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ABSTRACT 

 
MULTI-VARIABLE MODEL OF A NEURAL NETWORK BASED WEATHER FORECASTER 

USING 2-STAGE FEATURE SELECTION 

 

KUNAL VORA, M.S. 

 

The University of Texas at Arlington, 2012 

 

Supervising Professor:  Prof. Micheal T Manry 

This thesis proposes a novel approach for designing a neural network based forecaster that 

predicts more than one variable at a time. A second order two stage neural network training 

algorithm is used that employs orthogonal least square for training the output weights. 

In order to reduce the size of the network and train the forecaster optimally it uses time-domain 

feature selection and KLT transform based feature selection. The forecaster works well and the 

feature selection reduces the number of required inputs on the order of 70 %. 
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CHAPTER 1 

INTRODUCTION 

1.1 Scope of neural networks and research 

 Neural networks have now become an important tool for non-linear system analysis, 

approximation, detection and control. Applications extend from non-linear control [55], [56], to 

target recognition [57], [58], to text processing and reading [59], [60], to remote sensing [61], 

[62], all briefly mentioned in [1]. Here we shall give a brief introduction on the important 

functions that neural networks are able to emulate within certain capabilities.  

Pattern Association and Recognition - This problem is posed in the statistical sense by a 

(Ideal) Bayes classifier that can discriminate between the patterns belonging to different 

classes. The neural networks are capable to do the same either by using the polynomial basis 

formulation like a functional link network, or a multilayer perceptron which tunes the non-linear 

basis function during the training process. It is this capability of the neural networks that makes 

it the most valuable tool for applications like face recognition [65], [66], fingerprint recognition 

[63], [64], and speech processing [67], [68]. 

Function Approximation - Function approximation application of the neural network is the 

most widely used of its all application areas. This includes the estimation, prediction, inverse 

modeling or system Identification. Above three are basically input-output mapping where vector 

‘x’ is mapped to ‘d’ by an invertible mapping ‘Y’ as defined below. And ‘y’ is the approximated 

function for ‘Y’ using a neural network,   is the approximation error- 

d Y   ,   Y 1 d  

 Y            ,for all   

(1)  
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Controller Design - The controller design of a non-linear plant is basically an inverse design 

problem. This architecture of the neural network basically uses the Reference signal and the 

feedback of the plant thereby generating the error signal. This error signal is the used to tune 

the parameter of the controller during the training process which most of the times is online type 

thereby generating a control input which is feed to the plant. This kind of learning is also 

subdivided into direct and indirect learning. Such networks are mostly recurrent networks. 

 This thesis falls in the category of the function approximation. The problem can be posed as an 

estimation or as a prediction. The major difference is in the time steps used for training. In 

estimation mostly we estimate current value while in prediction we try to estimate a value ahead 

in time.   

1.2 Recent Research  

 The training algorithm for neural network are mostly oriented towards improving the 

training by tuning the hidden weights more, trying to keep the size of network as small as 

possible, in order to improve the computation efficiency. Large neural networks can definitely be 

used where needed, but in order to keep it possible to research on standard compilers and 

standard machines we try to keep the size of networks optimal. The most common algorithms 

used during the trials are 1st order algorithms like conjugate gradient to solve for output weights 

and back propagation to tune the hidden weights. We have also worked on the application 

based useful version of these algorithms which can be found on the [15].  

The main problems that are found with 1st order algorithms are number of iterations being very 

large, there is no certainty of the networks being trained within a given time, while second order 

algorithms face the problem of inverting the Hessian matrix. The version of hidden weight 

optimization using multiple optimal learning factor [3], [4] algorithm that we use is the one in 

which the Hessian being collapsed, which has a very positive effect on the training. The 2nd 

order algorithms like Newtons algorithm and others like Levenberg Marquadt [4] have also been 
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worked on in [2]. Other versions of training algorithms with complex hidden weights training is 

worked upon in [3], [4]. Clustering based algorithms like Radial basis functions and Piecewise 

Linear Network training algorithms were worked in details in [5] and [6]. The present version of 

algorithm that is used in the following thesis is a modified version of the Ortho-normal Least 

Squares with optimal ordering (for output weights), which has been customized to incorporate 

pruning. For hidden layer training, in order to accelerate training, we shall use an optimized 

version of Back-Propagation with multiple optimal learning factors as developed in [4] and [3], 

but modified again to reduce the size of networks with each iteration, till we find an optimal size 

of network. The concept is very close to pruning. But in the application of forecasting, since we 

wish to have more accuracy then optimal size of network we may sometimes have to 

compromise on the size of network being big, because we may not wish to throw away certain 

hidden units after training. We shall deal with this in details in later sections. Also a different 

approach of one forecaster for one hour of the day has been employed in [54], [23], [25] which 

can face problems of memorization due to availability of less number of training patterns. 

1.3 About This Research 

  The problem that is addressed in this thesis is the one of forecasting/prediction 

of weather variables including air temperature, dew point temperature, relative humidity, solar 

radiation, wind direction and wind speed.  

 This problem of prediction has been attempted and successfully addressed previously. 

A group has addressed the problem rather statistically for the purpose of wind power 

generation. In their paper [7] they have given an account of number of methods. [8] has 

addressed the problem of forecasting/predicting any non-linear multivariable process using the 

neural networks approach. Thereby they have demonstrated the black-box modeling capability 

of neural networks for prediction using parametric estimation. Today the use of machine 

learning using the neural networks is also being made widely for finding the future effects of 

pollution on the ozone. Prediction of atmospheric parameters, and weather variables is also 
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becoming an important part of geological research. In [9], a group has used the feed-forward 

neural networks approach coupled with pruning to do air-quality prediction. The group in paper 

[10] has given a detailed account of prediction using the neural networks. [11] also has 

addressed the issue of temperature forecasting. Any variable prediction can be independently 

addressed using the time-series forecast. This has been accounted for in [12] for exchange rate 

forecasting.   

 

1.4 Organization of chapters in this thesis 

 Chapter-2 elaborates on the behavior of individual input variable’s and their correlations 

plots and the pre-processing of each variable. In chapter 3 we discuss neural network training 

and the memorization problems and ways of avoiding them. In chapter 5 we discuss both the 

feature selections, time domain feature selection (PLOFS) and transform based feature 

selection. Chapter 5 will also show some results and error values and plots for PLN feature 

selection. 

  Chapter 6 has all the important results. Results will be represented separately 

for individual and then prediction obtained from the multivariable network will also be shown in 

this chapter. Multivariable network and single variable networks give almost identical 

performance, thus demonstrating the eligibility of concept of multivariable network. This section 

will also show the plots of error against the number of hidden units obtained due to Optimal 

ordering in OLS, thereby helping us to find the optimal number of hidden units needed in the 

network. 

There is an appendix in the end which has the theory of Gram Schmidt Ortho-Normalization. 
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CHAPTER 2 

DESCRIPTION ON WEATHER RELATED VARIABLES 

 In this chapter, section 2.1 we show some correlation sequences and relation between 

all types of variables using plots of autocorrelation, correlation matrices, just to demonstrate the 

behavior of each variable. We will show some pre-processing techniques for removing the high 

frequency noise from the data. Such noise makes forecasting the time-series extremely difficult. 

Then we show some important preprocessing method for each variable before training.  

 2.1 Description on the behavior of the variables 

 The problem at hand is to predict the five variables that we have decided to use for this 

research. The five variables are, air temperature (v1), relative humidity (v2), magnitude of wind 

speed (v3), wind direction (v4), and solar radiation (v5).  Before we go to neural network training 

for the predictor, we need to understand the behavior of these variables. This discussion in this 

section does not involve anything but intuitive understanding of the relation between the given 

any two variables and between the variable and itself (regression). With help of the comparative 

plots and the plots of the auto-correlation and cross-correlation of the variables, we can say 

something about what the predicted values of the variable should look like.  

The cross-correlation sequence between two time series is as defined: 

 v1v  m   
1

 
   v1 n m  v  n 

  m 1

n 1

 (2)  

The auto-correlation is a special case of cross-correlation defined as: 

 v1v1 m   
1

 
   v1 n m  v1 n 

  m 1

n 1

 (3)  

This quantity in case of weather related variable is a very useful quantity for prediction.
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Heuristically the value of variables like temperature, solar radiation and humidity will be pretty 

closely related or highly auto-correlated with the values of same variables 24 hr before. To say 

that the two values will be just scaled version of each other will be true to a very large extent. 

This same principle can be extended at annual level i.e. the average temperature is ought to be 

higher during summer of each year and will be less as winter approaches. Wind speed and 

direction will not fall in this category because they are really very random as will be seen from 

their plots coming later.  

The temperature plot for 250 hrs of Madras location for year 2006 is shown below. For finer 

comparisons we shall take blocks of small lengths of these variables and try to observe some 

behavior closely.  

 

Figure 2.1 Temperature Measurement for 250 hrs 

As such temperature alone may not show any periodicity. But if we look at the same 

temperature measure in the light of the effect of solar radiation then it will be visible that the 

peaks of both of them matches very closely as shown in figure 2.3. 
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Figure 2.1 Solar radiation variations for 250 hours 

 

Figure 2.2 Temperature against solar radiations for 250 hours 

In the same manner the relative humidity will be related in the opposite way. As the temperature 

rises the relative humidity would in general reduce as shown in the figure 2.4. 
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Figure 2.3 Temperature against humidity variations over 250 hours  

As seen from the plots that rise in temperature is related to solar radiation while the rise in 

temperature leads to reduction in relative humidity. Also as shown from the figure 2.2 the solar 

radiations show a periodicity of 24 hours. So somehow this would lead to periodicity of 24 hrs 

into the temperature and relative humidity. This makes prediction of this variable a little easy. 

But if we look at figure 2.5 which shows the direction and speed of wind, then we see that no 

such periodicity of relation is observed at all. The measurements of the direction as mostly 

available are measured by scattero-meter. This gives measurements in degrees. This variable 

can be better understood in modulated form. Degree scale is not directly usable. The reason is 

that a slight change in wind direction causes a large discontinuity in the measurement as in 

figure 2.5. Besides, this variable is a circular variable. As seen from the figure 2.5 the direction 

has been converted to radian form between -π to π. Even then, at certain points where the wind 

completes a rotation of 360 degrees, there is a discontinuit  of  π radians as seen from the 

plot. For this reason we need to use an un-warped version of direction measurement, giving us 

continues version of the signal. 
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Figure 2.4 Wind speed and direction variation over 250 hours. 

 This treatment is a sort of post processing that we will need to do before the error 

calculation after the prediction is done. We shall show the details in section 2.3. For now, to 

understand this variable it will suffice to say that we modulate the sine and cosine of the wind 

direction with the magnitude of wind speed, thereby representing it in polar form.  

Coming back to other 3 variables, as mentioned before the auto-correlation sequence of these 

variables is worth looking into at least once and thereby understanding the relation. Figure 2.6, 

2.7, 2.8 shows the auto correlation of the temperature, relative humidity and solar radiation over 

24 and 100 hrs respectively. It will be easy to spot out that the value of measurement 24 Hrs 

apart are highly correlated, and that the same pattern is repeated over everyday, but with 

decreasing weight as separation in time increases. Later on PLN based time domain feature 

selection will justify this fact. It need be said here that the correlation sequences we are plotting 
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are all normalized correlation sequences, i.e. maximum is ‘1’ and minimum will be ‘0’ scaled 

accordingly. 

 

Figure 2.6  Normalized Auto-correlation plot of temperature for 25 and 100 hours 

 

Figure 2.5 Normalized Auto-correlation plot of humidity for 25 and 100 hours 
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Figure 2.6 Normalized Auto-correlation plot of solar radiation for 25 hours and 100 hours 

Apart from this, the same pattern of correlation also exists at annual level. This means that the 

average values of temperature, relative humidity and solar radiation for the 2nd month of this 

year is highly correlated with the 2nd month of previous year. We had availability of data over 6 

years and the auto correlation of this these variables over six years is shown in figure 2.9, 2.10. 

It is seen from the figures that there is high correlation between the data of same month every 

year. As the years go further this correlation keeps reducing. 
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Figure 2.7 Normalized Auto-correlation plot of temperature for 6 years 

 

Figure 2.8 Normalized Auto-correlation plot of relative humidity for 6 years 

The relationship that we tried to depict in figure 2.3 and 2.4 can also be solidly stated by 

showing the cross-correlation plots between solar radiation and temperature, and temperature 

and relative humidity. Figure 2.11 and 2.12 shows these plots over a 100 hr period.  
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Figure 2.9 Normalized Cross-correlation between temperature and humidity for 100 hours 

 

Figure 2.10 Normalized Cross-correlation between temperature and radiation for 100 hours 

Observation can be made from figure 2.11 that since the cross-correlation starts with the 

minimum value at zero and goes to maximum, the relative humidity has an inverted relationship 

with temperature.  Same thing can also be observed from cross-correlation between solar 

radiation and humidity (not shown here). At the same time a slight shift from zero in figure 2.12 

shows that measurements of temperature are highly correlated with the measurements of solar 
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radiation which were  a few hours in past. Intuitively, this means that rise in solar radiation 

causes the rise in temperature only after an hour or so! That seems pretty practical. This kind of 

auto-correlation and cross correlation does not seem to apply to the wind magnitude and wind 

direction because they are seen to be highly random with abrupt changes figure 2.5. For this 

reason in section 2.3 we will show how to treat them, using modulation and using time variable 

as input in the neural network.  

2.2 Initial treatment 

 One problem faced by researchers in this area is to get authentic data, which has not 

been manipulated by the websites on which the data is found. Also most of the data found has 

lot of  ‘MISSI G’ ,’BAD’ values or the measurements are not available at all, ma  be because 

the station is down or sensor fails etc. Missing or bad values have to be either removed from the 

data or a new section of data is used altogether. Care has to be taken that during training these 

bad values are not encountered during the training. The data for current thesis is downloaded 

from [16]. 

 The data available on web page [16] has certain format which is shown below. As 

mentioned in previous section we have 5 variables- column 1 is v1 which is temperature, column 

2 is relative humidity which is v2, column 3 is dew point temperature which we shall not use 

because its behavior is same as v1. Column 4 and column 5 are wind direction (v3) and wind 

speed (v4) respectively which we will encode in cartesian form as v4·sin(v3) and v4·cos(v3) and 

column 6 is v5 which is solar radiation. The number of data point that we have downloaded for 

the research are for 6 complete years which means that hourly measurement makes it 2190 

days of data i.e. 52561 measurements. In this section we shall discuss the problems with the 

data downloaded from the web and in the section 2.3 and 2.4 we shall discuss the solutions to 

such problems jointly which are implemented in the form of pre-processing.  

 Figure 2.14 shows some location which has ‘BAD’ measurements. For the sake of 

simplicity, heuristically we replace such values with the values which are 24 hrs prior to that 
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measurement. Also in this section we show that this data need pre-processing so we cannot 

leave these bad values as they are. Since the number of such values is not very large, this 

replacement do not make any significant impact on the training process. This is the first problem 

and its solution is not so difficult. Other problems are now discussed.  

 Looking at the nature of these variables and we find that a few of them need some 

processing. This processing depends totally on the data that we get on the web [16].  

 

Figure 2.11 Rawdata downloaded from [16] 

 

Figure 2.12 Rawdata with bad values 

 If the data we find on web is well conditioned or smooth than we need not do this 

processing. We found that the data on the above given web page had some discontinuities and 

roughness. So we decided to use a 1st order moving average processing [53] before we form 

the training file out of this data.  This moving average process is used as given below- 

v1 n  0.  v1 n  0.  v1 n 1  (4)  



 

 16 

 This data-processing is very common for such kind of application [53], and as shown in 

the figure below; only temperature time-series was processed in this manner. Rest of 4 

variables did not need such processing. The same 250 hours of temperature values are shown 

in figure 2.15 and readers can make it out that all that this processing does is smoothing the 

time series keeping the behavior  of time-series same.  

 Another problem after the MA processing that this variable v1 faced was the bias. Even 

the v2 and v5 also faces the same problem. It is obvious that the average values of the 

temperature, radiation and humidity are not the same from one month to next or from one day to 

next. Also average temperature for summer is not the same as in winter or monsoon or spring. 

Due to this these variables have a bias in them. For this reason after the pattern formation is 

done we shall need to use the mean removal and separating means approach which is the 

standard approach to deal with this problem. 

 Apart from this other variables have their own problems. As we mentioned just before 

we will encode the wind speed and direction as cartesian form. The sole reason to do this is that 

as you will be able to see that in column 4 the direction is in degrees. This causes a large 

discontinuity of 360 degrees from 360 to 0 or 0 to 360 when the direction is treated and an 

angle or the phase of the signal. Such discontinuity can be handled of course by neural 

networks but it will unnecessarily need a few extra hidden units. This will increase the size of 

neural network which are going to need to be as small as possible for the combined forecaster 

that we are proposing in this thesis. As such dealing with all 5 variables or the multi-variable 

model of this forecaster is already going to be large and so we don’t want to add more units to 

it. Besides we will see in chapter 3 how the large number of hidden units calls for larger number 

of iterations for training. For this reason modulation or encoded form of this variable is 

necessary. Now since we pre-process using the modulation we need special post processing 

after prediction is done. In order to bring it back to phase form or 0 to 360 form the post-
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processing will be described in next section which shows how to deal with the warping problem 

when we use arctangent function. We shall now elaborate the solutions to these main problems. 

2.3 Useful Encoding Of Discontinuous Variables To Form Training Data 

 This section deals with few of the most important points needed to be mentioned before 

the measurements are used for forming a training file for neural network. In this section we 

basically reveal the most complex of all input variables. This variable is the wind speed and 

wind direction measurement. As seen in figure 2.13 the wind speed data is really very rough 

(columns 8 and 9). The changes from one hour to the next are very large. 

 

Figure 2.13 Temperature variations before and after moving average processing 

At the same time the wind direction measurements are in degrees and after conversion to 

radians as in figure 2.5 still there are discontinuities from –π to π or the other wa . We must 

understand the behavior of the wind direction variable before we start using it for prediction 

purpose. First thing that we would notice about it is that it is circular variable. It is not periodic at 

all. The circular behavior of this variable is shown in figure 2.16 which is a rose or a compass 

chart plotted in MATLAB.  The direction of the wind can therefore be considered as a phase of 

the signal [23], [24], [25], wind speed being the magnitude of the complex number. In order to 

predict the correct phase of the system we need to use the unwrapped version of the phase. 
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The unwrapped version of the phase over a large time period of 250 hrs looks as follows in 

figure 2.17.  The processing of the wind speed and direction is therefore done in a modulated 

manner. As mentioned before v3 is the wind speed and v4 wind direction in radians between –π 

and π. The neural network input form that we will use to form the patterns for training will be 

then as follows- 

 3 v3 cos v4 ,  4 v3 sin v4  (5)  

 

 

Figure 2.14 Rose chart/polar plot for 4 separate days of wind variations 

 

Figure 2.15 Plot of unwrapped phase/direction of wind.  
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 This form of inputs can be feed to neural network as two separate inputs [54]. The 

number of inputs in the neural network would remain the same because we converted 2 

variables of magnitude and phase into the 2 new variables real and imaginary part.  The actual 

difference that this modulation would make will be visible from the difference between the auto-

correlation plots of wind speed and wind direction in radians and auto-correlation plots of the 

real and imaginary parts of wind that we formed by the previous equation. Figure 2.18, 2.19, 

2.20, 2.21 show these correlations over 6 year period.  

 

Figure 2.16 Normalized Auto-correlation of wind speed for 6 years before modulation/encoding 

 

Figure 2.17 Normalized Auto-correlation of wind direction for 6 years before 
modulation/encoding 
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Figure 2.18 Normalized Auto-correlation of imaginary part of modulated/encoded wind for 6 
years  

 

Figure 2.19 Normalized Auto-correlation of real part of modulated/encoded wind for 6 years 
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 As it is visible that the large difference that we are making into the auto-correlation 

sequence of the variable by modulation. Figure 2.20 and 2.21 look pretty much in same form 

with 6 lobes alike figures 2.9 and 2.10. The lobes show that the measurements over the months 

of the year are correlated with each other from one year to the next, thereby making it useful for 

the prediction. No such lobes are seen in the figure 2.18 and 2.19. 

 One another most unique point about the method of prediction or neural network 

training that we are using is the use of time inputs. As shown in figure 2.13 the day, date, and 

the hour of the day are also encoded using the sine and cosines for making them useful for 

prediction. We first convert the month number of the year and the date of the month to the day 

of the year scale. This converts the date in figure 2.13 to 0 to 1 scale. Identically we convert the 

hour of the day to 0 to 1 scale. We use sine and cosine of these values [54] as follows- 

 6 sin  do    
π

36 
      cosine  do    

π

36 
   

do  da  of the  ear between 0 and 36  

(6)  

 8 sin  hod   
π

 4
   9 cosine  hod   

π

 4
   

hod hour of the da  between 0 and  4 

(7)  

 This gives us a way of keeping a track on what kind of changes in the variable took 

place at what time of year and what hour of the day. The figure 2.22 shows the modulated wind 

signals which look much smooth than what we saw in figure 2.5. Another advantage that this 

modulation will have is related to neural network principle component analysis. As seen in figure 

2.5 the magnitude of wind and direction both will have positive numbers forever. These 

variables need to be preprocessed so that mean value of it over all training patterns is close to 

zero or at least be small as compared to its standard deviation. If all the values are positive, 

than weights of the ANN in the hidden layer can only increase or decrease together. This will 

slow down the back-propagation as the change in weight vectors can only be possible by going 
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to and fro across the error surface .But only after this modulation we get positive and negative 

numbers.  

