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ABSTRACT

CFD BASED AERODYNAMIC MODELING TO STUDY FLIGHT DYNAMICS

OF A FLAPPING WING MICRO AIR VEHICLE

ALOK ASHOK REGE, M.S.

The University of Texas at Arlington, 2012

Supervising Professors: Kamesh Subbarao and Brian H Dennis

The demand for small unmanned air vehicles, commonly termed micro air ve-

hicles or MAV’s, is rapidly increasing. Driven by applications ranging from civil

search-and-rescue missions to military surveillance missions, there is a rising level of

interest and investment in better vehicle designs, and miniaturized components are

enabling many rapid advances. The need to better understand fundamental aspects

of flight for small vehicles has spawned a surge in high quality research in the area of

micro air vehicles. These aircraft have a set of constraints which are, in many ways,

considerably different from that of traditional aircraft and are often best addressed by

a multidisciplinary approach. Fast-response non-linear controls, nano-structures, in-

tegrated propulsion and lift mechanisms, highly flexible structures, and low Reynolds

aerodynamics are just a few of the important considerations which may be combined

in the execution of MAV research.

The main objective of this thesis is to derive a consistent nonlinear dynamic

model to study the flight dynamics of micro air vehicles with a reasonably accurate

vi



representation of aerodynamic forces and moments. The research is divided into two

sections. In the first section, derivation of the nonlinear dynamics of flapping wing

micro air vehicles is presented. The flapping wing micro air vehicle (MAV) used in

this research is modeled as a system of three rigid bodies: a body and two wings.

The design is based on an insect called Drosophila Melanogaster, commonly known

as fruit-fly. The mass and inertial effects of the wing on the body are neglected for

the present work. The nonlinear dynamics is simulated with the aerodynamic data

published in the open literature. The flapping frequency is used as the control input.

Simulations are run for different cases of wing positions and the chosen parameters

are studied for boundedness. Results show a qualitative inconsistency in boundedness

for some cases, and demand a better aerodynamic data.

The second part of research involves preliminary work required to generate new

aerodynamic data for the nonlinear model. First, a computational mesh is created

over a 2-D wing section of the MAV model. A finite volume based computational

flow solver is used to test different flapping trajectories of the wing section. Finally,

a parametric study of the results obtained from the tests is performed.
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CHAPTER 1

INTRODUCTION

1.1 Flapping Flight:Where it all began

The history of flapping flight has a long and storied road. For centuries, humans

have been fascinated by flapping flight. In Hindu mythology, there is a description of

a mythical bird-like creature named Garuda [fig 1.1(a)], known to be a carrier of Lord

Vishnu. Humans have also toyed with idea of mimicing the bird flight themselves, like

Icarus’ vain attempt at flying using wings made of feathers and wax as described in

Greek mythology [fig 1.1(b)]. The first writings on trying to use the idea of flapping

flight date all the way back to the 4th century BC in the ancient epic Ramayana, but

there were not any details of the designs in the descriptions.

(a) (b)

Figure 1.1. Ancient flapping flight description examples of fig (a) Garuda, a mythical
carrier of Lord Vishnu mentioned in Hindu mythology (Image Courtesy:scriptures.ru)
and fig (b) Greek mythological character Icarus’ attempt to fly using wings made of
feathers and wax (Image Courtesy:motls.blogspot.com).
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Since birds seem to fly with little or no effort, the earliest designs in flapping

flight emulated birds. The first person to research the flight of birds in depth was a

legend of the Renaissance, Leonardo da Vinci. He began studying the flight of birds

in the late 15th century and designed sketches a model known as the Ornithopter [fig

1.2], which in Greek means “bird wing”. The sketches of the Ornithopter made by

Da Vinci used a system of pulleys and gears powered by the arms and legs that would

make the wings move in the fashion that a bird’s wing does. Da Vinci’s design was

not based on an idea of having a wing attached to each arm of a human and having

that person flap his arms up and down because he discovered that humans were not

strong enough to generate the power needed to fly. Da Vinci did not make a full scale

model of his design, but his work set the tone for many other future innovators and

engineers to investigate the flapping flight phenomenon in more detail.

Figure 1.2. Leonardo Da Vinci’s Ornithopter design (Image Courtesy:Anderson, In-
troduction to flight).
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1.2 Insect Flapping Flight

The flapping or beating motion of wings is exclusively used in the powered

flight of birds and insects to counter the gravity force and propel themselves against

aerodynamic drag. The mode and frequency of the flapping motion differ among

different species and are strongly dependent on the body size, shape and flight mode.

They are however always selected for the optimal power consumption of the respective

flight modes. The difference between flapping motion of birds and insects is in the

way they use the aerodynamic forces, lift and drag. In birds, the Reynolds number

(Re), which is the ratio of inertial forces to viscous forces, and the wing aspect ratio

are so large that they deliberately use their wings to sustain their weight by lift.

With large wing span and high aspect ratio they they can achieve long-range flight

by maximizing CL/CD ratio or long-duration flight by maximizing C
3/2
L /CD ratio.

(a) (b)

Figure 1.3. Examples of (a) Bird Stork (Image Courtesy:www.oiseaux-birds.com)
and (b) Insect Honey bee (Image Courtesy:utexas.edu) in flight.

In insects, however, the Reynolds number and the aspect ratio are too small

to provide the necessary lift. Instead, they use high frequency flapping and different

flapping trajectories to get high values of the required CL/CD and C
3/2
L /CD ratios.
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Infact, insects owe much of their extraordinary evolutionary success to flight. Be-

cause their survival and evolution depend so crucially on flight performance, different

flight related sensory, physiological, behavorial and biomechanical traits of insects are

among the most compelling illustrations of adaptations found in nature.

Figure 1.4. Insect wing motion (left wing). The black lines denote the instantaneous
position of the wing cross-section. The solid circle denotes the wing leading edge.

The flapping motion of an insect can be decomposed into three separate mo-

tions:sweeping or flapping (forward and backward movement of wings), heaving (up

and down movement) and pitching (changing incidence angle). In fig 1.4, a schematic

representation of left wing motion of an insect is shown. A complete flap cycle for a

sophisticated insect wing motion consists of twice a translation (a downstroke and an

upstroke) and twice a rotation (termed pronation at the end of the down-stroke and

supination at the end of the up-stroke). During the translation the wing may show

a sweeping, heaving and pitching motions. In addition, at the end of a half-stroke

during stroke reversal (rotation) the wing pitches rapidly. The exact wing kinemat-
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ics varies among different insects and for different motions in flight. Insects may

change their stroke angle, angle of attack and wing rotation to perform desired flight

maneuvers [3].

Insects have generated a great deal of interest among biologists and engineers,

because at first glance, their flight seems improbable using standard aerodynamics

theory. The combination of small size, high stroke frequency and peculiar reciprocal

flapping motion of insects make their flight aerodynamics unintelligible. However,

researchers have benefitted greatly from the availability of high-speed video capturing

wing kinematics, new methods such as digital particle image velocimetry (DPIV) to

quantify flows, and powerful computers for simulation and analysis. It is this more

detailed knowledge of kinematics, forces and flows that has led to significant progress

in our understanding of insect flight aerodynamics.

1.3 Micro Air Vehicles

Micro Air Vehicles or MAV’s, are small unmanned aerial vehicles of size less

than fifteen centimeters as defined by DARPA (Defense Advanced Research Projects

Agency) in their MAV development program. It must be noted that MAV’s are not

smaller versions of larger aircraft. They should be seen as aerial robots having more

degree of freedom and agility than regular aircraft, which puts them in a class of

their own. These flyers have a set of constraints which are, in many ways, consid-

erably different from that of traditional aircraft and are often best addressed by a

multidisciplinary approach.

