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ABSTRACT 

 
DETERMINATION OF FACTORS TO IMPROVE EFFECTIVENESS OF TRIANGULATION 

MEMBERS FOR A FORMULA SAE RACE CAR FRAME  

 

Vikram Nair, M.S. 

 

The University of Texas at Arlington, 2012 

 

Supervising Professor:  Robert Woods 

 

 This thesis suggests which factors have significant effect on the torsional and flexural 

stiffness of a space frame without contributing excessively to its weight. These factors are used 

as design variables to display the interaction plots generated by performing a Design of 

Experiments (DOE) using the Hyperstudy tool in Hyperworks by Altair®. The DOE will also 

provide a mathematical model which can help predict the responses by varying several factors 

in the design. The node - element models are created in ANSYS classic and are analyzed for 

various load cases that are representative of the loads on a formula SAE chassis during 

operation. The main focus is to maximize stiffness to weight ratio for a simple rectangular space 

frame while keeping making sure the various stresses acting along the section is under the yield 

load.  
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CHAPTER 1 

INTRODUCTION 

 

The design of a frame for vehicular applications depends on various factors in order to 

be efficient in fulfilling its purpose. Over the years various designs have been implemented 

which vary from space frames to the recent monocoque design. These concepts are efficient in 

their own way based on their application and manufacturing techniques available.  As described 

in the book Racing and Sports Car Chassis Design, the basic purpose of the race car chassis is 

to connect all four wheels with a structure which is rigid in bending and torsion (which will 

neither  sag or twist) and also must be capable of supporting all the components and occupants 

by absorbing loads without deflecting excessively. [1] 

 

The requirements of chassis depend heavily on the type of application it is used for. 

Various types of chassis designs have their individual strengths and weaknesses. Every type of 

chassis is a compromise between size, complexity, weight, application and overall cost. There 

is so ideal method of construction of a vehicle chassis as each of them present a different set of 

parameters/problems. Given the variation in design and construction, every chassis should be 

designed to the following basic specification, 

 

1. It should be structurally efficient and must not deform or break over the 

expected life of the design under normal conditions. 

2. It should be able to withstand the suspension loads in order to ensure safe and 

tunable handling of the vehicle for various types of loads. 
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3. It should support all the other components of the vehicle such as the engine, 

battery, etc without affecting the function of the chassis over the expected life of 

the design. 

4. It should protect the driver and other occupants of the vehicle from any sort of 

external intrusion. 

 
1.1 Types of Frame Designs 

 The main types of frame design used for a race car application are discussed below, 

 
1.1.1 Twin Tube or Ladder Frame  

 In the early 60’s, this type of frame was commonly used in standard cars. Like the name 

suggests it has two longitudinal rails interconnected by several lateral and cross braces which 

makes this type of frame easier to construct. The major drawback of this design is that the 

lateral loads are less compensated as the longitudinal rails are the main stress members. 

Hence this type of frame design lacks torsional rigidity. [2] 

 

 

Figure 1.1 Twin Tube or Ladder Frame 

 

1.1.2 Backbone Chassis 

  The backbone chassis has a simple design which incorporates a strong tubular 

backbone, usually in a rectangular section, which connects the front and the rear axle and 

provides mechanical strength. This type of chassis is strong enough for smaller sports cars but 
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lacks strength for high end ones as it does not provide protection for side impact or offset crash. 

It is easier to manufacture owing to its simple design and also the most space saving other than 

a monocoque chassis. [2] 

 

 

Figure 1.2 Backbone chassis 

 

1.1.3 Tubular Space Frame 

  The space frame is the most efficient type of chassis which can be built in limited 

production. The design of the space frame is such that it can take loads in all directions and 

thus is not only torsionally rigid but also rigid in bending. Further details of this type are 

described in the next section. [1] 

 

 
Figure 1.3 Tubular space frame 
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1.1.4 Monocoque 

  Monocoque is a one-piece structure which defines the overall shape of the car. While 

the previous types mentioned above need to build the body around them, the monocoque 

chassis is already incorporated with the body in a single piece. This design should be stiffer 

than an equivalent tubular space frame and body for the same weight or lighter for similar 

stiffness. Monocoque chassis also benefit in crash protection as well as space efficiency. [1, 2] 

 

 

Figure 1.4 Monocoque 

 

From all the various types of frames mention above, Space frames are the most 

common type used in the Formula SAE collegiate competition as they are simpler in design and 

easier to  manufacture for a weekend autocross driver.  Hence we further look into the concept 

of space frames and ways to make them torsionally rigid and decrease complexity of 

manufacturing. 

 

1.2 Space Frames 

 Space frames in a broader sense are defined as follows, 

“A space frame is a structure system assembled of linear elements so arranged that forces are 

transferred in a three-dimensional manner. In some cases, the constituent element may be two 

dimensional. Macroscopically a space frame often takes the form of a flat or curved surface.” [3] 
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Space frames are commonly used at the Formula SAE collegiate competition for the 

following reasons, 

1. Simplicity in design and manufacturing 

2. The size of various sections of the car can be designed as per the suspension setup 

and geometry  

3. Steel or aluminum tubes placed in a triangulated format can be setup to support the 

loads from the suspension, engine, driver and aerodynamics of the car. 

4. It can easily be inspected for damage and hence easily repaired. 

 

The Formula SAE rules have evolved over the years on tubing size specification used 

in order to design a space frame. These rules mainly deal with the critical sections of the frame 

such as the main and front roll hoops and their bracing, the front bulkhead and its bracing and 

also the side impact structure of the car. The rules also specify fixed templates for the minimum 

cockpit opening size and also for the driver’s feet from the front roll hoop. All the other tubes are 

selected and laid out based on the suspension pickup points and the placement of the engine 

and drivetrain. These tubes have to be positioned so as to achieve maximum torsional and 

bending stiffness without adding excessive weight to the structure. 

 

The frame geometry should be such that the loads act in tensile and compressive 

manner in the frame members. Also the moment of inertia of the frame should be minimized 

which will affect the handling of the car during lateral maneuvers and braking.  By following 

these guidelines, a high stiffness to weight ratio can be obtained. 
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1.2.1 Triangulation of space frames 

The effectiveness of a space frame depends on its triangulation. As the size of the 

frame increase, the space in between also increases which results in a decrease in structural 

rigidity of the frame. One of the objectives of this thesis is to determine at what size of a given 

structure is it necessary to add triangulation so as to have a significant effect on the stiffness 

without excessively adding weight to the structure. 

 

In order to understand the effect of triangulation on a structure, the following 2-D 

example can be considered. Consider a rectangle supported at its base and a force is applied to 

one side of the rectangle. The structure tends to bend in the direction of the force quite easily 

and hence is inefficiently stiff. 

 

 

Figure 1.5 Deformation of rectangular structure without triangulation 

If we add a diagonal in the orientation shown below, it increases the overall stiffness of 

the structure. This diagonal member now acts in tension as the forces induced are trying to pull 

the diagonal from each end. The stiffness of this member acting in tension is higher than the 

compared to the stiffness of the sides of the rectangular structure in bending. 
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Figure 1.6 Deformation of rectangular structure with triangulation in Tension 

By reversing the direction of the diagonal member, the direction of the force changes 

and thus the member now acts in compression. This orientation of the diagonal members can 

lead to buckling of the triangulation and hence would need to be further strengthened by adding 

material. For example, it is far easier to crush an empty can of coke than to pull it apart from 

end to end. Hence Tubing which is used in tension can be of a lighter gauge than that used in 

compression. [4] 

 

Figure 1.7 Deformation of rectangular structure with triangulation in Compression. 

From the example shown above, the same can be applied to three dimensional 

structures in order to increase its stiffness. The triangulated bays formed by these members in 

3-D are called tetrahedrons which are quite stiff in its design. They also help in the formation of 

nodes on the chassis to aid in the stress distribution under various load cases. 
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In terms of application of these structures on the chassis, it is quite difficult to get the 

ideal shape of a tetrahedron as it would make the chassis impractical. For example, the best 

way to stiffen the suspension bays of a chassis would be to put a diagonal across it but in doing 

so would obstruct the driver’s legs.  

