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ABSTRACT

EFFECTS OF VECTOR MIGRATION ON SYLVATIC

TRYPANOSOMA CRUZI TRANSMISSION

BRITNEE A CRAWFORD, Ph.D.

The University of Texas at Arlington, 2012

Supervising Professor: Christopher Kribs-Zaleta

Vector-borne diseases have had a major impact on global health concerns since

their discovery in the 1800’s. A vector-borne disease is one transmitted to human or

animal host via an invertebrate vector (usually an insect). Chagas’ disease, caused

by the parasite Trypanosoma cruzi, is transmitted via insect vectors from the Tri-

atoma family. Although human infection with Chagas’ is of importance, the disease

is maintained in sylvatic (in the wild) transmission cycles. This study examines the

effects of vector migration on the spread of T. cruzi in certain sylvatic cycles in the

southeastern U.S. and Mexico from several angles. First, a framework for deriving es-

timates for migration rates is developed. This framework translates local, small-scale

vector dispersal information (extracted from biological studies) into global, large-

scale migration rates, which can then be used in metapopulation ”patch” models or

spatially explicit (discrete in space) models. To apply the migration rate derivation

framework, a metapopulation compartmental model describing the transmission cy-

cles is presented as a system of ordinary differential equations coupled via migration

of the vectors. Standard threshold analysis techniques provide insight into the role of

vi



migration through the basic reproductive number, R0, while numerical investigations

illustrate migration’s effects on prevalence of T. cruzi. Finally, in order to gain a fuller

understanding of the spread of T. cruzi in these regions, a spatially explicit model

(cellular automaton) is developed with the main goal of measuring invasion speed

of the epidemic. Effects on invasion speed and direction of invasion are examined

based on certain vector migration characteristics, such as preference for dispersal in

a particular direction. When compared with no preference for direction, results show

the increase in speed is greater if the preferred direction is more in alignment with the

natural geography of the region than the decrease in speed if the preferred direction

is not aligned with the natural geography.

vii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter Page

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Mathematical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. VECTOR MIGRATION AND DISPERSAL RATE FOR SYLVATIC
T. CRUZI TRANSMISSION . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Patch 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Patch 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Patch 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Dispersal and migration rates . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Dispersal rates . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Preferred direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Local migration framework . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Global migration framework . . . . . . . . . . . . . . . . . . . 26

2.5 No preferred direction . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Estimation of dispersal kernel . . . . . . . . . . . . . . . . . . 29

2.5.2 Calculation of migration rates for no preferred direction . . . . 32

viii



2.6 Numerical calculations for preferred direction . . . . . . . . . . . . . 35

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3. A METAPOPULATION MODEL FOR SYLVATIC
T. CRUZI TRANSMISSION WITH VECTOR MIGRATION . . . . . . . 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Problem formulation and model . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Problem statement and assumptions . . . . . . . . . . . . . . 44

3.2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 One patch, one host, one vector, no vertical transmission . . . 51

3.3.2 Patch 2, no migration, no vertical transmission . . . . . . . . . 53

3.3.3 Patches 1 and 2, 1 host 1 vector with vertical transmission
and unidirectional migration of infected vectors . . . . . . . . 55

3.3.4 Patches 1 and 2, 1 host 1 vector with vertical transmission
and unidirectional migration of all vectors . . . . . . . . . . . 56

3.3.5 Patches 1 and 2, 1 host 1 vector, no vertical transmission,
bidirectional migration of infected vectors . . . . . . . . . . . 58

3.3.6 Patches 1 and 2, 2 hosts 2 vectors, no vertical
transmission, unidirectional migration of infected vectors . . . 60

3.3.7 Patch 1, 2, and 3, 2 hosts 2 vectors, no vertical
transmission, unidirectional migration of infected vectors . . . 61

3.3.8 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.1 General demographic parameters . . . . . . . . . . . . . . . . 64

3.4.2 Estimation of infection rate parameters . . . . . . . . . . . . . 71

3.4.3 Numerical solutions . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4. INVASION SPEED IN CELLULAR AUTOMATON MODELS
FOR T. CRUZI VECTOR MIGRATION . . . . . . . . . . . . . . . . . . . 87

ix



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Migration rates for cellular automata . . . . . . . . . . . . . . . . . . 97

4.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.1 Determining threshold presence of epidemic . . . . . . . . . . 100

4.5.2 Invasion speed . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6.1 Basic trends in speed and direction . . . . . . . . . . . . . . . 108

4.6.2 Role of preferred direction . . . . . . . . . . . . . . . . . . . . 114

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Appendix

A. ERROR CORRECTIONS FOR MIGRATION RATE CALCLATION . . . 129

B. R0 AND ENDEMIC PREVALENCE CALCULATIONS . . . . . . . . . . 147

C. MODEL EQUATIONS AND PARAMETERS . . . . . . . . . . . . . . . . 160

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

BIOGRAPHICAL STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . 175

x



LIST OF ILLUSTRATIONS

Figure Page

2.1 Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Interaction between global and local coordinate systems . . . . . . . . 20

2.3 Varying direction with bold points of origin (e = 0.7) . . . . . . . . . 21

2.4 Varying eccentricity with bold points of origin (θ0 = −π/4) . . . . . . 22

2.5 Preferred direction framework. Shaded region represents the area
for which dispersals have crossed patch boundary originating
from a distance d away from the patch boundary. . . . . . . . . . . . 24

2.6 Global coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Patch boundaries linear segments . . . . . . . . . . . . . . . . . . . . 34

2.8 Migration rate as θ0 ranges from 0 to 2π compared with migration
rate for no preference of direction (solid line) (e = 0.5) . . . . . . . . . 37

2.9 Migration rate as θ0 ranges from 0 to 2π compared with migration
rate for no preference of direction (solid line)(e = 0.1) . . . . . . . . . 37

3.1 Model. The migration rates represent outgoing rates which
must be adjusted by the patch area ratios
for incoming rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Correspondence of qS and qW with βWS, with units 1/yr,
and βSW , with units infected hosts/vector/yr . . . . . . . . . . . . . . 73

3.3 Infected vectors migrating north only; dark curve represents
vectors, light curve represents hosts . . . . . . . . . . . . . . . . . . . 76

3.4 Infected vectors migrating north only . . . . . . . . . . . . . . . . . . 76

3.5 All vectors migrating north only; dark curve represents
vectors, light curve represents hosts . . . . . . . . . . . . . . . . . . . 77

3.6 Infected vectors moving south only; dark curve represents
vectors, light curve represents hosts . . . . . . . . . . . . . . . . . . . 78

3.7 Infected vectors migrating south only . . . . . . . . . . . . . . . . . . 78

xi



3.8 All vectors migrating south only; dark curve represents
vectors, light curve represents hosts . . . . . . . . . . . . . . . . . . . 78

3.9 Infected vectors bidirectional migration; dark curve represents
vectors, light curve represents hosts . . . . . . . . . . . . . . . . . . . 79

3.10 Infected vectors bidirectional migration; dark curve represents
vectors, light curve represents hosts . . . . . . . . . . . . . . . . . . . 80

3.11 All vectors bidirectional migration; dark curve represents
hosts, light curve represents vectors . . . . . . . . . . . . . . . . . . . 80

4.1 Grid framework with cells 26.5 km by 26.5 km . . . . . . . . . . . . . 95

4.2 Sample regions of integration for a generic vector dispersal ellipse
with preferred direction northwest. . . . . . . . . . . . . . . . . . . . . 98

4.3 Sample cell showing corner angles and equations of boundary
segments for a given point of dispersal, (x, y). . . . . . . . . . . . . . . 98

4.4 Northward migration rate as θ0 ranges from 0 to 2π compared
with migration rate for no preference of
direction (solid line) (e = 0.5) . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Host infection prevalence in a single (sample) cell, expressed
as a proportion of final endemic prevalence, with threshold
coordinates based on superimposed 3-piecewise linear regression . . . 102

4.6 Speed vs. time with results by patch (top) and species (bottom)) . . . 110

4.7 Direction vs. time for component method. Direction is measured
in degree measures counterclockwise from due east with
90◦ representing north . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.8 Direction field for no preference of direction (e = 0)
(shading indicates magnitude) . . . . . . . . . . . . . . . . . . . . . . 112

4.9 Power law regression fit for speed vs. migration rate scaling factor k
with 0 < k ≤ 15. The equation for the fit is 6.17k0.44. . . . . . . . . . 113

4.10 Speed vs. time (comparison of methods) . . . . . . . . . . . . . . . . 114

4.11 Direction vs. time (both methods represented) with direction
represented as degree measured counterclockwise from due
east, with 90◦ representing north . . . . . . . . . . . . . . . . . . . . . 115

4.12 Direction field plot for northeast preferred direction of migration
with e = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xii



4.13 Bar graph of average invasion speed vs. degree of preference
(eccentricity) with preferred direction northeast . . . . . . . . . . . . 118

4.14 A given front for northeastern preferred direction of migration. . . . . 119

5.1 Comparison of prevalence vs. time by patch for 3-cell model
in Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2 Comparison of prevalence vs. time by patch for cellular
automaton model in Chapter 3 . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Comparison of prevalence vs. time results in Chapter 2 and 3.
Results are presented by patch. . . . . . . . . . . . . . . . . . . . . . 127

xiii



LIST OF TABLES

Table Page

2.1 Dispersal data from [74, 75] for a single flight . . . . . . . . . . . . . . 30

2.2 Averages of proportions of vectors dispersing within 0-100m
for a single flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Estimated 35-day vector dispersal distribution, extrapolated
from single-flight data in Tables 2.1 and 2.2 . . . . . . . . . . . . . . . 33

2.4 Geographical parameter values . . . . . . . . . . . . . . . . . . . . . . 33

2.5 θj values for outward normals for patch boundary segments . . . . . . 36

2.6 Migration rates for e = 0.5, Patches 2/3 . . . . . . . . . . . . . . . . . 38

2.7 Migration rates for e = 0.5, Patches 1/2 . . . . . . . . . . . . . . . . . 38

3.1 Demographic parameters . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Patch 1 density estimates . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Neotoma micropus population density estimates . . . . . . . . . . . . 68

3.4 Patch 2 density estimates . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Patch 3 density estimates . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6 T. cruzi prevalence estimates from [44] . . . . . . . . . . . . . . . . . 72

3.7 Stercorarian infection rate parameters . . . . . . . . . . . . . . . . . . 74

3.8 Migration rates for no preferred direction (units in 1/year) . . . . . . 81

3.9 Adjusted migration rates for no preferred direction (units in 1/year) . 81

3.10 Equilibrium prevalence levels for species based on migration
(northward preference for direction) . . . . . . . . . . . . . . . . . . . 82

4.1 Specific rates for varying preferred directions, e = 0.5,
rates in units 1/yr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Threshold times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xiv



4.3 Eastward velocities (cell diameters/yr . . . . . . . . . . . . . . . . . . 104

4.4 Northward velocities (cell diameters/yr) . . . . . . . . . . . . . . . . . 104

4.5 Statistical measures for speed (no preferred direction of migration)
using cellwise threshold prevalence, units km/yr . . . . . . . . . . . . 109

4.6 Statistical measures for speed (no preferred direction of migration)
using average threshold prevalence of 0.07, units km/yr . . . . . . . . 109

4.7 Statistical measures for speed (no preferred direction)
using front method, units km/yr . . . . . . . . . . . . . . . . . . . . . 109

4.8 Average speeds (in units km/yr) and directions (in degree
measures north of due east) by patch and overall.
When a preferred direction is given, e = 0.5. . . . . . . . . . . . . . . 116

4.9 Average speed (units km/yr) and direction (degrees north of
due east) overall and by patch for varying levels of eccentricity. . . . . 119

5.1 Epidemic growth phases for Chapter 2 and Chapter 3 models.
Units are in years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xv



CHAPTER 1

INTRODUCTION

Among the types of infectious diseases, vector-borne diseases are at the top

of the list of global health concern. Vector-borne diseases are transmitted to hosts

(human or animal) via insects (or arachnids), known as the “vector”. Some of the most

commonly known vector-borne pathogens are transmitted by mosquitoes (e.g., West

Nile virus and malaria), flies (e.g. leishmaniasis), and ticks (e.g. Lyme disease). A

vector-borne disease of major concern in the Americas, transmitted via insect vectors

from the subfamily Triatominae, is Chagas’ disease. Chagas’ disease, discovered in

1909, is widespread in Mexico, Central America, and South America. An estimated

8 to 11 million people are currently infected, with many who are unaware of their

infection. [92]

Trypanosoma cruzi is a protozoan parasite primarily known for causing Chagas’

disease. The parasite is contained in the feces of the insect vectors, and primarily

transmitted through the bite wound (or mucous membranes) of the host. Upon en-

tering through the skin cells of the host, the parasite transforms to amastigotes and

multiplies, transforming into blood trypomastigotes, entering the blood stream of

the host. In humans, infection with the parasite is lifelong. Once infected with the

parasite, a person will enter the acute phase of the infection, which may be asymp-

tomatic. If symptoms are present, the patient may display fever, nausea, vomiting,

and/or swelling around the site of the bite. After the acute phase, the parasites usu-

ally travel to the tissue of the cardiac and gastrointestinal systems where they usually

go undetected. If left untreated, a person can develop serious complications involving
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the cardiac and gastrointestinal systems (characteristics of chronic Chagas’ disease)

[15].

There are many species which may be considered a vector for Chagas’ disease, all

belonging to the family of Reduviidae insects. This family includes over 7000 species,

with approximately 130 species belonging to the subfamily, Triatominae. Members

of this subfamily may also be referred to as kissing bugs or conenose bugs, each

name an identifying characteristic of the primary vectors of Chagas’ disease (from

the genera Triatoma). Triatoma vectors are easily identified by their “cone-shaped”

nose and flattened wide body (usually with red or dark brown markings on the edges

of the wings). Triatomas are “heat-seeking” insects [33], often times known to bite

their human hosts near the mouth (during the night while sleeping), hence the name

kissing bugs.

Since its discovery, Chagas’ disease research has been primarily focused on hu-

man infection and transmission. Control measures have been implemented in certain

parts of South America. The Southern Cone Initiative, initiated in 1991, was designed

to interrupt domestic transmission via eliminating the main vector species, Triatoma

infestans, in certain South American countries. Uruguay, Chile, and Brazil are now

certified free of T. cruzi transmission via T. infestans. The Southern Cone Initia-

tive has induced awareness of T. cruzi infection in other countries, such as Mexico,

where the disease remains endemic. However, not near enough attention has been

given since it has been estimated that approximately 1.8 million people in Mexico

are infected, with much less than that being reported to the ministry of health (ap-

proximately 3,500 cases from 2000-2010) [8]. At present, direct transmission via the

Triatoma vector to humans is not of major concern to the United States. Fewer than

10 cases of autochthonous transmission have been reported [7]. Although more at-
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tention is being given to Chagas’, incidents of the disease still remain underreported,

and Chagas’ is classified as a neglected parasitic infection in the United States [15].

Although there have been few human cases in the U.S., the disease remains

endemic in sylvatic cycles throughout Mexico and the United States. Sylvatic trans-

mission cycles are vector-host cycles that occur naturally in the wild. In the United

States, triatomine vectors are found in 26 states [46], involving approximately 11 tri-

atomine vector species (with 8 of the 11 in Texas) and over 100 mammalian species.

In the United States, some of the most common sylvatic hosts include opossums

(Didelphis virginiana) and raccoons (Procyon lotor) in the southeastern parts of the

country and woodrats (Neotoma micropus) in Texas (extending also into northern

parts of Mexico). Other species, such as dogs, armadillos, skunks, and chickens have

also been noted as relevant species in sylvatic settings (with canines part of some

domestic and peridomestic cycles [13, 94]). Of the 11 vector species and mammalian

species listed here, we identify two primary vector species in the southeastern U.S.,

Triatoma sanguisuga, found all along the southeastern Atlantic coast from Florida

into central Texas, and Triatoma gerstaeckeri, found mostly from central Texas south

into states in northern Mexico [41]. In addition to the complex vector-host cycles,

there are also multiple strains of T. cruzi circulating in these populations. There are

6 known strain types of T. cruzi, types I-VI, of which types I and IV are circulating

in the United States. There are distinct differences between the strains, from host

specificity to virulence. T. cruzi I, associated with Chagas’ disease, is the primary

strain circulating in Mexico (also found in hosts in the U.S.), while type IV is almost

exclusively found in the United States [69].

Infection with T. cruzi can be transmitted in these sylvatic settings in several

different ways. Once a vector takes a bloodmeal from an infected host, the parasite

enters the insect’s gut. Then, the most common route of infection to the host is

3



stercorarian transmission, in which an infected vector defecates in or near the bite

wound and the parasite enters the host through the broken skin (or possibly mucous

membranes). Other types of transmission, only recently being researched, involve

hosts becoming infected through predation on infected hosts (oral transmission) and

transplacental transmission from mother to baby (vertical transmission). Although

these types of transmission may be classified as alternative transmission modes, it has

been shown that in some cycles, these modes are in fact enough to sustain sylvatic

transmission with low stercorarian transmission rates [43].

1.1 Mathematical modeling

The field of mathematical biology has a broad spectrum of applications. Pop-

ulation dynamics is one of the most well-established fields of mathematical biology.

There are many types of models that can be used to describe population dynamics,

all of which fall under one of two categories: deterministic models or stochastic mod-

els. In deterministic models, the future state of the system is uniquely determined

by the values of the parameters and initial states of the variables in the system. On

the other hand, stochastic models operate under the assumption that randomness

is present, and thus the solutions to the system are not uniquely determined, but

rather represented by probability distributions. The main elements used in modeling

population dynamics are time and space. Models may incorporate time and space in

many ways. For example, deterministic systems may be continuous in time (ordinary

differential equations), continuous in time and space (partial differential equations),

or discrete in time (difference equations). Each of these systems operates under basic

assumptions regarding the biological process being modeled.

Specific models used to describe population growth begin with the exponential

model presented by Malthus (1798) and the logistic model developed by Verhulst
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(1838). Each of the models alone may not be adequate to describe more complicated

demographic processes, but has been an invaluable step in the evolution of mathe-

matical modeling of population dynamics. Overlapping with the field of population

dynamics is the field of mathematical epidemiology. The field of mathematical epi-

demiology has been progressing steadily since the 18th century with Daniel Bernoulli’s

modeling of smallpox. In his work, he set out to show that inoculation would reduce

the death rate due to smallpox and increase the population of France. Most of the

main developments in mathematical epidemiology were made in the early 20th cen-

tury. Ross published his work on malaria (1911) in which he showed that malaria

could be controlled by reducing the mosquito population in a certain region. This

work is particularly useful in the sense that it was one of the first mathematical

epidemic models of a vector-borne disease and one of the first to address the idea

of threshold behavior. Shortly after Ross’ studies on malaria, Kermack and McK-

endrick developed a deterministic epidemic model (1927) in which the population

under study is divided into distinct groups or compartments, referred to as a com-

partmental model. The population is divided into each compartment depending on

their status with respect to the infection. The basic structure (for the Kermack

and McKendrick model) is an SIR model in which individuals of the population are

classified as either susceptible, infectious, or recovered and transition through the

compartments based on assumed characteristics of the infection process. There could

be many other model structures, such as SI, in which members are either susceptible

or permanently infected, such as is the case with T. cruzi, or an SEIR model, in

which the “E” represents the class of individuals exposed to the infection, but not

yet infectious.

In a compartmental model, results include determining under what conditions

the disease will be endemic, and alternatively under what conditions the disease will
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eventually “die out”. To determine these conditions, one computes a well-known

threshold parameter called R0 (pronounced “R-nought”). This basic reproductive

number, although unitless, can be viewed as the number of new infections caused

when an infected individual is introduced into an entirely susceptible population. If,

for a particular disease, R0 > 1, the disease can be expected to persist, and if R0 < 1,

the disease is expected to eventually die out. Standard analysis of a system of ODEs

includes finding equilibria or fixed points of the system. In the field of epidemiology,

equilibria have very specific meaning. In general, there are 2 types of equilibrium

values, the disease-free equilibrium (DFE) and endemic equilibrium (EE) (there may

be more than one of these). The most general method to determine under what

conditions the equilibria will be locally asymptotically stable is to use the Jacobian

matrix, but in epidemiological compartmental models, one of the most widely used

methods is to use the next-generation matrix to compute R0 [24]. Then, in terms of

equilibria, if R0 < 1, then the DFE is locally asymptotically stable, while if R0 > 1,

then the DFE is unstable. We note that these criterion do not always hold, and there

are cases in which a model might have unstable endemic equilibria and the DFE is

stable, yet the disease may still persist [85].

1.2 Problem statement

Because of the complex nature of T. cruzi transmission cycles, the mechanisms

through which the disease is spread among the sylvatic populations require further

study. Migration of disease vectors has been given little attention, yet may play an

important role in T. cruzi transmission. Insect populations are particularly sensitive

to climate variations and changes, which in turn affects the distribution of the pop-

ulations infected with vector-borne diseases [21]. This indicates a need to examine

effects of migration of Triatoma vectors on the spread of T. cruzi. Although few hu-
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man cases have been reported in the U.S., migration of disease vectors from southern

regions may spread the more virulent strains of T. cruzi northward if environmen-

tal conditions permit the vector (and host) to live and reproduce under the climatic

conditions.

In this study, we wish to examine several important aspects related to migration

of Triatoma vectors. First, because there are so few studies on dispersal and migra-

tion capabilities of Triatoma vectors, we derive a theoretical framework designed to

estimate migration rates if certain vector dispersal parameters are known. This frame-

work will be used to estimate migration rates for the primary T. cruzi vectors in parts

of the southeastern U.S. and northern Mexico. Because the movement of vectors may

be the link among the various sylvatic vector-host cycles, we wish to determine to

what extent migration affects the prevalence of T. cruzi infection among the sylvatic

settings in the aforementioned regions of North America. This effect will be studied

via an SI compartmental model of ordinary differential equations, for which standard

threshold quantities such as R0 are calculated. The model depicts distinct transmis-

sion cycles linked by vector migration. This model will be analyzed numerically to

determine how prevalence of T. cruzi is affected by varying migration rates. Finally, a

more spatially explicit model will be introduced, in order to answer questions related

to speed (and direction) of invasion of the epidemic. This model uses the simpler SI

model as a basis to develop a high resolution cellular automaton (a grid based model

in which the status of each cell in the grid depends on certain rules based on the

status of neighboring cells). The vector migration rates will be derived from the local

migration framework derived in Chapter 1.

7



CHAPTER 2

VECTOR MIGRATION AND DISPERSAL RATE FOR SYLVATIC
T. CRUZI TRANSMISSION

2.1 Introduction

The parasite T. cruzi, endemic to the Americas, is maintained primarily in

sylvatic cycles, although the majority of research on the transmission and control

of the parasite has been devoted to domestic and peridomestic cycles in which the

parasite can be transmitted to humans causing Chagas’ disease. Direct transmission

from human to human is not possible (except through blood transfusion and vertical

transmission) and human to vector transmission is too inefficient for the parasite to

maintained in domestic cycles alone [32]; thus a thorough understanding of sylvatic T.

cruzi transmission cycles is critical to any long-term disease control plans. Because the

parasite is maintained in sylvatic cycles and communication among the cycles occurs

mainly as a result of vector movement among different sylvatic host populations, the

need to study the spatial spread of T. cruzi across sylvatic regions is of importance.

The sylvatic transmission of Trypanosoma cruzi is complex due its presence

and circulation in multiple hosts and vector species as well as large variation in strain

types. The hosts, vectors, and strains of T. cruzi vary throughout North and South

America. In sylvatic settings in North America, the parasite is transmitted between

Triatoma vectors and reservoir hosts, mainly raccoons (Procyon lotor), opossums

(Didelphis virginiana), and several species of woodrat, namely the southern plains

woodrat (Neotoma micropus) [69]. In the U.S., hosts are associated with two strains

of T. cruzi, types I and IIa (recently reclassified as strain IV [96]). In this study, we are
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particularly interested in the sylvatic transmission of T. cruzi IV in cycles that range

from northern Mexico to throughout the south-southeastern United States because

of the overlap of distinct transmission cycles. In the wild, the infection cycles with

type IV are maintained by the Triatoma species, Triatoma gerstaeckeri and Triatoma

sanguisuga, and hosts, raccoons and woodrats. The raccoon is found throughout most

of North America, but primarily inhabits wooded areas, and is commonly found near

water. The woodrat habitat is characterized by areas supporting cactus growth and

thorny desert shrubs. Little information is given in the literature regarding the habi-

tats of T. gerstaeckeri and T. sanguisuga. However, one study [41] gives an account

of the biogeography of these species in Texas. Based on their information and other

studies, T. gerstaeckeri is found in dryer regions with a dense but scrubby vegetation

[89], while the habitat of T. sanguisuga covers a broader range of vegetation. T.

sanguisuga has been found in Texas and other southeastern U.S. states.

In this region, there are several known distinct transmission cycles. In northern

Mexico and the southernmost part of Texas, the main T. cruzi vector is Triatoma

gerstaeckeri, associated in sylvatic settings almost exclusively with the southern plains

woodrat [41, 65, 27]. In the eastern portion of Texas into the southeast United States,

the predominant vector is Triatoma sanguisuga, part of the lecticularia complex [72,

39] and is commonly associated with raccoons and opossums [66]. A recent study

done in the U.S. analyzed 107 isolates of T. cruzi, and determined that raccoons (and

other hosts) are primarily infected with type IV, while opossums were only infected

with type I [69], and in fact are immune to type IV [70]. Since we are concerned with

the transmission of type IV, we do not include opossums as a host in our study. In

Texas and Mexico, the two cycles overlap due to T. sanguisuga also being found in

association with woodrats [27].
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In order to describe the distinct transmission cycles geographically, we define

three distinct regions (or patches). We define two outer patches based on the T.

gerstaeckeri-woodrat cycle and the T. sanguisuga-raccoon cycle, with an overlap patch

containing both vector species and both hosts. The patch boundaries are based on

the Omernik ecoregion system, political boundaries, and host and vector distribution

maps found in literature. The Omernik system was derived in 1987 in collaboration

with the U.S. Environmental Protection Agency. The Omernik system is hierarchical

in structure and consists of 4 levels. Ecoregions are areas with similar ecosystems, and

the boundaries are determined by patterns of vegetation, climate, geology, wildlife,

water quality, soils, and human land use [62]. To determine the patches used in this

model, we use the level 3 ecoregion system, consisting of 194 regions describing North

America.

Since the geographical scale of Chagas disease spread ranges from northern

Mexico through southeast United States, we assume communication between the

patches is through the migration of the T. cruzi vectors, rather than migration of

hosts. Although hosts may move, since the geographical scale is so large and covers

a wide range of terrain, we do not assume hosts are as likely to cross into unsuitable

habitat, thereby crossing patch boundaries. Thus we do not assume migration of hosts

plays a significant role in spreading the parasite across regions. The term migration

used here defines movement of vectors that cross patch boundaries. There is little to

no information regarding dispersal capabilities of T. sanguisuga and T. gerstaeckeri.

However, there have been several experimental studies on the dispersal capabilities

of the South American species, T. infestans and T. sordida. The movement specific

experimental studies are primarily light trap collections [86, 87] and mark-release

experiments [74, 75]. The light trap collections are designed to determine seasonal

variations of triatomine dispersal rather than to determine actual flight range, while
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the mark-release experiments are designed to determine flight range under natural

conditions. It is assumed upon maturation vectors initiate dispersal in search for a

host. Vectors will also disperse due to death of host or if a host fails to return to the

nest. Results of these experiments suggest that flight initiation is usually associated

with low nutritional status and high temperatures [86], which is evidence for the fact

that dispersal mainly occurs in search for a host.

Describing dispersal and migration is important for understanding ecological

and epidemiological contexts and mechanisms. There have been several mathematical

frameworks modeling movement of species, but many focus on modeling species move-

ment rather than mechanistic ways to derive dispersal or migration rates. Reaction-

diffusion equations have been used to model dispersal (in continuous time and space)

due to the extensive amount of study and results [57, 14, and references therin]. Other

types of dispersal models are based in discrete time, such as dispersal modeled with

integrodifference equation by Kot et al. [42]. The focus of this work is to incorporate

dispersal into a population model using a redistribution (distribution) kernel. Results

show that broad-tailed dispersal distributions that can exhibit accelerating invasion

speeds rather than constant-speed traveling waves. Mathematical models specific to

studying dispersal of Triatoma vectors include models focusing on Triatoma invasion

of domestic areas [79, 4]. In [79], Slimi et al. develop a spatio-temporal model based

on cellular automata at a small geographical scale (a village), where dispersal is de-

scribed by parameter defined as the average number of vectors entering and leaving

the village per unit time. Results of this model suggest alternative control strategies

to prevent yearly infestation of villages. Barbu et al. [4], also interested in the in-

vasion of domestic areas, consider grid-based models. Dispersal is measured by the

number of adult vectors dispersing in each cell inside the village. This study compared

several different spatially explicit models and determine that vectors that invade vil-
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lages are not only immigrating from peri-domestic habitats, but sylvatic habitats as

well. Thus control measures should not only be focused on the peri-domestic areas,

but also on the forests surrounding villages. In each of these studies, dispersal on

a small geographical scale was studied. In this study, we use small-scale continuous

space information to generate large-scale, discrete-space migration rates, compatible

with classical metapopulation models.

We first describe the patches—the transmission cycle defining each patch as

well as the geographical boundaries and landscape. We then estimate dispersal rates

for vectors and apply those rates to translate local dispersal to global migration across

a large geographical scale. We first consider whether vectors have a preference for

direction of dispersal, and then the simplest case if there is no preference of direction

of dispersal. Finally, we use the framework to calculate migration rates for the vector

species mentioned here and compare rates for varying preferred directions and degree

of preference for a particular direction. The framework derived here may be applicable

to dispersal and migration of other species.

2.2 Patches

Patch 1 extends from south Texas to northern Mexico (including portions of

Coahuila, Tamaulipas, and Nuevo León). Patch 1 is the region in which the primary

T. cruzi hosts and vectors are woodrats and T. gerstaeckeri [40, 13]. Patch 3 extends

from central Texas to the eastern half of the United States, including Louisiana, Mis-

sissippi, Alabama, Georgia, the Carolinas, and the Florida panhandle. The primary

vector is T. sanguisuga associated with raccoons [66]. Patch 2 is the region in which

the two transmission cycles overlap due to T. sanguisuga’s association with woodrats

as well as raccoons in this region. Patch 2 includes the southwest portion of Texas

and part of Coahuila, Mexico. The patches can be seen in figure 2.1.
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Patch 3

Patch 2

Patch 1

Figure 2.1. Patches.