The dream of building MAV’s could become a reality due to the recent devel-

opments in micro-technologies, be it developing control equipments with the help of

micro-electrical-mechanical systems (MEMS), or reducing the order of cameras and

sensors that could be fitted on these vehicles. As such, MAV’s have wide range of
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applications because of their small size and very high maneuverability. They could

be used in surveillance of battlefields and urban areas. They could also be used in

the detection of biological agents, chemical compounds and nuclear or radioactive

materials. A fleet of MAV’s could be sent to improve communication in urban or

other environments requiring continuous operations. They could also be used to fly

in confined spaces, such as collapsed buildings to locate survivors or in fire rescue or

counter-drug operations.

MAV’s can be classified into three types: fixed wing, rotary wing or flapping

wing as shown in fig 1.5.

(a) (b) (c)

Figure 1.5. Different types of micro air vehicles (a) Fixed Wing MAV (Image Cour-
tesy: mpower.co.uk), (b) Rotary Wing MAV (Image Courtesy: pixhawk.ethz.ch)
and (c) Flapping Wing MAV (Image Courtesy: lr.tudelft.nl).

Flapping wing MAV’s are bio-inspired, i.e., they try to mimic insect flight.

Designs of such MAV’s, if realized, could achieve unprecedented flight capabilites of

an insect. This has sparked off a surge in high quality research in the area of flapping

wing MAV research.
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1.4 Literature Review & Thesis Outline

Preliminary work into the flight dynamics of flapping wing MAV’s is taken from

the analysis of the flight mechanics and stability of specific insects. Weis-fogh [4]

produced a seminal paper on the analytical expressions to estimate the forces on the

wings of various insects and the work and power produced. Ellington in [5, 6, 7, 8,

9, 10] provided a complete overview of the insect flight, right from kinematics to lift

and power requirements for hovering. Zanker in [11, 12] gave an insight into the flight

dynamics of Drosophila Melanogaster. Taylor et. al [13] used the linearized equations

of rigid body motion, available in [14] to study the flight stability of the desert locust

Schistocerca gregaria. The mass of the wings, and the associated gyroscopic terms,

were neglected due to the assumption that the wings beat fast enough to not excite

the rigid body modes of the central body. In [15], Sun et. al used the same rigid body

approximation as in [13] to analyze the hovering flight stability of a bumblebee. The

stability derivatives were obtained from computational fluid dynamics using flight

data from [16]. Doman et. al in [17, 18] presented modeling and control of a flapping

wing MAV based on the RoboFly developed by Wood and presented in [19]. The

aerodynamic model used in the simulations was developed in [17] and based on the

work of Sane et. al [20]. The cycle-averaged aerodynamic forces and moments were

presented in detail, along with calculation of the control derivatives based on the

dynamic and aerodynamic models.

Sun et. al presented a derivation of the equations of motion for an insect in [21].

The wings were modeled with three degrees of freedom. The motion of the wings was

prescribed and the wings were not considered to be separate degrees of freedom.

The equations of motion were derived using Eulerian techniques. In [22], Wu et.

al presented simulations of the equations of motion, previously derived by Sun et

al. in [21]. The authors presented a method of solving the required parameters for a
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hover condition by coupling the equations of motion with the Navier-Stokes equations.

In [23], Gebert et al. derived the equations of motion for a flapping wing MAV using

Newtonian methods, which required the calculation of the constraint forces between

the wings and the body. The wings were not neglected, but simulations were not

presented to validate the efforts. Furthermore, Sun et al. claim in [21] that the

equations of motion derived in [23] contain errors and cannot be used. Orlowski et.

al in [24] provided the modeling and simulation of nonlinear dynamic model using a

quasi-static approach. The simulations results were shown for three cycles of flap.

Many researchers have worked on understanding and presenting the aerody-

namics surrounding the insect flight. In [25], Shyy et. al offered an overview of

the challenges and issues involved in using computational modeling of aerodynamic

forces. In [26], Sun et. al studied the lift and power requirements of hovering insect

flight by solving the Navier-Stokes equations numerically. Jane Wang in [27] proved

using computational methods that a two dimensional hovering motion can generate

enough lift to support a typical insect weight. Ramamurti in [28] verified the hypoth-

esis presented by Dickinson et. al in their germinal work on mechanical Drosophila

wings in [29] that rotational mechanisms of the wing form the basis by which the

insect modulates the magnitude and direction of forces during flight. They employed

a finite element flow solver to compute an unsteady flow past a 3-D Drospophila

wing undergoing flapping motion. Bai et. al in [30] proposed a new bionic flapping

motion for Drosophila wing using CFD techniques. They justified the correctness

of their numerical method and the computational program by comparing their CFD

results of the Drosophila flapping motion in three modes, i.e., the advanced mode,

the symmetrical mode and the delayed mode, with Dickinson’s experimental results

from [29].
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The thesis work presented deals with the modeling and simulation of a nonlinear

dynamic model which could be scalable, in the sense of accomodating aerodynamic

and flight features of different insects. A CFD approach is followed to do the pre-

liminary work for developing a new aerodynamic model. The insect model used for

this research is described in Chapter 2. Chapter 3 talks about the different reference

frames involved in the derivation of the nonlinear dynamics, which is presented in

Chapter 4. Chapter 5 presents the open loop simulation results for various parame-

ters. Chapter 6 gives an overview of the CFD analysis performed for different flapping

trajectories of a 2-D wing section of the flapping wing MAV. Chapter 7 discusses the

results of the CFD parametric study, while concluding remarks are presented in Chap-

ter 8.
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CHAPTER 2

INSECT MODEL

2.1 Examples of Insect Based Models

Various researchers have been using different insects for their bio-inspired flight

study. Both Weis-Fogh [4] and Ennos [31] worked extensively on different diptera

insects. While in [32] Azuma et al. studied the flight mechanics of a Dragonfly,

Tobalske et al. in [33] focussed their research on the hummingbird flight. Sun [34, 35],

Bai [30] and Zanker [11] chose Drosophila Melanogaster for their research.

(a) (b)

Figure 2.1. Examples of insect models used in research, (a) Biomimetic Vehicle used
by Oppenheimer et al. [1] for their research and (b) Delfly II (Image Courtesy:TU
Delft).

Researchers have also worked on models based on insects for their flapping flight

study. Orlowski [24] used a simplistic flapping wing MAV model with a cylinder as

a central body and two rectangular thin flat plates as wings. Dickinson [29] used a
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(a) (b)

Figure 2.2. Parts of the flapping wing MAV Model (a) Main Body and (b) Wing.

dynamically scaled model of Drosophila Melanogaster for the experimental research.

Oppenheimer et al. [1] worked on the dynamics and control of a minimally actuated

flapping wing MAV shown in fig 2.1(a). Groen [36] did an aerodyanmic and aeroelastic

investigation of vortex development on Delfly II shown in fig 2.1(b), which was built

by the research team of TU Delft. Liu in [37] addressed an integrated and rigorous

model for the simulation of an insect flapping flight.

2.2 Flapping Wing MAV Model

The model of the flapping wing MAV is based on Drosophila Melanogaster,

commonly known as fruit-fly. Typical characteristics of Drosophila were obtained

from Azuma [38] and are tabulated in Table 2.1.