 

Figure 2.20 Variations in real and imaginary part of modulated/encoded wind for 250 hours 

Now since we use the modulated version of the wind variables we also need to do some post-

processing after the prediction obtained from the ANN undergoes reconstruction (elaborated in 

chapter 4). This post processing is simple as follows. 

v3   3
 
  4

 
  v4 atan  

 4

 3

  (8)  

This ‘atan2’ includes the correction factor which is defined as follows. 

atan  
 4

 3

  arctan  
 4

 3

   3 0 (9)  

                                             π arctan  
 4

 3

   4 0, 3 0 (10)  
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                                                    π arctan  
 4

 3

   4 0, 3 0 (11)  

                     
π

 
  4 0, 3 0 (12)  

                        
π

 
  4 0, 3 0 (13)  

                                                                   undefined  4 0, 3 0,totall  unlikel  (14)  

                                            

Even after this is performed we will need to unwrap the phase of the calculated v4. Unwrapping 

this signal of phase in order to get a signal with no or rarely and 2π discontinuities is important 

post processing part in treating the v4 variable, because these large discontinuities will 

contribute to error which will then be large. So after the phase signal is retained by atan2 as 

above we use the following algorithm for unwrapping the signal and then time domain prediction 

error calculation-  

Assuming that the first sample phase is less than π/2. We start from second sample. We 

calculate the difference of phase between two consecutive (previous) samples (current sample 

and sample immediately to left of it). 

 If this difference is larger than +π then we subtract 2π from the sample itself and from 

all the samples to the right.i.e. keep an account of number of 2π added and add that 

many to all the samples coming in future. This will increase the magnitude, but as such 

2π rotation does not change where, in space, the direction is pointed towards.  

 If this difference is less then –π then we add 2π to the sample itself and to all the 

samples in its right i.e. coming in future. 

Even after this process is done there may still be some discrepancy. The problem is that when 

we calculate the error between the predicted phase and the actual phase, both are to be 

unwrapped using the above method. In that process it may happen that the unwrapping may not 

give same phase signal for both the signals, but will be 2π apart. As such it is not a problem 
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because this difference is always then a multiple of 2π. This is an inherent problem in phase 

estimation. So we use modulo operation in calculating the error i.e.  

 rror i   v4 i  v4  i    π (15)  

 Here ‘i’ stands for sample number. What this does is if there are any extra 2π rotations 

they will be removed and the error will be brought down and will actually represent the error in 

pointing the direction. As such an error of 2π means an error of zero. We shall see the positive 

effects of this post processing of phase signal in chapter 5 where we shall put the results and 

plots of predicted and expected signals against each other. 

 Another small thing about the relative humidity is that, since it is measured in 

percentage we convert it to 0 to 1 scale by division by 100. 

2.4 Mean removal and separating mean 

In order to attend to the problem of bias we use the technique of separating mean after the 

pattern formation in time domain is done. Assuming the dimension of input vector is N (we will 

see later that this is the input space dimension initially in time-domain). Nv is the number of 

patterns for training. If xp is the input of dimension N and tp is the desired output of dimension 

M. Then two processes as in [69] are as follows- 

Mean Removal- 

mi  
1

 v

  xp i 

 v

p

 (16)  

 

xp i  xp i  mi (17)  

Separating mean- In this process, as mentioned below, the means of the input of each pattern 

is subtracted from each of the output pattern. This calls for a separate post-processing step 

where in we add this mean of the each (training and testing and also during the normal 

processing) input pattern after the reconstruction of outputs is done by inverse KLT.  
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mp  
1

 
  xp i 

 

i

  (18)  

tp    tp    mp    from 1 to M (19)  

These processes will remove any bias in any pattern as well as makes the input pattern zero-

mean. This also makes the compression easy because if all the inputs are zero mean then the 

correlation matrix and covariance matrix are essentially the same. More importantly if we use 

this mean-separating method than we need to add the mean values of each respective pattern 

to the predicted output values. If we let  
p
 to be the approximated output from a trained neural 

network then the actual output  
p
 is defined as follows- 

 
p
     

p
    mp    from 1 to M (20)  
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CHAPTER 3 

NEURAL NETWORK TRAINING  

 In this chapter, section 3.1 we shall go through the basic MLP notations and structure. 

We shall also go through in detail the Back Propagation algorithm as in [17]. Then we shall also 

revise the OWO algorithm of OLS that we are using. The actual theory of Gram Schmidt Ortho-

normalization can be found in appendices.  In Section 3.2 we shall describe in detail the HWO-

MOLF algorithm developed in the lab by previous students like [4], [3]. In 3.3 we shall discuss 

memorization and way of avoiding it. 

3.1 MLP Notation And Basic Training Of OWO-BP 

 We shall start with an introduction on the general neural networks training paradigm 

and then specify in detail the notations that we shall use in the rest of this section. This section 

only deals with the training process that we follow for the forecaster. Of course a lot of 

preprocessing is done before the training is commenced especially in this case because we 

deal with variety of variables and also because we do not use the time domain data for training. 

In order to make the neural network smaller we use 2 stage feature selection and we use the 

KLT domain or these KLT features to train out network. Therefore the notation mentioned in this 

section for the neural network are that of the one which imply right before the training is to be 

started i.e. after the feature selection algorithms are already done.  

 We are using a MLP to approximate the non-linear function of forecasting. The figure 

for the same is given below if figure 3.1. The notation ‘xp’ is used for the input pattern number ‘p’ 

to the neural network and tp for the desired pattern number ‘p’ of the output. Index p of the 

patter runs from 1 to Nv. The dimension of xp is assumed as ‘N+1’ and that of ‘tp’ is taken as M. 

The notation ‘yp’ is used to represent calculated or approximated output, and it has same  
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dimension M as well. We shall use different indices to access the specific element in the vectors 

of these and many other matrices and vectors. These indices will be mentioned as and when 

required. We use the Nh as notation for number of the hidden units at the beginning of the 

training. The matrix Woh is used as the weight matrix connection hidden units to output units 

and Wih is used to represent the matrix of weights connecting the input to the hidden units. The 

dimension of Woh is M X Nh and that of Wih is Nh X (N+1). The weight matrix of bypass weights 

is Woi which has dimension of M X (N+1). We will access the input pattern elements as xp(N+1) 

and hidden units as Nh(k) while desired outputs as tp(i) and yp(i). The vector np(k) is used to 

represent the net function defined later. The Op(k) notation will be used for the activation 

function for the hidden units ‘k’. 

In general input pattern is considered as a vector [xp(1) xp    … xp(N+1)]. There are always N 

input elements as patterns and ‘1’ is used as the thresholding input representing the bias. We 

have used xp 1  as ‘1’.  

 
                                                                np(1)           op(1)                                                                
              xp (1)                                                                                                            yp (1) 
 

 xp (2)                                                                                                            yp (2)   
 
  

                                      
                                              W                                                     
          xp (N+1)                                                                                                           yp (M) 
                                                               np(Nh)          op(Nh)                 Woi 
 
             Input Layer                                  Hidden Layer                       Output Layer 
 
 

Figure 3.1 A fully connected MLP 
                                                                                                 
 The paradigm of training a MLP type neural network since [17] has that been of back 

propagation. Back propagation of algorithm basically uses the error between the desired 

function and the approximated function and derivatives of this error to train the layers of neural 

network. For a 3-layer network we take one backward derivative as mentioned in the following 

equations- 

Woh 
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1

 v

     tp i     p i    
 

 v

p 1

M

i 1

           i 

M

i 1

  (21)  

  i     
1

 v

    tp i     p i    
 

 v

p 1

 (22)  

The net function for k
th
 hidden unit np(k) is defined as – 

np k       wih k,n .xp n 

  1

n 1

 (23)  

           (24)  

There are plenty of activation functions that are being used today depending of application. 

Readers are referred to [1] for more about this. We are using the most common version of 

sigmoid function defined as below- 

 p k  f np k   
1

1 exp   np k  
 (25)  

The output yp(i) is calculated as follows- 

 
p
 i   woi i,n  xp n   woh i,k   p k 

 h

k 1

  1

n 1

 (26)  

 
 
               (27)  

         (28)  

             and             (29)  

Considering the above equation the output weights    can be solved using the gradient of error 

w.r.t output weights  
  

   
   This derivative of error w.r.t weights (gradients) is as follows-(bold E 

is the expectation operator) 

g m   
   i 

 w i,m 
    

1

 v

  

 v

p 1

  tp i   Wo i,k   p k 

   h 1

k 1

  p m   (30)  
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         c m,i   Wo i,k r k,m 

   h 1

k 1

  (31)  

 

Equating the g(m) to zero yields- 

       
 
 (32)  

   
1

 v

    

 v

p 1

    
 
 (33)  

   
1

 v

     

 v

p 1

   
  (34)  

This sets of linear equations can be solved for weights using any linear solver. Having defined 

these quantities we shall now go ahead with the basic Back propagation discussion given by 

[17]. We shall mention some theory and basic equations of gradient or back-propagation 

algorithms functioning.  

 The back-propagation algorithm is a version of gradient algorithm apart from others like 

1
st
 order conjugate-gradient and 2

nd
 order like Gauss-Newton and Levenberg [3], [4], [5]. The 

derivative of error function with respect to the weight function is defined as below. This is also 

considered as gradient of error. It basically defines the slope of error. We assume here that 

error function can be minimized by the gradual changes in the weights so that we can find a 

position in the weight matrix which can approximate the given outputs tp as close as possible. 

As in [17] the derivatives (when there are more than one layers (MLP), are called ‘delta’ 

functions. Each layer has a delta function which depends on the derivative of the error 

functions. Delta function for each pattern for each output, at the output layer for the MLP is 

obtained by the first derivative of the error function using the chain rule- 

  po i     tp i     p i    (35)  
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This delta or error derivative propagated backwards at the hidden units is derived again using 

the chain rule is given below. They are also called delta functions but these are defined for each 

of the hidden layers units- 

  p k   p
  k    po i  woh i,k 

M

i 1

,       p 1 ,  p   ,…  p  h  
 
 (36)  

 

  

 wih k,n 
  g k,n   

1

 v

    p k  xp n 

 v

p 1

 (37)  

   
1

 v

     .   
 

 v

p 1

 (38)  

The back-propagation algorithm modifies the parameters of the MLP i.e. hidden weights using a 

learning factor which is constant scalar or a vector. The weights of hidden units are gradually 

tuned to reduce the error function at the output yp(i). 

                z     (39)  

      z              (40)  

The learning factor z can be a scalar, a vector, or even a matrix depending on the adaptability 

desired as in [18], [19], [3], [4].This algorithm only uses the first order derivative of the error 

function w.r.t. to the weights. The back-propagation uses the first order derivative of the error 

with respect to weights, which is a Jacobian of size Nh X (N+1) computed as before. Second 

order methods with optimal learning factors will be elaborated in next section. 

 The training of the neural network goes on iteratively using the algorithm of OWO-BP. 

The OWO stands for any method that may be used for solving the output weights and bypass 

weights. This includes algorithms like conjugate gradient which is first order algorithm or may be 

even OLS. We shall use the later due to its inherent ortho-normal property and since we wish to 

prune a few basis functions (hidden units) later which do not contribute much towards 

approximation. The theoretical details of OLS can be found in appendix 1. The OWO algorithm 
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of OLS we are using is modified version of OLS with an optimal ordering vector. This is a step 

for pruning in order to find and optimal size of network. With these output weights being solved 

for each iteration, the error value at each output also change in each iteration. These new 

calculated error values are back-propagated through the hidden units activation functions, using 

the gradients of which, we tune the hidden units. This is what BP stands for. For now to 

understand, the BP algorithm updates the weights W using the G which acts as the direction of 

learning and the z which is the learning factor tells the size of the step to go in each iteration of 

the update. In primitive versions of the training the learning factor z was used to be specified 

heuristically while in [18] and in other profound algorithms the learning factor is calculated 

optimally using the first order and second order derivatives of the error with respect to the 

learning factor. The BP in its pure form is what [17] talks about. After him researchers [18] have 

generated their own version of BP which adds lot of adaptability to the modeling. The learning 

factor calculation that we are about to show in next sections uses the Hessian matrix to derive 

optimal values of learning factors. The MOLF or multiple optimal learning factor is even more 

adaptable as it means a ‘learning factor’ for each of the hidden unit neuron. With this kind of 

iterative OWO-BP going on, the error value at the output is seen to reduce drastically, meaning 

the MLP weights are adapting to approximate the given patterns at the output.  

One way of improving the convergence is to use second order derivatives or the hessians 

matrix. Newton method does that. 

New   ’s Me   d- 

Newtons method uses the second order derivative of the error function w.r.t. network weights. 

The weight updates in this algorithm is- 

        
  
              (41)  

H matrix in this algorithm is Nw X Nw , where Nw is the number of all the weights in the network 

(N+1+M)Nh+ (N+1)M.  
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The newtons method uses the quadratic approximation of the error function. This quadratic 

property is assumed to be with respect to the change in weights.  

Assuming this change as- 

e w  w (42)  

The Taylor’s theorem for expansion of this error approximation is- 

 ’       e       e    e 

Taking- 

  ’

 e
 0 (43)  

  ’

 e
       e 0   e   (44)  

w  w e (45)  

The inherent problem of calculating the inverse of this Hessian and the large size of Hessian 

makes the use of this method inappropriate for training process which is iterative. Thereby one 

way of applying this algorithm is only apply this inverse to the Hessian of the error with respect 

to only input weights. It is important to know the structure of this Hessian. The Ho is the hessian 

of the output weights whose dimension is ((N+Nh+1)·M) X ((N+Nh+1)·M). The off-diagonal 

component Hio may be rectangle of square matrices but in general of dimension (N+1)Nh X 

(N+Nh+1)M. 

   
     

      
 

  

  (46)  

This new hessian is Hr component of H.  The bypass weights and output weights are anyways 

solved for in the OWO part by OLS.  

Each element of the this new Hessian is then calculated as follows- 
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The second derivative will then be simply the auto-correlation matrix H (Hessian still)- 
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In this algorithm the learning factors are not derived but only assumed or heuristically used. This 

shall be furthered in next section when we discuss HWO-MOLF algorithm.  

3.2 Multiple Optimal Learning Factor 

 In this section we shall briefly discuss the Optimal learning factor z given in previous 

section for the second order algorithms. And then extend the approach for multiple optimal 

learning factors. This approach has been designed and implemented by others [3], [4] 

previously. So readers are referred to see them for detailed hessian analysis. Here we shall 

give the main equation of the optimal learning factor and the derivation for MOLF algorithm. 

What makes our algorithm different and special is that this algorithm is being used for back-

propagation in the hidden units along with the modified OLS which actually orders the basis 

functions i.e. the hidden units and bypass weights.  
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 Remember that gradient matrix derived in previous section was considered as negative 

of the direction in which the training should move. In that derivation we minimize the error 

function with respect to the weight matrix in order to get the new weight update through the 

hidden units. In order to derive an optimal learning factor we have to minimize the error function 

with respect to this learning factor [2], [3], [4].  

Expressing the error function as a function of the learning factor, using equation (19), and yp(i) 

as a function of the hidden weights which are expressed as function of the learning factor z- 
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Taking the first parital derivative w.r.t. the learning factor ‘z’- 
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The Gauss-Newton approximation of the second partial derivative is expressed as- 
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Using the derivative of the  a lor series expansion of the error as a function of learning factor ‘z’ 

and equation it to zero we arrive at the optimal learning factor as follows- 
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 (58)  

Of course many times this calculated OLF may not work as well as the heuristic learning factor 

used earlier. But what implies from this is that the elements of the reduced hessian weighed by 

the gradient elements can be used for calculation of the learning factor. If this learning factor is 

used to weigh the gradients, then it becomes a first order algorithm but with learning factor that 

is derived from the second order derivatives. But this derivation gives the mathematical support 
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for the Multiple optimal learning factor calculation which work better than most of 2nd order 

algorithms.  

 The motivation behind the MOLF [3], [4], [5] is the intuitive reasoning behind the 

pruning. Road map of pruning is that we look at the error function as a function of number of 

hidden units. The hidden units or the basis functions are, in each iteration, evaluated in order to 

check its contribution in reducing the error function values. Depending on the non-linearity to be 

approximated different hidden units contributes to a different level. And in that process, a few 

hidden units get tuned very greatly based on the input it responds to. At the same time, some 

hidden unit may not contribute to the approximation to a large extent resulting into, it being 

tuned/trained to a very small extent. So it will make more sense if we could train each of the 

hidden units based on its importance (or train all of them, and then remove least important ones 

during actual processing or testing). This is where we use the multiple optimal learning factor, 

where in we use one OLF for each hidden unit, so that we can tune each of them independently 

(from each other).   

 We shall now go through its derivation which is a step ahead from OLF derivation done 

previously. Here we have a vector zk instead of a scalar z. k runs from 1 to Nh. zk will be used to 

update weights w(k,n) associated with only k
th
 hidden units, but for all inputs. Therefore ‘n’ runs 

from 1 to N+1.  

Output yp(i) is expressed as a function of zk as well – 
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All other quantities remain same apart from zk. 
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Letting –  

 np e   xp n g e,n 
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 (62)  
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Now the second derivative of error w.r.t. the individual learning factor gives us the element of 

hessian we call        . Using separately and expressing second derivative as product- 
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 Superscript means 4
th
 dimension. Most significant part to understand here is that unlike 

the OLF case, here we have 2 separate indices(e and f) for each learning factor and 2 separate 

indices along the weight matrix(n and m). Therefore each element of Hessian Hmolf has to be 

accessed using 4 indices for given fixed e and f. The two gradient vectors are ge and gf have 

element going from 1 to N+1 for n. Therefore taking all hidden units, g will be a matrix(may be 
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non-square). The   
         is a reduced version of Hessian just like we had a reduced version 

of the Hessian in last section.   
         is a 2D matrix. Only difference is that, in last section we 

considered diagonal elements (such as 1 index from 2 by i=j), but here having 4 dimensions we 

have e=n and f=m to form the diagonal version of the 4D matrix. Each element on LHS is 

obtained be weighed gradients from the N+1 row and columns of reduced Hessian 2D matrix 

  
e  
 since n and m indices go from 1 to   1     

 Using the derivative of z using the Taylor expansion as in last section    can be 

calculated by inverting the Hessian        We do this using the OLS and solve for the vector of 

learning factor. 

          
  
 
    

        (69)  

Once these values of z vector are calculated then the back-propagation using these learning 

factors for the hidden units can be done. Thereby overall OWO(OLS) - BP(HWO-MOLF) 

algorithm is as follows- 

1. Initialize network 

2. Calculate net functions and solve for O/P weights and bypass weights by OLS (coming 

next). 

3. Calculate the  
     

    -   z1 , -   z  …, -   z h
  , Hessians and MOLF z (this also 

uses OLS). 

4. Update hidden weights 

w k,n   w k,n    zk g k,n  (70)  

 and go back to step 2. 

For further reading on detailed advantages of this algorithm please refer to [20], [4]. 

Brief discussion OWO-OLS with optimal ordering - 

Output weight optimization using OLS with optimal ordering [21]:  
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 The concept of the output weight optimization is basically that of a linear equation 

solver. The neural network is actually a non-linear function approximator. But the non-linearity is 

mainly hidden inside the activation functions and its derivatives that we use for hidden unit 

outputs and back-propagation respectively. Once the hidden unit outputs have been derived in 

each iteration, after the learning factor calculation and input weight updates, the output weights 

of the neural network are solved for by using any kind of linear equation solver. But ortho-

normality is always a favourable property that we wish to have in order to make sure linear 

independence of the outputs. For this reason OLS solution is used for solving for the output 

weights. Gram-Schmidt procedure is always a preferred in such cases. The theory behind it can 

be found in the appendix. But we need to use that process in a recursive manner, which is given 

in details in [21]. Again even an advanced version of this algorithm in which we actually order 

the hidden units and inputs separately is needed to be used.  

 The hidden units, as we mentioned are the basis functions once they are tuned to 

minimize the error function. People do use very large networks in very complex applications. In 

the case of prediction, as we will see in the next section, sometimes we need to use the data 

over last few days. Even if we use hourly measurements to do this, we end up having input 

patterns of dimension 100. At the same time the more values we want to predict ahead, larger 

will be the output patterns. So if we want to predict data for even one day ahead we will have a 

neural network with 100 inputs and 24 outputs in case of linear networks. Apart from this we 

have certain number of hidden units to process also, in each iteration. This will be the scenario 

for each weather variable. Now the predictor that we are proposing in this thesis is even more 

complicated and bigger. In section 2 we showed heuristically and by plots how the different 

variables are inter-related. The temperature and solar radiation and humidity all such variables 

are totally related to each other. So we propose a different forecaster in next chapter, which 

uses the input pattern of all these variables simultaneously. For 5 variables mentioned in 

chapter 2, this will lead to a very large network with large number of inputs and with large 
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number of hidden units as well. For this reason we wish to exploit the ortho-normality of the 

Schmidt process to actually order the hidden units and the inputs of the neural network 

separately so that atleast a few can be removed. This process of pruning the hidden units is 

also given in detail in [21].  

