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ABSTRACT

SEMI-EMPIRICAL STUDIES OF SOLAR SUPERGRANULATION

AND RELATED PHENOMENA

PETER EDWARD WILLIAMS, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professor: Manfred Cuntz

In recent years, solar observations have moved from ground-based telescopes to

observatories on Earth orbiting satellites, such as SOHO. They provide us with a clear

and uninterrupted view of the solar disk. One instrument upon SOHO, the Michelson

Doppler Imager (MDI), has proved fruitful in providing not only important information

of the solar photosphere but, in combination with helioseismic methods, a method for

probing the solar interior.

This dissertation discusses current investigations by myself and my collaborators

into surface manifestations of convection phenomena, using Doppler velocity data from

MDI and produced from computer simulations. The Doppler data reveal convection cells

much larger than the granulation seen easily by optical telescopes. These supergranules’

originate deeper within the convection layer than the granules and, like their smaller

counterparts, are heavily influential in structuring the magnetic field and subsequently

play an important role in controlling aspects of the solar activity cycle.

My work presented in this dissertation shows that the supergranulation pattern

seems to rotate faster than the surface plasma. It has been suggested that the pattern

is driven by wave-like phenomena, but instead we find the reason is a geometric effect

with respect to the observer. We further find that supergranules are also responsible for

v



observed corrugation features on the solar surface, which previously had been interpreted

as Rossby wave hills.

We extend our convection spectrum and Doppler map production simulations to

include axisymmetric flows such as differential rotation, which contribute to the evolution

of the velocity field. These models assist in understanding how such large-scale surface

flows influence the surface motions of supergranules.

Lastly, I describe the construction of a numerical experiment to study the influence

of a ’giant-cell’ velocity field on the supergranule pattern. Such non-axisymmetric flows

would further contribute to supergranule advection and the results of such experiments

may assist in the observation of these hitherto elusive ’giant-cells’.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The role and importance of the Sun and its current characteristics cannot be un-

derestimated, no matter how obvious. Without this sole energy source, life would simply

not have evolved. However, in recent years, more subtle properties of the Sun have be-

come important, notably those that effect electrical devices and modes of communication

on Earth. With satellite technology now common, it is prudent to understand the con-

nection between the Sun and us and to what extent solar photospheric phenomena have

terrestrial implications.

1.2 Lifecycle of the Sun

In the context of stellar evolution, the Sun is currently a relatively stable star [1].

But its past [2] has not been so stable, nor will its future [3], [4]. To place its current

state in an overall evolutionary context, what follows is the assumed life-cycle of our star.

The Sun began its life as a cloud of gas and dust condensing toward a common point

due to the effects of its own gravity [2]. The main core of the cloud continued collapsing

while sporadic clumps formed at various distances away, forming what would become

the planets. As the cloud core condensed further, more matter would gravitationally

fall into it increasing the core mass [4]. The gravitational energy from in-falling mass

is transferred to thermal kinetic energy emitting in microwave and infrared radiation as

the dense cloud now becomes a protostar [4], [2]. The protostar continues to collapse

as the internal pressure is not strong enough to support it. With increasing pressure,

the temperature within the core of the protostar also increases [4]. With an increasing

temperature, the internal particles (mainly hydrogen nuclei, i.e. protons, and electrons)

1
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Figure 1.1. Hertzsprung-Russell diagram [7].

gain energy and at a certain temperature they become energetic enough to overcome

their respective Coulomb barriers and fuse [3]. This nuclear fusion emits excess energy

in the form of photons and this collective process in the stellar core provides the internal

pressure necessary to halt the gravitational collapse [5]. The star, now in almost perfect

hydrostatic equilibrium, is now called a main-sequence star due to its position on the

Hertzsprung-Russell diagram (Fig. 1.1) that illustrates stellar distribution as functions

of temperature (that is related to its visual color) and luminosity [6].

The main-sequence state of the Sun, after around 4 billion years of evolution, is

how we find it and its overall stability is likely to last for sometime to come [8], [9].

In another 5 billion years or so, the hydrogen within the very center of the core will

become exhausted. After another 1.5 billion years, the core will contract, as fusion no

longer occurs within, while hydrogen still burns in a surrounding thick shell [4]. The
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contracting core also means that the shell contracts, thus becoming hotter and burning

hydrogen more rapidly. The extra energy released causes a sudden expansion of the

solar surface at which the Sun becomes a red giant[4]. The core contracts, reaching the

density of election-degeneracy and the temperature also increases, passing 108 K at which

helium begins to fuse producing a violent ’helium flash’ [4] which produces enough energy

to expand the core away from it degenerate density. After another 0.1 billion years, the

helium fuel in the core is exhausted and once again begins to shrink, also reducing the

density of the material around it. This prompts helium in the shell around the core to

ignite (producing another ’helium flash’), while hydrogen around that shell becomes hot

enough to fuse [10]. The result is double-shell burning. The carbon-oxygen core contracts

to electron-degenerate densities as no fusion reacts operate to sustain it [3]. The violent

onsets of shell burning prompt high rates of mass-loss from the Sun’s envelope [11]. What

remains is a remnant core of a white dwarf star and the expanding, ejected envelope that

forms a planetary nebula (PN) [4]. However, it has been suggested [9] that the solar PN

will not be of the near-spherically symmetric shape of typical PNs, but will instead have

a more bi-polar symmetry. This central remnant will subsequently cool and fade. The

Sun will not end its life with a bang, but with a whimper.

1.3 Solar Properties and Structure

Table 1.1 lists some of the important properties of the Sun. To bring some of these

parameters into an everyday context, 1.3 million Earths would fit inside the Sun, the

core temperature is hotter than any Earth bound nuclear explosion and to produce the

observed luminosity, the energy emitted corresponds to a mass loss of 4 million tons per

second [6].

As can be seen in Fig. 1.2 the internal structure of the Sun can be divided into

three sections: the core, the radiative zone and the convection zone [11]. It is within

the core (R < 0.2 R¯) that the conversion of hydrogen nuclei into helium nuclei is an

ongoing process [5]. At temperatures within, the dominant process of nuclear fusion is
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Table 1.1. Solar attributes [6]

Attribute Value
Mean Distance from Earth 1.496× 108 km

Mass 1.99× 1030 kg
Equatorial diameter 1.39× 106 km

Mean density 1.41 g cm−3

Central density 150 g cm−3

Surface gravity 273 m s−1 (27.9 gE)
Luminosity 3.8× 1026 W

Spectral Class G2V
Effective (Photospheric) Temperature 5800 K

Central Temperature ∼ 1.5× 107 K

the proton-proton chain which combines four hydrogen nuclei to form a single helium

nucleus [3].

This energy, in the form of photons, then begin its progress toward the solar surface

where it is emitted as radiation. At the speed of light, this would seem a short process.

However, considering the high density within the Sun, the photon only travels a very

short distance before becoming absorbed by a particle [13]. Within the confines of the

radiation zone (0.2 R¯ < R < 0.7 R¯) the dominant energy transfer process is via

radiation. A photon, traveling at the speed of light, undergoes many absorptions and

emissions as it randomly walks outward from the core - an underlying radial radiative

pressure provides the means of its general surface-bound trajectory [11]. The traversal

of a single photon through this radiative zone is estimated at between 10,000 - 100,000

years [3]. From helioseismic measurements [14], it is found that the radiative zone largely

rotates uniformly similar to a solid body . This is quite unlike the region directly above

which is next for the photons journey, the convective zone (R > 0.7 R¯). This region is

found to rotate differentially with latitude and depth and with the solid body rotation

of the underlying radiative zone [14], a tachocline is formed at their boundary defining

a sharp shear in rotation rates. In the convection zone, the predominant method of



5

Figure 1.2. A schematic showing the internal structure of the Sun and the layers of its
external atmosphere [12].

radiation transfer is convective in nature. This region, which is of primary importance

for the presented studied, will be discussed in more detail in Section 1.4.

At what is the upper boundary of the convection zone, the density of material and,

consequently, the opacity drops so that the medium once more becomes transparent to

radiation [11], [15]. The energy is carried off to space by photons. It is these photons

that we observe photosphere, defining the surface of the Sun. At this surface, the tops

of the cells which carry energy outward are visible and are discussed in the next section.

Also very prominent are features called sunspots (Fig. 1.3 (left)) that observationally

appear dark due to their lower temperature (∼ 4000 K) relative to the surrounding gas

[15]. These are related to the Sun’s global magnetic field which waxes and wanes over

an 11-year cycle (Fig. 1.3 (right)), with the field switching polarity at the beginning of

each [16], [17], [18]. The mechanism driving this cycle, coined the solar dynamo, which
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Figure 1.3. (Left) Picture of a sunspot showing the dark umbra area of strong magnetic
field and the weaker field producing the lighter penumbra (Credit: Royal Swedish Acad-
emy of Sciences). (Right) Fluctuation of the number of sunspots visible on the solar
disk over time, constituting the waxing and waning of the solar cycle (Credit: David
Hathaway NASA MSFC).

incorporates the flows of differential rotation and localized convection to perpetuate and

regenerate the magnetic fields, has undergone intensive research since its early models

[19], [20] and have advanced to the stage where they are beginning to make predictions

using existing solar cycle data about subsequent cycles [21], [22], [23].

In the chromosphere, the thin layer (about 10,000 km thick [3]) directly above the

photosphere, magnetic features such as plages, spicules and filaments are visible (Fig. 1.4

left). A thin transition region [15] above the chromosphere is also notable for exhibiting

very sharp negative density and positive temperature gradients (Fig. 1.4 right) which

results in the chromospheric region only being seen optically when the photosphere is

blocked, for example during a total solar eclipse.

In a similar nature to the chromosphere, the solar corona also requires optical ob-

servations be made during an eclipse [11]. However, unlike the chromosphere it has a

very large spatial extent (Fig. 1.5) and its size varies depending at what point the Sun

is at within its activity cycle [11]. The temperature gradient within the corona is less

dramatic than within the transition zone, but is still firmly positive with temperatures
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Figure 1.4. (Left) Chromospheric features observed in H-alpha [24], plages and filaments
(top); spicules (bottom). (Right) Temperature profile above the solar photosphere. Note
the sudden increase within the transition region that results in the high temperatures of
the corona (Credit: M.B. Larsen).

reaching as high as 1–2 × 106 K even during quiet periods of the Sun’s activity [15].

Coronal emission extends across the radiation spectrum due to the many process occur-

ring within. One such interesting phenomenon are the coronal holes visible via X-ray

emission which are caused by open field lines extend out into space as opposed to looping

back towards the Sun[15].

These open field lines are considered to be the main driving mechanism of the solar

wind [25] in which plasma particles are accelerated and driven out into the interplanetary

reaches of the solar system and further [26]. The Earth is under constant bombardment

by the solar wind, although the Earth’s surface and immediate surroundings are protected

by its magnetic field [27] which deflects the charged plasma particles. Such an interaction

is visible to Earth observers as aurora [28] where some charged particles travel down the

field lines to the Earth’s polar regions and interact with the atmosphere.

With technology no longer being Earth-bound, it is of interest to understand the

nature of the solar wind and the mechanisms driving it all the way back to the processes

generating the systems of solar magnetic fields.
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Figure 1.5. White-light (left - Credit: Fred Espenak) and X-ray (right - Credit:
Yohkoh/SXT) images of the solar corona.

1.4 Solar Convection Zone

With temperatures decreasing radially outward through the radiative zone, at a

certain radius the interior becomes cool enough to allow recombination of the nuclei and

electron plasma to form atoms [11]. This drastically increases the opacity of material to

a point where radiation is no longer an efficient process of energy transfer and convective

processes take over.

The condition for convection is set by the Schwarzschild criterion [5] ,[15] that

determines that for a rising gas element that is cooling adiabatically as it rises, if the

ambient temperature gradient mean that the higher density surroundings cool faster than

the gas element can cool, then the element will continue to remain buoyant and convective

instability occurs [11].

The gas is heated from below by photons transporting energy from the underlying

radiative zone and rises through the ambient medium. As it reaches the surface, energy

is radiated away and the gas cools. On cooling, its density increases to that higher than

the ambient surroundings and the gas falls [11]. So, in a similar manner to an ‘air in a

room analogy’, a convection cycle is set up. However, in the Sun, many cyclic convection

cells are set up and are not stable. Some may last for an hour, some for a few days [15].
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Without being able to directly look into the convection zone, scales and behavior

of convection cells can be interpreted from their surface manifestations [15]. It is found

that convection cells can be segregated into disparate components, each having their own

characteristics and are described in the Section 1.5.

1.5 Convection Components

Convection bells come in various shapes and sizes and past work has separated

them into four distinct components [29], [15]. Starting with the smallest, these are

granules, mesogranules, supergranules and giant cells. Typical parameters for each of

these components, where known, are given in Table 1.2. In the following, each will be

described and evidence for their existence critiqued.

Table 1.2. Typical values for convection cells viewed at the photosphere [15]

Convection Cell Spatial Size Lifetime Horizontal Velocity
Granules 103 km ∼ 1 hour ∼ 1 km s−1

Mesogranules 7 × 103 km few hours ∼ 500 m s−1

Supergranules 30 × 103 km 1− 2 days 300− 500 m s−1

Giant Cells 105 km ∼ 2− 3 months ∼ 10 m s−1

1.5.1 Granules

A close up look at the solar photosphere reveals a pattern of cells (Fig. 1.6)

that tends to evolve over time. These cells, called granules, are the manifestations of

subsurface convection flows [30]. As seen in Fig. 1.6, the pattern is defined by the bright

cells divided by dark lanes. The former is due to hot material rising to the surface due

to convection and emitting radiation, while the latter is the downflow of the material

once cooled. One can assume the dynamics as a radial upflow at the center of the cell,

with a divergence horizontal flow towards its boundaries, becoming a downflow at the

boundaries where flows from adjacent cells converge.
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Figure 1.6. An image from the Swedish Vacuum Solar Telescope showing granulation on
the solar photosphere (Courtesy: SVST).

Referring to Table 1.2 the surface cells have a spatial extent of around 1000 km

and typically last for around an hour. However, as can be seen from Fig. 1.6, their range

of spatial sizes is quite vast and, with better observations to resolve the thin dark lanes

defining the cells, even smaller granules may exist.

Solar convection simulations ([32] and references therein) have been used to at-

tempt to model the dynamics of the upper convection zone that produce the observed

granulation. They constructed three-dimensional magnetohydrodynamic (MHD) code to

analyze equations of mass conservation, momentum, energy and the induction equation.

They were successful in producing results that realistically simulated surface granulation

as well as other phenomena (Fig. 1.7), such as photospheric line profiles.
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1.5.2 Mesogranules

The existence of mesogranules has remained a controversial topic since being first

reported in 1981 [33]. The main supporting evidence is from horizontal divergence maps

created by analyzing the surface motions of granules [34]. Granules that are embedded

in larger scale flows can be tracked moving within such flows and their directions of prop-

agations mapped. Should their relative motions be of a divergent nature (i.e. away from

a common center), then it is likely that they are embedded in an underlying and larger

divergent flow, possibly a convection cell. However, on analyzing a distribution of convec-

tion cells in a power spectrum (e.g. see [35]), no distinct component for mesogranulation

seems to exist although power certainly exists spectral range theoretically inhabited by

mesogranules. Additionally, models of the convection power spectrum suggest that only

two components, granules and supergranules, are necessary to reproduce observations

[35]. It is likely, therefore, that mesogranulation is not an independent, self-contained

convection component and convection cells in this spatial range are most probably large

granules or small supergranules.

1.5.3 Supergranules

Supergranules are not readily observed optically as the brightness of the granules

overwhelms. They were originally observed by measuring the Doppler velocities of photo-

spheric flows [36], a method that still remains a powerful observational tool. In a manner

similar to those that observe mesogranules, divergence maps tracking granule advection

can also betray the existence of supergranules [37]. However, unlike mesogranules, their

existence is confirmed. What is still questionable, however, is the mechanism that drives

this component. Their velocity characteristics are those expected of convective flows;

similar to granules, they posses radial flows near the cell center, becoming a divergent

horizontal flow towards the boundaries where downflows return material to below the

surface. Previous ideas for their mechanisms invoke hydrogen and helium recombination

that increase opacity [36]. More recent theories [38], however, suggest that the collective
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downflows of smaller convection components contribute to the initiation of larger scale

upflows. Realistic convection models [32] have tried to produce supergranules from such

an amalgamation of granular downflows but, although convective features the size of

supergranules are produced, an explicit supergranule convection component is not ob-

served. This ongoing question contributes to the array of open issues still to be answered

about supergranulation, some of which are discussed in Section 2.2.

1.5.4 Giant Cells

The largest component of solar convection are giant cells. Although proposed to

exist since the late 1960s [39], hard observational evidence still does not exist, despite

possible candidate signals being claimed [40]. Such cells are thought to span a vast area

of the solar surface [41], although shearing within the convection zone might deform them

into latitudinal thin but longitudinally long features [40]. Other methods may be used

to obtain signals for these elusive cells, some of which are described in Chapter 7.

1.6 Dissertation Outline

The focus of this dissertation is the study and understanding of particular charac-

teristics of supergranulation. These convection cells are described further in Chapter 2

and some of the open questions concerning their nature are raised. The observational

data used in these studies are derived from those collected by the Michelson Doppler

Imager (MDI) aboard the Solar and Heliospheric Orbiter (SOHO). The MDI instrument

is discussed in detail in Chapter 3. The process of reducing the raw data from MDI

into such that contains only that pertaining to non-axisymmetric flows due to convection

is described in Chapter 4. Also within this section is described a data simulation that

creates realistic data using coefficients derived from synthetic data and mapped onto the

spherical harmonics.

The next four chapters are dedicated to the investigations and results achieved from

analyzing real and synthetic MDI data involving myself and collaborations, in which I
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was an active member. Chapter 5 investigates supergranule Doppler pattern rotation

relative to the underlying plasma. Chapter 6 investigates the identity of hills discovered

on the solar limb attributed to Rossby wave phenomena and questions whether the real

cause is overshooting of supergranule convective upflows. Chapter 7 describes improve-

ments made to the data simulation that include the implementation of advection of the

convection pattern due to a realistic differential rotation profile. Chapter 8 moves away

from supergranulation to their larger relatives, the giant cells and adopts methods that

may contribute to their definite discovery. A concluding chapter then summarizes the

work in Chapter 9.



14

Figure 1.7. Comparison of a simulated to an observed granulation pattern [31]. The
top panel shows a composite granulation pattern produced from images separated by
1 minute. The middle panel shows the same images but convolved with an Airy plus
exponential point spread function. The bottom panel shows a white-light image taken
from the La Palma telescope.



CHAPTER 2

SOLAR SUPERGRANULATION

Although Section 1.5.3 noted that the driving mechanism behind supergranulation

is still not known for sure, many characteristics of supergranules have been discovered and

will be discussed in the following sections. There are, however, a number of outstanding

issues, some of which will be detailed toward the end of this chapter.

2.1 Characteristics of Supergranules

Recapping some of the basic characteristics, supergranule cells observed at the

photosphere are typically 30,000 km across, last for around 1 day and their horizontal

velocities in the range of 300 m s−1 are nearly 10 times that of their radial velocities.

2.1.1 Supergranule Shape

Supergranules are similar to granules in shape, although their boundaries may not

be as structured as the latter. Evidence for this has been shown from velocity contour

maps at the solar disk center [42]. Fig. 2.1 shows such a contour map. Near the center

of the supergranule, the flows are predominantly blue-shifted, i.e. an outflow, becoming

zero then red-shifted near its boundary which distinguishes inflow of material at the

supergranule boundary. The discrepancy with the more regular boundaries of granules

is highlighted in the disconnect of the red-shifted velocities.

The border of this supergranule as seen from a chromospheric network observation

is overlaid, outlining the congregation of magnetic field lines at the boundaries of the

supergranule and those adjacent to it. This chromospheric network is well observed via

Hα emission and at the Calcium-K line as a seemingly organized pattern across the solar

15
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Figure 2.1. Velocity contour map of a supergranule observed at disk center [42].

Figure 2.2. Images of the chromospheric network [24] in H-alpha (left) and CaK (right)
emission.
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disc (Fig. 2.2). This chromospheric emission is the result of an interaction with local

magnetic fields and is discussed in Section 2.1.3 below.

2.1.2 Effect of Rotation on Supergranules

As the surface motions of convection cells lie on the surface of a rotating frame,

then they are liable to be influenced by Coriolis forces. However, the influence of the

Coriolis force is not equal for all flows and depends on the ratio of the inertial to Coriolis

forces in the form of the Rossby number

Ro =
u

2Ωl
(2.1)

where u is the velocity of the motion, Ω is the rotation rate and l is a length scale for the

flow. For a large Rossby number, the rotational influence can be neglected. However,

such influences must be considered for small Rossby numbers.

In the context of surface convection flows, Ω is dependent on the location of the

flow on the solar surface due to the Sun’s latitudinal dependent differential rotation,

whereas u and l depend on the flow itself describing horizontal flow velocity from the

cell center and the size of the cell, respectively. By using a typical solar rotation rate

of Ω ∼ 3× 10−6 s−1, considering the spatial extremes of convection (refer to TABLE),

for granules (u ∼ 1000 m s−1, l ∼ 106 m) we get Ro ∼ 500 so Coriolis influences are

negligible, while for giant cells (u ∼ 10 m s−1, l ∼ 108 m) we get Ro ∼ 0.05 so Coriolis

influences must be taken into consideration. However, when studying supergranules

(u ∼ 300 m s−1, l ∼ 3× 107 m) we get Ro ∼ 5 the criterion for rotational influence is

on the borderline. A larger, slower flow would produce rotational influenced flows, while

smaller faster flows would have no such influence.

Although initially calculating the rotational influence as small, Stix [15] continues

to report spectroscopic evidence [43] of the Coriolis force affecting the direction of the

cellular flow. Hathaway [44] showed that Coriolis effects can indeed influence the direction

of supergranule type flows near their updrafts and downdrafts. He also showed that the
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divergent flows from the center of a convection cell, modeled as a pattern of hexagons,

were diverted clockwise for upflows and counter-clockwise for downflows.

2.1.3 Supergranule Interaction with the Local Magnetic Field

As magnetic fields are embedded throughout the convection zone, being generated

by the dynamics of this region, the flows within will tend to distort the field lines. For

example, any rotation of a rising packet of gas will tend to lift and twist the field lines. It

is indeed this process that plays a role in the magnetic dynamos [45] discussed in Section

1.3.

Such processes are carried out within supergranule flows with field lines being

brought to the surface. At the surface, the prodominant horizontal flow toward the

edges of the supergranule cell carry field lines with it, so that they tend to congregate

at supergranule boundaries [15]. It is this distribution of the field that interacts with

chromospheric material to produce the outline of the supergranule boundaries that is

observed in images of the chromospheric network (Fig. 2.2) [11].

Around the boundary, especially at boundary vertices of more than two cells [46],

concentrations of magnetic field lines may combine to form flux tubes. These tube-like

fields are confined within the down flow between convection cells, but spread out above

the solar surface where the density of material is not high enough to confine them into a

tightly bound configuration. Below the surface where they are confined, they may interact

with the surrounding material and various types of oscillations may occur within the flux

tubes, an area of physics which has attracted much investigation [47], [48].

Although these magnetic phenomena are on the whole tied with the global magnetic

field produced by a global 11-year cycle dynamo, and the active regions resulting from

them, noteworthy magnetic activity still exists during quiet phases of the cycle when no

magnetic active regions are present. It follows, therefore, that a different mechanism is

responsible for these ’quiet Sun’ magnetic phenomena. Indeed, it has been suggested [49]

that a more localized process is responsible for these fields, associated with granular and
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supergranular flows. As magnetic fields generally have diffusive timescales compared to

those for magnetic advection, such local dynamo models have to operate in regimes of

vanishing magnetic diffusivity, something which is described in fast dynamo models [50].

Further numerical models [32], [51] are beginning to increase the influence of magnetic

fields in their simulation domain and may assist in understanding what role such fields

play in the production of a separate supergranule component to solar convection.

2.2 Outstanding Questions Concerning Supergranulation

Although there is a wealth of information about the nature of supergranulation and

related phenomena, many questions are still unanswered and solving these issues may

prove to be valuable pieces contributing to a global understanding of the Sun [29].

Some open topics, although not discussed in this dissertation, are, for example,

at what point in the spatial size of a convection cell does rotation, and the subsequent

Coriolis force, become important [44]. Is it tied solely to size or is it dependent on the

nature of the convection component itself?

Following on from this, for what types of convection cells do local dynamos operate

[45] and what influence, if any, do they have on the global field during the quiet periods

of the solar cycle. Is there a link between local dynamos [49] and the α-effect [52] that

plays a large role in global dynamo models?

Although these remain open and interesting topics, my research work as described

in this dissertation pursues and answers other questions regarding supergranulation.

These are briefly described in the following.

Observations of the supergranule pattern have shown that the pattern seems to

rotate faster than the plasma within which the supergranules are embedded [53]. A

number of explanations could be put forward. As there exists a radial differential profile

throughout the convection zone [14], maybe the material at the depth within which

the supergranules are anchored is rotating faster than the surface plasma so that the

supergranules are therefore advected faster in a similar manner as magnetic features
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seem to exhibit varying rotation rates depending on the depth at which they are anchored

within the convection zone [54]. There could be underlying wave phenomena carrying the

supergranules faster than the rotation rate [55]. As the observed images are actually two-

dimensional characterizations of a three-dimensional flow-field, then this superrotation

may well be the result of a geometrical projection effect. This topic we raised in Chapter

5 and perform studies into the superrotation and its causes.

The shape of the Sun has raised many questions beginning with the fact that it

diverges from a perfectly spherically symmetric object with an oblate quality, exhibiting

equatorial bulging and polar flattening, due to its rotational nature [56]. It has been

the intent of observations to then study other, smaller scale, surface perturbations and

understand the mechanisms causing them [57]. One such expected perturbation is due

to convective overshooting at the surface. The coming and going of convection cells

should also produce evolving undulation of the solar surface. Other phenomena, such as

those produced by waves [58], may also have an effect on the solar shape on the order of

supergranule spatial scales. This observation is described in Chapter 6 and where I then

study the causes of these surface features.