The MAV model was designed using the design software CATIA V5. The model

was conceptualized having three rigid bodies; a main body with two wings symmet-

rically attached to it. As shown in fig 2.2(a), the main body is made up of three

ellipsoidal shapes depicting the head,thorax and abdomen of the insect. The wings

are modeled as thin, flat elliptical plates with variable chord as shown in fig 2.2(b).

The values of mass and inertia tensors of each body were calculated separately using

the measurements tool in CATIA.
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Table 2.1. Characteristics of Drosophila Melanogaster

Property Value
Reynolds Number, Re 75<Re<225
Mass, m 2 mg
# of Wings 2
Wing semi-span, b 3 mm
Wing Flapping Frequency, f 240 Hz
Stroke Amplitude 160 deg

The three parts were then assembled using the assembly toolbox in CATIA.

The constraints were set in such a way that would enable the wings to have 3 degrees

(a) (b)

Figure 2.3. Insect Model (a) Top View of Drosophila Melanogaster and MAV Model
(Insect Image Courtesy:jeb.biologists.org) (b) Side View of Drosophila Melanogaster
and MAV Model(Insect Image Courtesy:Brown University).
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of freedom motion. Given the DMU Kinematics toolbox in CATIA V5, one could

also visualize the 3-DOF flapping motion of the wings. Fig 2.3 shows the insect and

the model in top view [fig 2.3(a)] and in side view [fig 2.3(b)].

Although the flapping wing MAV model is based on fruit fly, it can be used to

simulate the motions of different insects using appropriate characteristics and param-

eters of the specific insect.
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CHAPTER 3

FRAMES OF REFERENCE

3.1 Definition

Frame of reference is a set of coordinate axes with reference to which the position

or motion of an object is described or physical laws are formulated. Defining frames

of reference is of prime importance in flight dynamics, for the forces realized with

respect to one reference frame may be different than that with respect to another.

As shown in fig 3.1(a), a typical aircraft has three reference frames. Inertial reference

frame is the earth fixed frame. A rotation matrix TBI is used to go from the inertial

reference frame to the Body frame, which is fixed at the center of mass of the aircraft.

Similarly a rotation matrix TWB is used to go to the Wind frame.

(a) (b)

Figure 3.1. Different Frames of Reference for (a) Aircraft and (b) Insect model.
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3.2 Insect Model Reference Frames

To accurately describe the motion of the body with respect to an inertial frame,

and the motion of the wings with respect to the body, six reference frames are specified

as shown in fig 3.1(b). The first reference frame is an inertial frame. The absolute

velocity and position of the FWMAV is described with respect to the Inertial frame.

The Body frame is a body-fixed coordinate system attached to the main body of the

FWMAV with origin at the center of mass of the body and is depicted in Fig 3.2(a).

The frame is oriented with positive x-axis along the longitudinal axis of the central

body. The y-axis is perpendicular to the x-axis and is positive out of the right side

of the vehicle. The z-axis is positive downward and perpendicular to the x-y plane.

An x-z plane of mass symmetry is assumed for the main body.

(a) (b)

Figure 3.2. Model Representation with Reference Frames (a) Body frame (b) Right
stroke plane and wing frames.

In addition to the Body frame, the stroke plane frames are two body-fixed

frames originated at the wing joints. The stroke plane frames are denoted by ‘SR’ and

‘SL’, where ‘R’ and ‘L’ stand for right and left respectively. The stroke plane frames

have initial orientation parallel to the Body frame. The stroke plane defines the mean
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motion of the wing. The attitude of the stroke plane with respect to the Body frame

is given by two consecutive rotations about body z-axis and y-axis through stroke

plane yaw angle ‘χ’ and stroke plane angle ‘θs’ respectively. The initial orientation

of the wing frames is parallel to the stroke plane frames with an origin coincident

with the wing joint. The wing frames, ‘WR’ and ‘WL’, move with the rotation of the

wings and enable the calculation of the wings’ orientations with respect to the stroke

plane, and by extension, the main body. The right stroke plane and the wing frames

are depicted in Fig 3.2(b). The stroke plane frame is represented by solid lines. The

wing frame is represented by dotted lines.

3.2.1 Orientation

The orientation of the main body is determined by 3-2-1 Euler angles with

respect to the inertial (fixed) frame. The orientation of the stroke plane with respect

to the body is denoted by the stroke plane yaw angles ‘χR’ and ‘χL’ and the stroke

plane angles θSR
and θSL

and is fixed for a given flight condition. Fig 3.3(a) shows

the stroke plane yaw angle.

The orientation of the wings with respect to the stroke plane is determined by

the deviation, pitch and flap angles of the wings β, θ and ζ respectively. The stroke

plane angle and the pitch angle are shown in fig 3.3(b). The relation of deviation

angle β and flapping angle ζ to the main body are shown in fig 3.3(c) and fig 3.3(d)

respectively. Positive rotations are consistent with the right hand rule. A positive

pitch angle is up in the stroke plane frame. A positive deviation angle is up and a

positive flap angle (sweep) is forward.
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(a) (b)

(c) (d)

Figure 3.3. Different angles of MAV, (a) Right stroke plane yaw angle χR, (b) Pitch
angle θ and right stroke plane angle θSR

, (c) Deviation angles βR and βL, (d) Flapping
angles ζR and ζL.

3.2.2 Rotation Matrices

The rotation matrix from the inertial frame to Body frame, TBI , is determined

by proper combination of the 3-2-1 Euler angles performed by quaternion, ~Q = q0 +

q1î + q2ĵ + q3k̂, to avoid any singularities. The rotation matrix using quaternion

formulation is given by

TBI =


q20 + q21 − q22 − q23 2 (q1q2 + q0q3) 2 (q1q3 − q0q2)

2 (q2q1 − q0q3) q20 − q21 + q22 − q23 2 (q2q3 + q0q1)

2 (q3q1 + q0q2) 2 (q3q2 − q0q1) q20 − q21 − q22 + q23

 (3.1)
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The rotation matrices for the stroke plane are

Tχ =


cosχ − sinχ 0

sinχ cosχ 0

0 0 1

 ,

TθS =


cos θS 0 − sin θS

0 1 0

sin θS 0 cos θS

 ,
(3.2)

The rotation matrices are combined according to

T
SR,L

B = TθSR,L
TχR,L

(3.3)

where subscripts R and L are attached to denote the proper stroke plane frame.

The orientation for the right and left wings with respect to the SR and SL frames is

determined by the 3-1-2 Euler angles, where ζ = 3, θ = 2, β = 1. The singularity for

this sequence is at the deviation angle β = ±90◦, which will never be achieved by the

wing stroke kinematics. So the 3-1-2 Euler angles physically satisfy the requirements

of the system. The rotation matrices for the right wing are

TβR =


1 0 0

0 cos βR − sin βR

0 sin βR cos βR

 ,

TθR =


cos θR 0 − sin θR

0 1 0

sin θR 0 cos θR

 ,

TζR =


cos ζR − sin ζR 0

sin ζR cos ζR 0

0 0 1



(3.4)
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The rotation matrices are combined according to

TWR
SR

= TθRTβRTζR (3.5)

The rotation matrices for the left wing, with respect to the left stroke plane,

are combined in the same manner as in eq (3.4). The negative signs for the rotation

matrices for the ζ and β angles are interchanged for the right and left wings. This

is due to the fact that flapping motion is considered positive when the wings move

forward, which is a positive rotation for the left wing by the angle ζL, but a negative

rotation for the right wing by the angle ζR. Similarly, positive upward deviation is

a negative rotation of the angle βR for the right wing, but a positive rotation by the

angle βL for the left wing. The correct sign ensures proper cancellation of forces and

moments in the Body frame when the flapping is symmetrical, which will be discussed

later.
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CHAPTER 4

DERIVATION OF THE EQUATIONS OF MOTION

4.1 Governing Physical Principles

In this section, the development of a nonlinear dynamic model of FWMAV de-

rived from first principles is described. The derivation of a set of nonlinear, 6-DOF

equations of motion of FWMAV is similar to that adopted for a standard aircraft

model stated in [14]. Here the aerodynamic forces and moments generated due to the

flapping of wings are equated to the rate of change of linear momentum and angular

momentum respectively to form the set of equations.

