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ABSTRACT 

 

ERROR CORRECTION METHODS FOR LATENCY-CONSTRAINED 

FLASH MEMORY SYSTEMS 

 

 

Priyanka Ankolekar, M.S. 

 

The University of Texas at Arlington, 2008 

 

Supervising Professor:  Jonathan Bredow 

 Maintaining the reliability of data stored in Flash devices and reading it correctly has 

become a challenge as the demand for higher density is forcing aggressive shrinking of Flash 

architectures. For all Flash systems, especially latency-constrained NOR Flash, an on-chip error 

correction code (ECC) is the only viable and robust solution to this problem.   

This thesis investigates and optimizes low-latency error correction schemes for on-chip 

implementation in NOR systems using existing error correction methods as a starting point. As 

the first step towards doing this, a mathematical relation has been derived to compute the bit 

error rate (BER) of a memory array using technology-specific voltage distribution curves. The 

required error correction capacity is calculated using the BER of the memory array. Current on-

chip error correction (ECC) schemes in NOR Flash consist of a single error correcting Hamming 

code. However, for emerging Flash devices single bit error correction does not suffice to 

maintain data reliability. This problem has been addressed by analyzing and optimizing existing 

ECC schemes for low latency and minimal hardware and parity overhead while achieving at 
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least 2-bit error correction. One of the proposed algorithms is a dual bit Hamming code which 

uses the Hamming code for 2-bit error detection and correction. Another optimized scheme, 

called Hierarchical BCH, makes effective use of the fast and simple Hamming code to correct 

frequently occurring single bit errors and the multi error correction BCH code to correct higher 

order errors in the rare case when the Hamming code detects a 2-bit error. This scheme gives 

an average latency of around 4ns while improving the array BER from 10-7 to 10-15. Thus all 

these methods have been quantitatively proven to be applicable in latency-constrained 

eXecute-in-Place (XiP) NOR Flash systems. 
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CHAPTER 1 

INTRODUCTION 

1.1. Data Reliability in Flash Memory 

 Flash technology is the fastest growing semiconductor business because the 

embedded devices market and especially mobile devices require a substantial amount of fast, 

non-volatile, solid-state storage having high densities. Flash memory is indispensable in battery-

powered applications like cell phones, cars, printers, networking equipment, set-top boxes, 

high-definition TVs, games and other consumer electronics. The increasing complexity of and 

demand for these products along with an enormous price pressure forces aggressive shrinking 

of device geometries as well as increasing storage capacities per area by storing multiple bits in 

each memory cell through multi-level cell (MLC) architectures for Flash memories.  

These advances in increasing stored information per unit area by storing multiple bits 

as different charge levels in a memory cell result in a significant technical challenge in storing 

and detecting bits. Increased density leads to an increase in the Bit Error Rate (BER) of 

memory devices. This BER is affected by common disturb mechanisms such as silicon defects, 

cross-coupling, charge loss (or gain) over time. Bit disturb mechanisms increasingly affect data 

reliability and need to be compensated for with new methods as currently used solutions are not 

adequate anymore. For system stability it is mandatory to maintain some maximum BER. 

 There are two main approaches to achieve a suitable BER in a Flash memory array. 

One approach is making designs adaptable to technology errors. However, an extensive debug 

phase extends the overall design cycle of the product affecting the cost adversely and resulting 

in a loss in market opportunity. This method requires research on a per product basis and 

therefore is impractical for cost reasons. 
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 The second approach is to correct bit errors in real-time using error correction codes 

(ECCs). Error correction methods reconstruct lost information by adding redundancy to the 

stored information. They can be implemented in a controller outside the memory device or on-

chip with the memory array itself. The controller external to the memory chip can allow an area-

efficient implementation of the algorithm. But controllers designed for NOR Flash memory 

devices do not have the infrastructure for supporting an ECC implementation making this a non-

viable option.  

This makes on-chip ECC the only solution. Only simple ECC algorithms can be 

implemented in the memory device because typical memory technologies do not easily support 

the efficient integration of large scale digital circuits. Ideally less complex ECC algorithms 

provide low latency access to the memory array and thus do not interfere with the software 

model of the memory system. The advantage of applying ECC on the memory device is that, 

differently from controller-based ECC, ECC-requirements of the memory, like low latency and 

low hardware and parity overhead, can be matched with the complexity of the applied ECC 

algorithm. The disadvantage is the limitation to low-complexity (and typically low-latency) ECC 

algorithms. 