Helioseismology has provided evidence that a differential rotation profile occurs not

only at the solar surface but also extends throughout the convection zone [14]. Assuming

that convection cells of different spatial sizes as viewed at the surface are anchored at

different depths beneath the surface [54], it may be concluded that these cells should

rotate at different rates according to the radial rotation profile. I analyze this hypothesis

in Chapter 7 by means of comparing simulated data to real data. I make further data

comparisons, described further in the chapter, to study evolutionary lifetimes of different

sized convection cells.

It is understood that granulation cells are advected by the supergranule flows in

which they sit [36]. However, is there an extra step in which supergranules themselves sit

in the flows of an even larger component of convection, i.e. giant cells, and are themselves

advected? Some studies contributing to the search for giant cells [39], [40] are described
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in Chapter 8. I describe the construction of a numerical experiment I performed to

simulate flow fields to attempt to produce supergranule advection by giant cells. Similar

dynamics may be responsible for observed signals hitherto suggested to be derive from a

wave-like component of supergranulation [59].



CHAPTER 3

THE MICHELSON DOPPLER IMAGER

3.1 Introduction

Until the launch of the Uhuru satellite in 1970, all astronomical observations were

conducted from ground based instruments, including the important solar observations

that form the basis for latter studies such as those noted in this dissertation. Among

these are the Doppler velocity observations of Leighton, Noyes & Simon [36] at the Mount

Wilson Observatory that provided the first measurements of the supergranule velocity

field. Any observations require sufficient and continuous integration time (normally many

days) to improve the integrity of the data, e.g. noise reduction, but this is hampered

by the limited time that objects appear above the horizon. In the case of the Sun,

observations can only , for obvious reasons, be made in the daytime. The daylight hours

may be extended by moving the observation location nearer to the Earth’s poles where

observations may be made through consecutive months of the local summer. Indeed,

successful programs have been carried out in Antarctica, for instance those carried out

by Fossat et al. [60], right through to recent projects such as CASTEL [61]. Although

an improvement on earlier observation sites, integration times made within the Antarctic

Circle are still temporally limited as well as the highly remote nature of the location itself.

Thus a method had to be developed to allow continuous ground-based observations of

the Sun. The Global Oscillation Network Group (GONG) [62] was set up to meet this

objective.

GONG is an international community-based helioseismology project which became

operational in 1995 and allows near-continuous observations of the Sun. It operates a

network of six observing stations around the globe, from which data is collected and

combined to construct a constant solar record. The data is analyzed to produce a wide

22
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range of results and information about the Sun, such as solar oscillations and surface

convection manifestations (for example, see [63], [64], [65], [66]).

However, one remaining hindrance to the data quality from GONG has been the

Earth’s atmosphere. As the global observation sites are all ground based, any observa-

tions traverse the turbulent atmosphere thus making the data more susceptible to noise.

Thus in 1987, the Solar and Heliospheric Observatory (SOHO) was proposed to carry

a number of instruments to carry out a large variety of observations such as the solar

corona and solar oscillations.

In December 1995, the SOHO satellite [67] was launched and parked in a stable orbit

at the L1 Lagrangian point between the Earth and Sun. The instruments aboard were

thus provided with uninterrupted observations of the solar disk without the constraints

presented by the terrestrial atmosphere. One such instrument is the Michelson Doppler

Imager (MDI) [68] that was built to probe the solar interior by studying the photospheric

manifestations of internal oscillations.

3.2 Spectral Line Selection

MDI makes observations of the absorption spectral line of neutral nickel (Ni I) at

6767.77 Å (Fig. 3.1), which is produced just below the solar photosphere due to photon

absorption by an excited state of Ni I, and has already been used effectively by GONG.

The line fits a set of selection criteria for Doppler velocity measurements [66]. Firstly, it

is well isolated from other spectral features, meaning that any features seen can be solely

attributed to that line without being contaminated by its spectral neighbors. It should

be insensitive to magnetic fields so that Doppler velocities can still be measured to high

accuracy across the face of the disk over which the field strength may vary. However,

magnetic field measurements are still possible with MDI by observing the circularly

polarized components of the incoming light. There should be a weak dependence of the

line observation on the viewing angle from solar center to limb (the edge of the solar

disk). Although limb darkening is clearly seen optically due to the light passing through
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Figure 3.1. Solar spectrum [69] between 6750 Å and 6800 Å showing the position of
the 6767.77 Å Ni I line observed by MDI. The inset shows a close up of the line and its
corresponding width due to Doppler broadening (wavelength ranges between 6767 Å and
6769 Å).

more of the solar atmosphere at the limb compared to light emitted at the center, the

depth of the absorption line should be relatively constant [68].

3.3 Instrument Design

The MDI instrument [68] was built by a collaboration of the Solar Oscillations

Investigation Group (SOI) at Stanford University and the Lockheed Palo Alto Research

Laboratory. There are two major packages within MDI: the optics package which contains

the components to observe the solar disk within a particular wavelength range around

the Ni I line and collect the data by CCD, and the electronics package which controls

the optical system and also manages the data communications between the instrument

and the Earth based center of operations. A schematic of MDI is shown in Fig. 3.2 and
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Figure 3.2. Schematic of the MDI instrument showing the three major parts of the optics
package.

the optical layout of the optics package is displayed in Fig. 3.3. It is shown that three

sections comprise the optics: the telescope, imaging system and polarization selectors

(green), the filters and reimaging optics (blue) and the beam distribution and camera

system (red).

3.3.1 The Telescope, Imaging Stabilization and Polarization

Light from the Sun enters the instrument via an entrance window which, like all the

other optics-vacuum interfaces, is coated with an anti-reflection material which transmits

with very high efficiency around 6768 Å, while reflecting other wavelengths. Thus, any

light transmitted through the optics is essentially distributed immediately around the Ni

I line. A 50 Å bandpass filter further reduces the transmission range, blocking infrared

radiation to which the CCD is very sensitive. The telescope is a refractor with an

objective lens, limited by a 12.5 cm diameter circular aperture stop, and a secondary

enlarging lens with an effective focal length of 1867 cm. The image is folded by an image
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Figure 3.3. Optical layout of MDI showing the path of the beam through the instrument
[68].

stabilizing mirror towards the polarization optics. The polarization analyzer wheel can

select between right- and left-circularly polarized and horizontally and vertically (‘p-

’ and ‘s-’ respectively) polarized light. These components are converted into p- and

s-components after which a polarizing beam splitter sends the p-component to a bi-

cell detector, which is electronically linked to the image stabilization mirror and the

complete circuit behaves like a feedback loop to analyze the light and adjust the mirror

accordingly. This mechanism keeps the image centralized on the optics and also reduces

any instrumental jitter that may occur. Meanwhile, the s- component is directed through

the instrument into the filter system and onward through to the detector.

3.3.2 The Filter and Imaging System

The s-polarized light sent from the beam splitter first enters a telecentric lens

which collimates the beam, focusing it to infinity. The transmission wavelength selection

is then performed by a series of fixed and tunable filters (Fig. 3.4). The fixed filters
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Figure 3.4. Periodic transmission profiles of a Lyot filter [70]. Each profile corresponds to
one extra crystal added to the filter, being two times the thickness of the one preceding
it.

Figure 3.5. Photograph and schematic of a solid Michelson interferometer [71]. The two
exit beams have been split in this diagram to illustrate their respective time delay.
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Figure 3.6. Diagram showing the transmission profiles of the filter optics within MDI
[68]. The solid line shows the periodic profile due to the Michelsons, centered on the rest
wavelength of Ni I (dotted line). The dashed line corresponds to the profile of the Lyot
filter.

Figure 3.7. The Michelsons can be tuned so that the transmission profile can be centered
at 8 m steps around the Ni I rest wavelength over a 377 Å range [68].
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include an 8 Å bandwidth blocking entrance filter to a birefringent Lyot filter. The beam

then passes through two solid Michelson interferometers (Fig. 3.5) which can be tuned

with rotating waveplates which select the center of the transmission profile. A final

set of re-imaging lenses focus the beam onto the detector. The interferometer system

produces periodic transmission profiles 377 mÅ apart centered on the Ni I line with a

transmission bandwidth of 94 mÅ. The Lyot filter is also centered on the Ni I line with

a bandwidth of 465 mÅ. This selects the centroid Michelson interference transmission

peak while quenching the others. Further, a blocking filter at the entrance to the Lyot

filter with a bandwith of 8 Å permits the central peaks from the other two filter systems,

while suppressing the other interference profiles produced by the Lyot. A diagram of

the transmission profile is shown in Fig. 3.6. The central peak (solid line) is the by

tuned Michelson interferometers to the 6767.77 Å Ni I line (dotted), while the other

peaks either side are removed by the Lyot filter (dashed line). Using the tunability of

the optics system, the input beam can be sampled at various wavelengths. The peak of

the transmission profile can be positioned around the Ni I line in steps of 8 mÅ over a

range of 377 mÅ (examples of profile positioning are shown in Fig. 3.7). The intensity of

the output beam over selected wavelengths can determine the position and the depth of

the absorption line, the intensity increasing from a minimum as the transmission profile

is moved from the absorption line center toward the wings. In MDI, line intensities are

measured at five fixed wavelengths separated by 75 mÅ, with the central profile positioned

at 6767.77 mÅ. These produce a set of five filtergrams, F0 through F5, corresponding

to the set of five wavelengths. F0 is at 6767.77 mÅ, the rest wavelength of Ni I, F1 and

F4 correspond, respectively, to the blue and red wings of the line profile which F2 and

F3 correspond, respectively, to the blue and red core of the profile. Each filtergram is

passed through re-imaging optics which focuses the image onto the plane of the detector,

before entering the beam distribution and camera system.
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3.3.3 Beam Distribution and Camera System

A polarizer and a halfwave plate convert the beam into two orthogonal linearly

polarized components which are split by a polarizing beam splitter and distributed into

two paths. This selects the resolution of the image to be detected. One path corresponds

to normal (1×) resolution, whereas the other path subjects the image to 3.2× magnifica-

tion using a Barlow lens. The selectivity is selected using a simple shutter which allows

the beam to traverse the path of the required resolution while blocking the other beam.

A halfwave plate then readjusts the polarization of the selected beam before passing it

through another beam splitter and towards the detector. The detector itself is a front-

illuminated CCD with a 1024×1024 array of 21 m pixels. Further information on this

part of MDI is given by Scherrer et al. [68].

3.4 Data Collection and Processing

Each filtergram is detected with a cadence of 3 seconds, meaning that a set of five

is collected in 15 seconds [68]. Two or four sets are collected per minute corresponding

to 30 or 60 second programs respectively, dependent on what other concurrent observ-

ing programs are underway. The filtergrams are combined onboard MDI by an image

processor which reduces the amount of data to be downloaded to the command center

on Earth. Certain combinations produce certain secondary observables, such as the line

of sight Doppler velocity, line depth, continuum intensity and Zeeman splitting.

3.4.1 Doppler Velocity Calculations

The main observable constructed from combining the filtergrams is the line of sight

Doppler velocity. This is estimated from a ratio of differences of the F1 through F4

filtergrams and given a value [68],

α =
F1 + F2 − F3 − F4

F1 − F3

, if numerator > 0 (3.1)
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Figure 3.8. A raw Doppler image illustrating photospheric line-of-sight velocities. The
dominant velocity component is that of rotation. The left side of the image is inherently
blue (approaching velocities) whilst the right side is red (receding velocities).

α =
F1 + F2 − F3 − F4

F4 − F2

, if numerator ≤ 0 (3.2)

If the numerator is greater than zero, then the filtergrams show higher intensities

at the blue side (F1 and F2) of the Ni I rest wavelength than at the red side (F3 and

F4), corresponding to a deeper absorption line at the red side of the Ni I rest line. This

corresponds to a redshift of the absorption line with the absorbing material and the

observer moving apart. The inverse is true if the numerator is less than or equal to

zero; there is a blueshift of the absorption line. The Doppler velocity is calculated by

an image processor from using a stored lookup table constructed from simulations before
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launch. Negative corresponds to negative velocities (material moving toward observer)

and positive to positive velocities (material moving away from observer). Errors in this

measurement may arise from measuring profiles of widths different to those used to

construct the lookup table, by mistuning of the Michelsons, mis-centering of the Lyot

profile and systematic errors due to the variability of the solar line. A raw Doppler image

is shown in Fig. 3.8 and it can be clearly seen that rotation is the largest component.

The raw Doppler images are subsequently reduced by subtracting velocity component

features, such as solar rotation and oscillations, which are described later in Section 4.2.

3.4.2 Other Observables of MDI

The filtergrams can be combined in other ways to derive other observables such as

the continuum and the line depth. Magnetic properties can be derived by constructing a

longitudinal magnetogram of the solar disk. Doppler shift data is collected from the right

and left circularly polarized components of the input beam and the difference between the

two measures the Zeeman splitting, which relates to the magnetic flux density. Further

observables are derived after downloading the data to Earth and via subsequent computer

processing.

3.4.3 Helioseismology Using MDI Data

The Sun is found to oscillate over a wide variety of modes and frequencies. Past

work with GONG [62] has been furthered by studies using MDI into the nature of these

oscillations. Acoustic (p) modes are predominant in the convection zone and are driven

by pressure differences within the region, whereas gravity (g) modes are confined deeper

within the interior and have gravity as their restoring force. Although g-modes are

difficult to observe due to their spatial confinement, p-modes are easier (although still

difficult) to detect as they interact with the solar surface (Fig. 3.9).

The surface manifestations of p-modes as the waves are reflected toward the interior

can be observed over time with spatial and temporal Fourier transforms of the time series
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Figure 3.9. Schematics illustrating the nature of solar acoustic p-mode oscillations [72].
(Left) A computer image illustrating an oscillation within the convection zone made up
of a radial mode (n=20) a latitudinal degree mode (`=20) and a longitudinal order mode
(m=16). (Right) Examples of p-modes showing how the acoustic waves traverse through
the solar interior. Inward traveling waves are refracted by the material within the Sun
where they can change direction and become outward traveling waves. At the surface,
the waves are reflected back inward before once more being refracted. It is these surface
manifestations that are measured and studied my helioseismologists.

used to produce power spectra of the Doppler velocities at the surface as a function of

spherical harmonic degree ` and temporal frequency ν. Fig. 3.10 shows an example of

such a spectra illustrating the vast variety of p-modes observable at the surface.

Using this vast array of helioseismic spectral data, investigations of the solar interior

may be made such as the internal structure of the various zone within the Sun [64] and

the differential rotation and dynamics of the solar interior [65]. The latter phenomena

of internal differential rotation may have an impact into the convection features studied

for this dissertation and will be investigated in Section 4.5.
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Figure 3.10. Power spectrum of solar acoustic modes derived from MDI Doppler data
[64]. Data is averaged over spherical harmonic order m to produce a two dimensional
spectrum as a function of ` and ν. Each ridge corresponds to a different radial mode n.
Each ridge, however, is not a continuum of power but is made of discrete data points.
The positions of the ridges on the diagram may be used to infer internal conditions within
the Sun.



CHAPTER 4

DATA ANALYSIS AND SIMULATIONS

4.1 Introduction

The data received on Earth from MDI are raw data that include Doppler maps

made up of line of sight velocities due to all motions visible on the solar surface. To be

able to study particular features on the surface, the data must be processed to remove

unwanted velocity components (as explained below), resulting in only those which are

required for analysis, which, in the context of this dissertation, are non-axisymmetric

flows due to internal convection motions.

The methods described in this section were previously conceived by researchers

referenced herein prior to my involvement as a PhD student. Use of, and extensions

to, these methods form the hub of my research work and are described in subsequent

chapters. This chapter details such methods for the purpose of placing into context and

understanding of my work perform for the PhD.

4.2 Data Reduction

A wide variety of velocity components contribute to the line of sight velocities that

are observed within the Doppler maps collected by MDI. These include velocities due to:

a - differential rotation of the Sun [14];

b - the meridional circulation [73], which is a cyclic flow between the poles and equator

at the surface and the base of the convection zone;

c - a disk-wide blueshift, becoming a redshift at the limb, due to the upflow of unresolved

granulation cells [74];

d - the relative velocity of the the spacecraft carrying MDI itself;

e - p-mode oscillations [64], which are acoustic waves, with pressure as the restoring

35
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force, with a period of around 5 minutes and occur due to the variability of the speed of

sound within the Sun;

f - resolved convection cells due to different scales of convection [35] transporting heat

from the Sun’s interior to be radiated at the solar surface;

g - a redshift of the spectral line due to the gravitional influence of the Sun [75].

As much of the work contained within this dissertation focuses on manifestations

and characteristics of supergranulation, the other components must first be subtracted

from the original Doppler images received from MDI.

The following subsections outline the processes required to remove each unwanted

component from the image (described in further detail by Hathaway [76]), leaving only

velocity data due to the resolved convection cells required for our studies.

4.2.1 Selected Data

The MDI Doppler images used for the work discussed in this dissertation were

gathered over a two month span during May and June of 1996. The main attraction

of this data range is the very low amount of solar activity during this period, occurring

near a minimum of the 11-year solar cycle. The sunspot count was subsequently very

low, so that their interference with the surface convection patterns, that are the subject

of our investigations, within this data was minimized. The MDI data used during this

timespan were collected at a cadence of one minute.

4.2.2 Temporal Filtering

As the p-mode oscillations have a relatively short period, compared with the con-

vection components of interest (Section 1.5), of about 5 minutes, Hathaway [77] devised a

method to temporally filter out these oscillations, with longer-lived velocity components

such as convective and long-lived axisymmetric flows remaining. Sets of weighted and

unweighted discrete filters were tested on artificial data with varying results (Fig. 4.1).

The ideal filter should be constructed to attenuate the p-mode signal as much as possible
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Figure 4.1. Shapes of the three filter types in the time (top) and frequency (bottom)
domains [77]. The left filter is of a boxcar shape, the center is a near-Gaussian and to
the right is a weighted comb near-Gaussian shape. In the lower set of figures, the dotted
line corresponds to the frequency profiles of the p-mode oscillations whereas the solid
line corresponds to the frequency transmission profiles of the filters.

and preferably have a short temporal filter length. Limiting the filter length means that

the number of images involved in filtering out the signal is reduced and therefore any

smearing of the remaining signal, such as supergranulation, is avoided.

The unweighted filter takes the form of a boxcar function (Fig. 4.1 left). However,

when analyzed in frequency space, the filter exhibits transmission peaks over the range

of the p-mode oscillation envelope. Even with a filter length of 60 minutes, the boxcar

still transmits 2% of the p-mode signal (Fig. 4.2).

A weighted filtered was constructed from a near-Gaussian distribution (Fig. 4.1

center). The amount of overlap with the p-mode oscillations in frequency space is drasti-

cally reduced compared with the boxcar filter. The amount of attenuated signal reaches
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the same amount for the 60 minute boxcar at around 20 minutes and after 30 minutes,

the signal is removed altogether.

Another weighted filter was constructed from the same near-Gaussian distribution

mentioned previously, but with every other discrete value set to zero, resulting in a

weighted comb (Fig. 4.1 right). The amount of overlap with the p-mode oscillations in

frequency space is nearly zero. For a filter length of 10 minutes, the signal is attenuated

to the same value as that of the 60 minute boxcar. At around 15 minutes, the signal

amplitude is reduced to zero.

As a series of images are utilized in the temporal filter, errors in the velocity data

are produced from smearing effects due to solar rotation. These errors increase as the

filter length is increased. The effect of reducing the p-mode signal must therefore be

considered relative to the rotation errors (Fig. 4.3). Hathaway [77] found that the

influence each error artifact can be balanced by specifying a filter length of around 20

minutes. This prevalent rotation error can subsequently be removed by artificially de-

rotating the images to coincide with a common central image. This involves remapping

the image data temporally on either side of the central image to coincide the Doppler

pattern with the central image itself and adding them with appropriate weighting. This

process may seem to depend on data that is on the other side of the Sun for use in the

de-rotation process. However, as this data is situated near the limb and such data is

removed in subsequent analyses, this problem does not carry through.

With this de-rotation process in operation, the filter length may be extended to

further reduce the p-mode signal. The filter that results in the data used for this disser-

tation is of 31 minutes in length. Using the time series of images at 1-minute intervals,

subsequent filtering and sampling results in a series of p-mode subtracted Doppler images

with a cadence of 15 minutes.
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Figure 4.2. Response of each of the three types of filter [77].

Figure 4.3. Comparison between the response of the comb filter to the p-mode oscillations
and the rotation of the supergranule pattern [77].
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4.2.3 Gravitational Redshift

From the General Theory of Relativity, it can be calculated that, due to the grav-

itational field of the Sun, the wavelength of any emitted photon will be redshifted. This

gravitational redshift subsequently affects the spectral line observed by MDI. The result

is an additional line-of-sight velocity component that must be removed. From a simple

calculation, the corresponding Doppler velocity is around 636 m s−1:

Vgrav =
GM¯
R¯c

= 636 m s−1. (4.1)

Here, G is the gravitational constant, M¯ is the solar mass, R¯ is the solar radius and c

is the speed of light. Further investigations into the influence of the gravitational redshift

on solar spectral lines have been made by Lopresto et al. [75].

4.2.4 Spacecraft Velocity

As described in previously (Section 3.1), the SOHO spacecraft, upon which MDI

is mounted, orbits the Sun at Earth-Sun Lagrangian Point L1. Therefore, within any

Doppler signal, velocity components exist due to the line of sight velocity of the spacecraft

with respect to the Sun. Three-component velocity data (radial, east-west and north-

south velocities) and other related geometric data are included as header files with each

filtered Doppler image. For each image, the line-of-sight values can be extracted and the

instrument velocity removed using

V (ρ, Θ) = V (ρ, Θ)− Vgrav − VR(1− ρ2) + VXρ sin Θ− VY ρ cos Θ. (4.2)

On the right side of (4.2), V (ρ, Θ) is the input Doppler velocity at an angular position

ρ from disk center and an angle Θ clockwise from the solar rotation axis. Vgrav is the

gravitational redshift contribution as defined in the previous subsection. VR, VX and

VY are the respective radial, east-west (parallel to the solar equator) and north-south

(parallel to the solar rotation axis) velocities of the spacecraft. On the left side of (4.2),

V (ρ, Θ) is the subsequent corrected Doppler velocity.



41

4.2.5 Heliographic Mapping

To aid in the removal of the axisymmetric flows, the velocity data is remapped from

polar coordinate system (ρ,Θ) to one in heliographic coordinates (θ,φ). Here, θ is the

colatitude of a point on the image as measured from the north pole, i.e. θ = 0, π/2, π

radians at the north-pole, equator and south-pole respectively, and φ is the longitude

which increases from zero from the western limb. The mapping is performed using [76]

sin θ cos φ = cos B0 cos ρ− sin B0 cos Θ (4.3)

sin θ sin φ = − sin ρ sin Θ (4.4)

cos θ = sin B0 cos ρ + cos B0 sin ρ cos Θ. (4.5)

Here B0, the tilt of the solar north pole toward the observer, is also taken into consid-

eration. The value of B0 evolves as the observer moves around the Sun and is included

for each image within its accompanying header file. B0 varies between ±7.12◦ depending

on the position of the observer, with 7.12◦ being the tilt of the solar rotation axis with

respect to the ecliptic [78].

The velocity data contained within the image files are originally presented in a polar

coordinate format, i.e., V (ρ, Θ). Thus, a remapping process, similar to coordinate remap-

ping of (4.3)-(4.5), must apply to reformat the data to heliographic coordinates. This is

performed by finding the coordinates of a pixel in a spherical polar coordinate system

which which is mapped to a pixel in the heliographic coordinate system by performing a

series of coordinate transformations, as described in the following.

Take a pixel with coordinates XS, YS and ZS to be its x,y,z coordinates on the

surface of the Sun. In spherical polar coordinates, these are given by



XS

YS

ZS




=




R sin θ sin(φ− φ0)

R cos θ

R sin θ cos(φ− φ0)




, (4.6)

where R is the solar radius, θ and φ are defined earlier and φ0 is the longitude at disk

center.
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These coordinates need to be transformed to account for the aforementioned an-

gular tilt of the north pole towards the observer, B0, and the angular tilt of the rotation

axis clockwise with respect to the observer, P . As these are orthogonal transformations,

they can be performed sequentially, using




XB

YB

ZB




=




1 0 0

0 cos B0 − sin B0

0 sin B0 cos B0







XS

YS

ZS




, (4.7)

and subsequently




XP

YP

ZP




=




cos P sin P 0

− sin P cos P 0

0 0 1







XB

YB

ZB




. (4.8)

The two-dimensional image disk coordinates are then calculated from the three-

dimensional solar coordinates by

XI = X0 +
XP

1− ZP

R
sin S0

, (4.9)

and

YI = Y0 +
YP

1− ZP

R
sin S0

, (4.10)

where S0 is the solar radius measured in arcseconds.

A data mask is also created to remove the pixels around the limb at 5% from the

edge of the limb. This removed the problem of foreshortening at the limb which can

result in anomalous data values. A similar data mask can also be used to remove active

regions in real data to be replaced by synthetic data to fit the image. This process is not

used for data described in this dissertation, but is discussed with more detail in [76].

As the described mapping is not 1:1, not only does perspective have to be taken

into consideration, using (4.9) and (4.10), but also the influence of other points adjacent
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to the point in question. Thus, a bi cubic interpolation from adjacent points is also

performed using

Vmap(i, j) =
3∑

µ=0

3∑
ν=0

WxµWyνFµν , (4.11)

where Vmap(i, j) is the remapped velocity at the ith and jth pixel coordinates, with

Fµν = V (Xint + (µ− 1), Yint + (ν − 1)), (4.12)

where V (Xint, Yint) is the velocity on the two-dimensional image disk at the rounded

coordinates found from (4.9) and (4.10).

