (17.5) 84.8 (9.8) 9.3 (0.3) 13.4 (0.4) 33.9 (5.2)
0.01000 263.2 (18.1) 100.5 (11.9) 11.2 (0.2) 16.4 (1.8) 36.6 (5.3)
0.02000 412.0 (25.2) 223.3 (20.3) 27.4 (1.1) 25.8 (2.0) 69.1 (6.5)
0.03001 503.7 (46.3) 317.4 (28.9) 45.8 (1.3) 26.9 (1.9) 100.7 (8.5)
0.04000 575.2 (40.1) 389.2 (34.0) 64.9 (3.9) 27.6 (0.5) 103.6 (4.8)
0.04999 672.5 (94.3) 427.4 (37.2) 82.9 (3.9) 34.5 (2.2) 132.2 (7.0)
0.06000 718.3 (80.0) 497.9 (38.5) 99.9 (5.5) 32.5 (2.3) 130.4 (4.3)
0.07000 841.0 (119.0) 531.1 (44.2) 125.4 (9.8) 34.5 (0.8) 142.0 (4.7)
0.08001 835.0 (95.8) 570.5 (42.5) 145.0 (14.7) 32.5 (2.4) 150.7 (14.3)
0.08999 930.6 (111.0) 595.8 (50.0) 176.3 (27.0) 34.9 (1.2) 160.4 (10.3)
0.10000 1,029.9 (131.4) 627.8 (21.5) 203.1 (11.0) 36.2 (2.3) 175.2 (12.6)
0.20001 1,667.8 (293.8) 857.8 (68.5) 553.2 (21.2) 50.4 (3.7) 266.4 (18.9)
0.30001 1,939.7 (185.5) 1,016.9 (69.2) 1,097.9 (90.4) 55.8 (5.7) 273.0 (22.1)
0.40000 2,535.9 (857.5) 1,173.3 (117.7) 1,684.0 (124.8) 70.0 (6.4) 403.1 (48.0)
0.50001 2,383.3 (466.3) 1,421.3 (153.3) 2,480.3 (156.1) 79.4 (7.2) 460.1 (31.9)
0.75000 2,727.7 (287.1) 1,775.3 (168.8) 5,026.2 (217.4) 107.2 (13.8) 712.5 (62.9)
1.00000 2,972.7 (397.2) 1,904.8 (203.3) 8,463.6 (950.4) 138.5 (7.4) 2,600.9 (188.1)

Average
(pooled stan-
dard deviation)

1,032.0 (257.0) 604.2 (78.3) 967.3 (218.3) 41.3 (4.5) 287.9 (45.9)

†Average of 5 instances of LP at each density.

and small negative cj with large bi as possible.” However, when solving LP utilizing

NRAD (3.2), the constraint selection metric is

NRAD(ai, bi, c) =
n
X

j=1,cj>0

aijcj
bi

+
n
X

j=1,cj<0

aijcj
bi

, (4.1)

if the terms for cj > 0 and cj < 0 are explicitly written out. The first term follows

the general strategy, except when bi becomes negative. The second term should be

subtracted, instead of added, from the first term in order for the constraint selection

metric to take a higher value when giving priority to “as small negative aij and small

50

negative cj with large bi as possible.” The bi in the second term should also be positive

for the metric to work additively.

To examine the effect of changing the form from NRAD (4.1) to GRAD, several

intermediate variations are tested and presented in Table 4.12. The results utilizing

SUB are also shown in the table for comparison. The first variation,

NRADvariation1 (ai, bi, c) =
n
X

j=1,cj>0

aijcj
bi

, (4.2)

is a version only considering the cj > 0 term of (4.1). The test problems of Table 4.3

did not have any constraints with bi = 0, therefore the case was not specially handled.

The second version,

NRADvariation2 (ai, bi, c) =
n
X

j=1,cj>0

aijcj
b+i

, (4.3)

is (4.2) with b+i , which was defined in (3.10). Variation 3,

NRADvariation3 (ai, bi, c) =
n
X

j=1,cj>0

aijcj
b+i
�

n
X

j=1,cj<0

aijcj
b+i

,

incorporates a subtractive term to (4.3). This version was previously described (3.11)

but shown here again for clarity. Finally, GRAD is obtained by changing the second

term of (3.11) to consider only the intercept, bi
aij

, of the hyperplane a

T

i x = bi and the

axis for xj. For calculation of b+i , " = 10�10 was used for all results presented.

Results for SUB and NRAD from Table 4.12 show that the multi-cut method for

LP reduced CPU times by 56 to 57% over the multi-cut method for NNLP, supporting

the importance of having both positive and negative aij for every variable xj in

forming a set of cuts for each iteration of an active-set method for LP. The rest of

the comparisons are made with those methods utilizing the multi-cut method for LP.

51

Table 4.12. Comparison of Computation Times to Illustrate the Effects
of Muti-cut, NRAD and GRAD on General LP Problem Set

Constraint Selection Metric†

SUB SUB NRAD NRAD NRAD
Varia-
tion 1
(4.2)

NRAD
Varia-
tion 2
(4.3)

NRAD
Varia-
tion 3
(3.11)

GRAD

multiple
cuts for
NNLP

multiple
cuts for
LP

multiple
cuts for
NNLP

multiple
cuts for
LP

multiple cuts for LP

Density CPU TIME‡, sec

0.00505 16.2 14.5 15.0 13.9 14.0 10.1 11.2 9.4
0.00602 16.8 15.1 21.5 15.7 15.5 10.8 13.0 11.4
0.00701 22.9 17.9 27.4 18.6 22.1 12.4 18.5 15.3
0.00801 30.9 19.3 31.4 21.0 24.2 13.7 20.7 14.8
0.00900 31.2 22.4 33.9 22.4 21.7 14.2 17.9 13.4
0.01000 31.8 28.6 36.6 28.8 25.8 15.4 19.7 16.4
0.02000 73.5 57.0 69.1 53.4 53.3 23.9 34.7 25.8
0.03001 98.2 79.6 100.7 73.5 66.7 27.9 38.3 26.9
0.04000 111.4 83.4 103.6 75.8 76.4 29.6 40.7 27.6
0.04999 144.6 100.1 132.2 87.3 90.1 38.7 49.9 34.5
0.06000 148.5 106.3 130.4 91.7 93.3 35.9 47.1 32.5
0.07000 160.0 109.4 142.0 93.8 108.5 39.6 52.2 34.5
0.08001 179.0 116.6 150.7 98.4 98.5 37.5 49.4 32.5
0.08999 191.0 122.8 160.4 102.8 111.5 38.8 53.2 34.9
0.10000 201.1 133.5 175.2 111.4 112.5 41.6 57.7 36.2
0.20001 312.7 196.1 266.4 166.6 176.6 57.5 83.3 50.4
0.30001 389.0 246.0 273.0 168.5 195.4 59.2 98.2 55.8
0.40000 566.8 344.5 403.1 238.0 254.7 74.6 119.8 70.0
0.50001 734.8 431.0 460.1 284.9 299.5 90.9 136.1 79.4
0.75000 1,158.4 614.8 712.5 379.7 430.7 113.0 186.2 107.2
1.00000 3,662.7 774.6 2,600.9 455.4 522.1 134.8 236.9 138.5

Average 394.4 173.0 287.9 123.9 134.0 43.8 65.9 41.3

†Used CPLEX preprocessing parameters of Presolve = off and Predual = off.
‡Average of 5 instances of LP at each density.

For densities between 0.005 and 0.09, SUB, NRAD and variation 1 (4.2) of

NRAD performed about the same. Introducing the use of b+i in (4.3), (3.9) and

(3.11) significantly improved the CPU times over (4.2). Between (3.11) and (4.3),

(4.3) which only considered the cj > 0 term was faster. Going from (4.3) to GRAD,

including a second term to utilize the intercept term for cj < 0 improved the CPU

time slightly more, 5.7% on average.

The COST GRAD with multiple cuts for LP was also tested on NNLP problem

Set 1, as shown in Table 4.13. The results confirm that the methods perform equally

52

Table 4.13. Comparison of Computation Times of
NRAD and GRAD on NNLP Problem Set 1

CPU TIME†, sec

Density COST NRAD COST GRAD

0.00505 2.1 2.1
0.00602 2.4 2.5
0.00701 2.7 2.7
0.00800 2.5 2.6
0.00900 2.8 2.8
0.01000 2.8 2.8
0.02000 3.1 3.2
0.03000 3.3 3.4
0.04001 3.4 3.5
0.05000 3.4 3.5
0.06000 3.2 3.4
0.06999 3.4 3.6
0.08001 3.3 3.6
0.08999 3.4 3.7
0.10000 3.3 3.7
0.19999 4.3 4.9
0.30001 4.9 5.8
0.40000 5.6 6.9
0.49998 6.7 8.3
0.75001 7.9 10.3
1.00000 8.1 11.5

Average 3.9 4.5

†Average of 5 instances of LP at each density. Used CPLEX preprocessing
parameters of Presolve = off and Predual = off.

for NNLP. Although the constraint selection metric becomes exactly the same between

the two methods when running NNLP, slight increase in CPU times for the COST

GRAD occurs because of the time it takes for the algorithm to determine whether

the problem is an NNLP (pseudocode in Section 3.5.2, Step 1, lines 1 through 8).