Newton’s Law of Linear Motion:

d

dt

∫
V

ρA
dr′

dt
dV

 =

∫
V

gρAdV +

∫
S

Fds (4.1)

Euler’s Law of Angular Motion:

d

dt

∫
V

r′ × ρA
dr′

dt
dV

 =

∫
V

r′ × gρAdV +

∫
s

r′ × Fds (4.2)

In eq (4.1), the L.H.S. denotes the rate of change of linear momentum of the

FWMAV which is equated to the applied forces (Gravitational + Aerodynamic). Sim-

ilarly in eq (4.2), the L.H.S. denotes the rate of change of angular momentum which

is equated to the applied moments. In eqs (4.1) and (4.2), is the position vector of a

small elemental mass of volume dV and density ρA. g is the acceleration due to gravity

(assumed constant), Fds represents the elemental surface forces (aerodynamics).
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4.2 Wing and Body Velocities

The velocities of each of the bodies will be defined for forces and moments

calculation. The angular velocities of the wings are a function of the wing angles and

angular rates. The angular velocities of the wings, with respect to the stroke plane,

are calculated according to the 3-1-2 Euler angle relationship. The angular velocity

of the right wing with respect to the right stroke plane is calculated according to

~ωRwing = TθRTβR


0

0

−ζ̇R

+ TθR


−β̇R

0

0

+


0

θ̇R

0

 (4.3)

The velocity of the right wing root in body frame with respect to inertial frame is

given by

~VRwing = ~U +
(
~Ω× ~RR

)
(4.4)

where ~RR is the position of wing root from the main body center of mass; ~U is

the linear velocity of the FWMAV and in the body frame components is given by

~U = uî+ vĵ + wk̂ (4.5)

and ~Ω is the angular velocity of the FWMAV and in the body frame components

is given by

~Ω = p̂i+ qĵ + rk̂ (4.6)

In stroke plane frame, the velocity can be written as

SR
VRwing = T SR

B [U + (Ω×RR)] (4.7)

The total angular velocity of right wing with respect the right stroke plane

frame is

~ΩRwing = T SR
B
~Ω + ~ωRwing (4.8)
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The total linear velocity of right wing with respect the right stroke plane frame

is

~URwing = SR
VRwing + ~ΩRwing × ~rRwing (4.9)

where ~rRwing is the position vector of the wing element from the wing root. A

similar procedure is used to develop the velocity expressions for the left wing. It is

important to note, consistent with the development of the orientation of the wings

with respect to the stroke planes and the right hand rule, that the signs are opposite

for β̇R and β̇L and ζ̇R and ζ̇L, which results (for symmetric flapping) in equal and

opposite rolling and yawing moments in the Body frame.

4.3 Aerodynamic Forces and Moments

The forces and moments are developed on the body due to the motion of the

wing. The method used to calculate these forces and moments has been adopted

from Azuma [38]. Fig 4.1 shows the elliptical right wing in the right wing frame with

XRwing and YRwing as x-axis and y-axis repectively. Let rmax be the total length of

the wing, while chordmax be the maximum chord length. Consider a small elemental

strip dr at a length rst from the wing root.

Figure 4.1. Calculation of wing chord c(r). Figure 4.2. Sectional forces on right wing.
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Then the corresponding chord length of the wing is given by

c(r) = chordmax

√
1− 4

(
rst
rmax

− 1

2

)2

(4.10)

Now consider a section of the right wing in the XRwing-ZRwing plane as shown in

fig 4.2. By neglecting the flow along the wing span, the relative velocity of air acting

at a right wing element is given by

Urel =
√
u2Rwing + w2

Rwing (4.11)

where

uRwing = velocity component in x-direction;

wRwing = velocity component in z-direction

The inflow angle is given by

ϕR = tan−1
(
wRwing
uRwing

)
(4.12)

The total angle of attack acting on the wing element is given by

αR = θR + ϕR (4.13)

Equations of lift and drag are given by

dLR = 1
2
ρU2

relCL(αR)c(r)dr

dDR = 1
2
ρU2

relCD(αR)c(r)dr
(4.14)

The expressions for CL and CD calculation are taken from Dickinson et al [20],

which are given as

CD(α) = 1.92− 1.55 cos(2.04α− 9.82)

CL(α) = 0.225 + 1.58 sin(2.13α− 7.2)
(4.15)

While the lift and drag coefficients are assumed to be similar to that in [20],

the nonlinear dynamical model is quite scalable in the sense that when accurate lift
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and drag coefficients are available, they can be easily substituted for the equations

above. The forces acting on the right wing element are then given by

d~FRwing =


dLR sinϕR − dDR cosϕR

0

−dLR cosϕR − dDR sinϕR

 (4.16)

The moments acting on the right wing element are given by

d ~MRwing = ~rRwing × d~FRwing (4.17)

The elemental forces and the moments are then integrating along the entire

wing length to get the total aerodynamic forces and moments on the right wing.

Similar procedure is followed to get forces and moments on the left wing. The forces

and moments are then expressed in the body frame.

The total aerodynamic forces in the body frame are given by

~Faero =
[
T SR
B

]T [
TWR
SR

]T ~FRwing +
[
T SL
B

]T [
TWL
SL

]T ~FLwing (4.18)

Similarly, the total aerodynamic moments in the body frame are given by

~Maero =
[
T SR
B

]T [
TWR
SR

]T ~MRwing +
[
T SL
B

]T [
TWL
SL

]T ~MLwing (4.19)

4.4 Governing Equations of Motion

The equations of motion are now summarized for the FWMAV. Since mass of

wings is less than 3% of the total body mass, the inertial effects due to wings mass

are neglected in the equations of motion. The translational kinematics equation is

given by

~̇X =
[
TBI
]T ~U (4.20)

The translational dynamics equation is given by

~Faero +mtotalT
B
I ~g = mtotal

(
~̇U + ~Ω× ~U

)
(4.21)
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The rotational kinematics equation is given by

~̇Q =

 0 −~Ω

~Ω − ~Ω×

 ~Q (4.22)

The rotational dynamics equation is given by

~Maero = ~Ω× Ibody~Ω + Ibody ~̇Ω (4.23)

These equations will be used in the open loop simulation of the FWMAV.
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CHAPTER 5

OPEN LOOP SIMULATION

5.1 Simulation Inputs

The wing kinematics for the FWMAV model is taken from Azuma [38]. The

flapping angle of the wing is given by

ζ(t) = ζ0 + ζ1 sin (ωt) , (5.1)

where ω = 2πf , f being the wing flapping frequency. The stroke amplitude of

a fruit-fly is 160 deg. Therefore ζ1 = 80◦. The deviation angle is given by

β(t) = β0 + β1 sin
(
ωt− π

2

)
(5.2)

The deviation angle is set at 0 deg for the simulation runs. The wing pitch

angle is given by

θ(t) = θ0 + θ1 sin (ωt) (5.3)

The properties of the flapping wing MAV model are listed in table 5.1.