Advancements in Flash technology demand an improvement in and optimization of the 

methods used to protect and correct stored bits. This thesis addresses this problem in low 

latency NOR Flash memories in the following manner: 

The causes for failures in Flash memory have been studied and related technology 

data has been used to extract error probabilities for a given memory array. These probabilities 

help determine the bit error rate for the memory array. The computed bit error rate (BER) has 

been used to quantify the exact requirements for an on-chip ECC implementation in NOR Flash. 

These requirements are low latency, required error correction capacity, a low gate count (in 

case of a hardware implementation) and a parity overhead that matches the ‘spare’ area 

available in the array (Spare area in a given memory array is a fixed area consisting of a certain 
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fixed number of bits that are not available for use by the consumer. This area can be used to 

store ECC redundancy computed internally in the memory device. As long as the ECC 

redundancy is less than or equal to the number of bits in the spare area, it does not add any 

additional bit overhead). These requirements are used as the basis for comparison of relevant 

published error detection/ correction (EDC/ECC) algorithms. This study helps to identify 

shortcomings in existing algorithms with regards an on-chip implementation in low-latency Flash 

systems. Existing algorithms are optimized in the light of these shortcomings to adhere to NOR 

Flash requirements and constraints. It is found that there is a trade-off between the error 

correction capacity of the algorithm, hardware complexity, latency and data overhead. 

Giving primary consideration to low latency and high error correction capacity followed 

by a low hardware complexity and data overhead, a system-level implementation is proposed 

for each recommended solution. Every implementation is evaluated in terms of latency, 

bandwidth impact, die size and scalability across generations.  This helps to arrive at optimum 

solutions for ECC algorithms that can be applied to improve data reliability in low-latency NOR 

Flash memories as device geometries become smaller. 
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CHAPTER 2 

FLASH MEMORY AND FAILURE MECHANISMS 

2.1. Flash Memory Architectures 

Flash memory is nonvolatile (NVM) memory that can be electrically erased and 

programmed.  

 

2.1.1 Conventional Flash Technology 

Information is stored in a Flash memory in an array of memory cells consisting of 

floating gate transistors. A floating gate transistor is a MOSFET having two gates – a control 

gate (CG) and a floating gate (FG). The floating gate is completely surrounded by the dielectric 

layer. Hence charge trapped on it remains unchanged for extended periods of time. This charge 

alters the threshold voltage (Vt) [5] of the transistor. To read data, a voltage is applied to the 

control gate. The presence (logical ‘0’) or absence (logical ‘1’) of current through the channel 

helps detect the stored bit. Figure 2.1 shows a floating gate transistor. 

 

Figure 2.1 The Conventional Memory Cell – A Floating Gate Transistor [12] 
 
2.1.2 Flash Architectures 

A single memory cell can store one or more bits of data. A cell which stores a single 

data bit is called a single level cell (SLC) while one which stores more than one bit is a 

multilevel cell (MLC). MLCs store multiple bits per cell by storing varying amounts of charge for 

each bit pattern. Therefore, in MLCs, the amount of current flow is sensed, rather than the mere 
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presence or absence of it as in SLCs, in order to determine the level of stored charged. Figure 

2.2 shows the threshold voltage distributions in (a) single level cells and (b) multilevel cells. 

(b) 

(a) 

 

Figure 2.2 Transistor threshold voltage distributions of cells in  

(a) an SLC array (b) a 2 bits/cell MLC array 

 
2.1.3 Spansion MirrorBit® Flash Technology 

Spansion’s MirrorBit® Flash technology physically stores two independent bits on a 

single cell. This makes it an SLC technology that can store multiple bits per cell. In a MirrorBit 

cell (Figure 2.3) data is stored as charge trapped in a thin insulating oxide-nitride-oxide (ONO) 

layer over the junction edges of MOSFET transistors (Note – In a floating gate transistor charge 

is trapped on a conducting gate terminal). The cell is programmed by injecting channel hot 

electrons (CHE) into the ONO layer and is erased by band-to-band-generated tunnel-assisted 

hot hole injection (HHI). The stored charge is sensed by reversing the role of the source and the 
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drain relative to programming conditions and reading the cell current [2]. Since charge can be 

stored on both sides of the transistor two-bit operation per cell is attained [3, 4]. 

 

Figure 2.3 A MirrorBit cell 

 
MirrorBit architecture involves storing two bits (MirrorBit) or four bits (MirrorBit Quad) 

per cell. Thus a single MirrorBit cell can store at least 4 (2 bits/cell) up to 16 (4 bits/cell) levels of 

charge. This significantly improves the storage density. At smaller geometries, for example, 

45nm or 32nm, the ONO layer can store a mere few hundred electrons making it difficult to read 

the amount of stored charge. Therefore read errors are inherent to Flash technology.  