In case of solving NNLP with the GRAD, this check allows the multi-cut procedure

to stop searching for negative aij if there are no constraints with negative aij in

INOPERATIV E set.

4.5.2.2 Number of Constraints Added

In Table 4.14, CPU times and the number of constraints added during com-

putation of the test problems by GRAD (both single-cut and multi-cut versions) are

compared with the constraint selection methods SUB and VIOL of Adler et al. [18]

53

and Zeleny [19], respectively. “Number of Constraints Added” reflects the number of

constraints added in OPERATIV E set, but not the artificial bounding constraint

c

T

x M . To implement SUB and VIOL as in previous work, a single bounding

constraint cTx M = 1010 was used.

Although the single-cut SUB performed comparably with the CPLEX dual

simplex with the default preprocessing parameter settings in solving NNLP, SUB is

much slower when solving LP. However, as shown above in Table 4.12, the CPU

times for SUB greatly improves to 173.0 seconds from 4515.6 seconds on average,

faster than 604.2 seconds for the CPLEX dual simplex, once the multi-cut procedure

is incorporated.

For the NNLP Set 1, the 25.1 seconds of the single-cut version of NRAD was

faster than 118.5 second for VIOL on average, whereas for the general LP set, the 615.7

seconds of the single-cut version of GRAD was slower than 525.1 seconds for VIOL

on average. However the COST GRAD, which incorporates multi-cut, outperformed

VIOL with multi-cut. The respective times were compared at 41.3 seconds vs. 82.9

seconds on average.

In general, a method that makes use of posterior information such as VIOL

adds fewer constraints and thus adds a higher percentage of binding constraints at

optimality. But this comes at a cost of extra computation time required to rank the

set of inoperative constraints at every iteration r. The data in Table 4.14 confirmed

that single-cut VIOL added the fewest number of constraints (2,012 on average). The

advantage of not re-sorting the constraints at every r for a prior method, i.e. GRAD,

became apparent when multi-cut is applied. In multi-cut VIOL, violating inoperative

constraints had to be re-sorted in descending order of violation at every iteration r.

Comparing the CPU times with and without the multiple cuts, the reduction

in CPU times was greater for GRAD than in NRAD. For NRAD, the reduction was
54

about six-fold (from 25.1 to 3.9 seconds) on average. The CPU times for GRAD

reduced about 14-fold (from 615.7 seconds to 41.3 seconds).

55

Ta
bl

e
4.

14
.

C
om

pa
ris

on
of

C
om

pu
ta

tio
n

T
im

es
of

C
O

ST
G

R
A

D
an

d
N

on
-C

O
ST

M
et

ho
ds

,S
U

B
an

d
V

IO
L

on
G

en
er

al
LP

P
ro

bl
em

Se
t

D
en

si
ty

C
P

U
T

IM
E
†

,
se

c
N

um
be

r
of

A
dd

ed
C

on
st

ra
in

ts
%

of
C

on
st

ra
in

ts
A

dd
ed

by
(a

nd
nu

m
be

r
of

it
er

at
io

ns
r

fo
r

m
ul

ti
-c

ut
m

et
ho

ds
)†

M
et

ho
d

an
d

al
so

B
in

di
ng

at
O

pt
im

al
it
y†

SU
B

V
IO

L
G

R
A

D
SU

B
V

IO
L

G
R

A
D

SU
B

V
IO

L
G

R
A

D

SC
‡

M
C

k

SC
§

M
C

k

SC
¶

M
C

k

SC
‡

M
C

k

SC
§

M
C

k

SC
¶

M
C

k

SC
‡

M
C

k

SC
§

M
C

k

SC
¶

M
C

k

0.
00

50
5

24
6.

0
14

.5
12

0.
1

15
.1

14
9.

1
9.

4
8,

04
1

7,
36

3
(1

2.
8)

2,
91

1
7,

00
2

(1
1.

8)
6,

13
3

6,
12

9
(1

0.
8)

10
.4

11
.4

28
.7

11
.9

13
.6

13
.6

0.
00

60
2

32
4.

8
15

.1
14

5.
8

17
.6

18
8.

0
11

.4
8,

15
4

7,
26

4
(1

2.
8)

2,
90

4
6,

75
1

(1
2.

4)
6,

09
4

5,
80

1
(1

1.
0)

10
.2

11
.5

28
.7

12
.4

13
.7

14
.4

0.
00

70
1

40
8.

7
17

.9
16

6.
7

18
.5

22
3.

4
15

.3
8,

20
5

7,
19

3
(1

3.
6)

2,
83

4
6,

39
3

(1
2.

8)
6,

01
4

5,
63

8
(1

1.
6)

10
.1

11
.5

29
.2

12
.9

13
.8

14
.7

0.
00

80
1

45
8.

6
19

.3
17

9.
7

20
.9

25
6.

1
14

.8
8,

16
5

7,
06

8
(1

4.
2)

2,
76

7
6,

14
4

(1
2.

4)
5,

98
5

5,
51

4
(1

1.
4)

10
.0

11
.5

29
.4

13
.2

13
.6

14
.7

0.
00

90
0

54
5.

4
22

.4
19

3.
4

23
.0

29
6.

0
13

.4
8,

12
9

7,
00

1
(1

5.
0)

2,
68

5
6,

03
1

(1
3.

6)
5,

84
5

5,
38

7
(1

2.
0)

9.
9

11
.5

29
.9

13
.3

13
.7

14
.9

0.
01

00
0

62
8.

5
28

.6
21

7.
4

24
.3

29
9.

6
16

.4
8,

22
8

7,
00

9
(1

6.
0)

2,
70

5
5,

72
5

(1
3.

4)
5,

72
6

5,
14

3
(1

2.
0)

9.
8

11
.5

29
.8

14
.1

14
.1

15
.7

0.
02

00
0

1,
46

3
57

.0
30

2.
2

31
.5

49
1.

9
25

.8
7,

97
4

6,
59

7
(2

1.
8)

2,
34

1
4,

42
3

(1
5.

0)
5,

20
8

4,
46

5
(1

5.
4)

9.
5

11
.4

32
.2

17
.0

14
.5

16
.9

0.
03

00
1

2,
52

1
79

.6
35

6.
8

37
.2

53
6.

2
26

.9
7,

57
0

6,
23

7
(2

6.
4)

2,
16

3
3,

87
5

(1
7.

4)
4,

55
7

3,
82

6
(1

6.
6)

9.
6

11
.6

33
.4

18
.7

15
.9

18
.9

0.
04

00
0

2,
55

2
83

.4
34

6.
9

36
.7

60
0.

2
27

.6
7,

34
7

6,
02

4
(3

0.
8)

2,
05

5
3,

49
6

(1
8.

6)
4,

38
6

3,
68

5
(2

0.
4)

9.
5

11
.5

33
.8

19
.9

15
.8

18
.8

0.
04

99
9

3,
34

4
10

0.
1

40
0.

1
41

.4
72

4.
3

34
.5

7,
35

4
6,

11
2

(3
6.

8)
2,

00
9

3,
31

8
(2

0.
8)

4,
31

7
3,

63
4

(2
2.

4)
9.

5
11

.4
34

.6
21

.0
16

.1
19

.2
0.

06
00

0
3,

34
6

10
6.

3
37

8.
5

38
.8

64
4.

2
32

.5
7,

06
7

5,
86

4
(4

0.
2)

1,
86

0
3,

02
8

(2
1.

6)
3,

94
9

3,
32

6
(2

4.
0)

9.
3

11
.3

35
.5

21
.8

16
.7

19
.8

0.
07

00
0

4,
48

0
10

9.
4

41
4.

9
41

.0
65

4.
1

34
.5

6,
92

3
5,

78
0

(4
4.

4)
1,

84
3

2,
90

5
(2

3.
2)

3,
92

7
3,

32
3

(2
6.

0)
9.

6
11

.5
36

.1
22

.9
16

.9
20

.0
0.

08
00

1
4,

35
7

11
6.

6
42

6.
4

40
.1

70
8.

3
32

.5
6,

85
1

5,
73

7
(4

8.
6)

1,
80

3
2,

72
4

(2
4.

0)
3,

60
0

3,
03

5
(2

6.
4)

9.
5

11
.3

35
.9

23
.8

18
.0

21
.3

0.
08

99
9

4,
44

8
12

2.
8

42
8.

1
42

.3
59

5.
8

34
.9

6,
72

7
5,

65
8

(5
2.

8)
1,

74
3

2,
63

6
(2

5.
6)

3,
55

5
3,

02
9

(2
8.