Table 5.1. Properties of MAV model

Property Value
Mass of body, mbody 1736e−6 g
Mass of each wing, mwingR,L 57e−6 g
Wing semi-span, b 0.3 cm
Wing maximum chord, chordmax 0.12 cm
Wing Flapping Frequency, f 240 Hz
Stroke Amplitude 160 deg
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Since the inertial effects due to mass of the wings are neglected in this study,

the inertia tensors for the wings will not be considered. The inertia tensors of the

body are listed in table 5.2.

Table 5.2. Body Inertia Tensors of MAV model

Inertia IBii Value in gm− cm2

IBxx 3e−6

IByy 12e−6

IBzz 13e−6

IBxy 0
IByz 0
IBxz −4.36488e−8

5.2 Open Loop Simulation Studies

Open loop simulation study was conducted using modeling and simulation soft-

ware Simulink. Six cases were simulated for the different combinations of wing angle

values. Since all the scenarios deal with symmetric flapping, the left and the right

wing angles were set at same values. The cases were run for a simulation time of

60 flapping cycles. Table 5.3 lists the values of angles considered for the simulation

cases. The simulations were run subject to initial conditions of flapping wing MAV

starting at a height of 5 meters with a forward velocity of 1 m/s. The quaternions

were initialized at [1,0,0,0], which is the standard intial value for no rotation.

5.2.1 Discussion on the choice of Dynamic Model Solver

A dynamic system is simulated by computing its states at successive time steps

over a specified time span, using information provided by the model. The process

of computing the successive states of a system from its model is known as solv-
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Table 5.3. Open Loop Simulation Cases

Case ζ0 ζ1 β0 β1 θ0 θ1 θs χ
(deg) (deg) (deg) (deg) (deg) (deg) (deg) (deg)

1 0 80 0 0 -90 0 90 0
2 0 80 0 0 90 0 0 0
3 0 80 0 0 -90 0 0 0
4 0 80 0 0 10 0 0 0
5 0 80 0 0 -10 0 90 0
6 0 80 0 0 0 60 0 0

ing the model. Two types of such solvers are provided by Simulink; fixed-step and

variable-step. Both solvers use numerical techniques to compute the states at the

next simulation time by proceeding with a time step. With a fixed-step solver, the

time step size remains constant throughout the simulation, while with a variable-step

solver, the step size varies from step to step, depending on the model dynamics. In the

case of this research, a variable time step solver was preferred so that it would adjust

the step size to the rapidly changing states of the dynamics and other discontinuities.

Variable step solvers are further classified as discrete or continuous step solvers.

Continuous solvers are used when the model has continuous states, while discrete

solvers are used when the states are absent or are discrete. Moreover, the solvers use

numerical methods to for computation. Sometimes, the step size of the computation

interval becomes extremely small and makes these methods numerically unstable,

causing the equations of the dynamics to be stiff. For such cases, it is better to

use stiff or implicit solvers. Since the states of the dynamic system considered for

the research are continuous, a single step variable implicit solver ‘ode23s’ based on

a second order modified Rosenbrock formula was chosen as it allows for crude error

tolerances. A relative tolerance of 1e−12 was used for all the simulations.
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5.3 Simulation Results

The simulation data obtained from the 6 cases was post-processed using MAT-

LAB. MAV instantaneous and average positions, inertial and body velocities, instan-

taneous and average forces and moments, body angle of attack and side-slip angle,

inertial x-z position and the Euler angles and angular rates were determined for each

case. The Euler angles were calculated from the quaternions using the following

equation.


Φ

Θ

Ψ

 =


arctan

{
2(q0 q1 + q2 q3)

1−2(q21 + q2
2)

}
arcsin {2 (q0 q2− q3 q1)}

arctan

{
2(q0 q3 + q1 q2)

1−2(q22 + q2
3)

}
 (5.4)

Results obtained are depicted in 6 figures for each of the cases and will be discussed

on a case by case basis. In all the cases the z-direction position was plotted with a

negative scale so that it is positive upwards. Rest all values in z-direction are positive

downwards since the z-axis is defined in that sense.

1. Case 1: ζ1 = 80◦; θ0 = −90◦; θs = 90◦

This scenario is for the up and down motion of the wings. At first the wings are

rotated through a negative constant wing pitch angle of 90 deg and then the

stroke plane angle is turned by the same amount in the upward direction, which

is positive rotation. From fig 5.1 we can see that the flapping wing MAV moves

ahead slightly in the inertial x-direction before coming back to its original posi-

tion, while it sinks gradually by around 9 cm in z-direction after starting from

a height of 5 meters which can be found by the inertial velocity in z-direction

as well. The inertial velocity in the x-direction keeps on reducing which means
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that the MAV will tend to move further backwards. This can be seen in the

x-z inertial position plot in fig 5.2. We can also see in this figure that the MAV

angle of attack increases upto a value of 90 deg and starts decreasing in the neg-

ative region. Due to symmetrical flapping, there is no change in the position

and velocity in y-direction as well as the sideslip angle. Fig 5.3 shows aerody-

namic forces in x and z directions and the pitching moment having a periodic

pattern, with no force production in y-direction and net zero rolling and yawing

momemts as they are balanced out by the left and right wings. Fig 5.4 shows

the body euler rolling and yawing angles Φ and Ψ respectively changing sign as

the pitching angle Θ reaches its limiting value of ±90 deg. This is only due to

the singularity at that value, since we can see from the subplots that there is

no change in either rolling or yawing rate. Figures 5.5 and 5.6 show the cyclic

averaged forces, moments and positions of MAV.

2. Case 2: ζ1 = 80◦; θ0 = 90◦; θs = 0◦

This scenario is for the forward and backward sweep motion of the wings in

the horizontal plane. Here the wings are rotated through a positive constant

wing pitch angle of 90 deg while the stroke plane angle is maintained at 0 deg.

As seen in fig 5.7 MAV moves ahead and upwards with increasing amplitude in

both directions. We can see from fig 5.8 that MAV is actually spiralling forward

with a gain in height. The angle of attack plot shows a discontinuity around

0.08 seconds. Fig 5.10 shows that the body pitching angle encounters singular

points more frequently than in the earlier case. Figures 5.9 and 5.11 show the

forces and moments stabilizing at specific values. Fig 5.12 shows the average

MAV positions.
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3. Case 3: ζ1 = 80◦; θ0 = −90◦; θs = 0◦

This scenario is also for the forward and backward sweep motion of the wings

in the horizontal plane, albeit with a constant negative wing pitch angle of 90

deg, which means that the wing is flapping in reverse sense. The behavior of the

flapping wing MAV is similar to the previous case with positive pitch horizontal

flapping, but as seen in fig 5.13 and fig 5.14 MAV gains more height and moves

ahead with a tighter spiral. We can also see in fig 5.14 in the angle of attack

plot that discontuinity occurs at two places.

4. Case 4: ζ1 = 80◦; θ0 = 10◦; θs = 0◦

In this run, the MAV is given a constant wing pitch angle of 10 deg as it flaps

in the horizontal stroke plane. As seen from fig 5.19 MAV oscillates in x and

z-directions wit ha very small amplitude, practically not moving at all. Fig 5.20

shows MAV spiralling becomes tighter in inertial x-z frame. Angle of attack plot

shows dicontinuities at 8 points.Also MAV spirals 8 times, which means that

everytime spiralling occurs, MAV angle of attack goes through a discontinuity.