 Pruning is a kind of feature selection process that is applied to the network after 

training, during the validation. We call it post-training feature selection wherein we chose basis 

function. While in this thesis, we use time-domain feature selection already before the data is 

fed into the network. This time-domain feature selection is justified for reasons of memorization 

problems described in next section. But the point is, that since we do that feature selection (pre-

training feature selection) we do not need to do the pruning feature selection. In time-domain 

feature selection we actually try to find out, which hour of measurement is more important for 

predicting the measurements of the hours that we want. Once that is done, than using this 

OWO with optimal ordering will give us a further insight on whether we need pruning or not [22]. 

If during the OLS with optimal ordering we find error function value not being impacted upon by 

a few hidden units, than we need pruning, not otherwise. So using OLS with optimal order but 

no pruning is justified in this case of prediction application. 

 The theory related to this is given in [21] we shall not give the related mathematical 

treatment. The mathematical treatment for the OLS is given in appendix, which also gives the 

pseudo-code or the algorithm for coding this OLS which gives the optimal ordering of the hidden 

units and the inputs. Readers are recommended to refer to them in order to have a good 

understanding on that OWO part. 
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CHAPTER 4 

 MEMORIZATION AND WAYS TO AVOID IT 

 The problem of forecasting has been solved in different ways by a number of different 

researchers. The ideas of forecasting the weather variables have been also done. Most of the 

approaches referred to till now have their inherent problems and advantages. For example 

prediction has been a done in [23] for the application of load forecast. Similarly, [24] has done 

load forecast with a different perspective wherein they have used the specific samples to predict 

specific hour of measurement. They have also used weighing of samples for forecasting. While 

researchers in [25], [23] has used the approach of SVD-QR decomposition on the correlation 

matrix to select the most important inputs from the given input patterns. The different ways of 

approaching this problem has given out comfortably good results. But this thesis has a motive of 

finding a universal solution, a solution that can be used to predict all kind of weather variables, 

for all hours of the day, for all over the year. The problem approached by most of researchers 

has also been limited to predicting mostly temperature. We have been successful in predicting 

temperature, solar radiation, relative humidity, wind speed and wind direction. The best part is 

that we use the same network for all of them.  

 The biggest problem that most of the above researchers have knowingly or 

unknowingly faced in this problem of prediction is the problem of memorization without learning. 

In order to predict the variable to a better extent, most of the researchers end up using a 

network with a very large number of inputs. [26] gives an elaborate explanation of a relation of 

memorization with the number of inputs and the number of parameters or weights in the 

network. The size of the network plays the most important part in this problem. The best way to 

tackle this issue is to have a thin and a tall training file i.e. in other words try to have a very very
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large Nv and smallest possible N. The universal approximation theorem in [1], inherently 

maintains that there will be some error in the approximation i.e. the approximation cannot be 

100 percent accurate. So no matter how much prior data we use to predict the future values we 

will not be able to predict with 100 percent accuracy. Of course the training process has an 

impact on the error, but there is an inherent value of error which is independent to the kind of 

training performed and the network dimensions. This error is called the bound on the 

approximation. The concept of bound is now also as old as neural networks and so we will 

present some results of bounds which have already been derived by famous mathematicians 

and statisticians. These bounds are basically defined right from the time before we start training.  

 The bounds depend on the number of inputs, number of hidden units, the number of 

training patterns used for training, and number of free parameters or the weights in the network. 

This is where the concepts of curse of dimensionality, empirical risk minimization, structural risk 

minimization, validation of network and pruning play a very important role. Bounds and all of the 

above are ways of finding an optimal number of inputs, optimal number of hidden units, number 

of training patterns, validation patterns and also the number of iteration of training needed to 

approximate the given function most optimally and efficiently. For the problem of prediction we 

will use these methods only to justify the fact that time-domain feature selection, KLT domain 

feature selection, and the validation after training using the OLS with optimal ordering are of 

significant importance, in order to deal with the large size of network that we may end up 

getting. This is because, as mentioned before if we want to deal with prediction of all 5 variables 

(humidity, solar radiation, temperature, wind speed and direction) simultaneously, then we do 

have a large input and hidden space, and so finding the right size of both along the minimum 

number of iterations will help a lot to run the final product speedily on most of the standard 

compilers with good accuracy.  
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4.1 Memorization or Pattern Storage 

The predictor application of the neural networks is a function estimation model of MLP. 

Assuming that if x is the pattern taken randomly from an environment and also that this pattern 

represent the environment with negligible error (no misguidance/noise), the learning machine 

returns the output or the response t. Thereby {x,t} forms a training sample such that f(t|x). The 

MLP is a learning machine that is capable or made capable to implement such a function y(x,w) 

by training. Here w is an information vector/matrix which has a structure defined by N, M, Nh as 

well as type of activation function. Also w belongs to W which is a set of all such possible 

combinations of these structures. The neural network design is a task of choosing the specific w 

which will be able to implement this function y(x,w). The selection is based on the training set of 

Nv randomly independent observations, {x,t}. Thereby the risk minimization between the desired 

response t and response y(x,w) is called the training process or learning process. This risk 

function can be analytically defined for an observation as in [1] called empirical risk Eemp: 

 emp w   1  v    p    p,w  
 

 v

p 1

 (71)  

The main expectation out of the training process is that the machine should be able to 

generalize the behavior of the environment and not just memorize the patterns that are posed 

in front of it. Lagrangian interpolation wherein the Nv data points are exactly fit by the polynomial 

of degree Nv-1 is a classic example of memorization. 

Here we shall introduce some important terms for explaining the bounds on pattern storage 

capability of a neural network. This bound on the storage is a measure of minimum number of 

patterns that are needed to train a network with no memorization occurring. The first term is 

storage capacit  ‘ ’. It is the minimum number Nv of the random input vectors (patterns) that 

can be mapped exactly to corresponding desired output vector, thereby giving zero training 

error (memorizing). Second term is MMLP is the number of multiplies needed to process a 

random pattern through the network after the training is complete (for MLP it is Nh(N+M)+NM). 
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This value is a true representative of the size of the network. Greater the MMLP, bigger is the 

network. Third is the absolute free parameters Pab=Nw of a network are the actual weights and 

the thresholds that can be varied (tuned) during the training. Higher the ratio C/Pab means good 

efficiency and so use of small networks is always preferred because they are not capable to 

memorize the training pattern. Indirectly therefore, the problem of memorization is faced when 

the number of patterns available to us for the training is very less. From the [28] and [29], it can 

be stated that lower bound on pattern storage/memorization capability of a fully connected 

neural network is CMLP=N+Nh+1 while the upper bound for the same is Nw/M=Pab/M. For fully 

connected MLP type neural network Pab=Nw=Nh(N+M+1)+M(N+1), is the number of weights or 

free parameters in the network. This implies that Nv must be atleast larger than this value. Also 

if we assume Nin as weights connecting to each output node, then a lower bound on its pattern 

storage is Nin. Apart from this, efficiency of a network for storing the patterns/memorizing is 

defined as Nwef/Nw ,where Nwef are effective free parameters. For further reading refer to [28] 

and [29]  

 A lot of measures to detect or measure this phenomenon of memorization have been 

statistically devised. There are certain number of Nv patterns that are needed to train the 

network with a specific network dimension (i.e. Nw, Nh, N and M) optimally. The concept of 

structure risk minimization (described next) is a methodology of training where in we try and 

vary this dimension of the network(by varying the Nh) by varying the Nw. As the training 

proceeds (i.e. with each iteration we change the Nw) and training error reduces there is a point 

during the early stages of training where the problem of approximation is over-determined due 

to larger network capacity. But after few iterations of changing Nw, a stage is reached in the 

process after which the problem is under-determined. This is where training error is still 

reducing but validation error starts increasing. Thus during the training we try to co-ordinate the 

Pab (by changing Nw parameters), with the Nv patterns that are available to us for the problem. A 

result in [31] shows that for sigmoidal activation function network for a given Nv, (Nw)
2
 is the 
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number representing the optimal network, Nw is the number of free parameters or weights in the 

network. 

  Hughes [26] on the other hand showed an identical phenomenon for fixed Nv, wherein 

the error or empirical risk as compared to Bayes or optimal error increases with increase in 

N(input dimension). Also same phenomenon is displayed with increase in Nw (number of free 

parameters), keeping the Nv and N constant. Thereby it is concluded that as the number of 

inputs are increased, the memorization can increase and generalization deteriorates. This 

memorization would give an accurate output for the patterns that it has been memorized, but 

when a slightly different pattern is posed to it then error will be very large. That is, it does not 

know what the system response should be towards a new type of input.   

4.2 Ways To Avoid Memorization 

Having known what the theory behind the memorization is, we shall now elaborate on how to 

avoid the harmful effect of memorization. Then we show how are we in this thesis making sure 

that even with a large network it does not succumb to the effect of memorization. 

There are a few ways of tackling this issue during the training.   

 First method is wherein process of risk minimization is divided into training and 

validation. The validation is the process wherein new patterns are processed by a 

trained network and its response is observed and error is calculated. During this 

process of training and validation the most usual graphs/curves obtained for standard 

functions are described now. As the iterations of training are increased, then the 

training error keeps on reducing, but the validation error keeps on increasing after 

certain iterations. The concept of early stopping was therefore introduced, wherein, 

after each iteration, we calculate the training and the validation errors. As soon as we 

find the validation error increasing at some iteration number, we stop the training 

process. This is one way to substitute the structural risk minimization process in which 

we would change the number of free parameters of the system by deleting some 
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synaptic weights. So instead of varying the number Nw we actually vary the Nit iteration 

numbers. This process is much simpler than changing the Nw. It is assumed that after 

some iterations the network is learning only noise. We shall see such phenomenon 

occurring in real for our application in chapter -5. 

 

 

Figure 4.1 Standard Training and Validation Error curves versus Number of Iterations. 

 Yet another method in order to avoid memorization is to generate larger number of 

patterns, so that even if a slightly larger network (large N or Nh) is used then also we 

would have enough data to train a larger networks without applying structural risk 

minimization (i.e. changing Nw, by changing Nh). The idea is to increase the sampling 

density which is proportional to (Nv)
1/N

 ,[1]. 

 As mention earlier, that the SRM, using the method of changing the Nw is a little 

cumbersome and difficult, because it makes training longer and complex. But it has an inherent 

advantage of giving us a small final network. So it would be really good if we can find another 

way of doing the SRM i.e. changing the number of free parameters during the training, to get a 

smaller and an optimal network. The answer to this question is pruning [22]. Pruning is the 

concept of evaluating the significance of each tuned hidden unit in risk minimization i.e. 

validation error. In order to realize pruning, in each training iteration we solve for output weights 

(OWO) using a special version of OLS which orders the hidden unit basis in the order of their 
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significance towards reducing the validation error [21]. We calculate the risk function/validation 

error over each hidden units individually and try and order them in order of their significance. 

When we find that a last few neurons are not making much impact on the validation error 

reduction, we delete them. It is for this purpose that we need to order the hidden units or the 

basis function during the OWO process. We do this by OLS with optimal ordering [21] and try 

and find an optimal size of hidden layer thereby realizing the SRM in a novel way. The theory 

for OWO is given in appendix 1 and a small discussion is also made in section 3.2. 

 Finally after all this discussion, we can take home a few important heuristics that every 

researcher, designing neural network, should remember and try to implement. 

 Memorization is an inherent problem with all neural networks and it increases with N. 

Therefore keep N as small as possible. 

 The approximation error (risk function) can never go to zero, infact not below the bound 

values. 

 In order to have a good accuracy, empirical fit ratio of Nh/Nv must be as small as 

possible. 

 To get better accuracy on approximation, Nh must be large. 

 From above 2 it is intuitive to know that Nv must be very large, as large as possible. 

Thereby N/Nv must be as small as possible i.e. small dimension of input training 

patterns. 

 Validation error, and not the training error is the true measure of usefulness of training. 

 We want CMLP/Nw and CMLP/M to be large, i.e. network must be as small as possible 

 Given MLP and training algorithm we want to choose Nh such that CMLP <<<<< Nv,  and 

Nv>Pab/M, to promote generalization and prevent memorization. 

 v         ab M (72)  
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4.3 Precautions Taken In Our Network To Avoid Memorization 

 Large Nv:As referred before, in this section, this problem of prediction has been solved 

in various ways, all limiting to one variable or a single time series prediction. In this thesis we 

are a doing multiple time series prediction simultaneous. So the number of inputs to the 

networks as well as number of hidden units ought to be larger than other cases. It is therefore 

more important for us to follow all above heuristics as strongly as possible. Most importantly get 

large number of patterns Nv and compress the number of inputs to as small a dimension 

possible without affecting the approximation capability and then throw away all possible 

useless hidden units by pruning. Our first step will be to generate as many patterns from the 

given data. Other 2 will be addressed in next chapter.  

 In order to get large number of patterns we have first of all gathered a large number of 

measurements which are over 6 years of data, as shown in chapter 1 and 2. On an hourly 

sampling bases, it means over 50000 measurement. We shall use data for almost 2 years for 

training i.e. almost 16000 measurements in raw data file for training.  

 Some researchers have used an approach of one neural network/forecaster for every 

hour of prediction. i.e. the concept has 24 neural network, one trained to predict value of 

variable for one fixed hour of the day.  

This kind of approach has 2 very big drawbacks.  

 It is firstly assumed that a given variable will be possible to be predicted from the 

measurement 24 hrs prior to it. This is in general true (as we showed this fact in chapter 2 using 

the plots of auto-correlation). But this is not a universal truth. Some days weather may change 

drastically and it will not be possible to predict the correct value only from the 24 hrs previous 

measurement, but will be possible to predict a better value from 1 hr prior measurements. This 

will be visible in chapter 5 for all the variables, when we will use time domain feature selection 

algorithm to reduce the dimension of input space. 
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 Also when we have to train a network for such a method we sample the given time 

series every 24 hours. For example looking at the raw data file in figure 3.3, wherein the 5th 

column is for temperature, then if we assume that 1st measurement is for 1200 hrs, then we get 

the next measurement after 24 measurements. So when we convert this raw data time series 

into patterns, and if we have data for 2 years, then also we end up getting 365*2 

measurements. This means one measurement a day. Now, if we have only 730 measurements 

and we want to form a network with (say) N=12 inputs and M=1 output then we have only (730-

13) =617 patterns, Nv=617 which is very less a number of patterns as compared to using the 

continuous windowing approach in which we will be able to get (2*365*24)-13 patterns, that we 

will use for training. So chances of memorization are very high in one forecaster/hr approach for 

fixed N. Besides in previous approach we have to train 24 networks all with insufficient data, 

while in our approach in this thesis, we train only one network using enough data. So in 

previous approach all of networks may show memorization, while in our approach we have very 

less chances of memorization.   

sin(doy) cos(doy) sin(hod) cos(hod) Temperature Rel Humid spd·sin(dir) spd·cos(dir) Sol Radiation

0.017213 0.999852 0 1 27.326 0.9659 0.136296 0.292687 0

0.017213 0.999852 0.258819 0.965926 27.47 0.9674 0.473399 0.463379 0

0.017213 0.999852 0.5 0.866025 27.919 0.9685 0.990501 0.402221 0

0.017213 0.999852 0.707107 0.707107 28.254 0.9692 1.955219 -0.067455 0

0.017213 0.999852 0.866025 0.5 28.192 0.9695 2.738668 -0.760062 0

0.017213 0.999852 0.965926 0.258819 28.263 0.9702 3.135878 -1.362671 0.011

0.017213 0.999852 1 0 28.397 0.9704 2.817335 -0.763683 0.178

0.017213 0.999852 0.965926 -0.25882 28.485 0.97 1.633896 -0.336909 0.493

0.017213 0.999852 0.866025 -0.5 29.313 0.9701 -0.595791 -0.09654 0.984

0.017213 0.999852 0.707107 -0.70711 30.816 0.966 -3.34108 0.594293 1.985

0.017213 0.999852 0.5 -0.86603 32.961 0.92496 -3.955812 -0.068705 2.521

0.017213 0.999852 0.258819 -0.96593 35.324 0.87462 -4.158184 1.103518 3.283

0.017213 0.999852 0 -1 36.561 0.82898 -2.702154 0.286718 3.967

0.017213 0.999852 -0.25882 -0.96593 36.012 0.80324 0.195191 -0.753866 2.57

0.017213 0.999852 -0.5 -0.86603 33.199 0.9309 4.135129 -2.652764 2.079

0.017213 0.999852 -0.70711 -0.70711 32.563 0.9571 4.210957 -0.603081 0.962

0.017213 0.999852 -0.86603 -0.5 32.258 0.9517 3.220501 -2.304479 0.163

0.017213 0.999852 -0.96593 -0.25882 32.168 0.948 1.898762 -1.305373 0.004

0.017213 0.999852 -1 0 31.685 0.9445 2.429732 0.715419 0

0.017213 0.999852 -0.96593 0.258819 31.018 0.9664 2.489238 2.855038 0

0.017213 0.999852 -0.86603 0.5 30.624 0.978 2.220988 3.499026 0

0.017213 0.999852 -0.70711 0.707107 30.731 0.978 2.068026 3.306449 0

0.017213 0.999852 -0.5 0.866025 30.801 0.978 2.441867 2.633075 0

0.017213 0.999852 -0.25882 0.965926 30.803 0.9778 2.291084 1.767989 0

0.034422 0.999407 0 1 30.895 0.9775 2.39416 0.395065 0

0.034422 0.999407 0.258819 0.965926 30.741 0.977 2.297 -0.207843 0

0.034422 0.999407 0.5 0.866025 30.569 0.9762 2.221203 -0.206501 0

 

Figure 4.2 Figure for showing the 24 hrs period between 2 measurements 
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 The second problem with one forecaster/hr approach is that, it predicts the value for 

each hour independently from the value of measurement one hour prior. On regular days this 

may be fine. But in cases of urgencies like rain and storms, it may be possible to predict such 

events more correctly from the measurements of just previous few hours rather then from 

values of the variable 24 hrs before. Intuitively, just because it did not rain yesterday does not 

mean it will not rain today or tomorrow. In terms of neural networks, we will observe this thing 

after we form time-domain training file. What we observe is, when we apply time-domain feature 

selection on the time domain training file, then one of the most important features is that of 24 

hrs prior value but sometimes most important feature is the value of just previous hour. So we 

ought to be using both of these values in order to assure that our predictor can take an account 

of both of them. Indirectly speaking, the value of variable for next hour is more dependent (non-

linearly) on the value of variable just a few hours before, and less dependent on value of 

measurements 24 hrs before. 

Optimal Nh: In order to make the network as small as possible, so that it has a very small upper 

bound on pattern storage (so that it is just not capable to memorize any patterns) in each 

iteration we try to find optimal number of hidden units by using one pass validation processing. 

By passing the validation data through the network after each iteration of training and by 

ordering the hidden units in the OWO-OLS we find out the most significant hidden units of the 

network, thereby find the optimal value of Nh.  

Smallest N: Thinner training patterns i.e. have smallest N possible as compared to Nv is the 

second precaution that we take in order  to avoid memorization. We do this using 2-stage 

feature selection and use only the most important inputs and that too after compression, 

reducing the N by atleast 60%. In the next chapter we shall elaborate this process of reducing 

the size of input space N. 
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CHAPTER 5 

TIME DOMAIN TRAINING FILES AND 2-STAGE FEATURE SELECTION 

 In this chapter, section 5.1 we shall explain some problems faced in training the 

network in time domain. Even after time domain feature selection we would prefer to transform 

the data in KLT domain. This is described in detail in this section 5.2. Also we will describe the 

format of input pattern with which we shall train a Multivariable neural network in 5.1. Each of 

the variables will have its own KLT matrix stored in the memory or calculated from the SVD of 

covariance matrix. This will be detailed in this section. Section 5.3 will contain some preview 

and theory of PLN based time domain feature selection. For details on PLN type training,  

readers are referred to [6]. This section will also refer to the lab Software Numap with relevant 

version [15]. More importantly each variable will have its own sequence of important time 

domain inputs. This is where we will show that ‘time’ itself as an input is an important feature for 

all the variables. Section 5.3 accounts for the reduction of size of input pattern achieved after 

both the feature selection are completed. We shall show in this section for each variable that 

there is hardly any impact on the prediction error due to the feature selection, though the size of 

network is reduced drastically, thus serving our purpose. After certain number of important 

inputs in time domain and KLT domain are taken in for training, using the last certain number of 

features will not help us reduce the prediction error, but unnecessarily increases the size of 

network. In section 5.4 we shall show that the prediction capability of our network in limited. As 

we try to predict values further in future the accuracy gets worsened. We shall show this by 

comparative plots and figures. 
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5.1 Time-Domain Training File Formats 

 In this section we shall first of show and elaborate on the raw data file and all the time 

series in it.Then we will elaborate on the formation of the time-domain training files obtained out 

of the raw data file by different methods. Basically we are running this forecaster in multiple 

ways. 

 First method is wherein we predict individual time series independently.  