8)
9.

4
11

.1
36

.1
23

.9
17

.7
20

.8
0.

10
00

0
4,

37
9

13
3.

5
44

9.
2

45
.1

64
3.

3
36

.2
6,

73
0

5,
68

1
(5

8.
2)

1,
73

4
2,

56
3

(2
6.

8)
3,

50
0

2,
99

2
(3

0.
8)

9.
4

11
.2

36
.5

24
.7

18
.1

21
.2

0.
20

00
1

7,
66

6
19

6.
1

65
0.

5
69

.4
75

8.
9

50
.4

6,
22

6
5,

41
5

(9
7.

2)
1,

56
1

2,
08

9
(3

7.
8)

3,
14

5
2,

74
2

(5
0.

0)
9.

3
10

.7
37

.1
27

.7
18

.4
21

.1
0.

30
00

1
7,

49
9

24
6.

0
75

8.
1

93
.8

80
6.

6
55

.8
5,

81
4

5,
13

7
(1

31
.8

)
1,

39
3

1,
77

5
(4

5.
8)

2,
78

7
2,

46
7

(6
3.

6)
9.

4
10

.6
39

.2
30

.8
19

.6
22

.2
0.

40
00

0
10

,9
47

34
4.

5
94

7.
9

13
4.

7
1,

02
0

70
.0

5,
81

4
5,

24
8

(1
76

.6
)

1,
35

9
1,

68
4

(5
5.

6)
2,

64
1

2,
38

1
(7

9.
6)

9.
1

10
.1

39
.0

31
.5

20
.1

22
.3

0.
50

00
1

11
,9

29
43

1.
0

1,
10

4
17

8.
6

1,
05

0
79

.4
5,

76
4

5,
22

5
(2

17
.2

)
1,

31
8

1,
57

3
(6

4.
0)

2,
48

2
2,

26
4

(9
3.

6)
8.

9
9.

8
39

.0
32

.7
20

.7
22

.7
0.

75
00

0
12

,6
97

61
4.

8
1,

42
0

31
3.

4
1,

10
0

10
7.

2
5,

38
6

4,
98

8
(3

15
.2

)
1,

19
2

1,
38

7
(8

3.
6)

2,
20

1
2,

03
0

(1
27

.4
)

8.
8

9.
5

39
.6

34
.0

21
.4

23
.3

1.
00

00
0

10
,5

85
77

4.
6

1,
62

1
47

8.
0

1,
18

3
13

8.
5

5,
05

5
4,

72
5

(4
15

.6
)

1,
07

0
1,

24
5

(1
02

.0
)

2,
04

0
1,

91
3

(1
68

.4
)

8.
6

9.
2

40
.4

34
.8

21
.2

22
.6

A
ve

ra
ge

4,
51

6
17

3.
0

52
5.

1
82

.9
61

5.
7

41
.3

7,
02

5
6,

06
3

(8
5.

6)
2,

01
2

3,
65

6
(3

1.
3)

4,
19

5
3,

74
9

(4
1.

1)
9.

6
11

.1
33

.4
18

.4
16

.0
17

.9

†

A
ve

ra
ge

of
5

in
st

an
ce

s
of

L
P

at
ea

ch
de

ns
it
y.

‡

O
ne

co
ns

tr
ai

nt
w

as
ad

de
d

pe
r

it
er

at
io

n
r

[1
8]

.
c

T
x

M

=
1
0
1
0

w
as

us
ed

as
th

e
bo

un
di

ng
co

ns
tr

ai
nt

.
k

M
ul

ti
-c

ut
te

ch
ni

qu
e

fo
r

L
P

w
as

ap
pl

ie
d

w
it
h

c

T
x

M

=
1
0
1
0

as
th

e
bo

un
di

ng
co

ns
tr

ai
nt

.
§

O
ne

co
ns

tr
ai

nt
w

as
ad

de
d

pe
r

it
er

at
io

n
r

[1
9]

.
c

T
x

M

=
1
0
1
0

w
as

us
ed

as
th

e
bo

un
di

ng
co

ns
tr

ai
nt

.
¶

O
ne

co
ns

tr
ai

nt
w

as
ad

de
d

pe
r

it
er

at
io

n
r
.
c

T
x

M

=
1
0
1
0

w
as

us
ed

as
th

e
bo

un
di

ng
co

ns
tr

ai
nt

.

56

CHAPTER 5
CONCLUSIONS

An efficient COST NRAD with multi-bound and multi-cut for NNLPs was

developed, then generalized to a COST GRAD with multi-cut for LPs. A geometric

interpretation of Factor I, Factor II, NRAD and multi-cut was given. An intuition

behind the development of GRAD was also described.

The COST NRAD was tested on three sets of randomly generated large-scale

NNLP problems. The results showed that the COST NRAD performed significantly

better than the CPLEX primal simplex, dual simplex, and barrier solvers for NNLPs

(maximization) with long-and-narrow A matrices with various densities, from very

sparse to 1.

The COST GRAD was tested on a set of randomly generated large-scale general

LP problems with m � n. For densities between 0.02 and 1, GRAD outperformed

the CPLEX primal simplex, dual simplex and barrier solvers for LP (maximization)

with long-and-narrow A matrices. The computational results showed that GRAD

was not as effective as NRAD in selecting constraints that are likely to be binding at

optimality. Further research may improve GRAD towards the efficiency that NRAD

demonstrated with NNLP. Incorporating new techniques may also be of interest.

In particular, incorporating a method to better approximate the feasible region for

general LP, as well as simultaneously addressing both the primal and dual problems,

could conceivably improve COST GRAD by adding both constraints and variables.

While many methods for solving large-scale LP involve preliminary problem

reduction, the COST framework builds up the problem. Moreover, the COST NRAD

and COST GRAD maintain the attractive features of the dual simplex method such

57

as a basis, shadow prices, reduced costs, and sensitivity analysis [16]. They also retain

the post-optimality advantages of pivoting algorithms useful for integer programming.

As a practical matter, a definition and usage of the COSTs NRAD and GRAD are

well described here and not proprietary, unlike the CPLEX preprocessing routines.

Furthermore, the utilization of local posterior information [4] obtained from

each x

⇤
r in addition to the global GRAD information for constraints obtained prior

to the active-set iterations is another area of exploration. It is conceivable that the

rationale behind NRAD and GRAD could also lead to better integer programming

cutting planes. Finally, it should be noted that a COST is a polynomial algorithm if

the CPLEX barrier solver is used to solve each new subproblem with added constraints

instead of the primal simplex or the dual simplex.

58

APPENDIX A
CODE EXAMPLE FOR THE COST NRAD

59

In this appendix, an example of ANSI C code for implementing the COST

NRAD utilizing the CPLEX callable library is presented.

A.1 Definitions

The section contains definitions such as the headers to be loaded and the row

structure.
1 #include <cplex.h>

#include <stdio.h>
3 #include <stdlib.h>

#include <sys/time.h>
5 #include <time.h>

#include <math.h>
7 #include <string.h>

9 #define PRINTDETAILS 0

11 int PREIND; // CPLEX presolve switch
int PREDUAL; // CPLEX presolve dual setting

13
double totallstime = 0;

15 double radsorttime = 0;
double radmemcopytime = 0;

17 double radcalctime = 0;

19 struct row {
int nzcnt;

21 int rmatbeg;
int * rmatind;

23 double * rmatval;
int rmatspace;

25 int surplus;
double rhs;

27 char sense;
double rad;

29 double criteria;
double violation;

31 int used;
};

33
struct row * myRowsRAD;

35 double *ub;
double *lb;

37 double *obj;

39 int PrepMyRows (char *, int *, int *, int *, int *);
int SortCopyRows(struct row **, struct row *, int , double *, double *);

41 int CostSolver (char *,struct row *, double *, double *, double *, int , int , int , int
);

int compar(const void *, const void *);

A.2 Main
int main (int argc , char * argv [])

2 {

60

4 clock_t ticks1 , ticks99;

6 struct tm * timeinfo;
char currenttime [50];

8
char filenamewithpath [250] = "";

10
int i;

12 int j;
int k;

14 int nrows;
int ncols;

16 int objsense;
int nzcnt;

18
if (argc == 2) {

20 sprintf(filenamewithpath , "%s", argv [1]);

22 // turn off CPLEX preprocessing presolve
PREIND = CPX_OFF;

24
// turn off CPLEX preprocessing predual

26 PREDUAL = -1;

28 }
else {

30 printf("missing arguments\n");
printf("arg[1] = lp file name\n");

32 exit (1);
}

34
time (&ticks1);

36
FILE * fp1 = fopen("output.txt","a");

38 FILE * fp3 = fopen("taboutput.txt","r");
int fileexists;

40 if (fp3 == NULL) {
fileexists = 0;

42 }
else {

44 fileexists = 1;
fclose(fp3);

46 }
FILE * fp2 = fopen("taboutput.txt","a");