  

1.3 Objective of the thesis 

The main objective is to determine the factors that have a significant effect on the 

stiffness to weight ratio of a rectangular space frame. This analysis will provide data for 

estimating the interaction between the design variables and the response. From the data, we 

can approximate a mathematical model to predict the effect of these design variables for a 

given range of variation. This range is specified by the rules required for the design of a 

Formula SAE car. 

The steps taken to achieve the afore mentioned objective are as follows, 

1) Create node-element model in ANSYS APDL of a rectangular section of the frame and 

apply the required forces and restraints. 

2) Vary one parameter of the model, such as the base length (L1), and record the 

deflection and the peak stresses on a spreadsheet. 

3) Repeat the above steps by next varying the thickness and then the outer diameter of 

the tube. 

4) Analyze the frame again by adding triangulation of varying outer diameter (OD) and 

thicknesses. 

5) Compare and contrast the results obtained in the spreadsheet to see the variance in 

stiffness to weight to the varying design parameters. 

6) Take the existing values and simulate a Design of Experiments (DOE) in Hyperstudy to 

obtain Main effect plots and Interaction plots. 
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7) Use the DOE study to generate an approximation model for torsional/flexural stiffness 

and stresses for the various design variables. 

 

1.4 Outline of the thesis 

 Chapter 1 describes a brief history and importance of an efficient chassis with the help 

of triangulation in the case of a space frame. It also shows the various types of chassis being 

used today.  

 Chapter 2 explains the various loads to be considered while design of the vehicle. It 

does so along with derivation of the equation to calculate torsional and flexural rigidity of the 

frame.  

 Chapter 3 talks about the use of Finite Element Method in solving the various node-

element models created in ANSYS APDL and also show the procedure followed for obtaining 

the required results. 

 Chapter 4 refers to the use of Hyperstudy in order to generate a Design of Experiments 

(DOE) for the various design variables and responses and aims to extrapolate a mathematical 

model from the results. 

 Chapter 5 documents the results and graphical data obtained from Chapters 3 and 4 

and also summarizes the findings of this thesis. 
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CHAPTER 2 

LOADING OF THE CHASSIS 

 

2.1 Introduction 

 In order to understand the need for efficient triangulation in a Formula SAE vehicle, we 

must first understand the various types of loads acting on it. These loads cases will provide a 

method to observe the variance seen in the frame design and also provide a basis for 

calculating the desired responses. 

 

2.2 Deformation Modes 

 The loading on the chassis is brought about by the various maneuvers the vehicle 

makes on the track. These loads cases are described [5] as follows, 

 

2.2.1 Longitudinal Torsion 

 

Figure 2.1 Chassis under Longitudinal Torsion 
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 These loads are observed when the applied load is acting on either one or two 

oppositely opposed corners of the vehicle. These loads have a significant effect on the handling 

of the vehicle as the frame acts as a torsional spring connecting the two ends where the 

suspension loads act. Longitudinal Torsion is measured in foot-pounds per degree and is a 

primary factor for evaluating the efficiency of the frame. A detailed discussion on the calculation 

of this parameter is described later in this chapter. 

 

2.2.2 Vertical Bending 

 

Figure 2.2 Chassis under Vertical Bending 

 Vertical bending is caused due to the vertical forces exerted on the frame due to 

gravity. In context to a Formula SAE car, the major contributors of the load include the driver 

and the engine. The application of these loads on the frame depends on the placement of afore 

mentioned contributors. The reactions of these loads are taken up at the axles and are affected 

by the vertical accelerations on the vehicle. These loads also aid in the determination of the 

frame stiffness. 
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2.2.3 Lateral Bending 

 

Figure 2.3 Chassis under Lateral Bending 

 Lateral bending is a result of the loads generated by road camber, side winds and 

mainly due to the centrifugal forces acting on the car during cornering. These loads act along 

the entire length of the car and are resisted at the tires.  

 

2.2.4 Horizontal Lozenging 

 

Figure 2.4 Chassis under Horizontal Lozenging. 

 This deformation is observed when the forward and backward forces are applied at 

opposite wheels. These loads cause the frame along the axles to bend which distorts the frame 

into a parallelogram. They are generally caused by road reaction on the tires while the car is 

moving forward. 
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Afore mentioned loading scenarios aid the analysis of the frame by aiming to minimize 

their effect. The torsional and bending loads in the longitudinal and vertical direction 

respectively are the major contributors to chassis deformation and thus are analyzed to improve 

the design. 

 

2.3 Load Paths 

This section is to describe the importance of load paths while designing a frame. The 

triangulation members in the frame of a Formula SAE car are not only used add stiffness to the 

vehicle but also provide significant area to accommodate for the various loads acting on it. 

These loads result in the creation of bending, torsional and combined stress on the chassis. In 

order to minimize stress concentration and enable a more effecting load path, triangulation is 

added. The added triangulation either acts in tension or compression based on their geometry 

and orientation. The following figures were taken from [6] to depict the load paths on a 

stationary automobile. 

 

Figure 2.5 Lengthwise body loading 

 

Here we can see the load paths acting on an automobile. The roof and base of the 

vehicle are under high stress and hence these areas need to be considerably strong.  
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Figure 2.6 Transverse body loading 

These load paths are similar in a Formula SAE race car and hence the roll hoops are 

designed to withstand higher loads and the floor of the car is well triangulated. The load paths 

give a better understanding on how to design the frame. The critical areas are always in close 

proximity to where maximum load in carried and the suspension pick up points. These areas 

need to be well triangulated to dissipate the stresses and also stiffen the frame. 

 

2.4 Torsional Rigidity 

Let us consider a beam element in 3D space to demonstrate the various forces and 

displacements acting on it. This element can be easily compared to the car in terms of loading 

applied and hence aid in the formulation of an expression for torsional rigidity. The term force is 

used to denote both forces and moments and displacement is used to denote both translational 

and rotational displacements. [7] 

The generalized forces and displacements are as follows, 
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Figure 2.7 Forces and Moments of a Generalized Beam 

This figure represents the various forces and displacements that can be applied on a 

general beam element. The forces and moments create bending and torsional loads on the 

beam. The forces along the x-axis induce tension or compression based on the direction while 

the forces along the y and z axes induce bending in the xy and xz plane respectively. Similarly 

the moment about the x-axis induces torsion in the beam whereas the other two moments result 

in bending.  These generalized forces and displacements can be written as shown below, 

��
��
��
���������	�


  
�





�
 = 

��
��
��

������������ �





�
  ,  

��
��
��
δ�
δ�
δ�
δ�
δ	
δ


  
�





�
  = 

��
��
��
�δ�
δ�
δ�
θ�
θ�
θ�

  
�







�
 

In order to evaluate the effects of torsion on the beam along the x-axis, the moment and 

angular deflection about that axis is to be considered. Hence the torsional rigidity or torsional 

stiffness can be defined as the ratio of the moment to the amount of angular deflection in the 

beam and is written as follows, 

� �  ��
θ�  

Where, 

 K = Torsional Rigidity of the beam 

Mx, θx 

Mz, θz 

My, θy 

Fz,δz 

Fx,δx 

Fy,δy 
y 

z 

x 
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Now, for calculating the torsional rigidity of the chassis, the following model is 

considered  

 

 
 
 

 

 

Figure 2.8 Torsional loading of the front of the chassis 

The diagram represents the front of the chassis with the loads and boundary conditions 

applied to the front uprights (which connect the upper and lower suspension control arms of the 

suspension) and cause a twisting moment on the frame. The deflection ‘δ’ of the upright due to 

the force ‘F’ is measured in order to calculate the torsional rigidity given by the following 

equation, 

������ � � � �. �12  !"#. �$% 
&'("� �  θ � tan,� -δ./ !0�(%  

���12�'3" �2(202$4 � � � �
θ

� �. �
tan,� -δ�/  5 112 !�$. "#0�( % 

Where,   

 F = Force on the upright (lb) 

 δ = Maximum Deflection (in) 

 L = Track width/distance between the front wheels (in) 

  

δ 

F 
L 
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2.5 Flexural Rigidity 

 The flexural rigidity can be calculated in a similar manner shown above. Let us consider 

a simply supported beam in this case having a point load which is equidistant from either end. 