 Second method is wherein we have to compulsorily process the neural network 

using 2 variables, or 3. This method is mainly meant for wind variable. Wind 

speed and direction are 2 time series in the raw data file. We form 

speed·sin(direction) and speed·cos(direction) out of it, which are again 2 time 

series. So we need to process them together always because they cannot be 

independently treated. Again in treating the wind alone we can keep 3 variables 

to be speed, sin(direction) and cos(direction) as in figure 5.3. We cannot use 3 

variables as speed, speed·sin(direction), and speed·cos(direction) because that 

will make the inputs linearly dependent. Effects of such linear dependency are 

discussed in [3], [4] and [5].  

 The third way we use this forecaster is the novel way that we propose for 

prediction of weather related variables. In this method we treat all 5 time series 

together. We form patterns out of each spatial variable in the raw data file and 

keep augmenting the training pattern. Thereby we end up getting very large 

patterns. But it is shown in chapter 2 that these variables are definitely 

dependent on each other. So the quality of forecast obtained by such a 

combined network is much better. Better in the way that the total training or 

validation error obtained by predicting the individual time series and summing 

them is more than the error obtained from this combined network summed over 

all the outputs, thereby proving our purpose.  
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After we have discussed everything about the formation of the time-domain training file, we shall 

turn to the PLN type feature selection [34]. We shall try to give a preview of our lab software 

‘ umap’ that will give us a sequence of important features in order of their contribution toward 

the error function. We call this ‘time domain feature selection’ which drasticall  reduces the 

dimension of input space for training our forecaster especially important for the third way of 

running this forecaster i.e. the combined version. Then we shall elaborate on the KLT domain 

feature selection and site some references on the Singular value based feature selection that 

other researchers have used to select the number of rows to be used from the orthogonal 

matrix, again reducing down the size of training file after this second stage of feature selection.  

Finally we shall show how as we try to predict the values more further in future we get 

deteriorated performance due to increase in the number of outputs that the network has to solve 

for using the OLS. As a remedy to this we shall then show how can we keep predicting more 

values further in future by skipping directly to the hour that we want to predict, thereby keeping 

the M as low as possible.  

 For this section we shall give a detailed account on format of the initial time domain 

pattern files for all variables to be predicted and for all 3 above type of applications of prediction.  

 First of all as a reminder, we will be using the constant ‘1’ and 4 time related variables 

mentioned as in chapter 2 in the pattern file for all the variables. We shall show the initial time 

domain pattern file graphically here for ease of understanding. We shall consider in these 

images a pattern as a row vector and as we travel below it will be a number of patterns i.e. 1 to 

Nv. We shall now put the images of these files that we obtain from the raw data file by 

windowing. For simplicity of understanding we shall show this for smaller dimensions of the 

patterns and only 2 patterns will be formed. 

 Figure 5.1 shows the raw data file for individual time series prediction. As shown the 5.2 

uses the windowing method to form the initial time domain pattern file for the first case of 
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predictor. If we wish to train the network using this pattern form itself, ‘1’ has to be augment at 

the extreme left column.  

 

For the second case wherein we have to deal with the 2 variables simultaneously then we need 

to use two time series from the raw data file simultaneously. We shall show a separate wind raw 

data file and then show 2 patterns formed (in figure 4.4 the first 19 cells are the inputs and last 9 

are the outputs of the neural net. 
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sin(doy) cos(doy) sin(hod) cos(hod) Temperature Humidity speed·sin(dir) speed·cos(dir) Solar Radiation

0.017213 0.999852 0 1 v1(i-6) 0.9659 0.136296 0.292687 0

0.017213 0.999852 0.258819 0.965926 v1(i-5) 0.9674 0.473399 0.463379 0

0.017213 0.999852 0.5 0.866025 v1(i-4) 0.9685 0.990501 0.402221 0

0.017213 0.999852 0.707107 0.707107 v1(i-3) 0.9692 1.955219 -0.067455 0

0.017213 0.999852 0.866025 0.5 v1(i-2) 0.9695 2.738668 -0.760062 0

0.017213 0.999852 0.965926 0.258819 v1(i-1) 0.9702 3.135878 -1.362671 0.011

tim1(1) tim1(2) tim1(3) tim1(4) v1(i) 0.9704 2.817335 -0.763683 0.178

0.017213 0.999852 0.965926 -0.25882 v1(i+1) 0.97 1.633896 -0.336909 0.493

0.017213 0.999852 0.866025 -0.5 v1(i+2) 0.9701 -0.595791 -0.09654 0.984

0.017213 0.999852 0.707107 -0.70711 v1(i+3) 0.966 -3.34108 0.594293 1.985

0.017213 0.999852 0.5 -0.86603 32.961 0.92496 -3.955812 -0.068705 2.521

0.017213 0.999852 0.258819 -0.96593 35.324 0.87462 -4.158184 1.103518 3.283

0.017213 0.999852 0 -1 36.561 0.82898 -2.702154 0.286718 3.967  

Figure 5.1 Windowing for single variable pattern formation  

tim1(1) tim1(2) tim1(3) tim1(4) v11(i-6) v11(i-5) v11(i-4) v11(i-3) v11(i-2) v11(i-1) v11(i) v11(i+1) v11(i+2) v11(i+3)

tim2(1) tim2(2) tim2(3) tim2(4) v12(i-6)=v11(i-5) v12(i-5)=v11(i-4) v12(i-4)=v11(i-3) v12(i-3)=v11(i-2) v12(i-2)=v11(i-1) v12(i-1)=v11(i) v12(i)=v11(i+1) v12(i+1)=v11(i+2) v12(i+2)=v11(i+3) v12(i+3=v11(i+4)

 

Figure 5.2 Pattern construction for single variable forecasting 

 
 1  tim1 1 ….tim1 4  v11 i 6 ….v11 i  ,   1  v11 i 1 ….v11 i 3   

    tim  1 ….tim  4  v1  i 6 ….v1  i  ,      v1  i 1 ….v1  i 3   
(73)  

sin(doy) cos(doy) sin(hod) cos(hod) Speed sin(dir) cos(dir)

0.017213 0.999852 0.707107 0.707107 1.362 0.214895 0.10007

0.017213 0.999852 0.866025 0.5 v11(i-4) v21(i-4) v31(i-4)

0.017213 0.999852 0.965926 0.258819 v11(i-3) v21(i-3) v31(i-3)

0.017213 0.999852 1 0 v11(i-2) v21(i-2) v31(i-2)

0.017213 0.999852 0.965926 -0.25882 v11(i-1) v21(i-1) v31(i-1)

tim1(1) tim1(2) tim1(3) tim1(4) v11(i) v21(i) v31(i)

0.017213 0.999852 0.707107 -0.70711 v11(i+1) v21(i+1) v31(i+1)

0.017213 0.999852 0.5 -0.86603 v11(i+2) v21(i+2) v31(i+2)

0.017213 0.999852 0.258819 -0.96593 v11(i+3) v21(i+3) v31(i+3)

0.017213 0.999852 0 -1 5.448 0.109085 -0.61327  

Figure 5.3 Windowing for multi-variable pattern formation for wind prediction 
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 1  tim1 1 ….tim1 4  v11 i 4 ….v11 i  v 1 i 4 ….v 1 i  v31 i 4 ….v31 i   

 1  v11 i 1 ….v11 i 3  v 1 i 1 ….v 1 i 3  v31 i 1 ….v31 i 3   

    tim  1 ….tim  4  v1  i 4 ….v1  i  v   i 4 ….v   i  v3  i 4 ….v3  i   

    v1  i 1 ….v1  i 3  v   i 1 ….v   i 3  v3  i 1 ….v3  i 3   

(74)  

 For the third form of the predictor we will show the raw data file but for the pattern we 

will give a vector notation only because we cannot put the whole pattern into the image in the 

document without reducing the clarity. Essentially the patterns for this case are formed in the 

same manner as in figure 5.3 and 5.4 except for the fact that now there will be total 9 columns 

in figure 5.3 and windows are formed out of all 5 columns on the right (spatial variables).  For 

this reason for example, if we intend to use values of 5 previous hours and predict values for 3 

hours in future for each variable then the pattern will look as below. We shall use notation ‘tim’ 

for the row vector (1 X 4) of time information and v1p, v2p, v3p, v4p, v5p for spatial variables having 

past information and v1f, v2f, v3f, v4f, v5f for vectors of desired output. Pattern vector of dimension 

1   44  sa  ‘ ’  will look as follows- 

   tim 1   4  v1p 1      v p 1      v3p 1      v4p 1      v p 1       

v1f 1   3  v f 1   3  v3f 1   3  v4f 1   3  v f 1   3  . 

(75)  

For the training purpose and in the theory of chapter 3 we have called- 

[tim(1X4):v1p(1X5):v2p(1X5):v3p(1X5):v4p(1X5):v5p(1X5)] this section of 1X29 as ‘xp’ and the 

output part [v1f(1X3):v2f(1X3):v3f(1X3):v4f(1X3):v5f(1X3)]  of dimension 1 1  is called ‘tp’, the 

desired response. [xp:tp]
T
 forms a training pattern. 

 These 3 formats of time domain pattern formats are the general formats. But as is seen 

already, the dimension of these patterns keep on increasing if we want to use data over more 

hours in past for predicting more hours in future. In practical cases to get good accuracy we 

encountered problems with input x of dimensions of 80s and output dimension of 30s. For this 

reason of course we are going to use feature selection in 2 stages which we will show in the 

next sections but there is a way to reduce number of outputs here itself. There is nothing that 
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says that if we want to predict the value of variable 8 hours in future than we need to predict 

values for all the hours in future from 1 to 8. We can instead directly solve for the hour that we 

wish to predict skipping the values in between. Like as mentioned in chapter 3 section 3.1 and 

3.2, by doing this we will reduce number of outputs in the neural network and more essentially 

OLS will have less number of values to solve for. This will enhance the performance of OLS and 

reduce the approximation error drastically as M itself is reduced to 1. The pattern formation for 

this case is shown below-  

sin(doy) cos(doy) sin(hod) cos(hod) Temperature Humidity speed·sin(dir) speed·cos(dir) Solar Radiation

0.017213 0.999852 0 1 v11(i-6) 0.9659 0.136296 0.292687 0

0.017213 0.999852 0.258819 0.965926 v11(i-5) 0.9674 0.473399 0.463379 0

0.017213 0.999852 0.5 0.866025 v11(i-4) 0.9685 0.990501 0.402221 0

0.017213 0.999852 0.707107 0.707107 v11(i-3) 0.9692 1.955219 -0.067455 0

0.017213 0.999852 0.866025 0.5 v11(i-2) 0.9695 2.738668 -0.760062 0

0.017213 0.999852 0.965926 0.258819 v11(i-1) 0.9702 3.135878 -1.362671 0.011

tim1(1) tim1(2) tim1(3) tim1(4) v11(i) 0.9704 2.817335 -0.763683 0.178

0.017213 0.999852 0.965926 -0.25882 28.485 0.97 1.633896 -0.336909 0.493

0.017213 0.999852 0.866025 -0.5 29.313 0.9701 -0.595791 -0.09654 0.984

0.017213 0.999852 0.707107 -0.70711 30.816 0.966 -3.34108 0.594293 1.985

0.017213 0.999852 0.5 -0.86603 32.961 0.92496 -3.955812 -0.068705 2.521

0.017213 0.999852 0.258819 -0.96593 v11(i+5) 0.87462 -4.158184 1.103518 3.283

0.017213 0.999852 0 -1 36.561 0.82898 -2.702154 0.286718 3.967  

Figure 5.4 Windowing for single output forecaster for single variable 

tim1(1) tim1(2) tim1(3) tim1(4) v11(i-6) v11(i-5) v11(i-4) v11(i-3) v11(i-2) v11(i-1) v11(i) v11(i+5)  

Figure 5.5  Pattern construction for single variable forecasting with 1 output only 

 

 

 1  tim1 1 ….tim1 4  v11 i 6 ….v11 i  ,   1  v11 i     

    tim  1 ….tim  4  v1  i 6 ….v1  i  ,      v1  i    v11 i 6   
(76)  

The only disadvantage in this case is that we have to train the forecaster separately for each 

hour. But we use the same neural network. Of course, over this time domain pattern we will still 

apply two stage feature selection that we will show in next sections.  

 Before we go to the next section we must say a few words about the combined 

forecaster that we are proposing in this thesis. The concept of combined forecaster is a 

multivariable approach of dealing with the forecaster. It is based on the facts as we presented in 
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chapter 2. The fact that all weather variables are correlated not just with their own selves but 

also on each other makes it sensible to approach them in this way in order to get a better result. 

Also we are going to use the same approach to detect the bad measurements in the raw data in 

case of bad measurement. In essence we try to estimate the missing values of the variable 

based on its relationship with the other variables. This part of our work is under progress. 

Another important point to be attended is that as we try to predict more hours in future the 

prediction accuracy goes on deteriorating. After prediction for over 48 hours the prediction is not 

so worth looking at. 

 Thereby we shall now move towards time-domain feature selection theory and then the 

KLT transform based feature selection theory.  

5.2 Tranform Based Feature Selection OR Compression 

The feature selection approach for the neural network training is a necessity in many 

applications. The reason for this is that time-domain processing is not feasible in all 

applications. Karhunen Loeve Transform chosen because it gives optimal compression and 

reconstruction. One important thing for us in this application is the sequence of the steps. In 

brief we will have the sequence wherein we will apply the MA on time-series. Then we shall 

form the patterns using the windowing approach given in section 5.1. After this we would use 

the mean removal or separating mean on this time-domain pattern files given in section 2.2. 

Then we would use the time-domain feature selection using the PLN approach to get a thinner 

time-domain training file. After this we will use KLT transform based feature selection in order to 

get even a thinner file. The term ‘ hinner training file’ is being coined to indirectl  represent the 

ratio of N/Nv. Thinner file means smaller ratio. Most researcher use DCT transform because of 

the existence of the fast algorithms already developed by researchers [35], [36]. But the KLT is 

a signal dependent transform and so it changes with the type of signals. But KLT has no fast 

algorithms developed yet. We shall not worry about the performance index of the KLT 

transforms in this thesis. For this, readers can go to [35], [37].   
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Now we shall elaborate the KLT domain feature selection approach and the KLT transform for 

this feature selection. There KLT transform basically is considered and optimal transform. The 

main reason for this is that it givens perfect reconstruction. Concept of KLT is based on energy 

of the signal. This KLT is applied on the Covariance or the correlation matrix depending on the 

variance of the signal. The correlation calculation equation was given in chapter 2. But here we 

shall elaborate the matrix approach of this so that we can explain the KLT compression.  

 The correlation matrix and subsequent covariance matrix calculation is displayed below 

using the expectation operator ‘   ’. ‘R’ is being used to show the correlation matrix.  he ‘ ’ is 

used to show the covariance matrix. The KLT transform which indirectly uses the SVD of the 

matrix actually diagonalizes the matrix. This means that it decouples the various inputs from 

each other. Thereby the unitary matrix obtained from the KLT or SVD are either row or column 

orthogonal. There orthogonality of the matrix is useful for the compression of the signal because 

it basically will give us coefficients which are independent of each other. To simplify, basically 

the KLT projects the input pattern of dimension N into an orthogonal space of N dimension 

which are de-correlated and decoupled. 

The other factor that plays major role in the KLT compression is the dimension reduction. The 

KLT uses the energy approach. This means that the KLT transform basically concentrates the 

energy of the signal into a few top most coefficients. The coefficient at the trailing end go 

smaller and smaller. Thereby for compression we may use the top few orthogonal basis function 

(which may be rows or columns) in order to compress the signal into a smaller dimension. In 

this case, we train the neural network with these coefficients of the input and output space and 

then reconstruct the signal into original time domain by using the inverse KLT matrix of the 

output covariance/correlation.  
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The one very well known KLT transform is using the SVD of the correlation matrix. Assuming 

the correlation matrix of the pattern xp of dimension N,  p  x1,x ,x3,..x -1,x  
 
 we get the N X N 

correlation matrix. We only consider the real values for all the variables. 

     p p
      

x1

 
x 

   x1,…,x    (77)  
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(78)  

If we consider the mean removed or mean separated values then the correlation matrix or the 

covariance matrix will be derived as follows with  x  m1,m , ….m  - 
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   1 1    1   

     1        
 

   1   

       
   

     1                

   

 11  1 

  1    
 

 1 

   

   
  1        

  
(81)  

In order to obtain the KLT matrix we perform the singular value decomposition of this matrix 

which is given next. The aim is to get an orthogonal transformation matrix T such that zpi=Tixp, 

and zpo=Totp  so that the dimension of zpi is less than N (N is the dimension of the input pattern 

after the time domain feature selection using the PLN) and zpo has dimension less than M. But 

    can be reconstructed from the zpi  with very good accuracy and     can be reconstructed from 
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zpo .  The crux here is that instead of zpo ,output of the neural network  
       after the training is 

to be used to reconstruct   i.e.   tp=[To ]
-1

     of course, and     = [To ]
-1

 yp . Thereby the training 

pattern {xp,tp} is transformed to  { zpi ,zpo} , using which the  training of the neural network is 

done and after the training is completed then that output      is brought back in the time domain 

using the [To ]
-1

         

This implies that the input and the output of the neural network are transformed using separate 

KLT matrices. Now the SVD of the matrix- 

           
(82)  

 
 
         

(83)  

The decomposition gives U and V matrices which satisfy the property as follows- 

 U i,  U i,k    k

 

i 1

  1    , 1 k   
(84)  

   i,    i,k    k

 

i 1

  1    , 1 k   
(85)  

In matrix notation, using the orthogonality inverse is simply the transpose- 

 
 
   

 
       

 
    

 
 

(86)  

Also since the covariance and the correlation matrices are symmetric-    .  

The matrix   is the diagonal matrix –   1,  ,…    The application we are concerned with has 

only square matrices, so all the matrices concerned will have either N X N dimension of M X M 

dimension depending on the input pattern or the output pattern. 
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Now considering the eigenvector approach of this matrix expression.  

 
 
       

 
  
       

        
(87)  

U = [U1, U2, U3… N] is column orthogonal matrix whose columns are orthogonal as mentioned 

before. Each column is of dimension N or M depending on whether the input or output is being 

compressed. The RHS of the last equation can be expressed as – 
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(88)  

So here we call     or the KLT matrix. zpi =  
  xp =   xp, zpo=   tp =  

 tp  is called the 

forward transform for either the input pattern or the output pattern whichever is concerned,only 

fact is that the KLT for input and output will be different. This transformation of the input pattern 

or the output pattern results into a vector of length N or M respectively. But observing this vector 

we will be able to see that only first few elements of this transformed vector are large, while the 

ones at the trailing end are almost very close to zero. This is the concept of energy being 

concentrated into first few elements or the so called coefficients.  

     
 
             …   N 

 
     z    z    z    z   … z  N  (89)  

As seen zpi1,zpi2 and few later elements will have respectable magnitude. The trailing elements 

will be very small (close towards zpiN). This is the concept of the KLT feature selection. We only 

use first few elements of vector zpi thereby calling it the new input pattern. In the same way 

output patterns are also formed of the dimension smaller than the original M. The justification for 

doing this can be the assumption that the trailing coefficients represent the energy of the noise.  
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 Now the question arises about how many columns of U matrix to be used i.e. how many 

elements of zpi should be used for the forward and reverse transform case in order to get a 

perfect reconstruction. One approach to this question is to look at the singular values of the 

diagonal matrix  . A lot of researchers who has used QR decomposition have looked in this 

approach and used it for selecting the number of columns to be used [23], [24], [25] has used 

the ratio of two consecutive values for selecting this number. Another approach to this is to use 

energy approach. In this case we use the squared summation of the zpi vector over the whole 

training file (p from 1 to Nv) and choose those indices which have maximum values. 

 z p,i 
 

 v

p

      (90)  

Here zi is the vector of the summation of square of the zpi over whole training file. This way of 

feature selection also gives good results. Either ways, choosing first half of the zpi coefficients 

will always suffice. This will be the worst case though. In either of the case the dimension of the 

input pattern is drastically reduced and the training gets speed up. For further reading on the 

KLT application and theory readers are referred to [35], [37]. 

 One most important point need be mentioned. The KLT matrix of the individual variable 

will be unique. So in the case of the combined forecaster of  case 3 of section 5.1 we will need 

to have 5 separate KLT matrices; one for each variable. Again 5 separate KLT matrices for the 

output also will be needed. Thereby we will have to store 10 KLT matrices in the memory. This 

is one complicated process, so we will elaborate this diagrammatically. 

 Using the same raw data format (figure 5.6) to pattern format (figure-5.7) we show the 

raw data format and using the windowing over that we get the pattern file as in figure 5.7. 