48 printf ("\n==\n");
printf ("==\n");

50 fprintf (fp1 , "\n==\n");
fprintf (fp1 , "==\n");

52 printf ("Run time is: %s", ctime (& ticks1));
fprintf (fp1 , "Run time is: %s", ctime (& ticks1));

54 // write header line for taboutput
if (! fileexists) {

56 fprintf (fp2 , "start time\t");
fprintf (fp2 , "file name\t");

58 fprintf (fp2 , "opt method\t");
fprintf (fp2 , "RAD calc time\t");

60 fprintf (fp2 , "sort time\t");
fprintf (fp2 , "mem copy time\t");

62 fprintf (fp2 , "add constraints -to -bound time\t");
fprintf (fp2 , "number of constraints -to-bound\t");

64 fprintf (fp2 , "opt method used to solve bounded problem\t");
fprintf (fp2 , "opt time to solve bounded problem\t");

66 fprintf (fp2 , "1st Opt niter\t");

61

fprintf (fp2 , "Status\t");
68 fprintf (fp2 , "presolve indicator\t");

fprintf (fp2 , "preprocess dual indicator\t");
70 fprintf (fp2 , "LS time\t");

fprintf (fp2 , "number of added constraints\t");
72 fprintf (fp2 , "number of evaluations\t");

fprintf (fp2 , "total iterations\t");
74 fprintf (fp2 , "total phase 1 iterations\t");

fprintf (fp2 , "Number of COST iterations\t");
76 fprintf (fp2 , "objective\t");

fprintf (fp2 , "CPU time (total)[sec]\t");
78 if (PRINTDETAILS) {

fprintf (fp2 , "Total CPU Time COST Simplex\t");
80 fprintf (fp2 , "Total CPU Time calc add sort rows\t");

}
82 fprintf (fp2 , "end time\t");

if (PRINTDETAILS) {
84 fprintf (fp2 , "COST opt iter num\t");

fprintf (fp2 , "CPU Time of COST simplex\t");
86 fprintf (fp2 , "CPU Time to calc sort add rows\t");

fprintf (fp2 , "Number of violations\t");
88 fprintf (fp2 , "Number of rows added per COST iter\t");

fprintf (fp2 , "Index i of the Last row added in cover x\t");
90 }

fprintf (fp2 , "\n");
92 }

94 PrepMyRows(filenamewithpath , &nrows , &ncols , &objsense , &nzcnt);

96 time (& ticks99);
timeinfo = localtime (& ticks99);

98 strftime (currenttime ,50,"%c", timeinfo);
printf ("\n%s\n", currenttime);

100 fprintf (fp1 , "\n%s\n", currenttime);
fprintf (fp2 , "%s\t", currenttime);

102 printf("LP Problem (Primal) is: %s \n",filenamewithpath);
fprintf(fp1 , "LP Problem (Primal) is: %s \n",filenamewithpath);

104 fprintf(fp2 , "%s\t",filenamewithpath);

106 printf("RAD ");
fprintf(fp1 , "RAD ");

108 fprintf(fp2 , "RAD\t");

110 printf("Calc RAD (sec) %g ", radcalctime);
fprintf(fp1 , "Calc RAD (sec) %g ", radcalctime);

112 fprintf(fp2 , "%g\t",radcalctime);

114 printf("Sort RAD (sec) %g ", radsorttime);
fprintf(fp1 , "Sort RAD (sec) %g ", radsorttime);

116 fprintf(fp2 , "%g\t",radsorttime);

118 printf("Mem Copy RAD (sec) %g ", radmemcopytime);
fprintf(fp1 , "Mem Copy RAD (sec) %g ", radmemcopytime);

120 fprintf(fp2 , "%g\t",radmemcopytime);

122 totallstime = radcalctime + radsorttime + radmemcopytime;

124 fclose(fp1);
fclose(fp2);

126 CostSolver (filenamewithpath , myRowsRAD , ub , lb , obj , objsense , nrows , ncols , nzcnt
);

128
for (j = 0; j < nrows; j++) {

62

130 free(myRowsRAD[j]. rmatind);
free(myRowsRAD[j]. rmatval);

132 }
free(myRowsRAD);

134 free(ub);
free(lb);

136 free(obj);

138 fp1 = fopen("output.txt","a");
printf ("\n==\n");

140 fprintf (fp1 , "\n==\n");
fclose(fp1);

142
return 0;

144 } /* end of Main */

A.3 PrepMyRows

The following procedure reads the LP problem into the row structure, calculates

the constraint selection metric, sorts the pointers to rows then copies the sorted rows

into a block memory.
int PrepMyRows

2 (char * lpfilename , int * nrows , int * ncols , int * objsense , int * nzcnt)
{

4 int i;
int j;

6 double sum;
double a_size;

8 double c_size;
double intercept;

10 int status;
clock_t ticks1 , ticks2;

12 double timediff , sorttime , memcopytime;

14 CPXCENVptr myEnv;
CPXLPptr myLP;

16
/* variables for printing run info */

18 int * param1;
int * param2;

20 struct tm * timeinfo;
char currenttime [50];

22
int *rmatbeg;

24 int *rmatind;
double *rmatval;

26 int surplus;
int rmatspace = 0;

28 double *rhs;
char *sense;

30
// ************************

32 // Start COSTs Methods Here
// ************************

34 myEnv = CPXopenCPLEX (& status);
myLP = CPXcreateprob(myEnv , &status , "TestProb");

36 status = CPXreadcopyprob(myEnv , myLP , lpfilename , "LP");

63

*nrows = CPXgetnumrows (myEnv , myLP);
38 *ncols = CPXgetnumcols (myEnv , myLP);

rmatbeg = (int *) calloc (*nrows , sizeof(int));
40 rhs = (double *) calloc (*nrows , sizeof(double));

sense = (char *) calloc (*nrows , sizeof(char));
42 obj = (double *) calloc (*ncols , sizeof(double));

ub = (double *) calloc (*ncols , sizeof(double));
44 lb = (double *) calloc (*ncols , sizeof(double));

46 /* Read the row structure in */
/* This two -step read is quicker and what is recommended by CPLEX */

48 /** First Read with rmatspace = 0, then surplus will equal to
the negative of needed space **/

50 status
= CPXgetrows (myEnv , myLP , nzcnt , rmatbeg , NULL , NULL , rmatspace ,

52 &surplus , 0, *nrows -1);

54 rmatspace = -surplus;
rmatind = (int *) calloc(-surplus , sizeof(int));

56 rmatval = (double *) calloc(-surplus , sizeof(double));

58 /** Second , Read with the correct rmatspace = -surplus **/
status

60 = CPXgetrows (myEnv , myLP , nzcnt , rmatbeg , rmatind , rmatval , rmatspace ,
&surplus , 0, *nrows -1);

62
//READ right hand sides of the constraints

64 status = CPXgetrhs (myEnv , myLP , rhs , 0, *nrows -1);

66 //READ sense of the constraints
status = CPXgetsense (myEnv , myLP , sense , 0, *nrows -1);

68
struct row ** myRows_p = (struct row **) calloc (*nrows , sizeof(struct row *));

70 myRowsRAD = (struct row *) calloc (*nrows , sizeof(struct row));

72 for (i = 0; i < *nrows; i++) {
myRows_p[i] = (struct row *) malloc(sizeof(struct row));

74 }
status = CPXgetub (myEnv , myLP , ub, 0, *ncols -1);

76 status = CPXgetlb (myEnv , myLP , lb, 0, *ncols -1);
status = CPXgetobj (myEnv , myLP , obj , 0, *ncols -1);

78 *objsense = CPXgetobjsen (myEnv , myLP);

80 // ********************************
// ********************************

82 // ******** Set up myRows *********
// ********************************

84 // ********************************
for (i = 0; i < *nrows; i++) {

86 myRows_p[i]->rmatspace = *nzcnt;

88 // Read rmatbeg into myRows
myRows_p[i]->rmatbeg = rmatbeg[i];

90 // Calculate nzcnt for each row and save in myRows
if (i < *nrows -1) {

92 // case for all rows except for the last row
myRows_p[i]->nzcnt = rmatbeg[i+1] - rmatbeg[i];

94 }
else {

96 // case for the last row
myRows_p[i]->nzcnt = *nzcnt - rmatbeg[i];

98 }

100 // Allocate memeory for pointers to row matrix index and

64

// row matrix values in myRows structure
102 // using the non -zero count that was just calculated

myRows_p[i]->rmatind
104 = (int *) calloc(myRows_p[i]->nzcnt , sizeof(int));

myRows_p[i]->rmatval
106 = (double *) calloc(myRows_p[i]->nzcnt , sizeof(double));

108 // Read the Row Matrix Index and
// Row Matrix Values for each row

110 for (j = 0; j < myRows_p[i]->nzcnt; j++) {
myRows_p[i]->rmatind[j] = rmatind[j+rmatbeg[i]];