2.2.1 Patch 1

Patch 1 is defined by the T. gerstaeckeri-woodrat transmission cycle and in-

cludes portions of south Texas and certain northern states of Mexico. The primary

ecoregion in patch 1 is the Southern Texas Plains which has a generally semi-arid

climate dominated by scrub, thorny brush vegetation. The thorny brushland is domi-

nated by mesquite and certain species of cactus, among other desert scrub vegetation

[61]. Curto de Casas et al. determine a geographic distribution for T. gerstaeckeri

based on other scientific papers recording findings of this species in Mexico [20], which

includes the states of Coahuila, Tamaulipas and Nuevo León. Recently Cruz-Reyes

and Pickering-López conducted a review of literature regarding T. cruzi in Mexico,

and determined T. gerstaeckeri to be found in the same states mentioned previously

[19]. In their study, they do include a small northeast portion of San Luis de Potośı
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as potential habitat for T. gerstaeckeri. Recently, in a study on the risk assessment

of Chagas disease in Texas, Sarkar et al. [72], a risk assessment predicts high suitable

habitat for T. gersataeckeri in northeast Mexico to central and east Texas, which

aligns closely with patches 1 and 2. Since our focus is on T. gerstaeckeri and T.

sanguisuga, we do not include this state in patch 1, due to the fact that this region

coincides with the native area of the dominant vector in Mexico, Triatoma dimidiata.

Because the patch 1 climate and vegetation are consistent with the southern plains

woodrat preferred habitat, we are certain that this species is found through patch

1. According to the IUCN Redlist of Threatened Species [50], the southern plains

woodrat has also been found in northeast Coahuila, Tamaulipas, and Nuevo León.

Because patch 1 does not include the T. sanguisuga-raccoon transmission cycle,

the northern boundary of patch 1 is primarily based on the geographic extent of T.

sanguisuga. Kjos et al. [41] collected samples of T. sanguisuga, which was not found

south of the southern borders of Webb, Duvall, Jim Wells, and Kleberg counties in

Texas. Furthermore, Ibarra-Cerdeña et al. [39] determined a very similar boundary

in Texas for the southern range of the complex Triatoma lecticularia, which includes

the species T. sanguisuga. We mention here that raccoons may be found statewide in

Texas. However, based on known county records, the raccoon geographic distribution

diminishes in the south to southwest portion of Texas. Beasley et al. [6] show that

raccoons prefer forested areas over all other landcover types (grassland, shrubland,

agriculture areas), with the least preferred habitat being shrubland. Henner et al.

[37] found that raccoons prefer trees as their den site 91% more than ground den

sites. They also conclude that raccoons consistently selected den sites that allowed

access to free water. Thus, due to the lack of abundant tree cover and free water in

patch 1, we do not include raccoons as a host of T. cruzi in this region. We further

mention that no studies to date have associated the vector T. gerstaeckeri with the
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raccoon, thus agreeing with the conclusions that raccoons would not be a significant

host for T. cruzi in this region.

2.2.2 Patch 2

Patch 2 contains the most diverse climate and vegetation due to the overlap of

host and vector species in the model. This patch contains the entire Edwards Plateau,

portions of the Southern Texas Plains, and the southernmost parts of the Texas

Blackland Prairies, East Central Texas Plains, and Western Gulf Coastal Plain. The

vegetation is dominated in the south by the shrubland of the Southern Texas Plains.

The Edwards Plateau has a similar vegetation dominated by scrub forest. Mesquite

occurs throughout the entire region with ash, juniper, and Texas oak dominant in the

southern and eastern regions of the plateau which extend into the Texas Blackland

Prairies and East Central Texas Plains. The Blackland Prairies and East Central

Texas Plains (also called the Post Oak Savanna) are predominantly covered by prairie

grasses and savannas (a transition between grassland and forest). Trees in this region

include Post oak and blackjack oak, with mesquite invading the southernmost parts

of these regions [61]. This region also includes a portion of the Western Gulf Coastal

Plain with a primary grassland vegetation; however, much of the region has been

invaded by mesquite trees, oaks, and prickly pear cactus [61].

Patch 2 is defined as the region in which all four species can be found with T.

sanguisuga feeding on both host species, woodrats and raccoons. In patch 2, woodrats

are predominantly found in the regions dominated by mesquite and cactus. Studies

have found that N. micropus densities are directly linked to availability of cactus

[83, 12]. In fact, Thies et al. [83] found that cacti was the most abundant material

in construction of the woodrat nests (over 50% of the material), as well as a main

source of food. Thus, in general, the southern plains woodrat can be found in most of
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patch 2, albeit with lower population density than in regions completely dominated by

thorny brushland (i.e., patch 1). In patch 2, raccoons are mostly found in regions with

trees and near water. This corresponds to raccoons most likely preferring habitat in

the southern part of the Edwards Plateau into the Texas Blackland Prairies and East

Central Texas Plains. In this region, both vectors T. gerstaeckeri and T. sanguisuga

can be found. We further mention here that in this region, T. sanguisuga feeds on

both woodrats and raccoons [65, 13, 66, 40]. We assume that due to local vector

dispersal T. sanguisuga sometimes move between raccoon dens and woodrat nests so

that they will be considered a single population.

The southern portion of patch 2 is determined by the geographic extent of T.

sanguisuga (as mentioned previously). The eastern boundary of patch 2 is primarily

based on the preferred habitat of the woodrat, since the woodrat prefers to makes its

home in regions with cactus growth. The regions east of patch 2 are dominated by

forest and have extensive tree cover, less favorable for cactus growth. According to

county records, the southern plains woodrat has a distinct eastern boundary in Texas

[22], which we use as the eastern boundary of patch 2. The northern boundary of

patch 2 is the northern boundary of the ecoregion, Edwards Plateau. Although the

southern plains woodrat habitat extends further north than this boundary, according

to the work done by Kjos et al. [41], the vector T. gerstaeckeri has not been located

any further east or north than the boundary of patch 2. The western boundary is

determined by the Southern Texas Plains ecoregion. The regions west of patch 2 are

predominantly desert (as part of the Chihuahuan Desert ecoregion). Although the

woodrat may be found in this region, we do not have any information regarding T.

gerstaeckeri or T. sanguisuga being significant vectors in this region. We note that in

the risk assessment by Sarkar et al. [72], data collection of T. sanguisuga from two

museum collections in the western United States predicts suitable habitat in areas
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west of this boundary, although they mention the need for more data collection to

test this prediction. Other species such as Triatoma rubida and Triatoma protracta

may be the dominant vectors in this region [63].

2.2.3 Patch 3

Patch 3 contains the T. sanguisuga-raccoon T. cruzi transmission cycle and

covers a great area of land. The vegetation in this region is dominated by forest and

woodland, including the South Central Plains and Southeastern Plains as the main

ecoregions. We mention here that there are other hosts of T. cruzi in this region,

most notably opossums. However, we only consider raccoons as the primary host

since we are concerned with the transmission of T. cruzi Type IV, to which opossums

are immune [70].

The southern plains woodrat is not native to this region. The western boundary

of patch 3 is determined by the eastern range of the southern plains woodrat [22] and

the western boundary of T. sanguisuga [41]. The southern boundary of patch 3 is

determined by the northern boundary of the woodrat as well as T. gerstaeckeri in the

eastern part of Texas [41, 22]. T. sanguisuga and the raccoon are found in many parts

of the eastern half of the U.S. covering a broad expanse of climate and vegetation.

We note, however, that the southern boundary of patch 3 extends not further than

the Florida panhandle. The ecoregion south of patch 3 is the Southern Coastal Plain,

with a broad range of vegetation, but mostly consists of coastal lagoons, marshes,

and swampy lowlands. Although raccoons may inhabit this type of land, research

suggests that the complex of the triatomine species, T. lecticularia, which includes T.

sanguisuga, is not found in this region. There are reports of T. sanguisuga found north

of the northern boundary of patch 3. They are isolated reports, and T. sanguisuga

is not believed to be as dense north of this boundary as they are in the the southern

17



part of the U.S.; thus we do not include the regions to the north of Tennessee and

North Carolina.

2.3 Dispersal and migration rates

To estimate the parameters that describe the movement of vectors across patch

boundaries, we will consider two types of rates, dispersal and migration rates. Dis-

persal refers to any movement of vectors, while migration will be used to denote

movement only across patch boundaries. We consider the patches in continuous 2-D

space so that at every point exists some density of vectors. We assume that there

are two main reasons a vector may migrate in search for a host: maturation and

loss of host. We assume that upon maturation, vectors migrate in search for a host.

Furthermore, we also assume that some proportion of adult vectors may disperse to

search for a new host when the previous host dies or fails to return to the nest. We

note here that not all vectors that mature may need to disperse if there is a host

present in their location upon maturation. Thus, the vector dispersal rate is a sum

of two rates, m1 and m2. We define m1 as the dispersal rate due to maturation,

and m2 as the dispersal rate due to loss of host. Due to difficulty estimating m2, we

will estimate m1 using the assumption that 100% of vectors that mature will migrate

so as to include the dispersal rate due to loss of host. We will then calculate the

cross-patch migration rate as the product of the dispersal rate, m and the migration

proportion (the proportion of dispersals that cross patch boundaries.) We will denote

the migration proportion as M and the cross-patch migration rates will be denoted

as m̄.
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2.3.1 Dispersal rates

We first separately calculate the rate m at which vectors in any location will

disperse. Since we assume that vectors begin to travel at maturity, we consider the

2-stage model with constant local population including per capita birth, death and

maturation rates, where J represents the local population of juveniles (nymphs) at

time t, and A represents the local population of adults, and J + A = N .

J ′ = rA

(

1− A

K

)

− γJ − µJJ,

A′ = γJ − µAA,

where r represents the intrinsic growth rate, K is the carrying capacity of the vector

population, µJ and µA are the per capita natural mortality rates for juveniles and

adults, respectively, and γ represents the rate at which juveniles become adults (or

maturation rate, units 1/year).

We can now determine the dispersal rate m for each species due to maturation

as the per capita maturation rate γ times the proportion of juveniles at equilibrium.

We define the proportion of juveniles at equilibrium as x∗ = J∗

N∗
, so then (1−x∗) = A∗

N∗
.

To determine x∗, we use the proportionalized equilibrium condition (J ′ + A′ = 0),

γx∗N∗ − µA(1− x∗)N∗ = 0,

and determine for N∗ 6= 0, x∗ = µA

µA+γ
. Thus, for each vector species,

m1 = γx∗ = γ

(

µA

µA + γ

)

.

Using the parameter estimates from [44], for T. sanguisuga(γ = 1/(2.25year),

µA = 1/(1.44year), we obtain m1S = 0.271/year. For T. gerstaeckeri (γ = 1/year,

µA = 1/0.78year), m1G = 0.562/year.
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2.4 Preferred direction

To derive the migration proportion (the proportion of dispersals that cross the

patch boundary), we wish to sum up all of the local vector dispersals originating

in one patch that cross the patch boundary into the neighboring patch. As shown

in Figure 2.2, we wish to sum up all of the dispersals originating from each point

(x, y) that end up on the other side of the patch boundary. In order to derive the

migration rate, we consider two different coordinate systems. The local coordinate

system, used to sum all of the patch-crossing vectors originating from a given point,

will be polar, while the global coordinate system summing over all points of origin

will be rectangular. To simplify calculations, we will assume that the patch boundary

is piecewise linear.

Figure 2.2. Interaction between global and local coordinate systems.

We consider that vector dispersal is described by three properties: dispersal

distance, preferred direction of dispersal, and degree of preference for a particular

direction. Each of these properties is inherent to vector dispersal and independent of

the coordinate systems. We model vector dispersal as a piecewise constant distribu-
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tion in two-dimensional continuous space. To account for the preferred direction, we

define this distribution using a sequence of nested ellipses, where each ellipse in the

sequence represents a particular level of dispersal. The dispersal is constant on rings

bounded by the ellipses, with the appropriate proportion of vectors dispersing within

each ring.

Dispersal properties are reflected in the distribution parameters. We define

the sequence {bi} as the threshold dispersal distances perpendicular to the preferred

direction. The values θ0 and e represent the preferred direction and degree of pref-

erence, respectively. These values are global parameters and do not depend on any

coordinate systems. The value θ0 is defined counterclockwise relative to the outward

normal to the patch boundary. The degree of preference parameter e gives the ec-

centricity of each ellipse. We note that 0 < e < 1, so that for values of e very close

to 1, the degree of preference is very strong, while if e = 0, we assume the vectors

have no preferred direction of dispersal, and the model reduces to concentric circles,

which will be described in detail in the following section. In Figures 2.3 and 2.4, we

illustrate vector dispersal with sets of nested ellipses for varying values of θ0 and e.

Figure 2.3. Varying direction with bold points of origin (e = 0.7).
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Figure 2.4. Varying eccentricity with bold points of origin (θ0 = −π/4).

Next, we will derive a framework for a preferred direction of dispersal. We

first define (local) dispersal distribution(s) using nested ellipses in which dispersal

originates from a given point. Then we derive the global migration proportion from

each point of dispersal in the originating patch.

2.4.1 Local migration framework

To determine the total number of patch crossing dispersals originating from a

given point, we will consider a local coordinate system defined by polar coordinates

(r, θ). We assume that vector dispersal originates at the pole. The variable r defines

the dispersal distance from the pole and θ is measured counterclockwise. The reference

value θ = 0 is measured π/2 clockwise from the outward normal to the patch boundary

(see Figure 2.2).

The preferred direction of migration will be modeled using a sequence of nested

ellipses with a common focus at the pole. Then each ellipse ri is given by the equation

ri(θ) =
bi
√
1− e2

1− e sin(θ − θ0)
.

As stated previously, θ0 and e are global parameters depending only on the

nature of vector dispersal and independent of the coordinate systems used. The

ellipse ri(θ) is defined so that the major axis points toward the direction of θ0. As
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mentioned previously, the sequence {bi} defines the dispersal distances perpendicular

to the preferred direction, θ0. Based on dispersal data, we define a function, Ψ(r, θ),

that measures proportion of vectors per square kilometer. Because Triatoma dispersal

data is scarce we will define Ψ(r, θ) to be piecewise constant on elliptical rings Ri(θ) =

{(r, θ) : ri−1 < r ≤ ri}, where all ri have the same e and θ0, but differing widths,

given by bi. Then

Ψ(r, θ) =











































































f1, 0 < r ≤ r1(θ)

f2, r1(θ) < r ≤ r2(θ)

f3, r2(θ) < r ≤ r3(θ)

.

.

.

fn, rn−1(θ) < r ≤ rn(θ)

where each constant function fi is the proportion of vectors per square kilometer

dispersing from the focus at the pole to the ith ring Ri(θ) (measured in kilometers).

We further assume no vectors disperse further than rn(θ).

To construct fi, we use the proportionalized population density for each ellip-

tical ring, where ci is the proportion of vectors dispersing from the given point to Ri,

so then
∑

i ci = 1. Then the proportion of vectors per square kilometer is

fi = ci/A(Ri),

where A(Ri) is the area of the elliptical ring bounded by ri and ri−1. Then A(Ri) =

π(aibi−ai−1bi−1), where ai is the length of the semi-major axis. Since ai can be given

in terms of the length of the semi-minor axis bi as ai =
bi√
1−e2

, we have

A(Ri) =
π(b2i − b2i−1)√

1− e2
,
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and consequently

fi =
ci
√
1− e2

π(b2i − b2i−1)
. (2.1)

Here bi and bi−1 are half the length of the minor axis for the outer and inner

ellipses, respectively. Furthermore, we note that

∫ ∫

Ψ(r, θ) dA =
∑

i

fiA(Ri) =

∑

i

ci = 1.

Figure 2.5. Preferred direction framework. Shaded region represents the area for
which dispersals have crossed patch boundary originating from a distance d away
from the patch boundary..

We assume that vector dispersal originates at a focus of the ellipse located at

the pole at a distance, d, away from the patch boundary. To compute the vector

dispersals crossing the patch boundary, we wish to determine the two θ values, θ1

and θ2 (see Figure 2.5), such that the outermost ellipse rn(θ) intersects the patch

boundary. The parameters d, θ1 and θ2 are constant over r, θ, but variable over x, y.

Thus, for the point of dispersal, d km from the patch boundary, we solve

d

sin(θ)
=

bi
√
1− e2

1− e sin(θ − θ0)
(2.2)

for θ, obtaining two θ values, θ1(d) and θ2(d), which become the lower and upper

limits, respectively, of the dθ integral. We note that θ1 and θ2 depend on e and θ0
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as well. But, since these are global parameters, we do not write θ1 and θ2 as explicit

functions of e and θ0.

By solving (2.2), we determine by using the identity sin(A−B) = sinA cosB−

cosA sinB,

d

sin θ
=

bn
√
1− e2

1− e sin (θ − θ0)

d− de sin (θ − θ0) = bn
√
1− e2 sin θ

d− de sin θ cos θ0 + de cos θ sin θ0 = bn
√
1− e2 sin θ

(de cos θ0 + bn
√
1− e2) sin θ − de sin θ0 cos θ = d

(2.3)

Since we can write a sum of two sinusoidal functions as a single sinusoidal

function, then a1 sin θ+ a2 cos θ can be written as B sin(θ+ φ), where B =
√

a21 + a22

and φ = arctan (a2/a1). Then in equation (2.3),

B =

√

(de cos θ0 + bn
√
1− e2)2 + (de sin θ0)2

and

φ = arctan (−de sin θ0/(de cos θ0 + bn
√
1− e2)).

It then follows that θ1 = arcsin (d/B)− φ and θ2 = π − arcsin (d/B)− φ.

We define M̂(−d) (for a negative argument indicating location relative to the

patch boundary) as a unitless quantity representing the proportion of vectors crossing

the patch boundary originating from the pole. Thus,

M̂(−d) =

∫ θ2(−d)

θ1(−d)

∫ rn(θ)

−d/ sin θ

Ψ(r, θ) r dr dθ,

where we define M̂(−d) = 0 for d such that rn(θ) does not intersect d/ sin(θ). A

visual representation can be seen in Figure 2.5. Furthermore, we define the maximum

distance a vector can be from the patch boundary and still disperse to the patch

boundary, as the point on the outermost ellipse such that there is only one intersection
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with the patch boundary. This maximum distance, denoted rmax, is calculated by

finding the unique solution to θ1(−d) = θ2(−d). If θ1(−d) = θ2(−d), it follows that

−d = B, so then

rmax = bn

(

e√
1− e2

cos θ0 +

√

1 +
e√

1− e2
cos θ0

)

. (2.4)

2.4.2 Global migration framework

To sum patch-crossing vector dispersals over all points of origin in the given

patch, we define now a rectangular global coordinate system for each boundary seg-

ment. The origin of this system is defined to be the counterclockwisemost point (with

regard to the originating patch) on the piecewise linear boundary segment between

the two patches (see Figure 2.6 for an illustration) and the angle between consecu-

tive segments is no greater than 90◦ in either direction. Each point of dispersal is

then described by the rectangular coordinates, (x, y), with y defined by the vertical

distance to the patch boundary, where y < 0 represents the originating patch and

y > 0 represents the destination patch. Thus the patch boundary is given for each

segment by the line y = 0. We further note that rmax differs for each segment because

θ0 differs for each segment.

We note that as mentioned in section 2.3.1, only a proportion of vectors are

capable of dispersal. We wish to calculate the proportion of vectors in the entire

patch that cross the patch boundary. Because M̂(d) is the proportion of vectors

originating from the pole that cross the patch boundary, we integrate M̂(y) (since

in the global coordinate system, d = −y) for each point x, y within the maximum

dispersal range. This integral will give us the area times the proportion of all vectors

dispersing. Thus, to determine the cross-patch migration rate, we divide by the area
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Figure 2.6. Global coordinate system.

A of the patch from which the dispersal originates and multiply by the dispersal rate,

m, to obtain

m̄j =
m

A

∫ lj

0

∫ 0

−rmax

M̂(y) dy dx,

where lj represents the length of the jth linear boundary segment.

Furthermore, since the integral does not depend on x, m̄j becomes

m̄j =
m · lj
A

∫ 0

−rmaxj

M̂(y) dy (2.5)

for each linear segment of boundary. Then m̄ =
∑

j

m̄j.

This method does have some limitations and constraints. First, in order for

the rectangular coordinate systems described above to remain entirely within the

patches of origin, the angle turn between any two consecutive segments be no greater

than 90◦. Second, the method considers dispersals originating from a given point

to cross a single linear segment of a patch boundary. In practice, dispersals which

originate sufficiently close to the corner where two such segments meet may cross

boundary segment lines beyond the segments’ endpoints, in which case the method
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miscounts them (overcounts or undercounts). To address the issue, we also require

that minj lj > āmax,i.e., the shortest boundary segment must still be longer than

the longest dispersal distance, in order for the dispersal ellipse generated from any

point to cross no more than two boundary segments. Then we introduce corrective

calculations to resolve the errors induced near corers.

For each type of corner (concave or convex), these computations cover regions in

which the originating dispersals are overcounted (counted as crossing a patch bound-

ary, when they should not be) or undercounted (failure to count dispersals that cross

patch boundaries). The appendix provides detailed definitions of each error type.

The numerical approximations for the migration rates in sections 2.5.2 and 2.6 have

been adjusted for the error, which, for the patches in this study, sum to no more than

3%.

2.5 No preferred direction

In the simplest case, we assume vectors have no preferred direction of dispersal.

We then consider the eccentricity e is 0, and thus the nested ellipses reduce to con-

centric circles, each with radius bi. Since when e = 0, each ri becomes bi, Ψ depends

only on the sequence {bi}. In this case, vector dispersal originates from the center of

the circles. Here,

Ψ(r, θ) =











































































f1, 0 < r ≤ b1

f2, b1 < r ≤ b2

f3, b2 < r ≤ b3

.

.

.

fn, bn−1 < r ≤ bn

(2.6)
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and

fi =
ci

π(b2i − b2i−1)
. (2.7)

2.5.1 Estimation of dispersal kernel

In order to derive numerical values for Ψ with no preferred direction, we utilize

two studies in which Triatoma vector dispersal is the focus. Both studies were mark-

release experiments performed in the vector’s natural climatic conditions in which a

preferred direction of dispersal could not be determined. Due to the lack of dispersal

information regarding T. gerstaeckeri and T. sanguisuga, we use two studies on two

South American Triatoma species, T. infestans and T. sordida [74, 75]. Although

these species are not naturally located in the patches in this model, we assume that

the dispersal capabilities of each of these species are at least an upper bound for the

dispersal capabilities of T. gerstaeckeri and T. sanguisuga.

For each study, vectors were released from a central location and captured dur-

ing the night. To determine distances flown, circles were drawn out with fluorescent

paint at regular intervals (in meters). For each study, the proportion of vectors trav-

eling within a specific range of distances was reported. We give the raw data and

an average of those proportions in Tables 2.1 and 2.2. We note that in [74], specific

values for 60, 75, and 90 m were not given, but rather values for <100 m. In order to

use this data with the same intervals provided in [75], we decomposed the data in [74]

for values <100 m by using the same proportions in [75]. These values are marked

with an * in Table 2.1. In each study, there appears to be a distinction between

trivial flights (0-5 m) and longer distance flights (> 50 m). Thus, for vector dispersal

we assume that all flights were either trivial or long range, i.e., we assume no flights

occur for 5-50 m.
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Table 2.1. Dispersal data from [74, 75] for a single flight

[74] [75] Range
0.552 0.469 0-5m
0.034∗ 0.015 60m
0.018∗ 0.008 75m
0.018∗ 0.008 90m
0.378 0.504 >100m

Table 2.2. Averages of proportions of vectors dispersing within 0-100m for a single
flight

Proportion Interval
c1 = 0.5105 0-5m
c2 = 0 5-50m
c3 = 0.0375 50-75m
c4 = 0.0125 75-100m
c5 = 0.4395 >100m

In each study, only a proportion of the vectors were actually recovered, and it

is assumed that the remainder of the bugs flew farther than 100m. After taking the

averages of each study, we determine that 44% of the bugs flew farther than 100m.

Since we do not have a maximum dispersal distance, we will derive the numerical

values for Ψ using three possible values (low-mid-high estimates) for the maximum

dispersal distance. We further note each value of bi represents a range of distances

traveled for one flight.

Because we have 5 intervals determined by the experiments, to determine b5

assuming a minimum dispersal capability we first note that in equation (2.7), ci

represents the proportion of bugs traveling between bi−1 and bi meters for one flight.

Thus, c5 = 0.44 represents the proportion of bugs traveling between 100 and b5 meters
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and f5 =
0.44

π(b25−1002)
. If b5 is to be a minimum and the distribution is to be unimodal,

then f5 = f4. The remainder of the ci values are given in Table 2.2. Thus,

f4 = f5

c4
π((b4)2 − (b3)2)

=
c5

π((b5)2 − (b4)2)

0.125

π(1002 − 752)
=

0.44

π(b25 − 1002)

(2.8)

Solving equation (2.8) for b5, we determine b5 = 405m.

To determine a maximum value for b5, we consider results published by Schofield

et al. [48]. In this paper it is determined that Triatoma vectors are capable of flights

up to 1350 meters. Thus, we choose a maximum value for b5 to be 1350m. We note

that because of limited data, in all future calculations, we will use the high dispersal

range of 1350m.

Based on experimental results by Pippin [65] regarding the vectors in the model,

we estimate that on average a vector will travel to find a host within 2 weeks after

feeding, but will starve (or no longer have the energy to fly) within 3 weeks of flying.

Then, the maximum number of flying days is estimated to be 35. We note that

because of the limited amount of data, this number is only an estimate determined

by one study. Then, in order to model dispersal over more than one flight, we need a

distribution of the sum of the 35-day flight distances. As we increase the number of

days flown to 35, by the Central Limit Theorem, the 35-day distribution will become

approximately normally distributed with mean, 35 times the mean for the original

1-day distribution and standard deviation
√
35 times the standard deviation of the

original distribution.

To develop the 35-day distribution, we determine the proportion of vectors flying

per meter for each of the ranges in Table 2.2. We use these values as estimates for the

heights of a 1D piecewise constant function, (call P̄ ) with intervals of length 1 meter.
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To obtain the 1D distribution for the sum of the flight distances for 35 days of flying,

we will repeatedly apply the convolution to P̄ 35 times. For computational simplicity,

we approximate this normal distribution with a piecewise constant function, P (r),

with units proportion of vectors per meter, where

P (r) = hj for b(j−1) < r ≤ bj with b0 = 0 (2.9)

We chose P to have 9 pieces for optimal processing time. The interval for

the final piece is chosen to be the entire right tail of the normal distribution. The

remaining breakpoints and values for the function are then determined by a least-

squares optimization routine. Finally, we multiply each value of P by its appropriate

interval to obtain the proportion of vectors traveling within the given distance interval

using the equation

cj = hj · (bj − b(j−1)). (2.10)

Recall, the distribution function Ψ is a function of 2 variables, r and θ, where

Ψ(r, θ) = fj for b(j−1) < r ≤ bj (2.11)

In order to derive estimates for Ψ, we use the cj values (as the proportion of

vectors dispersing to the jth elliptical ring) in equation (2.1).

2.5.2 Calculation of migration rates for no preferred direction

In the case of no preferred direction, the intersection of the patch boundary

with the outermost circle, is found by solving

d

sin(θ)
= b9,

where b9 is the radius of the outermost circle. Then,
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Table 2.3. Estimated 35-day vector dispersal distribution, extrapolated from single-
flight data in Tables 2.1 and 2.2

j bj hj

1 2485.05 9.96× 10−8

2 4970.11 2.40× 10−6

3 7455.16 2.34× 10−5

4 9940.21 9.26× 10−5

5 12425.26 1.51× 10−4

6 14910.32 1.02× 10−4

7 17395.37 2.81× 10−5

8 19880.42 3.18× 10−6

9 47216 3.58× 10−10

Table 2.4. Geographical parameter values

Patch area Bound. lengths
A1 = 1.594× 1011m2 lAB = 193, 600m
A2 = 1.783× 1011m2 lBC = 137, 707m
A3 = 1.133× 1012m2 lDE = 99, 691m

lEF = 103, 427m

θ1(d) = arcsin (d/b9) and θ2(d) = π − arcsin (d/b9). (2.12)

To manage the complexity of the calculations we will break the patch boundaries

in Figure 2.1 into four linear segments (two for patch 1/2 boundary and two for patch

2/3 boundary) as seen in Figure 2.7. We will calculate separate migration rates for

each (appropriate) vector species between patches 1 and 2 and between patches 2

and 3. We define l12 as the sum of the length of the two linear segments making

up the boundary between patches 1 and 2, while l23 is the sum of the lengths of the

linear segments making up the boundary between patches 2 and 3. But, we note that

for e = 0, we do not need to consider multiple boundary segments, since there is no

preference for direction. Thus, rather than using separate terms for each boundary
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segment, we use one term with the sum of the lengths of each boundary segment for

each patch boundary.

Figure 2.7. Patch boundaries linear segments.

To calculate the migration rate of T. gerstaeckeri from patch 1 to patch 2,

m̄12 =
mG

A1

(l12)

∫ 0

−rmax

∫ θ2(y)

θ1(y)

∫ r9

y
sin θ

Ψ(r, θ) r dr dθ dy, (2.13)

where the θ limits are given in equation (2.12), rmax = b9, mG = 0.552/year. The

geographic parameters are given in Table 2.4.

The migration rate of T. gerstaeckeri from patch 2 to patch 1 is

m̄21 =
mG

A2

(l12)

∫ 0

−rmax

∫ θ2(y)

θ1(y)

∫ r9

y
sin θ

Ψ(r, θ) r dr dθ dy. (2.14)

Then, m12 = 0.0042/year and m21 = 0.0038/year.

The migration rate of T. sanguisuga from patch 2 to 3 and 3 to 2 can be

calculated similarly. The geographical parameter values for no preferred direction are

given in Table 2.4.
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2.6 Numerical calculations for preferred direction

We now consider how preferred direction affects the migration rate. In the case

of preferred direction,

Ψ(r, θ) = fj for b(j−1) < r < bj (2.15)

where

fi =
ci
√
1− e2

π(bi)2 − (bi−1)2)

and

ri(θ) =
bi
√
1− e2

1− sin (θ − θ0)
.

The specific values for ci are determined by the the values in Table 2.3 and equation

(2.10).

Based on the description of calculating the migration rates for a preferred direc-

tion in section 2.5.2, we calculate the migration rates for varying preferred directions.

The migration rate from patch 1 to 2 is then defined to be

m̄12 =
mG

A1

(

lAB

∫ 0

−rmax

∫ θ2(y)

θ1(y)

∫ r9(θ)

y
sin θ

Ψ(r, θ) r dr dθ dy

)

+
mG

A1

(

lBC

∫ 0

−rmax

∫ θ2(y)

θ1(y)

∫ r9(θ)

y
sin θ

Ψ(r, θ) r dr dθ dy

)

.