Assume for now that this is the pattern file obtained after the time-domain feature selection 

using the PLN that we will describe in next section. Then, after KLT feature selection on the 
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input pattern wherein we use first 2, 2, 3, 2, 2 features for v1, v2, v3, v4, v5 respectively will look 

as in figure 5.8.  The same concept will apply for the output pattern also but for space constrain 

we have only shown one output for each variable, so the KLT feature selection will not reduce 

the dimension but the transformed coefficients are used still. In such cases wherein we want to 

predict only one value in future for each variable we need not use the KLT compression. As 

such the feature selection process are usually meant only for the input of the neural network.   

sin(doy) cos(doy) sin(hod) cos(hod) Temperature Humidity speed·sin(dir) speed·cos(dir) Solar Radiation

0.017213 0.999852 0 1 27.326 0.9659 0.136296 0.292687 0

0.017213 0.999852 0.258819 0.965926 27.47 0.9674 0.473399 0.463379 0

0.017213 0.999852 0.5 0.866025 27.919 v21(i-4) 0.990501 0.402221 0

0.017213 0.999852 0.707107 0.707107 v11(i-3) v21(i-3) v31(i-3) v41(i-3) v51(i-3)

0.017213 0.999852 0.866025 0.5 v11(i-2) v21(i-2) v31(i-2) v41(i-2) v51(i-2)

0.017213 0.999852 0.965926 0.258819 v11(i-1) v21(i-1) v31(i-1) v41(i-1) v51(i-1)

tim1(1) tim1(2) tim1(3) tim1(4) v11(i) v21(i) v31(i) v41(i) v51(i)

0.017213 0.999852 0.965926 -0.25882 28.485 0.97 1.633896 -0.336909 0.493

0.017213 0.999852 0.866025 -0.5 29.313 0.9701 -0.595791 -0.09654 0.984

0.017213 0.999852 0.707107 -0.70711 v11(i+3) v21(i+3) -3.34108 v41(i+3) v51(i+3)

0.017213 0.999852 0.5 -0.86603 32.961 0.92496 v31(i+4) -0.068705 2.521

0.017213 0.999852 0.258819 -0.96593 35.324 0.87462 -4.158184 1.103518 3.283  

Figure 5.6 Windowing for multi-variable forecaster with one output for each variable 

t1(1) t1(2) t1(3) t1(4) v11(i-3) v11(i-2) v11(i-1) v11(i) v21(i-4) v21(i-3) v21(i-2) v21(i-1) v21(i) v31(i-3) v31(i-2) v31(i-1) v31(i) v41(i-3) v41(i-2) v41(i-1) v41(i) v51(i-3) v51(i-2) v51(i-1) v51(i) v11(i+3) v21(i+3) v31(i+4) v41(i+3) v51(i+3)

t2(1) t2(2) t2(3) t2(4) v12(i-3) v12(i-2) v12(i-1) v12(i) v22(i-4) v22(i-3) v22(i-2) v22(i-1) v22(i) v32(i-3) v32(i-2) v32(i-1) v32(i) v42(i-3) v42(i-2) v42(i-1) v42(i) v52(i-3) v52(i-2) v52(i-1) v52(i) v12(i+3) v22(i+3) v32(i+4) v41(i+4) v52(i+3)
 

Figure 5.7 Time-domain pattern for multivariable forecaster for one output for each variable 

0.017213 0.999852 1 0 z1i
v1(1) z1i

v1(2) z1i
v2(1) z1i

v2(2) z1i
v2(3) z1i

v3(1) z1i
v3(2) z1i

v4(1) z1i
v4(2) z1i

v5(1) z1i
v5(2) z1o

v1(1) z1o
v2(1) z1o

v3(1) z1o
v4(1) z1o

v5(1)

0.017213 0.999852 0.965926 -0.25882 z2i
v1(1) z2i

v1(2) z2i
v2(1) z2i

v2(2) z2i
v2(2) z2i

v3(1) z2i
v3(2) z2i

v4(1) z2i
v4(2) z2i

v5(1) z2i
v5(2) z2o

v1(1) z2o
v2(1) z2o

v3(1) z2o
v4(1) z2o

v5(1)

 

Figure 5.8 Compressed pattern for multi-variable forecaster for one output for each variable 

 Each compressed pattern on figure 5.8 is obtained using separate KLT. Storing the KLT 

transform matrix for each variable is one of the drawbacks of this method. Before compression 
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pattern looks as follows (for ‘x’ and ‘t’ the subscript assigns the pattern number while for ‘v’ first 

subscript represents variable number and second represents pattern number)- 

 1 
 tim1 1 ….tim1 4  

v11 i 3 ….v11 i  v 1 i 4 ….v 1 i   v31 i 3 ….v31 i  v41 i 3 ….v41 i  v 1 i 3 ….v 1 i  
 

 1  v11 i 3  v 1 i 3  v31 i 4  v41 i 3  v 1 i 3   

   
 tim  1 ….tim  4  

v1  i 3 ….v1  i  v   i 4 ….v   i   v3  i 3 ….v3  i  v4  i 3 ….v4  i  v   i 3 ….v   i  
 

    v1  i 3  v   i 3  v3  i 4  v4  i 3  v   i 3   

(91)  

 Post-Compression 1
st
 pattern for this case looks as follows (for ‘z’ the first subscript means the 

pattern number, super script displays the variable number while in subscript I and o means the 

input part and output part of pattern, the subscript on ‘P’ is represents in KL  domain, and index 

in bracket means the pattern number)– 

 z 1   tim1 1   4  z1i
 v1  1      z1i

 v   1   3  z1i
 v3  1      z1i

 v4  1      z1i
 v   1       

z1o
 v1  1   1  z1o

 v   1   1  z1o
 v3  1   1  z1o

 v4  1   1  z1o
 v   1   1  . 

(92)  

This is the training pattern that we finally use for training the network. 

5.3 Time Domain Feature Selection 

 This is the most novel part of our forecaster. It is as such also the very fruit of the 

previous research done by one of our previous researchers [13]. The concept that was 

proposed was to use clustering and piecewise linear solvers or OLS for doing feature selection 

(PLOFS). In this section we will give a preview on basic feature selection and then mention in 

some detail the algorithm for PLN based feature selection. For detailed analysis readers are 

referred to [6], [13]. 

Feature Selection- Feature selection is the statistical way of identifying the system. In feature 

selection we try to map the error function or the Empirical risk to the feature space (input 

space). Feature space can have different meaning in different cases. We shall try to explain this 

by an example- 
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The feature selection in the function link net means to select from the input of the neural 

network which are polynomial basis functions depending on the order of the polynomials. In 

cases like pruning or growing the feature selection may imply choosing from the hidden unit 

basis functions i.e. removing the hidden units one after other and keeping a track of which 

hidden unit causes the least impact on the error function. Similarly in case of Piecewise linear 

networks sometimes clusters can be features. In such cases we look at error function variations 

whence we remove certain clusters. So in general we map the error function to the input space 

or the feature space and choose the most important features which would make the error 

reduce to larger extent. Those features which would not make much reduction in the error 

function can be left or discarded. One very good reason to do the feature selection is to protect 

the network from the curse of dimensionality. Of course as we choose the most important 

features, dimension of input space is reduced. 

 Coming to our application of weather variable prediction using the measurements of the 

previous hour, for us the feature selection would mean choosing measurements of those hours 

which would contribute the most towards error reduction. Measurements of those hours which 

would not contribute in reduction of error significantly, those features can be discarded. Also this 

is the sole reason for doing the PLN based feature selection in time domain. The piecewise 

linear approximation is now already known well enough to approximate the non-linear function 

in a very good capacity. When we are in time domain the input pattern to the neural network is 

the pattern of variable that is formed out of measurements of last few hours or measurement 

over last few days in some case. Taking the measurements on the hourly basis this would mean 

the neural network with over 100 inputs. And hidden space even larger than that! Processing 

such a large network is a curse for the machine. Therefore the feature selection is a most 

important concept in treating the non-linear systems statistically.  

 Our knowledge on the systems, especially the one like ours, is very intuitive. For 

example as mentioned many times before, for predicting the value at any specific hour 
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measurement of 24 hr prior to it is most important sometimes only. This intuitive knowledge is 

very crudely assumed to be true by a lot of researchers [23]-[25] When we use the concept of 

one forecaster/hr it means we are assuming the this intuitive knowledge is 100 percent 

accurate, and thus the assumption, that we need not use any other measurement apart from the 

one 24 hrs prior one in order to predict the value for a specific hour. But the result presented in 

chapter 6 using the PLN feature selection would prove this assumption wrong most of the times. 

Sometimes in case of sudden weather changes the value of measurement immediately prior to 

current value can be the most important feature to predict the value of next hour. This will be 

presented in chapter 5 and 6 when we put the results of the time domain feature selection. This 

is also a strong reason for not using the PLN network itself for prediction i.e. we don’t assume 

that an independent network (one network for each hour) is an accurate approach implying that 

the assumption “that the network for one hour has nothing to do with the network of another 

hour, or the cluster of one hour has nothing to do with another hour (since PLN is based on 

clustering ” may not be always correct. The two networks (clusters) of consecutive hours have a 

strong correlation with each other. For these reasons we will limit the use of PLN for time-

domain feature selection only and use a MLP for prediction purpose.  

 Dividing the feature space into specific number of partitions is a critical task as far as 

feature selection is concerned. To simplify this concept we again give an example of one 

forecaster/hr again. In this application of one forecaster/hr we divide the feature space in 24 

partitions; one representing each hour. And then assume that within a partition we can use a 

linear solver (simple OLS) or a non-linear solver (hidden sigmoid activation and OLS for output 

weights) to get the solution. Let us say, it is a very rough way of exploiting the PLN feature 

selection where features are intuitively selected, and then only that one feature is used to 

extrapolate the non-linear function, assuming the one feature subspace has nothing to with 

other feature subspace. For simplicity we would go back to the training file format previously 

mention in other sections. For us the feature space (when we use PLN based feature selection 
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is the input space) means each column in the training pattern file is a feature. So finally when 

we are done with the feature selection, we would get a sequence of features from this algorithm. 

Using only those columns or basis or features we shall form the new training file. Over this 

training file we will then use the KLT compression mentioned in previous section.  

 Previously a lot of algorithms have been proposed for feature selection. Enlisting a few- 

branch and bound algorithm has been found optimal search algorithm [38]. Principal component 

analysis and Independent component analysis have been also used for feature selection as in 

[39], [40], [41], [42], [13]. As far as neural network feature selection is concerned pruning, 

growing and hybrid approach have been used by [43]-[49]. Feature selection algorithm that we 

apply to hidden unit pruning is elaborated in [34]. In essence feature selection is a complicated 

‘search algorithm’ and so its application is always limited by the computational complexity. As 

mentioned in [38] branch and bound also becomes impractical for feature more than 30 inputs. 

Exhaustive search is always ruled out when application of large neural network are to be made. 

 o prevent nesting effect ‘plus l minus r’ method and floating search instead of exhaustive 

search is propose in [38], [50], [51]. Also in order to check the validity of the selected features 

validation error concepts like ‘K-fold validation’ and ‘leave one out validation’ are to be applied. 

As mentioned before we will definitely validate the network using totally new data, and also we 

will try to find the optimal number of hidden units from the validation error. But we will not be 

pruning the network. Instead in the second run of algorithm we start by using the Nh, that we 

find from the first run of the network validation.  

 In essence time-domain feature selection consists of 2 steps. One is feature sub-setting 

and then the subset evaluation. The criteria to be observed in subset evaluation is the validation 

error in most of the cases. In order to subset the features any of the algorithms mentioned in 

above paragraph is used. The way we do feature selection for linear case, is we calculate the 

auto correlation and cross-correlation of the training data. Then make subset of inputs using any 

of the sub-setting approaches. Then we solve the network for that subset using the OLS 
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wherein we use the associated rows and columns of the auto and cross-correlation matrix. Then 

we evaluate that subset using the validation error. This way we get an optimal subset of the 

inputs (which are important features). Now we shall elaborate theoretically the PLN based 

feature selection algorithm (PLOFS). There are certain concepts like clustering, Forward OLS 

etc that are elaborated in [34]. But we shall try to explain these in as much shortness as 

possible and then references will be given. 

PLOFS (Piecewise Linear-OLS based Feature Selection) [13]- 

We shall give the algorithm and the necessary description in each step- 

1) Initialize the Ns. Ns is the number of features of which size we want the feature subset. 

Ns<N. But in our case we shall use Ns=N. for the reason that we want to order all the 

inputs or the features in order of their contribution to the error function. Then we shall 

leave it to the user to choose the inputs that they want to use for training the forecaster. 

We shall provide the curve for size of feature subset verse the validation/prediction 

error in chapter 6. Users can choose from that.  

2) Initialize the number of clusters Nc and cluster the training data with any random means 

or using any clustering algorithm like K-means or SOM or adaptive K-means. Once the 

clusters are formed we treat each cluster as a training file and solve for weights using 

the OLS using the auto and cross-correlation matrices calculated of each cluster 

independently. Each cluster will have its own auto and cross-correlation matrices. This 

way we get Nc linear networks i.e. one for each cluster. Now when we want to process 

a new pattern using this network, we first of all calculate the distance of that pattern with 

mean of all the clusters. The mean from which the distance is minimum we apply the 

weight matrix of that cluster to calculate the output of the network for that pattern. As 

readers would already have noted that we partition the input space into a number of 

subspaces; one represented by a cluster. And we assume that within each 

cluster/subspace the behavior of the non-linear system will be linear. This is how PLN 
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training proceeds in general [6]. Of course this will call for calculation of auto and cross-

correlation matrics Nc times and OLS is also applied Nc times making this algorithm 

highly dependent on the number of cluster that we divide the input space into. So in 

order to avoid this we try to reduce number of clusters using cluster pruning.     

3) In order to prune or reduce the number of clusters we basically use the validation data. 

Using the patterns in validation data we in essence order the clusters as follows. We 

use backward selection on the clusters to subset them. We make subsets of Nc-1 

clusters till each cluster is removed once. And we calculate the error of the network with 

this one cluster removed and see the rise in the validation error from the validation error 

calculated when all the clusters are in network. Then we delete another cluster and use 

the validation data and process it in the network and calculate the rise in error 

(remember the existing number of clusters are Nc-1). This way remove each cluster 

once and see the rise in error for each cluster being removed. The one cluster, 

removing which, we get the least increase in the error is the one to be pruned or 

removed. Remember that deleting the cluster means reassigning the patterns of that 

cluster to the cluster closest to that pattern and updating the auto and cross correlation 

matrix of that cluster. This way we remove one cluster. Then we make subsets of Nc-2 

and run the same process again to remove second cluster. This way we can keep 

removing the clusters till we get the number of clusters we want to keep in the PLN. 

This way we get a graph of validation error versus the number of clusters, from which 

we can choose optimal number of clusters to be kept in the PLN. 

4) Once we have found an optimal size of subset of clusters then we use the forward 

selection on each input. This is the actual feature selection that we need in order to find 

the most important inputs. What we do in this step is that after we fix the number of 

cluster and solidifying the network we make subsets using the forward selection i.e. 

increasing the size of subset from 1 onwards. Using the linear network of each cluster 
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we ortho-normalize the linear network of each cluster for training patterns using only 

that input subset and  using each of the clusters. Calculate the training and validation 

error of the network over that input subset only. The one subset that gives the least 

error over whole network (i.e. error out of each linear network summed up over all 

patterns) is kept. Then we increase the size of subset from 1 to 2 and ortho-normalize 

the network using those 2 inputs only and calculate weights. Of course when a subset 

of 1 is used we have auto and cross-correlation matrices of 1 X 1, and when subset of 2 

then they are of 2 X 2 and 2 X 1 respectively. This way we find linear networks of 

different sizes for each subset of features/inputs, calculate the validation error and see 

which subset give the maximum reduction in error from the previous subset size. Keep 

that input in the subset (a sequence formation begins). Then keep increasing the size of 

subset one by one and validate the network using all the clusters (whole PLN) till we 

cover all the inputs and form a sequence which then represents the importance of each 

input in the network. It will be seen that after the subset crosses certain size there will 

be hardly any reduction in the error. This would be the size of subset that will be optimal 

i.e. the best compromise between the network size and validation error/prediction error. 

A plot of the validation error versus subset size for each type of variable will be shown 

in chapter 6.  This is the PLN feature selection where in we finally get a sequence of 

inputs in order of their importance in the network, using which we form a new thinner 

time-domain training file over which we then apply KLT feature selection. 

Purpose of Time Domain Feature Selection (PLOFS) - In the forecaster application there is a 

myth that most of researchers have faced and have tried to avoid. The myth is that in order to 

be able to predict the values for more hours in future with a good accuracy, we need to use 

longer window sizes (in figure 5.1 and 5.2), that spans the data for over a few days. Infact ‘more 

the past data, more better is the prediction’ is a kind of notion that researcher would agree to. 
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But that logic is flawed for a lot of reasons and we shall in this section try to show that by 

making an experiment using the PLOFS program.  

In order to verify if the more data from past would be helpful of deteriorating, we shall 

experiment with PLOFS program using some 9000 training patterns formed as in figure 5.1 and 

5.2 for single variable, and the pattern dimensions will be 148 inputs and 3 outputs. In the next 

section we try to predict all 4 variables for upto 51 hours and display results for 3 cases, 1 hr 

prectiction, 26 hrs prediction and 51 hours prediction. But in this section in order to make an 

experiment, we shall use the pattern formation as follows-          

 1  tim1 1 ….tim1 4  v11 i 144 ….v11 i  ,   1  v11 i 1  v11 i  6  v11 i  1   

We form 9000 patterns of this form and then apply PLOFS on this pattern file and show the 

results and interpret them in order to conclude the necessity of the feature selection in time-

domain. For ‘v’ first subscript represents the variable number (either of 1 to 4) and second 

subscript represent the pattern number. For ‘x’ and  ‘t’ the subscript means the pattern number. 

The results of the feature selection are obtained as a curve of the training error and validation 

error versus the subset size which later on becomes the inputs to neural network. In order to 

show the selected input numbers by PLOFS we shall use symbols of ‘x()’, xp(1)=timp(1), 

…..xp(147)=v11(i-1), xp(148)=v11(i) and so on, subscript p is the pattern number. Next we show 

these results for each of the four variables and request the readers to notice the common trend 

in them all. 
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Figure 5.9 Plot of training and validation error versus subset size for Temperature from PLOFS 

 

Figure 5.10 Plot of training and validation error versus subset size for Humidity from PLOFS 
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Figure 5.11 Plot of training and validation error versus subset size for Radiation from PLOFS 

 

Figure 5.12 Plot of training and validation error versus subset size for Wind Speed from PLOFS 
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Observed in the plot is firstly that fact that by using more data from past and having a larger 

pattern would help in reducing the training error( only if trained for larger number of iterations), 

but the validation error which actually represent the capability of forecaster to predict to alien 

data, increases after certain subset size is achieved. For record the optimal subset sizes found 

(shown by vertical line) are 28, 22, 58 and 56 for temperature, humidity, radiation and wind 

speed respectively. But in order to know whether the important/optimal subsets has recent data 

in it or more past data in it we shall look at the optimal subsets found out in each case. 

Table 5.1 Optimal Subset sequence from PLOFS for temperature 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

xp(148) xp(147) xp(138) xp(4) xp(2) xp(124) xp(126) xp(132) xp(144) xp(143) xp(130) xp(141) xp(127) xp(1)

15 16 17 18 19 20 21 22 23 24 25 26 27 28

xp(76) xp(102) xp(5) xp(7) xp(89) xp(77) xp(125) xp(100) xp(49) xp(101) xp(103) xp(3) xp(99) xp(140)

Optimal Subset, Size:28

 

Table 5.2 Optimal Subset sequence from PLOFS for humidity 

1 2 3 4 5 6 7 8 9 10 11

xp(148) xp(147) xp(2) xp(130) xp(145) xp(4) xp(139) xp(98) xp(142) xp(103) xp(1)

12 13 14 15 16 17 18 19 20 21 22

xp(3) xp(123) xp(6) xp(124) xp(100) xp(122) xp(146) xp(125) xp(101) xp(144) xp(126)

Optimal Subset, Size:22

 

Table 5.3 Optimal Subset sequence from PLOFS for radiation  

1 2 3 4 5 6 7 8 9 10 11 12 13 14

xp(148) xp(147) xp(143) xp(142) xp(144) xp(138) xp(140) xp(139) xp(1) xp(146) xp(145) xp(137) xp(141) xp(24)

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

xp(126) xp(135) xp(136) xp(124) xp(2) xp(106) xp(122) xp(130) xp(107) xp(129) xp(121) xp(7) xp(115) xp(132) xp(133)

30 31 32 33 34 35 36 37 38 39 40 41 42 43

xp(90) xp(128) xp(127) xp(81) xp(99) xp(79) xp(100) xp(120) xp(3) xp(4) xp(125) xp(104) xp(105) xp(80)

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

xp(82) xp(119) xp(118) xp(101) xp(84) xp(131) xp(77) xp(75) xp(96) xp(134) xp(83) xp(69) xp(102) xp(123) xp(103)

Optimal Subst, Size:58
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Table 5.4 Optimal Subset sequence from PLOFS for wind speed  

1 2 3 4 5 6 7 8 9 10 11 12 13 14

xp(148) xp(147) xp(2) xp(145) xp(130) xp(3) xp(4) xp(79) xp(124) xp(128) xp(103) xp(125) xp(129) xp(1)

15 16 17 18 19 20 21 22 23 24 25 26 27 28

xp(98) xp(75) xp(100) xp(102) xp(141) xp(146) xp(79) xp(103) xp(140) xp(85) xp(56) xp(99) xp(95) xp(118)

29 30 31 32 33 34 35 36 37 38 39 40 41 42

xp(122) xp(121) xp(117) xp(91) xp(138) xp(92) xp(107) xp(108) xp(131) xp(126) xp(101) xp(135) xp(89) xp(127)

43 44 45 46 47 48 49 50 51 52 53 54 55 56

Optimal Subset, Size:56

 

From the table 5.1 to 5.4, in each case the PLOFS have given out sequences which has most of 

the features from past 2 or at the most 3 days. The data that was used was from last six days 

i.e.144 hours. Now, in this case we had tried to predict for 1 hrs ahead, 26 hrs ahead and 51 

hours ahead. This would actually mean that intuitionally out of 148 inputs (148
th
 input being the 

recent past and 105
th
 input being 6 days prior data) 125

th
 ,101

st
 , 77

th
 , 53

rd
 , 29

th
 inputs would 

be important for predicting the 1 hours future value. Similarly for predicting 26
th
 hour future 

value 126
th
 102

nd
, 78

th
, 54

th
, 30

th
 values would be of importance because 26

th
 hour ahead is just 

2hrs ahead after 1 day. And similarly 127
th
, 103

rd
, 79

th
, 55

th
, 31

st
, values would be important for 

predicting 51
st
 hour ahead values because 51 hours ahead is just 3 hours ahead after 2 days. 