 

2.1.4 Types of Flash memory: NAND and NOR 

Flash memories are classified as – NAND and NOR Flash. These two types differ in the 

manner in which individual memory cells are connected [13]. Table 2.1 compares NAND and 

NOR Flash operation. 
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Table 2.1 Comparing NAND and NOR Flash memory 

Parameter NOR NAND 

Density 1Mbit – 1Gbit 64Mbit – 16 Gbit (or 
higher) 

Read initial access 80ns 20,000ns 
Program 2 Mbytes/s 10 Mbytes/s 

Erase 2 Mbytes/s Very high 
Access method Random Sequential 

 

 
2.1.5 NOR XiP Execution Model 

  Random read accesses in NOR result in a very low initial read access time (~80ns) in 

comparison with sequential access NAND (~20,000ns). Therefore NOR is used for code 

storage and execution while NAND is used for data storage purposes. NOR is used in eXecute-

in-Place (XiP) execution models (Figure 2.4) for code storage and execution. In such a model, 

the processor executes code directly from memory without copying it into RAM and then 

executing it. This makes for faster execution of codes while minimizing the RAM requirement of 

the system resulting in an overall reduction in cost. The XiP Execution Model combines high 

performance read with relatively inexpensive storage. 

CPU

DRAM

NOR Flash 
memory

Code Data

DRAM: fast write 

NOR: XiP = fast random read 

 

Figure 2.4 NOR XiP Execution model 
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2.2 Flash Memory Failure Mechanisms 

2.2.1  Narrowing of the threshold voltage window 

The gate dielectric layer has point defects in which charges get trapped. These trapped 

charges may migrate and redistribute between traps due to thermal activation. This 

redistribution may change the threshold voltage (Vt) of the cell ultimately leading to a read error 

[1]. During an erase cycle, holes are injected into the ONO layer. In the subsequent 

programming step some holes stay and accumulate from cycle to cycle [1]. This degrades the Vt 

of the cell. The difference between the threshold voltages of a stored 0 and a 1 is called the Vt-

window. It is also known as the Complementary Bit Disturb (CBD) window because if this 

window reduces so that the threshold voltages of 1 and 0 overlap, a 1 may be read as a 0 and 

vice versa. 

 

Vt/CBD window

 

Figure 2.5 Vt/Complementary Bit Disturb window – ideal Vt distributions 

 
2.2.2  Widening of charge distributions 

Figure 2.5 illustrates the ideal distributions of the Vt of the cells having a 1 and a 0 

respectively. In reality, all the cells storing a 1 (or a 0) do not have the same Vt, their Vt values 

deviate from the ideal (Figure 2.2). This results in a Vt distribution as shown in Figure 2.6. 

Vt1

# cells 

Vt0 Threshold voltage 
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Figure 2.6 Actual Vt distributions of cells storing a ‘1’ and a ‘0’ respectively 

As the number of programming cycles increases, trapped charges alter the Vt – 

distributions shown in Figure 2.6. The distributions widen. This widening of distributions along 

with the narrowing of the Vt window results in an overlap of the ‘1’ and ‘0’ voltage distribution 

curves (Figure 2.7). If a programmed or erased bit lies in the overlap region, there is a read 

error. 

 

Figure 2.7 Overlap of Vt distributions of cells containing ‘1’ and ‘0’ 

 
2.2.3 Single bit charge loss/gain 

Single bit charge gain (SBCG) typically occurs after some program-erase cycling. It 

results in a very small number of cells having a large threshold voltage shift from the normal 

distribution. It has been attributed to localized defects in the tunnel oxide [6-8]. Such bits are 

called ‘tail’ bits because they lie at the ends of the voltage distribution curves. This effect is 

Vt1 Vt0Vref
Threshold 

voltage

# cells

Vt1 Vt0

# cells

Threshold 
voltageVref
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commonly associated with the transient charging and discharging of cycling induced traps in the 

tunnel oxide [9], [10].  

There are primarily three failure mechanisms in MLC Flash memory devices causing 

random bit errors which affect the reliability of stored data particularly as device geometries 

become smaller (for example, 45nm or 32nm). 

 

2.3 Standard Approaches against Flash Failures 

Data reliability issues in Flash memory are currently being addressed in three ways: by 

using dynamic reference voltage tracking, compensating technology errors in design cycles and 

using error correction codes. 