(2.16)

We note that when rmax appears in each integral, it is specific to each patch

boundary (since it depends on θ0 (see equation (2.4))). Furthermore, when θ0 appears

in each integral, it is defined to be the angle counterclockwise from the outward nor-

mal of the specific linear boundary segment to the major axis of the ellipse. One way

to determine θ0 is to first define the angle made by the major axis of the ellipse, θ̄ (in

the counterclockwise direction), where θ̄0 = 0 represents an ellipse with a northward

preferred direction. We then define the angle of the outward normal to the jth bound-

ary segment, θj (in the counterclockwise direction), where θj = 0 is the angle for the
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Table 2.5. θj values for outward normals for patch boundary segments

Segment θj
AB 215◦

BC 0◦

DE 80◦

EF 108◦

outward normal for a horizontal boundary segment (running east to west). Then,we

define θ0 for segment j relative to θj by using θ0 = θ̄0 − θj. For example, if the pre-

ferred direction is west, then for segment AB,θ̄0 = 90◦ and θ0 = 90◦−35◦ = 55◦ (when

the migration rate is calculated from patch 1 to 2). We note that for the migration

rate from patch 2 to 1, the outward normal would be θj + 180◦. Table 2.5 gives the

values for θj for each boundary segment (for rates from patches 1 to 2 and 2 to 3).

The other migration rates are calculated similarly. We note here that we will

use the same calculation for b9 as in section 2.5.1 (assuming the highest range of

dispersal).

To determine how preferred direction affects migration, we will calculate the

varying cross-patch migration rates as θ0 ranges from 0 to 2π and compare with the

migration rates for no preference for direction. If we consider the migration rate as

a function of θ0, the function is even, with a maximum value when the preferred

direction is out of the patch (θ0 = 0) and a minimum value when the preferred

direction is toward the inside of the patch from which migration originates (θ0 = π).

An example of this result can be seen in Figure 2.8. Figure 2.8 shows the migration

rate from patch 1 to 2 for e = 0.5 and as θ0 varies from 0 to 2π, compared with the

migration rate from patch 1 to 2 assuming no preference for direction.

We also compare the rates for e = 0.1 and e = 0.5 as seen in Figure 2.8 and

Figure 2.9. In Figure 2.8, we observe that if the preferred direction is closer to being
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directly out of the origination patch, the increase in migration rate (compared with

no preference of direction) is greater than the decrease if the preferred direction of

migration is directed into the origination patch. However, we notice that for lower

values of e, as represented in Figure 2.9, this effect is not as apparent. In fact,

for e = 0.1, the amplitude between the highest migration rate (at θ0 = 0) and the

rate with no preferred direction is only 1.2 times the amplitude between the lowest

migration rate (at θ0 = π) and the rate with no preferred direction, while for e = 0.5,

the amplitude between the highest rate and rate with no preferred direction is 2.5

times higher than the amplitude between the lowest rate and the rate with no preferred

direction. Thus, for weaker degree of preference, the amplitude of the effect of the

preferred direction becomes closer to being symmetric with respect to direction out

of the origination patch versus direction into the origination patch.

A summary of migration rates for varying preferred directions with e = 0.5

is given in Tables 2.6 and 2.7. As expected, the migration rates are highest when

the direction of migration is directly into the destination patch. For example, the
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Figure 2.8. Migration rate as θ0 ranges
from 0 to 2π compared with migration
rate for no preference of direction (solid
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highest migration rate from patch 2 to 3 is when the preferred direction is east, and

the highest migration rate from patch 3 to 2 is when the preferred direction is west.

Table 2.6. Migration rates for e = 0.5,
Patches 2/3

Pref. direc. m̄23 m̄32

No preference 0.00101 0.000155
(N) 0.00116 0.000165
(NW) 0.000415 0.000373
(W) 0.000240 0.000497
(SW) 0.000344 0.000408
(S) 0.000935 0.000190
(SE) 0.00228 0.0000721
(E) 0.00324 0.0000405
(NE) 0.00260 0.0000599

Table 2.7. Migration rates for e = 0.5,
Patches 1/2

Pref. direc. m̄12 m̄21

No preference 0.00427 0.00385
(N) 0.0111 0.000941
(NW) 0.0107 0.000976
(W) 0.00685 0.00220
(SW) 0.00267 0.00622
(S) 0.00114 0.0102
(SE) 0.00121 0.00997
(E) 0.00304 0.000547
(NE) 0.00745 0.00204

2.7 Conclusions

The calculations in this chapter rely heavily on experimental and field studies

on Triatoma vectors. Because there are virtually no studies on the dispersal capabil-

ities on the North American species focused on in this study, T. gerstaeckeri and T.

sanguisuga, we utilize studies on the more well known vectors from South America,

T. infestans and T. sordida. Since Triatoma vectors are sensitive to temperature and

humidity for flight initiation [21], we acknowledge the difference in climate between

the South American regions and the patches considered here. Because of the lack

of data on the North American vectors, we note the need for experimental studies

regarding distance and frequency of vector dispersal.

We assume vector dispersal is based on three inherent properties: dispersal

distance, preferred direction of dispersal, and degree of preference for direction. The
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parameters describing these properties have different effects on the migration rate. In-

creasing dispersal distance will increase the migration rate, while varying the preferred

direction may increase or decrease the rate depending on the actual geographical lo-

cation of the origination and destination patch and the actual preferred direction

(into or out of the origination patch). We observe asymmetry in the migration rates

depending on whether the preferred direction is out of or in toward the origination

patch. As the degree of preference increases, the increase in migration rate if pre-

ferred direction is out of the patch is greater than the decrease in migration rate if

the preferred direction is into the patch, when compared with the rate with no pre-

ferred direction. This means that preference in direction tends to increase migration

rates overall, since preference increases migration (patch-crossing) on the preferred

side more than it decreases it on the opposite, non-preferred side of a patch.

One of the primary goals of population modeling is to describe how individ-

ual events on a local scale build into collective effects on a larger scale, with much

study having been made of the resulting emergent properties of systems; dispersal of

infectious individuals has often been studied in continuous space in order to capture

spatially small-scale movement, but here we develop a framework for incorporating

such small-scale dispersal into simpler, spatially discrete models that take a more

global perspective in defining populations by common epidemiological and ecological

characteristics. The framework established in this study allows us to translate local

dispersal to global migration across regions, which may be applicable to other types

of migrating species if dispersal distance capabilities are known. Migration rates may

be calculated under the assumption of no preferred direction of dispersal or an as-

sumed (or known) preference for a particular direction. The methodology provides

a way to generate migration rates to be used in other epidemiological or ecological

models. More specifically, there are applications to vector-borne diseases, for which
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climate change has made the invasion of vector into new territories a major public

health concern.

Other mathematical studies focusing on migration of T. cruzi vectors [79, 4]

concentrate on migration over a small scale (a village) into domestic areas, whereas

here we derive a method to calculate the rate of migration by connecting local dis-

persal to migration over a large scale. Large scale migration should be considered

because of the spread of T. cruzi across the Americas through sylvatic settings. Gen-

eralizations to the model could include variation in habitat suitability, where different

migration rates could be calculated for species traveling from a region of higher habi-

tat preference (suitability) to a region of lower habitat suitability or vice versa.

In the next chapter, we apply these rates to study the effects of migration of

T. cruzi vectors across patch boundaries model of three distinct transmission cycles

of T. cruzi in northern Mexico and southeastern United States.
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CHAPTER 3

A METAPOPULATION MODEL FOR SYLVATIC
T. CRUZI TRANSMISSION WITH VECTOR MIGRATION

3.1 Introduction

Based on Chapter 2, we have an understanding of how local vector dispersal

can be described in terms of global effects, so that we may now consider a model that

describes sylvatic cycles of T. cruzi over a large geographic area. Because T. cruzi

is maintained in sylvatic cycles, we recognize the need to study the spatial spread of

the disease, especially in North America, where risk of Chagas has only recently been

discussed. In the United States, sylvatic hosts are commonly associated with T. cruzi

strain type I and IIa [69], with type IIa recently reclassified as type IV [96]. Here we

investigate several models of T. cruzi, incorporating multiple modes of transmission

and multiple patches. More specifically, we wish to focus our efforts on the effects

of vector migration on sylvatic T. cruzi strain type IV transmission in two different

North American host-vector cycles.

A vector-borne disease is most commonly spread between hosts indirectly through

the bite of an insect vector. Many vector borne diseases have been studied using math-

ematical models, including the familiar Ross model for malaria [71], later adapted by

Macdonald in 1957 [51]. The Ross-Macdonald model is an SI model using differen-

tial equations including susceptible and infected humans and mosquitoes. Since the

discovery of Chagas disease in 1909, mathematicians have been modeling its spread

in humans, animals, and vectors. To date, the majority of mathematical models for

Chagas disease have been studied in humans and vectors, rather than the animal
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hosts. Velasco-Hernández [88] modeled Chagas in humans using a model structure

similar to the Ross-Macdonald malaria model, but included another infectious com-

partment for chronically ill humans. Since infection with T. cruzi is maintained in

reservoir (sylvatic) hosts and human transmission cycles cannot be sustained without

them [32], recently more attention has been given to the spread of the T. cruzi par-

asite in Triatoma vectors and associated animal hosts [43, 45]. In each model, Kribs

uses a deterministic SI model with one host and one vector to study the effects of

alternative transmission modes for T. cruzi, namely vector consumption by animal

hosts and vertical transmission in hosts. Results show that vertical transmission is

not enough to maintain the infection cycle alone, but vertical transmission along with

even an inefficient host-vector transmission cycle can sustain the T. cruzi infection

cycle. Due to the nature of transmission of vector-borne disease, in which vectors

and hosts (especially in sylvatic settings) may be easily affected by weather (mainly

temperature and humidity) and landscape, spatial spread is a key element in studying

a vector-borne disease.

Spatial spread of a disease can be modeled using continuous or discrete space.

The majority of mathematical models involving the spatial spread of infectious dis-

eases in continuous time and space are modeled using reaction-diffusion systems tak-

ing the form of a system of partial differential equations. Some studies incorporating

spatial spread are the spread of rabies in the fox population [60], and the vector

borne diseases dengue [52] and West Nile virus [49]. The results of such systems are

generally described using traveling waves which describe the process of the spread of

the disease, most often over a homogeneous landscape. In each model, movement of

either hosts or vectors (or both) is considered, with the underlying assumption that

the movement is random.
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Other types of models incorporating spatial spread include multi-patch metapop-

ulation models in which movement occurs between n patches. Several models have

been studied, including a multi-species model by Arino et al. [3], in which analytical

results are given for several multi-species, multi-patch models. In the study, a for-

mula is derived for the basic reproductive number R0 for multiple species and multiple

patches and global stability for the disease-free equilibrium is established for R0 < 1.

Allen et al. [2] gives a 3-patch model of hantavirus spread in reservoir and spillover

species in which the outer patches represent the preferred habitat of the reservoir and

spillover species and the middle patch represents the boundary region in which the

species overlap. We note here that the overlap region was temporally- and spatially-

dependent. The movement here is described in terms of number of visits per year to

the boundary region and length of time spent there. Reproductive numbers for each

patch were calculated, and it was determined that the greater number of interactions

among species caused the reproductive number of the overlap patch to exceed the

reproductive numbers of the patches representing preferred habitat, thereby causing

a greater possibility of disease persistence.

The vectors in this study are two different species of triatomine bugs commonly

found in southern and south-eastern U.S. and Mexico, Triatoma gerstaeckeri, from the

phyllosoma complex and Triatoma sanguisuga of the lecticularia complex [72, 65, 35]

. The primary hosts associated with these vectors are raccoons (Procyon lotor) in

the southeastern United States and woodrats (Neotoma micropus) in southern Texas

and Mexico. In this study we consider three different geographical areas we refer

to as patches. Each patch is described by a distinct transmission cycle between the

hosts and vectors in the model. We consider that one species of vector and host is

in patch 1 and 2, while the other species of vector and host is in patches 2 and 3.

Patch 1 is defined by the T. gerstaeckeri-woodrat infection cycle in northern Mexico

43



and southern Texas. Patch 3 is the south-eastern United States, including parts

of Texas, Louisiana, Mississippi, Alabama, Georgia, and portions of the Carolinas

and Florida panhandle and is defined by the T. sanguisuga-raccoon infection cycle,

while patch 2 includes the south to southwest parts of Texas and a part of Coahuila,

Mexico where we consider both species of vector and host to overlap. We assume

the communication between patches and between cycles in patch 2 occurs through

the movement of Triatoma vectors. T. sanguisuga migrates between patches 2 and

3, and between raccoons and woodrats in patch 2, while T. gerstaeckeri migrates

between patches 1 and 2. We wish to investigate how increased vector migration

affects prevalence in the overlap patch compared to the single-cycle patches.

In this study we develop and analyze an S-I metapopulation model with the

aforementioned hosts and vectors, in which hosts may exhibit vertical transmission

and vectors migrate between patches. We carry out standard analysis techniques,

such as calculating R0 for various sub-models of the larger metapopulation model as

well as determining existence of endemic equilibria analytically (when tractable) in

order to see effects of vector migration on R0. Finally, we perform numerical analysis

on the full model to determine effects of migration on prevalence of T. cruzi.

3.2 Problem formulation and model

3.2.1 Problem statement and assumptions

To establish stable large-scale demographics for hosts and vectors, we assume

that the growth for each species will be logistic, and neither the hosts nor vectors

identified in the model exhibit disease-induced mortality. Studies have shown that

the T. cruzi infecting raccoons and opossums in areas in the south-southeastern U.S.

are not pathogenic, and do not appear to cause any symptoms of Chagas [64, 93].
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Although triatomine bugs feed on many hosts in the wild, we consider woodrats

and raccoons based on data that correlates their geographic location very closely with

the vectors [65, 13, 66, 40]. In literature reviewed here, we have found the only host

associated with T. gerstaeckeri is the southern plains woodrat [41, 27]. Therefore,

we consider that the southern plains woodrat is the preferred host for the vector T.

gerstaeckeri.

In this model there are several infection rates to be considered. These infection

rates may differ from vector to host and host to vector as well as by patch (geo-

graphical region). Biologically, the rate of infection between the hosts and vectors

in each patch should be different. However, as seen in section 3.4 when calculating

numerical estimates for the infection rate parameters (using a procedure called back-

calculation), it is mathematically necessary to keep some of the rates the same. Thus,

we assume that the rate of infection from raccoons to T. sanguisuga is the same in

patches 2 and 3 and the rate of infection from T. gerstaeckeri to woodrats is the same

in patches 1 and 2.

Literature suggests that T. sanguisuga will feed on other hosts besides rac-

coons, namely woodrats [27]. Thus, in patch 2, T. sanguisuga feeds on raccoons and

woodrats. Some proportion of vector-woodrat contacts are made with T. sanguisuga,

thus we define qW as the proportion of vector-woodrat contacts made with T. san-

guisuga, while 1−qW is the proportion made with T. gerstaeckeri. Furthermore, since

T. sanguisuga feeds on both hosts, we define qS as the proportion of T. sanguisuga

contacts made with raccoons, while 1−qS is the proportion made with woodrats. We

denote the per vector infection rate from T. sanguisuga to woodrats as βSW and the

per vector infection rate from woodrats to T. sanguisuga to be βWS.

T. cruzi has been confirmed to be transmitted vertically among mice in labo-

ratory conditions [59]. However, there is limited data on vertical transmission of T.
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cruzi in sylvatic hosts. We will assume that T. cruzi can be transmitted vertically in

raccoons and woodrats.

Infection contact rates could be limited by the host or vector population. For

our model, we assume that the limiting factor for infection from host to vector will

be the vector population. The hosts are plentiful enough for vectors to feed as much

as desired. Therefore, the vector population density will be the driving force in

determining the infection rate, and the contact process saturates more quickly in the

vector population than in the hosts. Thus, we consider the infection term from host to

vector in the model to be based on several factors. Using similar derivation as in [44],

we define the per-vector biting rate as z (in units of contacts per vector per time),

and thus the total vector-feeding contact rate as z · Nv (with units of bites/time).

Thus, to calculate the rate of new vector infections, we multiply the total vector-

feeding contact rate by the proportion of contacts that involve uninfected vectors and

infected hosts, multiplied by the proportion of contacts that result in an infection

(πv) (units of infected vectors/bite) obtaining

zNv ·
Sv

Nv

· Ih
Nh

· πv = (πvz)
Ih
Nh

Sv.

To simplify, we write βh = πvz (in units of 1/time).

We also need to describe the rate at which vectors infect hosts. Again, assuming

that the vector to host infection will be limited by the vector population (vectors

feeding as frequently as desired), we multiply the total vector-feeding contact rate by

the proportion of contacts involving uninfected hosts and infected vectors, multiplied

by the proportion of contacts resulting in an infection (with units infected hosts/bite),

zNv ·
Sh

Nh

· Iv
Nv

· πh = (πhz)
Iv
Nh

Sh.
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Figure 3.1. Model. The migration rates represent outgoing rates which must be
adjusted by the patch area ratios for incoming rates (see system (3.1)).

In a similar manner, we define βv = πhz. But, we note here that βv is not in units of

1/time, but rather infected hosts per vector per time. We will apply this assumption

to the infection terms in the model using the appropriate vector and host subscripts.

3.2.2 The Model

The model presented here is an S-I model incorporating migration and vertical

transmission.

For each species we will use the general logistic birth rate b(N) = rN
(

1− N
K

)

,

where r represents the intrinsic population growth rate, N represents the total popula-

tion density, andK is the carrying capacity of the population density. We will use this

term for each vector and host population using the appropriate subscripts. We further
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mention that the hosts in the model exhibit vertical transmission. Therefore, we incor-

porate this into the model by defining the following functions: f(N, I) and g(N, I) rep-

resent the birth rates for the hosts exhibiting vertical transmission. If only a propor-

tion p (0 < p < 1) of infected hosts transmit vertically, then g(N, I) = pI · r
(

1− N
K

)

,

where p is the proportion of the offspring of infected hosts born infected with T.

cruzi. Thus f(N, I) = (S + (1 − p)I) · r
(

1− N
K

)

. We will apply this assumption to

both hosts in the model, applying the appropriate subscripts. The natural per host

and per vector mortality rates are denoted by µR, µW , µS, and µG. In considering

the behavior of the total vector and host populations, it is true that the intrinsic

population growth rate is greater than the mortality rate (r > µ). If r < µ, the

vector and host populations would go extinct. Furthermore, for this model we will

assume linear migration based on the idea of local dispersal. We note that there are

several different migration rates considered. We assume that hosts and vectors move

at different rates, and those rates differ by species, by infection status, and by direc-

tion of migration. The migration parameters in the model are denoted by bi or b̄i for

vectors and ai or āi for hosts, designating difference in direction of migration. Each

subscript, i, is used to designate the migrating species, R, S, G, or, W. For example,

b̄G represents the migration rate of T. gerstaeckeri from patch 1 to 2, while bG is the

rate of T. gerstaeckeri from patch 2 to 1. Since migration is generally small compared

to demographic processes, we further assume that r > µ + bi and that µ > bi, and

apply this assumption uniformly among all species.

Furthermore, we note here that each patch has a different area, and the mi-

gration rates derived in Chapter 2 are affected by the size of the patch from which

migration originates. In the metapopulation model described here, each differential

equation represents the change in population density over time, thus the size of patch

must also affect the population density of the vectors and hosts in each patch. Since
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we are considering migration of vectors between patches, the differences in population

densities must be accounted for. For, example in order to account for the differing

patch sizes, we consider the equation for the absolute number of infected T. san-

guisuga vectors in patch 3, where A3 denotes the area (in m2) of patch 3 and the

state variables have units of density. Then, the absolute number of vectors in patch

3 is given by

(IS3A3)
′ = βR

IR3

NR3

SS3A3 − (µS + bS)IS3A3 + b̄SIS2A2.

It follows that

I ′S3 = βR
IR3

NR3

SS3 − (µS + bS)IS3 + b̄S
A2

A3

IS2.

In the model, we write b̄S
A2

A3
= b̃S and bS

A3

A2
= b̂S. This notation will be

used more generally for northward and southward migration rates, respectively. We

make an implicit assumption that the migration rates are low enough to not cause

equilibrium population densities in any patch to exceed the region’s carrying capacity.

If this assumption is violated, and the carrying capacities are exceeded, the equations

would need to be adjusted to distribute the resulting negative logistic term (as a result

of additional density dependent deaths) proportionally between the susceptibles and

infectives.

We therefore derive the model given below and seen in Figure 3.1.
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S ′
S3 = rS

(

1− NS3

KS3

)

NS3 − βR
IR3

NR3

SS3 − (µS + aS)SS3 + ãSSS2

I ′S3 = βR
IR3

NR3

SS3 − (µS + bS)IS3 + b̃SIS2

S ′
R3 = rR (SR3 + (1− pR)IR3)

(

1− NR3

KR3

)

− βS
IS3
NR3

SR3 − (µR + aR)SR3 + ãRSR2

I ′R3 = pRrRIR3

(

1− NR3

KR3

)

+ βS
IS3
NR3

SR3 − (µR + bR)IR3 + b̃RIR2

S ′
S2 = rS

(

1− NS2

KS2

)

NS2 −
(

qSβR
IR2

NR2

+ (1− qS)βWS
IW2

NW2

)

SS2 − (µS + āS)SS2 + âSSS3

I ′S2 =

(

qSβR
IR2

NR2

+ (1− qS)βWS
IW2

NW2

)

SS2 − (µS + b̄S)IS2 + b̂SIS3

S ′
R2 = rR (SR2 + (1− pR)IR2)

(

1− NR2

KR2

)

− βS2
IS2
NR2

SR2 − (µR + āR)SR2 + âRSR3

I ′R2 = pRrRIR2

(

1− NR2

KR2

)

+ βS2
IS2
NR2

SR2 − (µR + b̄R)IR2 + b̂RIR3

S ′
G2 = rG

(

1− NG2

KG2

)

NG2 − βW2
IW2

NW2

SG2 − (µG + aG)SG2 + ãGSG1

I ′G2 = βW2
IW2

NW2

SG2 − (µG + bG)IG2 + b̃GIG1

S ′
W2 = rW (SW2 + (1− pW )IW2)

(

1− NW2

KW2

)

−
(

(1− qW )βG
IG2

NW2

+ qWβSW
IS2
NW2

)

SW2

− (µW + aW )SW2 + ãWSW1

I ′W2 = pW rW IW2

(

1− NW2

KW2

)

+

(

(1− qW )βG
IG2

NW2

+ qWβSW
IS2
NW2

)

SW2

− (µW + bW )IW2 + b̃W IW1

S ′
G1 = rG

(

1− NG1

KG1

)

NG1 − βW
IW1

NW1

SG1 − (µG + āG)SG1 + âGSG2

I ′G1 = βW
IW1

NW1

SG1 − (µG + b̄G)IG1 + b̂GIG2

S ′
W1 = rW (SW1 + (1− pW )IW1)

(

1− NW1

KW1

)

− βG
IG1

NW1

SW1 − (µW + āW )SW1 + âWSW2

I ′W1 = pW rW IW1

(

1− NW1

KW1

)

+ βG
IG1

NW1

SW1

− (µW + b̄W )IW1 + b̂W IW2

(3.1)
50



3.3 Analysis

Little information is known about the migration of the vectors. Thus, we will

explore several hypotheses. We will first consider that infected vectors are the only

species to migrate. In a study done by Añez and East [1] in 1984 on the effect of

parasites on the behavior of the vector, Rhodnius prolixus, it was shown that that

the parasite, Trypanosoma rangeli, hindered the vector’s ability to draw blood, thus

causing the bug to bite 25 more times than an uninfected vector. Thus, differential

behavior of vectors infected with T. cruzi may affect the transmission of the parasite

as well as vector mobility as mentioned in [43]. In this context, we will consider the

possibility that infected vectors move in only one direction (towards more preferred

climates) and the possibility that infected vectors move between patches at different

rates for different directions. Furthermore, we consider that uninfected vectors also

migrate, but at a rate proportional to that of infected vectors. We will not consider

host migration to play a significant role. The hosts in the model are bound by habitat

constraints, and thus by definition of the patches, we assume the hosts are not likely

to move.

In order to get a better understanding of the full model, several special cases

will be considered. The main identifying characteristics of the model are vertical

transmission, migration, and multiple hosts and vectors.

3.3.1 One patch, one host, one vector, no vertical transmission

We begin the analysis of (3.1) by studying the simple system with one host

and one vector. By observing system (3.1), we see that when the migration terms

ai = āi = bj = b̄j = 0, for i = R,W , j = S,G, the three patches decouple. In this

scenario, patch 1 and patch 3 are identical in structure. Thus, analyzing patch 1 and
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3 with migration terms set to 0 and pW = pR = 0, we are analyzing the simple one

host-one vector system.

S ′
h = rhNh

(

1− Nh

Kh

)

− βv
Iv
Nh

Sh − µhSh

I ′h = βv
Iv
Nh

Sh − µhIh

S ′
v = rvNv

(

1− Nv

Kv

)

− βh
Ih
Nh

Sv − µvSv

I ′v = βh
Ih
Nh

Sv − µvIv

(3.2)

Because the vector and host populations always approach an equilibrium, we

can consider the limiting system in which Nh and Nv have reached their positive

equilibria, N∗
h and N∗

v , where

N∗
h = Kh

(

1− µh

rh

)

, N∗
v = Kv

(

1− µv

rv

)

.

As mentioned previously, for each species, we assume r > µ, which guarantees that

all disease-free extinction equilibria are unstable. This assumption will be carried out

in this and all of the models hereafter. In system (3.2), we define β̃v = βv
N∗

v

N∗

h

. Results

by Thieme [81, 82] guarantee that the behavior of the full system is asymptotic to

the limiting system which is given by

I ′h = β̃v
Iv
N∗

v

(N∗
h − Ih)− µhIh

I ′v = βh
Ih
N∗

h

(N∗
v − Iv)− µvIv

(3.3)

This model has been well studied [71, 10] and we give results here. The basic

reproductive number, calculated using the next-generation matrix [85], is given by

R0 =

√

βhβ̃v

µhµv

,
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which represents the average number of secondary infections caused by an infected

individual introduced into a susceptible population. Because of the vector-host dy-

namics, R0 represents the geometric mean between the average number of secondary

host infections caused by one vector, and the average number of vector infections

caused by one host.

In the case when R0 < 1, the disease will die out and the population will

approach the disease free equilibrium. When R0 > 1, the population will approach a

unique endemic state,

I∗v
N∗

v

=
βhβ̃v − µhµv

β̃vβh + β̃vµv

=
R2

0 − 1

R2
0 +

β̃v

µh

,

I∗h
N∗

h

=
βhβ̃v − µhµv

β̃vβh + βhµh

=
R2

0 − 1

R2
0 +

βh

µv

.

3.3.2 Patch 2, no migration, no vertical transmission

We will further analyze the decoupled system (3.1) by considering the equations

representing patch 2 alone with no vertical transmission or migration. Thus, we

analyze system (3.1) with ai = āi = 0, for i = R,W , bj = b̄j = 0, for j = S,G, and

pR = pW = 0. The quantities NR2, NS2, NW2, and NG2 are asymptotically constant

to N∗
R2, N

∗
S2, N

∗
W2, and N∗

G2, respectively, where

N∗
S2 = KS2

(

1− µS

rS

)

, N∗
R2 = KR2

(

1− µR

rR

)

,

N∗
G2 = KG2

(

1− µG

rG

)

, N∗
W2 = KW2

(

1− µW

rW

)

.

Applying the results from Thieme [81, 82], we can study the limiting system
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I ′S2 =

(

qSβR
IR2

N∗
R2

+ (1− qS)βWS
IW2

N∗
W2

)

(N∗
S2 − IS2)− µSIS2,

I ′R2 = βS2
IS2
N∗

R2

(N∗
R2 − IR2)− µRIR2,

I ′G2 = βW2
IW2

N∗
W2

(N∗
G2 − IG2)− µGIG2,

I ′W2 =

(

(1− qW )βG
IG2

N∗
W2

+ qWβSW
IS2
N∗

W2

)

(N∗
W2 − IW2)− µW IW2.

(3.4)

In analyzing system (3.4) we observe the disease-free equilibrium is

(I∗S2, I
∗
R2, I

∗
G2, I

∗
W2) = (0, 0, 0, 0). We find the basic reproductive number R0 for the

system using the next generation matrix method [85]. The work can be seen in

Appendix B.1. We determine that

R0 =

√

1

2

(

P +
√

P 2 − 4Q
)

,

where

P = f1 + f2 + f3, Q = f1f3,

f1 =
(1− qW )βGβW2

µGµW

N∗
G2

N∗
W2

, f2 =
qWβSW + (1− qS)βWS

µSµW

N∗
S2

N∗
W2

, f3 =
qSβRβS2

µRµS

N∗
S2

N∗
R2

.

(3.5)

In the terms for R0, we see that f1 represents the T. gerstaeckeri -woodrat

transmission cycle, f2 represents the T. sanguisuga-woodrat cycle, and f3 represents

the T. sanguisuga-raccoon cycle. We further observe that

max{
√

f1,
√

f2,
√

f3} < R0 <
√

f1 + f2 + f3.

At this point, we wish to observe the importance of the overlap of the transmission

cycles between T. sanguisuga and T. gerstaeckeri, and how this overlap affects the

ability of the infection to be spread. If there is no overlap, i.e. no T. sanguisuga-

woodrat cycle, then f2 = 0, so then we may define R̄0 =
√

max{f1, f3} < R0. Since
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R̄0 is always less than R0, we observe the effect of f2 is to increase the value of R0. It

is possible that f1 < 1 and f3 < 1, yet R0 > 1. Furthermore, it is also possible that

f1 + f3 < 1, yet R0 > 1.

By investigating the equilibrium conditions, it can be shown that either one or

three endemic equilibrium values exist when R0 > 1. The computations can be seen

in Appendix B.1.

3.3.3 Patches 1 and 2, 1 host 1 vector with vertical transmission
and unidirectional migration of infected vectors

In dealing with patches 1 and 2, there are several cases to be considered. We

will first consider the scenario with one host and one vector, with vertical transmis-

sion, and unidirectional migration of infected vectors. In this case, NR2 = NS2 = 0,

qW = qS = 0, and aW = āW = bG = 0. Because the woodrat population is asymptot-

ically constant with N∗
W1 = KW1

(

1− µW

rW

)

, N∗
W2 = KW2

(

1− µW

rW

)

, we can apply

Thieme’s results [81, 82] and rewrite I ′W1 and I ′W2, passing NW1 and NW2 to their

limiting values, N∗
W1 and N∗

W2. The system therefore simplifies to

N ′
G2 = rGNG2

(

1− NG2

KG2

)

− µGNG2 + b̃GIG1

I ′G2 = βW2
IW2

N∗
W2

(NG2 − IG2)− µGIG2 + b̃GIG1

I ′W2 = pWµW IW2 + βG
IG2

N∗
W2

(N∗
W2 − IW2)− µW IW2

N ′
G1 = rGNG1

(

1− NG1

KG1

)

− µGNG1 − b̄GIG1

I ′G1 = βW
IW1

N∗
W1

(NG1 − IG1)− µGIG1 − b̄GIG1

I ′W1 = pWµW IW1 + βG
IG1

N∗
W1

(N∗
W1 − IW1)− µW IW1

(3.6)

55



Cherif et al. [16] studied a similar model for T. cruzi vector transmission

dynamics involving two strains (one being more virulent). In their model, a proportion

of vectors infected with the more virulent strain migrate to a region in which the less

virulent strain is native. However, their model did not include vertical transmission

as system (3.6) does.