But it turns out, that this heuristic is not true. It is not the same hour measurement from past 5 

days that is important, but the data of immediate past few hours that will be important in order to 

predict ahead. Infact even the sinusoidal time related inputs 1, 2, 3, 4 are always more 

important than previous days data. As such it is seen from the plots of PLOFS that adding more 

past data would not help the network to generalize better, but instead they will act as noise and 

deteriorate the networks validation error. Out of 144 at the most 60 inputs would be doing 

correct work rest of the inputs spoil the network performance. So going in more past to reach 

out older information is of no use. For this reason having a larger training pattern is also not 

useful, because as mentioned before it increases the chances of memorization and as such lot 

of the inputs would act as noise. For this reason having the PLOFS done before the KLT 

transform is of utmost important in order to know the best capability of the PLN network to 
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approximate the outputs. Of course as we will add the non-linear part (hidden layer) the 

performance and the validation error reduces from what is shown in the above plots. This curve 

only shows the best capability of the PLN network to approximate using the given data. Non-

Linear networks will obviously give a better result for approximating non-linear function then 

PLN. For this reason we keep the use of PLN only for feature selection and leave the 

approximation problem to the MLP training.  

 Using the above conclusion, in the next chapter we shall display the results of 

prediction for 3 cases for each variable using the PLOFS and KLT in each case. Case 1 is for 1 

hr ahead in future prediction, case 2 is 26 hrs ahead prediction and case 3 is 51 hrs ahead 

prediction.  In each case for each variable we shall initially start with the time domain pattern 

that is formed out of a window that spans over 2 days i.e. 48 hours of previous data, augmented 

with 4 time inputs and ‘1’, we shall have initial time-domain file of 53 inputs and 1 output.  
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CHAPTER 6 

RESULTS  

 This chapter is dedicated to the results obtained using algorithms and conclusion from 

chapter 3, 4 and chapter 5. We shall divide this chapter in 6 sections with 3 cases in first 5 

sections. First section will display the results for the temperature forecast. We shall display the 

result for temperature forecast for 1hr ahead in future, 26 hrs ahead in future and 51 hours 

ahead in future in subsection 6.1.1, 6.1.2 and 6.1.3 respectively. In the same format sections 

6.2, 6.3, 6.4 and 6.5 will display the results for humidity, solar radiation, wind and combined 

forecaster respectively. The sequence for forecasting using 2 stage feature selection goes as 

described now.  

 First we form the time domain training file randomly choosing the window size for past 

data to be used for inputs of forecaster, and for the output of the forecaster depending 

on how many hours ahead in future do we want to predict. We have gone as far as 51 

hours, so we shall show the case for predicting 51 hr in future. This will give us the 

time-domain file as in section 5.1 case-1. Out of this we form the time-domain file as in 

section 5.1 case-2 wherein in there is only one output no matter how far in future we 

want to predict.  

 Over this file we apply time-domain feature selection as in section 5.3 using the PLOFS 

algorithm. From this algorithm we choose an optimal subset size. This is the first 

advantage of 1
st
 stage feature selection in time-domain. Then over this new time-

domain training file we shall apply the KLT or Transform domain feature selection as 

shown in section 5.2. Over this file we shall apply the algorithm from section 3.2 and 

then calculate the validation error over all the ordered hidden units or the generalization 
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capability of the forecaster. It is therefore our claim that by applying this 2 stage feature 

selection we are capable of reducing the dimension of the input space to 1/4
th
 that of 

the original time-domain file in order to satisfy the heuristics mentioned in chapter 4. As 

such the lower the ratio N/Nv, greater will be the generalization ability of the forecaster 

and lower will be the validation error.  

 We shall also show the plot of validation error versus the Nh in order to find the optimal 

number of Nh to be used for the network. That plot will also be shown in each result 

along with the training and validation error of the network with the iterations. Finally we 

shall show the reconstruction for each case in each section.  

In each case we use 13000 patterns for training and 4000 patterns for validation. We start with 

input window or 48 hrs i.e. 4+48 inputs and 1 output. 4 extra inputs i.e. inputs number 1, 2, 3, 

and 4 are the time related inputs as described in chapter- . We will assume ‘1’ to be an 

important input for all the cases in all variables. So time domain feature selection (PLOFS) need 

be applied on the ‘   input 1 output’ files leaving ‘1’ aside. From now on we shall refer to 

PLOFS as time-domain feature selection alternatively TDFS in short. After all the cases are 

realized for each variable we shall then show the results of combined forecaster wherein we 

have treated all 4 variables together along with wind direction. The result of this combined 

version has been found to be better than individual predictors. In the end of this chapter we 

shall give the case 3 results for prediction in time domain, without any feature selection. A 

comparative of the advantage in the reduction in the size of network is given in table 5.61. 

Readers can also compare the results of over smaller forecaster with the bigger time-domain 

one from table 6.62 and 6.63. 
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6.1 Results of temperature forecast 

Case1- Results for temperature forecast for 1 hr in future. 

Table-6.1 Subset size and input sequence from PLOFS 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xp(4) xp(27) xp(30) xp(52) xp(49) xp(2) xp(51) xp(3) xp(6) xp(29) xp(28) xp(10) xp(41) xp(31) xp(40)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

xp(47) xp(20) xp(1) xp(50) xp(8) xp(5) xp(15) xp(43) xp(35) xp(26) xp(44) xp(46) xp(39) xp(42) xp(21)

Optimal Subset, Size:30

 

 

Figure 6.1 Validation error over all the ordered inputs units after training for 20 iterations 

 

Figure 6.2 Validation Error over all the ordered hidden units after training for 20 iterations 
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Table 6.2 Training error for 20 iteration      Table 6.3 Validation error for 20 iteration 

It No. Value It No. Value It No. Value It No. Value

1 0.286444 11 0.097053 1 0.31964 11 0.102883

2 0.281605 12 0.09143 2 0.31296 12 0.097546

3 0.258025 13 0.085889 3 0.279284 13 0.091707

4 0.237296 14 0.077511 4 0.260228 14 0.082536

5 0.22315 15 0.069148 5 0.24295 15 0.074983

6 0.209115 16 0.068942 6 0.229085 16 0.072667

7 0.180775 17 0.0691 7 0.194804 17 0.07493

8 0.138941 18 0.068796 8 0.150495 18 0.074221

9 0.111106 19 0.067172 9 0.119645 19 0.076184

10 0.097176 20 0.067517 10 0.103417 20 0.076769

Training Error Validation Error

 

Table 6.4 Network Details 

Optimum No. of Hidden units (20 Iterations) 19 

Size of subset chosen from table 6.1 30 

Number of KLT features used 4 

Number of Hidden Units started with 25 

 

From the figure 6.1 it is evident that the PLN networks cannot be used directly for prediction 

since the validation error is very large. One another thing to note in that figure is that, as we go 

more towards rights is that there is lesser relative reduction in the validation error with the 

increase in subset size. To elaborate the first subset of 10 inputs reduces the validation error by 

over 0.5. While the next subset of 20 features reduces the validation error by 0.5. But the next 

subset of 22 inputs can hardly reduce the error by 0.25. So as we go towards right, increasing 

the subset size do not greatly reduce the validation error to that extent. So using the first 20 or 

30 inputs will make a proper sense as far as the reduction in the size of network is concerned 

as well as reduce the validation error. The major reduction in validation error will be caused by 

training itself.   

 From the table 6.1 and from the format of the training file discussed in chapter 4, it is 

possible to find out intuitively what inputs will be more important than others. For example for 

predicting value 1 hr ahead we will hope that the current hour measurement and the 

measurement 24 hrs before is important. This is evident from table 6.1. For the PLOFS we have 
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52 inputs and 1 output. For the output which is 1 hr in future 52
nd

 input is very important , also 

the 51
st
 is important. These 2 are in the leading numbers. Also the sinusoidal inputs related to 

time are also falling in the leading 20 inputs. Besides this the value of temperature variations 

around same time but 24 hrs before is important. So we see 27, 28, 29 and 30
th
 inputs are also 

important. But as we have mentioned before that the measurement of temperature 1 hr prior is 

more important than the measurement of same hour of previous day. So input 51, and 52 are 

ranked before 28 and 29. But it can be questioned why 30 and 27 are before 51 and 52. But 

these 2 kind of inputs (i.e. 1/2 hrs prior measurement and 24 hrs prior measurement will keep 

competing in different cases, which we will see in some other case) will always be leading 

members. This is due to the periodic behavior of these variables (but then what about the wind! 

That is not periodic.)  

 Now from the validation error curve over the all the hidden and bypass units show that 

the inputs and not the hidden units contribute more towards error reduction. Though we see that 

the hidden units bring the error down to decimal numbers. But not all the hidden units help in 

error reduction. A few trailing hidden units (after ordering in OLS) end up increasing the error. 

For this reason we can say that for 20 iterations 19 hidden units will give minimum validation 

error.  

 Same can be said also about the training and validation errors over the iterations. The 

last few iterations reduce the training iteration but the validation error is increased. This means 

the generalization capability is being reduced while networks keeps memorizing. For this reason 

early stopping will give a better performance.  

 But the biggest advantage we gain is the reduction in the size of input space by this 2-

stage feature selection. As mentioned in the table 6.4, from 52 inputs we cut down to 30(from 

the validation error of PLOFS) and then from 30 we cut down to 4 inputs in the KLT domain. 

This comparatively reduces the chances of memorization many fold time.  

Case 2-Results for temperature forecast for 26 hrs ahead in future.  
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Table 6.5 Subset size and input sequence from PLOFS 

1 2 3 4 5 6 7 8 9 10 11 12

xp(30) xp(49) xp(18) xp(2) xp(6) xp(4) xp(26) xp(35) xp(10) xp(52) xp(3) xp(46)

13 14 15 16 17 18 19 20 21 22 23 24

xp(1) xp(5) xp(23) xp(43) xp(16) xp(40) xp(31) xp(28) xp(51) xp(22) xp(48) xp(20)

Optimal Subset, Size:24

 

Table 6.6 Training error for 20 iteration      Table 6.7 Validation error for 20 iteration 

It No. Value It No. Value It No. Value It No. Value

1 2.637513 11 0.563028 1 2.878797 11 0.585567

2 2.56979 12 0.500928 2 2.704612 12 0.518851

3 2.315396 13 0.439248 3 2.432376 13 0.453029

4 2.0948 14 0.347893 4 2.175161 14 0.357122

5 1.941038 15 0.256901 5 2.021177 15 0.264349

6 1.786538 16 0.256784 6 1.862988 16 0.262971

7 1.481133 17 0.226512 7 1.515443 17 0.269085

8 1.023714 18 0.193786 8 1.068346 18 0.257106

9 0.718642 19 0.262897 9 0.739381 19 0.280424

10 0.566025 20 0.193408 10 0.596775 20 0.291136

Training Error Validation Error

 

 

Figure 6.3 Validation Error over all ordered input units after training after 20 iterations   
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Figure 6.4 Validation Error over all the ordered hidden units after training for 20 iterations   

Table 6.8 Network Details  

Optimum No. of Hidden units (20 Iterations) 22 

Size of subset chosen from table 6.5 24 

Number of KLT features used 4 

Number of Hidden Units started with 25 

 

 Same observations as in case 1 can be made in PLOFS. Also the input sequence from 

the PLOFS show that 30
th
 input which is 24 hrs prior measurement is leading the race, while the 

49
th
 input which is a few hours prior measurement is also very close. Sinusoidal time inputs also 

are in the leading 15. But the more important in this case is the comparative with the case-1. 

The training and validation errors are more than case-1. Validation curve over the network units 

displays same behavior as in case-1 thereby concluding that not all hidden units get tuned to a 

helpful extent , thus helping us to find optimal number of hidden units. 
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Case-3 Results for temperature forecast for 51 hours ahead in future. 

Table 6.9 Subset size and input sequence from PLOFS 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

xp(15) xp(31) xp(25) xp(2) xp(7) xp(4) xp(20) xp(1) xp(27) xp(52) xp(48) xp(3) xp(36) xp(5)

15 16 17 18 19 20 21 22 23 24 25 26 27 28

xp(12) xp(23) xp(50) xp(10) xp(45) xp(17) xp(34) xp(43) xp(39) xp(33) xp(28) xp(41) xp(47) xp(30)

Optimal Subset, Size:28

 

Table 6.10 Training errors for 20 iteration  Table 6.11 Validation error for 20 iteration

It No. Value It no. Value It No. Value It no. Value

1 16.18777 11 5.16632 1 17.3312 11 5.67938

2 15.81419 12 4.67981 2 16.98927 12 5.297705

3 14.68309 13 4.679059 3 15.68175 13 4.975165

4 12.83242 14 3.869388 4 14.20516 14 4.449087

5 12.32898 15 3.545465 5 13.52445 15 3.820206

6 11.50774 16 3.545025 6 12.65584 16 3.822435

7 9.878537 17 3.374441 7 10.94618 17 3.880239

8 7.441872 18 3.210794 8 8.314548 18 3.846425

9 5.656462 19 3.09749 9 6.553609 19 3.905218

10 4.844659 20 3.2102 10 5.66928 20 3.981834

Training Error Validation Error

 

 

Figure 6.5 Validation Error over all the ordered input units after training for 20 iterations 
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Figure 6.6 Validation Error over all the ordered hidden units after training for 20 iterations 

Table 6.12 Networks Details 

Optimum No. of Hidden units (20 Iterations) 21 

Size of subset chosen from table 6.9 28 

Number of KLT features used 4 

Number of Hidden Units started with 25 

 

Now, this case of predicting 51 hrs in future shows that 24 hour previous measurement is more 

important than the previous hour measurement to a greater extent and we can see some other 

number of inputs doing more work that the 51st or the 52nd inputs. Well this is genuine. When 

we are trying to predict temperature value 51 hrs ahead in future we are skipping 2 days of 

measurement in between. So immediate past hour measurement is as such not available. The 

last input number 52 is not the measurement of temperature of previous hour, but it is the 

measurement of temperature of previous hour 2 days back. So 31st input being in top 5 is a 

good success for the PLOFS. Also time based inputs are in the leading few. But it is also seen 

that 7
th
 i.e. (31-24) input which is the measurement of 48 hrs prior is also leading. So in 

predicting some values we may find that not the prior hour measurement but 24 or 48 or 72 

hours prior measurement would be playing important role in the error reduction. Besides even 

with all the correct feature selection and good number of KLT features (4 in this case) being 

same as in last case, still the prediction error is going to increase from the previous cases. This 
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is going to be inherent in forecasting i.e. more the future we try to predict more the error will be. 

This will be clearly visible in the prediction plots shown next.  

 

Figure 6.7 Prediction of 1hr ahead temperature (100 samples of Validation data) 

 

Figure 6.8 Prediction of 26 hrs ahead temperature (100 samples of Validation data) 

 

     Figure 6.9 Prediction of 51 hrs ahead temperature (100 samples of Validation data)  
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 As already observed, as we try to forecast more hours in future the forecast quality 

keeps deteriorating. The prediction becomes bumpy and noisy. But the main observation we 

would later on show in table 6.61 is that the size of the network inputs space dimension is 

reduced to a very small number due to this 2-stage feature selection, at the same time the 

prediction error is not so largely affected. Another important observation is that all throughout 

the thesis we have tried to stress on the fact that a smaller network is much easier to train and 

that the memorization is avoidable easily if the input space N+1 dimension is small as 

compared to Nv. For this reason the heuristics mentioned at end of chapter 3 about the ratio 

N/Nv is a good measure for the possibility of memorization. The lower the ratio the slimmer the 

training file will be and less will be memorization. Also notice that we have used a network with 

only one output, figure 5.5 and 5.6. So the KLT compression need not be applied to the output 

pattern in such cases and so the network training and validation error in KLT domain will be 

same as the time-domain prediction error after reconstruction.  

6.2 Results of humidity forecast  

Case 1: Results for prediction of percentage humidity for 1 hr in future. 

Table 6.13 Subset size and input sequence from PLOFS 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xp(27) xp(52) xp(4) xp(30) xp(49) xp(3) xp(51) xp(50) xp(41) xp(26) xp(45) xp(31) xp(47) xp(5) xp(2)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

xp(8) xp(42) xp(25) xp(28) xp(29) xp(33) xp(12) xp(35) xp(37) xp(39) xp(46) xp(43) xp(1) xp(21) xp(18)

Optimal Subset,Size:30

 

Table 6.14 Training and Validation errors for 10 iteration 

Iteration No 1 2 3 4 5 6 7 8 9 10

Training Error 0.002 0.00189 0.00164 0.00145 0.00123 0.0011 0.001 0.00101 0.001 0.001

Validation Error 0.0036 0.00319 0.00284 0.00241 0.002 0.0021 0.0021 0.0023 0.0024 0.00244
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Table 6.15 Network Details 

Optimum No. of Hidden units (10 Iterations) 4 

Size of subset chosen from table 6.13 30 

Number of KLT features used 4 

Number of Hidden Units started with 5 

 

 

Figure 6.10 Validation Error over all the ordered input units after training for 10 iterations 

 

Figure 6.11 Validation Error over all the ordered hidden units after training for 10 iterations 
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percentage, predicting this variable with very good accuracy is slightly tough. As such the 

validation and training error of 0.00246 and 0.0039 for case 1 of this variable looks bad as 

compared to 0.07 and 0.06 of the case-1 of temperature. This is evident from plots of prediction 

for humidity. Talking about other things the sequence of features again makes the same sense 

as in the case-1 of temperature.  As can be seen from the PLOFS figure 6.13 that use of PLN 

directly for prediction will give horribly large errors in prediction. Readers may wonder as to why 

have we choose such a large subset of 30 inputs out of PLOFS. The way we justify this is by 

saying that we wish to have all the sinusoidal inputs i.e. 1, 2, 3, 4 related to time in the chosen 

subset.  he reason for that is, we don’t want the neural network training to deal with estimating 

the time. If we choose say first 3 time inputs and leave out the 4
th
 then neural network training 

and validation error would increase a lot because the training has to account also for the 

missing time related input i.e. estimate the 4
th
 time related input from the existing 3 that we fed 

it. For this reason, in order to maintain the synchronization of the data with the time, we make 

sure that we fed all 4 time related inputs to the neural network during training and even any 

other time related input that we may have, that would help the network to estimate time. In fact, 

more the time related sinusoids, better result will it give. As such it is more sensible to chose the 

subset which corresponds to minimum validation error of the PLN. 

Case-2 Result for the forecast of Relative Humidity for 26 hrs in future. 

Table 6.16 Subset size and input sequence from PLOFS 

1 2 3 4 5 6 7 8 9 10 11 12 13

xp(48) xp(52) xp(2) xp(21) xp(10) xp(16) xp(5) xp(30) xp(1) xp(36) xp(7) xp(27) xp(25)

14 15 16 17 18 19 20 21 22 23 24 25

xp(40) xp(19) xp(4) xp(15) xp(45) xp(50) xp(33) xp(42) xp(23) xp(3) xp(38) xp(12)

Optimal Subset, Size:25
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Table 6.17 Training and Validation errors for 10 iteration 

Iteration No 1 2 3 4 5 6 7 8 9 10

Training Error 0.0063 0.0059 0.0054 0.00505 0.0045 0.0041 0.004 0.0041 0.004 0.0039

Validation Error 0.0076 0.0064 0.006 0.00521 0.005 0.0046 0.0041 0.0035 0.0031 0.00246  

Table 6.18 Network Details 

Optimum No. of Hidden units (10 Iterations) 4 

Size of subset chosen from table 6.16 25 

Number of KLT features used 4 

Number of Hidden Units started with 5 

 

 

Figure 6.12 Validation Error over all the ordered input units after training for 10 iterations 

 

Figure 6.13 Validation Error over all the ordered hidden units after training for 10 iterations 
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iterations the validation error actually started increasing. To avoid the same in this case we 

reduced the number of iterations. Also we see from figure 6.18, that the last hidden units also 

spoils the generalization capability of the network, meaning only 4 hidden units were needed. 

Case 3- Results for forecast of relative humidity for 51 hrs ahead in future. 