 

2.3.1  Dynamic Reference Voltage Tracking 

Bit failures caused by narrowing and shifting of the CBD window can be mitigated to a 

certain extent by using a dynamic reference tracking scheme. In this method, the reference 

(Vref) of the voltage distributions is made dynamic so that it varies in accordance with the shift in 

the distribution curves. The dynamic reference is computed by taking an average of three 

voltages – Vt of a cell containing a ‘1’, a ‘0’ and a read reference cell. The read reference cell is 

set to a predetermined Vt value at wafer sort that distinguishes erased bits from programmed 

bits. The result is a reference curve over a period of time instead of a fixed reference line or 

point. So Figure 2.7 is redrawn as Figure 2.8.  
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Figure 2.8 Dynamic reference curve 
 

2.3.2  Compensating Technology Errors in Design Cycles 

This method involves in-depth, hence prolonged, research on a per product basis to 

compensate for failure mechanisms for individual designs. Each design is analyzed for possible 

failure mechanisms and solutions are proposed to eliminate or minimize their effect. This results 

in increased design cycles which has an unfavorable impact on the cost of and the time taken to 

market the product. 

 

2.3.3  Using Error Correction Codes (ECCs) 

An ECC algorithm can be applied on the controller of the Flash system or on the Flash 

memory chip itself. 

An error correction algorithm can be implemented on a controller which is part of the 

system architecture but external to the memory chip. The ECC algorithm reconstructs lost 

information by adding redundancy to the stored data. 

This technique allows large scale integration which supports an area effective 

implementation of ECC algorithms. It is easy to implement robust and more sophisticated ECC 

algorithms, but at the cost of a significant increase in read latencies. Therefore, it works well for 

storage-optimized devices where longer read latencies are acceptable. There are techniques to 

Vt1(mean) Vt0(mean)

Ref curve

# cells 

Threshold voltage 
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reduce the read latencies for a controller-based ECC, but for XiP or code-optimized Flash 

memories the infrastructure for implementing an ECC algorithm on the controller does not exist. 

This makes an on-chip ECC the only choice. The major advantage of an on-chip ECC is 

the algorithm hardware can be scaled down along with the device. On the flip side, complex 

ECC algorithms cannot be implemented easily as they require large digital circuits. Besides, 

since the algorithm is on-chip, read latencies have to be kept very small. Therefore the 

algorithms should be simple. Thus the ECC requirements of the memory can be matched with 

the complexity of the applied ECC algorithm. Therefore, on-chip ECC is the preferred 

implementation for latency constrained XiP NOR Flash. Software algorithms can also be 

implemented on-chip due to the presence of an on-chip 8051-like microcontroller.  

On-chip ECC in NOR Flash memory should be constrained to achieve a low latency – 

typically 10ns, a low implementation complexity which translates to a low gate count (< 5000 

NAND gates) in case of hardware and minimal RAM footprint in case of software and most 

importantly, a target bit error rate ~10-15 for the memory array. 

 

2.4 Defining Bit Error Rate as a Measure for Failures 

The raw BER of the array should be known accurately in order to decide the error 

correction capacity of a given ECC algorithm needed to achieve the required target BER (~10-

15). The BER prior to using ECC can be computed using the technology data which is plotted as 

voltage distribution curves for the memory array (Section 2.1). The aggregate error distribution 

function is defined using the ‘1’ and ‘0’ threshold voltage distribution as a function of the number 

of programming cycles. The reference voltage varies dynamically as the voltage distribution for 

the array changes. Based on this distribution and the consequent variation of the reference 

(Vref), a formula is derived to compute the BER for a given Flash device. Six cases have been 

considered. 
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2.4.1  Case 1 – The General Case 

In general the 1 and 0 distribution curves overlap. The reference voltage is in the middle 

of the overlap region (Figure 2.9). 