112 myRows_p[i]->rmatval[j] = rmatval[j+rmatbeg[i]];
}

114 status = CPXgetrhs (myEnv , myLP , &(myRows_p[i]->rhs), i, i);
status = CPXgetsense (myEnv , myLP , &(myRows_p[i]->sense), i, i);

116 }

118 CPXfreeprob(myEnv , &myLP);
free(rmatbeg);

120 free(rhs);
free(sense);

122 free(rmatind);
free(rmatval);

124
// *****************************

126 // This prepares RAD as criteria
// *****************************

128
/* ****************** Clock Start ****************** */

130 ticks1=clock ();

132 if (* objsense == CPX_MAX) {
for (i = 0; i < *nrows; i++) {

134 sum = 0;

136 for (j = 0; j < myRows_p[i]->nzcnt; j++) {
// calculates ac

138 sum += (double) myRows_p[i]->rmatval[j] * obj[myRows_p[i]->rmatind[j]];
}

140 // calculates ac/b
myRows_p[i]->rad = (sum)/myRows_p[i]->rhs;

142 myRows_p[i]->criteria = -myRows_p[i]->rad;

144 if (myRows_p[i]->sense == ’E’)
myRows_p[i]->criteria -= 1000;

146 }
}

148 else if (* objsense == CPX_MIN) {
for (i = 0; i < *nrows; i++) {

150 sum = 0;

152 for (j = 0; j < myRows_p[i]->nzcnt; j++) {
// calculates a*(-1)c = -ac

154 sum += (double) myRows_p[i]->rmatval[j] * (-1) * obj[myRows_p[i]->rmatind[j
]];

}
156 // calculates -ac/b

myRows_p[i]->rad = (sum)/myRows_p[i]->rhs;
158 myRows_p[i]->criteria = -myRows_p[i]->rad;

160 if (myRows_p[i]->sense == ’E’)
myRows_p[i]->criteria -= 1000;

162 }
}

65

164 ticks2=clock ();
/* ****************** Clock End ****************** */

166
timediff = ((double)ticks2 -ticks1)/CLOCKS_PER_SEC;

168 radcalctime = timediff;
SortCopyRows(myRows_p , myRowsRAD , *nrows , &sorttime , &memcopytime);

170 radsorttime = sorttime;
radmemcopytime = memcopytime;

172
for (i = 0; i < *nrows; i++) {

174 free(myRows_p[i]->rmatind);
free(myRows_p[i]->rmatval);

176 free(myRows_p[i]);
}

178 free(myRows_p);

180 return 0;
}

A.4 CostSolver

The code in this section applies the active-set method of the COST utilizing

the multi-bound and multi-cut techniques on the sorted rows of constraints.
1 int CostSolver (char * lpfilename ,

struct row * myRows , double * ub , double * lb,
3 double * obj , int objsense , int nrows , int ncols , int nzcnt)

{
5 int status;

int * param1;
7 int * param2;

clock_t ticks1 , ticks2 , // for clocking entire LSSolver
9 ticks3 , ticks4 , // for clocking Simplex

ticks5 , ticks6 , // for clocking violation check evaluation
11 ticks7 , ticks8 , // for clocking adding constraint after violation check

ticks9 , ticks10 , // for clocking addition of bounding constraints
13 ticks11 , ticks12 , // for clocking multi -row criteria calc sort and add

ticks13 , ticks14 , // not used now
15 ticks99; // for getting the system time for file name creation

double timediff;
17 double timediffopt;

double timediff1stopt;
19 double timediffeval;

double timediffaddconstraint;
21 double timediffaddboundingconstraints;

double timediffcalcsortadd;
23 double timediffcalcsortaddtotal = 0;

double timediffcostsimplex;
25 double timediffcostsimplextotal = 0;

27 struct tm * timeinfo;
char currenttime [50];

29 char currentyymmddHHMMSS [50] = "";

31 int i;
int j;

33 int k;
double objval;

35 int rmatbeg = 0;
double *x = (double *) calloc(ncols , sizeof(double));

66

37
int optimized = 0;

39 int optimizedsub = 0;
int violationfound = 0;

41 int addedconstraints = 0;
int newcoli = -1;

43 int nrowsaddedtocoverx;
int lastrowadded;

45 int nviolations;
int ncostopt = 0;

47 long int niter1stopt = 0;
long int phase1cnt1stopt = 0;

49 long int nevals = 0;
long int niter = 0;

51 long int nitertotal = 0;
long int phase1cnt = 0;

53 long int phase1cnttotal = 0;
int method1stopt;

55
// used for bounding variables

57 int * variableisbound = (int *) calloc(ncols , sizeof(int));
int boundvariablecount = 0;

59 int addthisrow = 0;
int numrowsadded = 0;

61
// used during violation check

63 double lhs;

65 /* variables for log file writing */
FILE * fp1 = fopen("output.txt","a");

67 FILE * fp2 = fopen("taboutput.txt","a");

69 // for sorting sub LP
struct row ** mySubRows_p = (struct row **) calloc(nrows , sizeof(struct row *));

71
CPXCENVptr myEnv = CPXopenCPLEX (& status);

73 CPXLPptr myLP = CPXcreateprob(myEnv , &status , "MCOSTProb");

75 status = CPXsetintparam(myEnv , CPX_PARAM_PREIND , PREIND);
status = CPXsetintparam(myEnv , CPX_PARAM_PREDUAL , PREDUAL);

77
/* ****************** Clock Start ****************** */

79 ticks1 = clock();

81 status = CPXnewcols (myEnv , myLP , ncols , obj , lb , ub , NULL , NULL);
CPXchgobjsen (myEnv , myLP , objsense);

83 for (i = 0; i < nrows; i++) myRows[i].used = 0;

85 ticks9=clock ();

87 status = CPXgetintparam(myEnv , CPX_PARAM_PREIND , ¶m1);
status = CPXgetintparam(myEnv , CPX_PARAM_PREDUAL , ¶m2);

89 for (i = 0; i < ncols; i++) variableisbound[i] = 0;
for (i = 0; i < nrows && boundvariablecount < ncols; i++) {

91 for (k = 0; k < myRows[i].nzcnt; k++) {
if (variableisbound[myRows[i]. rmatind[k]] == 0) {

93 variableisbound[myRows[i]. rmatind[k]] = 1;
boundvariablecount ++;

95 addthisrow = 1;
}

97 }// for k
if (addthisrow) {

99 status = CPXaddrows (myEnv , myLP , 0, 1, myRows[i].nzcnt ,
&(myRows[i].rhs),

67

101 &(myRows[i]. sense),
&rmatbeg , myRows[i].rmatind ,

103 myRows[i].rmatval , NULL , NULL);
myRows[i].used = 1;

105 numrowsadded ++;
if (PRINTDETAILS) lastrowadded = i;

107 }//if addthisrow
addthisrow = 0;

109 }//for i

111 ticks10 = clock ();

113 timediffaddboundingconstraints = ((double)ticks10 -ticks9)/CLOCKS_PER_SEC;
printf(

115 "\nTime bounding constraints add (sec) %g num constraints needed to bound %d
",

timediffaddboundingconstraints , numrowsadded);
117 fprintf(fp1 ,

"\nTime bounding constraints add (sec) %g num constraints needed to bound %
d",

119 timediffaddboundingconstraints , numrowsadded);
fprintf(fp2 ,

121 "%g\t%d\t",
timediffaddboundingconstraints , numrowsadded);

123
while (! optimized) {

125 // first iteration is the solving of initial bounded problem
// clock , use dual simplex

127 if (addedconstraints == 0) {

129 ticks3=clock ();

131 // solve the initial bounded problem using primal simplex
status = CPXprimopt (myEnv , myLP);

133
ticks4=clock ();

135
timediff1stopt = ((double)ticks4 -ticks3)/CLOCKS_PER_SEC;

137 timediffcostsimplex = timediff1stopt;
niter1stopt = CPXgetitcnt(myEnv , myLP);

139 phase1cnt1stopt = CPXgetphase1cnt(myEnv , myLP);
method1stopt = CPXgetmethod (myEnv , myLP);

141
switch (method1stopt) {

143 case CPX_ALG_NONE:
printf("\n1st Opt Method=None ");

145 fprintf(fp1 , "\n1st Opt Method=None ");
fprintf(fp2 , "None\t");

147 break;
case CPX_ALG_PRIMAL:

149 printf("\n1st Opt Method=Primal ");
fprintf(fp1 , "\n1st Opt Method=Primal ");

151 fprintf(fp2 , "Primal\t");
break;

153 case CPX_ALG_DUAL:
printf("\n1st Opt Method=Dual ");

155 fprintf(fp1 , "\n1st Opt Method=Dual ");
fprintf(fp2 , "Dual\t");

157 break;
case CPX_ALG_BARRIER:

159 printf("\n1st Opt Method=Barrier ");
fprintf(fp1 , "\n1st Opt Method=Barrier ");