Wxµ and Wyν in (4.11) are given by (after [79])

Wxi0 = −1

2
∆xi + (∆xi)

2 − 1

2
(∆xi)

3, (4.13)

Wxi1 = 1− 5

2
(∆xi)

2 +
3

2
(∆xi)

3, (4.14)

Wxi2 =
1

2
∆xi + 2(∆xi)

2 − 3

2
(∆xi)

3, (4.15)

Wxi3 = −1

2
(∆xi)

2 +
1

2
(∆xi)

3, (4.16)

where i=0,1 so that x0 = x and x1 = y. ∆xi is defined as the difference between XI -

Xint and YI - Yint, respectively.

The values of Vmap(i, j) calculated from (4.11) are then used for the subsequent

analyses.

4.2.6 Rotation Profile

Observations by Christoph Scheiner in the 17th century provided evidence of the

differential rotation property of the Sun with sunspots being seen to traverse across the

solar disk at a faster rate near the equator compared to those near the poles. How-

ever, it wasn’t until the 19th century when Carrington [80] made the first numerical

measurements to substantiate the earlier observations.
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Subsequent investigations, using data such as Doppler shift [81] and magnetogram

[82] correlations, have provided a functional form for the differential rotation, Ω, as a

fourth order polynomial in the sin of the latitude, ψ,

Ω = A + B sin2 ψ + C sin4 ψ (4.17)

where the coefficients A, B and C are determined from data fitting, with A representing

the equatorial rotation rate. A list of derived values for these coefficients is given by Stix

[15].

As the differential rotation constitutes a Doppler velocity field (Fig. 4.5) (and

is actually the strongest velocity component), it must be removed from the MDI data.

Hathwaway [76] provides a method of doing this.

The rotation velocity at a given colatitude, θ, averaged between longitudes φ1 and

φ2 is given by

U0
φ(θ) cos B0 =

1

N(θ)

∫ φ2

φ1

V (θ, φ) cos2 φ sin φdφ (4.18)

where B0 is the angular tilt of the Sun, V (θ,φ) is the line of sight velocity at a given

colatitude and longitude position on the solar disk and N(θ) is a normalization factor

taken between heliographic longitudes φ1 and φ2.

The rotation velocity Doppler map values derived from (4.18) are then fitted by

U0
φ(θ) =

`max∑

`=1

T 0
` [`(` + 1)]1/2P

1

`(cos θ) (4.19)

where P
1

`(cos θ) is an associated Legendre polynomial of degree ` and order 1 and T 0
` is the

toroidal spectral coefficient of degree ` and order 0 measured in m s−1. The summation

is executed up to `max equal to 8. Once found, this fit can be removed from the original

data.

4.2.7 Convective Blueshift

With convection cells spanning a wide range of sizes, as described in Section 1.5,

there will exist a sizeable number of granules that are too small to be resolved at the
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normal resolution with the full-disk observations of MDI. However, a contribution to the

Doppler velocity signal due to these disk-wide unresolved convection cells is still observed.

As the high intensity signals of the surface upflows within the granules dominate the low

intensity downflows around their edge, the velocity field is seen as a continuous upflow

and the Doppler signal is blueshifted. This phenomenon is called the convective blueshift

[15] (also known as the limbshift due to the signal’s variation toward the limb) and need

to be removed to study any underlying velocity fields. However, this removal is not a

straightforward subtraction procedure as is the process for the gravitational redshift as

it is found that the convective blueshift exhibits a slow disk center-to-limb variation [74]

(Fig. 4.5) as the radial velocity responsible for the convective blueshift reduces along the

line-of-sight towards the limb.

Beckers and Nelson [74] showed that whereas the convective blueshift is due to

the vertical flows of the unresolved elements, the horizontal flows within the cells are

responsible for the variation toward the limb. Near the limb, horizontal velocities along

the line-of-sight directed away from the observer combine with the high intensity of the

granules situated behind them (i.e. further toward the limb), the result being that these

horizontal velocity signals now begin to dominate. Indeed very near the limb the blueshift

becomes a redshift with velocity signals stronger than that of the gravitational redshift

described earlier.

4.2.8 Meridional Circulation

Like the solar rotation, investigations of the meridional circulation can be traced

back to the 19th century [80]. Despite being the weakest velocity component (typically

around 20 m s−1 [73]), it still plays an important role in the dynamics of the convection

zone and may be influential in controlling the 22 year solar-cycle [83], [84].

The surface profile of the meridional circulation shows a flow of varying strength

from the equator to the pole [73] (Fig. 4.5). However, as the meridional circulation seems

to play a role in determining the solar cycle, specifically influencing the equatorward drift
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Figure 4.4. A schematic cross-section of the Sun showing the meridional circulation
profile within the convection zone [85]. The tachocline at the base of the convection zone
is shaded gray.

of sunspots, it is speculated that an equatorward component of the meridional circulation

exists at the base of the convection zone [84] despite the current lack of helioseismic

evidence. With respective inward and outward radial flows at the poles and the equator,

a circulatory flow within the convection zone is set up (Fig. 4.4) [85].

4.2.9 Limbshift and Meridional Flow Removal

The process described by Hathaway [76] requires that the two previously described

velocity components must be removed in conjunction with each other. The main reason

for this is outlined in the first of three processes to extract these signals.

The first step begins by remapping the Doppler data to a heliocentric value of the

angular distance from disk center, ρ, over all position angles, Θ. The data is averaged

into a series of finite width annular radial bins. This process combines both convective

blueshift values and the average of the meridional circulation, which must be separated

in a later step. The averaged velocity data within each radial bin is calculated thus

VLS(ρ) =
1

2π

∫ 2π

0

V (ρ, Θ)dΘ (4.20)
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where V (ρ,Θ) is the velocity at heliocentric angular distance from disk center, ρ, and

position angle, Θ. Readjustments must be made during averaging to compensate for the

data being weighted toward the outside of each annular bin; there are more data points

at the outer edge than at the inner edge. A fit to the data collected in (4.20) can then

be applied using a polynomial of the form

VLS(ρ) =
nmax∑
n=0

Cn(1− cos ρ)n (4.21)

calculated up to nmax = 4, giving a set of limb shift coefficients, Cn. At this point, the fit

(including both limbshift and the average meridional circulation values) can be removed

from the original data.

What now remains of the axisymmetric velocity fields is the meridional circulation

component minus its average. This can be removed by fitting this component with a

modified profile to account for the subtracted average

VMC(θ, φ) = −
`max∑

`=1

S0
` [`(` + 1)]1/2(FMC(B0, θ, φ)−GMC(B0, θ, φ)) (4.22)

where

FMC(B0, θ, φ) = P
1

`(cos θ)[sin B0 sin θ − cos B0 cos θ cos φ] (4.23)

and

GMC(B0, θ, φ) =
1

2π

∫ 2π

0

P
1

`(cos θ)[sin B0 sin θ − cos B0 cos θ cos φ]dΘ (4.24)

resulting in

GMC(B0, θ, φ) =
[ 2

2` + 1

]1/2

P
0

`(sin B0) sin ρ(θ, φ)P
1

`(cos ρ(θ, φ)). (4.25)

All quantities have been previously defined, except S0
` which is the poloidal spectral

coefficient of degree ` and order 0. Eq. (4.23) accounts for the meridional circulation

profile, whereas (4.25) accounts for its average. Summing (4.22) up to `max = 8, the

poloidal spectral coefficients of degree ` and order 0 can be extracted and the fit removed

from the data.



48

Figure 4.5. Doppler images of the three axisymmetric flows that require removal from the
MDI images to extract convection velocity maps. (Left) Rotation; (Middle) Convective
blueshift; (Right) Meridional circulation.

Knowing the meridional circulation spectral coefficients now means that the average

can be removed from the limbshift profile produced in the first step

VLS(ρ) = VLS(ρ) +
`max∑

`=1

S0
` [`(` + 1)]1/2GMC(B0, ρ) (4.26)

the second term on the right hand side then being used to calculate a correction term

to the convective blueshift coefficients using (4.21).

4.3 Data Analysis

After all the non-convective velocity components have been removed, what remains

are the line-of-sight Doppler velocity fields due to convection mechanisms with spatial

sizes that are resolvable by the optics of MDI. Fig. 4.6 shows an example of such a Doppler

map, where red-shifted flows are colored red, and blue-shifted are colored blue. It can

be seen that the signals become more intense toward the limb showing the dominance of

horizontal velocities along the surface over the perpendicular radial flows.

As all resolvable convection components exist in Fig. 4.6, it is illustrative to decon-

struct the image to produce a distribution of the range of different convection cell sizes
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Figure 4.6. Image of the Doppler velocity fields remaining due to non-axisymmetric
convection flows after all the axisymmetric velocities from the original MDI image have
been removed [35].

that contributed to the final velocity field. This process, as follows, is described in [76]

and [35].

Whereas the maximum line-of-sight values extracted from the Doppler maps give a

reasonable estimate of horizontal flow velocities on the solar surface, further analysis of

the maps can also give information on the typical velocities for radial flows at the surface,

which are found to be dependent on the characteristic size of the convection cells [86].
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4.3.1 The Photospheric Convection Spectrum

To separate out all of the contributing convection elements, the Doppler data (sim-

ilar to that which produce the image in Fig. 4.6) must be mapped onto heliographic

coordinates (co-latitude θ and longitude φ) and then mapped onto the spherical harmon-

ics (Y m
` ) using

Am
` =

1

Nm
`

∫ 1

−1

∫ φ2

φ1

V (θ, φ) W2(θ, φ) Y m
` (θ, φ) dθ dx (4.27)

where Am
` are complex amplitudes, Nm

` is a normalization factor given by

Nm
` =

∫ 1

−1

∫ φ2

φ1

W2(θ, φ) [Y m
` (θ, φ)]2 dθ dx (4.28)

with

dx ≡ d(cos θ) (4.29)

and W2(θ, φ) is a weighting function that smoothly apodizes the data at the limiting

longitudes φ1 and φ2. What results is a two-dimensional convection spectrum given by

the complex amplitudes, Am
` , and a set of corresponding random phases.

After subtracting a temporal average of the complex spectra, which removes any

further stationary components remaining in the data that was missed by the processes in

the previous section, the power at a given wavenumber, `, can be determined by summing

the product of the complex amplitudes with their complex conjugates over each order m

P (`) =
∑̀

m=−`

|Am
` |2. (4.30)

With the Doppler image diameter being 1024 pixels, the wavenumber range in the

convection spectrum covers ` = 1 to ` = 1024, corresponding to a feature with a size

comparable to the semi-circumference of the Sun, to one the size of a single pixel (i.e.

πR¯/512). Fig. 4.7 shows an example of the convection spectrum constructed from

the Doppler map displayed in Fig. 4.6. The main feature is a peak situated at around
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Figure 4.7. Image of the power spectrum due to non-axisymmetric convection flows [35].

` = 120 that represents supergranules [35], [87]. With ` = 1 corresponding to a solar

circumference, the supergranule diameter derived from this spectrum can be estimated

λ(`) =
2πR¯

`
=

4400

`
Mm (4.31)

giving a characteristic size for ` = 120 of 36 Mm.

Owing to the noise at lower wavenumbers, there is no definite sign of giant cells

which are expected to peak at around ` = 60. Further, mesogranules that have been

proposed to exist [33], with a peak near ` = 400, are not seen. Convection cells with such

wavenumbers do exist, as can be seen by the power at such wavenumbers in Fig. 4.7, but

no distinct feature around that wavenumber can be identified. Instead, the contribution

to the spectral power is provided by smaller than average supergranules and larger than

average granules.

The peak due to granules themselves is not seen as they are not resolved at the

magnification used by MDI to provide these signals. However, using the higher resolution
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Figure 4.8. High resolution power spectrum due to non-axisymmetric convection flows
showing both the supergranule and granule peaks [35].

optics (at 3× magnification) the range of the convection spectrum can be extended (Fig.

4.8). As well as the narrow supergranule peak near ` = 120, a second broader, less

prominent peak is now seen near ` = 1000. This peak represents the granules. The

loss of power above ` = 1000, however, may not be representative of the actual size

distribution as not only are many granules not resolved at higher wavenumbers, but

their lifetimes are on the order of the temporal filter discussed in Section 4.2.2 (earlier

section in this chapter), which may remove some of the signal [35].

4.3.2 Radial Flows in Supergranules

Whereas the Doppler maps shown in Fig. 4.6 provide only information on the line-

of-sight velocities with respect to MDI, to understand some of the dynamics of convective

flows, it is illustrative to extract the actual velocities with respect to a reference frame
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situated at the solar surface. For this, two sets of orthogonal velocities can be extracted,

horizontal (flows along the solar surface) and radial (those perpendicular to the surface).

Hathaway et al. [86] conducted a study of a series of Doppler maps to de-construct

the line-of-sight velocities into their horizontal and radial components. They find that

the mean squared line-of-sight velocity averages over 200 annuli situated over a range of

heliocentric angles, ρ, from the center of the disk can be given by

V 2(ρ) = V 2
r +

[
V 2

h − V 2
r

]
sin2 ρ (4.32)

where V (ρ) is the line-of-sight velocity at heliocentric angle and ρ, Vr, and Vh are the

radial and horizontal components with the overbars representing averages, respectively.

Eq. (4.32) has the functional form of a straight line graph with V 2(ρ) and sin2 ρ

being the dependent and independent variables, respectively. Plots are then constructed

over a set of 20 images using (4.32), and the average taken of these plots. A straight

line fit may then be applied to this average yielding a value for the radial velocity from

the y-intercept and for the horizontal velocity from the gradient. Results yield horizontal

velocities of around 260 m s−1 and radial velocities of nearly 30 m s−1. The former value is

noticeably smaller than that extracted from the maximum line-of-sight velocities. This

is because data in the current method are only included out to 60% of the limb as

foreshortening near the limb causes the plot to deviate from a straight line. Therefore,

the horizontal flows are underestimated due to this lack of data.

The study by Hathaway et al. [86] also considered flow speeds for different sized

convection components. Spectral windows centered at particular wavenumbers were con-

structed to filter out unwanted convection cell sizes while including the necessary sized

components. In general, it is found that as the cell size decreases, both the radial and

horizontal flow velocities decrease. However, it is further found that the ratio of the

former to the latter increases with decreasing cell size. For supergranules, typical flow

velocities are found using a filter centered at ` = 128 with Vr = 13.4 m s−1, Vh = 153.1
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m s−1 and Vr/Vh = 0.09, resulting in the observation that horizontal flows are generally

around 10 times faster than radial flows.

4.4 Data Simulations

To gauge a better understanding of the prevailing physical conditions, simulations

are constructed to model such conditions within which user-defined variables can be

adjusted to determine the model’s behavior and match the physical conditions up to the

limit of the simulation.

The goal of any simulation in the present context is to recreate an artificial map

of the line-of-sight Doppler velocities that correctly matches those from MDI. The map

should include both the axisymmetric and non-axisymmetric components mentioned in

the previous section, which can then be removed using a similar to that already discussed.

At a colatitude point (defined as the angular distance from the north-pole to any

point on a spherical surface), θ, and azimuth, φ, the line of sight velocity, Vlos(θ, φ),

can be derived from three orthogonal elements for the radial, latitudinal and azimuthal

velocities, Vr(θ, φ), Vθ(θ, φ), and Vφ(θ, φ), respectively,

Vlos(θ, φ) = Vr(θ, φ)[sin B0 cos θ + cos B0 sin θ cos φ]

+Vθ(θ, φ)[sin B0 sin θ + cos B0 cos θ cos φ] (4.33)

+Vφ(θ, φ)[cos B0 sin φ]

where B0 is the tilt of the Sun’s north pole toward the observer. As with general cases

of Doppler shifts, velocities toward the observer are negative and observed as blueshifts,

while those away from the observer are positive and observed as redshifts.

Chandrasekhar [88] showed that any vector field on the surface of a sphere can be

expressed as a linear combination of toroidal and poloidal fields, and the radial compo-
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nent, Hathaway [79] derived the three orthogonal velocity components that contribute to

Vlos(θ, φ) as

Vr(θ, φ) =
`max∑

`=0

∑̀
m=0

Rm
` Y m

` (θ, φ), (4.34)

Vθ(θ, φ) =
`max∑

`=0

∑̀
m=0

[
Sm

`

∂Y m
` (θ, φ)

∂θ
+ Tm

`

1

sin θ

∂Y m
` (θ, φ)

∂φ

]
, (4.35)

Vφ(θ, φ) =
`max∑

`=0

∑̀
m=0

[
Sm

`

1

sin θ

∂Y m
` (θ, φ)

∂φ
− Tm

`

∂Y m
` (θ, φ)

∂θ

]
, (4.36)

where Rm
` , Sm

` and Tm
` are the respective radial, poloidal and toroidal spectral coefficients

in latitudinal degree, ` and azimuthal order, m.

To determine values for the three velocity components, values for Rm
` , Sm

` and Tm
`

have to therefore be assigned. As mentioned in Sections 1.5 and 4.32, both radial and

horizontal velocities are attributed to both granules and supergranules. As seen in (4.34)-

(4.36), the radial spectral coefficient contributes to the radial velocity, Vr(θ, φ), while the

poloidal and toroidal coefficients contribute to the horizontal flows, Vθ(θ, φ) and Vφ(θ, φ).

In the context of convection cells, the poloidal flows correspond to divergent flows direct

outward from the cell center to its boundary, while the toroidal flows correspond to

circulation within the cell.

To extract these spectral coefficients, a convection velocity power spectrum can be

created dependent on wavenumber `, similar to that constructed from the MDI velocity

images of the previous section. The spectrum should be constructed to provide spectral

coefficients to contribute to Doppler velocity maps along with the axisymmetric flows.

Subjecting these maps to similar analysis described in the previous section, one can

extract a synthesized photospheric convection spectrum. The goal is to produce a final

synthetic spectrum that closely matches one extracted from MDI data.

4.4.1 Building a Synthetic Photospheric Convection Spectrum

To construct the initial spectrum, two modified Lorentzian functions are summed

to represent a power spectrum from the spectral coefficients Rm
` and Sm

` . For the studies
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given in this dissertation, the toroidal components are not included. Although a rota-

tional element is expected to the flow within the convection cells at the surface due to

Coriolis forces provided by the Sun’s rotation, they are taken to have a negligible effect

on the features studied here. The strength and possible effects of the Coriolis force on

supergranule cells have been described by Hathaway [44].

The two functions contribute to the poloidal and radial coefficients, although they

do not need to be constructed separately as they can be related to one another following

the previously mentioned study of radial flows within supergranules [35] which relates

their radial and horizontal velocities. From this work, the two coefficients can be related

as,

|R`| =
(

0.09 +
`

25000

)√
`(` + 1)|S`|. (4.37)

The 0.09 factor accounts for the overall relative strength ratio between radial and poloidal

flows, while the `/25000 accounts for the variation in relative strength with wavenumber

[86]. The poloidal spectral coefficient is then constructed from summing each Lorentzian

respectively representing the supergranule and granule convection components,

|S`| = 7× 104

2` + 1

1

(`− 110)2 + 1002
+

1× 108

2` + 1

1

(`− 4000)2 + 40002
. (4.38)

The first term represents a function of the supergranule component peaking at ` ∼ 110,

while the second term represents a function of the supergranule component peaking at

` ∼ 4000. Each component and the resultant function are shown in Fig. 4.9. Extracting

the spectral coefficient amplitudes contributing to this function and modulating them by

a random phase, thus extending the spectral coefficient dependency to m as well as `

while also removing the phase coherence between the coefficients, for example,

|Sm
` | = |S`|eimφ, (4.39)

where φ is a random phase angle, the process of constructing the velocities can commence.
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Figure 4.9. Profiles showing the supergranule and granule components (dashed lines)
that comprise a synthetic photospheric convection profile (solid line) [35].

4.4.2 Building Realistic Doppler Maps

To begin the construction of a Doppler map image, spectral profiles for the ve-

locity components are produced. The previous subsection describes how a photospheric

convection profile is built. Additionally, to create a more realistic spectrum, the input

spectral amplitudes and phases for each component are randomly modulated to remove

coherence of the different modes to make the data as realistic as possible.

Profiles for rotation and meridional flow are also required. Both are zeroth order

toroidal and poloidal, respectively, with values used for low degrees only. The three

component toroidal spectrum for the rotational profile contribution is given by

T 0
1 = 1483 (4.40)

T 0
3 = −26 (4.41)

T 0
5 = −4 (4.42)
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while the two component poloidal spectra for the meridional flow contribution is given

by

S0
2 = 17 (4.43)

S0
4 = −26. (4.44)

These values are used to produce velocity data which are combined with the con-

vection flow velocity data to produce an image. These images are essentially simulated

snapshots of a synthetic flow pattern. It should be noted that the none of the flows

described until now are used to dynamically evolve the flow.

Evolution of the pattern progresses in two ways. One way is to evolve the pattern

across the image disc using a solid body rotation profile and the other is to evolve the

pattern itself using randomized phases so that supergranule cells within the pattern

(around ` = 110) evolve with a lifetime of about two days. As discussed in Section 4.2.6,

the Sun rotates differentially, but a solid body profile is used as an initial approximation.

The method of adding a differential rotation evolution of the spectral coefficients is

involved and described in a later section.

The velocity components were then found from (4.34)-(4.36), using relations that

equate the spherical harmonics to the Legendre polynomials, as well as the Legendre

polynomial recursion relations

Y m
` (θ, φ) = P

1

`(cos θ)eimφ, (4.45)

∂

∂θ
Y m

` (θ, φ) =
1

sin θ
[`Cm

`+1P
m

`+1(cos θ) (4.46)

+(` + 1)Cm
` P

m

`−1(cos θ)]eimφ,

and

1

sin θ

∂

∂φ
Y m

` (θ, φ) =
1

sin θ
imP

m

`+1(cos θ)eimφ, (4.47)

where

Cm
` =

[
(` + m)(`−m)

(2` + 1)(2`− 1)

]1/2

, (4.48)
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to give for each discrete colatitude θj, and order m,

Vr(θj,m) =
`max∑

`=m

Rm
` P

m

` (cos θ), (4.49)

Vθ(θj,m) =
1

sin θj

`max∑

`=m

Sm
` [`Cm

`+1P
m

`+1(cos θj)

− (` + 1)Cm
` P

m

`−1(cos θj)] (4.50)

+ Tm
` [imP

m

`+1(cos θj)],

Vφ(θj,m) =
1

sin θj

`max∑

`=m

Sm
` [imP

m

`+1(cos θj)]

−Tm
` [`Cm

`+1P
m

`+1(cos θj) (4.51)

+(` + 1)Cm
` P

m

`−1(cos θj)].

Due to the parity properties of the Legendre polynomials, velocities need only be

initially calculated for one hemisphere (say northern). Velocities within the southern

hemisphere are then found from those in the north. Velocities are calculated for each

component r, θ and φ, at each colatitude θj, and each spherical harmonic order m,by

using (4.49)-(4.51), summing over the spherical harmonic degrees `.

This results in six velocity components, i.e. three directional velocities for both

velocities. These then undergo an inverse Fast Fourier Transform [89] to bring the ve-

locities from spectral into velocity space. The real part is taken giving three directional

velocities in both hemispheres at all colatitudes and longitudes.

A number of steps are taken to convert these three velocity components into a

single line-of-sight value: a - each pixel is broken up into grid of 49 (i.e., 7×7) subpixels;

b - each subpixel is mapped from Cartesian to Heliographic coordinates. c - a bi cubic

interpolation of each velocity component from adjacent points is performed around each

subpixel to account for the re-mapping process. d - each component is projected onto

the line-of-sight and summed over all subpixels to produce the final line of sight velocity
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Figure 4.10. Comparison of Doppler velocity images. The top image is derived from real
MDI data, while below is an example of a realistic synthetic image produced by the data
simulations detailed in this chapter..

for that pixel. This is performed for all image pixels. A wrap around border is added

to the Cartesian image map to account for the interpolation process including any pixel

that happens to lie outside the map boundaries.

Once this is done, a the convective blue shift is added by considering this velocity

component to be third order polynomial for the distance of a point from disk center. A

random Gaussian noise element is added if necessary.

Further modulation to the velocity map is performed by considering the reduction

of velocities as a function of distance from disk center due to limb darkening using another

third order polynomial. Finally the optics of MDI are considered by a final modulation

of the image using the Modulation Transfer Function of the instrument. The final image

is then saved to disk.
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An example of an image produced from this simulation is shown in Fig. 4.10 along

with an MDI image for comparison. The similarity is clearly apparent for both large

scale and small scale velocity features.

Sequences of images may be produced by looping this process and specifying a time

gap between images. This time gap is used to evolve the phases, pertaining to differential

rotation and convection cell evolution, that produce the image pattern.

4.4.3 Computational Data Production and Analysis

The code I used to perform the tasks to produce real and synthetic Doppler images,

as described in this chapter, were written in Fortran 77. The code listings are given in

appendices towards the end of this dissertation. The first flowchart of Appendix A

illustrates the process route for MDI fake.for (see first listing of Appendix B) which

is the most recent version of a program to produce synthetic images for a solid body

interpretation of the solar rotation. The implementation of differential rotation into a

spherical harmonic process in depth will be discussed in Chapter 7. The second flowchart

of Appendix A illustrates the process route for MDI analysis1.for (see second listing

of Appendix B) which analyzes a Doppler image and calculates the spectral coefficients

that characterizes the observed axisymmteric flows. The third flowchart of Appendix

A illustrates the process route for MDI analysis2.for (see third listing of Appendix

B) which uses the spectral coefficients extracted by the previous program to construct

velocity data for each axisymmetric flow and subtract it from the original image.

On the High Performance Computer at the University of Texas at Arlington, the

approximate running time per image for each process was as follows. Two minutes to

produce a synthetic MDI image (MDI fake.for), 0.25 minutes to perform the initial spec-

tral analysis (mdianalysis1.for) and 1.5 minutes to remove the unwanted axisymmet-

ric velocity data to produce an image that only includes non-axisymmetric components

(mdianalysis2.for).
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After initializing the necessary parameters, MDI fake.for begins by reading in the

MTF array which has been previously created and includes the information required

to modulate the synthetic data with the optics of MDI. A limb darkening profile is

constructed as previously described, and these two arrays are combined within Fourier

space (using the four1.for subroutine) to be convolved with the final image.