The illustration is shown below, 

 

 

 

 

 

 

 

Figure 2.9 Flexural loading of a beam 

The maximum deflection for a simply supported bar with a point load at the centre of the 

beam is given by, 

�3�. 6��"�7$2�' �  δ � 8.9
�:;<  !2'%  

�"����3" 1$2��'�11 � �=  !"#2'% 
Where,  

 EI = Flexural Rigidity (lb.in2) 

 F = Force applied (lb) 

 L = Length of the beam (in) 

 δ = Maximum deflection at the center (in) 

 

The flexural stiffness of the frame can be computed in a similar way as the bulk of the 

static load, such as driver and engine weight, act close to the center of gravity (CG) of the car. 

δ 

L/2 

F 

L 
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The position of the CG of the car depends on the type of weight bias is to be set for the car and 

hence it may travel forward/backward of the CG plane. 

 Generally the flexural rigidity of the space frame is quite high and is not a crucial 

component of the frame design. If the chassis is well triangulated to withstand sufficient 

torsional loads then it will be sufficiently stiff in bending. [8] 

 

2.6 The power function – “Rules of Thumb” 

As described by Crispin Mount Miller [9], for a torsional or flexural load, the rigidity of a 

tube is dependent on its moment of inertia and the strength is dependent on the section 

modulus which is the ratio of the moment of inertia to the distance between the neutral axis and 

the farthest element of the cross section. This theory brings about the following rules of thumb 

(approximations) for a tube undergoing torsional and bending loads.  

1. If the OD and wall thickness are multiplied by a factor ‘k’, then the rigidity increases by a 

factor of k4 and the strength increases by a factor of k3 while the weight increases by k2. 

2. For no change in the wall thickness and the OD is multiplied by a factor ’k’, then the 

rigidity increases by a factor of k3 and the strength by k2 while the weight increases by k. 

3. If the OD is multiplied by ‘k’ but the thickness is divided by a factor ‘k’, then the rigidity 

increase by a factor of approximately k2 and the strength by a factor of k. the weight in 

this case stays approximately the same. 

4. If the OD remains the same and the thickness alone is multiplied by a factor of ‘k’, then 

both torsional and bending rigidities along with the strength and weight increase by a 

factor of k. 

 

These approximations are reasonably true for thin walled tubes. Also approximations 2 

and 3 have some limitations as the tubes may become too thick or thin. 
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CHAPTER 3 

FINITE ELEMENT METHOD USING ANSYS 13.0 
 
 

3.1 Introduction 

 The concept of finite element method is to break down a given model into smaller 

elements which are interconnected by two or more nodes/surfaces. These elements are 

analyzed using basic mathematical theory and then grouped together in the form of a matrix to 

give accurate outputs. The implementation of finite element method is mathematically complex 

as it requires the solution of large matrices which take up a large amount of computational time. 

Hence, Finite element method is a numerical method for solving problems involving complex 

geometries, loadings and material properties in engineering design. [10] 

 

3.2 Basic understanding of Finite Element Method 

 The following example of a linear spring will aid us in understanding the FEA process. 

The spring is represented as follows,  

 

 

 

 

 

Figure 3.1 Spring element  

The spring is called an element and has 2 degrees of freedom in the x direction at each 

node. Assuming positive displacements, the sum of the forces at F1 an F2 can be given by, 

�� � >0� ?  >0� 

2 1 

d2 
d1 

F2 F1 
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�� � ?>0� @  >0� 

Where,  

 K = Stiffness of the spring element 

 d1, d2 = Displacements at node 1& 2 respectively 

F1, F2 = Forces at nodes 1& 2 respectively 

Substituting these equations in matrix form, 

A > ?>?> > B C0�0�D �  C����D   
!�% E0F �  E�F 

Where,   

 K = Stiffness matrix 

 d = Displacement vector 

 F = Force vector 

 

Similarly, if there are two springs A &B connected in series, their equivalent stiffness 

matrix can be calculated and analyzed by applying the boundary conditions to the generalized 

equation. 

 

  

 

 

 

Figure 3.2 Spring element in series 

The resultant matrix form is given by, 

G >H ?>H 0?>H >H @ >J ?>J0 ?>J >J
K L0�0�0�

M �  L������
M 

For the details of the derivation of this equation, refer [11] 

1 2 3 

d1 d2 d3 

 A B 
  F 
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 Once we calculate the global stiffness matrix and substitute in the generalized equation, 

we can solve for unknown variables by substituting the known variables and solving the set of 

simultaneous equations. This method can be extremely time consuming and challenging for 

systems with infinite springs and thus requires sufficient computing power.  

 In this way, Finite Element Method converts a solid model into smaller spring elements 

and calculates the individual deflections and solves the overall matrix solution to give accurate 

results. 

 

3.3 Design methodology 

 
3.3.1 Torsional stiffness study     

 In order to characterize the various design variables and their effects on the response 

of a system, the model must be simple in design and must have clear visual representation of 

the response. In the case of an automotive chassis, the amount of tubes and various members 

result in a complex and bulky design. Hence in order to simplify the design for a torsional study, 

let’s consider a rectangular section which is created by hollow thin walled tubes welded 

together. 

 

Figure 3.3 Rectangular section of welded tubes 



 

22 
 

 The node-element model is created in ANSYS APDL using a Beam 188 element. We 

define the material as 4130 chromoly steel by entering the material properties of the same. The 

section properties of the element can be defined and is taken as a hollow cylinder to represent 

the tube having an outer diameter of 1 inch and thickness of 0.028 inches (1028) for the first set 

of design variables. The cross section of the steel tube is shown below, 

 

 

Figure 3.4 Cross-section(c/s) of tubes in ANSYS 

 

These rectangular sections are created as node-element models in ANSYS APDL and 

the constraints are applied. In order to setup an FEA for a torsion test, without over constraining 

the model, the following constraints are applied, 
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1. The node diagonally opposite to the load in constrained in X, Y, and Z directions in 

terms of displacements. 

2. The node adjacent to it (either one) is restrained from translating in the X and Y 

directions. 

3. The other node is fixed in vertical displacement i.e., Y direction. 

By constraining the model as specified above, we prevent motion of the object in its rigid 

body modes. If these 6 rigid body modes are not constrained, the global stiffness matrix 

becomes singular and hence cannot be solved. [12] A visual representation of the constraints is 

shown below. 

 

Figure 3.5 Constraints and forces for torsional case 
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 Once the constraints are applied, a 100 lb load is applied as shown in the figure above. 

In case of a torsional study, the stiffness is a function of both the load and the deflection it 

induces. Hence the load can be any significant amount which would produce measureable 

deflection. The load is a factor when we check for stress in the structure which is not part of the 

estimation of torsional rigidity.  

 The model is now well constrained to run the FEA for torsional rigidity. The following 

deformation and stresses are observed,  

 

Figure 3.6 Displacement of rectangular section 

 

The maximum deflection in the frame for a 100 lb load was 0.0374 inches and the 

maximum von mises stress recorded is 14934 psi or 14.93 ksi. As can be seen from the figure 

below, the maximum stress concentration is at the nodes. The nodes are stronger as they are 
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reinforced by welding to tubes together and are the best location to form load paths in order to 

transfer the load. 

 

Figure 3.7 Stress distribution of rectangular plate 

 

3.3.1.1 Stiffness calculation    

Now calculating the torsional stiffness of the structures from the deflection observed in 

the model, 

 

���12�'3" �2(202$4 � � � �
θ

� �. �
tan,� -δ�/  5 112 !�$. "#0�( % 

 
Where,   F �  100 lb ;  L �  5 in ;  δ �  0.037438 in 
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� � 100 Y 5
tan,� -0.0374385 / Y 112 

  � � 97.22 �$. "#/0�( 
 

Similarly, the deflection is recorded by varying the length in the X direction. These 

values are then entered in a spread sheet which also calculates the weight of the structure to 

give the stiffness to weight ratio. The weight is calculated by multiplying the volume of the 

structure with the density of the material. The following table shows the stiffness to weight 

ratio’s calculated for varying length L1
. 