161 fprintf(fp2 , "Barrier\t");
break;

68

163 }
printf(

165 "1st Opt Time (sec) %g 1st Opt niter %d\n", \
timediff1stopt , niter1stopt);

167 printf(
"PREIND %d PREDUAL %d\n", param1 , param2);

169 fprintf(fp1 ,
"1st Opt Time (sec) %g 1st Opt niter %d\n", \

171 timediff1stopt , niter1stopt);
fprintf(fp1 ,

173 "PREIND %d PREDUAL %d\n", param1 , param2);
fprintf(fp2 ,

175 "%g\t%d\t\t%d\t%d\t",
timediff1stopt , niter1stopt , param1 , param2);

177 if (PRINTDETAILS) {
fprintf(fp2 , "\n");

179 for (k = 0; k < 30; k++) fprintf(fp2 , "\t");
fprintf(fp2 , " -1\t\t\t\t%d\t%d\t\n", numrowsadded , lastrowadded);

181 }
} // if added constraints is 0

183
status = CPXgetx (myEnv , myLP , x, 0, ncols -1);

185
optimized = 1;

187 if (PRINTDETAILS) {
nrowsaddedtocoverx = 0;

189 lastrowadded = 0;
nviolations = 0;

191 }

193 if (PRINTDETAILS) ticks11 = clock ();
for (i = 0; i < ncols; i++) variableisbound[i] = 0;

195 boundvariablecount = 0;
for (i = 0; i < nrows && boundvariablecount < ncols; i++) {

197 addthisrow = 0;
if (! myRows[i].used) {

199 nevals ++;
lhs = 0;

201 // calculate lhs
for (j = 0; j < myRows[i].nzcnt; j++) {

203 lhs += x[myRows[i]. rmatind[j]] * myRows[i]. rmatval[j];
}

205 // calculate violation
if (objsense == CPX_MAX) {

207 myRows[i]. violation = lhs - myRows[i].rhs;
if (PRINTDETAILS) {

209 if (myRows[i]. violation > 1e-10) {
nviolations ++;

211 }
}

213 }
else if (objsense == CPX_MIN) {

215 printf("note: not coded for minimization\n");
getchar ();

217 }

219 if ((myRows[i]. violation > 1e-10) || (myRows[i]. violation < - 1e-10 && myRows
[i].sense == ’E’)) {

for (k = 0; k < myRows[i].nzcnt && !addthisrow ; k++) {
221 if (variableisbound[myRows[i]. rmatind[k]] == 0) {

variableisbound[myRows[i]. rmatind[k]] = 1;
223 addthisrow = 1;

optimized = 0;
225 boundvariablecount ++;

69

if (PRINTDETAILS) {
227 lastrowadded = i;

}
229 }

}// for k
231 }// if violated

}// if not used
233 if (addthisrow) {

status = CPXaddrows (myEnv , myLP , 0, 1, myRows[i].nzcnt ,
235 &(myRows[i].rhs),

&(myRows[i]. sense),
237 &rmatbeg , myRows[i].rmatind ,

myRows[i].rmatval , NULL , NULL);
239 myRows[i].used = 1;

nrowsaddedtocoverx ++;
241 addedconstraints ++;

}//if addthisrow
243 }//for i

if (PRINTDETAILS) {
245 ticks12 = clock ();

timediffcalcsortadd = ((double)ticks12 -ticks11)/CLOCKS_PER_SEC;
247 timediffcalcsortaddtotal += timediffcalcsortadd;

for (k = 0; k < 30; k++) fprintf(fp2 , "\t");
249 fprintf(fp2 , "%d\t%g\t%g\t%d\t%d\t%d\t\n", \

ncostopt , timediffcostsimplex , timediffcalcsortadd , nviolations ,
nrowsaddedtocoverx , lastrowadded);

251 }
if (addedconstraints != 0 && !optimized) {

253 // always use dualopt for subsequent steps
if (PRINTDETAILS) ticks3 = clock();

255 status = CPXdualopt (myEnv , myLP);
if (PRINTDETAILS) {

257 ticks4 = clock();
timediffcostsimplex = ((double)ticks4 -ticks3)/CLOCKS_PER_SEC;

259 if (ncostopt > 0) timediffcostsimplextotal += timediffcostsimplex;
}

261 ncostopt ++;
niter = CPXgetitcnt(myEnv , myLP);

263 nitertotal = nitertotal + niter;
phase1cnt = CPXgetphase1cnt(myEnv , myLP);

265 phase1cnttotal = phase1cnttotal + phase1cnt;
}

267 } //while (! optimized) loop
ticks2=clock (); // part of totallstime

269 /* ****************** Clock End ****************** */

271 status = CPXgetobjval (myEnv , myLP , &objval);

273
timediff = ((double)ticks2 -ticks1)/CLOCKS_PER_SEC;

275 totallstime = totallstime + timediff;
printf(

277 "COST Time (sec) %g added_constraints %d nevals %d total_iterations %d
total_phase_1_iterations %d ncostopt %d objval %g\n",

timediff , addedconstraints , nevals , nitertotal , phase1cnttotal , ncostopt ,
objval);

279 fprintf(fp1 ,
"COST Time (sec) %g added_constraints %d nevals %d total_iterations %d

total_phase_1_iterations %d ncostopt %d objval %g\n",
281 timediff , addedconstraints , nevals , nitertotal , phase1cnttotal , ncostopt ,

objval);
if (PRINTDETAILS) fprintf(fp2 , "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t");

283 fprintf(fp2 ,
"%g\t%d\t%d\t%d\t%d\t%d\t%g\t",

70

285 timediff , addedconstraints , nevals , nitertotal , phase1cnttotal , ncostopt ,
objval);

printf(
287 "Total CPU Time (sec) %g\n", totallstime);

fprintf(fp1 ,
289 "Total CPU Time (sec) %g\n", totallstime);

fprintf(fp2 ,
291 "%g\t", totallstime);

if (PRINTDETAILS) {
293 printf(

"COST Simplex Time (sec) (total) %g\n", timediffcostsimplextotal);
295 printf(

"Time to calc sort and add multi -row COST (sec) (total) %g\n",
timediffcalcsortaddtotal);

297 fprintf(fp1 ,
"COST Simplex Time (sec) (total) %g\n", timediffcostsimplextotal);

299 fprintf(fp1 ,
"Time to calc sort and add multi -row COST (sec) (total) %g\n",

timediffcalcsortaddtotal);
301 fprintf(fp2 ,"%g\t%g\t", timediffcostsimplextotal , timediffcalcsortaddtotal);

}
303

// System Time Print
305 time (& ticks1);

timeinfo = localtime (& ticks1);
307 strftime (currenttime ,50,"%c", timeinfo);

printf ("%s\n\n", currenttime);
309 fprintf (fp1 , "%s\n\n", currenttime);

fprintf (fp2 , "%s", currenttime);
311 fprintf (fp2 , "\n");

313 CPXfreeprob(myEnv , &myLP);
free(x);

315
CPXcloseCPLEX (& myEnv);

317 fclose(fp1);
fclose(fp2);

319
return 0;

321 }// end of CostSolver

A.5 SortCopyRows

The routine below is called by PrepMyRows to sort and copy the row structure

according to the constraint selection metric.
1 int SortCopyRows(struct row ** myRows_p , struct row * myRows , int nrows ,

double * sorttime , double * memcopytime)
3 {

clock_t ticks1 , ticks2;
5 double timediff;

int i;
7

/* ****************** Clock Start ****************** */
9 ticks1=clock ();

qsort(myRows_p , nrows , sizeof(struct row *), compar);
11 ticks2=clock ();

/* ****************** Clock End ****************** */
13

timediff = ((double)ticks2 -ticks1)/CLOCKS_PER_SEC;

71

15 *sorttime = timediff;

17 /* ****************** Clock Start ****************** */
ticks1=clock ();

19
for (i = 0; i < nrows; i++) {

21 int j;
myRows[i].nzcnt = myRows_p[i]->nzcnt;

23 myRows[i]. rmatbeg = myRows_p[i]->rmatbeg;
myRows[i]. rmatind

25 = (int *) calloc(myRows[i].nzcnt , sizeof(int));
myRows[i]. rmatval

27 = (double *) calloc(myRows[i].nzcnt , sizeof(double));
for (j = 0; j < myRows[i].nzcnt; j++) {

29 myRows[i]. rmatind[j] = myRows_p[i]->rmatind[j];
myRows[i]. rmatval[j] = myRows_p[i]->rmatval[j];

31 }
myRows[i]. rmatspace = myRows_p[i]->rmatspace;

33 myRows[i]. surplus = myRows_p[i]->surplus;
myRows[i].sense = myRows_p[i]->sense;

35 myRows[i].rhs = myRows_p[i]->rhs;
myRows[i].rad = myRows_p[i]->rad;

37 myRows[i]. criteria = myRows_p[i]->criteria;
myRows[i]. violation = myRows_p[i]->violation;

39 myRows[i].used = myRows_p[i]->used;
}

41
ticks2=clock ();

43 /* ****************** Clock End ****************** */

45 timediff = ((double)ticks2 -ticks1)/CLOCKS_PER_SEC;
*memcopytime = timediff;

47 return 0;
}

A.6 Compar

The following code is utilized by the ANSI qsort called by the SortCopyRows

procedure.
1 int compar(const void * a, const void * b)

{
3 struct row ** rowa_p = (struct row **) a;

struct row ** rowb_p = (struct row **) b;
5

if ((* rowa_p)->criteria < (* rowb_p)->criteria) {
7 return -1;

}
9 else if ((* rowa_p)->criteria > (* rowb_p)->criteria) {

return 1;
11 }

else {
13 return 0;

}
15 }

72

APPENDIX B
CODE EXAMPLE FOR THE COST GRAD

73

In this appendix, an example of ANSI C code for implementing the COST

GRAD utilizing the CPLEX callable library is presented. Since the code is analogous

to that of the COST NRAD, the parts that differ from NRAD are described.