The subroutine plmcoef.for is subsequently run once to calculate the values of

Cm
` for all ` and m, as in (4.48), to be used in the calculation of the vector velocities

Vθ and Vφ as seen in (4.50) and (4.51), respectively, along with coefficients, Am
` and Bm

` ,

described next. The modified associated Legendre Polynomials, P
m

` , are calculated at

each colatitude within the loop to create an image using the plm.for subroutine that

uses the recurrence relation

P
m

` (cos θ) = Am
` cos θ P

m

`−1(cos θ)−Bm
` P

m

`−2(cos θ), (4.52)

where

Am
` =

[
(2` + 1)(2`− 1)

(` + m)(`−m)

]1/2

, (4.53)

and

Bm
` =

[
(2` + 1)(` + m− 1)(`−m− 1)

(2`− 3)(` + m)(`−m)

]1/2

. (4.54)

These two coefficients are calculated for all ` and m in the previously mentioned

plmcoef.for. The starting values to be input into the recurrence relation are (see [79]

for more detail)

P
m

m(cos θ) =

[
1

2

m∑
m̄=1

2m̄ + 1

2m̄

]1/2

, (4.55)

and

Bm
` =

[
(2` + 1)(` + m− 1)(`−m− 1)

(2`− 3)(` + m)(`−m)

]1/2

. (4.56)

The final image is saved to disk in binary format as opposed to a text file to save on disk

space.

The spherical analysis programs mdi-analysis1.for and mdi-analysis2.for can

be used for both real and synthetic data by changing an internal variable. If the programs
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are run for synthetic data, solar parameters, such as the solar tilt, b0, are defined by

the user to correlate with those used in MDI-FakeNew.for. If used for real data, solar

parameters are read in from the header information for each image file. These include the

distance from the Sun in AU (rdist-au), the tilt of the solar north pole with respect to

the observer (b0) the radial, northern and western velocities of the observer with respect

to the Sun (c0, cy and cx, respectively) and the image coordinates that determine the

center of the Sun (x0 and y0).

The subroutine vfix.for uses the solar parameters, notably the observer velocity

values, to remove the observer’s velocity from the image as seen in Section 4.2.4. This

correction is performed according to As these values can be set to zero for the synthetic

data analysis, for the sake of ease, this process is more important for real data.

The processes for mapping to heliographic coordinates (heliomap.for Section

4.2.5), determining the spectral coefficients for rotation and meridional circulation

(rotation.for Section 4.2.6 and mcirc.for Section 4.2.8, respectively), finding the ini-

tial limb shift in polar coordinates (lshft.for Section 4.2.7) and the limb shift correction

for the meridional circulation (lshftc.for Section 4.2.9) are subsequently performed.

The calculated spectral coefficients and the respective velocities after the rotation and

the limb shift corrections have been made are then written to disk.

These values are then used, along with the original image map, by

mdi-analysis2.for to remove the axisymmetric flows. The spectral coefficients at each

` and m for the non-axisymmetric components are then determined (plmxform.for -

Section 4.3.1) and their amplitude and phase information written to disk.

These spectral coefficients can be used in subsequent analyses to, for example,

calculate the photospheric convection spectrum (Section 4.3.1) and those described later

in this dissertation.
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THE SUPERROTATION OF SUPERGRANULES

5.1 Background

In Section 4.2.6, the differential rotation profile of the Sun was discussed and that

a fourth-order polynomial in the sine of the latitude, ψ, (see equation 4.17 - alternatively,

a similar polynomial in the cosine of the colatitude, θ, can be used) with correctly chosen

coefficients (A, B, C) provides a good fit. However, this profile is dependent on the ob-

servational methods used; using sunspot data or spectroscopic methods results in slightly

different profiles. It has been useful, therefore, to further this analysis to study how con-

vection patterns move across the solar disc. Using numerical simulations and helioseismic

measurements, Gilman and Foukal [90] and Hathaway [44], respectively, confirmed the

idea proposed by Foukal and Jokipii [91] and Foukal [92] that the rotation rate beneath

the photosphere should increase due to the conservation of internal angular momentum

near surface convective flows.

As different sized convection cells are expected to be anchored at different depths

within the convection zone, it is expected that the internal rotation gradient would advect

these cells at different rates and thus different rotation rates would be seen over the range

of different sized convection cells distributed over the photospheric convection spectrum.

5.1.1 Cross-Correlation Analyses

Characteristics such as those described above were among those found by Duvall

[53], who made the first examinations of the equatorial rotation rate of the supergranule

Doppler velocity pattern. He produced a regular sequence of Doppler velocity maps over

a period of time and cross-correlated these to produce a rotation profile as a function of

latitude of the supergranule pattern. He found that the rotation rate was approximately

64
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Figure 5.1. Differential rotation profiles for residual Doppler features (upper curve) and
magnetic features (lower curve) found from the cross-correlation of Mount Wilson mag-
netograph observations spaced one day apart [93]. The data points along their respective
lines represent the results calculated for each latitude by averaging the correlation am-
plitudes over the 20 year collection period. The smooth curves are least-squares fits to
the data using (4.17).

3% faster than the Carrington rate and that the faster rotation rates were found for larger

time differences between the correlated pairs. The latter suggested that larger-sized,

longer-lasting cells that extend deeper into the convection zone should rotate faster than

their short-lived, smaller-sized counterparts produced nearer the photosphere. Further,

analysis of the rotation rate of different sized cells can act as a tracer into the radial

differential rotation profile beneath the photosphere.

Snodgrass and Ulrich [93] followed similar methods to Duvall’s [53] and were able to

confirm his results with the added conclusion that the supergranule pattern also exhibits a

latitudinal profile (Fig. 5.1), with the higher rotation rate being maintained throughout.
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5.1.2 Fourier Analysis

Another method to study the rotation of the convection pattern is to Fourier ana-

lyze a time series of Doppler images. Beck and Schou [94] averaged over six 10-day MDI

full-disk dopplergrams to construct a data cube of the supergranule pattern in the sine of

the latitude, sin(ψ), longitude, φ, and time, t. They Fourier transformed this data cube

in time and longitude to produce a power spectrum as a function of sin(ψ), spherical har-

monic order, m, and frequency, ν. Cuts through the transformed cube in m and sin(ψ)

produced rotational frequency plots in sin(ψ) and m respectively. They used their results

to infer the equatorial rotation rate, averaging latitudes ±9◦ around the equator, as a

function of m. This showed that their results were consistent with those produced by Du-

vall [53] and Snodgrass and Ulrich [93] in that larger-scale features exhibit higher rotation

rates. They also produced rotation rates as a function of latitude for various ranges of m,

which reflected previous observations of a differential rotation profile in sin2(ψ) and the

equatorial rotation rate as a function of m. Further analyses used results of a regularized

least-squares rotation inversion Schou et al. [14] to compare the supergranule rotation

rate measured by MDI with rotation rates at different depths in the outer 10% of the

convection zone. These analyses showed evidence that the supergranule rotation rate is

somewhat greater than the depths at which the supergranules were thought to be formed.

They concluded that either supergranules are formed deeper within the convection zone

than previously thought or that they genuinely rotate faster then the underlying plasma.

They provide one suggestion to answer the superrotation problem, in that supergranules

are not purely convective and waves may play a role in supergranule formation and are

carried in a prograde direction, thus rotating faster than the surrounding plasma. This

wave characteristic was investigated further by Gizon et al. [55] and Schou [59]. Gizon et

al. [55] used the same 60-day sequence of MDI Doppler velocity images as Beck & Schou

[94]. They used time-distance helioseismology methods [95] to obtain a 120×120 map of

the horizontal divergence of flows 1 Mm below the photosphere with a 12 hour cadence.

They produced a power spectrum of the supergranulation signal near the solar equator
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and found both prograde and retrograde components of temporal frequency. With the

former being much stronger than the latter, they suggested that the extra prograde signal

was due to wave propagation of the supergranule pattern. The prograde flow was found

to be similar in magnitude to the rotation rate of magnetic features coupled to supergran-

ulation [82] but faster than the underlying photospheric rotation as studied by Snodgrass

and Ulrich [93]. Schou [59] confirmed these findings while additionally observing that

the same superrotation phenomenon is found at non-equatorial latitudes. Whereas these

studies promote an observed superrotation of the supergranule pattern due to wave phe-

nomena producing an excess prograde propagation of supergranules, in what follows, we

suggest that projection effects in the line of sight Doppler velocity pattern produce most,

if not all, of the observed excess superrotation [96].

5.2 Our Research into the Superrotation Phenomenon

The studies of MDI data produce an observed superrotation of the supergranule

pattern. Beck and Schou [94] and Schou [59] attribute this phenomenon to an underlying

wave that carries the supergranule signal along with it, producing an excess prograde

propagation of supergranules. However, we hypothesize that projection effects within

the line-of-sight Doppler velocity pattern produce most, if not all, of the observed excess

superrotation [96]. In the following, I describe our studies of supergranule superrotation

using synthetic data including no wave-like phenomena whatsoever. The flowchart, with

relevant program names, illustrating the order of the work we carried out for this research

is shown in the first chart of Appendix C.

5.2.1 Data Preparation

The first step is to produce a synthetic convection spectrum from which the spectral

coefficients, needed to produce the simulated line of sight Doppler velocities (Eqns. 4.33-

4.36), can be extracted. This is described in Section 4.4.1, using a two component

spectrum representing supergranules and granules centered on ` ∼ 100 and ` ∼ 4000
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respectively. This produced a spectrum similar to that produced from MDI data that was

used by Beck and Schou [94] in their analyses. The simulation to produce the synthetic

MDI Doppler velocity maps was simplified to consider only solid body rotation of the

Sun at a rate of 14.50◦ per day or 466 nHz. This was done to study whether latitudinal

projection effects would also come into play without being buried beneath any profile

produced by differential rotation. A further simplification was made by neglecting any

evolution of the supergranule pattern.

A series of these Doppler maps was produced at a 15 minute cadence over a period

of 30 days, giving three 10-day series similar to the six used by Beck & Schou [94]. Each

map underwent removal of Doppler signals due to rotation, meridional circulation and

convective blueshift as described earlier (see Section 4.2 and subsections therein). The

resultant data was analyzed in two ways: cross-correlation of latitudinal strips of maps

separated by a given time lag, similar to that done by Duvall [53] and Snodgrass and

Ulrich [93] and a two-dimensional Fourier analysis similar to that performed by Beck and

Schou [94].

5.2.2 Cross-Correlation Analyses

To perform the cross-correlation analysis, spatial spectra were derived from the

Doppler maps produced by the data simulation. These spectra were then filtered using

Gaussian profiles in log(`) centered at ` = 32, 64, 128, 256 and 512. These were then

inversely transformed and remapped to heliographic coordinates. The results were sets of

Doppler maps featuring patterns over a range of sizes, dependent on the filter width, cen-

tered at wavenumbers listed previously (` ∼ 128 being most suitable for supergranules).

The rotation rates were found by cross-correlating data strips (about 1.75◦ in latitude

and 105◦ in longitude) for a given latitude position between two pair of images separated

by a time lag of 8 hours. The cross-correlation peak was fit with a truncated cosine

function to extract the strongest cross-correlation coefficient which is used to calculate

the longitude shift. This shift is then divided by the time-lag resulting in the rotation ve-
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locity. This cross-correlation process was repeated for each filtered map over the range of

feature sizes listed. Sets of rotation profiles, rotation rate versus latitude, were produced

for the set of spatial sizes and are shown in the next subsection.

5.2.3 Fourier Analysis

To perform the two-dimensional Fourier analysis, every image within each of the

three ten day series was apodized with a cosine function between 90-95% from disk

center, then remapped to heliographic coordinates. Longitudinal strips of data covering

9 latitudinal degrees of the equator underwent a spatial transformation in longitude and

the resultant Fourier coefficients were temporally transformed over the ten day data

range. This produced a set of power spectra in time and space, the peaks for which were

determined from their center of gravity using a window about 60 nHz wide about the

peak. A plot of rotation rate versus the longitudinal wavenumber, m, was be produced

and is described in the next section.

5.3 Results

Fig. 5.2 shows the rotation profile for a set of different spatial sizes at a single

time-lag of 8 hours. It can be seen that a latitudinal profile exists despite a solid body

rotation profile, thus displaying evidence of the existence of superrotation die to projec-

tion effects. The results of Duvall [53] are reflected with larger features having larger

rotation rates. Functional forms of these profiles decreasing like sin2(ψ) are included.

The largest features have a rotation rate above 1% of the imposed 14.50◦ per day. Al-

though smaller features rotate much slower, they are also seen to rotate faster than the

imposed rate.

Fig. 5.3 shows the result of the two-dimensional Fourier analysis, plotting equa-

torial rotation rate versus longitudinal wavenumber, m. This plot (solid line) is seen to

drop rapidly for increasing wavenumber from around 14 nHz at m ∼ 20 to 2 nHz at m ∼
100, before leveling out at higher wavenumbers, around 1 nHz at m > 200. A functional
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Figure 5.2. The rotation rates as functions of latitude from the cross-correlation study
are plotted for Doppler features of three different sizes for a time-lag of 8 hours [96].
The largest features (` ∼ 32, shown as solid lines) appear to rotate about 1% faster at
the equator than the 14.50 degrees per day that was imposed. Smaller features (` ∼ 64,
dotted lines, and ` ∼ 128, dashed lines) appear to rotate somewhat more slowly but still
at a rate faster than that imposed on the vector velocity pattern.

form to this profile is included (dashed line). Again, the rotation rate for the full range

of spatial sizes is found to be greater than the imposed solid body rotation rate (solid

straight line). The plot is found to be very similar to that produced by Beck & Schou [94]

at wavenumbers, m < 100. The asymptotic behavior at higher wavenumbers in Fig. 5.3

is due to a lack of resolution in the rotation rates at higher wavenumbers, i.e. higher

wavenumber features seem to rotate at similar rates.

5.4 Discussion

We have been able to produce a Doppler velocity pattern that rotates faster than

the rate imposed in producing the vector patterns for scales at and around those typical

for supergranulation. As opposed to the wavelike phenomenon to explain the similar

results produced by Beck & Schou [94], our simulations produce results that allow us to
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Figure 5.3. The equatorial rotation rate from the 2D Fourier analysis study is plotted as
a function of longitudinal wavenumber [96]. The rotation rate is faster than the imposed
rate at all wavenumbers and increases rapidly at wavenumbers less than ∼ 100. The
increase is about 2 nHz at m ∼ 100, 5 nHz at m ∼ 50, and more than 14 nHz at m <
20. An approximate functional form is shown with the dashed line.

conclude that the superrotation is a result of projecting the vector velocities onto the

line of sight, a simple explanation of which is shown in the following example. Using a

simplified version of Eqn. 4.33 so that we consider a signal at the equator (θ = π/2)

while neglecting the solar tilt of the north pole (B0 = 0), we have for the vector velocities

Vlos

(π

2
, φ

)
= Vr

(π

2
, φ

)
cos φ + Vφ

(π

2
, φ

)
sin φ. (5.1)

This can be simplified by neglecting any radial flow and using a longitudinal ve-

locity which varies sinusoidally to exhibit an underlying Doppler velocity pattern with

wavenumber m rotating with an angular velocity Ω, giving

Vφ

(π

2
, φ, t

)
= A sin[m(φ− Ωt)]. (5.2)

However, when we come to project this pattern onto the line of sight, the process

also includes a sin φ modulation factor (Eqn. 5.1) as well as window and apodization
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functions. The original velocity vector pattern and the result after projecting onto the

line-of-sight is shown in Fig. 5.4. The peaks in the line-of-sight Doppler pattern are

pushed away from those of the original pattern due to the sin φ modulation factor. This

results in a longer translation longitudinally of the Doppler pattern (the pattern tends

to have further to travel) which is used in the cross-correlation analysis. As the pattern

seems to cover a larger distance than the velocity vector pattern for a given correlation lag

time, the Doppler pattern seems to travel faster and so a faster rotation rate results. This

shifting is stronger at smaller wavenumbers. The modulation, windowing and apodization

culminate in producing a Doppler velocity signal with a wavenumber of 0.5 higher than

before, which is seen by the additional half-wavelength near the central meridian in Fig.

5.4. The phase velocities are thus increased by

Ω′ ' m′ + 0.5

m′ Ω. (5.3)

A functional form seen to fit the two-dimensional Fourier analysis results shown in

Fig. 5.3.

5.5 Concluding Remarks and Future Work

We have found that using a simplified model of a non-evolving convection pattern

produced from a synthetic photospheric convection spectrum and by imposing a solid

body rotation rate to the pattern, we find a latitudinal-dependent superrotation of the

pattern. The superrotation rate increases with increasing wavenumber. The strength of

this superrotation, when analyzed using cross-correlation methods, is slightly less than

that found by Duvall [53] and Snodgrass and Ulrich [93], which we assume is due to the

simplification of our model. Including differential rotation and letting the pattern evolve

should produce even better results with higher rotation rates.

We also produce similar results to Beck and Schou [94] when applying a two-

dimensional Fourier analysis to our data. We get very good correspondence at wavenum-
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Figure 5.4. The Doppler signal (solid line) derived from a sinusoidal vector velocity
(dotted line) multiplied by the line-of-sight projection function sin φ (dashed line) [96].
The peaks in the Doppler signal (marked by thin vertical lines) are shifted away from disk
center relative to the positions of the peaks in the underlying vector velocity pattern.
As the underlying vector velocity pattern translates in longitude the Doppler velocity
pattern appears to move through a larger range of longitudes thereby giving the Doppler
velocity pattern a more rapid rotation rate. Note also the appearance of an additional
half-cycle in the Doppler signal near the central meridian.

bers below m ∼ 100, although we do not yet produce a continual decrease in rotation

rate above this value.

We have shown that we can, on the whole, reproduce the findings of Duvall [53],

Snodgrass and Ulrich [93] and Beck and Schou [94]. Although subsequent analysis by

Gizon et al. [55] and Schou [59] suggest wave propagation to be the main factor behind

the superrotation, we find this phenomenon can be produced from a model which includes

no wavelike properties whatsoever. Although the projection effects probably account for

the vast majority of the superrotation, further results and analyses produced by Gizon et

al. [55] and Schou [59] find other wavelike properties of supergranulation that have not

been accounted for in our studies and therefore cannot be described by projection effects.

We hypothsize, however, that these additional wavelike properties can be attributed to
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the advection of supergranules by larger-scale, non-axisymmetric flows, such as giant

cells. This idea is investigated in Chapter 8.

Our studies can be extended by including large scale dynamical flow due to dif-

ferential rotation. Convection features of a given size are expected to extend below the

surface and be anchored at a depth specific to their surface size. To a first order ap-

proximation, it can be assumed that the depth is on the order of their surface size. As

their surface size can be described in wavenumbers, then the depth to which they extend

can similarly be defined. As seen in Section 6.2, the internal rotation profile is a factor

not only of latitude, but also of depth. It follows, therefore, that convection features

of different wavenumber rotate at different rates. Using this characteristic means that

our studies of superrotation can be extended using the differential rotation algorithms

described later in Section 6.1. This should alter the profile seen in Fig. 5.3, removing

the asymptotic nature and match such profiles achieve from earlier work using MDI data

[94].



CHAPTER 6

SOLAR ROSSBY WAVE “HILLS” IDENTIFIED AS SUPERGRANULES

6.1 Introduction

6.1.1 The Shape of the Solar Limb

It is well known that the shape of the Sun is slightly non-spherical, its oblate

shape exhibiting bulging at the equator and flattening at the poles due to rotation [56].

Observations using the MDI [68] and RHESSI [97] instruments both provide up to date

evidence of this oblateness. More detailed studies of the collected data [57],[58] reveal

further variations in the shape of the solar limb, with evidence for small scale ‘hills’ on

the surface. These hills have been characterised as being 100 m high (height above the

mean photospheric surface) and uniformly spaced over the solar surface by around 90,000

km, thought to be a manifestation of solar Rossby waves [58].

6.1.2 Rossby Waves

Rossby waves (inertial waves whose restoring force is the latitude-dependent strength

of the Coriolis force [98], [99]) were first proposed [100], [101] to operate in the interior

of the Sun. It was suggested that these waves contribute to a magnetohydrodynamic

dynamo that produces solar magnetic fields, including their periodic polarity reversals.

Rossby waves could also be important in maintaining the structure of the Sun’s differen-

tial rotation [102], [103], [104]. These theoretical studies suggest that Rossby waves may

be connected to a large array of phenomena such as the solar surface structure, the Sun’s

magnetic cycle, the initiation and propagation of magnetic waves, and the dynamics of

the solar atmospheric environment responsible for “space weather”. It has been argued

that similar effects also exist in other stars [105] and gaseous giant planets [106]. Rossby
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waves were previously observed in the Earth’s oceans [107],[108] and atmosphere [109] as

low-amplitude long wavelength features.

6.1.3 The Discovery of Solar Rossby Waves?

In their discovery of the Rossby wave ‘hills’, Kuhn et al. [58] argued against the

possibility that these hills were produced by supergranulation. The radial flows in typical

supergranules [86], as mentioned in Section 4.3.2, should produce a series of bumps on

the surface of the Sun but Kuhn et al. [58] argue that the spacing would be too close and

that the random forcing of these flows would not produce the spectral signatures they

see. However, our results seem to indicate [110] that hills on the solar surface produced

by supergranules largely reproduce the spectral features attributed to Rossby waves.

The following sections describe my analysis of the signals produced from synthetic

Doppler maps that match those derived from observations [58] despite containing no

wavelike properties whatsoever. The flowchart, with relevant program names, illustrating

the order of the work carried out for this research is shown in the second chart of Appendix

C.

6.2 Data Preparation and Results

6.2.1 Producing Surface Height Data

Photospheric velocity data are produced using the methods described in Section

4.4 [79]. The radial component of the velocity field produces variations in photospheric

heights which are then analyzed in a manner equivalent to that employed by Kuhn et al.

[58] in their analysis of the solar hills seen at the limb.

The spectral coefficients for the radial velocity, Rm
` (Eqn. 4.37), are converted to

spectral coefficients for height by dividing the velocity amplitude by the square root of

the wavenumber, `. This relation is adapted from the theory for up-flowing gas forming

a ‘forced plume’ subject to buoyancy with mass flux and momentum conservation [111].

Realistic numerical models for solar granulation [31] indicate that these smaller convective
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features have diameters of about 1000 km, radial velocities of about 3000 m s−1, and

produce surface height variations of about 30 km. These granular parameters can be

scaled using the forced plume model to determine supergranule height variations, an

operation derived from mass conservation. Using the characteristic size (30,000 km) and

radial velocities (30 m s−1) for supergranules indicates that supergranules should produce

‘hills’ with heights of about 2 km. This is more than an order of magnitude larger than

the estimate reported by [58] and may reflect on differences in driving mechanisims for

granules and supergranules. However, the actual size of the hills is not what is important

here. The spectral features identified by [58] are temporal signatures associated with the

rate at which these hills rotate into view over the limb.

6.2.2 Constructing Time Series of Limb Heights

Height maps of 4096×1024 elements (longitude by latitude) are produced, repre-

senting the full solar surface in a similar manner to how the Doppler velocity maps had

been produced in previous studies [35], [79], [86], [96]. Two latitudinal pixel columns sep-

arated by 2048 longitude pixels (i.e. meridional columns separated by 180◦ in longitude)

are extracted from the height map array. These columns are reallocated into a single

one-dimensional array representing the limb heights all the way around the Sun start-

ing from the western solar limb and proceeding counter-clockwise through north. The

center of the right-hand column represents the western limb, and the data north of that

represent the northwestern limb (ending at the north pole). The data from the left-hand

column are joined on (north to south) representing the eastern limb then the remainder

of the first column is joined onto that (south pole to western limb). This is repeated for

each time step (a solar rotation/4096) by stepping through the entire height map one

longitude step at a time. (Note that halfway through the extraction, the western limb

data column wraps around back to the far left of the map.) These limb height strips

are combined into a two-dimensional array, so they represent a time-series of limb height

data around the solar limb for each 9 minute time interval, or conversely, a time-series of
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Figure 6.1. A sample data set of a timeseries lasting 17 days sampled at a cadence of
9 minutes illustrating the variation of heights within convection cells around the solar
limb. The data is sampled approximately every 5.7 degrees beginning from the western
limb at the top and progressing clockwise around the limb. Green points relate to raised
material, blue points to sunken material relative to a zero point defined by material that
is neither rising nor falling.

limb height data at particular positions around the limb over one whole 27-day rotation

sampled at a cadence of 9 minutes (Fig. 6.1). A set of thirty such 27-day time-series are

produced, analyzed, and averaged for the purposes of noise reduction. Note that these

simulations do not include differential rotation — the patterns from which the limbs

heights are extracted rotate rigidly.

Additional data sets are produced representing limb heights over 34 days for evolv-

ing supergranule patterns. The patterns are evolved by adding random changes in phase

to the spectral coefficients, while holding the amplitudes fixed, and accumulating these
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over time. Applying the same cross-correlation methods employed by Duvall (1980) [53]

and Snodgrass & Ulrich (1990) [93] to the simulated data produces supergranule lifetimes

on the order of a day, coinciding with what is seen in solar data [53], and thereby re-

moving any long-range coherence in the time-series which was a prior argument against

the supergranule nature of the hills [58]. These data are then reformatted into 34 day

time-series with a 12 minute cadence (matching the cadence used by Kuhn et al. (2000)

[58]).

6.2.3 Limb Height Data Analysis

Each limb-strip is convolved with a 4 pixel wide filter and the data sampled every

fourth pixel, to create 512 limb position bins similar to those produced by Kuhn et al.

(2000) [58]. Taking the FFT of each of these 512 pixel spatial strips produces a spatial

spectrum for each time sample. Subsequent sampling along the time strips and taking

the FFT of each strip similarly produces a temporal spectrum for each spatial frequency.