Table 3.1 Stiffness to weight variation for 1” OD X 0.028” thickness (Torsional) 
 

Sr. No. 

Base 
Length 
L1 (in) Load (lb) 

Deflectio
n (in) 

Stiffness 
(ft 

lb/deg) 
Weight 

(lb) 

Stiffness 
to weight 

ratio 
(ft/deg) 

1 5 100 0.0374 97.22 0.245 396.096 

2 7.5 100 0.0658 55.26 0.307 180.116 

3 10 100 0.0956 38.04 0.368 103.316 

4 12.5 100 0.1258 28.91 0.430 67.303 

5 15 100 0.1561 23.30 0.491 47.465 

6 17.5 100 0.1863 19.53 0.552 35.357 

7 20 100 0.2164 16.81 0.614 27.399 

8 22.5 100 0.2463 14.77 0.675 21.889 

9 25 100 0.2761 13.18 0.736 17.903 

10 27.5 100 0.3057 11.91 0.798 14.929 

11 30 100 0.3353 10.86 0.859 12.642 

12 32.5 100 0.3647 9.99 0.920 10.851 

13 35 100 0.3941 9.25 0.982 9.417 

14 37.5 100 0.4234 8.61 1.043 8.252 

15 40 100 0.4526 8.06 1.105 7.293 

16 42.5 100 0.4817 7.57 1.166 6.494 

17 45 100 0.5108 7.14 1.227 5.820 

18 47.5 100 0.5398 6.76 1.289 5.247 

19 50 100 0.5687 6.42 1.350 4.756 

20 52.5 100 0.5977 6.11 1.404 4.354 
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The same procedure was carried out for the following tube sizes, 

• 1” OD X 0.049” thickness circular tube - 1049 

• 1” OD X 0.065” thickness circular tube - 1065 

• 1” OD X 0.095” thickness circular tube - 1095 

• 5/8” OD X 0.035” thickness circular tube - 58035 

• 1/2” OD X 0.028” thickness circular tube - 05028 

The following graph shows the variation of stiffness with the base length (L1) and linearized 

stiffness to weight ratio with respect to the ratio of the sides of the rectangle (L1/L2). 

 

 

Figure 3.8 Graphical representation of stiffness vs. length ratio 
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Figure 3.9 Graphical representation of normalized stiffness to weight vs. length ratio 

 

As can be seen from the graph, for a torsional loading scenario, the thickness of the 

tube has negligible gain in stiffness to weight ratio whereas the OD of the tubes has a significant 

effect on the stiffness to weight ratio. The graph also depicts that for a L1/L2 ratio of 4 and 

above, the gain in stiffness to weight ratio is negligible.  

 

3.3.1.2 Stress calculation    

 The Von Mises stresses in the structure for varying the design parameters are as 

follows, 
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Figure 3.10 Graphical representation of Von Mises stresses vs. length ratio 

 

The stress variance for ½” OD X 0.028” thickness tube is not included as the structure 

yields at the initial L1/L2 ratio. Hence it is excluded from the stress analysis. 

According to the Power Function approximations, the torsional stiffness for a given ratio 

of L1 and L2 can be calculated using the “Rules of Thumb”. 

Applying rule 4,  

Comparing 1028 and 1049 tubes in terms of stiffness, 

> �  0.0490.028 � 1.75 

For 1028, Torsional stiffness at L1/L2 = 1, K1028 = 97.22 ft lb / deg 

For 1049, Torsional stiffness at L1/L2 = 1, K1049 = 164.87 ft lb / deg 
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Therefore, for stiffness to increase by a factor of k = 1.75 

k * K1028 = 1.75 * 97.22 = 170.135 ft lb / deg ≅ K1049  

The error is given by, 

� �  \170.135 ? 164.87164.87 ^ Y 100 � 3.19% 

Comparing 1028 and 1049 tubes in terms of stresses, 

For 1028, Von Mises stress at L1/L2 = 1, σ1028 = 14933.7 psi 

For 1049, Von Mises stress at L1/L2 = 1, σ1049 = 8808.28 psi 

Stress reduces by a factor of k = 1.75 

 σ1028 / k = 14933.7 / 1.75 = 8533.54 psi ≅ σ1049 

The error is given by, 

� �  \8533.54 ? 8808.288808.28 ^ Y 100 � ?3.1% 

 

Applying rule 2, 

Comparing 1028 and 05028 tubes in terms of stiffness, 

> �  10.5 � 2 

For 1028, Torsional stiffness at L1/L2 = 1, K1028 = 97.22 ft lb / deg 

For 05028, Torsional stiffness at L1/L2 = 1, K05028 = 12.69 ft lb / deg 

Therefore, for stiffness to increase by a factor of k3 = 23 = 8 

k * K05028 = 8 * 12.69 = 101.52 ft lb / deg ≅ K1028  

The error is given by, 

� �  \101.52 ? 97.2297.22 ^ Y 100 � 4.42% 

The rule 2 cannot be applied for this comparison as the stresses with the 05028 tube 

exceed the yield stress of the material. 

 



 

31 
 

3.3.2 Bending stiffness study  
 
 In this study, the specimen shape is that of a rectangular box of welded tubes. This 

shape is more representative of the frame of a race car as it contains fore and aft sections on 

either side of the roll hoop. The frame of the car is designed such that the CG is low and near to 

the center of the chassis to minimize the effects due to weight transfer. It also depends on the 

position of the driver and the engine to obtain a 50:50 weight bias. The rectangular box, along 

with its various measurements, is shown below. 

 

Figure 3.11 Rectangular box of welded tubes. 

 

The rectangular box is constructed of the same size tube, 1” OD X 0.028” thickness, as 

in the case for torsional study and is varied each time. The constraints on the rectangular box is 

applied in a similar way as for the torsional case by making sure the 6 rigid modes of freedom 

are restrained and the model is simply supported at its ends. The load is applied to the mid-

length of the rectangular box in order to simulate a bending load on the structure. This set up is 

shown in the figure below, 
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Figure 3.12 Constraints and forces for bending case 

 

 The magnitude of the load on each node is 100 lb which causes the frame to bend in 

the middle. The deflection and equivalent stresses in the structure are shown in figure 3.13 and 

figure 3.14 respectively. The max deflection is 3.26x10^-3 inches and the Von mises stress in 

the structure is 7390 psi. 
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Figure 3.13 Displacement in bending case. 

 

Figure 3.14 Stress distribution in bending case. 
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3.3.2.1 Stiffness calculation    

Now calculating the bending stiffness of the structures from the deflection observed in 

the model, 

�"����3" 1$2��'�11 � �=  !"#2'% 
`�'02'( 1$2��'�11 �  2000.00326 � 61349.69 "#2'  

 

This procedure is repeated by varying the length (L1) while keeping L2 and H constant. 

The resultant stiffness’s are shown in the table below. 

 

Table 3.2 Stiffness to weight variation for 1” OD 0.028” thickness (Flexural) 
 

Sr. No. 

Base 

Length 

(in) 

Load 

(lb) 

Deflection 

(in) 

Flexural 

Stiffness 

(lb/in) 

Weight 

(lb) 

Stiffness 

to weight 

ratio (in^-

1) 

1 5 200 0.000796 251256.28 0.982 255908.47 

2 10 200 0.00326 61349.69 1.227 49988.50 

3 15 200 0.00888 22522.52 1.473 15293.02 

4 20 200 0.0189 10582.01 1.718 6158.82 

5 25 200 0.03489 5732.30 1.964 2919.21 

6 30 200 0.0579 3454.23 2.209 1563.63 

7 35 200 0.0893 2239.64 2.455 912.44 

8 40 200 0.1306 1531.39 2.700 567.18 

9 45 200 0.1829 1093.49 2.945 371.24 

10 50 200 0.2476 807.75 3.191 253.14 

11 55 200 0.326 613.49 3.436 178.53 

12 60 200 0.4195 476.75 3.682 129.48 

 

The same procedure is followed by varying the tube OD and thickness. The variation in 

the stiffness and also normalized stiffness to weight with respect to the ratio of the lengths 

(L1/L2) is shown in figures figure 3.14 and 3.15 respectively. 
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Figure 3.15 Graphical representation bending stiffness vs. length ratio 

 

Figure 3.16 Graphical representation normalized stiffness to weight vs. length ratio 
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The stiffness to weight ratio for a bending load is not that different from the torsional 

case. The magnitude of stiffness is greater on a normalized scale as the structure has more 

weight in tubes.  According to the data collected, the trend shows the effect on the stiffness to 

weight ratio diminishing at a faster rate and is negligible from an L1/L2 ratio of 2. 