This can be corroborated by looking at angle of attack and inertial x-z frame

plots for the earlier cases.

5. Case 5: ζ1 = 80◦; θ0 = −10◦; θs = 90◦

In this run, the MAV is given a constant wing pitch angle of -10 deg and then

the stroke plane angle is turned by a positive angle of 90 deg. Figures 5.25

to 5.30 show that the MAV behaves in the same way as in case 1 with very

little change in the magnitude of the parameter values. This means that a 10

deg change in the pitching angle value for a vertically flapping MAV has no
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significant effect on its dynamics.

6. Case 6: ζ1 = 80◦; θ0 = 0◦; θ1 = 60◦; θs = 0◦

In this case, the MAV wing is pitching at an amplitude of 30 deg, with the

constant pitch angle and the stroke plane angle set to 0 deg. Fig 5.31 shows

that the MAV moves ahead by 7 cm. It moves up by around 2 cm while behaving

oscillatory, as can be seen in the inertial x-z frame plot in fig 5.32. Fig 5.34

shows pitching angle with alternate phase shifts. fig 5.33 shows the periodic

behavior of the aerodynamic forces and moments, while fig 5.35 and fig 5.36

show the average plots.

5.4 Remarks

It can be noted from the the simulations that though most of the parameters

studied in the plots were bounded, some of them showed erratic behavior, especially

the body angle of attack and body pitching angle. This could be due to the fact that

the aerodynamic expressions given by eq (4.15), which are used for the forces and

moments calculations are making the system unstable. So the aerodynamic model

taken from Dickinson et al. [29] might not be the best option to the study the nonlinear

dynamics of the flapping MAV and should therefore be replaced.
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Figure 5.1. Case 1 inertial positions and velocities.

Figure 5.2. Case 1 body velocities, angle of attack, sideslip angle and inertial x-z
position.
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Figure 5.3. Case 1 aerodynamic forces and moments.

Figure 5.4. Case 1 Euler angles and angular rates.
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Figure 5.5. Case 1 cycle averaged forces and moments.

Figure 5.6. Case 1 cycle averaged positions.
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Figure 5.7. Case 2 inertial positions and velocities.

Figure 5.8. Case 2 body velocities, angle of attack, sideslip angle and inertial x-z
position.
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Figure 5.9. Case 2 aerodynamic forces and moments.

Figure 5.10. Case 2 Euler angles and angular rates.
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Figure 5.11. Case 2 cycle averaged forces and moments.

Figure 5.12. Case 2 cycle averaged positions.
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Figure 5.13. Case 3 inertial positions and velocities.

Figure 5.14. Case 3 body velocities, angle of attack, sideslip angle and inertial x-z
position.
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Figure 5.15. Case 3 aerodynamic forces and moments.

Figure 5.16. Case 3 Euler angles and angular rates.
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Figure 5.17. Case 3 cycle averaged forces and moments.

Figure 5.18. Case 3 cycle averaged positions.
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Figure 5.19. Case 4 inertial positions and velocities.

Figure 5.20. Case 4 body velocities, angle of attack, sideslip angle and inertial x-z
position.
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Figure 5.21. Case 4 aerodynamic forces and moments.

Figure 5.22. Case 4 Euler angles and angular rates.
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Figure 5.23. Case 4 cycle averaged forces and moments.

Figure 5.24. Case 4 cycle averaged positions.
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Figure 5.25. Case 5 inertial positions and velocities.

Figure 5.26. Case 5 body velocities, angle of attack, sideslip angle and inertial x-z
position.

45



Figure 5.27. Case 5 aerodynamic forces and moments.

Figure 5.28. Case 5 Euler angles and angular rates.
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Figure 5.29. Case 5 cycle averaged forces and moments.

Figure 5.30. Case 5 cycle averaged positions.
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Figure 5.31. Case 6 inertial positions and velocities.

Figure 5.32. Case 6 body velocities, angle of attack, sideslip angle and inertial x-z
position.

48



Figure 5.33. Case 6 aerodynamic forces and moments.

Figure 5.34. Case 6 Euler angles and angular rates.
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Figure 5.35. Case 6 cycle averaged forces and moments.

Figure 5.36. Case 6 cycle averaged positions.
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CHAPTER 6

CFD ANALYSIS

6.1 Need for New Aerodynamic Parameters

The expressions for aerodynamic coefficients CL and CD mentioned in section

4.3 and developed by Dickinson et al. [29] to investigate the dynamics of insect flight

were based on experimental setup for hover. The authors used a simple harmonic

relationship to come up with a curve fit for the mean values of the aerodynamic co-

efficients. The mean values were obtained by flapping the modeled wings at constant

tip velocity for different values of pitch angle of attack, which was kept constant for

each flapping run. Also, the values were calculated by averaging the instantaneous

values over the interval which showed stable force trajectories. Wang et al. in [39]

made use of a sinusoidal pitching angle of attack, but followed a similar procedure of

curve fitting to obtain the expressions.

All this means that the utility of the derived expressions is limited to certain

scenarios. Moreover, the expressions which were obtained from intermittent values of

angle of attack,depend explicitly on it. This becomes a very important factor in the

case of simulations of the nonlinear dynamics, where instantaneous values of angle of

attack are being fed into the expressions to get the required aerodynamic co-efficients.

So there felt a need to come up with a consistent aerodynamic model to study

the flight dynamics of micro air vehicle with a reasonably accurate representation

of aerodynamic forces and moments. The expressions for aerodynamic coefficients

obtained thereof would be functions of a new set of aerodynamic parameters.
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6.2 Computational Fluid Dynamics Approach

In order to determine the aerodynamic variables that would be used in the new

expressions, a thorough investigation of flow over flapping wing must be done. This

thesis does not include the formulation of the new aerodynamic model discussed in the

previous section. Rather a parametric study of the different flapping trajectories made

by 2-D wing section of the MAV is performed using computational fluid dynamics

(CFD) techniques. The procedure adopted for this study is as shown in the flow chart

given in fig 6.1.

Figure 6.1. Flow chart for CFD analysis.

The following sections explain in detail the various steps taken to perform the

parametric study of the different flapping paths.
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Figure 6.2. Model of a wing section used for CFD analysis.

6.2.1 Computational Grid

A good refined computational grid or mesh is very important for the accuracy

of results obtained from the computational analysis. A mesh is called fine when the

node or cell density in a region is more, and a coarse mesh is where it is less. Typically,

mesh is kept finer in the region where the flow is highly unsteady and coarser where

it has relatively less disturbance. It is also essential to avoid unnecesary use of fine

mesh to save on computational time and power. Grid generation software Pointwise

was used to make the required mesh.

Cross-section of a thin flat plate of length 1 mm and thickness 0.01 mm was

used as a model for a wing section of the flapping wing MAV. The two edges of the

model were blunted to avoid flow dettachment. The model was placed with its center

coinciding with the origin of the workspace coordinate system, as shown in fig 6.2.

100 nodes were created on each side of the model, while each of the edges had 5 nodes

for cell connectivity.