Table 6.19 Subset size and input sequence from PLOFS  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xp(7) xp(2) xp(25) xp(16) xp(1) xp(31) xp(38) xp(46) xp(33) xp(12) xp(23) xp(52) xp(28) xp(4) xp(5)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

xp(36) xp(50) xp(43) xp(19) xp(10) xp(3) xp(41) xp(21) xp(34) xp(45) xp(15) xp(49) xp(18) xp(40) xp(30)

Optimal Subset, Size:30

 

Table 6.20 Training and Validation errors for 10 iteration 

Iteration No 1 2 3 4 5 6 7 8 9 10

Training Error 0.0098 0.0095 0.0092 0.0084 0.0075 0.007 0.0062 0.0053 0.0049 0.0046

Validation Error 0.0116 0.00993 0.0091 0.0082 0.0075 0.0061 0.0058 0.0057 0.0059 0.0059

 

Table 6.21 Network Details 

Optimum No. of Hidden units (10 Iterations) 4 

Size of subset chosen from table 6.19 30 

Number of KLT features used 4 

Number of Hidden Units started with 5 

 

 

Figure 6.14 Validation Error over all the ordered input units after training for 10 iterations 
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Figure 6.15 Validation Error over all the ordered hidden units after training for 10 iterations 

 

Figure 6.16 Prediction of 1 hr ahead humidity (100 samples of Validation data) 

 

Figure 6.17 Prediction of 26 hrs ahead humidity (100 samples of Validation data) 
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Figure 6.18 Prediction of 51 hrs ahead humidity (100 samples of Validation data) 

As, will be observed that only 4 KLT coefficients did a job good enough to forecast for 51 hrs 

ahead. Thus reduction in number of inputs N is re-asserted. Readers may also ask that why is it 

we choose the same number of KLT coefficients in all the three cases, even though we are 

trying to predict more hours in future. The reason as we shall put it is that in chapter 4 we 

mentioned that the transforms concentrate all the energy of the specific pattern in the top few 

coefficients. But, having mentioned that, readers must notice from figure 5.6 that, when we try to 

predict more hours ahead in future, we do not change the input patterns at all. All that we 

change is the output that we try to predict. Window size being kept the same (i.e. 48, last 2 days 

of data), in all the 3 cases for a given variable, we get the same covariance and correlation 

matrix and therefore the SVD and the related KLT will be the same. Only, during the training the 

cross-correlation matrix is changed, using which we try to solve the equation for weights. For 

this reason we need to see the SVD and singular values ones only and decide on number of 

KLT features to be used ones only and use the same for all three cases. As such using lower or 

trailing KLT vectors of trailing rows of KLT matrix would add nothing but noise to the network, 

resulting in even more noisy prediction, which we already face in case 3 for all variables. 
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6.3 Results of solar radiation forecast  

Case-1  Results for forecasting solar radiation 1 hr ahead in future. 

Table 6.22 Subset size and input sequence from PLOFS 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xp(52) xp(29) xp(51) xp(3) xp(28) xp(4) xp(6) xp(30) xp(34) xp(49) xp(31) xp(50) xp(26) xp(5) xp(46)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

xp(35) xp(22) xp(2) xp(36) xp(25) xp(13) xp(33) xp(32) xp(1) xp(12) xp(38) xp(40) xp(27) xp(7) xp(8)

Optimal Subset, Size:30

 

Table 6.23 Training error for 20 iteration Table 6.24 Validation error for 20 iteration 

It No. Value It no. Value It no. Value It No. Value

1 0.500209 11 0.431232 1 0.524021 11 0.454433

2 0.488026 12 0.428533 2 0.508625 12 0.445002

3 0.476247 13 0.425628 3 0.496052 13 0.452363

4 0.4691 14 0.422797 4 0.486233 14 0.446808

5 0.465038 15 0.420355 5 0.487072 15 0.458722

6 0.463622 16 0.418359 6 0.496919 16 0.46541

7 0.444094 17 0.415192 7 0.461248 17 0.460525

8 0.437704 18 0.41201 8 0.465909 18 0.452897

9 0.435674 19 0.410494 9 0.459843 19 0.450017

10 0.433603 20 0.409515 10 0.452154 20 0.448939

Training Error Validation Error

 

Table 6.25 Network Details 

Optimum No. of Hidden units (20 Iterations) 18 

Size of subset chosen from table 6.22 30 

Number of KLT features used 15 

Number of Hidden Units started with 20 
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Figure 6.19 Validation Error over all the ordered input units after training for 20 iterations 

 

Figure 6.20 Validation Error over all the ordered hidden units after training for 20 iterations 

It will noticed by now (from chapter 2 also) that the solar radiation can be considered as a 

sparse signal. As such there can be other method of dealing with it, but we shall use the same 

forecaster to treat this variable as well, reason being that we wish to propose the combined 

forecaster in later sections. The solar radiation is a variable that never takes any negative 

values. For this reason the pre-rpocessing technique we have used like separating mean is a 

very very necessary thign to use the data for training. Now we will see in this variable and the 

other one (wind) coming later how well the hidden non-linear units contribute for reducing the 

validation error. As was seen in the case of humidity and temperature, more work was being 

done by the linear part of the network as compared to the hidden units. But in the solar radiation 
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and wind and even more, in the case of combined multivariable case the hidden units take over 

a lot of non-linearity and reduce a lot of validation error. We in this case also start as usual with 

some 20 hidden units and train for 20 iterations. But we observe that unlike temperature and 

humidity the optimal number of hidden units is 18 for this case. It can be also evident from the 

fact that the PLN validation error (PLOFS) figure 6.25 which uses only linear version of inputs 

has given out much larger validation error. So if only these linear inputs are used than the 

validation error will be large. But thanks to the non-linear sigmoid activation functions that the 

validation error for out neural network turns out to be very less. This proves the role of hidden 

non-linear units. The PLOFS like before has given impressive results though, keeping all the 

significant inputs in the top 25 size subset.  

Case 2-Results for solar radiation forecast for 26 hrs ahead 

Table 6.26 Subset size and input sequence from PLOFS 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xp(30) xp(4) xp(52)xp(50) xp(6) xp(2) xp(3) xp(13)xp(28) xp(1) xp(7) xp(34)xp(31)xp(11)xp(23)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

xp(5) xp(29)xp(51)xp(25)xp(46) xp(9) xp(26)xp(33)xp(27)xp(49)xp(38) xp(8) xp(36)xp(37)xp(35)

Optimal Subset, Size:30

 

Table 6.27 Training error for 20 iteration Table 6.28 Validation error for 20 iteration 

It No. Value It no. Value It no. Value It No. Value

1 1.087428 11 0.968132 1 1.119587 11 1.029443

2 1.064474 12 0.961778 2 1.119587 12 1.013127

3 1.04974 13 0.956977 3 1.119587 13 0.983532

4 1.007749 14 0.949604 4 1.036982 14 0.968703

5 0.994567 15 0.94614 5 1.019354 15 0.982738

6 0.988788 16 0.938954 6 1.023567 16 0.993526

7 0.978217 17 0.932842 7 1.004882 17 0.989328

8 0.973684 18 0.928331 8 1.026623 18 0.983823

9 0.972095 19 0.922814 9 1.02169 19 0.996636

10 0.970131 20 0.918049 10 1.030312 20 0.972607

Training Error Validation Error
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Table 6.29 Networks Details 

Optimum No. of Hidden units (20 Iterations) 20 

Size of subset chosen from table 6.26 30 

Number of KLT features used 15 

Number of Hidden Units started with 20 

 

 

Figure 6.21 Validation Error over all the ordered input units after training for 20 iterations 

 

Figure 6.22 Validation Error over all the ordered hidden units after training for 20 iterations 

One important fact about predicting the solar radiation is that it can also be considered as a 

deterministic signal (unless, cloudy weather). For this reason we see that the increase in the 

validation error from case-1 to case-2 in case of radiation is not so large as compared to 

increase from case-1 to 2 in the case of temperature. That means, it actually would be possible 

to predict the solar radiation for more hours in future, more than 51 hrs, without increasing the 

validation error largely. This is also visible from figures 6.34, 6.35, 6.36 

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

X= 20

Y= 1.1705

Number of ordered inputs units

V
al

id
at

io
n 

E
rro

r

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

X= 20

Y= 0.97261

Number of ordered Hidden units

V
al

id
at

io
n 

E
rr

or



 

 98 

Case-3: Results for forecast of solar radiation for 51 hrs ahead in future. 

Table 6.30 Subset size and input sequence from PLOFS 

1 2 3 4 5 6 7 8 9 10 11 12 13

xp(7) xp(4) xp(31) xp(2) xp(3) xp(36) xp(27) xp(1) xp(5) xp(16) xp(49) xp(50) xp(52)

14 15 16 17 18 19 20 21 22 23 24 25

xp(8) xp(29) xp(32) xp(38) xp(24) xp(13) xp(6) xp(11) xp(47) xp(9) xp(40) xp(34)

Optimal Subset, Size:25

Table 6.31 Training error for 20 iteration    Table 6.32 Validation error for 20 iteration 

It No. Value It no. Value It no. Value It No. Value

1 1.616424 11 1.467414 1 1.528074 11 1.456777

2 1.59558 12 1.463199 2 1.528074 12 1.457264

3 1.55816 13 1.459774 3 1.503227 13 1.456583

4 1.544407 14 1.456223 4 1.493017 14 1.456987

5 1.531335 15 1.451867 5 1.45999 15 1.459996

6 1.518365 16 1.4482 6 1.510201 16 1.469464

7 1.506939 17 1.443368 7 1.465512 17 1.47582

8 1.495856 18 1.440422 8 1.439538 18 1.478199

9 1.486332 19 1.43774 9 1.460639 19 1.483273

10 1.474088 20 1.431583 10 1.461744 20 1.50289

Training Error Validation Error

 

Table 6.33 Networks Details 

Optimum No. of Hidden units (20 Iterations) 9 

Size of subset chosen from table 6.30 25 

Number of KLT features used 15 

Number of Hidden Units started with 20 

 

 

Figure 6.23 Validation Error over all the ordered input units after training for 20 iterations 
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Figure 6.24 Validation Error over all the ordered hidden units after training for 20 iterations 

 

Figure 6.25 Prediction of 1 hr ahead Radiation (100 samples of Validation data) 

 

Figure 6.26 Prediction of 26 hrs ahead Radiation (100 samples of Validation data) 
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Figure 6.27 Prediction of 51 hrs ahead Radiation (100 samples of Validation data) 

 Important observation to be made in the case of solar radiation is that the time domain 

prediction error can be smartly calculated to have a smaller value. For instance, during the dark 

hours the radiation measurement is zero. It never goes into negative direction. Forecast for 51 

hrs ahead show that the predictor does predict negative values. So in order to calculate the 

error, these negative values can be replaced b  ‘0’, and so the time domain error can be 

reduced at least for a few hours at late night (when sun is not going to be there for sure) by 

intuition. This kind of smart post processing approaches can really improve the prediction, as 

will be largely visible in prediction for wind coming next. 

6.4 Results of wind forecast  

The wind speed and direction are the two variables are the most randomly behaving ones. The 

reason can be anything from measurement technique to the local effects in the weather itself. 

But such behavior of a variable makes it almost impossible to predict it for long term ahead. 

Most of the research [70], [71], [72], has limited themselves for short term prediction for knowing 

few hours ahead power generation capability. Either they have limited to short term prediction, 

or they have only predicted speed and not direction, or they have predicted speed after 

averaging over whole day! These are some ways to ease the problem. But a smarter approach 

would always be to take the variable as it is. The wind is never measurable absolutely. It is 

always measured in terms of component of wind in a specific direction. Direction is attributed to 
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the speed or else it losses all its meaning for any application. Therefore we have here combined 

the speed and direction together as a complex or Cartesian coordinate as shown in chapter 2. 

As a result of looking at speed and direction together, we eventually add two more sinusoidal 

inputs to the network which enhances its prediction or generalization capability.   

Case 1- Results for predicting wind speed and direction for 1 hr in future. 

Table 6.34 Subset size and input sequence from PLOFS 

1 2 3 4 5 6 7 8 9 10 11 12 13

xp(29) xp(5) xp(52) xp(51) xp(28) xp(50) xp(45) xp(47) xp(49) xp(48) xp(46) xp(30) xp(43)

14 15 16 17 18 19 20 21 22 23 24 25 26

xp(3) xp(27) xp(6) xp(4) xp(38) xp(33) xp(32) xp(37) xp(35) xp(36) xp(34) xp(1) xp(2)

Optimal Subset, Size:26

 

Table 6.35 Training error for 20 iteration    Table 6.36 Validation error for 20 iteration 

It No. Value It no. Value It no. Value It No. Value

1 0.645164 11 0.609351 1 0.459965 11 0.454861

2 0.639537 12 0.606694 2 0.453467 12 0.451558

3 0.636526 13 0.604414 3 0.451086 13 0.450167

4 0.632747 14 0.601794 4 0.449623 14 0.452128

5 0.629626 15 0.599241 5 0.450346 15 0.454803

6 0.626406 16 0.59603 6 0.450725 16 0.460785

7 0.621639 17 0.594304 7 0.448589 17 0.460492

8 0.6177 18 0.592876 8 0.44922 18 0.463426

9 0.613854 19 0.591232 9 0.452291 19 0.463292

10 0.611268 20 0.5892 10 0.453667 20 0.464422

Training Error Validation Error

 

Table 6.37 Networks Details 

Optimum No. of Hidden units (20 Iterations) 26 

Size of subset chosen from table 6.34 [26;26;26] 

Number of KLT features used [13;12;12] 

Number of Hidden Units started with 50 
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Figure 6.28 Validation Error over all the ordered input units after training for 20 iterations 

 

Figure 6.29 Validation Error over all the ordered hidden units after training for 20 iterations 

Table 6.38 Error at individual Outputs 

Error at Outputs Before Training  After Training 

1 0.576333 0.5303 

2 0.038129 0.02646 

3 0.04237 0.03244 

 

 Unlike the variables like temperature and radiation, we don’t expect the wind speed or 

direction to be a periodic signal, unless we take consideration of the fact that wind mostly blows 

from one specific direction in one season and that pattern is repeated every year. But such facts 

are known to us only and hard to represent or detect by a neural network especially if we use 

data only for 2 years. So the PLOFS becomes the most important part for predicting wind. The 

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

Number of ordered inputs units

V
al

id
at

io
n 

E
rr

or

X= 42

Y= 0.4702

0 5 10 15 20 25 30 35 40 45 50
0.46

0.465

0.47

0.475

0.48

0.485

X: 26

Y: 0.4614

Number of ordered Hidden units

V
al

id
at

io
n 

E
rr

or



 

 103 

PLOFS result of table 6.34 shows that the measurement of wind speed and direction of 

previous day would hardly have any effect in predicting next hour values. We see in that table 

that 24 hours prior measurement (i.e. 52-24) i.e. except for 27
th
 28

th
 and 29

th
 input, all other 

inputs in the first subset of 25 inputs come from the sequence of inputs from 52 to 30 and time 

related inputs. This shows us that using data of more past days would not help. But immediate 

past measurement would really be the determining factor for predicting future values.  

Besides this, out of all 4 variables we treated till now, wind is the only variable that has 

validation error less than the training error! This comes as an approval of the fact that the 

wind speed and direction are together capable of reducing the randomness in individual one of 

them and due to this the network is able to generalize better. This also gives us a heads up to 

try to use more number of variables in the network that can reduce each other’s randomness. 

For example temperature to a certain extent can be considered as random and periodic. But 

when used along with solar radiation measurement, its randomness is reduced because of the 

fact that if solar radiation is low then temperature is ought to be low in near future. This 

encourages us to use multi-variable model of forecaster. 

Case-2: Result of wind speed and direction forecast for 26 ahead in future. 

Table 6.39 Subset size and input sequence from PLOFS 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xp(5) xp(3) xp(45) xp(4) xp(29) xp(1) xp(17)xp(21) xp(6) xp(46)xp(47)xp(25)xp(52)xp(27)xp(18)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

xp(15)xp(39) xp(2) xp(43)xp(49)xp(22)xp(26)xp(16)xp(36)xp(23)xp(19)xp(41)xp(38)xp(11)xp(10)

Optimal Subset, Size:30
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Table 6.40 Training error for 20 iteration Table 6.41 Validation error for 20 iteration 

It No. Value It no. Value It no. Value It No. Value

1 1.940171 11 1.795932 1 1.400552 11 1.366433

2 1.919454 12 1.786014 2 1.372843 12 1.364474

3 1.899669 13 1.776924 3 1.355348 13 1.365644

4 1.886827 14 1.76929 4 1.353551 14 1.369983

5 1.869635 15 1.7642 5 1.350327 15 1.373265

6 1.857883 16 1.760392 6 1.351293 16 1.376814

7 1.84255 17 1.755157 7 1.356641 17 1.380661

8 1.828436 18 1.748657 8 1.368408 18 1.394443

9 1.817593 19 1.742374 9 1.366202 19 1.399002

10 1.807099 20 1.737772 10 1.366783 20 1.407314

Training Error Validation Error

 

Table 6.42 Network Details 

Optimum No. of Hidden units (20 Iterations) 7 

Size of subset chosen from table 6.39 [30;30;30] 

Number of KLT features used [13;12;12] 

Number of Hidden Units started with 50 

 

 

Figure 6.30 Validation Error over all the ordered input units after training for 20 iterations 

 

Figure 6.31 Validation Error over all the ordered hidden units after training for 20 iterations 
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Table 6.43 Error at individual Outputs 

Error at Outputs Before Training  After Training 

1 1.796515 1.6322 

2 0.087127 0.07833 

3 0.112907 0.0262 

 

 Predicting the wind for a long term ahead is the most challenging task. As mentioned 

before hardly any researcher has tried this before. Most of the wind predictors are based on 

specific Raleigh distribution that is used in areas of communication. But we shall prefer to use 

correlations to predict wind. There are sinusoids in the time related inputs and there is a 

sinusoid of direction in the data. The PLOFS results show that, these sinusoids are the most 

important signals in predicting the wind speed and direction ahead in time. Remembering that 

we don’t have the data for immediate past i.e. we are tr ing to predict  6 hrs ahead (solely on 

which wind prediction is dependent as discussed in case-1), the most important inputs that 

PLOFS finds is the sinusoids, in order to extrapolate the signal non-linearly.   

 Also it is important to understand that PLOFS algorithm has to be applied only 1 time 

even though the wind as a variable as 3 time series (and time-domain pattern is formed by 

augmenting/concatenating 3 patterns), as in figure 5.3. The reason being the fact that the same 

feature sequence or subset that we use for wind magnitude have to be used for the 

sin(direction) and cosine(direction) time series also. If we wish to use the 2 time series 

representation (mag·sin(direction), mag·cosine(direction)), then again the PLOFS need be 

applied on only one of the 2 time-series and use the same subset for the other. It is not right to 

modulate the sin(direction) of one time sample with the magnitude from some other time 

sample! 
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Case 3: Results of wind speed and direction prediction for 51 hrs ahead in future. 

Table 6.43 Subset size and input sequence from PLOFS 

1 2 3 4 5 6 7 8 9 10 11 12 13

xp(29) xp(1) xp(48) xp(27) xp(42) xp(20) xp(15) xp(44) xp(2) xp(3) xp(43) xp(24) xp(30)

14 15 16 17 18 19 20 21 22 23 24 25

xp(47) xp(49) xp(5) xp(19) xp(18) xp(41) xp(51) xp(50) xp(52) xp(4) xp(26) xp(21)

Optimal Subset, Size:25

 

Table 6.45 Training error for 20 iteration Table 6.46 Validation error for 20 iteration 

It No. Value It no. Value It no. Value It No. Value

1 3.596836 11 3.337271 1 2.511213 11 2.401503

2 3.543535 12 3.330078 2 2.448337 12 2.409194

3 3.501623 13 3.318601 3 2.405601 13 2.452782

4 3.464042 14 3.308755 4 2.419438 14 2.457951

5 3.432554 15 3.296113 5 2.39525 15 2.466362

6 3.409379 16 3.283435 6 2.388655 16 2.468488

7 3.380853 17 3.275259 7 2.383429 17 2.500549

8 3.363957 18 3.266166 8 2.412824 18 2.50461

9 3.354772 19 3.254363 9 2.395397 19 2.593049

10 3.345871 20 3.244602 10 2.395802 20 2.645984

Training Error Validation Error

 

Table 6.47 Network Details 

Optimum No. of Hidden units (20 Iterations) 11 

Size of subset chosen from table 6.43 [25;25;25] 

Number of KLT features used [13;12;12] 

Number of Hidden Units started with 50 

 

 

Figure 6.32 Validation Error over all the ordered input units after training for 20 iterations 
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Figure 6.33 Validation Error over all the ordered hidden units after training for 20 iterations 

Table 6.48 Error at individual Outputs 

Error at Outputs Before Training  After Training 

1 3.403952 3.1243 

2 0.121025 0.0832 

3 0.178491 0.03705 

 

 The most important observation as we mentioned before is the fact that validation error 

is less than training error. Elaborating this, it must be observed that the PLOFS gives us the 

most important inputs based on only linear capability of the inputs, without knowing about the 

non-linear capability of the sigmoid activation units which represent the non-linear part of the 

network. The tuned non-linear activation units are actually the true units that are responsible for 

such a good training and validation errors. It is visible from the figures 6.39, 6.42, 6.45 that the 

hidden units are really very actively participating as compared to the other 3 variables. It will be 

seen that this capability is exploited even more in the combined multivariable forecaster. 