 

#cells 

Threshold 
Voltage 

Figure 2.9 General case for calculation of raw array BER using a dynamic reference voltage 

The region in green consists of all the erased (1) bits which are read as a 0 while the 

region in red represents the programmed (0) bits which are read as a 1. At any given time, a 

read error occurs in a cell if and only if: 

i. (program a ‘0’) AND (programmed cell lies in the red region) or 

ii. (erase/write a ‘1’) AND (erased cell lies in the green region) 

Consider (i): 

P(‘0’ read as a ‘1’) 

= P(program ‘0’ ,  Vt0 < Vref) 

= {Area (red region)} / {Area (Vt0 curve) distribution}  

= { } / { }       (2-1) ∫
r

tt

V

V

dVVP
min0

00)( ∫
max0

min0

0 0)(
V

V

tdVVP t

Taking into account statistical variability in the decision threshold (reference) voltage Vref, this 

becomes, 
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P(‘0’ read as a ‘1’) = { }    (2-2) ∫ <
maxr

minr

refrefref0t

V

V

dV)V(P)VV|'0'program(P

Similarly, for (ii)  

P(‘1’ read as a ‘0’) 

= P(erase/write ‘1’ , Vt1 > Vref) 

= {Area (green region)}/{Area (Vt1 curve)} 

= { } / {  }       (2-3) ∫
max1

11)(
V

V

tt

r

dVVP ∫
max1

min1

11)(
V

V

tt dVVP

Taking into account statistical variability in the decision (reference) threshold voltage (Vref), this 

becomes, 

P(‘1’ read as a ‘0’) = { }    (2-4) ∫ >
maxr

minr

refrefref1t

V

V

dV)V(P)VV|'1'program(P

2.4.2  Case 2 – Voltage Distributions at Start of Life 

Figure 2.10 is a representation of the distribution at the start of life of the device. The 1 

and 0 threshold voltage distributions are very tight and do not overlap each other. The resulting 

reference voltage (Vref) also lies approximately at the center of the CBD window. Therefore 

there are no read errors possible in this case.  

    BER = 0     (2-5) 

 

 

Figure 2.10. Threshold voltage distributions across the memory array at the start of life 
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2.4.3  Case 3 – Non-overlapping distributions: ‘1’ read as ‘0’ 

#cells 

Threshold Voltage 

Figure 2.11. Read error in non overlappin

This (Figure 2.11) is a special case of 

distributions for ‘0’ and ‘1’ do not overlap each o

distribution. The cells that lie towards the right of V

as a 0. The probability of a cell containing ‘1’ being r

P(‘1’ read as ‘0’) 

= P(erase/write ‘1’ , Vt1 > Vref) 

= {Area (green region)}/{Area (Vt1 curve)} 

= { } / { / }   ∫
max1

11)(
V

V

tt

r

dVVP ∫
max1

min1

11)(
V

V

tt dVVP

Accounting for the statistical variability in the decisio

P(‘1’ read as a ‘0’) = { ∫ >
maxr

minr

refref1t

V

V

)V(P)VV|'1'program(P

 
15
curve
curve
 

g distributions (‘1’ read as a ‘0’) 

Case 1. Although the threshold voltage 

ther, the computed Vref lies within the ‘1’-

ref in the shaded region are incorrectly read 
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    (2-6) 

n threshold voltage (Vref), 

}    (2-7) refdV



 

2.4.4  Case 4 - Non-overlapping distributions: ‘0’ read as ‘1’ 

 

#cells 

curve 

Threshold voltage 

curve 

Figure 2.12. Read error in non overlapping distributions (‘0’ read as a ‘1’) 

 

This is similar to Case 3. Here the reference lies within the Vt0 distribution. All the cells 

lying to the left of Vref in the red region are read as ‘1’ instead of a ‘0’. The probability of this read 

error is 

P(‘0’ read as ‘1’) 

= P(program ‘0’ , Vt0 < Vref) 

= {Area (red region)} / {Area (Vt0 curve)} 

= { } / { / }        (2-8) ∫
rV

V

tt dVVP
min0

00)( ∫
max0

min0

00)(
V

V

tt dVVP

However, since the decision threshold voltage (Vref) varies over the lifetime of the device, 

P(‘0’ read as ‘1’) = { }     (2-9) ∫ <
maxr

minr

refrefref0t

V

V

dV)V(P)VV|'0'program(P

 

2.4.5  Case 5 – Overlapping distributions: ‘1’ read as ‘0’ 

This is similar to Case 3. The difference is the overlap between the threshold voltage 

distributions for cells containing ‘1’s and ‘0’s respectively. A read error occurs if a stored ‘1’ is 

read as a ‘0’, i.e. the memory cell lies in the green region of the distribution. 
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Figure 2.13. Read error in overlapping Vt distributions (‘1’ read as a ‘0’) 

The probability of error is given by: 

P(‘1’ read as a ‘0’) = P(erase/write ‘1’ , Vt1 > Vref) 

= {Area (green region)}/{Area (Vt1 curve)} 

= { } / { / }       (2-10) ∫
max1

11)(
V

V

tt

r

dVVP ∫
max1

min1

11)(
V

V

tt dVVP

Considering the statistical variability of Vref, 

P(‘1’ read as a ‘0’) = }    (2-11) ∫ >
maxr

minr

refrefref1t

V

V

dV)V(P)VV|'1'program(P

 