 

3.3.2.2 Stress calculation    

 The Von Mises stresses in the structure for varying the design parameters are as 

follows, 

 

Figure 3.17 Graphical representation of Von Mises stresses vs. length ratio 

 

The stress variance for ½” O.D X 0.028” thickness tube is not included as the structure 

yields at the initial L1/L2 ratio. Hence it is excluded from the stress analysis. 

According to the Power Function approximations, the flexural stiffness for a given ratio 

of L1 and L2 can be calculated using the “Rules of Thumb”. 
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Applying rule 4,  

Comparing 1049 and 1065 tubes in terms of stiffness, 

> �  0.0650.049 � 1.326 

For 1049, Torsional stiffness at L1/L2 = 1, K1028 = 431034.48 lb / in 

For 1065, Torsional stiffness at L1/L2 = 1, K1049 = 571428.57 lb / in 

Therefore, for stiffness to increase by a factor of k = 1.326 

k * K1028 = 1.326 * 431034.48 = 571551.72 lb / in ≅ K1049  

The error is given by, 

� �  \571551.72 ? 571428.87571428.57 ^ Y 100 � 0.021% 

Comparing 1049 and 1065 tubes in terms of stresses, 

For 1049, Von Mises stress at L1/L2 = 4, σ1049 = 8255.96 psi 

For 1065, Von Mises stress at L1/L2 = 4, σ1065 = 6366.04 psi 

Stress reduces by a factor of k = 1.326 

 σ1049 / k = 8255.96 / 1.326 = 6226.21 psi ≅ σ1065 

The error is given by, 

� �  \6226.21 ? 6366.046366.04 ^ Y 100 � ?2.19% 

 

Applying rule 2, 

Comparing 1028 and 05028 tubes in terms of stiffness, 

> �  10.5 � 2 

For 1028, Torsional stiffness at L1/L2 = 3, K1028 = 5732.3 ft lb / deg 

For 05028, Torsional stiffness at L1/L2 = 3, K05028 = 751.88 ft lb / deg 

Therefore, for stiffness to increase by a factor of k3 = 23 = 8 

k * K05028 = 8 * 751.88 = 6015.04 ft lb / deg ≅ K1028  
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The error is given by, 

� �  \6015.04 ? 5732.35732.3 ^ Y 100 � 4.9% 

The rule 2 cannot be applied for this comparison as the stresses with the 05028 tube 

exceed the yield stress of the material. 

The stresses are dependent on the section modulus of the c/s which the ratio of the 

moment of inertia to the distance between the outer most element and the neutral axis. 

a �  � Y 7b �  a� 

�cdefg �  a� Y b7  

Where,  b � 7� Y  h
�   i6j� ? 6d�k  

 7 � 621$3'7� �� $l� ��$��m�1$ �"�m�'$ ���m $l� '��$�3" 3�21 

Now since the frame is simply supported at its ends, the maximum moment is at the 

center and is given by 

�no� � p Y �4  

Where, p � ��30 ; � � "�'($l �� $l� ��3m� 

Hence, we get 

�no� �  �cdefg   
p Y �4 �  a� Y b7   
� � 4p Y a� Y b7  

Hence for a given load we can calculate the length at which the structure will fail. Apply 

a factor of safety to the above equation to get the desired length of the rectangular section. 
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3.3.3 Linear stiffness study (Lateral bending) 
 

 Using the same model as above, the constraints and loads on the model are altered in 

order to evaluate the linear stiffness of the section. The model is now constrained in 2D space 

to generate a linear stiffness. Hence the following constraints need to be applied, 

1. The node diagonally opposite to the load in constrained in X, Y, and Z directions in 

terms of displacements. 

2. The node adjacent to it along the x-axis is restrained from translating in the Y direction 

and rotating about the x-axis. 

A visual representation of the constraints is shown below. 

 

Figure 3.18 Constraints and forces for lateral bending case 
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The 100 lb load is applied along the X direction causing the structure to deform in the 

XY plane. The model is now well constrained to run the FEA for calculating linear stiffness. The 

following deformation and stresses are observed,  

 

Figure 3.19 Displacement in lateral bending case 

 

The maximum deflection in the frame for a 100 lb load was 0.0095 inches and the 

maximum Von Mises stress recorded is 12698 psi or 12.69 ksi. 
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Figure 3.20 Stress Distribution in lateral bending case. 

 

Similar to the procedure for torsional stiffness, the linear stiffness for varying lengths 

along y-axis L1 are calculated in excel.  A sample calculation is shown in the table below. 

 

Table 3.3 Stiffness to weight variation for 1” OD 0.028” thickness (Linear) 
 

Sr. No. 

Base 

Length 

(L1)(in) 

Load 

(lb) 

Deflection 

(in) 

Stiffness 

(lb/in) 

Weight 

(lb) 

Stiffness to 

weight ratio 

(in^-1) 

1 5 100 0.0095 10526.32 0.245 42884.873 

2 7.5 100 0.024 4166.67 0.307 13580.210 

3 10 100 0.0486 2057.61 0.368 5588.564 

4 12.5 100 0.086 1162.79 0.430 2707.019 
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Table 3.2 – Continued       

5 15 100 0.1388 720.46 0.491 1467.602 

6 17.5 100 0.209 478.47 0.552 866.361 

7 20 100 0.301 332.23 0.614 541.404 

8 22.5 100 0.415 240.96 0.675 356.983 

9 25 100 0.556 179.86 0.736 244.248 

10 27.5 100 0.725 137.93 0.798 172.905 

11 30 100 0.926 107.99 0.859 125.704 

12 32.5 100 1.16 86.21 0.920 93.657 

13 35 100 1.43 69.93 0.982 71.225 

14 37.5 100 1.74 57.47 1.043 55.092 

15 40 100 2.09 47.85 1.105 43.318 

16 42.5 100 2.48 40.32 1.166 34.585 

17 45 100 2.93 34.13 1.227 27.809 

18 47.5 100 3.42 29.24 1.289 22.690 

19 50 100 3.97 25.19 1.350 18.658 

20 52.5 100 4.57 21.88 1.404 15.585 

 

The same procedure was carried out for the following tube sizes, 

• 1” OD X 0.049” thickness circular tube - 1049 

• 1” OD X 0.065” thickness circular tube - 1065 

• 1” OD X 0.095” thickness circular tube - 1095 

• 5/8” OD X 0.035” thickness circular tube - 58035 

• 1/2” OD X 0.028” thickness circular tube - 05028 

The following graph shows the variation of stiffness with the base length (L1) and 

linearized stiffness to weight ratio with respect to the ratio of the sides of the rectangle (L1/L2). 
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Figure 3.21 Graphical representation of linear stiffness vs. length ratio 

 

Figure 3.22 Graphical representation of normalized stiffness to weight vs. length ratio 
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As can be seen from the graph, for a lateral loading scenario, the thickness of the tube 

has negligible gain in stiffness to weight ratio whereas the OD of the tubes has a significant 

effect on the stiffness to weight ratio. This is similar to that of flexural stiffness as the loading is 

a bending moment at the end and not in the middle. Hence, the graph also depicts that for a 

L1/L2 ratio of 2 and above, the gain in stiffness to weight ratio is negligible. 