 One another important observation made during wind prediction is in the KLT part. It 

was observed that the KLT transformed coefficients in the first 3 variables could somehow were 

capable to concentrate the maximum energy in the top few coefficients thereby allowing us to 

use less number of coefficients and less number of leading rows of KLT matrix for compression. 

But in the case of wind this was not possible. It was observed that in the case of wind the 

magnitude of the singular values did not drop drastically from first 1 to 5 or 10 values, but it 
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gradually fell to small values at around 15
th
 or 16

th
 value forcing us to use more KLT features, 

resulting in a slightly larger network. This also implies that the energy was distributed uniformly 

even after transformation. This encourages us to propose a 3-stage feature selection wherein 

we can use PLOFS over the KLT transformed patterns to find out most significant ones (future 

work). 

 

Figure 6.34 Prediction of 1 hr ahead wind speed (100 samples of Validation data) 

 

Figure 6.35 Prediction of 26 hrs ahead wind speed (100 samples of Validation data) 
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Figure 6.36 Prediction of 51 hrs ahead wind speed (100 samples of Validation data) 

 

Figure 6.37 Prediction of 1 hr ahead wind direction (200 samples of Validation data) 

 

Figure 6.38 Prediction of 26 hrs ahead wind direction (200 samples of Validation data) 
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Figure 6.39 Prediction of 51 hrs ahead wind direction (200 samples of Validation data) 

 One most important post-processing after the prediction of the modulated signal is 

using the equations (11) – (16) for calculating the phase/direction from the predicted signal. 

More importantly is the unwrapping operation from chapter 2(following equation (16)). The 

wrapped version of signal has  π discontinuities and messes up the time-domain error. So after 

the phase calculation we first unwrap the signal which then look like the above shown signals in 

figure 6.37-6.39. The fact is that the shape of the signal is predicted correctly but there are 

separation of multiples of  π in the signal.  As such these separations would give large errors 

but the error calculated need to go through the ‘modulo’ operation as in equation (17). This 

gives us true error in predicting the direction.           π  ea s  e   e     as suc . 

Calculating this way we get prediction error MSE of 0.032, 0.0734, and 0.0967 radians for case 

1, 2, 3 respectively over validation data of 4000 patterns. This is the true error in predicting wind 

direction in time-domain.  π separation virtuall  means nothing in case of phase. 
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6.5 Results of combined forecast  

Case-1 Results of combined forecaster for 1 hrs ahead prediction 

Table 6.49 Training error for 30 iteration Table 6.50 Validation error for 30 iteration 

It No. Value It no. Value It no. Value It No. Value

1 2.017251 16 1.707593 1 1.409059 16 1.170657

2 1.969116 17 1.697271 2 1.4061 17 1.163767

3 1.943677 18 1.687138 3 1.384846 18 1.15973

4 1.901094 19 1.677077 4 1.346546 19 1.150289

5 1.88552 20 1.678306 5 1.324651 20 1.138683

6 1.862801 21 1.640283 6 1.321546 21 1.129264

7 1.842501 22 1.602476 7 1.320648 22 1.123616

8 1.798376 23 1.588245 8 1.320326 23 1.119297

9 1.758308 24 1.580185 9 1.275375 24 1.109654

10 1.738245 25 1.574058 10 1.261466 25 1.115918

11 1.750168 26 1.561799 11 1.228254 26 1.124391

12 1.74812 27 1.537528 12 1.227268 27 1.137159

13 1.718101 28 1.533399 13 1.20626 28 1.13886

14 1.69805 29 1.509369 14 1.192423 29 1.146086

15 1.697906 30 1.509272 15 1.184611 30 1.153105

Training Error Validation Error

 

Table 6.51 Networks Details  

Optimum No. of Hidden units (30 Iterations) 28 

Subset size chosen (sections 1 to 4,case-1) [30;30;30;26;26] 

Number of KLT features used [14;14;14;14;14] 

Number of Hidden Units started with 75 

 

 

Figure 6.40 Validation Error over all the ordered input units after training for 30 iterations 
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Figure 6.41 Validation Error over all the ordered hidden units after training for 30 iterations 

Table 6.52 Error at individual Outputs 

Error at Outputs Before Training  After Training 

1 0.056313 0.03992 

2 0.000319 0.000154 

3 0.906608 0.722303 

4 0.791784 0.59342 

5 0.282213 0.15343 

 

Case-2 Results of combined forecaster for 26 hrs ahead prediction. 

Table 6.53 Training error for 30 iteration Table 6.54 Validation error for 30 iteration 

It No. Value It no. Value It no. Value It No. Value

1 5.914351 16 4.988424 1 4.070107 16 3.480357

2 5.759603 17 4.95901 2 4.072644 17 3.416742

3 5.683046 18 4.929673 3 3.999412 18 3.403819

4 5.558998 19 4.900225 4 3.914358 19 3.335639

5 5.514361 20 4.905591 5 3.863862 20 3.296633

6 5.447578 21 4.794052 6 3.842987 21 3.321941

7 5.387406 22 4.68238 7 3.825295 22 3.294202

8 5.257535 23 4.640487 8 3.82704 23 3.238772

9 5.198242 24 4.616698 9 3.793542 24 3.257085

10 5.13919 25 4.598218 10 3.753552 25 3.241282

11 5.115213 26 4.562512 11 3.71981 26 3.298763

12 5.107945 27 4.492279 12 3.65323 27 3.258297

13 5.019897 28 4.48046 13 3.589841 28 3.314865

14 4.961054 29 4.410202 14 3.568098 29 3.323453

15 4.960007 30 4.409783 15 3.538535 30 3.331891

Training Error Validation Error

 

Table 6.55 Network Details 

Optimum No. of Hidden units (30 Iterations) 53 

Subset size chosen (sections 1 to 4,case-2) [24;25;30;30;30] 

Number of KLT features used [14;14;14;14;14] 

Number of Hidden Units started with 75 
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Figure 6.42 Validation Error over all the ordered input units after training for 30 iterations 

 

 

Figure 6.43 Validation Error over all the ordered hidden units after training for 30 iterations 

Table 6.56 Error at individual Outputs 

Error at Outputs Before Training  After Training 

1 0.250068 0.08823 

2 0.001029 0.0005023 

3 2.767848 2.093476 

4 2.204547 1.678387 

5 0.785255 0.54946 
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Case 3-Results of Combined forecast for 51 hrs ahead. 

Table 6.57 Training error for 30 iteration Table 6.58 Validation error for 30 iteration 

It No. Value It no. Value It no. Value It No. Value

1 10.81109 16 9.118341 1 7.303202 16 6.224528

2 10.54936 17 9.063071 2 7.284315 17 6.10941

3 10.42161 18 9.008381 3 7.220953 18 6.082698

4 10.18918 19 8.95404 4 7.086033 19 5.92344

5 10.09962 20 8.965915 5 6.96228 20 5.892548

6 9.967983 21 8.762045 6 6.899563 21 5.929072

7 9.850657 22 8.559443 7 6.828868 22 5.884271

8 9.610548 23 8.482797 8 6.844404 23 5.797383

9 9.501173 24 8.439018 9 6.772019 24 5.808396

10 9.392863 25 8.405575 10 6.709266 25 5.786824

11 9.349028 26 8.339816 11 6.639197 26 5.899751

12 9.337381 27 8.210076 12 6.525585 27 5.826096

13 9.176359 28 8.187499 13 6.425796 28 5.923734

14 9.068477 29 8.058636 14 6.363029 29 5.9018

15 9.066927 30 8.057926 15 6.317525 30 5.918126

Training Error Validation Error

 

Table 6.59 Networks Details 

Optimum No. of Hidden units (30 Iterations) 58 

Subset size chosen (sections 1 to 4,case-3) [28;30;25;25;25] 

Number of KLT features used [14;14;14;14;14] 

Number of Hidden Units started with 75 

 

 

Figure 6.44 Validation Error over all the ordered input units after training for 30 iterations 
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Figure 6.45 Validation Error over all the ordered hidden units after training for 30 iterations 

Table 6.60 Error at individual Outputs 

Error at Outputs Before Training  After Training 

1 0.669325 0.46454 

2 0.002088 0.001230 

3 5.14582 4.2570 

4 3.823486 2.4980 

5 1.387493 0.8363 

 
Table 6.61 Reduction in number of inputs due to 2-Stage Feature Selection 

 

Variable Number 
No Feat Selection After TDFS After TDFS and KLT 

N N/Nv N N/Nv N N/Nv 

Temperature 

Case 1 53 0.0041 35 0.0027 9 0.00069 
Case 2 53 0.0041 29 0.0022 9 0.00069 
Case 3 53 0.0041 33 0.0025 9 0.00069 

Relative 
Humidity 

Case 1 53 0.0041 35 0.0027 9 0.00069 

Case 2 53 0.0041 30 0.0023 9 0.00069 

Case 3 53 0.0041 35 0.0027 9 0.00069 

Solar 
Radiation 

Case 1 53 0.0041 35 0.0027 20 0.0015 

Case 2 53 0.0041 35 0.0027 20 0.0015 

Case 3 53 0.0041 30 0.0023 20 0.0015 

Wind Speed 
and 

Direction 

Case 1 149 0.0115 83 0.0064 42 0.0032 

Case 2 149 0.0115 95 0.0073 42 0.0032 

Case 3 149 0.0115 80 0.0062 42 0.0032 

Combined  
Forecaster 

Case 1 245 0.0188 147 0.0113 75 0.0058 

Case 2 245 0.0188 144 0.0111 75 0.0058 

Case 3 245 0.0188 138 0.0106 75 0.0058 
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Temperature Training Validation Humidity Training Validation

case1 0.067517 0.076769 case1 0.001 0.0024

case2 0.193408 0.291136 case2 0.0039 0.00246

case3 3.2102 3.981834 case3 0.0046 0.0059

Radiation Training Validation Wind Training Validation

case1 0.409515 0.448939 case1 0.5892 0.464422

case2 0.918049 0.972607 case2 1.7377 1.4073

case3 1.4315 1.50289 case3 3.2446 2.6459

Total of top 4 Tables Training Validation

Table 6.63 Radiation results Table 6.64 Wind results

Table 6.65 Sum of Error of all 4 variables

Training Validation

case1 1.067232 0.99253

case2 2.853057 2.673503

Table 6.62 Temperature results Table 6.63 Humidity results

case3 8.057 5.9181

case1 1.509 1.1531

case2 4.4097 3.3318

case3 7.8909 8.136524

Table 6.66 Results of Combined Forecaster

Combined Forecaster Results

 

Tables 6.61, 6.62, 6.63, 6.64, 6.65, 6.66 gives the comparative of individual forecasts with the 

results of combined forecaster. The sole reason of proposing the combined forecaster is to 

stress on the fact that the variables can use the correlations between each other as mention in 

chapter 2. For this reason it is seen that the sum of error out of the combined forecaster is 

much less than the sum of individual errors from section 6.1 to 6.4. Of course the only 

disadvantage is that number of iterations and number of hidden units needed are larger, giving 

a larger network and 5 KLT matrices need be calculated. But the advantage obtained is the fact 

that the validation error is less than the training error. In the cases where we have used more 

than one time-series for designing the forecaster i.e. in case of wind where we used 2 time-

series and in section 6.5 where we used 5 time series, the validation error has been seen to be 

smaller than training error. Meaning that the network is able to generalize better when it has 

more information about more number of variable rather than when it has information only about 

one variable.  

 As mentioned in the beginning of the chapter, we have now given the prediction results 

of time-domain training with no feature selection. These are training results for each variable for 
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predicting 51 hrs ahead in time. As seen, the training and validation errors are very close to the 

training and validation results in the KLT domain. But these networks have 53 inputs and 1 

output and 50 hidden units in each network. For these large networks we have trained each 

network for 25 iterations. The biggest advantage obtained therefore by 2-stage feature selection 

is less iteration required for training and super smaller size of network as mentioned in table 

6.61.  he   values in the table also include ‘1’ and 4 time related inputs. 

Table 6.68 Results of time domain training of temperature and humidity 51 hrs ahead prediction 

Training Error Validation Error Training Error Validation Error

1 5.014588 5.445902 0.008587 0.007826

2 4.911325 5.304677 0.008513 0.00777

3 4.822566 5.180696 0.00847 0.00788

4 4.704014 5.413733 0.00841 0.007847

5 4.616312 5.407483 0.008368 0.007712

6 4.530208 5.183719 0.008332 0.007706

7 4.413082 5.070025 0.008302 0.007778

8 4.328221 4.901329 0.008274 0.007762

9 4.261662 4.965095 0.008249 0.007728

10 4.213797 5.027613 0.008222 0.007708

11 4.161136 4.995138 0.008198 0.00772

12 4.111347 5.023372 0.008177 0.007698

13 4.068044 5.097714 0.008157 0.007709

14 4.025581 5.046147 0.008135 0.007683

15 3.985717 5.051059 0.008112 0.007649

16 3.950987 5.070594 0.008089 0.007731

17 3.916131 5.112813 0.00807 0.00782

18 3.883218 5.090287 0.00805 0.007855

19 3.853229 5.156363 0.008024 0.007888

20 3.82012 5.207608 0.008005 0.007799

21 3.774925 5.20928 0.007987 0.007822

22 3.747402 5.097325 0.007971 0.007848

23 3.70301 5.24799 0.007953 0.007756

24 3.670579 5.328998 0.007936 0.007711

25 3.631556 5.237458 0.007919 0.007673

Iteration

Results of training in Time-domain for 

Temperature 51hrs ahead

Results of training in Time-domain for 

Humidity 51hrs ahead
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Table 6.69 Results of time domain training of radiation and wind speed 51 hrs ahead prediction 

Training Error Validation Error Training Error Validation Error

1 2.227062 2.014768 4.29271 3.421428

2 2.145387 1.965081 4.203846 3.341564

3 2.058502 1.930811 4.149413 3.256577

4 2.008074 1.898366 4.116617 3.252703

5 1.983001 1.955049 4.082218 3.221455

6 1.954633 1.914677 4.054211 3.211156

7 1.914488 1.871976 4.027665 3.237341

8 1.892002 1.871101 4.001767 3.240865

9 1.872907 1.875286 3.977877 3.260351

10 1.854263 1.883222 3.943098 3.302107

11 1.836385 1.884633 3.918982 3.306254

12 1.821602 1.876033 3.898319 3.307019

13 1.808233 1.872071 3.874616 3.28295

14 1.791363 1.870378 3.842655 3.322512

15 1.767766 1.828065 3.821074 3.323292

16 1.754873 1.866893 3.799424 3.36025

17 1.739033 1.855812 3.778294 3.373889

18 1.72716 1.834734 3.756669 3.379913

19 1.712663 1.81391 3.736912 3.368982

20 1.70338 1.827711 3.709551 3.382065

21 1.694652 1.838442 3.688966 3.38282

22 1.684796 1.841739 3.667017 3.425506

23 1.676353 1.883657 3.647547 3.457403

24 1.667408 1.91145 3.625133 3.446824

25 1.656075 1.902184 3.607127 3.507686

Iteration

Results of training in Time-domain for 

Radiation 51hrs ahead

Results of training in Time-domain for 

Wind 51hrs ahead

 

 

 

 

 

 

 

 

 



 

 119 

CHAPTER 7 

 CONCLUSION 

 For forecasting the weather related variables each variable needs a special treatment 

as pre-processing and as post-processing. The time-domain training patterns need to undergo 

special treatments like mean –separation and mean removal in order to make data zero-mean. 

The time domain training asks for larger networks and larger number of hidden units. Therefore 

the PLOFS enables us to get a smaller time-domain pattern which has lesser noise. This 

patterned can yet be de-noised by KLT compression process. Training with such a pattern in 

KLT domain using advanced algorithm of multiple learning factors makes the hidden space 

adaptable to variations in the data and thereby reduce the validation error better. Last but not 

the least the size of networks input space and hidden space plays a very critical role in the 

possibility of memorization. Smaller networks trained with larger number of smaller training 

patterns reduced the chances of memorization to very large extent thereby by giving us a 

optimal forecaster/predictor which has good accuracy of prediction and even better capability of 

predicting more hours in future. As such the accuracy of prediction keeps deteriorating as we try 

and predict more hours in future. 
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APPENDIX A 

 
 

THEORY ON THE GRAM-SCHMIDT  
 

ORTHONORMALIZATION 
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Vector Space- A set is called a vector space or a linear space if it satisfies axioms as follows- 

a     a commutative law  

a    c   a    c  associative law  

a     a a 

a   a    

And for any two members of the set x and y and scalars α and β the sum- α    β   also belongs 

to the set. 

Inner products- An operator between two vectors is called inner product if it satisfies 

  ,     ,    is the complex con ugate 

      ,      ,      ,   

 c  ,   c  ,  , c is a scalar 

  ,   0 and 0 if and onl  if     

In 2-dimensional vector-space   ,          cos , and also as   ,               which is called 

dot product. 

Norm- Norm represents the length of the given vector and is defined as- 

  α     α      , 

      0 and 0 if and onl  if    , 

                    i.e.triangular inegualit  

Distance-The distance d between two vectors is defined as- 

d  ,           

Norm of a Matrix-(Magnitude of Matrix)-The most useful way of defining the norm of matrix is to 

use the length of a vector associated with the matrix. Since the matrices are interpreted as the 
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transformation from the vector x to another vector y=A*x , it is natural to compare the length of 

y to x and define the ratio as- 

      max  
      

     
  

If the vector x is expressed as x = x.e, where bold x is the magnitude and the e is the unit 

vector then above expression becomes- 

      max 
    e  

   e  
  max

  e   1
   e   

Linear Independence of Base Vectors- If a set of n vectors x1,x2,x3,…xn satisfies- 

a1   a    a3  ….. an   0 if and onl  if a1 a  a3 .. an 0,  

then x1,x2,x3,….xn are linearly independent. Or else they are linearly dependent.  

 

 Base Vectors-If a set of vectors e1,e2,e3……en satisfies – 

1. e1,e2,e3…en are linearly independent 

2. any arbitrary vector v in the set can be expressed as  

   a1e  a e  a3e ….. ane  

then they form the basis or base vectors. 

Best Approximation- 

An approximation of the arbitrary vector k by a linear combination of the linearly independent 

vectors {e1, e2, e3…en} as- 

   cie 

n

i 1

 

The unknown coefficients {c1, c2, c3…..cn} can be calculated so that the distance between k and 

the summation is minimized- 
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    cie 

n

i 1

 

 

 min 

It means that – 

    cie 

n

i 1

 

 

     cie 

n

i 1

,   c e 

n

  1

  

    ,     ci  ,e  

n

i 1

   ci

n

  1

c  ei
e  

n

i 1

  

Differentiation with respect to the coefficients   - 

0    im  ,ei  

n

i 1

   im

n

  1

c  e e      im

n

  1

c  e e  

n

i 1

n

i 1

 

     ,e    c  e  e  

n

  1

  ci e  e  

n

i 1

 

      e     c  e  e  

n

  1

 0 

 c  e  e  

n

  1

    e   

 

 e  e   e  e  

 e  e   e  e  
 

 e  e  

 e  e  
   

 e  e   e  e    e  e  

   

c1

c 

 
cn

   

   e  

   e  
 

   e  

  

This is a set of simultaneous equation that can be solved for vector (c1, c2….cn)
T
. This is where 

the Gram-Schmidt Ortho-normalization is usable. 

 Gram Schmidt Ortho-normalization- One needs to solve the above simultaneous 

equations by first computing the components of the matrix. The matrix is symmetrical so 

an efficient inverse technique like LU or Cholesky decomposition would work well. 
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However if each of the base vector is orthogonal and normalized as  e  e    i    i.e. is 

kronecker delta then the above matrix equation is simplified as- 

 

1 0
0 1

 
0
0

   

0 0  1

   

c1

c 

 
cn

   

   e  

   e  
 

   e  

 , i.e.cn    e   

 

This will be the most desirable base vectors from which the coefficients can be easily 

calculated. 

For a simplified understanding, the functions like  
1

  π 
,  

1

 π
  sinx,  

1

 π
  cosx,  

 
1

 π
  sin x,  

1

 π
  cos x,  

1

 π
  sin3x,  

1

 π
  cos3x…….  form an ortho-normal set in  

[-π,π]. Such function expansion of a periodic function is what is Fourier series. 

The steps for Gram-Schmidt ortho-normalization method for generating the ortho-normal vectos 

{e1, e2  … en} from linearly independent vectors {a1, a2  … an} are as upto certain steps. 

 

e   
1

  a   
  a  

e 
  a   a  e   e  

e   
1

  e 
   

  e 
  

e 
  a   a ,e   e1  a ,e   e  

e   
1

  e 
   

  e 
  

  

e 
  a   an,e   e   a  e   e …… a ,e    e    
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e   
1

  e 
   

  e 
  

This process of Gram-Schmidt Ortho-normalization is used in a recursive manner for solving for 

the output weights of the neural networks, but in a modified way. The modified version of the 

process is basically where we order the basis in the order of their contribution towards the 

function approximation, the biggest contributor being at the top and the least contributor 

hanging at the bottom. The basis functions for us are the tuned hidden units. So basically we try 

to order the hidden units using a volatile vector called ‘oe’ which has the index of hidden units in 

the descending order of their importance, thereby allowing us to know which one can be pruned 

off or removed in order to get a smaller or rather an optimal network. 
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