For the given problem, unstructured grid generation was preferred over struc-

tured, since unstructured grids reduce the overall complexity of the grid generation

process. Unstructured grids also offer excellent parallel performance due to the ease
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(a)

(b)

Figure 6.3. Initial computational domain with (a) Smaller grid size and (b) Coarse
mesh.
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(a)

(b)

Figure 6.4. New computational domain with (a) Larger grid size and (b) Refined
mesh.
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of load balancing. The fact that the mesh is moving due to the motion of the flapping

wing was also one of the reasons since the unstructured grids offer good grid adapta-

tion properties. However, it is important to monitor the unstructured mesh schemes

to check if there are high aspect ratio cells, since they add to the errors in the results.

The first task while creating a mesh is to define the dimension of the computa-

tional domain, which has to be large enough to not interfere with the results. Also,

the mesh should be fine enough for a larger part around the model in order to keep

the mesh resolution quality uniform with time. At first, an O-type grid with a diam-

eter of 10 times the model length was created as shown in fig 6.3(a). 50 nodes were

created on the connector forming the outer boundary of the domain. As seen from

fig 6.3(b), the mesh resolution changed dramatically with time. The mesh which was

finer in a region around the model became coarse. Such an unrefined mesh would not

produce accurate results.

This grid was replaced by an improved O-type grid with a diameter of 15 times

the model length and a total of 100 nodes on the outer boundary connector. A

boundary decay factor of 0.99 was used to get smooth refined mesh as seen in fig 6.4(a).

No high aspect ratio cells were found in the generated grid. Fig 6.4(b) shows that

the grid has adapted very well with time and the mesh resolution quality is intact.

6.2.2 Flapping Trajectories

Insects rely on different flapping trajectories to produce the the required aero-

dynamic forces, in order to maintain their postion in case of hover, or to propel

themselves to a new position. Broad study of this insect mechanism for producing

forces is imperative to determine the required aerodynamic parameters accurately.

Figures 6.5 to 6.8 show different wing flapping trajectories considered for the para-

metric study.
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(a) (b)

Figure 6.5. Elliptical flapping trajectory with (a) Flapping direction and (b) Instan-
taneous wing positions.

(a) (b)

Figure 6.6. Straight flapping trajectory with (a) Flapping direction and (b) Instan-
taneous wing flapping positions.

As seen in fig (a) for each of the trajectories, the circle and the diamond show

the start and the direction of the wing stroke respectively. Fig (b) in each case shows

the instantaneous wing positions during the two half strokes; the downstroke or the

forward flapping motion of the wing, and the upstroke or the backward flapping

motion. The circular head on the wing depicts the wing leading edge. All the paths

were generated using parametric functions. In fig 6.8, a shaping factor was used

to replicate the optimum flapping trajectory obtained by Ueno et al. in [2]. For
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(a) (b)

Figure 6.7. Figure-8 flapping trajectory with (a) Flapping direction and (b) Instan-
taneous wing flapping positions.

uniformity, the stroke lengths for all the trajectories were kept same. The orientation

of the trajectory is fixed parallel to the x-axis for the parametric study.

6.2.3 Computational Flow Solver

The commercial CFD program Fluent was used to solve the unsteady incom-

pressible Navier-Stokes equations on an unstructured triangular mesh described ear-

lier. A pressure-based implicit finite volume method with SIMPLE scheme and stan-

dard 1st-order upwinding was used to discretize the equations. A Green-Gauss cell-

based gradient method was used to compute the gradient of the scalar at the cell faces

and also for computing the secondary diffusion terms and velocity derivatives. The

cell-center approach deals with less points over the domain as it stores the solution

at each cell-center thereby taking less memory than the node-center approach. The

discrete form of this method is written as

(∇φ)c0 =
1

ν

∑
f

φ̄f ~Af , (6.1)
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(a) (b)

Figure 6.8. Optimal flapping trajectory obtained by Ueno et al. [2] with (a) Flapping
direction and (b) Instantaneous wing flapping positions.

where φ̄f is the value of the scalar φ at the cell face centroid c0. The summation

is over all the faces enclosing the cell. The face value, φ̄f , is taken from the arithmetic

average of the values at the neigboring cell centers,i.e.,

φ̄f =
φc0 +φc1

2
(6.2)

Unsteady Particle Tracking with fluid flow time step was used for the Discrete

Phase Model to derive the equations for the underlying physics which are solved

transiently during the solver run. A moving mesh scheme was used to allow for the

wing motion relative to the fixed outer boundary. The wing motion was large relative

to the mesh size so dynamic smoothing and remeshing schemes were emplyed at each

time step to maintain a high quality mesh. For the remeshing method, the maximum

length and maximum cell skewness were set to 0.0001 m and 0.6 respectively, while a

size remesh interval of 5 was used. The details of smoothing parameters are given in

table 6.1. Fig 6.9 shows an example of a moving mesh about the wing section with

smoothing and remeshing employed.
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Table 6.1. Smoothing Parameters for Dynamic Mesh of MAV model

Property Value
Spring Constant Factor 0.1
Boundary Node Relaxation 0.1
Convergence Tolerance 0.001
Number of Iterations 20

Figure 6.9. Unstructured mesh around the wing section with smoothing and remesh-
ing employed.

Ueno et al. in [2] found that the number of time steps per cycle is a critical

parameter. If the time step size is too large, the mesh adaptation sheme was found to

fail. They observed in their preliminary experiments that 1000 time steps per cycle

resulted in stable computation for all generated designs.

The unsteady lift produced by the wing section is computed by integrating the

time-variant static pressure over the wing section during one cyclic motion. The

reference values for calculation of lift coefficient CL is given in table 6.2. While

the wing section was set at a no-slip wall with the user-defined motion, the outer
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boundary condition of the computational domain was set as a velocity inlet of 0.01

m/s in x-direction.

Table 6.2. Reference Values for calculation of Lift coefficient CL

Property Value
Area, S 1m2

Density, ρ 1.225 kg/m3

Velocity, V 1 m/s
Viscosity, µ 1.7894e−5kg/m-s

Experiments were run for different cycles of flap, starting with 10 used by Ueno

et al. in [2] to check if the unsteady lift coefficient became periodic. It was found that

after 50 cycles, CL becomes nearly periodic, and the time-averaged lift coefficient was

obtained for the 51st cycle.

6.2.4 Data Post-processing

User-defined functions were used to intialize the solutions for the unstructured

moving mesh. A file was created to define a wing section trajectory that would

generate the input to flow solver for the mesh movement. An initialization file was

created that would save the data history of the coefficients of lift, drag and moment

CL, CD and Cm respectively for the entire solver runtime, as well as saving the Fluent

case and data files every 50 timesteps only for the last cycle. A file was also written

to calculate the average lift coefficient CLavg for the last flapping cycle. CL, CD and

Cm data history was then imported to MATLAB, while the Fluent data and case files

were imported to Tecplot for data analysis.
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CHAPTER 7

CFD PARAMETRIC STUDY

7.1 CL-CD Data Study

The entire data history was imported to MATLAB for every trajectory run and

the plots for aerodynamic lift and drag coeficients CL and CD were obtained over

the 51st cycle. Also, CL values were averaged and plotted over each cycle to study

the convergence of CL over a flapping cycle. The CL-CD plot can be observed in two

halves; downstroke upto a 500th of a second and upstroke from there on.

1. Elliptical Flapping Trajectory

Fig 7.1 shows the CL-CD plot over the 51st cycle of the elliptical trajectory

run. It can be seen from the CL plot, both the strokes produce net positive

values. However, the maximum value is reached during the upstroke which

suggests that the upstroke contributes largely to the CLavg value. CD For the

downstroke, the CD has a peak in the postive region while the upstroke brings it

down to the negative region. This can be interpreted as the upstroke being the

contributer to the thrust. Fig 7.2 shows the convergence plot for CLavg values.