We determine the disease-free equilibrium for this system (3.6) to be

(N∗
G2, 0, 0, N

∗
G1, 0, 0), where

N∗
G2 = KG2

(

1− µG

rG

)

, N∗
G1 = KG1

(

1− µG

rG

)

.

R0 can be found via the next generation matrix. For system (3.6),R0 is

max

{

1

2

(

pW +

√

4
βGβW

(µG + b̄G)µW

N∗
G1

N∗
W1

+ p2W

)

,
1

2

(

pW +

√

4
βGβW2

µGµW

N∗
G2

N∗
W2

+ p2W

)}

.

If
N∗

G1

N∗

W1

≤ N∗

G2

N∗

W2

then the second term of R0 is larger of the two because b̄G > 0.

In this case max(pW , βGβW2

µGµW

N∗

G2

N∗

W2

) < R2 < pW + βGβW2

µGµW

N∗

G2

N∗

W2

.

To study possible endemic equilibria of system (3.6), we determine that

N̄∗
G2 = KG2

(

1− µG − b̃Gx
∗
G1

rG

)

, N̄∗
G1 = KG1

(

1− µG + b̄Gx
∗
G1

rG
.

)

After substituting these values into the equilibrium conditions for system (3.6)

(seen in Appendix B), we determine existence of an endemic equilibrium when R0 > 1.

We further determine that precisely one endemic equilibria exist in patch 2 alone if

and only if R1 < 1 < R2, and in both patches if R1 > 1 (the patch 2 only endemic

equilibrium is unstable in this case).

3.3.4 Patches 1 and 2, 1 host 1 vector with vertical transmission
and unidirectional migration of all vectors

We may also consider the case in which uninfected vectors move at a reduced

rate proportional to that of infected vectors. As mentioned previously, if infected
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vectors exhibit differential behavior causing them to migrate more than uninfected

vectors, we would consider the effects of having uninfected vectors migrate as well,

but at a reduced rate. We note that this scenario is as far as vertical transmission

can be treated analytically regarding R0. The vertical transmission terms in the

model do not affect the complexity in computing endemic equilibria since µ is simply

replaced with (1 − p)µ in the infected host equations. Thus, in computing R0, the

remaining cases will be done without vertical transmission. We let NR2 = NS2 = 0,

qW = qS = 0, aW = āW = 0, and bG = γb̄G, where 0 < γ < 1. Since NW1 and NW2

are asymptotically constant to N∗
W1 = KW1

(

1− µW

rW

)

, N∗
W2 = KW2

(

1− µW

rW

)

, we

apply the results of Thieme to this system, passing NW1 and NW2 to their limiting

values, N∗
W1 and N∗

W2, and obtaining the following system,

S ′
G2 = rG

(

1− NG2

KG2

)

NG2 − βW2
IW2

NW2

SG2 − µGSG2 + γb̃GSG1

I ′G2 = βW2
IW2

NW2

SG2 − µGIG2 + b̃GIG1

I ′W2 = pWµW IW2 + βG
IG2

N∗
W2

(N∗
W2 − IW2)− µW IW2

S ′
G1 = rG

(

1− NG1

KG1

)

NG1 − βW
IW1

NW1

SG1 − µGSG1 − γb̄GSG1

I ′G1 = βW
IW1

NW1

SG1 − µGIG1 − b̄GIG1

I ′W1 = pWµW IW1 + βG
IG1

N∗
W1

(N∗
W1 − I∗W1)− µW IW1.

(3.7)

Here, we can determine the disease free equilibrium to be (N∗
G2, 0, 0, N

∗
G1, 0, 0),

where

N∗
G2 = KG2

√

(

1− µG

rG

)2

+ 4
γb̃G
rG

N∗
G1

KG2

(

1− µG + γb̄G
rG

)

,

N∗
G1 = KG1

(

1− µG + γb̄G
rG

)

.

Observing the terms of N∗
G2, we can see that the first term, KG2

(

1− µG

rG

)

,

essentially represents the natural demographic renewal for the population of vectors
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in patch 2, while the second term represents the population being brought from

vectors in patch 1.

R0 for the system is R0 = max {R1, R2} where

R1 =
1

2

(

pW +

√

4
βGβW

(µG + b̄G)µW

N∗
G1

N∗
W1

+ p2W

)

, and

R2 =
1

2

(

pW +

√

4
βGβW2

µGµW

N∗
G2

N∗
W2

+ p2W

)

.

In general the form of R0 for system (3.7) is the same as that of system (3.6),

with a different disease free equilibrium for the vector population due to the unidirec-

tional migration of all vectors. We see that the first term of R0 represents the patch 1

dynamics, while the second term represents patch 2. Similar to the system in section

3.3.3, if
N∗

G1

N∗

W1

≤ N∗

G2

N∗

W2

then the second term of R0 is larger.

Determining endemic equilibria for this system is intractable analytically. After

a numerical investigation using the parameters estimated in section 3.4, we determine

precisely one unique endemic equilibrium exists when R0 > 1.

3.3.5 Patch 1 and 2, 1 host 1 vector, no vertical transmission,
bidirectional migration of infected vectors

Another scenario we treat in patches 1 and 2 is one host, one vector and bidi-

rectional migration of infected vectors. We have previously assumed that vectors

may have a preferred direction so that our migration is unidirectional. However,

we know that vectors will move in every direction (although one direction may be

preferred over another); thus we consider bidirectional migration. In this system,

pR = pW = 0, qW = qS = 0, ai = āi = 0 for i = R,W . In this system, NW1 and

NW2 are asymptotically constant to N∗
W1 = KW1

(

1− µW

rW

)

, N∗
W2 = KW2

(

1− µW

rW

)

.

Applying the results by Thieme, we obtain the following system in which NW1 and

NW2 have reached their limiting values.
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The reduced system becomes

N ′
G2 = rGNG2

(

1− NG2

KG2

)

− µGNG2 − bGIG2 + b̃GIG1

I ′G2 = βW2
IW2

N∗
W2

(NG2 − IG2)− (µG + bG)IG2 + b̃GIG1

I ′W2 = βG
IG2

N∗
W2

(N∗
W2 − IW2)− µW IW2

N ′
G1 = rGNG1

(

1− NG1

KG1

)

− µGNG1 − b̄GIG1 + b̂GIG2

I ′G1 = βW
IW1

N∗
W1

(NG1 − IG1)− (µG + b̄G)IG1 + b̂GIG2

I ′W1 = βG
IG1

N∗
W1

(N∗
W1 − IW1)− µW IW1

(3.8)

We determine the disease-free equilibrium for this system (3.8) to be of similar

form to that of (3.6).

R0 for the system is given as follows:

R0 =

√

1

2

(

(g1 + g2) +
√

(g1 + g2)2 − 4g1g2ǫ
)

where ǫ = µG(µG+bG+b̄G)

(µG+bG)(µG+b̄G)
< 1, g1 =

βGβW

µGµW

N∗

G1

N∗

W1

(

µG+bG
µG+bG+b̄G

)

and

g2 =
βGβW2

µGµW

N∗

G2

N∗

W2

(

µG+b̄G
µG+bG+b̄G

)

.

We observe that R0 for system (3.8) is of similar form as the R0 for system

(3.4), with the exception of the migration terms. It is observed that max(
√
g1,

√
g2) <

R0 <
√
g1 + g2. If either of the migration terms bG or b̄G is 0, then R0 reduces to

max(
√
g1,

√
g2).We interpret g1 as the basic reproductive number for patch 1 scaled by

the proportion of infected vectors that stay in patch 1, and g2 is the basic reproductive

number for patch 2 scaled by the proportion of infected vectors staying in patch 2.

Determining existence of endemic equilibria is intractable analytically, but after

a numerical investigation, we verify the hypothesis that in the case of bidirectional

migration, only one endemic equilibria is possible if R0 > 1.
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3.3.6 Patches 1 and 2, 2 hosts 2 vectors, no vertical
transmission, unidirectional migration of infected vectors

We end our exploration of two patches by considering the case with 2 patches, 2

hosts, 2 vectors, and unidirectional migration of infected vectors. Then pR = pW = 0,

ai = āi = 0 for i = R,W and bS = b̄S = bG = 0. In this scenario, the quantities

NS2, NR2, NW2, and NW1 are asymptotically constant to N∗
S2, N

∗
R2, N

∗
W2, and N∗

W1,

respectively, where

N∗
S2 = KS2

(

1− µS

rS

)

, N∗
R2 = KR2

(

1− µR

rR

)

,

N∗
W2 = KW2

(

1− µW

rW

)

, N∗
W1 = KW1

(

1− µW

rW

)

.

The model is

I ′S2 =

(

qSβR
IR2

N∗
R2

+ (1− qS)βWS
IW2

N∗
W2

)

(N∗
S2 − IS2)− µSIS2

I ′R2 = βS2
IS2
N∗

R2

(N∗
R2 − IR2)− µRIR2

N ′
G2 = rGNG2

(

1− NG2

KG2

)

− µGNG2 + b̃GIG1

I ′G2 = βW2
IW2

N∗
W2

(N∗
G2 − IG2)− µGIG2 + b̃GIG1

I ′W2 =

(

(1− qW )βG
IG2

N∗
W2

+ qWβSW
IS2
N∗

W2

)

(N∗
W2 − IW2)− µW IW2

N ′
G1 = rGNG1

(

1− NG1

KG1

)

− µGNG1 − b̄GIG1

I ′G1 = βW
IW1

N∗
W1

(N∗
G1 − IG1)− (µG + b̄G)IG1

I ′W1 = βG
IG1

N∗
W1

(N∗
W1 − IW1)− µW IW1

(3.9)

For this scenario, we determine the disease-free equilibrium to be

(0, 0, N∗
G2, 0, 0, N

∗
G1, 0, 0), where

N∗
G2 = N∗

G1 = KG

(

1− µG

rG

)

.
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After calculating R0, the structure seen is similar to that of R0 for system (3.4),

and is given by

R0 = max{R1, R2},

where

R1 =

√

βG

(µG + b̄G)

βW

µW

N∗
G1

N∗
W1

, R2 =

√

1

2

(

P +
√

P 2 − 4Q
)

.

P and Q are the same expressions as those in (3.5).

We determine existence of endemic equilibria in patch 2 alone if and only if

R1 < 1 and R2 > 1, and in both patches if and only if R1 > 1. The computations

can be seen in Appendix B.3.

3.3.7 Patch 1, 2, and 3, 2 hosts 2 vectors, no vertical
transmission, unidirectional migration of infected vectors

We finally extend our discussion to all three patches. We now analyze the

system represented by patch 1, 2, and 3, with 2 hosts, 2 vectors and unidirectional

migration of infected vectors. Thus, we consider pi = 0, ai = āi = 0 for i = R,W

and bS = bG = 0. In this scenario, the host populations, NR3, NR2, NW2, and NW1

are asymptotically constant to the values

N∗
R3 = KR3

(

1− µR

rR

)

, N∗
R2 = KR2

(

1− µR

rR

)

N∗
W2 = KW2

(

1− µW

rW

)

, N∗
W1 = KW1

(

1− µW

rW

)

.
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The reduced system becomes

N ′
S3 = rSNS3

(

1− NS3

KS3

)

− µSNS3 + b̃SIS2

I ′S3 = βR
IR3

N∗
R3

(NS3 − IS3)− µSIS3 + b̃SIS2

I ′R3 = βS
IS3
N∗

R3

(N∗
R3 − IR3)− µRIR3

N ′
S2 = rSNS2

(

1− NS2

KS

)

− µSNS2 − b̄SIS2

I ′S2 =

(

qSβR
IR2

N∗
R2

+ (1− qS)βWS
IW2

N∗
W2

)

(NS2 − IS2)− µSIS2 − b̄SIS2

I ′R2 = βS2
IS2
N∗

R2

(N∗
R2 − IR2)− µRIR2

N ′
G2 = rGNG2

(

1− NG2

KG2

)

− µGNG2 + b̃GIG1

I ′G2 = βW2
IW2

N∗
W2

(NG2 − IG2)− µGIG2 + b̃GIG1

I ′W2 =

(

(1− qW )βG
IG2

N∗
W2

+ qWβSW
IS2
N∗

W2

)

(N∗
W2 − IW2)− µW IW2

N ′
G1 = rGNG1

(

1− NG1

KG1

)

− µGNG1 − b̄GIG1

I ′G1 = βW
IW1

N∗
W1

(NG1 − IG1)− µGIG1 − b̄GIG1

I ′W1 = βG
IG1

N∗
W1

(N∗
W1 − IW1)− µW IW1

(3.10)

In analysis of system (3.10), we determine the disease free equilibrium to be

(N∗
S3, 0, 0, N

∗
S2, 0, 0, N

∗
G2, 0, 0, N

∗
G1, 0, 0), where

N∗
S3 = KS3

(

1− µS

rS

)

, N∗
S2 = KS2

(

1− µS

rS

)

,

N∗
G2 = KG2

(

1− µG

rG

)

, N∗
G1 = KG1

(

1− µG

rG

)

.
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We determine R0 for this system to be

R0 = max{R1, R2, R3}

= max

{√

βG

(µG + b̄G)

βW

µW

N∗
G1

N∗
W1

,

√

1

2

(

P2 +
√

P 2
2 − 4Q2

)

,

√

βR

µR

βS

µS

N∗
S3

N∗
R3

}

.

(3.11)

We define

R1 =

√

βG

(µG + b̄G)

βW

µW

N∗
G1

N∗
W1

, R2 =

√

1

2

(

P2 +
√

P 2
2 − 4Q2

)

, R3 =

√

βR

µR

βS

µS

N∗
S3

N∗
R3

and P2 = h1 + h2 + h3, Q2 = h1 h3, where

h1 =
(1− qW )βG

µG

βW2

µW

N∗
G2

N∗
W2

, h2 =
qWβSW

(µS + b̄S)

(1− qS)βWS

µW

N∗
S2

N∗
W2

,

h3 =
qSβR

µR

βS2

(µS + b̄S)

N∗
S2

N∗
R2

.

(3.12)

Based on the form of R0, we would expect three different scenarios for existence

of endemic equilibria. We expect existence of endemic equilibria in all three patches

if and only if R1 > 1, in patch 2 and 3 only if and only if R2 > 1 and R1 < 1, and

in patch 3 only if and only if R3 > 1, R1 < 1, and R2 < 1. Investigation of these

scenarios can be seen in Appendix B.4, in which we are able to show existence of at

least one endemic equilibrium for each of the scenarios mentioned above.

3.3.8 Synthesis

By analyzing many smaller, sub-models of the original system (3.1), we may

make some generalizations regarding the behavior of the full model. We expect that

the full system will exhibit classical threshold behavior regarding R0, in which we

expect a unique endemic equilibrium for R0 > 1. As stated previously, the form of

R0 in a vector-borne disease is a geometric mean between infections caused by hosts

and infections caused by vectors. If the system considers multiple hosts and vectors,
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the form of R0 will include separate terms for each transmission cycle considered in

the model. As described mathematically in section 3.3.3 and discussed in [43], we

see vertical transmission has an “almost additive” effect on the basic reproductive

number. In the case of unidirectional migration of infected vectors, we observe that

R0 consists of as many components as there are patches, and each component for

R0 contains parameters for only one patch. Also, as seen in section 3.3.7, multiple

endemic equilibria are possible depending on the values of the patchwise reproduc-

tive numbers, R1, R2, R3. We further note that by examination of (3.7), uninfected

vectors migrating in one direction does not complicate the form of R0. With bidirec-

tional migration of infected vectors, we determine that the expression for R0 involves

contributions from all patches, rather than having a maximum of several components,

which is to be expected since infection is moving in between patches. Based on this

determination, we expect the full model to have one component for R0, due to bidi-

rectional migration; thus, it will not take on the form of max{R1, R2, R3}. In this case

only one endemic equilibrium is possible; either there is no infection in any patch,

or infection persists in all patches because all patches are connected by migration of

infected vectors.

3.4 Numerical Results

3.4.1 General demographic parameters

We wish to investigate numerically the results of section 3.3, as well as investi-

gate the behavior of the full model given by system (3.1). In order to do this, we will

use biological information to estimate the parameters given in our model. Kribs [44]

completed a thorough literature study to estimate demographic and T. cruzi infection
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related parameters regarding hosts and vectors in the United States. We will use the

demographic quantities calculated in Kribs [44], given in Table 3.1.

Table 3.1. Demographic parameters

Species µ r
Raccoon 0.4/yr 0.90/yr
Woodrat 1/yr 1.8/yr
T. sanguisuga 0.271/yr 33/yr
T. gerstaeckeri 0.562/yr 100/yr

We mention here that in our model, each host species has a preferred habitat.

That is, the preferred habitat for the raccoons is patch 3; thus we would expect a

higher population density of raccoons in patch 3 compared to patch 2. Similarly, the

woodrat preferred habitat is prickly pear cactus which predominates in patch 1, with

a lower density in patch 2 due to the varying landscapes. Here, we will treat the

parameters that differ for each patch.

3.4.1.1 Patch 1

Kribs [44] obtains woodrat densities for Texas based on several sources [11, 68]

which estimate woodrat population densities in counties in south and west Texas.

These regions, especially the counties in west Texas, are similar to south Texas,

dominated by shrub desert, including cactus and honey mesquite. He estimates the

woodrat (equilibrium) population density in patch 1 to be 2300 woodrats/km2. Be-

cause each population is governed by logistic growth with linear per-capita mortality,

the populations approach an equilibrium population density, N∗, so that the carrying

capacity can be back-calculated using N∗ = K
(

1− µ
r

)

. Kribs estimates the total

vector population density in patch 1 to be 31600 vectors/km2. Since we are assum-
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Table 3.2. Patch 1 density estimates

Species Population density Carrying capacity

Woodrat 2300 rats/km2 5200 rats/km2

T. gerstaeckeri 31600 vectors/km2 31900 vectors/km2

ing that the only vector in our model in patch 1 is T. gerstaeckeri, we use this as

the density estimate. Using these figures, we obtain patch 1 population density and

carrying capacity estimates found in Table 3.2.

3.4.1.2 Patch 2

Estimates for southern plains woodrat density in patch 2 vary by geographical

location and study. The woodrat density is affected by landscape, climate, and avail-

able materials for den construction. Raun [67] determined a positive correlation for

population density of woodrats and density of cactus, although he concluded that cac-

tus is not absolutely necessary to support woodrats. Cactus is the preferred material

for den construction and food, but woodrats will use other materials to construct dens

if cactus is unavailable [83]. In general, density of woodrat dens is closely associated

with overhead cover.

In an 18 month study in Jim Wells Co. part of the Southern Texas Plains,

Merkelz and Kerr [55] record a maximum density of 1.5 wr/ha (during spring 1998)

using a 10 ha subplot of a 220 ha study site. Density was calculated by using the

number of woodrats captured in the area during a single trapping season. Since they

do not given any other density calculations, we use this data as part of our data

collection. We note that they did not limit their density calculation to only areas

with cactus growth so as to include open areas as part of the normal daily range of

woodrats.
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Conditt and Ribble [18] estimate a range of 1.6-5.8 wr/ha (average 3.7 wr/ha)

in Bexar Co located in South Texas. The study was done on a 10 ha area of land

with 4 ha dominated by honey mesquite-brush and prickly pear cactus, while the

remaining 6 ha dominated by riparian lowland forests. The density was calculated

on the 4 ha site due to essentially no woodrats being found on the riparian forested

area (cactus-free) of the study site. They mention that the low density may be due

to lack of cactus in the region of study and lack of appropriate shelter sites. However,

Raymond et al. [68] in 2003 calculate a much higher maximum density of 19.4 wr/ha

(with an average of 15.1 wr/ha) in the same county (but a different study site). This

study site had limited clumps of prickly pear, but was covered with thick brush and

downed trees which served as nest sites. Thus, we see that cactus is not absolutely

necessary to maintain a high population density, but rather an abundance of shelter

sites.

Although we do not include Oklahoma in patch 2, due to the northern range

of T. gerstaeckeri, we refer to a study in Harmon County, Oklahoma in the Mesquite

Grass Plains region, in which the estimated woodrat density was 13 wr/ha [84]. This

region is native to the southern plains woodrat, dominated by Mesquite and prickly-

pear cactus. The population density estimate was determined by trapping at 104 of

the known 1,129 woodrat houses in the 226 ha study plot, and the density of cactus

was not taken into account for the woodrat population density estimate.

Raun [67] estimates a range of 14.8-31.4 woodrats/ha (average 23 wr/ha) in

San Patricio Co, part of a transitional region between the Southern Texas Plains and

Western Gulf Coastal Plain. Thus, the vegetation in this region is diverse, with the

major plant communities being Mesquite-Mixedgrass, Chaparral-Mixedgrass, Live

Oak-Chaparral, and Prickly Pear-Short grass, with riparian forests along the rivers

[31, 9]. The study site, 9 acres, was reduced to 7.3 acres to estimate the density to
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Table 3.3. Neotoma micropus population density estimates

Average density Location Ref
1.5 wr/ha Jim Wells Co [55]
3.7 wr/ha Bexar Co [18]
13 wr/ha Southwestern OK [84]
15.1 wr/ha Bexar Co [68]
23 wr/ha San Patricio Co [67]

eliminate areas that did not support cactus growth. A summary of these results can

be found in Table 3.3.

Although there is a broad range of density estimates, we recall that patch 2 is

a region with a diverse landscape, including mesquite, cactus, and savanna regions

with areas of tree and prairie grassland. Since some estimates were computed in

cactus-free regions, it is important to include each estimate in our computation of the

average woodrat density. Thus, we include all 5 estimates in computing the average

woodrat density in patch 2, obtaining an average population density of 11.3 wr/ha

(1130 wr/km2) in patch 2.

There are relatively few papers regarding raccoon distribution in patch 2. In

a 3-year study by Gehrt and Fritzell [31], they estimate an average density of 7.3

raccoons/km2 in San Patricio Co in southeast Texas. Since this region is not domi-

nated by forest (as mentioned above), we would expect a lower raccoon density than

that estimated by Kribs [44] for raccoon density in southeast USA (including patch

3). Using the equilibrium population densities, N∗ = K
(

1− µ
r

)

, we calculate the

carrying capacities for each species in patch 2, found in Table 3.4.

In patch 2, the T. cruzi transmission cycles overlap by the association of T. san-

guisuga in association with both woodrats and raccoons, while T. gerstaeckeri feeds
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Table 3.4. Patch 2 density estimates

Species Population density Carrying capacity

Raccoon 7.3 racc/km2 13.1 racc/km2

Woodrat 1130 rats/km2 2542.5 rats/km2

All vectors 31600 vectors/km2 31900 vectors/km2

only on woodrats. The T. sanguisuga move between the woodrat and raccoon popu-

lations regularly enough that we will consider the T. sanguisuga a single population.

We would like to estimate qW , the proportion of vector-woodrat contacts in patch 2

that are with T. sanguisuga, while 1−qW is the proportion of vector-woodrat contacts

that are T. gerstaeckeri. Also, since T. sanguisuga is associated with both hosts, we

must estimate qS, the proportion of T. sanguisuga-host contacts that are raccoons,

with 1− qS the proportion of T. sanguisuga-host contacts made with woodrats.

Eads et al. [27] found 390 vectors from a total of 58 woodrat dens. Of the 390

vectors, 226 were T. sanguisuga, 133 were T. gerstaeckeri, and 31 were T. neotomae.

We note here that the proportion of T. neotomae is negligible; thus we will normalize

so that the proportions of T. sanguisuga and T. gerstaeckeri sum to 1. Thus, 63%

of the vectors found in association with woodrats were T. sanguisuga and 37% were

T. gerstaeckeri. Pippin [65] determined that for 85 woodrat dens, of 229 nymph and

adult vectors, 58% were T. sanguisuga, while 42% were T. gerstaeckeri. If we pool

the data, we determine 61% of the vector-woodrat contacts are with T. sanguisuga,

and if we use the weighted average by number of dens excavated, the percentage is

60%. Thus, we estimate qW to be 0.605.

To estimate qS, we will define qS =
N∗

R2
·VR

N∗

R2
·VR+N∗

W2
·VW

, where N∗
R2 is the patch 2

raccoon density and N∗
W2 is the patch 2 woodrat density. VR is the number of vectors

per raccoon and VW is the number of vectors per woodrat (scaled by the proportion
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that are T. sanguisuga). VR can be estimated from the estimates given by Kribs [44].

We mention here that there are other hosts in patch 3, so not all T. sanguisuga can

be found with raccoons. Ideally, we would calculate VR directly to avoid biasing the

estimates. Although raccoons are the preferred host of T. sanguisuga, the vector will

feed on other hosts including opossums in patch 3. We will estimate the raccoon

density equivalent of the opossum density. Based on literature reviews, we determine

the population density of opossums to be 10.1/km2 [44]. Thus, we determine the

density of opossums is 0.505 times the raccoon density. We will divide the patch

3 T. sanguisuga population density, N∗
S3, estimated by Kribs [44] by the raccoon

equivalent total host density. Using the estimates for N∗
S3 and N∗

R3 from Kribs [44],

we determine VR =
N∗

S3

1.505N∗

R3

= 1049.83 T. sanguisuga/raccoon. Since both vector

species are associated with woodrats, VW is qW
N∗

G2
+N∗

S2

N∗

W2

. Kribs [44] estimates that

the total Triatoma vector population in patch 2 is 31600 vectors/km2. As estimated

previously, N∗
W2 = 1130 woodrats/km2. These averages result in an estimate of VW

as 16.9 T. sanguisuga/woodrat. Based on this calculation, we arrive at an estimate

of qS = 0.286.

3.4.1.3 Patch 3

We use Kribs [44] estimates for the raccoon and T. sanguisuga density estimates

in patch 3, given in Table 3.5. We note here that the T. sanguisuga population density

is based on research by Kribs [44]. Kribs identifies only 1 study done by Burkholder et

al. [13] regarding population density of Triatoma vectors, which estimates Triatoma

density in relation to woodrat nests. Although T. sanguisuga in patch 3 are found

with raccoons, we use the same estimate as the total vector population density in

patches 1 and 2, due to lack of relevant information on vector population density in

patch 3.
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Table 3.5. Patch 3 density estimates

Species Population density Carrying capacity

Raccoon 20. racc/km2 35.6 racc/km2

T. sanguisuga 31600 vectors/km2 31900 vectors/km2

3.4.2 Estimation of infection rate parameters

The model here includes 2 modes of host infection: vertical transmission and

direct transmission due to biting and to oral transmission via vector consumption.

The vertical transmission parameters can be estimated directly via literature. Kribs

[44] estimates the vertical transmission proportion to be 0.01. Then pW = 0.01.

We estimate pR = 0.1 due to the adaptation of T. cruzi strain type IV to vertical

transmission in raccoons. To estimate the direct infection rate parameters, we utilize

the technique outlined in [44] to back-calculate the infection rate parameters, by

solving for βR, βS, βSW , βWS, βG, and βW using the equilibrium conditions for model

(3.1) under the assumption that observed prevalence indicates endemic equilibrium.

Since migration is small compared to the demographic processes, we will esti-

mate the infection rate parameters by patch using model (3.1), assuming no migra-

tion. In order to estimate the infection rate parameters, we combine the observed

prevalence levels and known demographic parameters in the equilibrium conditions

to back-calculate the infection rate parameters, βR, βS, βSW , βWS, βS2, βW2, βG, and

βW .

After a thorough literature search, Kribs calculates prevalence levels for each

species in each patch. Prevalence levels for T. gerstaeckeri and the woodrat are given

for Texas and levels for T. sanguisuga and raccoons are given for Texas and the

southeast U.S. To translate these values to this model, we assume that the patch 1

and 2 prevalence levels for T. gerstaeckeri and southern plains woodrat are equivalent
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to the Texas estimates found by Kribs. The patch 2 and 3 prevalence levels for

T. sanguisuga and the raccoon are the same as the Texas and southeast estimates,

respectively. A summary of these values is given in Table 3.6.

Table 3.6. T. cruzi prevalence estimates from [44]

Species Patch 1 Patch 2 Patch 3
Raccoon - 0.240 0.387
T. sanguisuga - 0.249 0.565
Woodrat 0.332 0.332 -
T. gerstaeckeri 0.454 0.454 -

We note here that x∗
G1 =

I∗G1

N∗

G1

is the prevalence value for T. gerstaeckeri in patch

1. We utilize a similar notation for the other 3 species in the model.

Using the equilibrium conditions and substituting the population density esti-

mates and prevalence values for patch 1,

βWx∗
W1(1− x∗

G1)− µGx
∗
G1 = 0

pW rWx∗
W1

(

1− N∗
W1

KW1

)

+ βGx
∗
G1

N∗
G1

N∗
W1

(1− x∗
W1)− µWx∗

W1 = 0,

we obtain estimates for βW and βG, given in Table 3.7.

Substituting the patch 3 population density estimates and prevalence values

into the patch 3 equilibrium conditions,

βRx
∗
R3(1− x∗

S3)− µSx
∗
S3 = 0

pRrRx
∗
R3

(

1− N∗
R3

KR3

)

+ βSx
∗
S3

N∗
S3

N∗
R3

(1− x∗
R3)− µRx

∗
R3 = 0,

we calculate βR and βS, given in Table 3.7.
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Figure 3.2. Correspondence of qS and qW with βWS, with units 1/yr, and βSW , with
units infected hosts/vector/yr.

Due to the crossover of infection cycles in patch 2, back-calculating the infection

rate parameters is complex. After substituting the patch 2 equilibrium population

densities and prevalence levels,there are 4 equilibrium conditions remaining

(qSβRx
∗
R2 + (1− qS)βWSx

∗
W2)− µSx

∗
S2 = 0

pW rWx∗
W2

(

1− N∗
W2

KW2

)

+

(

(1− qW )βGx
∗
G2

N∗
G2

N∗
W2

+ qWβSWx∗
S2

N∗
S2

N∗
W2

)

(1− x∗
W2)

− µWx∗
W2N

∗
W2 = 0

pRrRx
∗
R2

(

1− N∗
R2

KR2

)

+ βS2x
∗
S2(1− x∗

R2)
N∗

S2

N∗
R2

− µRx
∗
R2 = 0

βW2x
∗
W2(1− x∗

G2)− µGx
∗
G2 = 0.

(3.13)

We note that there are six β values and four equations; thus the system is

underdetermined. Consequently, we will assume that βR and βG have the same values

in patch 2 as calculated in patches 3 and 1, respectively. After solving system (3.13),

we determine values for βSW , βWS, βS2, and βW2, given in Table 3.7.

After an investigation of the effects of the proportions qS and qW on the βWS and

βSW with all of the other parameters held fixed as determined above, we determine
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that any value of qW greater than 0.3 will produce a value of βSW in between 0.11/yr

and 0.15/yr, which mitigates any inaccuracy in our estimate of qW = 0.605. We also

note that, mathematically, qS needs to be smaller than 0.411 for βWS to be positive,

as seen in Figure 3.2.