This results in two-dimensional arrays which are the 2-D FFT of the original spatial-

temporal data. Multiplying these 2-D FFT arrays by their complex conjugate gives

power spectra for the limb height over a range of spatial and temporal frequencies. The

power spectra are summed over all spatial frequencies (` = 1 to 255) and then multiplied

by the temporal frequency to produce the spectra shown in Fig. 6.2. It is clearly seen

that an excess of power is present at a frequency of around 50 µHz (slightly higher than

the frequency of the peak seen by Kuhn et al. (2000) [58]). This feature is produced

by the supergranules in our simulation. The smaller granules are not well resolved in

SOHO/MDI data after its subsequent smoothing and re-sampling to get data at 512

limb positions.

The simulated data can also be used to produce temporal spectra of the limb

signal as a function of limb position angle using a process similar to that of Kuhn et al.

(2000) [58]. The data are smoothed in the spatial direction with a 256 bin running mean

and in the temporal direction with an 8.3 day running mean, and the residual between
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Figure 6.2. Power spectrum [110] created by taking the spatial and temporal FFTs of the
limb height time series summed over wavenumber ` and rescaled to similarly represent
the plot constructed by Kuhn et al. (2000) [58]. The solid line is the average from three
evolving supergranule simulations. The dotted line is the average from 30 non-evolving
supergranule simulations. The excess of signal seen as a bump at a frequency of around
50 µHz is in good agreement with, but somewhat higher than, that seen by Kuhn et al.
(2000) [58].

the smoothed and original data calculated. The temporal FFT of this residual power

spectrum is taken at each limb position and smoothed with a 4 pixel bin running mean

for the 27 (or 34 in the case of the evolving pattern) day data stream (corresponding to

the 88 pixel bin running mean over the 800 day sequence used by Kuhn et al. (2000)

[58]). Multiplying this result with its complex conjugate produces temporal power spectra

which can be plotted against position angle, as shown in Fig. 6.3. A ‘sawtooth’ pattern

is seen, similar to that produced by Kuhn et al. (2000) [58], with the maximum and

minimum frequencies occurring at the equator and the poles, respectively.
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Figure 6.3. Average power spectrum from three evolving flow pattern data for a range of
temporal frequencies at each angular position around the limb [110]. The signal strength
increases logarithmically as color changes from red to green to blue. The result is a
near sawtooth distribution of excess power, similar to that found by Kuhn et al. (2000)
[58]. This illustrates that by distributing similarly sized features over a rotating sphere,
features at the equator are more numerous and pass over the limb more frequently than
at the poles.

The temporal power spectra at each limb position are stretched in proportion to

the linear speed of rotation at the corresponding latitudes so that the maximum for each

limb angle now lies along the frequency of maximum power at the solar equator instead

of distributed along the sawtooth pattern. The power spectra are then averaged over

all limb angles and plotted against the temporal frequency (Fig. 6.4). The non-evolving

supergranule patterns give a peak near 30 µHz while the evolving supergranule patterns

have reduced power with a peak near 15 µHz – almost identical to the frequency obtained

by Kuhn et al. (2000) [58].
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Figure 6.4. Spectral data from which Fig. 4 is produced are stretched for each limb
position in proportion to its linear rotation velocity relative to that of the equator [110].
Those data are then averaged over each temporal frequency bin and smoothed. The
results for the 30 nonevolving supergranule simulations display a peak near 30 µHz as
shown by the dotted line. The results for the three evolving supergranule simulations
display a peak near 15 µHz as shown by the solid line. This spectral peak is similar to
that found by Kuhn et al. (2000) [58] from SOHO/MDI data.

6.3 Summary

This work has explored the nature of ‘hills’ observed on the solar surface which

had previously been attributed to Rossby waves. The solar hills phenomenon is inves-

tigated by analyzing the output from a synthetic model based solely on the observed

solar photospheric convection spectrum [35], [86]. We show that the characteristics of

these hills can largely be reproduced by the corrugation of the surface due to the radial

flows of the convection. The hills in our simulations are dominated by supergranules, a

well-known component of the solar convection spectrum. This result is in disagreement

with the conclusion by Kuhn et al. (2000) [58] that these spectral features cannot be

produced by supergranules. Although the 2 km heights we derived by means of mass
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conservation within a forced plume model may be an overestimation owing to the model’s

simplicity, the observed spectral features presented in Figs. 6.2 to 6.4 are independent

of the actual height of the hills and closely match the spectral features seen by Kuhn et

al. (2000) [58]. The small differences in the shapes and positions of the spectral features

are probably due to the simplifications within our model; we do not include differential

rotation of the pattern and the method used to evolve the pattern is purely statistical

without regard for the surrounding flows or magnetic elements. The signatures that lead

to our conclusions are produced from a spherical harmonic simulation of the photospheric

Doppler velocity field based on a convection spectrum containing only supergranule and

granule components. No wave phenomena whatsoever are included.

Our results indicate that what have been detected are ‘hills’ due to supergranula-

tion. Our model was run and the resulting data subsequently analyzed for three different

scenarios — both spectral components, as described above, granulation only and super-

granulation only. On removing the supergranulation, it is found that despite the spectral

overlap of the supergranule and granule components, the excess power features as seen in

Figs. 6.2 and 6.4 disappear, thus granulation cannot be responsible for the observed sig-

nal as expected from the small size of these features. However, the feature reappears for

the spectrum containing only the supergranulation component. Thus we conclude that

the signal previously attributed to Rossby waves is most likely due to supergranulation.

On comparing our results to the observations of Kuhn et al. (2000) [58], we envision

that the latter have provided an independent technique for characterizing supergranules,

which may harbor future research potential.

6.4 Outlook

In a recent paper, Kaladze & Wu (2006) [112] used the results of Kuhn et al. (2000)

[58] to explain the hill phenomena in the context of Rossby waves. As these observations

can now be explained by supergranulation, it can be concluded that Kaladze & Wu

[112] attempted to base their model on what turns out to be supergranule features. It
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is conceivable that what their model describes are indeed underlying features not yet

detected on the Sun, but at most this work is deemed speculative and not backed up by

unequivocal observational data.

Direct observational evidence of solar Rossby waves are still yet to be confirmed.

While our work presented in this Letter concludes that the signals reported by Kuhn

et al. (2000) [58] are explained by supergranulation, there may yet be Rossby wave

signatures still hidden within the observational data reported by [57]. Data collected by

the RHESSI instrument [97] as reported by Fivian et al. (2005) [113] may also contain

Rossby wave signatures. Both sets of data, however, would require the necessary filtering,

including the removal of the supergranulation signal, to extract any signals pertaining to

Rossby waves.

By extending the data simulation to include differential rotation, as described in

the following chapter, new analyses may be performed that are expected to bring the

peak seen in Fig. 6.2 considerably closer to the frequency found by the studies of Kuhn

et al. (2000) [58].



CHAPTER 7

EXTENDING THE DATA SIMULATION

7.1 Modeling Large-Scale Flows

Thus far, although realistic Doppler images have been produced that match those

derived from MDI data (Fig. 4.10), there exists no dynamic link between the images

produced within any given timeseries apart from a simple evolution of the spectral coeffi-

cient phases has been applied to model solid body rotation. Evolution of the convection

cells is performed by changing the phases of the spectral coefficients which changes the

pattern over time according to a benchmark setting of around 48 hours for cells of around

` = 100 to change dramtically so that image correlation coefficients of these patterns over

time drastically reduces over that time. This setting corresponds to the lifetime of super-

granules having a lifetime of around 2 days. Further, although Doppler velocity profiles

of large scale flows such as differential rotation and meridional circulation are modeled

and mapped to the images, the dynamics of these flows and their subsequent influence

on the smaller scale convection cells are not included.

To make the data simulations more realistic, the dynamics of large scale flows can

be included. What follows is a description of how the spectral coefficients should evolve

to correctly modeled an observed surface differential profile as described by Eq. (4.17)

in Section 4.2.6.

7.1.1 Modeling Solar Differential Rotation

To provide a realistic, dynamical flow such as differential rotation, we must begin

with a relevant physical relation, namely the three-dimensional momentum equation

∂~u

∂t
+ (~v · ~∇)~u = 0, (7.1)
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where ~u is the velocity of our flow field of interest, ~v is the velocity profile of the differential

rotation flow and the partial derivative is taken with respect to time. Note that no other

external forces, such as gravity, are included in this study and thus do not appear in this

version of the momentum equation. Differential rotation is only longitudinal in direction

with latitudinal dependence, namely

vφ(θ) = R sinθ Ω(θ), (7.2)

with R being the radius at which the rotation profile is measured, in this case the solar

surface and Ω being the rotation profile as a function of colatitude, θ. Expanding the dot

product of 7.1 and keeping the longitudinal term only results, after relevant cancellations,

in

∂~u

∂t
= −Ω(θ)

∂~u

∂φ
. (7.3)

The evolution of the three spectral coefficients can be found independently, so this ex-

ample provide the evolution of the radial coefficient describing the radial flow field given

by 4.49. Inserting this into both sides of 7.3 gives

`max∑

`=0

∑̀

m=−`

∂Rm
`

∂t
P

m

` (θ)eimφ = −Ω(θ)
`max∑

`=0

∑̀

m=−`

imRm
` P

m

` (θ)eimφ, (7.4)

where the φ derivative of the relevant term has been performed.

Normalization of both sides with respect to φ can then be made giving

`max∑

`=m

∂Rm
`

∂t
P

m

` (θ) = −imΩ(θ)
`max∑

`=m

Rm
` P

m

` (θ), (7.5)

followed by a similar normalization of both sides with respect to θ which results in

∂Rm′
`

∂t
= −im

∫ 1

−1

Ω(θ)P
m

`′ (θ)
`max∑

`=m

Rm
` P

m

` (θ)dcosθ, (7.6)

where the normalization of the left hand side has been carried out. Using the fourth-order

polynomial in colatitude as laid out in (4.17) and letting x=cos(θ) gives

∂Rm
`′

∂t
= −imARm

`′ − imB

`max∑

`=m

Rm
`

∫ 1

−1

P
m

`′ (θ)P
m

` (θ)x2dx (7.7)

− imC

`max∑

`=m

Rm
`

∫ 1

−1

P
m

`′ (θ)P
m

` (θ)x4dx.
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Using the recurrence relation 4.52 to eliminate the two powers of x within their respective

integrands, performing the normalization on the right hand side and resetting `′ back to

` results in
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(7.8)

where the A and B coefficients are given in equations 4.53 and 4.54, respectively.

The value of the spectral coefficient can then be determined at any time using

Rm′
` (t + ∆t) = Rm′

` (t) +
dRm

`

dt
∆t = Rm′

` (t) + ∆Rm′
` (t), (7.9)

and by calculating

∆Rm′
` (t) =

dRm
`

dt
∆t, (7.10)

all the information is needed to evolve the spectral coefficient at each timestep ∆t to

produce the effect of differential rotation. It can be shown that the poloidal and toroidal

spectral coefficients can be evolved in the same way to progress all three coefficients and

thus dynamically progress a given velocity field by means of a given differential rotation

profile.
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Figure 7.1. Differential rotation profile produced from a numerical evolution of the spec-
tral coefficients. The solid line is the output profile from the updated data simulation
and the dashed line shows the profile produced from using the coefficients described in
the text in the fourth order colatitude differential rotation profile..

The simulation has been updated to include effect of differential rotation where

the profile can be adjusted simply by adjusting the three polynomial coefficients of Eqn.

4.17. Using a given set of coefficients (A=14.42, B=-2.00, C=-2.09 [82], all measured

in degrees per day), a set of Doppler maps were produced and correlated to produce a

synthetic rotation profile. Comparing this to the input profile (Fig. 7.1), it can be seen

that the match between input and output profiles is very good. The discrepancy at the

equator is accounted for by the superrotation of the Doppler pattern due to geometric

projection effects as described in Chapter 5.

7.1.2 Modeling the Solar Internal Differential Rotation

Helioseismic measurements have shown that the Sun not only rotates differentially

in latitude, but also in radius. Using methods such as rotational splitting and inversion
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Figure 7.2. Internal rotation profile of the Sun derived from observations by MDI [115].
The horizontal axis defines the equator and the vertical axis defines the pole. Contour
labels are in nHz and the dashed line defines the base of the convection zone. The
latitudinal tick marks are spaced by 15 degrees.

techniques [114], [14], [115], two dimensional radial and latitudinal differential rotation

profiles have been produced 7.2.

The profile clear shows distinct variation in the two directions. Latitudinally, the

profile tends to continue the trend of faster rotation at the equator than near the pole

with a nearly constant radial profile at mid latitudes, while showing some variance with

depth at the near the two latitudinal ends of the domain. Notably, the profile sharply

changes near the surface and near the base of the convection zone. At the surface, there

exists a shear layer which sharply reduces the rotation with increasing depth, possibly

due to the presence of ionization in this region [65]. At the base of the convection zone,

there exists an even sharper shear layer which actually defines the boundary between

the convection zone and the deeper radiative zone, called the tachocline. Within the

radiative zone itself, the rotation is observed to be essentially that of a solid body.
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Although unreliable below R=0.8R¯, at depths above this the latitudinal differen-

tial profile of 7.2 is valid [14]. This means that is possible to use the updated simulation

described in the previous section to construct a synthetic rotation profile using 7.2 and

derived values for the three coefficients. The latter process is done by extracting rotation

values at a given depth and latitude from an already existing profile (for example, that

shown in Fig. 7.2). To test the integrity of the extracted data (for example, for reasons

of sampling resolution) the rotation rates at a given depth and a given latitude were

re-plotted, as shown in Fig. 7.3.

Next, each latitudinal profile at each sampled depth was plotted and fitted and

using a least squares fit of data using 7.2. From this fit, the three coefficients can be

found.

These coefficients were then used in the updated data simulation to provide a series

of maps for each sampled depth. Maps within the series were correlated and rotation

profiles determined at each depth. A further two dimensional plot of the internal rotation

profile is shown in Fig. 7.4, and illustrates that above the valid R = 0.8R¯ region, the

data simulation accurately models the internal rotation of the Sun.

By sampling points throughout the convection zone, an expression can be con-

structed to describe the radial differential rotation profile. Further, by assuming that the

size of a convection cell, described by its wavenumber `, relates directly to the depth at

which it is anchored within the convection zone the expression can be used to describe

the rotation rate of convection cells as a function of their of size `. Considering the profile

at the equator, we get

Ω(`) = A− 0.34
√

(
`

1000
), (7.11)

where A is the equatorial rotation rate as applied in Eqn. 4.17 and is measured in

degrees per day, as is the coefficient of 0.34.

With each individually sized convection cell now having its own rotation rate as

described by Eqn. (7.11), we revisited the work we performed in regard to Fourier analysis
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Figure 7.3. Internal rotation profile of the Sun using extracted values from the previous
figure. Despite the course sampling grid, the figure reproduces the profile well including
the shear at the tachocline. However, because of the sharp shear at the surface, the
sampling does not exactly represent this shearing. The dashed line again shows the
tachocline while the dotted line shows the depth above which the rotation profile of 7.2
is applicable.

of the superrotation phenomenon as described in Chapter 5. Previously, the result shown

in Fig. 5.3 produced a profile similar to that obtained from observational data [94] for

wavenumbers below m ∼ 100 and with asymptotic behavior beyond m ∼ 200. In the

context of the internal rotation profile, this was due to a lack of resolution in the profile

near the surface (i.e. at large wavenumbers). After applying the internal profile of

Eqn. (7.11) to the simulation that will now produce not only latitudinal differential

rotation, but also differential rotation over the range of convection cell sizes, and following
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Figure 7.4. Internal rotation profile of the Sun derived from correlating Doppler maps
from the updated data simulation.

the same Fourier analysis procedure as described Section 5.2.3, we produce the plot shown

in Fig. 7.5.

These results further confirm our theory that superrotation is indeed a projection

effect and not due to any wavelike properties.

7.1.3 Future Work

The first stage of updating the data simulation to include large scale flow field

dynamics to advect the convection velocity field has been made by including an algo-

rithm to evolve the spectral coefficients to model differential rotation. The model was

successfully tested against an existing profile extracted from real data and extended to

produce a realistic profile if the internal differential rotation.
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Figure 7.5. The equatorial rotation rate from the 2D Fourier analysis study using the up-
dated simulation to include internal differential rotation. The behavior below wavenum-
bers of m ∼ 100 is the same as before (Fig. 5.3), but the rate continues to drop off at
higher wavenumbers in line with observational results [94].

A further extension to the model is to include the flow field due to meridional

circulation. The algorithms to evolve the spectral coefficients have been derived but a

discrepancy between the radial and the solenoidal expressions still has to be solved.

7.2 Modeling Convection Cell Evolution

A further extension to the simulation was to attempt to accurately evolve the

convection cells over time. This has adequately been performed thus far by means of

a simple evolution of phases, but a more accurate evolution, i.e. one that gives similar

results to those seen observationally, is required.

Within the process of determining the rotation rates over the range of solar latitudes

as used in Section 5.2.2, cross-correlation peaks are used to determine the rotation rate

at a given latitude from correlating latitudinal strips of data of two images separated by

a specified time difference. These correlation coefficients can be collected over a range of
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Figure 7.6. Cross-correlation coefficient profiles derived from MDI Doppler images for
time differences of (top-to-bottom) 1-hour, 2-hour, 4-hour, 8-hour, and 16-hour between
maps.

time differences and over the latitudinal domain of the Sun. It is found that for increased

time differences, i.e. as time progresses, the correlation coefficients decrease (Fig. 7.6).

This is expected due to the observed decay of convection cells over time.

7.2.1 Phase Evolution

To perform convection cell evolution within the simulation requires an evolution

of the phases that produce the convection pattern. Assuming an initial phase of zero,

then the pattern would look completely different at a phase of π, i.e. the final pattern

is totally out of phases with the original. As it is only required that the final phase of

the pattern be reduced by a factor of e to produce a significant change compared to the

original pattern, then it is only required that the phase be evolved from zero to π/e. This

value can be estimated to be around unity, so that we need only evolve the phases from

zero to one.
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Figure 7.7. Cross-correlation coefficient profiles derived from synthetic data produced
from a version of the simulation extended to include accurate evolution of convection
cells dependent on their size and noise factors modeling the non-perfect temporal filtering.
Similar to Fig. 7.6, the coefficient are plotted over latitude for time differences of (top-
to-bottom) 1-hour, 2-hour, 4-hour, 8-hour, and 16-hour between maps.

A further consideration is that the convection cell lifetime differs dependent on the

cell size. Larger cells live longer than smaller cells. Therefore, the phase evolution must

also be size dependent, i.e. a function of the wavenumber `. Setting a value of a lifetime

of 48 hours for a cell of size ` ∼ 100, we produced an expression to determine the change

in phase at each simulation timestep dependent on the cell size, derived from trial and

error methods, using observational data as the benchmark

∆φ = C ∆t`5/6. (7.12)

∆φ is the change in phase for each timestep ∆t, `5/6 provides the size dependence

of the rate of evolution and C progresses the phases to a value of π/e in the form of a

random walk.
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7.2.2 Adding Another Noise Component

A further addition to the simulation which has a bearing on the present subject

was the inclusion of a noise term. Thus far, noise has been included to account for that

produced within the instrument as mentioned in Section 4.4.2. However, it is found that

an extra element of noise exists due to the less than perfect 31 minute temporal filtering

as described in Section 4.2.2. Larger, longer lived oscillation elements are able to leak

through the filtering produce resulting in a speckled noise component in the Doppler

image that exhibits a strength variation across the disk dependent on the square root of

the distance to disk center. Trial and error methods were used to adequately produce

this noise, modeled using random sampling Gaussian distribution, by comparing real and

synthetic Doppler images.

7.2.3 Results

Incorporating the phases evolution process and the additional noise considerations,

we performed a cross-correlation analysis over a range of time differences to extract the

correlation coefficients over the latitudinal domain using synthetic data produced by

the updated simulation in a similar manner to that described earlier for the MDI data.

Fig. 7.7 shows the results of the analysis of this synthetic data.

7.2.4 Conclusions

Comparing Fig. 7.7 to Fig. 7.6, there is an excellent similarity between the plots over

all time differences. The similarity is also consistent over all latitudes. Improved versions

of this evolution may be performed by more accurately analyzing the noise produced by

the temporal filtering and by more accurate modeling of the evolution for smaller, shorter

lived convection cells that is highlighted by comparing the plots for 1-hour and 2-hour

time differences between the two figures.



CHAPTER 8

THE SEARCH FOR GIANT CELLS

8.1 Introduction

The focus of the research discussed thus far have been supergranules, with a typical

size of around 30 Mm that is characterized in the photospheric convection spectrum as

a peak at around l ∼ 110 wavenumbers. However, it can be seen that the this peak

covers a range of wavenumbers, so it expected that supergranules themselves come in a

variety of sizes. At the high wavenumber end, supergranules become smaller and their

size range tends to coincide with the larger end of granules, whose peak is seen in the

high resolution convection spectrum (Fig. 4.8). At low wavenumbers, supergranule sizes

increase although they are less common, as reflected in the lower power in the convection

spectrum. However, at the lowest wavenumbers, a separate component of convection,

namely giant cells, has been proposed to exist.

The earliest prediction of giant cells was made from a model produced by Simon

and Weiss [39] that signified typical cell sizes of 300,000 km (∼ 0.06 R¯ or l ∼ 15) and

lifetimes of 34 days (∼ 1.25 solar rotations). Subsequent observational techniques have

been proposed and carried out, but with no definitive results [116], [117], although meth-

ods of correlating strips of Doppler data [93] and tracking the motions of supergranules

in Dopplergram images [118], [119] may still hold potential. A claim had been made

[40] that by correlating Dopplergrams over many rotations giant cells had indeed been

detected. Despite a long-lived, recurring signal being seen, there is still no real evidence

that these are due to convecting giant cells and may be a form of inertial oscillation [120].

In what follows, I describe a numerical analysis that I performed to study the

influence of a single giant cell component on a single component of supergranulation

[121].
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8.2 Numerical Experiment into Giant Cell Advection of Supergranules

It has been observed that not only does the supergranule signal seem to exhibit

prograde superrotation, but also shows a retrograde rotation signal [55]. As well as these

extra longitudinal velocity signals, both poleward and equatorward flow signals have

been detected [59]. These investigations both suggest that wavelike phenomena carry

the supergranule cells across the solar surface. Our work described in chapter 5 has

shown that the majority of the prograde superrotation signal is due to a projection effect

of modulating the supergranule signal by the sine of the longitude. The remaining excess

signals, however, are yet to be explained.

Our hypothesis is that underlying divergent giant cell flows advect the supergranule

cells across the solar surface producing the observed latitudinal and longitudinal signals.

To study how giant cell flows may interact with supergranule cells contained within, we

formulated a simple time-dependent numerical experiment.

A simplified supergranule pattern comprising of a single sinusoidal component at a

wavenumber m = 100 was constructed in a one-dimensional domain defining the equator

of the Sun. Our goal was to advect this supergranule signal with an underlying giant cell

component constructed at a wavenumber m = 20.

The advection would be carried out by evolving the amplitude and phase infor-

mation of the supergranule pattern, in a similar manner to how the differential rotation

advected the convective Doppler patterns as described in Section 7.1. Using the one-

dimensional version of the momentum equation

∂uφ

∂t
= −vφ

∂uφ

∂φ
, (8.1)

where uφ defines the supergranule signal and vφ defines the giant cell signal and the

derivatives are taken in time, t, and longitude, φ, respectively.

Using a sinusoidal distribution for the one-dimensional poloidal flows along the

equator only, we get for uφ
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uφ =
∑
m

Sm eimφ. (8.2)

The complex spectral amplitudes, Sm, were initially set to 1.0 at m=100, while for

all other wavenumbers (within the range m=0 to m=1024), the amplitude is zero. At

this wavenumber, accompanying the non-zero spectral amplitudes are random phases to

make the supergranular spectral distribution more realistic. These are applied using the

exponential term.

The giant cell pattern is constructed using

vφ = Acos(m̄φ) =
eim̄φ + e−im̄φ

2
, (8.3)

where m̄=20, defining the wavenumber of the giant cell component. The amplitude,

A, can be varied to provide the velocity amplitude at which the supergranule signal is

advected.

Substituting 8.2 and 8.3 into 8.1, normalizing and writing the changes in Sm and

t as discrete quantities results in the change in amplitude ∆Sm at a given wavenumber,

m, over a given timestep, ∆t,as

∆Sm = −iA

2
((m− m̄)Sm−m̄ + (m + m̄)Sm+m̄)∆t. (8.4)

By progressing the amplitudes from S
(t)
m to S

(t+1)
m (i.e., by ∆Sm) over a timestep

∆t, the supergranule signal at time t is given by

u
(t)
φ =

∑
m

S(t)
m eimφ. (8.5)

The timestep and the giant cell advection velocity were chosen such that the super-

granule pattern changes slowly to give a smooth and steady progression of the pattern

evolution at a reasonable temporal resolution and the number of timesteps chosen so

that the supergranule pattern would be evolved long enough to observe stretching in

some regions and bunching up in others. The longitudinal domain from φ = -π/2 to φ =
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π/2 was divided into 2048 discrete points to provide the required spatial resolution for

the experiment to progress. Rotation was neglected for this study.

Fig. 8.1 shows a series of images sampled at regular time-steps displaying the

distribution of the supergranule pattern across the domain. It can be seen that as time

progresses the pattern evolves are expected. In some regions the pattern is compressed

corresponding to the convergent velocities at the boundaries of adjacent giant cells, while

in other regions the pattern is stretched out, corresponding to divergent velocities at the

center of the giant cells.

8.3 Future Work

The data created in the numerical experiment can be reformatted and processed

using Fourier analysis to produce power spectra that can be compared with that produced

from observational studies as shown in Fig. 8.2 [59]. The convergent and divergent flows

that are observed in our experiment become a series of prograde and retrograde flows in

a rotation frame and should produce similar signals as to those seen by Schou [59].