 

2.4.6  Case 6 – Overlapping distributions: ‘0’ read as ‘1’ 
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Figure 2.14. Read error in overlapping distributions (‘0’ read as a ‘1’) 
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 This case is similar to Case 4. The probability of a ‘0’ read as a ‘1’ is: 

P(‘0’ read as a ‘1’) 

= P(program ‘0’ , Vt0 < Vref) 

= {Area (red region)} / {Area (Vt0 curve)} 

= { } / { / }       (2-12) ∫
rV

V

tt dVVP
min0

00)( ∫
max0

min0

00)(
V

V

tt dVVP

Accounting for a variable decision threshold voltage, Vref, 

P(‘0’ read as a ‘1’) = }    (2-13) ∫ <
maxr

minr

refrefref0t

V

V

dV)V(P)VV|'0'program(P

 

Thus a mathematical relation has been developed to compute the current bit error rate 

using threshold voltage distributions in an array for all possible read error conditions that can 

occur in Flash memory. 

  

XiP type NOR uses MLC architectures at smaller geometries. These are highly prone to 

bit disturbs. The bit error rate for a given memory array can be computed mathematically using 

technology data. Error correction codes are one of the important methods used to maintain data 

reliability by keeping the BER below 10-15. The low latency requirements of XiP NOR make a 

low-complexity on-chip ECC the preferred choice. Hamming codes and binary BCH codes are 

well suited for implementing as on-chip ECC for NOR Flash memory. 

Hamming codes are the simplest error correcting block codes. They provide single bit 

error ECC and 2-bit error detection (EDC) (Section 3.1). These codes and their implementation 

as an on-chip ECC in Flash has been discussed in [31, 32].  [31] shows a Hamming decoder 

using asynchronous techniques. Asynchronous pulse generators are used to design a 

controllable clock for the decoder which is independent of the system clock. The transistors in 

the pulse generator have to be properly tuned. This may be an unnecessary effort for small 
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power savings. An area efficient implementation has been proposed in [32] for an on-chip 

Hamming decoder in NAND Flash. A few hundred gates are required to implement a Hamming 

decoder as will be proved in a later section. Therefore an area overhead is not a severe 

problem. 

Hamming codes are suitable for a lower order BER (~10-12). They fail to ensure data 

reliability as BER increases to around 10-7 for multi level cell architectures at smaller 

geometries. This necessitates the use of multi bit error correction. Convolutional codes 

effectively correct multiple bit errors. However a hardware implementation of a Viterbi 

encoder/decoder requires 20-30K gates which is very high for NOR Flash. [33] discusses a 

possible implementation of convolutional codes as on-chip ECC in MLC NOR. It is shown that 

the BER can be taken from 10-2 to 10-11 which is not the target bit error rate that is expected to 

maintain reliability of the Flash array. The performance of this code can be said to be 

comparable to a BCH algorithm discussed in detail later. Binary BCH codes can be designed to 

detect and correct multi bit errors. However there is a tradeoff between implementation 

complexity, latency and error correction capability of the code. The previous chapter discusses 

two BCH decoding algorithms of which Massey’s step-by-step decoding algorithm [20] is 

expected to be effective in NOR Flash. The possibility of using BCH codes for error control in 

Flash memories has been mentioned in [36]. However it does not elaborate the possible 

implementation methods that may be used.  
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CHAPTER 3 

ANALYSIS OF ERROR CORRECTION CODES 

On-chip error correction codes effectively compensate for deteriorating bit error rates 

which are generally of the order of 10-7 to 10-11 in Flash memory. Error correction codes improve 

the reliability of data by adding carefully designed redundant data over time (convolutional 

codes) or space (block codes). Convolutional codes operate on data streams where each bit is 

processed together with its succeeding and preceding bits. The results improve for higher 

encoder rates. The encoders and decoders used for convolutional codes (e.g. the Viterbi 

decoder and the Trellis encoder) are hardware-intensive circuits easily consisting of 20k-50k 

gates. This makes convolutional codes a good candidate only when hardware overhead is not a 

stringent constraint. On the other hand, block code algorithms can be designed to work within 

the latency and hardware constraints of NOR devices making them the codes of choice for on-

chip ECC in Flash memory. 