 

3.3.4 Application (guidelines) 

The analysis of various cases shown above provides a guideline for designing a 

structure based on its application and loading conditions. The guidelines to designing a 

structure are given below, 

1. As the stiffness of the structure depends more on the outer diameter than the 

thickness, the initial constraint should be to fix the size of the outer diameter of 

the tube and then constrain a specific wall thickness based on the 

application/loading conditions. 

2. Once the structure is designed with a fixed OD and a certain wall thickness, 

check if the stiffness of the structure meets the desired requirement i.e., max 

deflection. 

3. Next we need to check for the stresses in the structure based on the load 

applied on it. The length of the tubes in bending can be estimated from the 

formula provided below, 

� � ��1 Y  4p Y a� Y b7  

Where,  b � 7� Y  h
�   i6j� ? 6d�k  

   7 � 621$3'7� �� $l� ��$��m�1$ �"�m�'$ ���m $l� '��$�3" 3�21 

p � ��30 ; � � "�'($l �� $l� ��3m� 

   ��1 � �37$�� �� 13��$4 
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By increasing the thickness of the tubes, the strength of the structure also 

increases. But there is a limitation on the minimum thickness of the tube in 

order to avoid local buckling which is explained in section 3.3.5.1. 

4. Also based on the application of the structure, the orientation of the tubes are to 

be decided. For example, race car frame requires the driver’s legs to pass 

through the structure and hence cannot be triangulated diagonally across 

whereas for a tower/pyramid the diagonal triangulation is possible. 

5. Hence the design of the structure is an iterative process between the OD and 

thickness to satisfy the given loads and the orientation of the tubes are 

dependent on the application. 

 

3.3.5 Triangulation requirement study 

 From the results mentioned above, there is a clear need for triangulation beyond a 

certain L1/L2 ratio for each type of loading scenario. The question that arises next is how much 

triangulation is required to maintain or improve the stiffness to weight ratio of the design. The 

factors affecting the effectiveness of a triangulation member are, 

 

3.3.5.1 Orientation of the tube – Tension / Compression 

The orientation of the tube determines if the tube is going to be in tension or 

compression. In order for the triangulation to be effective, it should be oriented such 

that it is under tension. Compression loads on a thin walled member can cause it to 

buckle. In such a case, the tube would have to be bigger and ultimately have more 

weight than what is required. Hence the stiffness to weight of a triangulation is higher 

for a tube in tension. 

In order to calculate the critical thickness to diameter ratio of a thin walled 

cylindrical tube to avoid local buckling, we use the following formula [13], 
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aq � r
√3 

1
√1 ? t�

$u 

Where, aq � 7�2$273" 1$��11 i42�"0k 

 r � v��'(q1 m�0�"�1, t � p�211�'q1 �3$2� 

 $ � $l27>'�11, u � m�3' �302�1 �� $l� $�#� 

 According to [13], the theoretical stress obtained from this formula is 40% to 

60% higher than the critical stress actually seen during testing. Hence the formula is 

reduced to  

aq � 0.3r$u  

$u � 631000.3 Y 2.97 Y 10x 

$u � 0.00708 

 By including a factor of safety, the rule of thumb [9] to prevent failure due to 

local buckling of the tube is  

$6 �  150 �  0.02 

 The tubes used in this study meet or exceed the minimum criteria to avoid local 

buckling. 

 

3.3.5.2 Constant thickness to outer diameter ratio  

The ratio of thickness to outer diameter corresponds to the first rule of thumb. 

The OD and the thickness increase in size linearly or by the same amount, then the 

stiffness increases by a factor of 4 and the strength increase by a factor of 3. Since the 

weight also increases by a factor of 2, the overall stiffness to weight is still higher, by a 

factor of 2. 

Let us consider the lateral bending case to demonstrate the increase in 

stiffness to weight of the structure by adding two different size tubes but have the same 
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thickness to OD ratio. The Fig 3.23 shows the braced structure along with the loads and 

constraints applied to the structure. 

 

 

 

Figure 3.23 Constraints and forces for lateral bending case with bracing 

 

In this study, a rectangular section composed of 1 inch OD and 0.028 inch thick 

tubes is constructed. The bracing acts in tension with the load to further decrease the 

chances of buckling. The structure is allowed to deform in a two dimensional place and 

hence 3 rigid body modes are restrained.  A force of 100 N is applied at the node as 

shown in the figure and the resulting displacement and stresses are shown in Fig 3.24 

below, 
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Figure 3.24 Stress distribution for lateral bending case with bracing 

 

 The analysis is repeated for varying length ratios and also different bracing tube 

sizes. The two sizes considered in this study are  

• 5/8” OD X 0.035” thickness circular tube - 58035 

• 1/2” OD X 0.028” thickness circular tube - 05028 

The equivalent stiffness to weight ratios are calculated for both types of bracing 

and is compared to the same structure without bracing. The Fig 3.25 represents a 

comparison between the braced and unbraced structure. 
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Figure 3.25 Graphical representation of braced vs. unbraced structure 

 

  The graph clearly indicates the increase in stiffness to weight ratio for a 

braced section as compared to an unbraced one.  

 

3.3.5.3 Angular placement 

The angular placement has a high impact on the stiffness of the structure. This 

factor is directly related to the ratio of the lengths of the rectangular section. The graph 

below shows how the angle affects stiffness to weight ratio. For a ratio of L1/L2 equal to 

1, the angle is 45 degrees and it has the maximum stiffness as well as stiffness to 

weight ratio. This value further decreases as the angle gets smaller. From the graph it 

can observed that an angular variation from 30° to 60° has a significant effect on the 

stiffness to weight ratio.  
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Figure 3.26 Graphical representation of angle variation 

 

3.3.5.4 Bracing Increments 

Using the result from the graph obtained above, the next step is to vary the 

number of triangles in a rectangular section to observe the variation in stiffness to 

weight ratio. The same rectangular section with a 05028 bracing is used to find the 

maximum number of triangles that can be formed to give the highest stiffness to weight 

ratio.  
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Figure 3.27 Graphical representation of bracing increments 

 
The graph above shows that the maximum number of triangles that give the 

highest stiffness to weight ratio is 2. This result holds true for bracing of any size as the 

weight increases linearly hence giving the same result.  

 

These are the various factors to be considered while designing a structure and their 

importance to stiffness to weight ratio. The next section verifies the conclusions reached by the 

above processes by running an iterative study of the same experiments shown above.  
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  CHAPTER 4 

DESIGN OF EXPERIMENTS USING HYPERSTUDY 

  

4.1 Design of Experiments (DOE) 

 Design of experiments is a series of tests in which design variables of a process are 

changed in order to observe the change in the response of the process.  For example, in 

designing a part, the design variable of its shape and size can be changed in order to study its 

effect on the output response. The DOE studies not only provide the effects on the response but 

also the interaction of each design variable with one another and see the overall change in the 

output. Once the DOE is complete, a regression can be obtained of all the input design 

variables as a function of the output. [14] 

 

4.1.1 Steps in DOE process     

 The following steps are executed in order to run a DOE analysis [14], 

1. Create the design variables (inputs) 

2. Perform nominal run to create responses (outputs) 

3. Select the DOE type (full factorial, fractional, etc) for controlled and/or 

uncontrolled factors. 

4. Export the solver input files for the specified runs in the DOE study. 

5. Solve the exported files and extract the responses. 

6. Analyze the main effects plots, interaction plots and the sensitivity index. 
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4.1.2 Objective of DOE process     

 The objective of the DOE is to provide the following plots to describe the effect of 

design variables on the response, 

1. Main effects – These plots provide information on the influence each design variable 

has on the response. 

2. Interaction – These plots give the interdependence of each variable with one another. It 

provides the effect on the response while changing multiple design variables 

simultaneously rather than independently.  