In a similar manner to the implementation of the differential rotation surface flows

into the data simulation (Section 6.1) and using the results of the numerical experiment, a

two-dimensional giant cell surface flow profile may be constructed and, via the momentum

equation, the expressions to evolve the spectral coefficients derived. Synthetic Doppler

images produced can be Fourier transformed in latitude, longitude and time and the

resulting power spectra compared to those produced from the MDI data [59]. Such

MDI data can be further scrutinized for any explicit signals of giant cells via spatial

and temporal filtering while accounting for the continued presence of any instrumental

artifacts.
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Figure 8.1. Series of timeplots illustrating the advection of a supergranule pattern by a
giant cell component performed from a numerical simulation. The plots show a domain
20 degrees in longitude either side of the central meridian. Adjacent giant cells exhibit
converge flows which bunches up the supergranule pattern, while the centers of the giant
cells spread the pattern out. These convergent and divergent flows are prograde and
retrograde to any underlying rotational flow, which is left out of this simulation for
simplicity.
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Figure 8.2. Power spectra derived from Doppler maps illustrating the advection of su-
pergranule cells [59]. The gray scale is logarithmic with black pixels representing 300
times more power than white pixels. The signal is de-rotated so that any inherent solar
rotation is not included. (Left) Spectrum taken longitudinally at the equator showing
power excess due to prograde (diagonally top left to bottom right) and retrograde advec-
tion (diagonally top right to bottom left) of the supergranule signal. Excess seen in the
prograde signal we can attribute to the projection effect phenomenon. The steep negative
gradient slope near ` = 0 is due to stationary artifacts in the MDI Doppler signal that
become visible due to the derotation process. (Right) Spectrum taken latitudinally at 40
degrees latitude. The excess power shows poleward flow (diagonally top left to bottom
right) and equatorward flow (diagonally top right to bottom left). Whereas such signals
have previously been attributed to wavelike phenomena carrying the supergranule signal,
we hypothesize that the advection is carried out by underlying giant cell flows.



CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

The work I have performed and described in this dissertation has assisted in

constraining solar properties, providing new characteristics of supergranules, extend-

ing Doppler map analysis by ways of enhancing the data simulations and furthered the

discussion of the existence of giant cells and their influence on smaller convection com-

ponents.

9.1.1 Supergranule Superrotation

By means of analyzing synthetic Doppler images produced by data simulations,

we have accounted for the observational characteristics of the rotation of convection cells

around the Sun as described in the literature [53], [93], [94], [55], [59]. In contrast to earlier

conclusions that the cause of superrotation derives from underlying wavelike phenomena

[94], [55], we find that the superrotation can easily be explained by considering the

influence of geometric projection effects due the Doppler signal being modulated across

the solar disk image.

9.1.2 Supergranule Manifestations as Hills at the Solar Limb

The production observed corrugation of the solar surface [57] had hitherto been

attributed to the existence of Rossby waves in the Sun [58]. Using our data simualtion,

we produced a timeseries of heights around the solar limb which were analyzed using the

same process as that performed on MDI data [58]. We found signals identical to those

derived from MDI data, although our data simulation contains no wavelike characteristics

whatsoever. We conclude that Rossby waves are not the cause. By analyzing the resultant
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signals from input convection spectra with only granule and supergranule components

respectively, we find that supergranulation is the behind the signal. We therefore conclude

that the hills observed around the limb are caused by the overshooting of the upflows of

supergranules, a phenomenon that opens up potential research in itself.

9.1.3 Extending the Data Simulations

Although the data simulation has provided Doppler images that are identical to

those produced from MDI observations, subsequent improvements can still be made.

The modeling of large scale flows to advect the convection pattern were considered and a

method to implement the observed latitudinal dependent differential rotation, by means

of evolving the spectral coefficients that make up the synthetic Doppler pattern, derived.

The result of this implementation produced rotation rates exactly like those observed as

well as pronounced superrotation near the equator.

Internal rotation rates were sampled from profiles derived from helioseismic data

and used to produce similar profiles constructed from synthetic data. Assuming that

convection cells stretch deep within the solar interior to a depth equal to their surface

size, we produced an expression to determine a size dependent rotation rate of convection

cells. Along with additional noise factors to account for the non-perfect temporal filtering

of short-lived Doppler features, the rotation data was used to revisit the superrotation

phenomenon and produce an even better fit than before to signals derived from observa-

tional data. This further entrenches our idea that supergranules are not a consequence

of solar wavelike properties.

With differential rotation successfully modeled the simulation may be used to revisit

questions, such as the supergranule explanation for solar corrugation, with an increased

accuracy which are expected to further entrench our prior conclusions. The implemen-

tation of large scale flow dynamics into the simulation can be continued by modeling

surface flow profiles due to meridional circulation and giant cells.
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9.1.4 Giant Cells

Giant cells have so far not been observed and any evidence of their existence remains

circumstantial. To understand what the influence of such structures would have on

convection cells such as supergranules, we performed a numerical experiment to simulate

the advection of supergranules by an underlying giant cell component. It was found

that over time the supergranules became bunched at the boundaries of two adjacent

giant cells while dispersed at their centers. Within the context of a rotating frame,

constituted by the solar rotation itself, these flows characterize prograde and retrograde

flows with respect to rotation. Such flows, both in latitude and longitude, are seen in

observational data [59] and our experiment may provide evidence that they produce not

by wave phenomena, as previously thought [59], but by these elusive giant cell flows.

Further analysis may be performed not only on the results of our numerical exper-

iment, but on results from a further extension of the data simulation to include a surface

wide giant cell flow pattern.

9.2 Future Work

As well as the future research potential as mentioned in the previous section, there

are a number of outstanding issues that require investigation. Some of these are outlined

in the following.

9.2.1 MDI Instrumental Artifacts

By time-averaging the MDI Doppler data, there results evidence of artifacts within

the image that are certainly instrumental in nature. Such artifacts can be analyzed and

removed from the data to not only clear the Doppler signal but also characterize some

of the outstanding optical issues of MDI. A comparison between MDI and GONG data

may be helpful where the data from the Sun is exactly the same, but any instrumental

components can be isolated.
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9.2.2 Rotation of Supergranules

Upflows of material within the solar interior are expected to be influence by the

Coriolis force resulting from the rotating frame within which these upflows reside. Within

the specific context of supergranule convection cells, the strength of the Coriolis force

is, however, size dependent (Eqn. 2.1) so that whereas smaller cells are less influenced,

the larger cells should exhibit a rotation component due to Coriolis factors. It would be

worthwhile to derive an expression for the influence of the Coriolis force over the range

of convection cell sizes and attempt to model this within the data simulation.

9.2.3 Magnetic Flux Transport Models

With a future working models for the large-scale flows as well as those existent for

non-axisymmetric convective flows within the data simulations, the interdependence of

material flows and the entrenched magnetic fields can be analyzed. Such analysis would

concentrate on localized fields, as those linked to active regions are generally so strong

as to inhibit some material flows. The latter, however, offers research possibilities in

itself. Local fields can be situated on the solar disk and be advected by the existent

flows to produce field patterns and motions that can be compared to observational data.

One example is the divergence of flux towards the boundaries of supergranules that is

responsible for the observed chromospheric network, while another is the flow of local

field lines toward the pole due to the poleward sense of the meridional circulation at the

solar surface. The equatorward flow, thought to occur near the tachocline, could well be

responsible for carrying active regions equatorward, a characteristic well seen during any

particular solar cycle.
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COMPUTER CODE - FLOWCHARTS
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each velocity component in

both hemispheres

Calculate vector velocities for non-axisymmetric
components (m>0) from the spectral

coefficients and Legendre polynomials

Calculate vector velocities for axisymmetric
components (m=0) from the spectral

coefficients and Legendre polynomials

NO

YES
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D

C

Add a two pixel wide wrap-around
border to edges of the velocity arrays

to prepare for interpolation routine

Iterate over all pixels in image

Determine next latitude line of pixels

Determine next longitude line of pixels
- gives next pixel

Break pixel into 49 sub-pixels
and find latitude & longitude

of each sub-pixel

Iterate over all sub-pixels

Determine next latitude
line of sub-pixels

Determine next longitude 
line of sub-pixels

- gives next sub-pixel

I

H

F

E
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NO

YES

NO

YES

F

G

E

Perform U (toroidal), V (poloidal), 
W (radial) velocity component interpolations

Calculate velocity

projection factors

Combine projection factors and
U, V, W components to interpolate

line-of-sight (LOS) velocities

Last longitudinal

line of sub-pixels ?

Last latitudinal
line of sub-pixels ?

Calculate geometric mapping
from heliographic cartesian coordinates

to image coordinates

Calculate weights of sub-pixels
around central sub-pixel for interpolation

D
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Divide out blurred, darkened
intensity image to give
blurred LOS velocities

Add convective
blueshift

NO

YES

NO

YES

Last longitudinal
line of pixels ?

J

I H

Last latitudinal
line of pixels ?

Combine result with
MTF profile

Combine LOS velocities
with limb darkening profile

Add Gaussian
random noise

G
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NO

YES

Stop

K

Is this the last
image to create?

Write observed LOS
velocity image to disk

J



115

MDI analysis1.for

Calculate associated
Legendre polynomial coefficients

Begin reading in
image data files

Adjust observer motion and
center-to-limb velocities and adjust
for FORTRAN’s counting system

A

Start

Read in 
header data

Read in 
velocity data

Is the image
data real or fake? FAKE

REAL

Read in 
velocity data

D

Next image

Set up parameters
& array constants
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Define angular parameters
and output to screen

A

C

D

NO

YES

B

Is the Sun 
rotating correctly?

Mask of velocity data
within 5% of limb

Correct data for
observer’s motion

Provide initial guess at spectral
coefficients for rotation, meridional

flow and convective blueshift

Compare velocities at equator
in east and west hemispheres

Reverse velocities
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B

Map data to
heliographic coordinates

Determine spectral
coefficients for rotation

Determine spectral
coefficients for meridional flow

Correct convective blueshift
spectral coefficients for the
presence of meridional flow

NO

YES

Last file ?

C

Stop

Write spectral coefficients and velocity
data to disk in a text file

Arrange all spectral coefficient
data into a single array

Determine preliminary guess at
spectral coefficients for

convective blueshift
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MDI analysis2.for

Calculate associated
Legendre polynomial coefficients

Begin reading in
image data files

A

Start

FAKE

REAL

D

Next image

Is the image
data real or fake?

Read in header data

Read in velocity data

Define spectral coefficients for rotation,
meridional flow and convective blueshift

Adjust observer motion and
center-to-limb velocities and adjust

for FORTRAN’s counting system

Read in 
velocity data

Read in spectral
coefficients from

analysis1

Set up parameters
& array constants
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Define angular parameters
and output to screen

A

C

D

NO

YES

B

Is the Sun 
rotating correctly?

Mask of velocity data
within 5% of limb

Correct data for
observer’s motion

Remove convective blueshift
velocity component

Compare velocities at equator
in east and west hemispheres

Reverse velocities
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B

Map data to
heliographic coordinates

Remove rotation and meridional
flow velocity components

Smooth mask edges prior to
Legendre transform to avoid ringing

Legendre transform velocity data into
spectral coefficients for remaining

non-axisymmetric velocity data

NO

YES

Last file ?

C

Stop

Append transformed spectral
data to data read from file

Read spectral coefficient data
from text file

Write all spectral data
to a text file
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MDI fake.for

program mdi_fake

c***********************************************************************

c *

c file c:\MyProjects\mdi_fake\mdi_fake.for 11-03-05 *

c *

c This program creates 1024 by 1024 doppler velocity images of the *

c nearly steady photospheric flows. It constructs a spectrum of *

c spherical harmonic amplitudes r(l,m), s(l,m) and t(l,m), and *

c calculates the components of the velocity field at an array of *

c points in theta=colatitude and phi=longitude. *

c *

c The velocity vector (u,v,w) is in the (phi,theta,radius) direction. *

c *

c The vector velocities are then projected onto the line-of-sight *

c for a given B0, S0, X0, Y0, radius, and central meridian. *

c *

c The line-of-sight velocities are then blurred and resampled at the *

c required resolution. *

c *

c The data arrays are written to direct access disk files. *

c *

c *

c***********************************************************************

parameter (nx=1024)

character fname*9,ext*5,path*16

complex*8 r(nx,nx),s(nx,nx),t(nx,nx)

complex*8 xi,arg,sum1,sum2,sum3,sum4,sum5,sum6

complex*8 unorth(2*nx),usouth(2*nx)

complex*8 vnorth(2*nx),vsouth(2*nx)

complex*8 wnorth(2*nx),wsouth(2*nx)

complex*8 fake(nx*nx),out(nx*nx)

real*4 u(2*nx+4,nx+4),v(2*nx+4,nx+4),w(2*nx+4,nx+4)

real*4 vobs(nx,nx),amp1(nx),amp2(nx),amp3(nx)

real*4 blur(7,7)

real*4 coef(nx,nx),p(nx)

real*4 mtfdata(nx*nx)

c

path=’d:\soidata\fake\’

fname=’datsim100’

ext=’.data’

c

pi=4.*atan(1.0)

root3=sqrt(3.)
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root5=sqrt(5.)

root7=sqrt(7.)

root9=sqrt(9.)

xi=(0.,1.)

c***********************************************************************

c *

c Differential rotation profile coefficients in radians/hour

c

c *

c***********************************************************************

omega0=(15.0-1.)*pi/(24.*180.)

c omega2=-9.0*pi/(24.*180.)

omega2=0.

c omega4=4.0*pi/(24.*180.)

omega4=0

c***********************************************************************

c *

c Image size and position parameters .

c *

c***********************************************************************

lmax=nx-2

nphi=2*nx

nxhalf=nx/2

nxsq=nx*nx

x0=512.5

y0=512.5

radius=502.0

write(*,*) ’Creating velocity images centered at ’

write(*,*) ’X0 =’,x0,’ Y0 =’,y0

write(*,*) ’With radius =’,radius

c***********************************************************************

c *

c Solar geometry parameters

c *

c***********************************************************************

write(*,*) ’Solar parameters:’

c

c b0 = latitude in degrees at disk center

c

b0=0.0

c

c s0 = radius of solar disk in arcsec

c

s0 = 959.65/1.0019

write(*,*) ’B0=’,b0,’ S0=’,s0

br=b0*pi/180.
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cosb0=cos(br)

sinb0=sin(br)

sr=s0*pi/(180.*3600.)

radsol=radius*cos(sr)

radsolsq=radsol*radsol

c

c scale = arc-radians per image pixel

c

scale=sr/radius

rsq=radius*radius

dphi=2.*pi/nphi

dtheta=pi/nx

c***********************************************************************

c *

c Read in modulation transfer function array *

c *

c***********************************************************************

open(unit=1, file=’mtf.data’, access=’sequential’,

& status=’OLD’,form=’formatted’)

do j=1,nx

read(1,*) (mtfdata(i+nx*(j-1)),i=1,nx)

enddo

close(1)

c***********************************************************************

c *

c Create spherical harmonic amplitudes for the nearly steady flows. *

c *

c***********************************************************************

call plmcoef(nx,coef)

write(*,*) ’Legendre recurrance coefficients calculated.’

c***********************************************************************

c *

c Read in the convection spectrum. *

c *

c***********************************************************************

open(unit=7,file=’fakespec.txt’,status=’old’)

do l=1,lmax

read(7,*) amp1(l),amp2(l),amp3(l)

if (l .lt. 20) write(*,*) amp1(l),amp2(l),amp3(l)

enddo

close(7)

c***********************************************************************

c

c Change idum to create different realization

c Re-initialize random number sequence

c *
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c***********************************************************************

idum=-1

c***********************************************************************

c *

c Create the spectrum for the rotation profile (toroidal flow). *

c *

c***********************************************************************

write(*,*) ’calculating spectrum’

m=0

l=1

t(l+1,m+1)=1483.

l=3

t(l+1,m+1)=-26.

l=5

t(l+1,m+1)=-4.

c***********************************************************************

c *

c Create the spectrum for the meridional circulation (poloidal flow). *

c *

c***********************************************************************

m=0

l=2

s(l+1,m+1)=17.

l=4

s(l+1,m+1)=-4.

c***********************************************************************

c *

c Construct the convection spectrum. *

c *

c***********************************************************************

do l=1,lmax

c do l=110,110

l1=l+1

el=float(l)

do m=1,l

m1=m+1

phase=2.*pi*ran2(idum)

arg=cos(phase)+xi*sin(phase)

c

c Use random amplitudes as well

c

randamp=2.*ran2(idum)

r(l1,m1)=-1.*randamp*amp1(l)*arg

s(l1,m1)=randamp*amp2(l)*arg

t(l1,m1)=randamp*amp3(l)*arg

enddo
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enddo

write(*,*) ’Velocity spectrum calculated’

c***********************************************************************

c *

c Calculate the vector velocity components at each latitude.

c Equator is at jj=nx/2 + 2.5 due to wrap-around border

c j=1 is centered 0.5*dtheta above and below the equator

c j=nxhalf is centered 0.5*dtheta inside each pole

c *

c***********************************************************************

do j=1,nxhalf

write(*,*) ’ line ’,j,’ of ’,nxhalf,’ started’

jn=nxhalf+2+j

js=nxhalf+3-j

theta=0.5*pi-(j-0.5)*dtheta

x=cos(theta)

sintheta=sin(theta)

rst=1.0/sintheta

c***********************************************************************

c *

c calculate the spectral coefficients for wavenumber m at all x. *

c *

c***********************************************************************

m=0

m1=m+1

call plm(m,x,nx,coef,p)

sum1=(0.,0.)

sum2=(0.,0.)

sum3=(0.,0.)

sum4=(0.,0.)

sum5=(0.,0.)

sum6=(0.,0.)

do l=1,lmax-1

l1=l+1

l2=l+2

ieo=1-2*mod(l-m,2)

v1=l*p(l2)/coef(l2,m1)-(l+1.)*p(l)/coef(l1,m1)

sum1=sum1-t(l1,m1)*v1

sum2=sum2+ieo*t(l1,m1)*v1

sum3=sum3+s(l1,m1)*v1

sum4=sum4-ieo*s(l1,m1)*v1

sum5=sum5+r(l1,m1)*p(l1)

sum6=sum6+ieo*r(l1,m1)*p(l1)

enddo

unorth(m1)=sum1*rst

usouth(m1)=sum2*rst
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vnorth(m1)=sum3*rst

vsouth(m1)=sum4*rst

wnorth(m1)=sum5

wsouth(m1)=sum6

c***********************************************************************

c *

c Split non-axisymmetric signal into equal positive and *

c negative freqencies. *

c *

c***********************************************************************

do m=1,lmax-1

m1=m+1

m2=nphi+1-m

call plm(m,x,nx,coef,p)

sum1=(0.,0.)

sum2=(0.,0.)

sum3=(0.,0.)

sum4=(0.,0.)

sum5=(0.,0.)

sum6=(0.,0.)

do l=m,lmax-1

l1=l+1

l2=l+2

ieo=1-2*mod(l-m,2)

v1=l*p(l2)/coef(l2,m1)-(l+1.)*p(l)/coef(l1,m1)

v2=-m*p(l1)

sum1=sum1+xi*s(l1,m1)*v2-t(l1,m1)*v1

sum2=sum2+ieo*(xi*s(l1,m1)*v2+t(l1,m1)*v1)

sum3=sum3+s(l1,m1)*v1+xi*t(l1,m1)*v2

sum4=sum4-ieo*(s(l1,m1)*v1-xi*t(l1,m1)*v2)

sum5=sum5+r(l1,m1)*p(l1)

sum6=sum6+ieo*r(l1,m1)*p(l1)

enddo

unorth(m1)=0.5*sum1*rst

usouth(m1)=0.5*sum2*rst

unorth(m2)=0.5*conjg(sum1)*rst

usouth(m2)=0.5*conjg(sum2)*rst

vnorth(m1)=0.5*sum3*rst

vsouth(m1)=0.5*sum4*rst

vnorth(m2)=0.5*conjg(sum3)*rst

vsouth(m2)=0.5*conjg(sum4)*rst

wnorth(m1)=0.5*sum5

wsouth(m1)=0.5*sum6

wnorth(m2)=0.5*conjg(sum5)

wsouth(m2)=0.5*conjg(sum6)

enddo
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do m=lmax,nphi-lmax

m1=m+1

unorth(m1)=0.

usouth(m1)=0.

vnorth(m1)=0.

vsouth(m1)=0.

wnorth(m1)=0.

wsouth(m1)=0.

enddo

c***********************************************************************

c *

c Calculate the vector velocity components at all phi positions. *

c *

c***********************************************************************

call four1(unorth,nphi,-1)

call four1(usouth,nphi,-1)

call four1(vnorth,nphi,-1)

call four1(vsouth,nphi,-1)

call four1(wnorth,nphi,-1)

call four1(wsouth,nphi,-1)

do i=1,nphi

u(i,jn)=real(unorth(i))

u(i,js)=real(usouth(i))

v(i,jn)=real(vnorth(i))

v(i,js)=real(vsouth(i))

w(i,jn)=real(wnorth(i))

w(i,js)=real(wsouth(i))

enddo

enddo

c************************************************************************

c *

c Add 2-pixel wrap-around border to velocity arrays for interpolation *

c *

c************************************************************************

np1=nphi+1

np2=nphi+2

np3=nphi+3

np4=nphi+4

do j=3,nx+2

u(np1,j)=u(1,j)

v(np1,j)=v(1,j)

w(np1,j)=w(1,j)

u(np2,j)=u(2,j)

v(np2,j)=v(2,j)

w(np2,j)=w(2,j)

u(np3,j)=u(3,j)



129

v(np3,j)=v(3,j)

w(np3,j)=w(3,j)

u(np4,j)=u(4,j)

v(np4,j)=v(4,j)

w(np4,j)=w(4,j)

enddo

np2=nphi/2+2

nx1=nx+1

nx2=nx+2

nx3=nx+3

nx4=nx+4

do i=1,np2

i2=np2+i-1

u(i,2)=u(i2,3)

v(i,2)=v(i2,3)

w(i,2)=w(i2,3)

u(i,1)=u(i2,4)

v(i,1)=v(i2,4)

w(i,1)=w(i2,4)

u(i2,2)=u(i,3)

v(i2,2)=v(i,3)

w(i2,2)=w(i,3)

u(i2,1)=u(i,4)

v(i2,1)=v(i,4)

w(i2,1)=w(i,4)

u(i,nx3)=u(i2,nx2)

v(i,nx3)=v(i2,nx2)

w(i,nx3)=w(i2,nx2)

u(i,nx4)=u(i2,nx1)

v(i,nx4)=v(i2,nx1)

w(i,nx4)=w(i2,nx1)

u(i2,nx3)=u(i,nx2)

v(i2,nx3)=v(i,nx2)

w(i2,nx3)=w(i,nx2)

u(i2,nx4)=u(i,nx1)

v(i2,nx4)=v(i,nx1)

w(i2,nx4)=w(i,nx1)

enddo

write(*,*) ’Vector velocity arrays calculated.’

c***********************************************************************

c *

c Write radial velocity velocity to disk file. *

c *

c***********************************************************************

n1000=int(ifile/1000)

n100=int((ifile-1000*n1000)/100)
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n10=int((ifile-1000*n1000-100*n100)/10)

n1=ifile-1000*n1000-100*n100-10*n10

fname=’radial’ // char(48+n100) // char(48+n10) //char(48+n1)

open(unit=1,file=path // fname // ext,access=’direct’,

& status=’unknown’,recl=2*nx)

do j=1,nx

write(1,rec=j) (w(i+1,j+1),i=1,2*nx)

enddo

close(1)

umax=0.0

vmax=0.0

wmax=0.0

do j=3,nx+2

do i=3,nphi+2

utest=abs(u(i,j))

if (utest .gt. umax) umax=utest

vtest=abs(v(i,j))

if (vtest .gt. vmax) vmax=vtest

wtest=abs(w(i,j))

if (wtest .gt. wmax) wmax=wtest

enddo

enddo

write(*,*) ’Umax, Vmax, Wmax =’,umax,vmax,wmax

c***********************************************************************

c *

c Construct blurring array. *

c *

c***********************************************************************

btotal=0.0

asq=2.0**2

bsq=4.0**2

do j=1,7

y=j-4.

do i=1,7

x=i-4.

r2=x*x+y*y

c blur(i,j) = exp(-r2/(2.*asq)) -

c & exp(-bsq/(2.*asq))*(1. + bsq/(2.*asq) - r2/(2.*asq))

blur(i,j)=1./49.

btotal=btotal+blur(i,j)

enddo

enddo

do j=1,7

do i=1,7

blur(i,j)=blur(i,j)/btotal

enddo
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enddo

c***********************************************************************

c

c Construct series of images with different central meridians

c

c***********************************************************************

do itime=1,30*24*4

ifile=1000+(itime-1)

hours=float(itime)/4.

phi0=180.-13.5*hours/24.

phi0r=phi0*pi/180.

c***********************************************************************

c *

c Calculate the line-of-sight velocity for a tilt angle b0 and central*

c meridian longitude phi0. *

c *

c***********************************************************************

jmin=int(y0-radius)+1

jmax=int(y0+radius)

do j=jmin,jmax

yimg=(j-0.5)-y0

hchord=0.

arg1=rsq-yimg*yimg

if (arg1 .gt. 0.) hchord=sqrt(arg1)

imin=nint(x0-hchord)

imax=nint(x0+hchord)

do i=imin,imax

ximg=(i-0.5)-x0

c***********************************************************************

c *

c Find the latitude and longitude at the center of 49 sub-pixels. *

c *

c***********************************************************************

btotal=0.0

vlos=0.0

pwidth=0.7

do jj=1,7

c

c Average over a 2x2 pixel area

c y1=yimg+pwidth*(jj-4.)/3.

c

c Average over a 1x1 pixel area

y1=yimg+pwidth*(jj-4.)/7.

do ii=1,7

blurry=blur(ii,jj)

c
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c Average over a 2x2 pixel area

c x1=ximg+pwidth*(ii-4.)/3.

c

c Average over a 1x1 pixel area

x1=ximg+pwidth*(ii-4.)/7.