 

 

3.1. Hamming Codes 

 Block codes transform large blocks of data into code words. They only use 

current input data to compute redundancy for given data block as opposed to their convolutional 

counterparts which use past and future data too. The computed redundancy creates an 

extended decision ‘space’ around each information/data block. If the data word that is read out 

from memory lies in the decision space that ‘belongs’ to a certain information block, it is 

decoded as that information block.  

Hamming codes illustrate the creation of redundant space around data blocks to detect 

and/or correct errors by simple mapping. Simple mechanics and the ease of implementation 

make these codes a popular choice for communication and data storage systems. However, 

they are ineffective if the number of random errors is large or if the errors are bursty.  
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3.1.1. The Mechanics 

The (7, 4) (= (n, k)) Hamming code is the simplest single-error detection and correction, double-

error detection code. Here 4 is the information block length (k) and 7 is the length of the output 

code word (n). The 3 additional bits (n-k) in the output code word are the redundant parity bits. 

In the example (Figure 3.1), d1, d2, d3 and d4 are the data bits to be encoded. p1, p2 and p3 are 

the parity bits. 

 

Figure 3.1. The mechanics of encoding of a (7, 4) Hamming code 

Suppose [d1 d2 d3 d4] = [1 1 0 1]. The parity bits (p1, p2, p3, …, pn-k) are inserted in 

positions which are powers of 2 (20, 21, 22, …, 2n-k-1) because each parity bit represents an even 

parity check on information bits which are in bit positions whose binary representations have a 

‘1’ in the same place as the bit position (binary representation of a power of 2) of the parity. This 
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has the advantage of making the check positions independent of each other. For this example, 

the parity bits are computed in the following manner: 

For p1: Check alternate bits to see if even parity condition is satisfied. 

    p1 = d1  d2  d4 = 1     (3-1) 

For p2: Check alternate sets of 2 bits each for even parity, starting with p2

    p2 = d1  d2  d3 = 0     (3-2) 

For p3: Check alternate sets of 4 bits each (starting with p3) for even parity,  

    p3 = d2  d3  d4 = 0     (3-3) 

In general, for pn-k alternate sets of 2n-k-1 bits each are checked to satisfy even parity. In this 

example, 1101 is encoded and stored as 1001101 where the underlined bits are parity. 

The relation between parity bits and the data bits is represented in matrix form as, 

     =    (3-4) [ ]321 ppp
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1110
1101
1011

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

4

3

2

1

d
d
d
d

 

To detect and correct a single bit error: Suppose the retrieved code word is 1001111. 

1 0 1 0 1 1 1

20 21 22

1 2 3 4 5 6 7

Retrieved
code word

? 1 1 1 p1 = 1

? 11 1 p2 = 1

p3 = 11

11

11?

Check 1 bit, 
Skip 1 bit

Check 2 bits, 
Skip 2 bits

Check 4 bits, 
Skip 4 bits

Observed parity (p1,p2,p3) = 100
Calculated parity (p1,p2,p3) = 1

d1 d2 d3 d4

 

Figure 3.2. Single bit error detection and correction using Hamming codes 
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Assuming that at most a single bit may be disturbed, the erroneous bit is identified in the 

following manner (Figure 3.2): 

If the observed parity (p1, p2, p3) = 100 and the calculated parity = 111, then the parity bits in 

conflict are p2, p3. The bit that is exclusive to p2 and p3 is d3. Hence d3 is the disturbed bit. 

Now suppose the retrieved code word is 1100101 (2-bit error). In this case, the observed parity 

(p1, p2, p3) = 110 and the calculated parity = 011 showing that (p1, p3) are in conflict. Hence d2 is 

incorrectly predicted to be in error.  

In Hamming codes with distance 3 a double bit error is indistinguishable from a single 

bit error in a different code. In order to detect two bit errors and detect and correct a single bit 

error simultaneously, an additional parity bit is included in the code word. This increases the 

distance of the code to 4. This additional parity bit is calculated by adding (modulo-2) all the 

other bits in the code vector. Thus the presence of two bit errors can be detected but it cannot 

be corrected while a single bit error is detected and corrected. 

 

3.1.2. Encoding 

As k increases (e.g. a (31, 26) code), it is impractical to use the above method. 