Once the DOE is generated, the various runs are extracted using statistical regression 

techniques to generate an approximation model. The approximation will give a linear or 

quadratic relation of the design variables and the required response. This generated 

approximation will also provide an Analysis of Variance (ANOVA) plot describing the 

contribution of each design variable or set of design variables on the response. [14] 

 

4.2 Approximation 

An approximation is the formulation of a mathematical expression which is used to 

substitute the nominal curve of the actual responses with a very high closeness to fit. This 

approximation model is used in order to minimize the use of computational resources for 

optimization studies. The drawback of using an approximation model is the tradeoff between 

accuracy and efficiency. This is dependent on the type of regression used in the formulation of 

the approximation. [14] 

 

Regression is the polynomial expression which provides a relation between the design 

variables and the response. The accuracy of the regression models changes by increasing the 

order of the polynomial which increases the number of runs performed to obtain the 
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approximation. Hyperstudy uses the following three methods to generate an approximation 

model, 

4.2.1 Least square regression     

 The least square regression method is used to provide a fitted line with a degree of 

“closeness” to the plotted points. This closeness is maintained by reducing the residuals i.e., the 

vertical distance of the points from the line, and keeping it small. Hence it minimizes the sum of 

squares of vertical deviations from the points to the line. [15] 

4.2.2 Moving least square method 

 In this method, a continuous function is constructed for a set of points by calculating the 

weighted least square measure around the point. This method gives a good loacalized 

approximation but can lead to the generation of local minimum’s which are not present in the 

actual response. [14] 

4.2.3 Hyperkriging method 

 Hyperkriging provides the best prediction as it was designed for geophysical variables 

with a continuous distribution. This method interpolates an elevation value by calculating a 

weighted average of the vector points i.e., it analyzes the statistical variation in points over 

different distances and directions to produce the minimum error in the elevation estimate. [14] 

 

As the focus of this thesis is to generate an approximation with the regression 

coefficients, the least square method is chosen. The accuracy of the approximation can be 

estimated using the coefficient of determination i.e., the R2 value of the equation.  
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4.3 Design of Experiments (DOE) for stiffness 

 

4.3.1 DOE for torsional stiffness 

The data collected form the Ansys model is used to run the DOE. The spreadsheet is 

prepared by arranging the serial numbers in column 1, length (L1) in column 2, Outer Diameter 

in column 3, Thickness in column 4 and the response which is the stiffness to weight ratio in 

column 5. The DOE is setup in Hyperstudy and is made to run using the matrix from the text file. 

The following results are achieved. 

 

Figure 4.1 Graphical representation of ANOVA for torsional stiffness 

 
The graph 4.1 shows an ANOVA plot which is the analysis of variance in the DOE. 

According to this graph, the length has the maximum effect on the stiffness to weight ratio. The 

OD has little effect but the thickness has negligible effect on the response. 
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Figure 4.2 Interaction plots for torsional stiffness 

The fig 4.2 and 4.3 represent the interaction and main effects plots. The interaction 

plots signify the amount of variance in the response due to the interaction of the two design 

variables where as the main effects plots display the variance in the response due to each 

design variable. Fig 4.2 suggests that there is high interaction between the length and OD 

whereas the interaction of these two design variables with thickness is small and hence 

neglected. Fig 4.3 depicts the main effects of the design variables on the response and hence 

shows that the length has a higher effect on the response and the effect of thickness is 

insignificant. This is determined by looking at the slope of the line in the main effects plots. 
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Figure 4.3 Main effects plot for torsional stiffness 

 The next step is to run the approximation study using the results of the DOE. A linear 

regression of the extracted information gives a regression equation of the design variables as a 

function of the response. 
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Figure 4.4 Linear regression approximation for torsional stiffness 

The coefficients of the linear regression equation are shown in the illustration above. 

The regression terms which are not selected had a very low T-value which signifies that the 

effect of that term on the approximation is minimal and hence does not have a significant effect 

on the R2 (coefficient of determination) value. 

Hence the approximation equation is as follows, 

4 � 3y @ 3��� @ 3��� @ 3��� @ 3���� @ 3	��� @ 3
��� @ 3x���� @ 3:���� @ 3�y��� @ 3����� @ 3�������
@ 3������� @ 3�	����� @ 3�
����� 

4 � 66.67 ? 20.48�� @ 306�� ? 715.28�� @ 1.84��� @ 360.06��� @ 4951.5��� ? 50.78����
@ 42.92���� ? 0.05��� ? 45452.91��� @ 1.94����� ? 20.64����� ? 1.74�����
@ 228.82����� 

Where, 4 i��1z�'1�k � 1$2��'�11 $� {�2(l$i�$ "#/ 0�( z�� "#k  
 ��, ��, �� i0�12(' t3�23#"�1k � ��'($l i2'k, |6 i2'k3'0 �l27>'�11i2'k ��1z�7$2t�"4  
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4.3.2 DOE for bending stiffness 

 Similarly, the above steps were carried out to perform a DOE for bending stiffness. The 

following results were achieved, 

 

Figure 4.5 Graphical representation of ANOVA plot for bending stiffness 

 

The graph 4.5 shows an ANOVA plot for the bending stiffness which suggests that the 

length has the maximum effect on the stiffness to weight ratio. The thickness of the tube is the 

second highest contributor to the response followed by the OD. The product of length and 

thickness i.e., the interaction between the two has a higher contribution than the interaction 

between the OD and thickness. Hence we can conclude the relevance of the design variables 

with respect to the response. 
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Figure 4.6 Main effects plot for bending stiffness 
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Figure 4.7 Interaction plots for bending stiffness 

 The fig 4.6 and 4.7 represent the main effects and interaction plots. The next step is to 

run the approximation study using the results of the DOE. The approximation model is as 

follows, 
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Figure 4.8 Linear regression approximation for bending stiffness 

 In the case of bending stiffness, the best R2 value that could be achieved was 0.85 as 

the residuals in this case were higher than in the torsional case. A higher order i.e., order 4, 

improves the accuracy of the approximation but increases the number of runs to achieve the 

model. The accuracy of the approximation was improved by removing some of the outliers 

which are the residuals not present within the x and y limits of the approximation. These 

residuals are caused due to non-linearity in the data as a result of expanding the range or limits.  
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4.4 Design of Experiments for Stresses (Bending) 

 

The spreadsheet is populated with the required design variables and their equivalent 

responses as shown in Fig 4.9. The spreadsheet is referenced to the DOE study in Hyperstudy.  

 

Figure 4.9 Spreadsheet used for the DOE 

 

 The design variables and the responses are selected accordingly from the spreadsheet. 

The design variables and also given upper and lower bounds in order to run the various 

samples for a full factorial analysis of the data. The extracted values from the DOE are 

displayed using the main effects plots and the interaction plots as shown in the figures below, 
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(a) 

 

(b) 

Figure 4.10 Main effects plots for (a) Max length w.r.t design variables and (b) Yield moment 
w.r.t design variables 

 

 The main effects plots suggest that the load and height of the structure have a higher 

contribution as compared to the OD and thickness based on the slope of the lines from Fig 

4.10(a). Fig 4.10 (b) suggests that the height i.e., the distance from the neutral axis has a higher 

effect on the yield moment as compared to the other design variables. 
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 The interaction plots are plotted between the response and a specific design variable 

while keeping another design variable constant. The response is varied for the upper and lower 

limit of the two design variables. The following figures show the interaction of the various design 

variables, 

 

(a) 

 

(b) 

Figure 4.11 Interaction plots for Max length w.r.t. (a) height while OD is constant (b) height while 
thickness is constant 
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Figure 4.12 Interaction plots for Max length w.r.t. load while height is constant 
 
 

 Figure 4.11 plot (a) suggests that there is quite a bit of interaction between the height 

and the OD as the distribution is not parallel and the max length varies from approximately 3000 

to 70000 when the upper limit of OD is held constant. Similarly plot (b) also shows a similar 

interaction between height and thickness. Figure 4.12 shows a decrease in the max length with 

respect to the load for a constant height. 

 The following interaction plots are with respect to the yield moment as a response.  

 

Figure 4.13 Interaction plots for yield moment w.r.t. load while height is constant 
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(a) 

 

(b) 

Figure 4.14 Interaction plots for yield moment w.r.t. (a) height while OD is constant (b) OD while 
thickness is constant 

 
 Figure 4.13 depicts that there is no interaction between the design variables as the lines 

are parallel to each other whereas Figure 4.14 plot (a) and plot (b) have significant interaction to 

affect the response. 