There is a steep decline in the value for the first few cycles. The value picks up

and again declines gradually to a lower value.

For 51st cycle,

CLavg = 0.0011; CDavg = 6.122e−4

2. Straight Line Flapping Trajectory
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As seen in fig 7.3, the CL plot during the downstroke has two peak values

with left slightly smaller than the right. This is primarily because during the

downstroke, the wing pitch increases from zero at the start to a certain value

before decreasing again to zero. So there are two points at which the wing will

have same pitch angle thereby giving the required peaks in CL values. However,

for the first peak, there is a downwash on the wing due to the increasing wing

pitch which lowers the CL value. As for the second peak, there is an upwash due

to the decreasing pitch angle thereby giving a slightly larger value. Similarly it

can be explained why one can see a larger peak in CL value at the start of the

upstroke. The CD plot for this case follows a similar pattern as in the elliptical

case, but giving a lesser value. Fig 7.4 shows the CLavg converging to a slightly

higher value than the elliptical case.

For 51st cycle,

CLavg = 0.0012; CDavg = 1.492e−4

3. Figure-8 Flapping Trajectory

Fig 7.5 shows the CL-CD for the Figure-8 flapping trajectory. The CL plot

shows a sinusoidal beahvior for both the strokes, with the values fluctuating

between the negative and positive region. The CD values increases at the start

of downstroke before decreasing to a negative value. The plot behaves in the

exact inverse way for the upstroke, in all giving a net negative CD. Fig7.6

shows the CLavg value decreasing steeply for the first 5 cycles before declining

very gradually to a lower value.

For 51st cycle,

CLavg = 0.0003941; CDavg = −1.126e−5
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4. Flapping Trajectory from Ueno et al. [2]

As seen from fig 7.7, the CL plot also has a sinusoidal behavior, but since the

left lobe is bigger than the right lobe, CL value is higher in the first peak than

in the second peak. Similarly, in the CD plot, there is a pronounced curve for

the downstroke than in the upstroke. It can be seen from fig 7.8 that the CLavg

convergence plot beahves the same way as in the Figure-8 trajectory.

For 51st cycle,

CLavg = 0.0006356; CDavg = −1.625e−4

7.2 Contour Plot Study

Fluent data and case files were imported to tecplot and contour plots for all the

trajectory runs were studied. It was found that the results for all the cases could be

best explained using the velocity vector plots. Figures 7.9 to 7.12 show the velocity

vector plots for each trajectory. It can be seen from the figures that there are two

counter-rotating vortices set up in the flow. The red solid circle in the figures shows

the origin of the vortex while the curved arrows show the direction of vortex rotaton.

These vortices might be a result of wing flapping for a period of 51 cycles.

Since the wing is flapping continuously in a bounded region, the air around it is

nearly stagnant. The wing motion creates a vortex pattern in the flow. The viscous

effects in the flow are not high enough to dampen the vortices. Furthermore, the

low inlet air velocity of 0.01m/s is not able to push the vortices away from the wing.

The building up of the vortices could be the reason of the declining values of CLavg

for each trajectory. The vortex strength kept on increasing with each flapping cycle

thereby reducing the CLavg value for each cycle.

However, the locations of vortices for each trajectory is different. This explains

the different lift coefficient values for every trajectory. It can be seen from fig 7.11
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and fig 7.12 that the vortex locations in these cases are above the wing location, while

fig 7.10 shows that both the vortices are located below the wing location. As noted

in the previous section, the straight path gives the maximum CLavg value and the

Figure-8 path gives the minimum value.
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Figure 7.1. Aerodynamic coefficients plot for 51st cycle of elliptical trajectory.

Figure 7.2. CLavg convergence plot for elliptical trajectory.
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Figure 7.3. Aerodynamic coefficients plot for 51st cycle of straight line trajectory.

Figure 7.4. CLavg convergence plot for straight line trajectory.
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Figure 7.5. Aerodynamic coefficients plot for 51st cycle of Figure-8 trajectory.

Figure 7.6. CLavg plot for Figure-8 trajectory.
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Figure 7.7. Aerodynamic coefficients plot for 51st cycle of flapping trajectory from
Ueno et al. [2].

Figure 7.8. CLavg plot for flapping trajectory from Ueno et al. [2].
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Figure 7.9. Velocity vector plot for elliptical trajectory.
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Figure 7.10. Velocity vector plot for straight line trajectory.
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Figure 7.11. Velocity vector plot for Figure-8 trajectory.
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Figure 7.12. Velocity vector plot for flapping trajectory from Ueno et al. [2].
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CHAPTER 8

CONCLUDING REMARKS

8.1 Summary

This research work presented the development of a nonlinear dynamic model

that would give an accurate representation of the aerodynamic forces and moments

acting on a flapping wing micro air vehicle for its complete flight dynamics study.

The research was carried out in two segments:

• Nonlinear Dynamic Modeling and Simulation

• CFD based Parametric Study for Aerodynamic Model Development

The first segment started with a creation of a design model of the flapping

wing MAV to be used for the study. MAV design model was based on Drosophila

Melanogaster, an insect commonly known as fruit-fly. The model consisted of three

rigid bodies; a main body and two wings with appropriate measurements. Different

frames of reference were defined for the MAV and the equations of motion were

derived using the first principles. The next step involved open loop simulation of the

nonlinear dynamics using the aerodynamic model adopted from the open literature.

The study of the simulation results showed inconsistencies in the boundedness of some

parameters and effectuated the need for a new aerodynamic model.

The second part involved a CFD based parametric study of different flapping

trajectories made by 2-D wing section of MAV to determine the variables required

for the new aerodynamic model. A computational grid was created over a 2-D wing

section. Four trajectories were generated using parametric functions. Unsteady in-

compressible Navier-Stokes equations were solved on an unstructured dynamic mesh
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for different trajectories using CFD solver with user defined functions. Experiments

were run for 51 cycles of flap and the data was post-processed for the parametric

study. The study showed that for all the flapping trajectories, the values of average

lift coefficient CLavg started at a higher value at the begining of the flap but gradually

converged to a lower value as the number of cycles increased. It was seen from the ve-

locity vector plots that this behavior was due to the presence of two counter-rotating

vortices set up in the flow field due to continuous flapping. The location of this vortex

pattern differed for each trajectory and so did the CLavg values.

A thorough sensitivity analysis needs to be performed vis-a-vis the parameters

such as flow velocity, flapping frequency and mesh outer boundary to further inves-

tigate the development of flow field and its effects on the production of aerodynamic

forces. This will help a great deal in determining the required variables for the new

aerodynamic model.

8.2 Future Work

8.2.1 Nonlinear Dynamics with multi-body constraints

Mass and inertial effects of wings of the flapping wing MAV were neglected while

deriving the nonlinear dynamics for simulations. This was a justifiable approximation

since the wings contribute to only 3% of the total mass of the MAV. However it would

be very interesting to observe if there is any change in the dynamic behavior of the

MAV if these effects are included. The step in this direction would be to derive the

nonlinear dynamics for this this multi-body constraint problem.

8.2.2 Determination of Variables for New Aerodynamic Model

As mentioned in section 8.1, the immediate goal is to study the effects of dif-

ferent parameters on the development of flow field around the flapping wings of the
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MAV. This would be beneficial in coming up with a set of variables for the new aero-

dynamic model. Also, computational analysis of 3-D wing flapping motion would

be looked into and steps to specify a correction factor for the 2-D case would be

performed.
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