B.1 PrepMyRows

Calculation of GRAD criterion can be implemented by applying the code such

as the following into the PrepMyRows routine presented in Section A.3.
1 double * newobj = (double *) calloc (*ncols , sizeof(double));

double newb;
3 double sum_plus;

double sum_minus;
5 // find min_b

min_b = 1e10;
7 for (i = 0; i < *nrows; i++) {

if (myRows_p[i]->rhs < min_b) {
9 min_b = myRows_p[i]->rhs;

}
11 }

// determine new c
13 for (i = 0; i < *ncols; i++) {

if (obj[i] > 0) {
15 newobj[i] = obj[i];

}
17 else {

newobj[i] = -1;
19 }

}
21 if (* objsense == CPX_MAX) {

for (i = 0; i < *nrows; i++) {
23 if (min_b < 0) {

newb = myRows_p[i]->rhs - min_b + epsilon1;
25 }

else {
27 newb = myRows_p[i]->rhs;

}
29 sum_plus = 0;

sum_minus = 0;
31 for (j = 0; j < myRows_p[i]->nzcnt; j++) {

if (obj[myRows_p[i]->rmatind[j]] > 0) {
33 sum_plus += (double) myRows_p[i]->rmatval[j] * newobj[myRows_p[i]->

rmatind[j]];
}

35 else {
sum_minus += (double) myRows_p[i]->rmatval[j] * newobj[myRows_p[i]->

rmatind[j]];
37 }

}
39 sum_plus = sum_plus / newb;

sum_minus = sum_minus / newb;
41 myRows_p[i]->rad = sum_plus - sum_minus;

myRows_p[i]->criteria1 = -myRows_p[i]->rad;
43 }

}
45 free (newobj);

SortCopyRows(lpfilename , myRows_p , myRowsRAD , *nrows);

74

B.2 CostSolver

An example code for adding an artificial bounding constraint is shown below.
double rhs;

2 char sense;
double *bound = (double *) calloc(ncols , sizeof(double));

4 int *rmatind = (int *) calloc(ncols , sizeof(int));

6 sense = ’L’;
rhs = 1e10;

8 for (i = 0; i < ncols; i++) {
bound[i] = obj[i];

10 }
status = CPXaddrows (myEnv , myLP , 0, 1, ncols , &rhs , &sense ,

12 &rmatbeg , rmatind , bound , NULL , NULL);

To determine the initial set of constraints to add to form P
0

, and to determine

POSITIV Ea and NEGATIV Ea, apply the following to the CostSolver presented in

Section A.4.

2 int * addthisrow = (int *) calloc(nrows , sizeof(int));
int * varisboundpos = (int *) calloc(ncols , sizeof(int));

4 int * varisboundneg = (int *) calloc(ncols , sizeof(int));
int boundposvariablecount = 0;

6 int boundnegvariablecount = 0;
int lastrowapos = 0; // last row where positive aij is found

8 int lastrowaneg = 0; // last row where negative aij is found

10 for (i = 0; i < ncols; i++) {
varisboundpos[i] = 0;

12 varisboundneg[i] = 0;
}

14
for (i = 0; i < nrows && (boundposvariablecount < ncols ||

16 boundnegvariablecount < ncols); i++) {
for (k = 0; k < myRows[i].nzcnt; k++) {

18 // cover if a>0
if (myRows[i]. rmatval[k] > 0 && !varisboundpos[myRows[i]. rmatind[k]]) {

20 boundposvariablecount ++;
varisboundpos[myRows[i]. rmatind[k]] = 1;

22 addthisrow[i] = 1;
lastrowapos = i;

24 }// if a > 0
// cover if a<0

26 if (myRows[i]. rmatval[k] < 0 && !varisboundneg[myRows[i]. rmatind[k]]) {
boundnegvariablecount ++;

28 varisboundneg[myRows[i]. rmatind[k]] = 1;
addthisrow[i] = 1;

30 lastrowaneg = i;
}// if a < 0

32 }// for k
}// for i

34
// search the rest of the rows to check

36 // lastrowapos and lastrowaneg
if (lastrowapos > lastrowaneg) i = lastrowapos;

38 else i = lastrowaneg;
while (i < nrows) {

75

40 for (k = 0; k < myRows[i].nzcnt; k++) {
if (myRows[i]. rmatval[k] > 0) {

42 lastrowapos = i;
}

44 else {
lastrowaneg = i;

46 }
}

48 i++;
}

50 for (i = 0; i < nrows; i++) {
if (addthisrow[i]) {

52 status = CPXaddrows (myEnv , myLP , 0, 1, myRows[i].nzcnt ,
&(myRows[i].rhs),

54 &(myRows[i]. sense),
&rmatbeg , myRows[i].rmatind ,

56 myRows[i].rmatval , NULL , NULL);
myRows[i].used = 1;

58 numrowsaddedtobound ++;
}//if addthisrow

60 }// for i

For determining cuts to add for Pr, r = 1, 2, . . ., apply the following to the

CostSolver presented in Section A.4.
1 optimized = 1;

3 for (i = 0; i < ncols; i++) {
varisboundpos[i] = 0;

5 varisboundneg[i] = 0;
}

7 for (i = 0; i < nrows; i++) addthisrow[i] = 0;
boundposvariablecount = 0;

9 boundnegvariablecount = 0;
numconstraintstobeadded = 0;

11
for (i = 0;

13 i < nrows &&
((boundposvariablecount < ncols && i <= lastrowapos) ||

15 (boundnegvariablecount < ncols && i <= lastrowaneg))
; i++) {

17 if (! myRows[i].used) {
nevals ++;

19 lhs = 0;
// calculate lhs

21 for (j = 0; j < myRows[i].nzcnt; j++) {
lhs += x[myRows[i]. rmatind[j]] * myRows[i]. rmatval[j];

23 }
// calculate violation

25 if (objsense == CPX_MAX) {
myRows[i]. violation = lhs - myRows[i].rhs;

27 }
else if (objsense == CPX_MIN) {

29 printf("didn’t code this yet\n");
getchar ();

31 }

33 /* **************************** */
/* violation check / multicut */

35 /* **************************** */
// EPSILON_VC has been defined earlier as some small number such as 1e-10

76

37 if ((myRows[i]. violation > EPSILON_VC) || (myRows[i]. violation < - EPSILON_VC
&& myRows[i].sense == ’E’)) {

for (k = 0; k < myRows[i].nzcnt; k++) {
39 // cover if a>0

if (myRows[i]. rmatval[k] > 0 && !varisboundpos[myRows[i]. rmatind[k]]) {
41 boundposvariablecount ++;

varisboundpos[myRows[i]. rmatind[k]] = 1;
43 addthisrow[i] = 1;

optimized = 0;
45 }

// cover if a<0
47 if (myRows[i]. rmatval[k] < 0 && !varisboundneg[myRows[i]. rmatind[k]]) {

boundnegvariablecount ++;
49 varisboundneg[myRows[i]. rmatind[k]] = 1;

addthisrow[i] = 1;
51 optimized = 0;

}
53 }// for k

}// if violated
55 } // end of if row has not been used

}// end of for loop for i
57 for (i = 0; i < nrows; i++) {

if (addthisrow[i]) {
59 status = CPXaddrows (myEnv , myLP , 0, 1, myRows[i].nzcnt ,

&(myRows[i].rhs),
61 &(myRows[i]. sense),

&rmatbeg , myRows[i].rmatind ,
63 myRows[i].rmatval , NULL , NULL);

myRows[i].used = 1;
65 addedconstraints ++;

}//if addthisrow
67 }//for loop for adding rows

77

REFERENCES

[1] M. J. Todd, “The many facets of linear programming,” Mathematical

Programming, vol. 91, pp. 417–436, 2002. [Online]. Available: http:

//dx.doi.org/10.1007/s101070100261

[2] J. M. Rosenberger, E. L. Johnson, and G. L. Nemhauser, “Rerouting aircraft

for aircraft recovery,” Transportation Science, vol. 37, no. 4, pp. 408–421, 2003.