Table 3.7. Stercorarian infection rate parameters

Parameter Value Units
βS 0.00025

hosts
vector·yr

βG 0.079
βSW 0.132
βS2 0.00017
βR 0.910

1/yr
βW 1.408
βWS 0.116
βW2 1.408

Of the vector to host transmission terms, βS and βS2 (vector to raccoon infection

rate) are close in value, while βG and βSW (vector to woodrat infection rate) are close

in value. But, we note here that there is a factor of 1000 by which woodrats are being

infected more rapidly than raccoons are infected by T. sanguisuga. We note this

may be attributed partly to the fact that the population densities for woodrats are

approximately 100 times as great as raccoon population densities. All of the host to

vector transmission parameters are close in value, with the exception of βWS (woodrat

infecting T. sanguisuga) which is an order of magnitude less than the raccoon to T.

sanguisuga infection rates, which is to say that woodrats are infecting T. sanguisuga

at a lower rate than raccoons infecting T. sanguisuga.
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3.4.3 Numerical solutions

3.4.3.1 Trends in migration rate effects

To investigate the effects of migration numerically, we examine prevalence of T.

cruzi as a function of vector migration. In order to get a clear picture, we first look

at unidirectional migration of infected vectors. We then investigate unidirectional

migration of all vectors as this is the upper bound of the possible unidirectional

migration scenarios for vector migration. We then consider bidirectional migration

of infected and all vectors. In each scenario, we consider the effects on T. cruzi

prevalence as migration increases. To see the effects of the increase, we consider the

effects of factor, k, multiplied by each migration rate. We calculate the prevalence

for each patch as k increases from 0 to 10, where k = 0 represents the scenario

with no migration and k increasing greater than 1 represents the migration rate

increasing past the calculated rate from Chapter 2. For each graph given, the host

infected prevalence is represented by the lighter colored graph and the vector infected

prevalence is represented by the darker colored graph.

In the case of northward migration of infected vectors (Figure 3.3), we observe

a decrease of prevalence in patch 1 since this patch is losing infected vectors and

not gaining any, and a slight increase of prevalence in patch 3 as the migration rate

increases. The prevalence of T. sanguisuga in patch 2 is much lower than that in

patch 3, so although patch 3 is gaining infected vectors, the increase in prevalence at

equilibrium is minimal.

In this scenario, patch 2 is gaining infected vectors from patch 1(T. gerstaeck-

eri) and losing infected vectors to patch 3(T. sanguisuga). As seen in Figure 3.3, the

patch 2 prevalence decreases for northward migration. To get a better understanding

of why the prevalence decreases in patch 2, we look at the graphs of the prevalence

75



0 2 4 6 8 10
k0.0

0.1

0.2

0.3

0.4

0.5

0.6

prev
Patch 1

0 2 4 6 8 10
k0.0

0.1

0.2

0.3

0.4

0.5

prev
Patch 2

0 2 4 6 8 10
k0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

prev
Patch 3

Figure 3.3. Infected vectors migrating north only; dark curve represents vectors, light
curve represents hosts.

0 2 4 6 8 10
k0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

prev

Patch 2 HT. sanguisugaL

0 2 4 6 8 10
k0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

prev
Patch 2HwoodratL

0 2 4 6 8 10
k0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

prev

Patch 2 HT. gerstaeckeriL

Figure 3.4. Infected vectors migrating north only.

for each vector species in patch 2, seen in Figure 3.4. It can be observed that the T.

sanguisuga infected prevalence decreases by approximately 35% for high migration

rates, while the T. gerstaeckeri prevalence increases by approximately 25%. Further-

more, we see a constant decrease in the woodrat prevalence (although T. gerstackeri

prevalence increases). We note that in patch 2 NS2 is approximately 50% greater than

NG2. Thus, the export of infected T. sanguisuga from patch 2 dominates the import

of infected T. gerstaeckeri from patch 1, causing an overall prevalence decrease in

patch 2 in the case of northward migration of infected vectors.

When we consider northward migration of all vectors, the change in prevalence

is undetectable by viewing the graph. Patch 1 prevalence is still reduced since it

is losing both infected and uninfected vectors, as seen in Figure 3.5. One might

expect that the decrease should be less when all vectors are migrating, but after a
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Figure 3.5. All vectors migrating north only; dark curve represents vectors, light
curve represents hosts.

numerical investigation of prevalence, we see that the decrease is slightly greater when

all vectors are migrating. Also, we would expect the patch 3 prevalence to increase

since this patch is gaining both infected and uninfected vectors from patch 2 with a

lower prevalence; howeverm the prevalence decreases slightly. If only infected vectors

migrate northward, then R1 decreases as b̄G increases, causing prevalence in patch 1

to decrease. When all vectors are migrating northward, R1 actually decreases more

since the vector-host ratio is also decreasing, as the migration rate increases. Thus,

the decrease in R1 is amplified when all vectors are migrating northward.

As we observe southward migration of infected vectors, we again view the preva-

lence levels for each patch, in Figure 3.6. Patch 1 is gaining infected vectors from

patch 2; thus we see an increase in prevalence. In patch 3, we see a slight decrease

(< 1%) in prevalence due to this patch losing infected vectors. In contrast to north-

ward migration, we see a rise in prevalence for patch 2 in the case of southward

migration. To understand why prevalence increases even though this patch is losing

infected vectors to patch 1, we graph prevalence levels for each species in patch 2 as

a function of migration, seen in Figure 3.7. We observe that prevalence in T. san-

guisuga increases, as expected since this vector population is gaining infected vectors

from patch 3. An interesting observation is that the prevalence in T. gerstaeckeri

rises for small migration rates (0 < k < 1). Then, for higher migration rates, the

77



0 2 4 6 8 10
k0.0

0.1

0.2

0.3

0.4

0.5

0.6

prev
Patch 1

0 2 4 6 8 10
k0.0

0.1

0.2

0.3

0.4

0.5

prev
Patch 2

0 2 4 6 8 10
k0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

prev
Patch 3

Figure 3.6. Infected vectors moving south only; dark curve represents vectors, light
curve represents hosts.
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Figure 3.7. Infected vectors migrating south only.

prevalence for T. gerstaeckeri in patch 2 decreases. As observed in Figure 3.7, the

woodrat T. cruzi prevalence increases in patch 2 for southward migration. Thus, for

0 < k < 1, the sharp rise in prevalence in T. sanguisuga (11% increase) in patch 2

for small migration rates may be enough to increase the prevalence in T. gerstaeckeri

through the woodrats.
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Figure 3.8. All vectors migrating south only; dark curve represents vectors, light
curve represents hosts.
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Figure 3.9. Infected vectors bidirectional migration; dark curve represents vectors,
light curve represents hosts.

In the case of southward migration of all vectors, the patch 3 prevalence de-

creases more than when only infected vectors are moving southward. This can be at-

tributed to the decrease in vector-host ratio as the migration rate increases, thereby

causing R3 to decrease more than if only infected vectors are migrating. Patch 1

prevalence increases more than if only infected vectors are migrating southward, due

to the slight increase in vector-host ratio. The patch 2 prevalence increases more

than if only infected vectors are migrating southward, which is primarily due to the

increase in vector-host ratio causing R2 to increase more than if only infected vectors

are migrating, as seen in Figure 3.8.

We also wish to investigate bidirectional migration of vectors. We first consider

bidirectional migration of infected vectors only. As seen in Figure 3.9, prevalence

decreases in patches 1 and 3, but increases in patch 2. To better understand why

prevalence increases in patch 2, we observe the prevalence graphs for patch 2 only.

We observe that both T. sanguisuga and T. gerstaeckeri prevalence increases in patch

2 (Figure 3.10).

The T. sanguisuga population in patch 2 is initially at a lower prevalence than

patch 3, and since the T. sanguisuga population is gaining vectors from a patch with

a higher prevalence, the prevalence increases for this species in patch 2 as seen in
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Figure 3.10. Infected vectors bidirectional migration; dark curve represents vectors,
light curve represents hosts.
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Figure 3.11. All vectors bidirectional migration; dark curve represents hosts, light
curve represents vectors.

Figure 3.10. The T. gerstaeckeri prevalence also increases, although this population

is gaining and losing vectors at the same prevalence. We can most likely attribute the

increase in prevalence for T. gerstaeckeri in patch 2 due to the increase in woodrat

prevalence (seen in Figure 3.10) through the T. sanguisuga prevalence increase.

In the case of bidirectional migration of all vectors, the behavior is similar. The

patch 1 and 3 prevalence decreases slightly more than in the case of only infected

vectors migration, due to the decrease of the vector-host ratio. A similar reason can

be given for the patch 2 prevalence increasing more than if infected vectors are moving

only.

80



3.4.3.2 Calculation of the migration rate

We establish in Chapter 2 that vector dispersal can be described by three prop-

erties: dispersal distance, preferred direction of dispersal, and degree of preference for

a particular direction. Since we do not have clear data on a preference for a direction

for T. sanguisuga and T. gerstaeckeri, we will consider the simplest case in which the

vectors have no preference for direction of dispersal. Here we give the vector migra-

tion rates calculated in Chapter 2 assuming no preference for direction. We adjust

these rates to take into account the area ratios and note that the rates are equal for

all vectors (infected and susceptible) in each species.

Table 3.8. Migration rates for no pre-
ferred direction (units in 1/year)

m̄ Species rate
m12 T. gerstaeckeri 0.00427
m21 T. gerstaeckeri 0.00385
m23 T. sanguisuga 0.00101
m32 T. sanguisuga 0.000155

Table 3.9. Adjusted migration rates for
no preferred direction (units in 1/year)

Adjusted rate

b̃G = ãG 0.00385

b̂G = âG 0.00427

b̃S = ãS 0.000155

b̂S = âS 0.00101

We may also consider that vectors have a preference for direction of migra-

tion. Although we do not have clear evidence for the vectors in the model migrating

with any clear trend in direction, we consider the possibility of vector migration in a

particular direction. In a study on climate change related to Chagas disease distribu-

tion, Curto de Casas concludes that higher temperatures may extend the geographical

range of the sylvatic vectors of T. cruzi [21]. Thus, we may consider vector migra-

tion with a northward preference for direction. We note here that when northward is

described in section 3.4.3.1, it is referring to one-directional migration from patches
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1 to 2 and 2 to 3, not the actual geographical direction north. In this section we are

referring to the actual direction north and migration is bidirectional between patches.

Table 3.10. Equilibrium prevalence levels for species based on migration (northward
preference for direction)

Species Equilibrium prevalence
Patch 3

T. sanguisuga 0.56384
Raccoon 0.38513

Patch 2
T. sanguisuga 0.24940
Raccoon 0.23628
T. gerstaeckeri 0.46649
Woodrat 0.33459

Patch 1
T. gerstaeckeri 0.44686
Woodrat 0.32858

The framework for deriving migration rates with a preference for direction is

modeled using a sequence of nested ellipses, in which each ring represents a certain

range if dispersal distances. We also assume that vectors have a degree of preference

for a direction, which represents the eccentricity of each ellipse. Based on results from

Chapter 2, we give results for T. cruzi prevalence assuming a northward preference of

direction (with moderate degree of preference, e = 0.5) in Table 3.10. The decrease

in prevalence in patch 1 and increase in prevalence for T. gerstaeckeri in patch 2 are

consistent with what we expect assuming a northward preference for direction. We

note that there is approximately a 1% decrease in prevalence for T. sanguisuga and

raccoons in patch 2 if preferred direction is northward, when compared to migration

with no preference for direction. There is a more than 3% increase in T. gerstaeckeri

prevalence in patch 2 when compared no migration. Although T. gerstaeckeri feeds
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only on woodrats, the increase in prevalence for T. gerstaeckeri is not enough to

cause a higher increase in woodrat prevalence; thus we only observe only a slight

(<1%) increase in prevalence for woodrats in patch 2 when the preferred direction of

migration is northward.

3.5 Conclusions

Due to the complexity of system (3.1), several sub-models were analyzed in

order to make conclusions regarding the behavior of the full model. The entire sys-

tem appears to exhibit classical threshold behavior regarding R0, and existence of a

unique endemic equilibrium when R0 > 1. In the case of one-directional migration

of vectors, R0 consists of as many components as there are patches with R0 being

the largest value of the patch-specific R0 values, and multiple endemic equilibria are

possible depending on the values of the patch-specific reproductive numbers values.

If migration is bidirectional, R0 will consist of only one component for containing

parameters from all patches, and only one endemic equilibrium is possible; thus ei-

ther the whole system reaches a disease-free state or infection persists in all patches.

These results are similar to the multi-patch model results in [3], where it is shown

that if patch a is at endemic equilibrium, then the disease is at endemic equilibrium

in each patch accessible to patch a. Similar results are observed in the two-patch

model in [2], where it is shown that if R0 < 1, the disease does not persist in either

population (patch), and if R0 > 1, the disease persists in both populations.

In section 3.4, we obtained several different sets of results with respect to the

effects of vector migration on the prevalence of T. cruzi in the geographical region

from which we built our model. We examined the effects of one-directional migration,

bidirectional migration (at symmetric rates), and bidirectional migration using rates

derived from the framework in Chapter 2.
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In the case of one-directional migration, the prevalence in the outer patches

(patches 1 and 3) varies as expected (e.g. patch 1 prevalence decreases for north-

ward migration only). However, the patch 2 dynamics are different for northward vs.

southward migration. In the case of northward migration only, the patch 2 preva-

lence decreases while for southward migration, the prevalence increases. After closer

observation of prevalence for each species in patch 2, it is determined that the T.

sanguisuga migration has a greater effect on the patch 2 dynamics than the migration

of T. gerstaeckeri primarily due to the fact that the difference in population density

and prevalence in patches 2 and 3 among T. sanguisuga is greater than the difference

in population density and prevalence in T. gerstaeckeri in patches 1 and 2. If vectors

are migrating northward only, the export of T. sanguisuga dominates the import of T.

gerstaeckeri thereby causing an overall decrease in patch 2 prevalence; we note that

the T. sanguisuga population density in patch 2 is approximately 50% greater than

the T. gerstaeckeri population density. For southward migration rates, the import

of T. sanguisuga dominates the export of T. gerstaeckeri into patch 1. In fact, for

lower migration rates, the prevalence for T. gerstaeckeri increases slightly due to the

sharp increase in T. sanguisuga through the connection with the woodrat host. The

connection between the vectors is the infection cycle with the woodrat host. Thus,

the increase in prevalence for T. gerstaeckeri for lower southward migration rates is

due to the increase in the prevalence for woodrats through the infection cycle with

T. sanguisuga.

If migration is bidirectional, the patch 2 prevalence increases. After analysis

of one-directional migration, the reason for the patch 2 prevalence increase is more

apparent. We note here that the prevalence for T. sanguisuga is initially at a lower

prevalence in patch 2 than in patch 3, so the T. sanguisuga in patch 2 is gaining

vectors from a patch with a higher prevalence, thus the increase in T. sanguisuga
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prevalence. The prevalence for T. gerstaeckeri increases in patch 2 in the case of

bidirectional migration due to the increase in woodrat prevalence (again through the

infection cycle with T. sanguisuga). We note here that these trends are observed even

if migration rates are considered symmetric (independent of patch size).

Because of the differences in patch sizes (especially the large size of patch 3

compared to patches 1 and 2), the vector density in each patch is affected differently

by migration. For example, the change in patch 2 vector density will be greater than

the change in patch 3 vector density for bidirectional migration. The patch 3 vector

density is minimally affected by migration due to the large patch size.

Based upon these results we can conclude that infection dynamics in patch 2 are

sensitive to migration, but primarily driven by the T. sanguisuga population. Since

the same trends in prevalence change are observed for migration independent of patch

size, we should investigate the distinctive transmission characteristics between host

and vector. Thus, we consider differences in the T. sanguisuga and T. gerstaeckeri

populations. One major difference in the vector populations is the high prevalence for

T. sanguisuga in patch 3 compared to patch 2 and the prevalence for T. gerstaeckeri.

If we assume no difference in prevalence levels for T. sanguisuga from patch 3 to 2,

we can note that for southward migration, the prevalence in patch 2 still increases

for small migration rates, but at a much slower rate, while for northward migration,

the prevalence decreases but at a much slower rate than if the prevalence in patch 3

is at its current estimated level. These results give a different picture for the patch 2

dynamics, which allow us to see a dampening effect of the T. sanguisuga migration

if the prevalence levels for the T. sanguisuga populations in patches 2 and 3 are the

same. Thus, we can attribute the majority of the patch 2 dynamics when migration

is considered to the higher prevalence in T. sanguisuga in patch 3.
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This aim of this study is to determine the effect of vector migration on T. cruzi

transmission in the prominent sylvatic cycles ranging from northern Mexico to the

southeastern United States. The primary effect of migration is to increase prevalence

in the overlap patch where the prevalence is initially at a lower level than the outer

(single-cycle) patches. The dominant force is the connection to the large raccoon-T.

sanguisuga in the southeastern United States, which is affected little on such a large

scale, but which can affect dynamics strongly in the overlap region with woodrats

and T. gerstaeckeri.

As in every study, certain limitations must be noted. Due to the very recent

awareness of the need to study T. cruzi in the United States, there have been very few

studies on the demography of vectors native to the U.S., especially regarding vector

population density. To date, there have been virtually no studies on the U.S. Triatoma

vectors’ dispersal or migration capabilities. Thus, with more studies, we may be able

to more accurately describe the dispersal capabilities (especially regarding distance

and frequency of vector flights). We acknowledge the need for more experimental or

field studies with heavy consideration on the Triatoma vectors native to the United

States, especially T. gerstaeckeri and T. sanguisuga which we consider to be the

primary vectors in the southeast.

Because of the differing patch sizes, a natural question arises to consider effects

of migration for higher spatial resolution where all patches are of uniform size. If

the geographical region is broken into smaller, same-size patches, we wish to examine

to what extent these results would change. Future work in the next chapter of the

dissertation is to use cellular automata to see how migration among smaller patches

will affect the spread of T. cruzi across a global geographic region as well as determine

a measure for speed of invasion.
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CHAPTER 4

INVASION SPEED IN CELLULAR AUTOMATON MODELS
FOR T. CRUZI VECTOR MIGRATION

4.1 Introduction

Chagas’ disease, caused by the parasite Trypanosoma cruzi, is considered en-

demic in Central and South America. However, fewer than 10 autochthonous human

cases have been diagnosed in the United States, despite the presence of T. cruzi in

many mammals and triatomine bugs in the U.S. Although there is no clear reason for

the paucity of human infections, the lower rates of human T. cruzi infection have been

attributed to several factors, including fewer domestic vectors, lower North American

vector competence (delayed defecation after feeding), and the potential lower viru-

lence of native North American strains of T. cruzi [25]. The interaction between the

mammals and triatomine species native to the U.S. and triatomine species carrying

the more virulent strains in Central and South American is not known. Because

the activity level of triatomine bugs is greatly affected by temperature and climate,

increasing global temperatures may be likely to extend the vector distribution north-

ward. Lambert et al. [46] studied the potential for the emergence of Chagas’ in

the U.S., and cite other studies in which increased temperature and climate change

have contributed to the spread of certain vector-borne diseases into new locations.

Although several factors may play a role in the relatively low number of human cases

of Chagas in the U.S., the parasite is highly endemic among sylvatic vector-host pop-

ulations. Thus, attention should be given to the potential for the spread of the more

virulent strains of T. cruzi from Central and South America to the sylvatic popula-
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tions in the U.S. through the movement of the triatomine vectors. In this study, we

wish to investigate the speed of spread of the more virulent strains of T. cruzi into

the southeastern U.S. through mobility of the vector populations.

Because of the importance of considering the geographic nature of the spread

of T. cruzi, a spatially explicit model should be considered. Although there are many

types of spatially explicit models, we consider a two-dimensional cellular automaton

(CA) model. A two-dimensional CA is a regular grid in which each cell is in a finite

state at each time step. The state of each cell evolves over time based on a set of rules

that take into account the state of each cell and its neighboring cells. Thus, local

interactions between neighboring cells yield global results over the entire grid that

can be observed over time. For this study, the local CA rules will come from Chapter

3 (the existing metapopulation models for T. cruzi transmission). A CA can be either

deterministic or stochastic, and in this paper we will consider the deterministic CA.

In biological models, the term invasion speed is generally associated with the

speed at which a certain population expands over space. The population could be

considered an invading population into a region or territory or could refer to an in-

fection invading a spatial region. In this study we consider the effects of an invading

strain of T. cruzi on the sylvatic vector and host populations in the U.S. In particular,

the focus of this study is to consider how the speed and direction of invasion vary with

vector mobility. Invasion speed will be examined under different vector migration sce-

narios. In this study, we will determine a criterion for measuring invasion wavefronts

as well as develop a method to calculate invasion speed for varying vector migration

characteristics, such as preference for a particular direction. We will compare re-

sults across different patches. After reviewing relevant literature on spatially explicit

epidemic models and invasion speed, we begin by defining the proposed CA model

structures and developing the necessary criteria for invasion. Methods for calculating
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invasion speed are described, and invasion speed of the infection are determined for

different migration rates.

4.2 Literature Review

Several types of spatially explicit models have been used to model epidemio-

logical and ecological problems involving population dispersal. In a spatially explicit

model, the spatial habitat can be modeled in a continuous or discrete way. The most

common continuous-space models are reaction-diffusion and integro-differential (or

difference) equations. Some common models discrete in space are cellular automaton

(CA) models and other lattice-based models. Each of these types of models produces

different results with characteristics which depend heavily on the scale and structure

of the spatial landscape. CA models generally incorporate a significant amount of

detail, and thus due to complexity issues are analyzed numerically. Reaction-diffusion

and integro-differential equations provide less detail, but are easier to analyze math-

ematically.

Reaction-diffusion models have been extensively studied in the context of dis-

persing populations and epidemics [38, 49]. The reaction term is generally a growth

(or birth) term, while the diffusion term represents the population dispersal. In

reaction-diffusion models, the general assumption is that the dispersal is random and

local. Murray et al. [60] investigated a simple reaction-diffusion model for the spread

of rabies among foxes in England. Because infected foxes tend to disperse in a more

or less random way, a diffusion process is a good choice to model the fox dispersal.

Analysis of the model predicts traveling waves of the epidemic. The wave front is de-

fined to be the front in which the largest number of foxes are dying from the disease.

The speed of the wave increases in regions with higher fox density and predicts an

interesting feature in which there are outbreaks of the epidemic in regions of higher
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fox density ahead of the actual wave front. It has been suggested that in certain

reaction-diffusion models, the traveling wave speed may actually be underestimated

[42]. In this case, the use of integral operators rather than diffusion operators may

be used. The result is a system of integro-differential (or integro-difference) equa-

tions [58]. In a study by Medlock and Kot [54] and references therein, the spread of

disease in space is discussed using two models referred to as the distributed-contacts

(DC) and distributed-infectives (DI) models. In each of these models, either con-

tacts are local with infectives dispersing in space (distributed-infectives) or contacts

are spatially distributed in space (distributed-contacts). Each of these scenarios is

modeled by a system of integro-differential equations. Solutions to such models (and

reaction-diffusion models) exhibit wavelike behavior (commonly traveling waves). Re-

sults show that the epidemic spreads faster in the DC model than in the DI model

if the transmission rate is high, while if the rate is low, the DI model causes faster

speeds of spread.

Cellular automata and other grid-based models have only recently been used

in the study of spatial spread of epidemics. In its most simplistic view, the basic

cellular automaton model applied to the spread of a disease consists of a set of grid

points (or cells) distributed on a square lattice where each cell has a certain set of

neighboring cells called a neighborhood. Each cell typically represents an individual

that can be in one of a finite number of states. In the most basic epidemiological

models, the states may be susceptible, infected (or infectious), recovered, immune,

etc. Individuals move between states at different rates based on the states of the

neighboring cells. The transmission of the disease and movement between states may

be deterministic or stochastic [77, 80, 91]. The models previously cited obey the more

traditional rules for a CA (each cell represents an individual); however, there are other

ways of defining a cell. In [30], the cells contain specific populations based on certain
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geographical features. The population in each cell has specific demographic features

as well as susceptible, infected, and recovered subpopulations for an unspecified SIR

infection. The populations and movement between cells are governed by each cell’s

carrying capacity, whereas the success of the movement of a population between cells

depends on whether the destination cell has reached its carrying capacity. Rather than

studying the spatial spread of a specific disease across the lattice, [30] gives results

for two different experimental disease scenarios. For each scenario, the landscape is

focused around imaginary town centers and transport links between towns. The first

scenario is one in which all transport links are open and there are no barriers to restrict

the spread, while the second scenario considers landscape barriers (implemented as

cells with zero carrying capacity). Results show that if the barrier is thin enough and

the radius of movement is large enough, the infection can still spread past the barrier

into the rest of the susceptible population.

Although there have been many epidemiological CA models, a review of the

literature found only one known CA model of Chagas’ disease. Slimi et al. [79]

implement a CA model for Chagas’ disease in order to study how demography and

dispersal of Chagas’ disease vectors interact to produce variations in bug abundance

in a village (covering approximately 1 km2) in the Yucatan peninsula in Mexico. In

this model each cell, which represents a fixed area of a village, can either be empty

or occupied by adult bugs or larvae. It should be noted that this CA model does

not take on the traditional form in which each cell represents an individual, but

rather each cell may contain a population of vectors. Adult bugs disperse from the

forest surrounding the village during the months of April to June. The model is

used to investigate periodic infestations of the vectors into the village resulting in

increased Chagas’ transmission risk, represented as the number of cells where the

bug abundance exceeds more than 1 individual. The transmission risk is between
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10% and 40% during the infestation period and remains at that level several months

after the immigration period of the bugs has ended. Results of this study may help

researchers evaluate current disease control policies (e.g., the spraying of insecticide)

around villages. We further mention Devillers et al. [23] who modeled the spread of T.

cruzi strain types I and IV (formerly known as type IIa) using an agent based model

(ABM). ABMs are an extension of CA models, but generally more complex. The

agents (or individuals) interact according to a set of rules (similar to a CA), but are

not required to update synchronously. Devillers et al. [23] construct a 2-strain model

of T. cruzi where the agents are two types of hosts: humans and vectors. Infection

stages are distinguished in the human hosts, while the vectors are either susceptible

or infected. Results of the study show the necessity of a reservoir host species in

the transmission cycle to obtain simulation results that agree with observations in

nature. Furthermore, the study was designed to show the flexibility of the ABM in

modeling situations in which several factors are unknown. In this way, the use of an

ABM allows for adding or subtracting compartments in order to hypothesize several

situations, such as is the case with this study.

The idea of invasion speed was first studied by Fisher [28] and later by Skellam

[78] in the context of ecological reaction-diffusion equations, typically in one spatial

dimension. The underlying assumption of dispersal modeled by diffusion is that each

member of the dispersing population moves at random. Wave speed is calculated

by applying a change of variables to the system of PDEs, resulting in a system of

first-order ODEs, whose solutions can be analyzed using a standard approach to

stability analysis of equilibrium values. The change of variables method assumes

that if a traveling wave must exist, then it can be written as a function of a single

argument: for example, in the one-dimensional case u(x, t) = U(x + ct), where c

represents the minimum wave speed, and U is positive and increasing. Although
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many studies have been done with these models, in some dispersing populations,

this idea of random movement may not be realistic. Reaction-diffusion models only

produce waves traveling at a constant speed, where the front is either advancing or

retreating. Other models used to study invasion speed use either integro-differential or

integro-difference equations [42, 54, 58], in which the invasion speed can be calculated

by linearizing the system. Systems of this type can produce accelerating waves, which

for some populations may be more realistic.

Invasion speed of waves in cellular automata has not been extensively studied.

The shape and speed of wave fronts are dependent on the underlying grid. In work

by Schönfisch [76], the problem of calculating speed of wave fronts in a simple two-

dimensional cellular automaton is addressed. In the epidemic automaton, a simple

SI model is considered for two standard neighborhoods, the von Neumann neighbor-

hood and the Moore neighborhood. In this type of classical deterministic cellular

automaton, a susceptible individual becomes infected if at least some set number of

its neighbors are infected, while in a stochastic cellular automaton the probability for

a susceptible individual to become infected increases with the number of infectious

neighbors. The shape of a given wave front of infected cells is studied over time. An

initial front is determined by a key pattern and the speed of the wave front is deter-

mined by the time it takes for the grid points behind the front to reach the infected

state. In this problem, distance is measured in units of cells, and time is measured in

the time steps of the model. It is concluded that the speed of the front depends on

the slope of the front, and multiple fronts can be found for different neighborhoods.

4.3 Methods

We will construct a spatially explicit epidemic model based on classical metapop-

ulation models. The model will have a rectangular grid structure based on a two-
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dimensional cellular automaton. On a broad scale, the grid is broken up into 3

patches, defined in Chapter 2, each containing specific host and vector populations

based on the known habitat of each species in the model. Migration rates between

cells will be calculated based on an adaptation of the method in Chapter 2. A deter-

ministic system of ODEs with an SI transmission structure based on the Chapter 3

models will be used to generate numerical solutions for each of the grid points.

The basic model structure is based on the system of ODEs given in Chapter 3

determined by the patches defined in Chapter 2. Each cell in the CA represents a

specific area of landscape containing several populations of hosts and vectors. The

hosts in the model are the raccoon (Procyon lotor) and the southern plains woodrat

(Neotoma micropus), and the vectors are 2 Triatoma species, Triatoma gerstaeckeri

and Triatoma sanguisuga. The hosts and vectors in the model make up 2 distinct syl-

vatic cycles, T. gerstaeckeri-woodrat and T. sanguisuga-raccoon. The cycles overlap

in patch 2 (cells) where there is also a T. sanguisuga-woodrat cycle. Each cell contains

up to 2 host species, and up to 2 vector species depending upon the cycles specific to

the geographic region containing the particular cell (see Appendix for equations).

The modeling framework is designed by superimposing a grid onto the geo-

graphic region identified in Chapter 2. A figure of the grid overlaid on the geographic

region can be seen in Figure 4.1. In order to allow for high spatial resolution we wish

to make the cells as small as possible while also large enough to treat the populations

as continuous via differential equations. Because the lowest population density (rac-

coons in patch 2) is approximately 7.3 raccoons/km2, we define each cell as a 26.5

km by 26.5 km area of land, with approximately 96 raccoons per cell in patch 2. The

rules of the CA are determined by solving a large system of ODEs, with a range of 4

to 8 equations per cell (depending on the number of populations of host and vector

in each cell) to be solved, for a total of 9,376 equations.

94



The populations between cells are connected through migration of vectors. Mi-

gration rates will be calculated using the framework described in Chapter 2, but will

be adapted to allow for boundary segments to be much shorter than the maximum

dispersal distance. The method will also be adapted to calculate migration rates

across boundaries defining more than 2 patches (or cells in this case). The vectors

migrate within a von Neumann neighborhood, which comprises the four cells adja-

cent to the central cell. Due to the lack of sufficient data on vector migration, we

will consider different migration scenarios pertaining to the direction of migration. In

the simplest case, we will consider the possibility that vectors have no preference for

direction of migration, in which migration into each of the four orthogonally adjacent

cells occurs at the same rate. We will also consider cases in which vectors have a

preference for direction of migration, which implies that the rate of migration will be

higher into certain cells of the neighborhood than into others.