The next step is to form the approximation for these responses with respect to each 

design variable. Hence the linear regression model can be developed for the variance allotted. 
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(a) 

 

(b) 

Figure 4.15 Regression approximation for (a) Max length (L1) and (b) Yield moment (My) 
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 The regression terms in both approximations can be eliminated by removing the terms 

with insignificant T-value. These approximations hold true for the upper and lower bounds 

defined for the design variables. By eliminating the outliers which are generally caused by 

uncontrolled responses to a certain range of design variable interactions, the accuracy of the 

approximation can be improved.  
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  CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions 

 By evaluating the various loading conditions on a simplified cross-section of tubes, a 

trend of the design variables with respect to the responses emerge which provide information 

on the effect of the afore mentioned variables. The approximate models generated by the DOE 

provide a linear relation between the design variables and responses. 

 This approximation is valid only for values within the upper and lower limit described in 

the DOE. The accuracy of the approximation decreases as the range of variance increases. 

This is because the upper bound tends to increase the stresses beyond the yield strength of the 

material and thus causes the generation of outliers in the approximation.   

 The following conclusions can be drawn from this thesis, 

1) The thickness of a tube for a fixed OD has negligible effect on the stiffness to 

weight ratio. The stiffness is a function of the moment of inertia of the c/s about the 

neutral axis and the stress is a function of the section modulus of the c/s, which the 

ratio of the moment of inertia to the distance from the neutral axis. 

2) For a torsional case, the stiffness to weight ratio of a rectangular frame decreases 

with an increase in the ratio of the length of its sides L1 and L2, where L1 is the 

moment arm, and the change in stiffness to weight is negligible for a L1/L2 ratio 

greater than approximately 3. Hence for a rectangular section with a L1/L2 ratio 

greater than 3, triangulation will be required.  
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From the fig 3.10, the increase in the stresses for a given size of tube with 

respect to the length ratio is small.  

3) For a bending case, the stiffness to weight ratio of a rectangular frame also 

decreases with an increase in the ratio of the length of its sides L1 and L2 and the 

change in stiffness to weight is negligible for a L1/L2 ratio greater than 

approximately 2. Similarly for a rectangular section with a L1/L2 ratio greater than 2, 

triangulation will be required. 

From the fig 3.17, the increase in the stresses for a given size of tube with 

respect to the length ratio is large and maximum length for a rectangular box made 

of a certain tube size can be calculated from the following formula,   

� � ��1 Y 4p Y a� Y b7  

Where,  b � 7� Y  h
�   i6j� ? 6d�k i2'�k   

                                7 � 621$3'7� �� $l� ��$��m�1$ �"�m�'$ ���m $l� '��$�3" 3�21i2'k 

p � ��30 i"#k; � � "�'($l �� $l� ��3m�i2'k  

a� � 42�"0 1$��11iz12k, ��1 � �37$�� �� 13��$4 

4) The angle variation of 30° to 60° considerably affects the stiffness to weight ratio of 

the structure. This indicates that the maximum number of triangles that can be 

created by keeping the angular variation between these limits would contribute 

positively to the stiffness to weight ratio of the structure. 

5) The maximum number of triangles to achieve the highest stiffness to weight ratio for 

bracing a rectangular section is 2. 

6) The stiffness to weight ratio increases for a uniform increase in OD and thickness of 

the tube i.e., the thickness to OD ratio remains constant.  
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7) From the DOE analysis, the length or the length ratio has the highest effect on the 

stiffness to weight ratio as compared to OD and thickness for a torsional case and 

the approximation is given by, 

4 � 66.67 ? 20.48�� @ 306�� ? 715.28�� @ 1.84��� @ 360.06��� @ 4951.5���

? 50.78���� @ 42.92���� ? 0.05��� ? 45452.91��� @ 1.94�����
? 20.64����� ? 1.74����� @ 228.82����� 

Where, 4 i��1z�'1�k � 1$2��'�11 $� {�2(l$i�$ "#/ 0�( z�� "#k  
 ��, ��, �� i0�12(' t3�23#"�1k � ��'($l i2'k, |6 i2'k3'0 �l27>'�11i2'k ��1z�7$2t�"4  

8) For a bending case, the length ratio and the thickness are high contributors to the 

response and the approximation is given by, 

4 � 247769.8 ? 31561.62�� @ 96744.5�� ? 288433.6�� @ 879.4��� @ 2250.3���

@ 1773136.7��� @ 34834.2���� ? 386508.4���� ? 7.78��� ? 27.56���

? 1231025.7��� ? 342����� ? 13340.57����� @ 232124����� 

Where, 4 i��1z�'1�k � 1$2��'�11 $� {�2(l$i�$ "#/ 0�( z�� "#k  
 ��, ��, �� i0�12(' t3�23#"�1k � ��'($l i2'k, |6 i2'k3'0 �l27>'�11i2'k ��1z�7$2t�"4  

 

5.2 Future work 

The suggested topics for further study are, 

1) Increasing the range of variance for the design variables and obtaining a higher R-

squared value. 

2) Application of more advanced statistics like D-Optimal, Box Behnken, etc to 

improve accuracy. 

3) Physical bench testing in order to create a stochastic study of the design vaiables. 

4) Performing the same study using different material such as aluminum and carbon 

fiber. 
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APPENDIX A 

 

 
SAMPLE ANSYS CODES FOR TORSIONAL TESTING  

OF RECTANGULAR STRUCTURE 
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KEYW,PR_STRUC,1    !Selecting structural menu (preferences) 
KEYW,PR_THERM,0  
KEYW,PR_FLUID,0  
KEYW,PR_ELMAG,0  
KEYW,MAGNOD,0  
KEYW,MAGEDG,0  
KEYW,MAGHFE,0  
KEYW,MAGELC,0  
KEYW,PR_MULTI,0  
KEYW,PR_CFD,0  
 
/prep7 
 
ET,1,BEAM188     !Beam Type 
 
MPTEMP,,,,,,,,     !Material Property 
MPTEMP,1,0  
MPDATA,EX,1,,2.97e7    !Modulus of Elasticity 
MPDATA,PRXY,1,,.29    !Poisson's Ratio (.29) 
 
 
SECTYPE, 1, BEAM, CTUBE, , 0  !Beam Section Type  
SECOFFSET, CENT  
SECDATA,.472,.5,10,0,0,0,0,0,0,0  
 
k,1,0,0,0,,,,       !Creating keypoints 
k,2,5,0,0,,,,    
k,3,5,5,0,,,,    
k,4,0,5,0,,,, 
 
l,1,2     !Creating line elements  
l,2,3  
l,3,4  
l,4,1  
 
 
FLST,5,12,4,ORDE,2    !Meshing the lines with the circular cross section 
FITEM,5,1  
FITEM,5,-12  
CM,_Y,LINE  
LSEL, , , ,P51X  
CM,_Y1,LINE  
CMSEL,,_Y  
LESIZE,_Y1,.2, , , , , , ,1   !Mesh every .20 inches 
FLST,2,12,4,ORDE,2  
FITEM,2,1  
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FITEM,2,-12  
LMESH,P51X  
 
/eshape,1   
 
/GO       !Applying constraints 
DK,4, ,0, ,0,UX,UY,UZ, , , ,  
FLST,2,1,3,ORDE,1    
FITEM,2,4    
!*   
/GO  
DK,1, ,0, ,0,UX,UZ, , , , ,   
FLST,2,1,3,ORDE,1    
FITEM,2,2    
!*   
/GO  
DK,3, ,0, ,0,UZ, , , , , ,    
FLST,2,1,3,ORDE,1    
FITEM,2,3    
!*   
/GO      !Applying loads 
FK,2,FZ,100   
FINISH   
/SOL 
! /STATUS,SOLU 
SOLVE    
FINISH 
  
/post1     !Postprocessing 
 
PRRSOL     !List all Nodal Reactions 
PLESOL, S,EQV, 0,1.0    !Von Mises Stress Plot 
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