c

c Find radius from disk center in pixels

c

risq=x1*x1 + y1*y1

rho_i=sqrt(risq)

c

c Find radius from disk center in ard-radians

c (scale = arc-radians per image pixel)

c

rho1=scale*rho_i

sinrho1=sin(rho1)

cosrho1=cos(rho1)

c

c Test to see if pixel is on disk

c

r_test=rho_i*cosrho1

if (r_test .lt. radsol) then

btotal=btotal+blurry

c

c Observed position angle clockwise from vertical (yi axis)

c

pangle=0.

if (risq .ne. 0.) pangle=atan2(-x1,y1)

c

c Heliographic cartesian coordinates

c

factor1=sqrt(radsolsq-r_test*r_test)

rho_p=rho_i*cosrho1*cosrho1-factor1*sinrho1

xp=rho_p*sin(pangle)

yp=rho_p*cos(pangle)

rpsq=xp*xp + yp*yp

zp=sqrt(radsolsq - rpsq)

c

c Rotated Heliographic cartesian coordinates with B-angle removed

c

xs=xp

ys=cosb0*yp + sinb0*zp

zs=cosb0*zp - sinb0*yp

c

c Heliographic latitude and longitude in radians
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c

xlat=asin(ys/radsol)

xlon=0.

rssq=xs*xs+zs*zs

if (rssq .ne. 0.) xlon=atan2(-xs,zs)

c

c Trigonometric factors

c

sinb=sin(xlat)

cosb=cos(xlat)

sinphi=sin(xlon)

cosphi=cos(xlon)

c

c Bi-cubic interpolation from adjacent points.

c

xlon=xlon+phi0r

if (xlon .lt. 0.) xlon=2.*pi + xlon

if (xlon .gt. 2.*pi) xlon=xlon - 2.*pi

xm=2.5 + xlon/dphi

ym=2.5 + nx/2. + xlat/dtheta

ixm=int(xm)

iym=int(ym)

dx=xm-ixm

dy=ym-iym

c

c Weights for bi-cubic interpolation

c

dx2=dx*dx

dx3=dx*dx2

dy2=dy*dy

dy3=dy*dy2

wx0=-0.5*dx + dx2 - 0.5*dx3

wy0=-0.5*dy + dy2 - 0.5*dy3

wx1=1.0 - 2.5*dx2 + 1.5*dx3

wy1=1.0 - 2.5*dy2 + 1.5*dy3

wx2=0.5*dx + 2.*dx2 - 1.5*dx3

wy2=0.5*dy + 2.*dy2 - 1.5*dy3

wx3=-0.5*dx2 + 0.5*dx3

wy3=-0.5*dy2 + 0.5*dy3

c

c U component interploation

c

f00=u(ixm-1,iym-1)

f10=u(ixm+0,iym-1)

f20=u(ixm+1,iym-1)

f30=u(ixm+2,iym-1)
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f01=u(ixm-1,iym)

f11=u(ixm+0,iym)

f21=u(ixm+1,iym)

f31=u(ixm+2,iym)

f02=u(ixm-1,iym+1)

f12=u(ixm+0,iym+1)

f22=u(ixm+1,iym+1)

f32=u(ixm+2,iym+1)

f03=u(ixm-1,iym+2)

f13=u(ixm+0,iym+2)

f23=u(ixm+1,iym+2)

f33=u(ixm+2,iym+2)

utemp = wx0*wy0*f00 + wx1*wy0*f10 +

& wx2*wy0*f20 + wx3*wy0*f30 + wx0*wy1*f01 +

& wx1*wy1*f11 + wx2*wy1*f21 + wx3*wy1*f31 +

& wx0*wy2*f02 + wx1*wy2*f12 + wx2*wy2*f22 +

& wx3*wy2*f32 + wx0*wy3*f03 + wx1*wy3*f13 +

& wx2*wy3*f23 + wx3*wy3*f33

c

c V component interploation

c

f00=v(ixm-1,iym-1)

f10=v(ixm+0,iym-1)

f20=v(ixm+1,iym-1)

f30=v(ixm+2,iym-1)

f01=v(ixm-1,iym)

f11=v(ixm+0,iym)

f21=v(ixm+1,iym)

f31=v(ixm+2,iym)

f02=v(ixm-1,iym+1)

f12=v(ixm+0,iym+1)

f22=v(ixm+1,iym+1)

f32=v(ixm+2,iym+1)

f03=v(ixm-1,iym+2)

f13=v(ixm+0,iym+2)

f23=v(ixm+1,iym+2)

f33=v(ixm+2,iym+2)

vtemp = wx0*wy0*f00 + wx1*wy0*f10 +

& wx2*wy0*f20 + wx3*wy0*f30 + wx0*wy1*f01 +

& wx1*wy1*f11 + wx2*wy1*f21 + wx3*wy1*f31 +

& wx0*wy2*f02 + wx1*wy2*f12 + wx2*wy2*f22 +

& wx3*wy2*f32 + wx0*wy3*f03 + wx1*wy3*f13 +

& wx2*wy3*f23 + wx3*wy3*f33

c
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c W component interploation

c

f00=w(ixm-1,iym-1)

f10=w(ixm+0,iym-1)

f20=w(ixm+1,iym-1)

f30=w(ixm+2,iym-1)

f01=w(ixm-1,iym)

f11=w(ixm+0,iym)

f21=w(ixm+1,iym)

f31=w(ixm+2,iym)

f02=w(ixm-1,iym+1)

f12=w(ixm+0,iym+1)

f22=w(ixm+1,iym+1)

f32=w(ixm+2,iym+1)

f03=w(ixm-1,iym+2)

f13=w(ixm+0,iym+2)

f23=w(ixm+1,iym+2)

f33=w(ixm+2,iym+2)

wtemp = wx0*wy0*f00 + wx1*wy0*f10 +

& wx2*wy0*f20 + wx3*wy0*f30 + wx0*wy1*f01 +

& wx1*wy1*f11 + wx2*wy1*f21 + wx3*wy1*f31 +

& wx0*wy2*f02 + wx1*wy2*f12 + wx2*wy2*f22 +

& wx3*wy2*f32 + wx0*wy3*f03 + wx1*wy3*f13 +

& wx2*wy3*f23 + wx3*wy3*f33

c***********************************************************************

c *

c Calculate velocity projection factors. *

c *

c***********************************************************************

uproj=cosb0*sinphi

vproj=sinb0*cosb-cosb0*sinb*cosphi

wproj=sinb0*sinb+cosb0*cosb*cosphi

c***********************************************************************

c *

c Interpolate vlos from adjacent pixels. *

c Set npix=4 so these values are weighted more than integral pixels. *

c *

c***********************************************************************

vlos=vlos+uproj*utemp*blurry

vlos=vlos+vproj*vtemp*blurry

vlos=vlos+wproj*wtemp*blurry

endif

enddo

enddo

vobs(i,j)=0.0
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if (btotal .ne. 0.0) vobs(i,j)=vlos/btotal

c***********************************************************************

c *

c Add convective blue shift. *

c *

c***********************************************************************

rr=ximg*ximg+yimg*yimg

xvar=1.

if (rr .lt. rsq) xvar=1.-sqrt(1.-rr/rsq)

pstar1=root3*(2.*xvar-1.)

pstar2=root5*(6.*xvar**2-6.*xvar+1.)

pstar3=root7*(20.*xvar**3-30.*xvar**2+12.*xvar-1.)

vobs(i,j)=vobs(i,j)+161.*pstar1+85.*pstar2+11.*pstar3

c***********************************************************************

c *

c Add Noise *

c *

c***********************************************************************

c noise=0.0

c vobs(i,j)=vobs(i,j)+noise*gasdev(idum)

enddo

enddo

c***********************************************************************

c *

c Blur data *

c *

c***********************************************************************

do j=1,nx

do i=1,nx

fake(i+nx*(j-1))=cmplx(vobs(i,j))

enddo

enddo

call four1(fake,nxsq,1)

do j=1,nxsq

out(j)=fake(j)*mtfdata(j)/nxsq

enddo

call four1(out,nxsq,-1)

do j=1,nx

do i=1,nx

vobs(i,j) = real(out(i+nx*(j-1)))

enddo
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enddo

c***********************************************************************

c *

c Write observed velocity to disk file. *

c *

c***********************************************************************

n1000=int(ifile/1000)

n100=int((ifile-1000*n1000)/100)

n10=int((ifile-1000*n1000-100*n100)/10)

n1=ifile-1000*n1000-100*n100-10*n10

fname=’blur_’ // char(48+n1000) // char(48+n100) //

& char(48+n10) //char(48+n1)

write(*,*) ’Completed file ’,fname

open(unit=1,file=path // fname // ext,access=’direct’,

& status=’unknown’,recl=nx)

do j=1,nx

write(1,rec=j) (vobs(i,j),i=1,nx)

enddo

close(1)

enddo

end

FUNCTION RAN2(IDUM)

C************************************************************************

C *

C THIS IS THE RANDOM NUMBER GENERATOR FROM "NUMERICAL RECIPES" *

C *

C************************************************************************

PARAMETER (M=714025,IA=1366,IC=150889,RM=1./M)

DIMENSION IR(97)

DATA IFF /0/

IF(IDUM.LT.0.OR.IFF.EQ.0)THEN

IFF=1

IDUM=MOD(IC-IDUM,M)

DO J=1,97

IDUM=MOD(IA*IDUM+IC,M)

IR(J)=IDUM

ENDDO

IY=IDUM

ENDIF

J=1+(97*IY)/M

IF(J.GT.97.OR.J.LT.1)PAUSE

IY=IR(J)
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RAN2=IY*RM

IDUM=MOD(IA*IDUM+IC,M)

IR(J)=IDUM

RETURN

END

FUNCTION GASDEV(IDUM)

C************************************************************************

C *

C Returns a normally distributed deviate with zero mean and unit *

C variance. Uses RAN2(IDUM) as the source of uniform deviates. *

C *

c************************************************************************

DATA ISET/0/

IF (ISET .EQ. 0) THEN

1 V1=2.*RAN2(IDUM)-1.

V2=2.*RAN2(IDUM)-1.

R=V1**2+V2**2

IF (R .GT. 1.) GOTO 1

FAC=SQRT(-2.*LOG(R)/R)

GSET=V1*FAC

GASDEV=V2*FAC

ISET=1

ELSE

GASDEV=GSET

ISET=0

ENDIF

RETURN

END
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MDI analysis1.for

program mdi_analysis1

c***********************************************************************

c *

c Analyzes Doppler velocity data to extract spectral coefficients *

c and velocity profiles. Input files include velocity and *

c intensity images and NSO magnetogram synoptic maps. Intensity is *

c used to determine image parameters (center coordinates x0 and y0, *

c radius, ellipticity, and orientation of elliptical figure for limb). *

c The magnetograms are used to produce a data mask which covers active *

c regions. *

c *

c Output includes a formatted file containing spectral coefficients *

c *

c***********************************************************************

c dtype=1: Real data; dtype=0: Fake data

c parameter (nx=1024, lmaxp=1024, dtype=1)

parameter (nx=1024, lmaxp=1024, dtype=0)

complex*8 work1(2*nx),work2(lmaxp,nx)

real*4 v(nx,nx),vmap(nx,nx),vtemp(nx,nx)

c real*4 bimage(nx,nx)

real*4 vls(nx),vphi(nx),vtheta(nx),spcoef(nx)

real*4 mask1(nx,nx),mask2(nx,nx)

real*4 p(lmaxp),coef(lmaxp,lmaxp)

real*4 t(15),s(15),cls(6)

real*4 c(15),angles(6)

real*4 rbuffer(720)

character mday*4,mhour*2

c character magnum*4

byte buffer(2880)

character filename*4,ext*5,hdr*2880,hdrrec*80

c character path*27

c path=’d:\soidata\1996DynamicsRun\’

c character path*16

c path=’d:\soidata\sim5\’

pi=4.0*atan(1.0)

root3=sqrt(3.)

root5=sqrt(5.)

root7=sqrt(7.)

datamask=-32768.
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c***********************************************************************

c *

c Calculate matrix of coefficients for Associated Legendre polynomials.*

c *

c***********************************************************************

call plmcoef(lmaxp,coef)

write(*,*) ’Coefficients for Legendre polynomials calculated.’

c***********************************************************************

c *

c Fractional radius for limits of data analysis. *

c *

c***********************************************************************

sinrho = 0.99

c***********************************************************************

c *

c List of data files for analysis. *

c *

c***********************************************************************

open(unit=7,name=’analysis.inp’,status=’old’)

10 continue

read(7,1001,END=9999) filename

1001 format(a4)

if (dtype .eq. 1) then

c mday=filename(1:4)

c Change mday to the directory number

mday=’1240’

mhour=filename(3:4)

time = 1000.*(ichar(mday(1:1))-48.) - 1239. +

& 100.*(ichar(mday(2:2))-48.) +

& 10.*(ichar(mday(3:3))-48.) +

& 1.*(ichar(mday(4:4))-48.) +

& (10.*(ichar(mhour(1:1))-48.)+1.*(ichar(mhour(2:2))-48.))/96.

write(*,*) ’Time in days = ’,time

ext = ’.fits’

write(*,*) ’Processing ’,filename,ext

c***********************************************************************

c *

c Read in Doppler velocity array. *

c *

c***********************************************************************

open(unit=8,name=’temp.txt’,status=’old’)
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1003 format(a19)

1004 format(g19.12)

open(unit=9,name=filename // ext,status=’OLD’,

& access=’direct’,recl=4*720)

c***********************************************************************

c *

c Read in header information. *

c *

c***********************************************************************

do nrec=1,5

read(9,rec=nrec) hdr

do i=1,36

hdrrec=hdr((i-1)*80+1:i*80)

rewind(8)

if (hdrrec(1:8) .eq. ’OBS_DIST’) then

write(8,1003) hdrrec(12:30)

rewind(8)

read(8,1004) rdist_au

endif

if (hdrrec(1:6) .eq. ’OBS_B0’) then

write(8,1003) hdrrec(12:30)

rewind(8)

read(8,1004) b0

endif

if (hdrrec(1:6) .eq. ’OBS_L0’) then

write(8,1003) hdrrec(12:30)

rewind(8)

read(8,1004) clon

endif

if (hdrrec(1:6) .eq. ’OBS_VR’) then

write(8,1003) hdrrec(12:30)

rewind(8)

read(8,1004) c0

endif

if (hdrrec(1:6) .eq. ’OBS_VN’) then

write(8,1003) hdrrec(12:30)

rewind(8)

read(8,1004) cy

endif

if (hdrrec(1:6) .eq. ’OBS_VW’) then

write(8,1003) hdrrec(12:30)

rewind(8)

read(8,1004) cx

endif

if (hdrrec(1:8) .eq. ’MAP_RSUN’) then

write(8,1003) hdrrec(12:30)
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rewind(8)

read(8,1004) radius

endif

if (hdrrec(1:6) .eq. ’MAP_X0’) then

write(8,1003) hdrrec(12:30)

rewind(8)

read(8,1004) x0

endif

if (hdrrec(1:6) .eq. ’MAP_Y0’) then

write(8,1003) hdrrec(12:30)

rewind(8)

read(8,1004) y0

endif

if (hdrrec(1:6) .eq. ’BSCALE’) then

write(8,1003) hdrrec(12:30)

rewind(8)

read(8,1004) bscale

endif

if (hdrrec(1:5) .eq. ’BZERO’) then

write(8,1003) hdrrec(12:30)

rewind(8)

read(8,1004) bzero

endif

if (hdrrec(1:3) .eq. ’END’) goto 20

enddo

enddo

20 nskip=nrec

close(8)

c***********************************************************************

c *

c Read in velocity array. *

c *

c***********************************************************************

vmax=-1.0e+30

vmin=1.0e+30

c***********************************************************************

c *

c Integer data *

c *

c***********************************************************************

nrec=int((1024.*1024.)/1440.)

do jrec=1,nrec

read(9,rec=nskip+jrec) (buffer(icol),icol=1,2880)

do k=1,1440

nelem=(jrec-1)*1440 + k

j=1+(nelem-1)/1024



143

i=nelem-(j-1)*1024

value=float(buffer(2*k)) + 256.*float(buffer(2*k-1))

if (buffer(2*k) .lt. 0) value=value+256.

v(i,j)=bzero+bscale*value

if(v(i,j) .gt. vmax) vmax=v(i,j)

if(v(i,j) .lt. vmin) vmin=v(i,j)

enddo

enddo

close(9)

s0 = 959.65/rdist_au

cy = -cy*sin(s0*pi/(180.*3600.))

cx = -cx*sin(s0*pi/(180.*3600.))

datamask = -32768.*bscale + bzero

c***********************************************************************

c *

c Real*4 data *

c *

c***********************************************************************

c nrec=int((1024.*1024.)/720.)

c do jrec=1,nrec

c read(9,rec=nskip+jrec) (rbuffer(icol),icol=1,720)

c do k=1,720

c nelem=(jrec-1)*720 + k

c j=1+(nelem-1)/1024

c i=nelem-(j-1)*1024

c v(i,j)=rbuffer(k)

c if(v(i,j) .gt. vmax) vmax=v(i,j)

c if(v(i,j) .lt. vmin) vmin=v(i,j)

c enddo

c enddo

c close(9)

c***********************************************************************

c *

c Change observer’s motion to reflect observed values. *

c *

c***********************************************************************

c0=c0-4.57*time

cx=cx-0.37*time

cy=cy+18.4-0.16*time

c***********************************************************************

c *

c Correct (x0,y0) for FORTRAN counting system ((1.,1.) at lower left). *

c *

c***********************************************************************

x0 = x0 + 1.0

y0 = y0 + 1.0
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rsq=radius*radius

c**********************************************************************

c *

c Correct velocity signal for center-to-limb line variation. *

c *

c**********************************************************************

jmin0=int(y0+1.-radius)

jmax0=int(y0+radius)

do j=jmin0,jmax0

yp=(j-0.5)-y0

hchord=sqrt(rsq-yp*yp)

imin=int(x0+1.0-hchord)

imax=int(x0+hchord)

do i=imin,imax

xp=(i-0.5)-x0

rp=xp*xp+yp*yp

r2=rp/rsq

x=sqrt(r2)

v(i,j)=(1.00+0.10*x*x*x)*v(i,j)

enddo

enddo

endif

c***********************************************************************

c *

c fakedata *

c *

c***********************************************************************

if (dtype .eq. 0) then

ext=’.data’

b0=0.0

s0=959.65/1.0019

c0=0.0

c2=0.0

cx=0.0

cy=0.0

radius=502.0

rsq=radius*radius

x0=512.5

y0=512.5

ellips=1.0

eangle=0.0

pangle=0.0

open(unit=3,file=filename // ext,status=’OLD’,

& access=’direct’,recl=4*nx)

vmax=-1.0e+30

vmin=1.0e+30
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do j=1,nx

read(3,rec=j) (v(i,j),i=1,nx)

do i=1,nx

if(v(i,j) .gt. vmax) vmax=v(i,j)

if(v(i,j) .lt. vmin) vmin=v(i,j)

enddo

enddo

close(3)

endif

sins0=sin(s0*pi/(180.*3600.))

ellips=1.0

eangle=0.0

pangle=0.0

angles(1)=s0

angles(2)=b0

angles(3)=pangle

angles(4)=eangle

angles(5)=ellips

angles(6)=sinrho

write(*,*) ’Semi-diameter, s0, in arc-seconds, is ’,s0

write(*,*) ’Rotation axis tilt, b0, in degrees, is ’,b0

write(*,*) ’************ observer motion *************’

write(*,*) ’ c0=’,c0

write(*,*) ’ cx=’,cx

write(*,*) ’ cy=’,cy

fov=nx*s0/radius

write(*,*) ’************ image parameters *************’

write(*,*) ’ x0=’,x0

write(*,*) ’ y0=’,y0

write(*,*) ’ radius=’,radius

write(*,*) ’ pangle=’,pangle

write(*,*) ’ ellips=’,ellips

write(*,*) ’ eangle=’,eangle

write(*,*) ’Velocity max and min = ’,vmax,vmin

if (v(512-400,512) .gt. v(512+400,512)) then

do j=1,nx

do i=1,nx

v(i,j)=-1.*v(i,j)

enddo

enddo
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endif

c***********************************************************************

c *

c Construct initial data mask. *

c *

c***********************************************************************

total=0

do j=1,nx

y=(j-0.5)-y0

do i=1,nx

x=(i-0.5)-x0

mask1(i,j)=1.

r2=x*x+y*y

if (r2 .gt. sinrho*sinrho*rsq) mask1(i,j)=0.

if (v(i,j) .eq. datamask) mask1(i,j)=0.

total=total+mask1(i,j)

mask2(i,j)=mask1(i,j)

enddo

enddo

write(*,*) ’Total unmasked pixels = ’,total

c***********************************************************************

c *

c Produce active region mask from magnetograms. *

c *

c***********************************************************************

c if (mhour .eq. ’00’) magnum=’0000’

c if (mhour .eq. ’01’) magnum=’0001’

c if (mhour .eq. ’02’) magnum=’0001’

c if (mhour .eq. ’03’) magnum=’0002’

c if (mhour .eq. ’04’) magnum=’0002’

c if (mhour .eq. ’05’) magnum=’0003’

c if (mhour .eq. ’06’) magnum=’0004’

c if (mhour .eq. ’07’) magnum=’0004’

c if (mhour .eq. ’08’) magnum=’0005’

c if (mhour .eq. ’09’) magnum=’0006’

c if (mhour .eq. ’10’) magnum=’0006’

c if (mhour .eq. ’11’) magnum=’0007’

c if (mhour .eq. ’12’) magnum=’0008’

c if (mhour .eq. ’13’) magnum=’0008’

c if (mhour .eq. ’14’) magnum=’0009’

c if (mhour .eq. ’15’) magnum=’0009’

c if (mhour .eq. ’16’) magnum=’0010’

c if (mhour .eq. ’17’) magnum=’0011’

c if (mhour .eq. ’18’) magnum=’0011’
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c if (mhour .eq. ’19’) magnum=’0012’

c if (mhour .eq. ’20’) magnum=’0012’

c if (mhour .eq. ’21’) magnum=’0013’

c if (mhour .eq. ’22’) magnum=’0014’

c if (mhour .eq. ’23’) magnum=’0014’

c

c call mdi_mag(nx,mday,magnum,bimage)

c

c bmask=50.

c call magmask(nx,bmask,bimage,mask2)

c

c call moremask(nx,mask2)

do j=1,nx

do i=1,nx

mask1(i,j)= mask1(i,j)*mask2(i,j)

enddo

enddo

write(*,*) ’Data masks constructed.’

vmax=-1.0e+30

vmin=1.0e+30

do j=1,nx

do i=1,nx

vtest=mask1(i,j)*v(i,j)

mask2(i,j)=0.

if (vtest .gt. vmax) vmax=vtest

if (vtest .lt. vmin) vmin=vtest

enddo

enddo

write(*,*) ’maximum velocity =’,vmax,’ minimum =’,vmin

c***********************************************************************

c *

c Remove velocity signal due to observer’s motion. *

c *

c***********************************************************************

call vfix(nx,v,x0,y0,rsq,angles,c0,cx,cy)

write(*,*) ’Data corrected for observers motion.’

vmax=-1.0e+30

vmin=1.0e+30

do j=1,nx

do i=1,nx

vtest=mask1(i,j)*v(i,j)
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if (vtest .gt. vmax) vmax=vtest

if (vtest .lt. vmin) vmin=vtest

enddo

enddo

write(*,*) ’maximum velocity =’,vmax,’ minimum =’,vmin

c***********************************************************************

c *

c Initial guess at spectral coefficients. *

c *

c***********************************************************************

t(1) = 1598.

t(2) = 10.2

t(3) = -24.8

t(4) = 0.0

t(5) = -4.4

s(1) = 0.0

s(2) = 14.0

s(3) = -4.0

s(4) = -5.0

s(5) = -1.0

cls(1) = 380.

cls(2) = 197.

cls(3) = 90.

cls(4) = 11.

cls(5) = 2.6

c***********************************************************************

c *

c Loop through determinations of spectral coefficients until they *

c converge so that values used in masked out areas agree with the rest *

c of the data. *

c *

c***********************************************************************

do j = 1, nx

do i = 1, nx

vtemp(i,j) = v(i,j)

enddo

enddo

do loop=1,1

write(*,*) ’loop’,loop

do j = 1, nx

do i = 1, nx

v(i,j) = vtemp(i,j)
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enddo

enddo

do i=1,5

c(i)=t(i)

c(5+i)=s(i)

c(10+i)=cls(i)

enddo

c***********************************************************************

c *

c Determine spectral coefficients for Limb Shift. *

c *

c***********************************************************************

call lshft(nx,v,mask1,x0,y0,rsq,angles,c,vls,cls)

write(*,*) ’Preliminary Limb Shift analysis completed.’

c***********************************************************************

c *

c Map data to heliographic coordinates. *

c *

c***********************************************************************

call heliomap(nx,v,mask1,x0,y0,rsq,angles,vmap,mask2)

write(*,*) ’Data mapped to heliographic coordinates.’

vmax=-1.0e30

vmin=1.0e30

do j=1,nx

do i=1,nx

vtest=vmap(i,j)*mask2(i,j)

if (vtest .gt. vmax) vmax=vtest

if (vtest .lt. vmin) vmin=vtest

enddo

enddo

write(*,*) ’maximum residual =’,vmax,’ minimum =’,vmin

c***********************************************************************

c *

c Determine spectral coefficients for Rotation. *

c *

c***********************************************************************

call rotation(nx,vmap,mask2,angles,c,vphi,t)

write(*,*) ’Rotation analysis completed.’

do l=1,15

write(*,*) ’t(’,l,’,0)=’,t(l)

enddo
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vmax=-1.0e30

vmin=1.0e30

do j=1,nx

do i=1,nx

vtest=vmap(i,j)*mask2(i,j)

if (vtest .gt. vmax) vmax=vtest

if (vtest .lt. vmin) vmin=vtest

enddo

enddo

write(*,*) ’maximum residual =’,vmax,’ minimum =’,vmin

c***********************************************************************

c *

c Determine spectral coefficients for Meridional Circulation. *

c *

c***********************************************************************

call mcirc(nx,vmap,mask2,angles,c,vtheta,s)

write(*,*) ’Meridional Circulation analysis completed.’