Figure 4.1. Grid framework with cells 26.5 km by 26.5 km.
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To determine the effect of vector migration on invasion of T. cruzi into sylvatic

populations, we will consider a scenario in which a hypothetical strain of T. cruzi is

introduced into a certain location of the grid. To date, there are 6 strain types of

T. cruzi identified, but only types I and IV have been identified in the U.S. Some

differences have been noted in strains, such as host specificity and rates of vertical

transmission in hosts [69]. Furthermore, strain type I is endemic among vector-host

cycles in South America and Mexico, and is linked with Chagas’ disease. Although

both strains are present in the region studied, our focus is not on competition between

strains. Climate change leads to vector habitat changes over time which gives cause

for concern for invasion of Chagasic strains. In a recent study, Yabsley et al. [94]

report higher T. cruzi prevalence in South Texas than has previously been reported.

The present study uses the CA to measure how vector migration determines invasion

speed in such a scenario.

We will consider a one-strain model in which strain I is introduced into patch

1 coming from a region in which it is already endemic. The strain will be introduced

into an uninfected (susceptible) vector population. Upon solving the large system

of DEs, time-series data will be determined for each grid point. To investigate the

invasion speed of the epidemic, we first determine a threshold prevalence level for the

presence of the epidemic in a given cell. Invasion speed will then be calculated based

on the time it takes for a certain number of cells to reach the threshold prevalence level

(units in km/yr). The calculation of the invasion speed will be based on two different

methods. We use the speed of the wavefront decomposed into cardinal directions to

determine the speed in other directions. We will also consider the method outlined by

Schönfisch [76], which utilizes the slope between two grid points on the initial wave

front. We will investigate how varying vector migration rates affect the invasion speed

of the epidemic as well as determine invasion speed of the infection for each species,
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as well as by patch (geographical location), to begin to disentangle the effects of the

various factors affecting the speed of the invading strain. In the next section we will

develop the method to calculate migration rates for the CA based on the framework

given in Chapter 2.

4.4 Migration rates for cellular automata

The framework developed in Chapter 2 is designed to translate information

about local dispersal into migration rates across a large geographical region. More

specifically, the method is used to calculate migration rates for vectors that cross

patch boundaries. This method requires the hypothesis that the patch boundary

lengths be much longer than the maximum vector dispersal distance. In order to get

high spatial resolution, the CA cell lengths will be much shorter than the maximum

vector dispersal distance (for the Triatoma vectors in this study). Furthermore, the

method in Chapter 2 does not take into account the possibility in which 3 patches

meet at a corner, as is the case in the grid model presented here.

In general, the method will be adjusted by apportioning all dispersals that exit

the cell among the adjacent neighbors by angle. There will be 4 migration rates

calculated for a given cell, one for each von Neumann neighbor.

Given an originating dispersal point in a given cell (in polar coordinates) we

define the four boundary segments as fi, and the four corner angles as ηi, for i =

1, 2, 3, 4, where each angle is defined counterclockwise from the positive x-axis, so

that 0 < ηi < 2π (see Figure 4.3). In the global (Cartesian) coordinate system, the

cell of origin is in quadrant IV, i.e., the origin is the northwest corner of the cell. As

in Chapter 2, in order to model a preferred direction of migration, the framework

here uses a sequence of nested ellipses with common focus at the pole. The sequence
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Figure 4.2. Sample regions of integra-
tion for a generic vector dispersal ellipse
with preferred direction northwest. Note
that the angle bounds for northward and
westward migration are the corner angles
while bounds for southward and eastward
migration are defined by the corner angle
and the angle at which the ellipse inter-
sects the cell boundary.

Figure 4.3. Sample cell showing cor-
ner angles and equations of boundary
segments for a given point of dispersal,
(x, y)..

of ellipses can be denoted {rj}nj=0, where rn is the outermost ellipse. The formula for

a given ellipse, in polar coordinates, is

rj =
bj
√
1− e2

1− e sin (θ − θ0)
,

where θ0 is the indicator for preference of direction and is measured π/2 radians

clockwise from the outward normal of the patch boundary, and each bj is the lateral

dispersal distance perpendicular to the preference of direction. We then define a

dispersal distribution function, Ψ(r, θ) (in proportion of vectors per square kilometer),

to be piecewise constant on the elliptical rings formed by the nested ellipses. The

strength of preference for a given direction is modeled using the eccentricity, e of the

ellipse.
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For a given point (x, y), we define the proportion of dispersals that cross patch

boundary fi as

M̃i(x, y) =

∫ θhigh

θlow

∫ rn

fi

Ψ(r, θ)rdrdθ.

The angle bounds θlow and θhigh for each direction i depend on whether or not the

ellipse intersects the boundary between the corner angles, ηi and ηi+1. If the dispersal

ellipse remains beyond the cell boundary, the angle bounds cover the entire boundary

segment. Specifically, if rn(ηi) > fi(ηi), θlow = ηi. Also, if rn(ηi+1) > fi(ηi+1),

θhigh = ηi+1. However, if the ellipse intersects the cell boundary, then the bounds

will be determined by the angle(s) at which the ellipse intersects the boundary. For

a given boundary segment i, the bounds θ1 and θ2 (where θ1 < θ2) define the 2

intersection points of the ellipse with boundary segment i. Then, if ηi < θ1 < ηi+1,

then θlow = θ1, and if ηi < θ2 < ηi+1, then θhigh = θ2. Figure 4.2 shows the regions of

integration for a generic vector dispersal ellipse with preferred direction northwest.

The function M̃i(x, y) is the proportion of patch-crossing dispersals for a given

(x, y). Then to sum the dispersals crossing out of the cell in a given direction, we

determine the migration rate

m̄i =
m

A

∫ 0

max(−L,−rmaxi
)

∫ L

0

M̃idxdy,

where L and A are the cell length and area, respectively, and rmaxi is the maximum

(perpendicular) distance a vector can disperse and still reach the patch boundary.

We note here that M̃ has undefined bounds at 2 points for each of the 4 neighboring

directions, so then the double Cartesian integral is always improper, nevertheless,

we still use the bounds 0 and L. The numerical method used to estimate the rates

adjusts for these singularities appropriately. Several rates are given in Table 4.1, and

a graph of the rates for varying preferred directions (for northward vector migration)

is given in Figure 4.4.
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Table 4.1. Specific rates for varying preferred directions, e = 0.5, rates in units 1/yr

Northward vector migration
Preferred direction T. gerstaeckeri T. sanguisuga

No preference (e = 0.5) 0.069 0.033
North 0.1310 0.0632
East 0.0138 0.0066
South 0.0097 0.0046
West 0.138 0.0066
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Figure 4.4. Northward migration rate as θ0 ranges from 0 to 2π compared with
migration rate for no preference of direction (solid line) (e = 0.5).

4.5 Analysis

4.5.1 Determining threshold presence of epidemic

Once the infection enters the susceptible population, the proportion of infected

individuals exhibits slower growth at the beginning of the outbreak, then accelerating,

and finally approaching equilibrium, with the graph being sigmoid shaped. In order

to determine the threshold presence of the epidemic, we consider two specific events

during the invasion of the infection. We will determine when the epidemic has officially
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arrived into the population, or when the proportion of infected individuals starts the

period of accelerated growth, and the time at which the rate of growth levels off.

The time it takes for these events to occur in each cell will be calculated as a step to

ultimately derive a measure of invasion speed of the epidemic throughout the region.

Each cell in the grid contains both vector and host populations. We define the

two epidemic threshold prevalence levels as a proportion of final epidemic prevalence,

and base each threshold on the prevalence of infection in the host populations in each

cell. Because of the transient nature of the vectors, it is not practical to use the vector

population infection prevalence to determine thresholds. In addition, the hosts are

not assumed to migrate, and are biologically the more significant population to use

as the indicator for arrival of the epidemic. Each threshold level will be determined

by approximating two points on the solution curve for the proportion of infected host

populations in each cell. We recognize that, although each curve is sigmoid shaped,

each population will have slightly different threshold levels, but the level does not

vary much between cells.

For each cell, the normalized time series data is split into 3 segments represent-

ing the initial growing phase, the accelerated growing phase, and the final flattening

phase approaching equilibrium. The data is split by doing a 3-piecewise-linear regres-

sion in which each segment of the piecewise function represents one of the 3 phases.

The function is constrained to be non-decreasing and the first and third segments

must have zero slope. We also note that as the epidemic progresses throughout the

region, some of the time series graphs (corresponding to cells very near to or very far

from the geographic origin of the invasion) will have more data points at one end of

the curve or the other. In order to get a better sampling of points in the curve, we

truncate the series so that the linear regression will be performed on a more uniform

set of curves. In order to automate this process, we use a fixed number (100) of data
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points to the left and right of the time step when the epidemic reaches 50% prevalence

level. In the cases in which there are not 100 data points to the left (for example),

the left piecewise segment will begin at t = 0. This allows for the linear regression to

be done on curves with the same shape. Once the function is determined, we use the

t coordinates from the breakpoints as indices to find the corresponding I(t) values

in the time series data. Those values, normalized by the final I(t) values, are the

threshold values. For cells in which there are 2 host species, two threshold values

will be calculated, one for each species. For each cell, the threshold value for the

host species reaching the epidemic threshold in the earlier time will be used as the

epidemic threshold value.

An illustration of this process can be seen in Figure 4.5 with coordinates repre-

senting each estimated threshold level based on the intersection points of the 3 linear

segments.
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Figure 4.5. Host infection prevalence in a single (sample) cell, expressed as a propor-
tion of final endemic prevalence, with threshold coordinates based on superimposed
3-piecewise linear regression.
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4.5.2 Invasion speed

To determine the invasion speed of the epidemic, we consider methods which

quantify a 2-D velocity vector. To define a velocity vector, one must specify the

magnitude (or speed) and direction of travel. There are essentially two ways to

quantify a 2-D velocity vector: the use of orthogonal velocity components, or via

direct computation of magnitude and direction. In the first method, the overall

speed and direction of the velocity can be determined by the resultant vector of the

two cardinal components. Here we define the direction of the components to be

northward and eastward, so then velocity in the southward and westward directions

will be negative. In this section, we will derive a measure of invasion speed and

direction using the methods mentioned above.

In theory, speed can be calculated by fixing distance and measuring the time to

reach the distance, or by fixing time and calculating distance traveled over the fixed

time period. Fixing distances is natural with the component method; thus we will

use this approach in section 4.5.2.1 and 4.5.2.2.

4.5.2.1 Decomposition into cardinal directions

One way to determine 2-D velocity is to resolve the vector into orthogonal com-

ponents determined by using a fixed distance (the length of one cell), and calculating

the time it takes for the epidemic to reach (using the threshold epidemic prevalence

described in section 4.5.1) neighboring cells. We define the orthogonal components

as northward and eastward velocities. The northward velocity of invasion at a point

is calculated by dividing the distance between adjacent cell centers by the difference

in first threshold times between the given cell and whichever of its north or south

neighbors (if either) has the most recent earlier first threshold time than the given

cell. If neither neighbor has an earlier threshold time, then the northward velocity
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at that point will be 0. If both neighboring cells have the same threshold time (but

less than the threshold time of the given cell), then the velocity will be calculated as

northward. One must also consider boundary cases. If the given cell does not have

a north or south neighbor in the geographical study area, then only one neighboring

cell is to be examined, in which the above criterion will determine the appropriate

calculation. This process will be repeated for every cell, and the eastward velocity

will be calculated in the same manner using the east and west neighboring cells. In

order to get a final measure of overall invasion speed (by direction), we will take an

average over all cells. To get a patch-specific speed, we will take an average over all

cells within a given patch.

Table 4.2. Threshold
times

5 2 6 3 7
3 6 4 7 9
4 8 9 12 5
0 3 5 7 9

Table 4.3. Eastward veloc-
ities (cell diameters/yr

−1
3

0 1
4

0 1
4

0 1
3

0 1
4

1
2

0 1
4

1 1
3

0
0 1

3
1
2

1
2

1
2

Table 4.4. Northward ve-
locities (cell diameters/yr)

1
2

0 1
2

0 0
0 −1

4
0 −1

4
1
4

1
4

1
5

−1
5

1
5

0
0 0 0 0 0

A visual illustration of this process (using a sample threshold time matrix) can

be seen in Tables 4.2-4.4. Regarding the special cases mentioned previously, we note

the zero entries in the first column of the eastward velocity matrix (with the exception

of the first entry) and the last row of the northward velocity matrix. These entries

represent cells on boundaries, in which only one neighboring cell was examined. In

the case when the threshold times for neighboring cells are equal (but less than the

given cell), we use the positive velocity. The units of each entry in Tables 4.3 and

4.4 are in cell diameters/yr. The values for speed can be determined by multiplying

each entry by the length of each cell (in km), so the speed will be in units of km/yr.
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4.5.2.2 Magnitude and direction

The work by Schönfisch [76] provides a useful framework for decomposing speed

of a wavefront in a cellular automaton by directly calculating magnitude and direction.

Schönfisch first describes a path of cells to be an ordered set of cells such that each

cell in the path is in the predefined neighborhood (e.g., von Neumann or Moore) of

the previous cell in the path. Two cells are said to be connected if there exists a

path between them. A front is described as the boundary of the set of connected

cells. Once a front is established, the key pattern of the front is observed. The key

pattern is defined based on observing the relative positions of the cells in the front.

The relative positions of the cells are defined by a sequence of ordered pairs (ai, bi),

where a and b represent the horizontal and vertical shifts from one cell to another. As

an example, the author describes the sequence {(1, 0), (1, 0), (1, 0), ...} as a horizontal

front. If the sequence is periodic, the key pattern is determined by the period of the

sequence of relative positions. The speed of the front is determined by constructing

a line parallel to the front at a fixed distance away from the front. Cells on the new

line are marked, and the time is measured until the front reaches those cells. Because

the front will most likely be irregular, not all of the marked cells will be reached at

the same time step. In Schönfisch’s method, a sample of 10 cells on the new line are

chosen, and speed is calculated using the average time until each cell is reached.

The method developed in this section draws on Schönfisch’s framework while

establishing definitions that differ in some instances from Schöfisch’s, especially in the

identification of the pattern of the front as well as application of the method for an

irregular shape on the grid. As the epidemic spreads, the shape and direction of the

front changes due to the geometry of the grid. Thus, to calculate the invasion speed

of the epidemic, we will define the front as a function of time. It is expected that as
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the epidemic spreads through the region, the fronts will, 1) be approximately linear,

except at patch boundaries, and 2) have similar shapes and slopes within a single

patch. We note here the patch boundaries may change the shape of a front in a similar

way that light is refracted as it passes from one medium to another. Because each

patch has different populations, including vector populations migrating at different

rates, the epidemic thresholds differ slightly as the epidemic passes through patch

boundaries, which may alter the shape of the front. Because of this, there may at

times be two disconnected linear fronts, in particular (given the geography of the

region under study here), one front in patch 2 and one in patch 3. In this situation,

we will only use the front cells (path) in patch 3, because this is the more relevant

direction of the epidemic. In order to identify the front at a particular time, we

need to determine the key pattern of the front. We define a front to be the set of

cells such that each cell has at least one neighbor that has reached the epidemic

threshold and at least one neighbor that has not yet reached the threshold, using

the von Neumann neighborhood. This method of determining front cells will ensure

that isolated cells that have reached epidemic threshold “ahead” of their neighboring

cells not be included in the front. After the front is determined for each time, linear

regression will be used on the front cells to approximate a slope for the front. The

direction of travel for the front of invasion will then be perpendicular to the linear

front.

To maintain consistency with the method of using orthogonal velocity compo-

nents described in section 4.5.2.1, in this section we will calculate invasion speed by

fixing a distance and calculating the time it takes for the epidemic to travel the fixed

distance. Once the linear front is identified, a fixed distance will be chosen. Because

the method of orthogonal components uses a distance of one cell length, the fixed

distance in this method should be as close to this length as possible to be consistent.
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However, because the front may not be exactly linear, the fixed distance should be at

least the maximum distance between any of the front cells and the linear front line

so that nonlinearities in the front do not dominate (or potentially even pre-empt) the

calculation of the time taken to reach the advance front. We denote the maximum

distance between any of the front cells and the original front line as D. In order to sat-

isfy both conditions, we choose the fixed distance to be max{2D, (2 ∗ cell diameter)}

(in km), A new line will be drawn at that fixed distance away from the identified

front line (and thus parallel to it).

When speed is calculated by fixing a distance, the time it takes to reach the dis-

tance can be easily calculated for one quantity or particle. However, the time it takes

for an epidemic on a landscape to reach a specified distance is not straightforward.

Here, we will measure the time it takes until the front reaches each cell through which

the new line passes. In general, it will take a different amount of time for the front to

reach each individual cell on the new line. Thus, the average time taken for the front

to reach all of the cells on the new line will be used. This process can be used to

obtain a velocity vector global in space, as a function of time. To obtain an average

over the entire time domain, we calculate the average value of the velocity function.

We note here that the magnitude and direction method of calculating invasion speed

begins with average velocities over one spatial dimension, while the method in section

4.5.2.1 derives velocities locally by cell, and can be averaged in various ways.

4.6 Results

In this section, we present results for varying migration rates (based on pref-

erence of direction) and provide comparisons across patches and species, as well as

present overall statistical measures, such as the mean, median, and standard devi-

ation. We have presented two methods for calculating invasion speed: 1) the use
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of cardinal direction (i.e., vector components) and 2) the front (Schönfisch) method.

We also compare results for the different methods and report any differences (and

similarities) of the numerical results for each method.

4.6.1 Basic trends in speed and direction

We assume that the infection is introduced into a cell in patch 1 (in the south-

west portion of the patch), while all other cells have only susceptible populations.

The infection is spread from cell to cell via migration of vectors. We first present

results for the case where vectors have no preference for direction of migration. The

results will be given in increasing levels of specificity. We start by reporting values

for average overall speed and average speed by patch. In order to avoid oversampling

of patch 2 data (because there are two host species present), we calculate patch 2

average speed using one host only. We use the same criteria mentioned in section

4.5.1, in which the host species that reaches the threshold level at the earlier time

step will be used. After reporting basic statistics, we look at speed vs. time graphs

in order to capture acceleration of the epidemic. This graph, along with the direction

field plot, will allow us to understand not only when the speed changes, but where

the speed changes.

4.6.1.1 Component method

Each of the methods for measuring invasion speeds relies on determining thresh-

old times representing the beginning and end of the period of fast epidemic growth.

Because these threshold values are approximated in each cell, they will vary slightly

from cell to cell. We will give results for using the cell specific thresholds as well

as using a single (average) threshold over all cells. Basic statistical measures for us-

ing cellwise thresholds and average thresholds are given in Tables 4.5 and 4.6. Even
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Table 4.5. Statistical measures for speed
(no preferred direction of migration) us-
ing cellwise threshold prevalence, units
km/yr

Statistical measures
Patch Mean Med. SD
All 7.33 6.15 40.49
1 8.28 8.47 1.53
2 4.34 4.06 1.82
3 7.32 6.13 46.03

Table 4.6. Statistical measures for speed
(no preferred direction of migration) us-
ing average threshold prevalence of 0.07,
units km/yr

Statistical measures
Patch Mean Med. SD
All 6.27 6.13 1.62
1 8.45 8.41 0.77
2 4.05 3.85 0.79
3 6.28 6.13 0.93

Table 4.7. Statistical measures for speed (no preferred direction of migration) using
front method, units km/yr

Statistical measures
Patch Mean Med. SD
All 6.64 6.50 1.41

though the cellwise threshold prevalence values do not vary by much, even a small

change in threshold times may produce outliers in speed (occurring in patch 3), as

reflected in the higher means and standard deviations in Table 4.5. Therefore hence-

forth all graphs and other results will be given using times for average threshold

prevalence, unless noted otherwise.

In Figure 4.6, we observe the change in speed from 2 different viewpoints (speed

vs. time and by location). At the start of the epidemic, the speed increases through

patch 1 and drops as the epidemic crosses into patch 2. This drop in speed is due to

several factors. The estimated migration rate for T. sanguisuga (only in patches 2 and

3) is roughly half that of T. gerstaeckeri, and in patch 2 the population density of T.

sanguisuga is roughly twice that of T. gerstaeckeri. Once the epidemic reaches patch

2, the speed is roughly constant (and lower than in patch 1). As the epidemic moves

into patch 3, the speed increases slightly, remaining fairly constant throughout the
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Figure 4.6. Speed vs. time with results by patch (top) and species (bottom)).

remainder of patch 3. Although T. sanguisuga migrate at a lower rate, we still observe

higher speeds in patch 3 when compared with patch 2 even though the only vector

species in patch 3 is the slower migrating T. sanguisuga. The increase in invasion

speed in patch 3 is due to the higher contact rates between T. sanguisuga and raccoon

in patch 3 versus patch 2. We also note that the higher speeds in patch 2 correlate

to the initial spread of the infection through the raccoon population (Figure 4.6). In

fact, if the model is adjusted to have only one host and one vector, the speed remains

approximately constant throughout the entire region.

In addition to speed, we also study the direction of invasion. We can observe

the change in direction over time, as well as with respect to space (physical location).

As observed in Figure 4.7, the direction trends northward, as the epidemic moves

from patch 1 to 2, then settles to a northeastward direction (as the epidemic moves

through patch 3). We note that there are some directions that do not follow this

trend. These are cases in which the front may be moving in two directions, such

as at the beginning of the epidemic when the infection travels both northeast and
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southeast (to spread to the very southern tip of patch 1) and in the transition from

patch 2 to 3.

Results for direction (and speed) with respect to space can by found by using

a direction field plot. The direction field plot (see Figure 4.8), shaded to indicated

magnitude, confirms the trends seen in Figures 4.6 and 4.7. The speed decreases

in patch 2 (the lighter shaded vectors), with a decrease in speed at the patch 1/2

boundary, and an increase in speed at the patch 2/3 boundary. The direction of

the epidemic in Figure 4.8 reflects those observed in Figure 4.7, showing a northern

trending direction into patch 2 then turning northeast into patch 3. The overall

average direction is 33.13◦ north of due east.
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Figure 4.7. Direction vs. time for component method. Direction is measured in
degree measures counterclockwise from due east with 90◦ representing north.

Because the estimate for migration rate depends solely on the vector dispersal

rate due to maturation, we also consider the effects of the dispersal rate on the invasion

speed. We may consider scaling the dispersal rate m by a factor k, where if k = 1, the
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Figure 4.8. Direction field for no preference of direction (e = 0) (shading indicates
magnitude).

dispersal rate is the current estimated rate used in this study. Based on the dispersal

rates estimated in Chapter 2 (and used here in this study), we can conclude that if

vectors disperse every 1.8 years (for T. gerstackeri) and 3.7 years (for T. sanguisuga

with no preference for direction, the epidemic advances at approximately 6.3 km/yr.

However, if vectors disperse more often than estimated here, we wish to see to what

extent invasion speed increases. In Figure 4.9, we report estimated invasion speeds

as k ranges between 0 and 15. After observing the graph, using power law regression,

we are able to determine that invasion speed increases at k to the 0.44 power.

4.6.1.2 Front method

The front method used to calculate invasion speed is based on the concept

that at any given time, the epidemic can be identified by a front (a set of cells with
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Figure 4.9. Power law regression fit for speed vs. migration rate scaling factor k with
0 < k ≤ 15. The equation for the fit is 6.17k0.44..

characteristics given in section 4.5.2.2). As a reminder, in this method, speed is

calculated by fixing a distance (perpendicular to the linear front) and calculating

the time it takes for the front to “move” the given distance. This can be done by

calculating the line of best fit through the front and a new line parallel to the front

line at the fixed distance away. Cells touching this new line represent the future

front. We determine the speed of the invasion at any given time by dividing the fixed

distance by the average time it takes for the front to reach the new front line.

Results from using the front method are consistent with results from the com-

ponent method (differing by no more than 5%) , but we note that the speed changes

in the front method in a more continuous way, rather than abrupt drops or increases

in speed, as observed in the component method. Figure 4.10 shows the differences in

the speed changes from patch to patch.

We can also observe a graph of the direction of the epidemic (in angle measures)

as a function of time (see Figure 4.11). As expected (and consistent with the compo-
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Figure 4.10. Speed vs. time (comparison of methods).

nent method), the direction of travel begins roughly northeast and as the epidemic

moves toward patch 2, the direction becomes increasingly northward, moving back

toward the northeastern direction. The overall average direction for the front method

is 43.65◦ north of due east.

4.6.2 Role of preferred direction

When vectors have a preferred direction of dispersal, as expected, the dynamics

of the invasion will change depending on the preference for a particular direction (and

strength of preference). In the absence of a preferred direction of vector migration, the

epidemic naturally spreads in the direction of the geographical region, and is fastest

in patch 1 and slowest in patch 2. When vectors migrate with a preferred direction,

these trends may not be the case. In Table 4.8, we report the average speeds and

directions overall and by patch with 8 Moore-neighborhood directions (with e = 0.5)

and no preference for direction in the center. For example, if the preferred direction is
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Figure 4.11. Direction vs. time (both methods represented) with direction represented
as degree measured counterclockwise from due east, with 90◦ representing north.

east, the highest speed occurs in patch 3 (see Table 4.8) primarily due to the preferred

direction of migration alignment with the geography of the region.

When comparing the effects between the different preferences, we observe the

speed is greatest overall if the preferred direction is north to east, and lowest if the

preferred direction is south to west. When compared with no preference for direction,

the overall average speed is increased by over 50% when the preferred direction is east,

while it is decreased by 14% if the preferred direction is west. We note, however, that

even though overall average speed is greatest when the preferred direction is east, it

is important to look at speed changes on a patch by patch basis. As an illustration,

we compare results for changes in speed for preferred directions north and east. If

the preferred direction is north, the patch 2 average speed increases, and decreases

if the preferred direction is east. The patch 3 average speed increases (from the no

preference for direction) in both cases, but with a slightly greater increase if the

preference is east (71% vs. 46% increase).
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Table 4.8. Average speeds (in units km/yr) and directions (in degree measures north
of due east) by patch and overall. When a preferred direction is given, e = 0.5.

Northwest North Northeast

speed direc. speed direc. speed direc.
overall 5.32 17.06◦ overall 8.91 25.13◦ overall 9.03 37.41◦

patch 1 6.56 15.46◦ patch 1 9.18 17.16◦ patch 1 11.41 32.79◦

patch 2 5.44 66.33◦ patch 2 7.18 78.06◦ patch 2 5.34 96.47◦

patch 3 5.11 9.59◦ patch 3 9.15 17.97◦ patch 3 8.89 28.82◦

West No Preference East

speed direc. speed direc. speed direc.
overall 5.41 19.23◦ overall 6.27 40.83◦ overall 9.77 49.13◦

patch 1 5.44 24.84◦ patch 1 8.29 37.25◦ patch 1 9.68 51.07◦

patch 2 4.12 68.31◦ patch 2 4.03 91.62◦ patch 2 3.53 108.19◦

patch 3 5.32 10.78◦ patch 3 6.28 33.39◦ patch 3 10.74 39.63◦

Southwest South Southeast

speed direc. speed direc. speed direc.
overall 3.96 45.23◦ overall 4.51 69.87◦ overall 5.35 67.01◦

patch 1 5.74 39.12◦ patch 1 5.75 53.51◦ patch 1 7.38 58.36◦

patch 2 3.31 93.55◦ patch 2 3.21 108.56◦ patch 2 2.56 111.04◦

patch 3 3.75 38.53◦ patch 3 4.57 66.11◦ patch 3 5.53 61.34◦

The direction of invasion is also affected by vectors migrating with a preferred

direction. Without vector preferred direction, the epidemic naturally spreads north-

ward into patch 2 and in the northeast direction through patch 3. Because of the

natural shape of the regions, the direction of invasion cannot be greatly affected, but

there are specific effects on the direction changes that should be noted. We illus-

trate these effects using the northeast preferred direction. If the preferred direction is

northeast, we would expect the epidemic to essentially be pulled into the northeast-

ern direction via the higher northern and eastward vector migration rates. This can

clearly be observed in patch 1 (see Figure 4.12). In the absence of a preferred direc-

tion, the epidemic naturally will move northward (Figure 4.7 in section 4.6.1), but if

the preferred direction is northeast, the epidemic moves through patch 1 primarily in
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the northeastern direction. However, this effect is not as clear in locations in which

the patch shape and boundaries alter the direction of the invasion. For example, when

the epidemic reaches patch 2, the vectors migrating will move the epidemic northeast

as quickly as the patch geography will allow (along the patch borders). However, this

means that at some point the front will necessarily spread into the remainder of patch

2, and will do so in the northwestern direction, albeit at a much slower speed. This

effect can also be seen in Figure 4.14 by observing the location of the front cells at a

particular moment in time in which the epidemic is being pulled along the patch 2/3

border.
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Figure 4.12. Direction field plot for northeast preferred direction of migration
(e = 0.5). Shading indicates overall higher speeds (when compared with Figure
4.8), and the epidemic is being pulled into the direction of preference (this effect is
most noticeable in patch 1).
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Figure 4.13. Bar graph of average invasion speed vs. degree of preference (eccentric-
ity) with preferred direction northeast.

To capture how the strength of preference increases (or decreases) speed, we

consider degrees of strength of preference for a particular direction. To illustrate the

effects, we consider a northeast preferred direction with 3 increasing strengths of pref-

erence indicated by eccentricity of the dispersal ellipse. As expected, the stronger the

preference, the greater the deviation from the results for no preference for direction.

If the strength of preference is low (e = 0.25), the speed increases by approximately

16%, when compared with no preference for direction, while if the strength of prefer-

ence is high (e = 0.75), the speed increases by over 70%. Table 4.9 summarizes the

results. We also observe the increase in overall speed using a bar graph of speed vs.

strength of preference (Figure 4.13).

4.7 Conclusions

In this study, we develop a spatially explicit model to study the spread of T.

cruzi in sylvatic host and vector populations across a geographical region separated

into patches. We consider the scenario in which a hypothetical strain of T. cruzi
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Figure 4.14. A given front for northeastern preferred direction of migration. Colors
indicate patches. Here the front signals a rapid expansion into patch 3 and a slower
growth into the northwest portion of patch 2..