[Online]. Available: http://dx.doi.org/10.1287/trsc.37.4.408.23271

[3] T.-K. Sung, “Constraint optimal selection techniques (COSTs) for a class of

linear programming problems,” Ph.D. dissertation, The University of Texas at

Arlington, August 2006.

[4] H. W. Corley and J. M. Rosenberger, “System, method and apparatus for

allocating resources by constraint selection,” US Patent US 8 082 549, December

20, 2011. [Online]. Available: http://patft1.uspto.gov/netacgi/nph-Parser?

patentnumber=8082549

[5] R. Cottle, E. Johnson, and R. Wets, “George B. Dantzig (1914–2005),” Notices

of the AMS, vol. 54, no. 3, pp. 344–362, 2007.

[6] M. Osborne and G. Watson, “On the best linear Chebyshev approximation,” The

Computer Journal, vol. 10, no. 2, pp. 172–177, 1967.

[7] G. B. Dantzig and M. N. Thapa, Linear programming 1: introduction. New

York: Springer-Verlag, 1997.

[8] V. Klee and G. J. Minty, “How good is the simplex algorithm?” in Inequalities,

O. Shisha, Ed. New York: Academic Press, 1972, vol. III, pp. 159–175.

78

http://dx.doi.org/10.1007/s101070100261
http://dx.doi.org/10.1007/s101070100261
http://dx.doi.org/10.1287/trsc.37.4.408.23271
http://patft1.uspto.gov/netacgi/nph-Parser?patentnumber=8082549
http://patft1.uspto.gov/netacgi/nph-Parser?patentnumber=8082549

[9] D. Goldfarb and J. Reid, “A practicable steepest-edge simplex algorithm,”

Mathematical Programming, vol. 12, no. 1, pp. 361–371, 1977. [Online].

Available: http://dx.doi.org/10.1007/BF01593804

[10] R. Bixby, “Progress in linear programming,” ORSA Journal on computing, vol. 6,

pp. 15–15, 1994. [Online]. Available: http://dx.doi.org/10.1287/ijoc.6.1.15

[11] L. G. Khachiyan, “A polynomial algorithm in linear programming,” Doklady

Adad. Nauk SSSR (translated as Soviet Mathematics Doklady), vol. 20, pp. 191–

194, 1979.

[12] N. Karmarkar, “A new polynomial-time algorithm for linear programming,” in

Proceedings of the sixteenth annual ACM symposium on Theory of computing.

ACM, 1984, pp. 302–311.

[13] V. Chvátal, Linear programming. New York: W.H. Freeman and Company,

1983.

[14] G. Dantzig and W. Orchard-Hays, “The product form for the inverse in the

simplex method,” Mathematical Tables and Other Aids to Computation, vol. 8,

no. 46, pp. 64–67, 1954. [Online]. Available: http://dx.doi.org/10.2307/2001993

[15] C. Lemke, “The dual method of solving the linear programming problem,” Naval

Research Logistics Quarterly, vol. 1, no. 1, pp. 36–47, 1954. [Online]. Available:

http://dx.doi.org/10.1002/nav.3800010107

[16] J. J. Stone, “The cross-section method: an algorithm for linear programming,”

Rand Corporation Memorandum P-1490, 1958.

[17] G. L. Thompson, F. M. Tonge, and S. Zionts, “Techniques for removing

nonbinding constraints and extraneous variables from linear programming

problems,” Management Science, vol. 12, pp. 588–608, 1966. [Online]. Available:

http://dx.doi.org/10.1287/mnsc.12.7.588

79

http://dx.doi.org/10.1007/BF01593804
http://dx.doi.org/10.1287/ijoc.6.1.15
http://dx.doi.org/10.2307/2001993
http://dx.doi.org/10.1002/nav.3800010107
http://dx.doi.org/10.1287/mnsc.12.7.588

[18] I. Adler, R. Karp, and R. Shamir, “A family of simplex variants solving an

m ⇥ d linear program in expected number of pivots steps depending on d

only,” Mathematics of Operations Research, vol. 11, pp. 570–590, 1986. [Online].

Available: http://dx.doi.org/10.1287/moor.11.4.570

[19] M. Zeleny, “An external reconstruction approach (ERA) to linear programming,”

Computers & Operations Research, vol. 13, no. 1, pp. 95–100, 1986. [Online].

Available: http://dx.doi.org/10.1016/0305-0548(86)90067-5

[20] D. C. Myers and W. Shih, “A constraint selection technique for a class of

linear programs,” Operations Research Letters, vol. 7, no. 4, pp. 191–195, 1988.

[Online]. Available: http://dx.doi.org/10.1016/0167-6377(88)90027-2

[21] N. D. Curet, “A primal-dual simplex method for linear programs,” Operations

Research Letters, vol. 13, no. 4, pp. 223–237, 1993. [Online]. Available:

http://dx.doi.org/10.1016/0167-6377(93)90045-I

[22] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Programming and Network

Flows, 3rd ed. New York: John Wiley, 2005.

[23] A. W. Naylor and G. R. Sell, Linear Operator Theory in Engineering and Science.

New York: Springer-Verlag, 1982.

[24] P.-Q. Pan, “Practical finite pivoting rules for the simplex method,”

OR Spektrum, vol. 12, no. 4, pp. 219–225, 1990. [Online]. Available:

http://dx.doi.org/10.1007/BF01721801

[25] ——, “A simplex-like method with bisection for linear programming,”

Optimization, vol. 22, no. 5, pp. 717–743, 1991. [Online]. Available:

http://dx.doi.org/10.1080/02331939108843714

[26] F. Trigos, J. Frausto-Solis, and R. R. Rivera-Lopez, “A simplex-cosine method

for solving hard linear problems,” Advances in Simulation, System Theory

80

http://dx.doi.org/10.1287/moor.11.4.570
http://dx.doi.org/10.1016/0305-0548(86)90067-5
http://dx.doi.org/10.1016/0167-6377(88)90027-2
http://dx.doi.org/10.1016/0167-6377(93)90045-I
http://dx.doi.org/10.1007/BF01721801
http://dx.doi.org/10.1080/02331939108843714

and Systems Engineering, vol. 70X, pp. 27–32, 2002. [Online]. Available:

http://lsog.tol.itesm.mx/public_html/files/SimplexCosine.pdf

[27] H. V. Junior and M. P. E. Lins, “An improved initial basis for the simplex

algorithm,” Computers & Operations Research, vol. 32, no. 8, pp. 1983–1993,

2005. [Online]. Available: http://dx.doi.org/10.1016/j.cor.2004.01.002

[28] H. W. Corley, J. M. Rosenberger, W.-C. Yeh, and T.-K. Sung, “The cosine

simplex algorithm,” The International Journal of Advanced Manufacturing

Technology, vol. 27, no. 9, pp. 1047–1050, 2006. [Online]. Available:

http://dx.doi.org/10.1007/s00170-004-2278-1

81

http://lsog.tol.itesm.mx/public_html/files/SimplexCosine.pdf
http://dx.doi.org/10.1016/j.cor.2004.01.002
http://dx.doi.org/10.1007/s00170-004-2278-1

BIOGRAPHICAL STATEMENT

Goh Saito（齊藤 剛）was born in Fuchu-shi Tokyo, Japan. He received his

B.S. and M.S. degrees in Chemical Engineering from Columbia University in 1996

and 1998, respectively, and his Ph.D. degree in Industrial Engineering from The

University of Texas at Arlington in 2012. His current research interest is in the area

of optimization.

82

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	INTRODUCTION
	Linear Programming Problem
	Objectives of the Work
	Brief Description of COSTs
	Contributions
	Overview of the Dissertation

	BACKGROUND
	Introduction
	Preliminaries
	Historical Perspective
	Primal-Dual Relationship
	The Primal Simplex Method
	The Dual Simplex Method
	Large-scale Linear Programming
	Active-set Methods
	Related Literature

	CONSTRAINT OPTIMAL SELECTION TECHNIQUES (COSTs)
	Introduction
	NNLP
	Active-set Framework
	The COST NRAD for NNLP
	Constraint Selection Criterion
	NRAD in an Active-set Framework Utilizing Multiple Cuts
	Geometric Interpretation

	The COST GRAD for General LP
	Constraint Selection Criterion
	GRAD in an Active-set Framework Utilizing Multiple Cuts

	COMPUTATIONAL EXPERIMENTS
	Introduction
	CPLEX Preprocessing
	Equipment
	Problem Instances
	NNLP
	LP

	Computational Results
	NNLP
	LP

	CONCLUSIONS
	CODE EXAMPLE FOR THE COST NRAD
	CODE EXAMPLE FOR THE COST GRAD
	REFERENCES
	BIOGRAPHICAL STATEMENT