do l=1,15

write(*,*) ’s(’,l,’,0)=’,s(l)

enddo

vmax=-1.0e30

vmin=1.0e30

do j=1,nx

do i=1,nx

vtest=vmap(i,j)*mask2(i,j)

if (vtest .gt. vmax) vmax=vtest

if (vtest .lt. vmin) vmin=vtest

enddo

enddo

write(*,*) ’maximum residual =’,vmax,’ minimum =’,vmin

c***********************************************************************

c *

c Correct Limb Shift coefficients for presence of Meridional *

c Circulation. *

c *

c***********************************************************************

call lshftc(nx,vmap,angles,s,vls,cls)

write(*,*) ’Final Limb Shift analysis completed.’

do n=1,6

nm=n-1

write(*,*) ’cls(’,nm,’)=’,cls(n)

enddo

vmax=-1.0e30

vmin=1.0e30
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do j=1,nx

do i=1,nx

vtest=vmap(i,j)*mask2(i,j)

if (vtest .gt. vmax) vmax=vtest

if (vtest .lt. vmin) vmin=vtest

enddo

enddo

write(*,*) ’maximum residual =’,vmax,’ minimum =’,vmin

enddo

do n=1,nx

spcoef(n)=0.0

enddo

do n=1,15

spcoef(n)=t(n)

enddo

do n=1,15

spcoef(15+n)=s(n)

enddo

do n=1,6

spcoef(30+n)=cls(n)

enddo

c***********************************************************************

c *

c Write spectral coefficients to disk. *

c *

c***********************************************************************

ext = ’.txt1’

write(*,*) ’Writing output coefficients to ’,path,filename,ext

open(unit=3,file=filename // ext,

& status=’UNKNOWN’,access=’SEQUENTIAL’,form=’FORMATTED’)

do j=1,nx

write(3,101) spcoef(j),vphi(j),vls(j)

enddo

close(3)

101 format(1x,e13.6,1x,e13.6,1x,e13.6)

goto 10

9999 end
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MDI analysis2.for

program mdi_analysis2

c***********************************************************************

c *

c Analyzes Doppler velocity data to extract spectral coefficients *

c and velocity profiles. Input files include velocity and *

c intensity images and NSO magnetogram synoptic maps. Intensity is *

c used to determine image parameters (center coordinates x0 and y0, *

c radius, ellipticity, and orientation of elliptical figure for limb). *

c The magnetograms are used to produce a data mask which covers active *

c regions. *

c *

c Output includes a formatted file containing spectral coefficients *

c and a direct access file containing the individual spectral *

c components for reconstructing the velocity image. *

c *

c***********************************************************************

c dtype=1: Real; dtype=0: Fake

c parameter (nx=1024, lmaxp=1024, dtype=1)

parameter (nx=1024, lmaxp=1024, dtype=0)

complex*8 work1(2*nx),work2(lmaxp,nx)

real*4 v(nx,nx),vmap(nx,nx),vtemp(nx,nx)

real*4 vls(nx),vphi(nx),vtheta(nx),spcoef(nx)

real*4 mask1(nx,nx),mask2(nx,nx)

real*4 p(lmaxp),coef(lmaxp,lmaxp),spectrum(lmaxp,lmaxp)

real*4 t(8),s(8),cls(5)

real*4 pstar(5,nx)

real*4 c(15),angles(6)

character mday*4,mhour*4,magnum*4

byte buffer(2880)

c character path*16,filename*9,ext*5,hdr*2880,hdrrec*80

character path*1,filename*4,ext*5,hdr*2880,hdrrec*80

c path=’_’

c path=’d:\soidata\fake\’

pi=4.0*atan(1.0)

pihalf=pi/2.

dtheta=pi/nx

dphi=pi/nx

root3=sqrt(3.)

root5=sqrt(5.)

root7=sqrt(7.)
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datamask=-32768.

c***********************************************************************

c *

c Calculate matrix of coefficients for Associated Legendre polynomials.*

c *

c***********************************************************************

call plmcoef(lmaxp,coef)

write(*,*) ’Coefficients for Legendre polynomials calculated.’

c***********************************************************************

c *

c Fractional radius for limits of data analysis. *

c *

c***********************************************************************

sinrho = 0.99

c***********************************************************************

c *

c List of data files for analysis. *

c *

c***********************************************************************

open(unit=7,name=’analysis.inp’,status=’old’)

10 continue

read(7,1001,END=9999) filename

1001 format(a4)

c if (dtype .eq. 1) then

c mday=filename(1:4)

c mhour=filename(6:9)

c time = 1000.*(ichar(mday(1:1))-48.) - 1239. +

c & 100.*(ichar(mday(2:2))-48.) +

c & 10.*(ichar(mday(3:3))-48.) +

c & 1.*(ichar(mday(4:4))-48.) +

c & (10.*(ichar(mhour(3:3))-48.)+1.*(ichar(mhour(4:4))-48.))/96.

c write(*,*) ’Time in days = ’,time

c ext = ’.fits’

c write(*,*) ’Processing ’,path,filename,ext

cc***********************************************************************

c *

c Read in Doppler velocity array. *

c *

c***********************************************************************
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c open(unit=8,name=’temp.txt’,status=’old’)

c 1003 format(a19)

c 1004 format(g19.12)

c open(unit=9,name=path // filename // ext,status=’OLD’,

c & access=’direct’,recl=720)

c***********************************************************************

c *

c Read in header information. *

c *

c***********************************************************************

c do nrec=1,5

c read(9,rec=nrec) hdr

c do i=1,36

c hdrrec=hdr((i-1)*80+1:i*80)

c rewind(8)

c if (hdrrec(1:8) .eq. ’OBS_DIST’) then

c write(8,1003) hdrrec(12:30)

c rewind(8)

c read(8,1004) rdist_au

c endif

c if (hdrrec(1:6) .eq. ’OBS_B0’) then

c write(8,1003) hdrrec(12:30)

c rewind(8)

c read(8,1004) b0

c endif

c if (hdrrec(1:6) .eq. ’OBS_L0’) then

c write(8,1003) hdrrec(12:30)

c rewind(8)

c read(8,1004) clon

c endif

c if (hdrrec(1:6) .eq. ’OBS_VR’) then

c write(8,1003) hdrrec(12:30)

c rewind(8)

c read(8,1004) c0

c endif

c if (hdrrec(1:6) .eq. ’OBS_VN’) then

c write(8,1003) hdrrec(12:30)

c rewind(8)

c read(8,1004) cy

c endif

c if (hdrrec(1:6) .eq. ’OBS_VW’) then

c write(8,1003) hdrrec(12:30)

c rewind(8)

c read(8,1004) cx

c endif

c if (hdrrec(1:8) .eq. ’MAP_RSUN’) then
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c write(8,1003) hdrrec(12:30)

c rewind(8)

c read(8,1004) radius

c endif

c if (hdrrec(1:6) .eq. ’MAP_X0’) then

c write(8,1003) hdrrec(12:30)

c rewind(8)

c read(8,1004) x0

c endif

c if (hdrrec(1:6) .eq. ’MAP_Y0’) then

c write(8,1003) hdrrec(12:30)

c rewind(8)

c read(8,1004) y0

c endif

c if (hdrrec(1:6) .eq. ’BSCALE’) then

c write(8,1003) hdrrec(12:30)

c rewind(8)

c read(8,1004) bscale

c endif

c if (hdrrec(1:5) .eq. ’BZERO’) then

c write(8,1003) hdrrec(12:30)

c rewind(8)

c read(8,1004) bzero

c endif

c if (hdrrec(1:3) .eq. ’END’) goto 20

c enddo

c enddo

c 20 nskip=nrec

c close(8)

c***********************************************************************

c *

c Read in velocity array. *

c *

c***********************************************************************

c vmax=-1.0e+30

c vmin=1.0e+30

c***********************************************************************

c *

c Integer data *

c *

c***********************************************************************

c nrec=int((1024.*1024.)/1440.)

c do jrec=1,nrec

c read(9,rec=nskip+jrec) (buffer(icol),icol=1,2880)

c do k=1,1440

c nelem=(jrec-1)*1440 + k



156

c j=1+(nelem-1)/1024

c i=nelem-(j-1)*1024

c value=float(buffer(2*k)) + 256.*float(buffer(2*k-1))

c if (buffer(2*k) .lt. 0) value=value+256.

c v(i,j)=bzero+bscale*value

c if(v(i,j) .gt. vmax) vmax=v(i,j)

c if(v(i,j) .lt. vmin) vmin=v(i,j)

c enddo

c enddo

c close(9)

c s0 = 959.65/rdist_au

c cy = -cy*sin(s0*pi/(180.*3600.))

c cx = -cx*sin(s0*pi/(180.*3600.))

c datamask = -32768.*bscale + bzero

c***********************************************************************

c *

c Real*4 data *

c *

c***********************************************************************

c nrec=int((1024.*1024.)/720.)

c do jrec=1,nrec

c read(9,rec=nskip+jrec) (rbuffer(icol),icol=1,720)

c do k=1,720

c nelem=(jrec-1)*720 + k

c j=1+(nelem-1)/1024

c i=nelem-(j-1)*1024

c v(i,j)=rbuffer(k)

c if(v(i,j) .gt. vmax) vmax=v(i,j)

c if(v(i,j) .lt. vmin) vmin=v(i,j)

c enddo

c enddo

c close(9)

c***********************************************************************

c *

c Extrapolate c0, cx, and cy from data prior to day 1285. *

c *

c***********************************************************************

c if (time .ge. 1285.-1239.) then

c c0=242.36-2.607*time-0.03365*time*time

c cx=-135.028+0.03374*time-0.0002366*time*time

c cy=-16.6418-0.06437*time+0.002330*time*time

c endif

c***********************************************************************

c *

c Correct (x0,y0) for FORTRAN counting system ((1.,1.) at lower left). *

c *
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c***********************************************************************

c x0 = x0 + 1.0

c y0 = y0 + 1.0

c rsq=radius*radius

c**********************************************************************

c *

c Correct velocity signal for center-to-limb line variation. *

c *

c**********************************************************************

c jmin0=int(y0+1.-radius)

c jmax0=int(y0+radius)

c do j=jmin0,jmax0

c yp=(j-0.5)-y0

c hchord=sqrt(rsq-yp*yp)

c imin=int(x0+1.0-hchord)

c imax=int(x0+hchord)

c do i=imin,imax

c xp=(i-0.5)-x0

c rp=xp*xp+yp*yp

c r2=rp/rsq

c x=sqrt(r2)

c v(i,j)=(1.00+0.10*x*x*x)*v(i,j)

c enddo

c enddo

c***********************************************************************

c *

c Average spectral coefficients from analysis1. *

c *

c***********************************************************************

c t(1) = 1598.41-0.3140*time

c t(2) = 11.39-0.0983*time

c t(3) = -24.48-0.0042*time

c t(4) = -0.81+0.0005*time

c t(5) = -4.20-0.0012*time

c t(6) = -0.37-0.0067*time

c t(7) = -1.05-0.0052*time

c t(8) = -0.09+0.0044*time

c s(1) = 21.74-0.1850*time

c s(2) = 13.85-0.1060*time

c s(3) = -4.09+0.0515*time

c s(4) = -5.32+0.0898*time

c s(5) = -0.77-0.0225*time

c s(6) = 0.22-0.0258*time

c s(7) = -0.34+0.0030*time

c s(8) = -0.93+0.0107*time
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c cls(1) = 379.50-4.571*time

c cls(2) = 196.50-0.278*time

c cls(3) = 90.05+0.027*time

c cls(4) = 11.41+0.057*time

c cls(5) = 2.59-0.014*time

c endif

c***********************************************************************

c *

c fakedata *

c *

c***********************************************************************

if (dtype .eq. 0) then

ext=’.data’

c b0=-1.62895

b0=0.0

s0=959.65/1.0019

c0=0.0

c2=0.0

cx=0.0

cy=0.0

radius=502.0

rsq=radius*radius

x0=512.5

y0=512.5

ellips=1.0

eangle=0.0

pangle=0.0

open(unit=3,file= filename // ext,status=’OLD’,

& access=’direct’,recl=4*nx)

vmax=-1.0e+30

vmin=1.0e+30

do j=1,nx

read(3,rec=j) (v(i,j),i=1,nx)

do i=1,nx

if(v(i,j) .gt. vmax) vmax=v(i,j)

if(v(i,j) .lt. vmin) vmin=v(i,j)

enddo

enddo

close(3)

c***********************************************************************

c *

c Spectral coefficients from analysis1. *

c *

c***********************************************************************
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c***********************************************************************

c *

c Read spectral coefficients from disk. *

c *

c***********************************************************************

ext = ’.txt1’

write(*,*) ’Reading output coefficients from ’,path,filename,ext

open(unit=3,file= filename // ext,

& status=’OLD’,access=’SEQUENTIAL’,form=’FORMATTED’)

do j=1,8

read(3,101) const1,const2,const3

t(j)=const1

enddo

do j=1,7

read(3,101) const1,const2,const3

enddo

do j=1,8

read(3,101) const1,const2,const3

s(j)=const1

enddo

do j=1,7

read(3,101) const1,const2,const3

enddo

do j=1,5

read(3,101) const1,const2,const3

cls(j)=const1

enddo

close(3)

endif

sins0=sin(s0*pi/(180.*3600.))

ellips=1.0

eangle=0.0

pangle=0.0

angles(1)=s0

angles(2)=b0

angles(3)=pangle

angles(4)=eangle

angles(5)=ellips

angles(6)=sinrho

write(*,*) ’Semi-diameter, s0, in arc-seconds, is ’,s0

write(*,*) ’Rotation axis tilt, b0, in degrees, is ’,b0

write(*,*) ’************ observer motion *************’

write(*,*) ’ c0=’,c0
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write(*,*) ’ cx=’,cx

write(*,*) ’ cy=’,cy

fov=nx*s0/radius

write(*,*) ’************ image parameters *************’

write(*,*) ’ x0=’,x0

write(*,*) ’ y0=’,y0

write(*,*) ’ radius=’,radius

write(*,*) ’ pangle=’,pangle

write(*,*) ’ ellips=’,ellips

write(*,*) ’ eangle=’,eangle

write(*,*) ’Velocity max and min = ’,vmax,vmin

if (v(512-400,512) .gt. v(512+400,512)) then

do j=1,nx

do i=1,nx

v(i,j)=-1.*v(i,j)

enddo

enddo

endif

c***********************************************************************

c *

c Construct initial data mask. *

c *

c***********************************************************************

total=0

do j=1,nx

y=(j-0.5)-y0

do i=1,nx

x=(i-0.5)-x0

mask1(i,j)=1.

r2=x*x+y*y

if (r2 .gt. sinrho*sinrho*rsq) mask1(i,j)=0.

if (v(i,j) .eq. datamask) mask1(i,j)=0.

total=total+mask1(i,j)

mask2(i,j)=mask1(i,j)

enddo

enddo

write(*,*) ’Total unmasked pixels = ’,total

c***********************************************************************

c *

c Produce active region mask from magnetograms. *

c *
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c***********************************************************************

c if (mhour .eq. ’00’) magnum=’0000’

c if (mhour .eq. ’01’) magnum=’0001’

c if (mhour .eq. ’02’) magnum=’0001’

c if (mhour .eq. ’03’) magnum=’0002’

c if (mhour .eq. ’04’) magnum=’0002’

c if (mhour .eq. ’05’) magnum=’0003’

c if (mhour .eq. ’06’) magnum=’0004’

c if (mhour .eq. ’07’) magnum=’0004’

c if (mhour .eq. ’08’) magnum=’0005’

c if (mhour .eq. ’09’) magnum=’0006’

c if (mhour .eq. ’10’) magnum=’0006’

c if (mhour .eq. ’11’) magnum=’0007’

c if (mhour .eq. ’12’) magnum=’0008’

c if (mhour .eq. ’13’) magnum=’0008’

c if (mhour .eq. ’14’) magnum=’0009’

c if (mhour .eq. ’15’) magnum=’0009’

c if (mhour .eq. ’16’) magnum=’0010’

c if (mhour .eq. ’17’) magnum=’0011’

c if (mhour .eq. ’18’) magnum=’0011’

c if (mhour .eq. ’19’) magnum=’0012’

c if (mhour .eq. ’20’) magnum=’0012’

c if (mhour .eq. ’21’) magnum=’0013’

c if (mhour .eq. ’22’) magnum=’0014’

c if (mhour .eq. ’23’) magnum=’0014’

c

c call mdi_mag(nx,mday,magnum,bimage)

c

c bmask=50.

c call magmask(nx,bmask,bimage,mask2)

c

c call moremask(nx,mask2)

do j=1,nx

do i=1,nx

mask1(i,j)= mask1(i,j)*mask2(i,j)

enddo

enddo

write(*,*) ’Data masks constructed.’

vmax=-1.0e+30

vmin=1.0e+30

do j=1,nx

do i=1,nx

vtest=mask1(i,j)*v(i,j)
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mask2(i,j)=0.

if (vtest .gt. vmax) vmax=vtest

if (vtest .lt. vmin) vmin=vtest

enddo

enddo

write(*,*) ’maximum velocity =’,vmax,’ minimum =’,vmin

c***********************************************************************

c *

c Remove velocity signal due to observer’s motion. *

c *

c***********************************************************************

call vfix(nx,v,x0,y0,rsq,angles,c0,cx,cy)

write(*,*) ’Data corrected for observers motion.’

vmax=-1.0e+30

vmin=1.0e+30

do j=1,nx

do i=1,nx

vtest=mask1(i,j)*v(i,j)

if (vtest .gt. vmax) vmax=vtest

if (vtest .lt. vmin) vmin=vtest

enddo

enddo

write(*,*) ’maximum velocity =’,vmax,’ minimum =’,vmin

c***********************************************************************

c *

c Remove convective blue shift

c *

c***********************************************************************

cosea=cos(eangle*pi/180.)

sinea=sin(eangle*pi/180.)

dxx=1./(nx-1.)

jmin0=y0+1.-radius

jmax0=y0+radius

do k=1,nx

xx=(k-1.)*dxx

pstar(1,k)=1.

pstar(2,k)=root3*(2.*xx-1.)

pstar(3,k)=root5*(6.*xx**2-6.*xx+1.)

pstar(4,k)=root7*(20.*xx**3-30.*xx**2+12.*xx-1.)

pstar(5,k)=3.*(70.*xx**4-140.*xx**3+90.*xx**2.-20.*xx+1.)

enddo

do j=jmin0,jmax0

hchord=sqrt(rsq-(j-0.5-y0)*(j-0.5-y0))
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imin=x0+1.0-hchord

imax=x0+hchord

do i=imin,imax

x=(i-0.5-x0)*cosea+(j-0.5-y0)*sinea

y=((j-0.5-y0)*cosea-(i-0.5-x0)*sinea)/ellips

xx=(x*x+y*y)/rsq

if(xx .le. 1.)then

xvar=1.-sqrt(1.-xx)

k=1.5+xvar*(nx-1.)

do n=1,5

v(i,j)=v(i,j)-cls(n)*pstar(n,k)

enddo

endif

enddo

enddo

write(*,*) ’Convective Blue Shift removed.’

c***********************************************************************

c *

c Map data to heliographic coordinates. *

c *

c***********************************************************************

call heliomap(nx,v,mask1,x0,y0,rsq,angles,vmap,mask2)

write(*,*) ’Data mapped to heliographic coordinates.’

vmax=-1.0e30

vmin=1.0e30

do j=1,nx

do i=1,nx

vtest=vmap(i,j)*mask2(i,j)

if (vtest .gt. vmax) vmax=vtest

if (vtest .lt. vmin) vmin=vtest

enddo

enddo

write(*,*) ’maximum residual =’,vmax,’ minimum =’,vmin

c***********************************************************************

c *

c Remove Rotation and meridional circulation signals

c *

c***********************************************************************

cosrho=sqrt(1.-sinrho*sinrho)

sr=s0*pi/(180.*3600.)

cosb0=cos(b0*pi/180.)

sinb0=sin(b0*pi/180.)

rho=asin(sinrho)
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bmax=b0*pi/180.+rho

if (bmax .gt. pi/2.) bmax=pi/2.

bmin=b0*pi/180.-rho

if (bmin .lt. -pi/2.) bmin=-pi/2.

jmin=nx*((pi/2.+bmin)/pi)+1

jmax=nx*((pi/2.+bmax)/pi)

jmin=nx*((pihalf+bmin)/pi)+1

jmax=nx*((pihalf+bmax)/pi)

do j=jmin,jmax

theta=pi-(j-0.5)*dtheta

sinb=cos(theta)

cosb=sin(theta)

cosphi=(cosrho-sinb0*sinb)/(cosb*cosb0)

if (cosphi .lt. 0.) cosphi=0.0

if (cosphi .gt. 1.) cosphi=1.0

phimax=acos(cosphi)

i1=nint(nx/2.+0.5-nx*phimax/pi)

i2=nint(nx/2.+0.5+nx*phimax/pi)

call plm16(1,sinb,p)

utemp1=0.

utemp2=0.

do l=1,8

utemp1=utemp1+t(l)*sqrt(l*(l+1.))*p(l+1)

utemp2=utemp2-s(l)*sqrt(l*(l+1.))*p(l+1)

enddo

do i=i1,i2

phi=(i-0.5)*dphi-pihalf

vmap(i,j)=vmap(i,j)-utemp1*cosb0*sin(phi)

vmap(i,j)=vmap(i,j)-utemp2*(sinb0*cosb-cosb0*sinb*cos(phi))

enddo

enddo

vmax=-1.0e30

vmin=1.0e30

do j=1,nx

do i=1,nx

vtest=vmap(i,j)*mask2(i,j)

if (vtest .gt. vmax) vmax=vtest

if (vtest .lt. vmin) vmin=vtest

enddo

enddo

write(*,*) ’maximum residual =’,vmax,’ minimum =’,vmin

c***********************************************************************

c *
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c Smooth mask edges prior to Legendre transform. *

c *

c***********************************************************************

call smthmask(nx,mask2,mask1)

write(*,*) ’Data mask smoothed for Legendre transform.’

c***********************************************************************

c *

c Determine spectral coefficients for non-axisymmetric components up *

c to maximum degree l=lmaxp-1. *

c *

c***********************************************************************

call plmxform(nx,vmap,mask2,lmaxp,p,coef,angles,work1,work2,

& spectrum)

write(*,*) ’Legendre transform completed.’

c***********************************************************************

c *

c Write spectral coefficients to disk. *

c *

c***********************************************************************

ext = ’.spec’

write(*,*) ’Writing spectrum to ’,path,filename,ext

open(unit=2,file= filename // ext,

& status=’unknown’,access=’direct’,recl=4*lmaxp)

do j=1,lmaxp

write(2,rec=j) (spectrum(i,j),i=1,lmaxp)

enddo

close(2)

c***********************************************************************

c *

c Write spectral coefficients to disk. *

c *

c***********************************************************************

ext = ’.txt1’

write(*,*) ’Reading output coefficients from ’,path,filename,ext

open(unit=3,file= filename // ext,

& status=’OLD’,access=’SEQUENTIAL’,form=’FORMATTED’)

do j=1,nx

read(3,101) spcoef(j),vphi(j),vls(j)

enddo

close(3)

do l=0,nx-22

spcoef(l+22)=0.

do m=0,l
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spcoef(l+22)=spcoef(l+22)+spectrum(l+1,m+1)*spectrum(l+1,m+1)

enddo

enddo

ext = ’.text’

write(*,*) ’Writing output coefficients to ’,path,filename,ext

open(unit=3,file= filename // ext,

& status=’UNKNOWN’,access=’SEQUENTIAL’,form=’FORMATTED’)

do j=1,nx

write(3,101) spcoef(j),vphi(j),vls(j)

enddo

close(3)

101 format(1x,e13.6,1x,e13.6,1x,e13.6)

goto 10

9999 end
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Supergranule superrotation

Stop

Produce fake MDI Doppler 
velocity maps including axisymmetric

and non-axisymmetric flows

Correlate subsequently produced
images to calculate rotation rates
over a range of solar latitudes 

Create synthetic photospheric
convection spectrum and extract 

radial and poloidal spectral coefficients

Start

Calculate spectral coefficients
for axisymmetric flows

Use calculated spectral coefficients to
remove axisymmetric flows and remove

other unwanted velocity components

Spatially filter Doppler images to extract
convection flows of a specific size range

Make fake spectrum

MDI fake

MDI analysis1

MDI analysis2

MDI maps

Fake feature rotation
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Rossby Hills Identified as Supergranules

Stop

Produce time-series of heights
at the solar limb from fake MDI 

radial velocity data maps

Create synthetic photospheric
convection spectrum and extract 

radial and poloidal spectral coefficients

Start

Transform height data into 
temporal and spatial frequency data.

Produce power spectra and time
rate of features crossing the limb.

Make fake spectrum

MDI fake surface

Fake limb shape
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[4] E. Böhm-Vitense, Introduction to Stellar Astrophysics, Volume 3: Stellar Structure

and Evolution. Cambridge, UK: Cambridge University Press, 1992.

[5] M. Schwarzschild, Structure and Evolution of the Stars. Cambridge, UK: Cam-

bridge University Press, 1958.

[6] G. O. Abell, D. Morrison, and S. C. Wolff, Realm of the Universe (Fifth Edition).

Philadelphia, USA: Saunders College Publishing, 1994.

[7] (2007, June) Eso Press Releases - Hertzsprung-Russell diagram. [Online]. Available:

http://www.eso.org/public/outreach/press-rel/pr-2007/phot-28-07.html

[8] I. J. Sackmann, A. I. Boothroyd, and K. E. Kraemer, “Our Sun. III. Present and

Future,” Astrophysical Journal, vol. 418, pp. 457–468, 1993.
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