Table 4.9. Average speed (units km/yr) and direction (degrees north of due east)
overall and by patch for varying levels of eccentricity.

e = 0 e = 0.25 e = 0.50 e = 0.75
speed direc. speed direc. speed direc. speed direc.

all 6.27 40.83◦ all 7.27 38.52◦ all 9.03 37.41◦ all 10.88 34.64◦

1 8.29 37.25◦ 1 9.67 35.26◦ 1 11.41 32.79◦ 1 17.07 28.51◦

2 4.03 91.62◦ 2 4.33 93.76◦ 2 5.34 96.47◦ 2 6.05 94.28◦

3 6.28 33.39◦ 3 7.44 31.63◦ 3 8.89 28.82◦ 3 10.64 26.18◦

is introduced into the southwest part of the region in order to capture speed and

direction of invasion across the region. The infection spreads among populations by

way of migrating Triatoma vectors. We first estimate the vector migration rate by

adapting the framework in Chapter 2 to develop a high resolution grid based model.

Invasion speed in this model is defined using two distinct methods. The component

method determines the orthogonal velocity components cell by cell, from which mag-

nitude and direction can be calculated. The front method constructs a vector by first

119



determining magnitude and direction using a linear regression to approximate the

front.

Results from both methods are consistent, yet each method has its advantages

and disadvantages. The component method calculates invasion speed and direction

for each cell in the grid, therefore is able to capture sudden changes in direction

(and speed). However, because the method uses individual cell information, there

can be significant variability in the results (outliers in speed and direction), in part

due to numerical artifacts of the threshold time estimates. The front method gives

a more holistic perspective by using a group of cells (front cells), as an estimate for

a linear front at each moment in time. Because this method uses groups of cells

rather than individual cells, it gives a more complete description of the direction of

the epidemic. However, by the same token some information, such as when there is a

split front (in two directions), may be missed. To use the front method, it is assumed

that the front is approximately linear, when in reality there may be some nonlinear

fronts. Nonlinear, irregularly shaped fronts occur when a front stretches across a

patch boundary, or when the geometry of the grid changes abruptly. Although there

should be few of these irregular fronts, the method is limited in its ability to capture

only the approximately linear front.

In general, there are specific locations in which the epidemic changes speed (and

direction). The speed in patch 1 is greatest, while the speed in patch 2 is lowest due

to the greater density of slower moving vectors (T. sanguisuga) and lower contact

rates in patch 2. The epidemic naturally spreads northward into (and throughout)

patch 2, and in the northeastern direction in patch 3. We also observe that if the

preferred direction is more in alignment with the natural geography of the regions (as

well as the natural spread of the epidemic given the invasion scenario), the increase

in speed when compared with no preference of direction is greater than the decrease
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in speed if the preferred direction is not aligned with the geography of the region.

These results are consistent with the results in Chapter 2, when there is a greater

change in migration rate if the preferred direction is out of the native patch.

The results in this chapter use vector dispersal and migration rates given in

Chapter 2. These rates are based on estimates for what causes vector dispersal,

which may be higher if vectors disperse more often than assumed in Chapter 2. The

estimate for the dispersal rate is based on the rate at which vectors mature. We also

assume that vectors may disperse for a maximum of 5 weeks. If vectors fly more often

than this (i.e., are more impatient to find food), our estimates for invasion speed are

a lower bound, especially if we also model host dispersal. In this model, we do not

consider hosts to disperse due to the habitat constraints defined by the patches. In

our model, the patch transitions are abrupt, reflected by the sharp changes in results

in speed and direction. To mitigate these sharp changes in results, it may be possible

to blend the patches in a smoother way. On a map, the ecoregion changes are abrupt,

but the real geographic changes may actually be more gradual in some places. To

incorporate gradual changes, the cell parameters defining the patch location would

be blended, rather than change abruptly to be one ecoregion or another.
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CHAPTER 5

CONCLUSION

The parasite Trypanosoma cruzi infects over 100 mammalian species in the

United States, is transmitted via insect vectors from the Triatoma species, and is

responsible for causing Chagas’ disease. In the United States, Chagas’ disease is

named a Neglected Parasitic Infection. Although the disease is well-known in South

America and Mexico, relatively little attention has been given to Chagas’ disease

in humans in the United States, much less in sylvatic settings. Although human

infection with the disease is of major concern, there have been few human cases of

Chagas’ in the U.S. However, the disease remains endemic in sylvatic settings. There

are several distinct transmission cycles, and in this study we consider the major cycles

in the southeastern portion of the U.S. ranging to the very northern part of Mexico.

Communication between the cycles occurs via the movement or migration of the insect

vectors. There have been only a handful of studies regarding migration of T. cruzi

vectors in South America, and even fewer on North American vectors. The majority of

studies have been experimental field studies designed to obtain vector flight distance

capabilities. Because of the limited amount of biological data, mathematical models

provide an invaluable tool to the study of the effects of migration on prevalence of T.

cruzi.

In order to examine the effects of migration of Triatoma vectors on T. cruzi

transmission in sylvatic settings, we first develop a framework designed to calculate

vector migration rates if certain local dispersal parameters are known. The frame-

work developed in Chapter 1 is unique in the sense that it uses local small-scale
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dispersal information to derive migration rates over a large scale geographic region.

This framework also converts spatially continuous data to data that can be used in

spatially discrete models. To study the effects of migration on T. cruzi transmission,

we create a deterministic system of ODEs that describes T. cruzi transmission in

specific sylvatic settings. This model is an SI compartmental model with 3 patches

represented by distinct transmission cycles (overlapping in the second patch). The

patches are connected via migration of infected and uninfected Triatoma vectors.

The model is analyzed using standard threshold analysis techniques for epidemiolog-

ical compartmental models. Numerical results (using the migration rate estimates

derived in Chapter 1 and demographics and infection parameter estimates) are ob-

tained to see effects of migration on prevalence of T. cruzi over time in each of the

patches. Much insight can be gained from this model, but because of the importance

of the spatial aspect of T. cruzi spread, we also develop a cellular automoton model

to study the spatial (and temporal) dynamics of sylvatic T. cruzi transmission, from

which results such as invasion speed of the epidemic can be investigated.

Each of the chapters contained in this study is a work toward the goal of un-

derstanding the dynamics of the spread of T. cruzi via the migration of Triatoma

insect vectors. One of the first goals is to appropriately define the regions and de-

velop a framework that can be used to estimate migration rates. Vectors may migrate

for various reasons and have certain flying distance capabilities. The framework in

Chapter 1 takes into account reasons for vector dispersal, flying distance capabilities,

preferred direction of dispersal (if any), and strength of preference. This framework

is unique in its ability to take small-scale dispersal information that can be used in

models with a more global perspective in population epidemiology and ecology.

The compartmental model in Chapter 2 models the dynamics of T. cruzi in-

fection in 3 patches represented by 3 host-vector transmission cycles connected via
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migration of vectors. In 2 of the patches, there is one host and one vector species, with

an overlap patch in between them containing both hosts and both vector species. The

goal of this model is to determine to what extent migration affects the prevalence of

T. cruzi. In general, the model compares patch-wise prevalence levels in the absence

of migration vs. vector migration connecting the cycles. Overall results indicate that

the patch 2 dynamics are sensitive to increases in migration rate, and the dynamics

in the patch are driven primarily by the T. sanguisuga vector population. Because

the model is not spatially explicit, it is unable to capture the spread of sylvatic T.

cruzi transmission across the actual geographic regions defined in Chapter 1.

The model in Chapter 3 is a spatially explicit, high resolution cellular automa-

ton. Each cell in the automaton represents a specific host-vector transmission cycle

according to its geographic location (patch) defined in Chapter 1 and contains a

system of ODEs (specified by patch) based on the Chapter 2 model with migration

serving as a link between the cells. Due to the large size of the dynamical system,

this model is only analyzed numerically. One of the primary goals of this model is

to develop a method to measure invasion speed. Two unique methods for calculating

invasion speed are presented, each of which is able to capture speed and direction of

the epidemic over time.

Results indicate that migration lowers R0 overall (with a decrease in prevalence

in patches 1 and 3), yet prevalence increases in the overlap patch. We recall that

patch 2 has 2 hosts, and is gaining vectors from a region (patch 3) with a higher T.

cruzi prevalence. Although patch 2 prevalence increases, results from the spatially

explicit model indicate that the epidemic wave front travels slowest in this patch.

Future work should focus on complex regions like patch 2, as well as regions in which

the T. cruzi prevalence is lower, yet connected to regions with higher prevalence, as

migration is likely to increase prevalence in regions of lower prevalence.
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Although the cellular automaton model is spatially explicit, it is also continuous

in time, and is based on the model presented in Chapter 2. The model is able

to capture prevalence (by patch) over time. In order to compare the results from

Chapter 2 and 3, we consider the invasion scenario hypothesized in Chapter 3 in

which the infection is introduced into patch 1. If we consider this same scenario in

the Chapter 2 model, we are able to compare to what extent the higher resolution

spatial component of Chapter 3 enhances or changes the results. Some of the obvious

differences in the models are the times it takes for the epidemic phase to begin in each

of the models. Because the cellular automaton is spatially explicit, the time it takes

for the epidemic to spread from one cell to another can be seen, whereas in the 3-cell

automaton (Chapter 2 model), time progression of the epidemic within a given patch

is not depicted. Thus, in general, the times in the cellular automaton model will be

longer. As seen in Figures 5.1 and Figures 5.2, the epidemic takes longer to arrive in

patch 3 as expected, but the Chapter 2 model predicts the growth phase in patch 3 to

be much shorter than in the high resolution model. Using the 3-piece linear regression

method described in Chapter 3, we can compare the durations of the growth phases

for each model (see Table 5.1). One major difference in results from the two models

is that the growth phase for patch 3 in the Chapter 2 model is shorter (by a factor of

.28) than the patch 2 growth phase, while in the Chapter 3 model, the patch 3 growth

phase is longer (by a factor of 2.8) than the patch 2 growth phase. This difference in

result is due to the increased spatial resolution in patch 3 depicting the large size of

the patch. When comparing the prevalence graphs over time for each patch, we can

view in Figure 5.3 the progressions of each prevalence in each patch over time. We

see that in the Chapter 2 model graphs (dashed lines), the epidemic arrives in each

patch very close to the same time, whereas the Chapter 3 model depicts the natural

(more realistic) spatial spread through the region. When viewed on the same time
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Table 5.1. Epidemic growth phases for Chapter 2 and Chapter 3 models. Units are
in years.

Epidemic Growth Phase

start time duration

patch 1
Chapter 2 6 11
Chapter 3 15 42

patch 2
Chapter 2 24 42
Chapter 3 74 101

patch 3
Chapter 2 38 12
Chapter 3 143 287

scale, the different shapes of the graphs can also be observed. It can be seen that the

prevalence vs. time graph in patch 3 from the Chapter 3 model is not sigmoid shaped

like the others. This suggests a slower initial rate of increase in prevalence in patch

3 when compared with the other model, which predicts a faster rate of increasing

prevalence in patch 3 (compared with the other 2 patches).
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Figure 5.1. Comparison of prevalence vs. time by patch for 3-cell model in Chapter
2.
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Figure 5.2. Comparison of prevalence vs. time by patch for cellular automaton model
in Chapter 3.
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Figure 5.3. Comparison of prevalence vs. time results in Chapter 2 and 3. Results
are presented by patch..

Each model (and method) presented here plays an important role in the goal of

identifying and understanding effects of vector migration on T. cruzi sylvatic trans-

mission. Sylvatic T. cruzi transmission is complex due to the different host-vector
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cycles and the modes by which the infection is spread and possible infection with

other strain types (in the same population). This model focuses solely on infection

with one strain, yet both strain types are known to circulate in the United States (in

other hosts not studied here). Further work may consider multiple strain types as

well as other host-vector transmission cycles carrying other strain types of T. cruzi.

We also remark that the cellular automaton model presented here has only been an-

alyzed numerically. Further work may be to develop a system of integro-difference

equations to model the dispersal, which can be analyzed analytically to determine an

expression for invasion speed (to be compared with our results). We also note that

there is a limited amount of biological (experimental) data regarding vector disper-

sal rates. Due to this limited information, in this study, the vector dispersal rate is

estimated solely based upon vector life cycle information (maturation rate). Vectors

may disperse for reasons other than maturation, such as when the current host dies

or fails to return to the nest, yet we do not have any data to estimate this dispersal

rate. There is a need for further research that develops a more accurate measure of

the rate at which vectors disperse to find a new host.
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APPENDIX A

ERROR CORRECTIONS FOR MIGRATION RATE CALCLATION
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The method developed in this chapter generates some error near the regions

where the patch boundary segments intersect. In this appendix, we will define the

types of errors generated and calculate the adjusted migration rates.

A.1 Sources of errors

Each boundary segment intersection point can be described in terms of concave

and convex corners. The errors generated at each corner can be described in terms

of dispersals that are either an “overcount” (including dispersals that should not

be counted by the approximation) or an “undercount”(failing to include dispersals

that should be counted by the approximation). Recall that each boundary segment,

j (numbered clockwise), has its own coordinate system with dispersals originating

from each point (xj, yj). The method described in this chapter integrates dispersals

over a certain proportion of an ellipse at each point in the jth coordinate system.

Error is generated at corners where boundary segments intersect in which there is a

changeover in coordinate systems between the jth and (j+1)st boundary segments as

seen in Figure A.1. If the corner is convex, there will be a region with points in both

coordinate systems, while for a concave corner, there will be a region in which points

are not in either system. For each corner, there will be different regions in which the

approximation overcounts or undercounts the dispersals made from each point in the

region.

For each convex corner, there are 3 sources of error: 2 regions generating an

undercount with a region generating a double count between them as seen in Figure

A.1. If we consider the jth and (j + 1)st boundary segments, there is an undercount

generated on the right by points in the jth coordinate system (see Figure A.1, error

type 1). For this type of error, dispersals are only being counted as crossing the jth

boundary segment, but in fact some dispersals originating in the jth coordinate system
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cross the (j + 1)st boundary segment, but are not being accounted for. A similar

error undercount is generated on the left at points only in the (j + 1)st coordinate

system (Figure A.1, error type 3), in which some dispersals originating in the (j+1)st

coordinate system cross the jth boundary segment, but are not counted. Because

the coordinate systems intersect at a convex corner, there is also an overcount at

points which are on both coordinate systems (the region between the intersection

of the inward normals of the boundary segments) (Figure A.1, error type 2). Some

dispersals originating in the region of intersection of the jth and (j + 1)st coordinate

systems cross both the jth and (j+1)st patch boundaries and thus are counted twice,

once for each coordinate system.

At a concave corner, there are also 3 sources of error: 2 regions generating an

overcount with a region that remains uncounted between them. If we again consider

the corner to be the intersection of segments j and j+1, there is an overcount on the

right at points on the jth coordinate system (Figure A.1, error type 1̄). For this type

of error, some dispersals originating in the jth coordinate system are being counted as

crossing the jth boundary segment, but in fact actually cross the extension of segment

j to the right of the intersection point, but do not cross the patch boundary. This

generates an overcount of dispersals that end up above the jth boundary segment,

but below the (j +1)st segment. Similarly, there is an overcount on the left at points

on the (j + 1)st coordinate system (Figure A.1, error type 3̄), in which dispersals are

counted as crossing the (j+1)st segment, but actually cross an extension of the (j+1)st

segment. Because of the nature of the concave corner, there is a region not a part of

either coordinate system (the region between the intersection of the inward normals

of the boundary segments) (Figure A.1, error type 2̄), so no dispersals originating

from within this region are counted as crossing either patch boundary segment. A

visual depiction of these types of errors is given in Figure A.1.
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Figure A.1. Errors generated at a concave corner (left) and a convex corner (right).

In either case, we will define the total error of dispersals at the corner of the

jth and (j + 1)st boundary segments to be the sum of the 3 types of errors using the

notation ǫj = ǫj1+ ǫj2+ ǫj3 if the corner is convex, and ǭj = ǭj1+ ǭj2+ ǭj3 if the corner

is concave. In the remaining sections we will develop expressions for of error at each

type of corner.

A.2 Error analysis at convex corner

Consider a convex corner created by the jth and (j + 1)st linear boundary

segments. In this section, we will focus our attention only on error types 2 and 3

(since type 1 is symmetric to type 3).
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A.2.1 Global error boundaries for a convex corner

At each corner, there are certain regions in which the error of a given type is

generated. As stated previously, for a convex corner, there are two regions of un-

dercount with a double count region between them. For each convex corner, there

are 3 regions in which originating dispersals may either not be counted when they

should be or may be counted twice (when they should only be counted once). The

regions (seen in Figure A.2) are comprised of an elliptical curve (an ellipse with one

focus at the corner and orientation directly opposite of θ0) and two linear segments

tangent to the elliptical curve defined as the lines y(j+1) = −rmaxj+1
and yj = −rmaxj

.

Ellipses with focus on either of the two linear segments will be tangent to the respec-

tive patch boundary segment. An ellipse with focus on the elliptical curve between

the two linear segments will pass through the corner with a tangent to an alternate

line whose slope is between those of the two patch boundaries. We define the region

bounded by the patch boundaries and the elliptical curve as U0, the region bounded

by the left boundary segment, the elliptical curve, and the line segment parallel to

the right boundary segment as U1 and the region bounded by the right segment, the

elliptical curve, and the line segment parallel to the left boundary segment as U2.

We also define 2 relevant points, P1 = (xP1, yP1) and P2 = (xP2, yP2), as the points

of tangency of the elliptical curve and each of the two linear segments defined previ-

ously. The ellipse with focus at either of these coordinates represents an ellipse that

is tangent to the corresponding patch boundary at the corner(i.e., an ellipse that has

focus at P1 will be −rmaxj
distance from patch boundary j). An ellipse with focus in

U0 includes the corner in its interior and crosses both boundary segments. An ellipse

with focus in U1 will cross the jth boundary segment and also the extension of the

(j+1)st boundary segment outside of the patch. An ellipse with focus in U2 will cross

the (j + 1)st boundary segment as well as the extension of the jth boundary segment
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Figure A.2. Convex error regions.

outside of the patch. The type of error varies on where the point falls with respect

to the 2 segments coordinate systems.

We also name 3 other regions defined by the inward normals of the boundary

segments, V1, V2, and V3 (seen in Figure A.2). V1 is the region between the left

boundary segment and the inward normal of the right segment, V3 is the region

between the right boundary segment and the inward normal of the left segment, and

V2 is the region between the inward normals of the 2 boundary segments. Undercounts

are generated from some dispersals originating in region V1 and V3, and double counts

are generated from some dispersals originating in region V2. Dispersals from a given

point are counted incorrectly by the method described in section 2.4.1, when the

corresponding ellipse crosses the opposite segment on the opposite side of the corner.

Error is also generated when the point of origin falls into either two consecutive

segments’ regions of integration (for a convex corner) or no regions of integration (for

a concave corner). The global error regions are summarized in Table A.1.
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Table A.1. Global error regions for convex corner

Type of error Error regions
1 (Left undercount) W1 = V1

⋂

[U0

⋃

U2]
2 (Double count) W2 = V2

⋂

[U0

⋃

U1

⋃

U2]
3 (Right undercount) W3 = V3

⋂

[U0

⋃

U1]

A.2.2 Error definition for error type 3

The regions given in Table A.1 can be used to determine the global x, y integral

bounds for each type of error generated. An ellipse with focus in U0 crosses both

boundary segments, but are only counted as crossing the (j + 1)st segment, failing to

count the dispersals that cross the jth segment. Dispersals originating in U1 pass to

the left of the corner and are not counted as crossing the jth boundary segment, when

in fact they should be. To define error type 3, we use the (j + 1)st coordinate system.

For a given y(j+1), we define the x(j+1) which generates minimal undercount error on

the right to be x(j+1),c, the focus of the ellipse passing through the point where the

boundary segments intersect, and thus the right boundary of U0, while x(j+1),b lies on

the inward normal of the jth boundary segment (i.e., the boundary between V2 and

V3), and is the focus of the ellipse generating maximum undercount error (see Figure

A.3). Then,

x(j+1),b = y(j+1) tan ζj, (A.1)

for ζj defined to be the angle turn from the (j +1)st to the jth boundary segments in

the clockwise direction, i.e., the angle between the inward normals of the boundary

segments.

We also determine

x(j+1),c = y(j+1) tan(θ2,(j+1) − π/2) = −y(j+1) cot(θ2,(j+1)), (A.2)
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where θ2,(j+1) is the maximum angle at which the ellipse with focus at (x(j+1), y(j+1))

intersects boundary segment (j+1) for any x(j+1)(≥ x(j+1),b), as shown in Figure A.3.

We note here that θ2,(j+1) is a function of y(j+1), but from this point forward will not

explicitly express this dependence to avoid confusing notation. The functions x(j+1),b

and x(j+1),c are the left and right boundaries of W3.

Based on the region W3, we define ylow,3 as −rmaxj+1
if P2 ∈ V3 or y(j+1) :

x(j+1),b = x(j+1),c if P2 ∈ V1

⋃

V2.

Figure A.3. Error of type 3 (undercount) generated at a convex corner.
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For x(j+1), y(j+1) ∈ W3, we define Ej3(x(j+1), y(j+1)) as the error generated by

undercount of vectors originating at (x(j+1), y(j+1)) in the (j + 1)st coordinate system

and crossing the jth boundary segment. The relevant region, Zj3(x(j+1), y(j+1)) (see

Figure A.3), is the region into which vectors dispersing from (x(j+1), y(j+1)) are not

counted as crossing the jth patch boundary, when in fact they should be.

To describe Zj3 in terms of the local (polar) coordinate system, we introduce

several new quantities and equations. We define γ1 and γ2 as the angles at which the

ellipse intersects opposite boundary segment, while θ1 and θ2 are previously defined as

the angles at which the ellipse intersects boundary segment for the native coordinate

system. Derivations for the expressions for θ1 and θ2 are given in section 2.4.1. The

expressions for γ1 and γ2 can be derived similarly. In this calculation, these angles

are functions of yj+1, but we will not explicitly write this dependence. For a given

(xj+1, yj+1), we also consider the angles defined by the intersection of the boundary

segments using right triangle trigonometry, βj+1 = π − arctan
(

−y(j+1)/x(j+1)

)

. Fi-

nally, we define the two relevant boundary segments, r = Fj(θ) and r = Fj+1(θ)

in polar coordinates as lines passing through the pole. Depending on the eccen-

tricity and turn angle between segments, the ellipse may generate error without

actually containing the corner (cf., Figures A.4 and A.5). Thus, we define Zj3 as

Zj3 = {(r, θ)|{Fj < r < min{Fj+1, rn}}, {max{β(j+1), γ1} < θ < γ2}}.

Then

Ej3(x(j+1), y(j+1)) =

∫∫

Zj3

Ψ(r, θ) r dr dθ,

and the total undercount of this sort at this corner is

ǫj3 =

∫∫

W3

Ej3(x(j+1), y(j+1))dx(j+1)dy(j+1).
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Figure A.4. Error type 3 (ellipse contains
corner), point of origin in U0. Figure A.5. Error type 3 (ellipse does not

contain corner),point of origin in U2.

The error definition for type 1 is similar to type 3, but uses the jth coordinate

system.

A.2.3 Error definition for type 2

At this point we also consider the region in which some dispersals originating in

both coordinate systems are counted twice, once for each coordinate system. Because

the origin of these dispersals is in both coordinate systems, we arbitrarily choose to

use the (j + 1)st coordinate system to define the error. An ellipse with focus in W2 lies

in the intersection region of the coordinate systems, V2, and crosses both boundary

segments, thus will lie in either U0, U1, or U2. Dispersals in U0 contain the corner, and

cross both segments (as well as the extensions of each segment), thus dispersals are

counted as crossing the extensions of each segment, when they should not be counted.

An ellipse in U1 will cross the (j + 1)st segment and the extension of the jth segment

to the right of the corner. The dispersals that cross the extension of the jth boundary

are counted twice. In a similar manner, dispersals originating in U2 that cross the

extension of the (j + 1)st segment are counted twice.
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To determine the global bounds, we first define the line yj = −rmaxj
in the

(j + 1)st coordinate system as x(j+1),d = xP1+(y(j+1)−yP1) cot ζ1. Then (x(j+1), y(j+1)) ∈

W2 corresponds to the global integral bounds x(j+1) ∈ [0, xright,2], where

xright,2 =











min x(j+1),b, x(j+1),d, yP1 < y(j+1) < 0

x(j+1),c, −rmaxj+1
≤ y(j+1) < yP1

, (A.3)

and y(j+1) ∈ [ylow,2, 0], where

ylow,2 =























−rmaxj+1
, xP2 > 0

y(j+1) : x(j+1),c = 0, xP2 < 0, xP1 > 0

y(j+1) : x(j+1),d = 0, xP1 < 0

(A.4)

For (x(j+1), y(j+1)) ∈ W2, we define Ej2(x(j+1), y(j+1)) as the error generated

by overcount (double count) of vectors originating at x(j+1), y(j+1) in the (j + 1)st

coordinate system and crossing both boundary segments. The relevant region, Zj2 =

{(r, θ)|{max{Fj, Fj +1} < r < rn}, {max{γ1, θ1} < θ < min{γ2, θ2}} (seen in Figures

A.7, A.8, and A.9) is the region into which vectors dispersing from (x(j+1), y(j+1)) are

counted twice.

Then,

Ej2(x(j+1), y(j+1)) =

∫∫

Zj2

Ψ(r, θ) r dr dθ.

We define the double count error to be

ǫj2 =

∫∫

W2

Ej2(x(j+1), y(j+1))dx(j+1)dy(j+1).

A.3 Error generated at concave corner

A.3.1 Global bounds for concave corner

For a concave corner, there are 6 regions in which originating dispersals may

generate error. The regions are determined by the same elliptical curve and 2 linear
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Figure A.6. Error of type 2 (double count) generated at a convex corner.

Figure A.7. Error type 2 (ellipse does
contain corner), point of origin in U1 . Figure A.8. Error type 2 (ellipse does not

contain corner), point of origin in U2.
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Figure A.9. Error type 2 (ellipse contains corner), point of origin in U0.

segments as described in section A.2.1, but we note the presence of 3 relevant regions

lying below the regions described in section A.2.1, in which originating dispersals

may still generate error. We also name 3 additional regions defined by the inward

normals of the boundary segments. Because of the nature of a concave corner, V̄1 =

{(x, y)|{0 < x < lj}, {yj < 0}}, V̄3 = {(x, y)|{0 < x(j+1) < l(j+1)}, {y(j+1) < 0}},

and V̄2 is the region lying between the inward normals of the 2 coordinate systems

(i.e. the region not in either coordinate system). A visual depiction of these named

regions is given in Figure A.10 and a summary is given in Table A.2.

An ellipse with focus in U0 will contain the corner, and thus crosses both bound-

ary segments. An ellipse with focus in U1 will cross the j
th boundary segment an the

extension of the (j + 1)st segment inside of the patch. Ellipses generated in U3 do

not contain the corner, and cross extensions of the boundary segments inside the the

patch, but do not cross patch boundaries. An ellipse with focus in U4 will cross the

extension of boundary segment (j + 1)st to the left of the corner, and will not cross

segment j. Then, an ellipse with focus in U5 will cross the extension of boundary

segment j to the right of the corner, and will not cross segment j + 1. Some disper-

sals in V̄1 will generate overcounts on the left, and some dispersals in V̄3 will generate
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Table A.2. Global error regions for concave corner

Type of error Error regions
1̄ (Left overcount) W̄1 = V̄1

⋂

[U0

⋃

U2

⋃

U3

⋃

U5]
2̄ (No count) W̄2 = V̄2

⋂

[U0

⋃

U1

⋃

U2]
3̄ (Right overcount) W̄3 = V̄3

⋂

[U0

⋃

U1

⋃

U3

⋃

U4]

overcounts on the right. Finally, no dispersals in V̄2 are counted when some of them

(coinciding with the appropriate Ui regions) should be.

Figure A.10. Concave error regions.

A.3.2 Error definition for type 3̄

To define error type 3̄, the overcount of dispersals on the right, we use coordinate

system (j + 1). An overcount is generated on the right by an ellipse in W1. Some

dispersals in V̄3 will generate an overcount of vectors on the right. Because dispersals

originating in U0 contain the corner, crossing both boundary segments, dispersals

are counted as crossing the extension of the j + 1st segment, when they should not

be counted. The method integrates over the part of the ellipse above the j + 1st
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segment, but should actually be counted as crossing the jth segment. Ellipses with

focus in U1 (generating error) will pass to the left of the corner and cross the jth

boundary segment. The method integrates over the part of the ellipse above the

extension of segment (j + 1), rather than the part of the ellipse over segment j.

Dispersals originating in U3 that generate error are counted as crossing the extension

of the j + 1st segment, when they should not be. Ellipses with focus in U4 cross the

extension of boundary segment j+1 to the left of the corner, and with regard to type

3̄, these dispersals are counted when in fact they should not be. For a given y(j+1), we

define the x(j+1) which generates minimal overcount on the right as x̄(j+1),b given by

the right half of the ellipse separating U0 from U2, which can be written using right

triangle trigonometry (c.f. Figure A.11) as

x̄(j+1),b = y(j+1) tan(θ2,(j+1) − π/2) = −y(j+1) cot(θ2,(j+1)), (A.5)

where θ2,(j+1) is the maximum angle at which the ellipse with focus at (x(j+1), y(j+1))

intersects boundary segment (j + 1) for any x(j+1)(≥ x(j+1),b), as shown in Figure

A.11. We also observe the focus of the ellipse generating maximum overcount (for

fixed y(j+1)) error to be on the inward normal of the (j + 1)st coordinate system, at

x̄(j+1),a = 0, separating V̄2 from V̄3. We note θ2,(j+1) and x̄(j+1),b dependance on y(j+1)

will be left implicit from this point forward.

Given (x(j+1), y(j+1)) ∈ W̄3, error is generated for 0 ≤ x(j+1) ≤ x̄(j+1),b and

y(j+1) ∈ [ȳlow,3, 0], where ȳlow,3 is −rmaxj+1
if P2 ∈ V̄3 or y(j+1) : x̄(j+1),b = 0 if

P2 ∈ V̄1 or V̄2.

ȳlow,3 =











−rmax, P2 ∈ V̄2

x(j+1),c = 0, P2 ∈ V̄3

(A.6)

143



Figure A.11. Error of type 3 (overcount) generated at a concave corner.

For, (x(j+1), y(j+1)) ∈ W̄3, we define Ēj3(x(j+1), y(j+1)) as the overcount error

of vectors dispersing from (x(j+1), y(j+1)) into a corresponding region Z̄j3 (see Figure

A.11), where

Z̄j3 = {(r, θ)|Fj+1 < r < min{Fj, rn},max{βj+1, θ1} < θ < θ2}, so

Ēj3(x(j+1), y(j+1)) =

∫∫

Z̄j3

Ψ(r, θ) r dr dθ.

Then the total error generated by overcount of vectors originating in the (j+1)st

coordinate system and failing to cross the jth boundary segment is

ǭj3 =

∫∫

W̄3

Ēj3(x(j+1), y(j+1))dx(j+1)dy(j+1).
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The error definition for type 1̄ is similar to type 3̄, but uses the jth coordinate

system.

A.3.3 Error definition for type 2̄

We now focus on the error generated by vectors dispersing from within the

region not contained in either coordinate system. In order to describe (and calculate)

this error, we may appropriately extend either coordinate system into the designated

region between coordinate systems. We will use the (j + 1)st system. Error type 2̄

occurs because some dispersals in region V̄2 (not part of either coordinate system).

Dispersals in U0 cross both patch boundaries, and are not counted by the method

when they should be. Dispersals originating in U1 cross patch boundary j, and are

not counted by the method, when they should be. In a similar manner, dispersals in

U2 are not counted, but cross segment j + 1, and should be counted.

Given (x(j+1), y(j+1)) ∈ W̄2, then y(j+1) ∈
[

ȳlow,2, y(j+1),b

]

, where

ȳleft,2 =























y(j+1),a, x(j+1) < xP1

g(x(j+1)), xP1 < x(j+1) < xP2

−rmaxj+1
, x(j+1) > xP2

, (A.7)

where g(x) represents the Cartesian equation for the lower branch of the elliptical

curve with focus at corner (i.e., the origin) with opposite orientation as θ0 and x(j+1) ∈

[x̄left,2, 0] , where x̄left,2 is the x-value for which ȳlow,2 = ȳ(j+1),a.

So, for a given (x(j+1), y(j+1)) ∈ W̄2, we define Ēj2(x(j+1), y(j+1)) as the er-

ror generated by failing to count dispersals originating in W̄2 dispersing into Z̄j2 =

{(r, θ)|max{Fj, Fj+1} < r < rn,max{θ1, γ1} < θ < min{θ2, γ2}}.
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Figure A.12. Error of type 2̄ (no count) generated at a concave corner.

Then,

Ēj2(x(j+1), y(j+1)) =

∫∫

Z̄j2

Ψ(r, θ) r dr dθ.
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APPENDIX B

R0 AND ENDEMIC PREVALENCE CALCULATIONS
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B.1 Patch 2 with p = 0 and no migration

We determine the reproductive number, R0, for section 3.3.2, patch 2 with no

vertical transmission or migration, using the next generation matrix method [85].

Based on the next generation matrix method, we rewrite system (3.4), dX
dt

=

f(X) in terms of two vectors: dX
dt

= F0−V0. F0 represents the terms generating new

infections, while V0 consists of the remaining terms. After computing the derivatives

of F0 and V0, we obtain

F0 =



















0 qSβR
N∗

S2

N∗

R2

0 (1− qS)βWS
N∗

S2

N∗

W2

βS2 0 0 0

0 0 0 βW2
N∗

G2

N∗

W2

qWβSW 0 (1− qW )βG 0



















and

V0 =



















µS 0 0 0

0 µR 0 0

0 0 µG 0

0 0 0 µW



















.

The dominant eigenvalue of F0V
−1
0 is

R0 =

√

1

2

(

P +
√

P 2 − 4Q
)

,

where

P = f1 + f2 + f3, Q = f1f3,

f1 =
(1− qW )βGβW2

µGµW

N∗
G2

N∗
W2

, f2 =
qWβSW (1− qS)βWS

µSµW

N∗
S2

N∗
W2

, f3 =
qSβRβS2

µRµS

N∗
S2

N∗
R2

.

(B.1)
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It remains to be shown that
√

P 2 − 4Q is real. Thus, we must show that

P 2 − 4Q > 0, as follows:

P 2 − 4Q = (f1 + f2 + f3)
2 − 4f1f3

= f 2
1 + f 2

2 + f 2
3 + 2f1f2 + 2f2f3 + 2f1f3 − 4f1f3

= f 2
1 − 2f1f3 + f 2

3 + 2(f1f2 + f2f3) + f 2
2

= (f1 − f3)
2 + 2(f1f2 + f2f3) + f 2

2 > 0.

To determine the existence of endemic equilibria, we determine the equilibrium

conditions to be

(qSβRx
∗
R2 + (1− qS)βWSx

∗
W2)(1− x∗

S2)N
∗
S2 − µSx

∗
S2N

∗
S2 = 0,

βS2x
∗
S2N

∗
S2(1− x∗

R2)− µRx
∗
R2N

∗
R2 = 0,

βW2x
∗
W2(1− x∗

G2)N
∗
G2 − µGx

∗
G2N

∗
G2 = 0,

((1− qW )βGx
∗
G2N

∗
G2 + qWβSWx∗

S2N
∗
S2)(1− x∗

W2)− µWx∗
W2N

∗
W2 = 0,

(B.2)

where x∗
S2 =

I∗S2

N∗

S2

, x∗
R2 =

I∗R2

N∗

R2

, x∗
G2 =

I∗G2

N∗

G2

, and x∗
W2 =

I∗W2

N∗

W2

.

To simplify, we divide the 1st and 3rd equations by the nonzero values N∗
S2

and N∗
G2 respectively and make the substitutions, β̃G = (1 − qW )βG

N∗

G2

N∗

W2

, β̃SW =

qWβSW
N∗

S2

N∗

W2

, and β̃S2 = βS2
N∗

S2

N∗

R2

.

We solve the 2nd and 3rd equations for x∗
R2 and x∗

G2:

x∗
R2 =

β̃S2x
∗
S2

β̃S2x∗
S2 + µR

and x∗
G2 =

βW2x
∗
W2

βW2x∗
W2 + µG

We then solve the 1st equation in order to isolate x∗
W2. We obtain

(βRx
∗
R2 + (1− qS)βWSx

∗
W2)(1− x∗

S2)− µSx
∗
S2 = 0.

Substituting the result for x∗
R2 from above, we obtain

[

qSβR

(

β̃S2x
∗
S2

β̃S2x∗
S2 + µR

)

+ (1− qS)βWSx
∗
W2

]

(1− x∗
S2)− µSx

∗
S2 = 0.
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Multiplying through on both sides by the denominator and combining like terms

results in

−(qSβRβ̃S2 + β̃S2µS)(x
∗
S2)

2 − (1− qS)βWSβ̃S2x
∗
W2(x

∗
S2)

2 + ((1− qS)βWSβ̃S2

− (1− qS)βWSµR)x
∗
W2x

∗
S2

+ ((1− qS)βRβ̃S2 − µSµR)x
∗
S2 + (1− qS)βWSµRx

∗
W2 = 0

(B.3)

We then divide everything by µR and µS to obtain,

−
(

qSβRβ̃S2

µRµS

+
β̃S2

µR

)

(x∗
S2)

2 +

(

qSβRβ̃S2

µRµS

− 1

)

x∗
S2 −

(

(1− qS)βWSβ̃S2

µRµS

(x2
S2)

)

x∗
W2

− x∗
W2

(

(1− qS)βWSβ̃S2

µRµS

− (1− qS)βWS

µS

)

x∗
S2 −

(

(1− qS)βWS

µS

)

x∗
W2 = 0.

(B.4)

To simplify, we make the substitutions A = qSβR

µS
, B = β̃S2

µR
, and C = (1−qS)βWS

µS
and

solve for x∗
W2 to obtain

x∗
W2 =

x∗
S2

[

(A+ 1)x∗
S2 − A+ 1

B

]

C(1− x∗
S2)
(

x∗
S2 +

1
B

) . (B.5)

We finally solve the 4th equation; substituting x∗
G2, we obtain

[

β̃G

(

βW2x
∗
W2

βW2x∗
W2 + µG

)

+ β̃SWx∗
S2

]

(1− x∗
W2)− µWx∗

W2 = 0.

Multiplying through by the denominator on both sides, we obtain

−(β̃GβW2 + βWµW )(x∗
W2)

2 − β̃SWβW2x
∗
S2(x

∗
W2)

2 + (β̃SWβW2 − β̃SWµG)x
∗
S2x

∗
W2

+ (β̃GβW2 − µGµW )x∗
W2 − β̃SWµGx

∗
S2 = 0,

and dividing all terms by µW and µG to get
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−
(

β̃GβW2

µGµW

+
βW2

µG

)

(x∗
W2)

2 +

(

β̃GβW2

µGµW

− 1

)

x∗
W2

−
(

β̃SWβW2

µGµW

(x∗
W2)

2 −
(

β̃SWβW2

µGµW

− β̃SW

µW

)

x∗
W2 −

β̃SW

µW

)

x∗
S2 = 0

(B.6)

We make the substitutions D = β̃SW

µW
, E = βW

µG
, and F = β̃G

µW
and rewrite the

previous equation as

(1− x∗
W2)

(

x∗
W2 +

1

E

)

x∗
S2 =

1

D
x∗
W2

[

(F + 1)x∗
W2 − F +

1

E

]

.

We can now determine a polynomial in x∗
S2, say φ(x∗

S2). The resulting polynomial is

of 4th degree, once the disease free equilibrium has been divided out, with constant

term φ(0) = C(P −Q− 1), with P,Q as defined in (3.5), which is positive for R0 > 1

by the following result

R2
0 > 1

1

2

[

P +
√

P 2 − 4Q
]

> 1

√

P 2 − 4Q > 2− P

P 2 − 4Q > 4− 4P + P 2

P −Q > 1

Therefore, since
√

P 2 − 4Q is real, we have R0 > 1 ⇔ P − Q > 1. Furthermore, it

is observed that φ(1) < 0 which implies that φ(x∗
S2) crosses the x-axis 1 or 3 times

between 0 and 1. By inspection of the form of x∗
R2 and x∗

G2, we see that x
∗
R2 is in (0,1)

if x∗
S2 is in (0,1) and x∗

G2 is in (0,1) if x∗
W2 is. Alternatively, we can use the equations

(B.4) and (B.6) to obtain a polynomial in x∗
W2 and apply the same technique. Thus,

there are either 1 or 3 endemic equilibria for this system when R0 > 1. Thus, if

(x∗
S2, x

∗
W2) ∈ [0, 1]× [0, 1], then the remaining values, x∗

R2 and x∗
G2 are also in [0, 1].
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B.2 Patches 1 and 2, 1 host 1 vector, with VT, unidirectional migration of infected

vectors

To determine the basic reproductive number for section 3.3.3, we apply the next

generation matrix method [85] to (3.6). We determine the relevant matrices to be

F1 =



















0 0 βW2
N∗

G2

N∗

W2

0

0 0 0 βW
N∗

G1

N∗

W1

βG 0 pW rW

(

1− N∗

W2

KW

)

0

0 βG 0 pW rW

(

1− N∗

W1

KW

)



















and

V1 =



















µG −b̃G 0 0

0 µG + b̄G 0 0

0 0 µW 0

0 0 0 µW



















.

After computing F1V
−1
1 , we obtain the dominant eigenvalue as

max

{

1

2

(

pW +

√

4
βGβW

(µG + b̄G)µW

N∗
G1

N∗
W1

+ p2W

)

,
1

2

(

pW +

√

4
βGβW2

µGµW

N∗
G2

N∗
W2

+ p2W

)}

.

(B.7)

To study the existence of endemic equilibria, we first determine

N̄∗
G2 = KG

(

1− µG − b̃Gx
∗
G1

rG

)

, N̄∗
G1 = KG

(

1− µG + b̄Gx
∗
G1

rG
.

)

The remaining equilibrium conditions are given by

βW2x
∗
W2(1− x∗

G2)N̄
∗
G2 − µGx

∗
G2N̄

∗
G2 + b̃Gx

∗
G1N̄

∗
G1 = 0

βGx
∗
G2N̄

∗
G2(1− x∗

W2)− µWx∗
W2N

∗
W2(1− pW ) = 0

βWx∗
W1(1− x∗

G1)N̄
∗
G1 − µGx

∗
G1N̄

∗
G1 − b̄Gx

∗
G1N̄

∗
G1 = 0

βGx
∗
G1N̄

∗
G1(1− x∗

W1)− µWx∗
W1N

∗
W1(1− pW ) = 0

(B.8)
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As N̄∗
G1 = KG

(

1− µG+b̄Gx∗

G1

rG

)

6= 0 since rG > µG + b̄G, we can divide both sides of

the 3rd equation by N̄∗
G1 to obtain

x∗
G1 =

βWx∗
W1

βWx∗
W1 + µG + b̄G

.

It can be seen that if 0 ≤ x∗
W1 < 1, then 0 ≤ x∗

G1 < 1. To show 0 < x∗
W1 < 1, we

substitute this expression for x∗
G1 into the 4th equation in the equilibrium conditions

and expand to obtain a cubic polynomial in x∗
W1. We can factor out the disease

free equilibrium (in patch 1), in which x∗
W1 = 0 leads us to the simple one host one

vector patch 2 only endemic equilibrium. Thus, if R1 < 1 < R2, we have existence of

precisely one endemic equilibrium. Otherwise, for x∗
W1 > 0, our resulting quadratic

polynomial is ζ(x∗
W1) = a2x

∗
W1

2 + a1x
∗
W1 + a0 = 0 with

a0 = rGµWN∗
W1(b̄G + µG)

2

(

βGβWN∗
G1

(b̄G + µG)µWN∗
W1

+ pW − 1

)

,

a1 = −βW [βGKG((µG+b̄G)(rG−µG)−βW (rG−(µG+b̄G)))+2(µG+b̄G)rGµWN∗
W1(1−pW )],

a2 = −β2
W [βGKG(rG − (µG + b̄G)) + rGµWN∗

W1(pW − 1)]

We first observe that the constant term, ζ(0) = a0 is positive if and only if

R1 > 1 by the result below:

R1 > 1

1

2

(

pW +

√

4
βGβWN∗

G1

(µG + b̄G)µWN∗
W1

+ p2W

)

> 1

(

pW +

√

4
βGβWN∗

G1

(µG + b̄G)µWN∗
W1

+ p2W

)

> 2

√

4
βGβWN∗

G1

(µG + b̄G)µWN∗
W1

+ p2W > 2− pW

4pW + 4
βGβWN∗

G1

(µG + b̄G)µWN∗
W1

− 4 > 0

pW +
βGβWN∗

G1

(µG + b̄G)µWN∗
W1

− 1 > 0
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Furthermore ζ(1) < 0. Thus, we can conclude that ζ(x∗
W1) crosses the x-axis

precisely once between 0 and 1.

In order to show that 0 ≤ x∗
G2 < 1 and 0 ≤ x∗

W2 < 1, we solve the first

equilibrium condition for x∗
G2 in terms of x∗

W2 and x∗
G1,

x∗
G2 =

βW2x
∗
W2N̄

∗
G2 + b̃Gx

∗
G1N

∗
G1

βW2x∗
W2N̄

∗
G2 + µGN̄∗

G2

=
βW2x

∗
W2 + b̃Gx

∗
G1

N̄∗

G1

N̄∗

G2

βW2x∗
W2 + µG

We note that if x∗
W2 is in (0, 1),

N̄∗

G1

N̄∗

G2

< 1 and µG > b̄G, then 0 ≤ x∗
G2 < 1. To show

0 ≤ x∗
W2 < 1, we substitute the expression for x∗

G2 into the 2nd equilibrium condition

from (B.8):

η(x∗
W2) = −(βGβW2N̄

∗
G2 + βW2µW (1− pW )N∗

W2)(x
∗
W2)

2

+ [βGβW2N̄
∗
G2 − µGµW (1− pW )N∗

W2 − βGb̃Gx
∗
G1N̄

∗
G1]x

∗
W2 + βGb̃Gx

∗
G1N̄

∗
G1 = 0.

Since we have shown 0 ≤ x∗
G1 < 1 and N̄∗

G2, N̄
∗
G1, and N∗

W2 are all nonzero,

positive constants, it is clear that η(0) = βGb̃Gx
∗
G1N̄

∗
G1 > 0 and η(1) = −(1 −

pW )µWN∗
W2(βW2 + µG) < 0. Thus, η(x∗

W2) crosses the x-axis precisely once between

0 and 1. Thus, 0 ≤ x∗
W2 < 1 which implies that 0 ≤ x∗

G2 < 1, so that there exists

precisely one endemic equilibrium value for system (3.6) when R1 > 1.

If R1 < 1, we observe that the constant term, ζ(0) = a0, is negative. Further-

more, ζ(1) is also negative. Thus, ζ has either 0 or 2 roots between 0 and 1. After a

numerical investigation using the parameters estimated in section 3.4, we determine

that both roots of ζ are always negative for R1 < 1, thus no roots are in (0,1).
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B.3 Patches 1 and 2, 2 hosts 2 vectors, no VT, unidirectional migration of infected

vectors

We wish to determine existence of endemic equilibria for section 3.3.6, system

(3.9). We first determine that

N∗
G2 = KG2

(

1− µG − b̃Gx
∗
G1

rG

)

, N∗
G1 = KG1

(

1− µG + b̄Gx
∗
G1

rG

)

.

We then wish to solve the remaining equilibrium conditions given by

(qSβRx
∗
R2 + (1− qS)βWSx

∗
W2)(1− x∗

S2)N
∗
S2 − µSx

∗
S2N

∗
S2 = 0

βSx
∗
S2N

∗
S2(1− x∗

R2)− µRx
∗
R2N

∗
R2 = 0

βW2x
∗
W2(1− x∗

G2)N
∗
G2 − µGx

∗
G2N

∗
G2 + b̃Gx

∗
G1N

∗
G1 = 0

((1− qW )βGx
∗
G2N

∗
G2 + β̃SWx∗

S2N
∗
S2)(1− x∗

W2)− µWx∗
W2N

∗
W2 = 0

βWx∗
W1(1− x∗

G1)N
∗
G1 − (µG + b̄G)x

∗
G1N

∗
G1 = 0

βGx
∗
G1N

∗
G1(1− x∗

W1)− µWx∗
W1N

∗
W1 = 0

(B.9)

To simplify, we make the substitution β̃SW = qWβSW
N∗

S2

N∗

W2

and β̃S2 = βS2
N∗

S2

N∗

R2

.

(qSβRx
∗
R2 + (1− qS)βWSx

∗
W2)(1− x∗

S2)− µSx
∗
S2 = 0

β̃S2x
∗
S2(1− x∗

R2)− µRx
∗
R2 = 0

βW2x
∗
W2(1− x∗

G2)− µGx
∗
G2 + b̃Gx

∗
G1

N∗
G1

N∗
G2

= 0

((1− qW )βGx
∗
G2

N∗
G2

N∗
W2

+ β̃SWx∗
S2)(1− x∗

W2)− µWx∗
W2 = 0

βWx∗
W1(1− x∗

G1)N
∗
G1 − (µG + b̄G)x

∗
G1N

∗
G1 = 0

βGx
∗
G1N

∗
G1(1− x∗

W1)− µWx∗
W1N

∗
W1 = 0

(B.10)

In system (B.10), the last 2 equations decouple from the system, so we may

study those equations separately. By inspection, we see that the last two equations

are identical to the last two equations of (B.8) with pW = 0. From analysis of (B.8)
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we see that either x∗
G1 = x∗

W1 = 0 or R1 > 1. In this patch alone, one unique endemic

equilibrium exists if and only if R1 > 1 (as shown in Appendix B.2 for system (B.8)).

If x∗
G1 = x∗

W1 = 0, we determine the remaining equilibrium conditions

(qSβRx
∗
R2 + (1− qS)βWSx

∗
W2)(1− x∗

S2)− µSx
∗
S2 = 0

β̃S2x
∗
S2(1− x∗

R2)− µRx
∗
R2 = 0

βW2x
∗
W2(1− x∗

G2)− µGx
∗
G2 + b̃Gx

∗
G1

N∗
G1

N∗
G2

= 0

((1− qW )βGx
∗
G2

N∗
G2

N∗
W2

+ β̃SWx∗
S2)(1− x∗

W2)− µWx∗
W2 = 0

(B.11)

which are identical to the equilibrium conditions (B.2) for patch 2 alone, in which we

have determined that if R2 > 1, either 1 or 3 endemic equilibrium exists, in addition

to the disease free equilibrium (which always exists).

If instead, R1 > 1, we assume that x∗
G1 is the positive equilibrium given in

Appendix B.2 for system (3.6) with pW = 0. Thus, in determining possible endemic

equilibrium values for this system, we may solve the 3rd equation of (B.10) to obtain

x∗
G2 =

βW2x
∗
W2 + b̃Gx

∗
G1

N∗

G1

N∗

G2

βW2x∗
W2 + µG

(B.12)

We substitute x∗
G2 into the 4th equation obtaining



β̃G





βW2x
∗
W2 + b̃Gx

∗
G1

N∗

G1

N∗

G2

βW2x∗
W2 + µG



+ β̃SWx∗
S2



 (1− x∗
W2)− µWx∗

W2 = 0

and multiplying through by the denominator we obtain

−
(

β̃GβW2 + βWµW

)

(x∗
W2)

2 − β̃SWβW2x
∗
S2(x

∗
W2)

2 +
(

β̃SWβG − β̃SWµG

)

x∗
S2x

∗
W2

+

(

β̃GβW2 − β̃Gb̃Gx
∗
G1

N∗
G1

N∗
G2

− µGµW

)

x∗
W2 + β̃SWµGx

∗
S2 + β̃Gb̃Gx

∗
G1

N∗
G1

N∗
G2

= 0,

and dividing every term by µW , µG, the expression becomes
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−
(

β̃GβW2

µGµW

+
βW2

µG

)

(x∗
W2)

2 +





β̃GβW2

µGµW

− 1−
β̃Gb̄Gx

∗
G1

N∗

G1

N∗

G2

µWµG



 x∗
W2

−
(

β̃SWβW2

µGµW

(x∗
W2)

2 −
(

β̃SWβW2

µGµW

− β̃SW

µW

)

x∗
W2 −

β̃SW

µW

)

x∗
S2 +

β̃Gb̄Gx
∗
G1

N∗

G1

N∗

G2

µWµG

= 0.

(B.13)

Applying the same substitutions in Appendix B.2, where the first two equations of

(B.10) are identical to the first two equations of (B.2) in Appendix B.1 and letting

X =
b̄Gx∗

G1

N∗

G1
N∗

G2

µG
, we obtain

D(1− x∗
W2)(x

∗
W2 −

1

E
)x∗

S2 = (F + 1)(x∗
W2)

2 −
(

F +
X + 1

E

)

x∗
W2 −

X

E
. (B.14)

Finally, we use (B.14) and (B.5) from Appendix B.1 to obtain a polynomial in

x∗
S2,

g(x∗
S2) =E(F + 1 +Dx∗

S2)[A(B + 1)x∗
S2 + (1− AB)]2(x∗

S2)
2

− (FX +Dx∗
S2)[C(Bx∗

S2 + 1)(1− x∗
S2)]

2 + [1− EF + FX + (1− E)Dx∗
S2]

[A(B + 1)x∗
S2 + (1− AB)]x∗

S2[C(Bx∗
S2 + 1)(1− x∗

S2)] = 0.

(B.15)

We note that

x∗
W2 =

x∗
S2

[

(A+ 1)x∗
S2 − A+ 1

B

]

C(1− x∗
S2)
(

x∗
S2 +

1
B

) . (B.16)

is positive if and only if

x∗
S2 >

AB − 1

AB + A
,

in which case AB > 1 for the expression to be positive (biologically significant).

Thus, we determine that g(0) < 0, g( AB−1
AB+A

) < 0 and g(1) > 0, so that g has at

least one root in
(

AB−1
AB+A

, 1
)

.
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B.4 Patches 1, 2, and 3, 2 hosts 2 vectors, no VT, unidirectional migration of infected

vectors

To study the existence of endemic equilibria for system (3.10) in section 3.3.7,

we first determine that

N∗
S3 = KS3

(

1− µS − b̃Sx
∗
S2

rS

)

, N∗
S2 = KS2

(

1− µS + b̄Sx
∗
S2

rS

)

.

N∗
G2 = KG2

(

1− µG − b̃Gx
∗
G1

rG

)

, N∗
G1 = KG1

(

1− µG + b̄Gx
∗
G1

rG

)

.

The remaining equilibrium conditions are given by

βRx
∗
R3(1− x∗

S3)N
∗
S3 − µSx

∗
S3 + b̃Sx

∗
S2N

∗
S2 = 0

βSx
∗
S3N

∗
S3(1− x∗

R3)− µRx
∗
R3N

∗
R3 = 0

((1− qS)βRx
∗
R2 + qSβWSx

∗
W2)(1− x∗

S2)N
∗
S2 − (µS + b̄S)x

∗
S2N

∗
S2 = 0

βS2x
∗
S2N

∗
S2(1− x∗

R2)− µRx
∗
R2N

∗
R2 = 0

βW2x
∗
W2(1− x∗

G2)N
∗
G2 − µGx

∗
G2N

∗
G2 + b̃Gx

∗
G1N

∗
G1 = 0

((1− qW )βGx
∗
G2N

∗
G2 + qWβSWx∗

S2N
∗
S2)(1− x∗

W2)− µWx∗
W2N

∗
W2 = 0

βWx∗
W1(1− x∗

G1)N
∗
G1 − (µG + b̄G)x

∗
G1N

∗
G1 = 0

βGx
∗
G1N

∗
G1(1− x∗

W1)− µWx∗
W1N

∗
W1 = 0

(B.17)

If x∗
G1 = x∗

W1 = 0, the remaining equilibrium conditions are

βRx
∗
R3(1− x∗

S3)N
∗
S3 − µSx

∗
S3 + b̃Sx

∗
S2N

∗
S2 = 0

βSx
∗
S3N

∗
S3(1− x∗

R3)− µRx
∗
R3N

∗
R3 = 0

((1− qS)βRx
∗
R2 + qSβWSx

∗
W2)(1− x∗

S2)N
∗
S2 − (µS + b̄S)x

∗
S2N

∗
S2 = 0

βS2x
∗
S2N

∗
S2(1− x∗

R2)− µRx
∗
R2N

∗
R2 = 0

βW2x
∗
W2(1− x∗

G2)N
∗
G2 − µGx

∗
G2N

∗
G2 = 0

((1− qW )βGx
∗
G2N

∗
G2 + qWβSWx∗

S2N
∗
S2)(1− x∗

W2)− µWx∗
W2N

∗
W2 = 0

(B.18)
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IfR1 < 1, R2 > 1, x∗
S2, x

∗
W2, and x∗

G2 are all positive, then it is clear that x∗
R3 = x∗

S3 = 0

is not a solution to system (B.18). Thus, we have existence of 1 or more endemic

equilibrium in patches 2 and 3 alone. On the other hand, if x∗
G1 and x∗

W1 are positive,

then infection must persist in all patches, i.e. x∗
G2 = x∗

W2 = x∗
S2 = x∗

R2 = x∗
R3 =

x∗
S3 = 0 is not a solution to system (B.17). Intuition suggests that there exists one

endemic equilibria for patch 3 alone if R1 < 1 and R2 < 1. In this case, if we set

I∗S2 = I∗R2 = I∗W2 = I∗G2 = 0, system (3.10) breaks down to the simple one host one

vector model in which there exists precisely one endemic equilibrium if and only if

R3 > 1.
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APPENDIX C

MODEL EQUATIONS AND PARAMETERS
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C.1 Equations and assumptions

The system contains 9,376 equations. Each cell contains anywhere from 4 to

8 equations, depending on the specific patch location. The equations in (C.1) are

representative of a patch 2 interior cell, which contains both species of vector and both

hosts. Each state variable contains two subscripts: one identifying the species (S-T.

sanguisuga, G-T. gerstaeckeri, R-raccoon, W-woodrat) and the other representing the

cell location (i represents the current cell, while n, s, e, w represents the 4 possible

adjacent cells (north, south, east, and west) to the current cell. Each vector equation

contains 8 migration terms, representing the bidirectional movement between cells

assuming a von Neumann radius. Not every equation in every cell will contain all

migration terms. Specific migration terms will be 0 if there is no corresponding

vector species population in the specific adjacent cell or if the current cell is on a grid

boundary.
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Table C.1. Parameter definitions and values

Param. Value Definition Source

Demographic parameters
rS 33/yr

species specific growth rates

[44]
rG 100/yr
rR 0.9/yr
rW 1.8/yr
µS 0.271/yr

species specific natural mortality rates

[44]
µG 0.562/yr
µR 0.4/yr
µW 1/yr
KS3 31900 vec/km2

species specific carrying capacities

[44]
KR3 35.6 racc/km2

KS2 19277 vec/km2

KR2 13.1 racc/km2

KG2 12553 vec/km2

KW2 2542.5 wr/km2

KG1 31900 vec/km2

KW1 5200 wr/km2

Infection parameters
βS 0.00025 hosts/vec/yr T. sanguisuga to raccoon inf. rate (patch 3)

Ch. 3

βG 0.079 hosts/vec/yr T. gerstaeckeri to woodrat inf. rate (patch 1)
βSW 0.132 hosts/vec/yr T. sanguisuga to woodrat inf. rate (patch 2)
βS2 0.00017 hosts/vec/yr T. sanguisuga to raccoon inf. rate (patch 2)
βR 0.910/yr raccoon to T. sanguisuga inf. rate (patch 3)
βW 1.408/yr woodrat to T. gerstaeckeri inf. rate (patch 1)
βWS 0.116/yr woodrat to T. sangiusuga inf. rate (patch 2)
βW2 1.408/yr woodrat to T. gerstaeckeri inf. rate (patch 2)

Migration parameters
MsN T. sanguisuga migration rate-north

Ch. 2

MsE T. sanguisuga migration rate-east
MsS T. sanguisuga migration rate-south
MsW T. sanguisuga migration rate-west
MgN T. gerstaeckeri migration rate-north
MgE T. gerstaeckeri migration rate-east
MgS T. gerstaeckeri migration rate-south
MgW T. gerstaeckeri migration rate-west
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S ′
Si = rS

(

1− NSi

KSi

)

NSi −
(

qSβR
IRi

NRi

+ (1− qS)βWS
IWi

NWi

)

SSi − µSSSi

− (MsN +MsE +MsS +MsW )SSi +MsNSSs +MsESSw +MsSSSn +MsWSSe

I ′Si =

(

qSβR
IRi

NRi

+ (1− qS)βWS
IWi

NWi

)

SSi − µSISi − (MsN +MsE +MsS +MsW )ISi

+MsNISs +MsEISw +MsSISn +MsW ISe

S ′
Ri = rR (SRi + (1− pR)IRi)

(

1− NRi

KRi

)

− βS2
ISi
NRi

SRi − µRSRi

I ′Ri = pRrRIRi

(

1− NRi

KRi

)

+ βS2
ISi
NRi

SRi − µRIRi

S ′
Gi = rG

(

1− NGi

KGi

)

NGi − βW2
IWi

NWi

SGi − µGSGiSGi − (MgN +MgE +MgS +MgW )SGi

+MgNSGs +MgESGw +MgSSGn +MgWS(Ge)

I ′Gi = βW2
IWi

NWi

SGi − µGIGi − (MgN +MgE +MgS +MgW )IGi

+MgNI(Gs) +MgEIGw +MgSIGn +MgW IGe

S ′
Wi = rW (SWi + (1− pW )IWi)

(

1− NWi

KWi

)

−
(

(1− qW )βG
IGi

NWi

+ qWβSW
ISi
NWi

)

SWi

− µWSWi

I ′Wi = pW rW IWi

(

1− NWi

KWi

)

+

(

(1− qW )βG
IGi

NWi

+ qWβSW
ISi
NWi

)

SWi − µW IWi

(C.1)
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