The “generation” of a code word is achieved by a generator matrix, G. The rows of a 

generator matrix generate all the code words for a particular code. G is a (k x n) matrix for a (n, 

k) code where n is the length of the code word and k is the data block length. In the k-

dimensional vector space of all the binary n-tuples, it is possible to find k linearly independent 

code words such that every code word v is a linear combination of these k code words. If u is 

the information vector then,  

     v = u.G      (3-5) 

The generator matrix for the (7, 4) code is 

    G =     (3-6) 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000101
0100111
0010110
0001011
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Equation (3-6) shows the generator matrix in systematic form. The code word obtained after 

multiplying data with this matrix will have message bits easily distinguishable from the parity 

bits. Such a form of the encoded code work is called the systematic form. The generator matrix 

in systematic form is 

     G = [P  Ik]     (3-7) 

Where 

P = k x (n-k) matrix which generates the parity bits. 

Ik = k x k identity matrix, i.e. a matrix having elements, bij = 1 for all i = j else bij = 0. 

 Another useful matrix is called the parity check matrix (H). H is a (n-k) x n matrix such 

that G.HT = 0 i.e. G and H are orthogonal. Alternately, an n-tuple v is a code word in the code 

generated by G if and only if v.HT = 0. For G as written in Equation (3-7), the parity check matrix 

H is 

     H = [In-k  PT]     (3-8) 

Where 

PT = transpose of matrix P in Equation (3-7) 

In-k = (n-k) x (n-k) identity matrix. 

H is called the parity check matrix because each row of H represents an even parity group with 

‘1’s in the positions of the bits that comprise the group. 

 

3.1.3. Decoding 

For a (n, k) linear code, if v = (v0, v1, v2, …, vn-1) is the stored vector and r = (r0, r1, r2, 

…, rn-1) is the vector read out from memory (received vector), then r may differ from v due to 

noise. 

     r = v + e     (3-9) 

Where e is an n-tuple called the error vector or error pattern. 
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When r is read out, the host system should first determine if r contains any errors. If so, 

an error correction algorithm must be executed. Errors are detected by computing the 

syndrome, s, which is the vector product of the output vector and the transpose of the parity-

check matrix. 

     s = r.HT      (3-10) 

        = (v + e).HT

        = e.HT

If there are no errors or undetectable errors, s = 0, else s ≠ 0. Undetectable error patterns are 

those which transform v into another valid code. Since there are 2k – 1 nonzero code words, 

there are 2k – 1 undetectable error patterns. 

 If H is expressed in the systematic form, then Equation (3-10) yields a linear 

relationship between the syndrome and the error digits. 

    s0 = e0 + en-kp00 + en-k+1p10 + … + en-1pk-1,0  (3-11) 

    s1 = e1 + en-kp01 + en-k+1p11 + … + en-1pk-1,1

      … 

… 

    sn-k-1 = en-k-1 + en-kp0,n-k-1 + en-k+1p1,n-k-1 + … + en-1pk-1,n-k-1

Any error correction scheme is a method to solve the (n-k) linear equations of Equation (3-11) 

for the error digits. Once e is found, the vector r + e is taken as the actual stored code word 

[15]. Solving these equations is not easy since they have 2k solutions. One of the most popular 

decoding schemes for linear block codes like Hamming codes, is the Standard Array Method 

which is also known as the syndrome decoding or table lookup decoding method. 

 
3.1.3.1. Standard Array Method 

For an (n, k) linear block code, there are 2k valid code vectors, v1, v2, …, v2
k. The 

received vector r may be any one of 2n possible n-tuples. Any decoding scheme is a rule to 

partition the 2n possible received vectors into 2k disjoint subsets D1, D2, …, D2
k such that the 
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code vector vi is contained in the subset Di for 1 ≤ i ≤ 2k [15]. Thus a data ‘space’ is generated 

around each valid code word. If r is located in the subset Di, then r is decoded into vi. This 

decoding is correct only if the actual stored vector was indeed vi.  

v1 v2 … vi … v2
k

 

v1+e2  e2+v2    … e2+vi     … e2+v2
k

 

v1+e3  e3+v2    … e3+vi     … e3+v2
k

. 

. 

. 

v1+ei   ei+v2    …  ei+vi     …  ei+v2
k

. 

. 

. 

     v1+e2
n-k   e2

n-k+v2    …    e2
n-k+vi       …       e2

n-k+v2
k

Figure 3.3. Standard array for an (n, k) linear code 

v1 , v2, …, v2
k are the 2k valid code vectors of the (n, k) linear block code. Generally, v1 

= 0. e2, e3, …, e2
n-k are distinct n-tuples from the remaining 2n – 2k n-tuples. Thus, all the n-

tuples are used in the array. Each subset Di for 1 ≤ i ≤ 2n-k is the ith column in this array (Figure 

3.3). The 2n-k rows are known as the cosets and the n-tuples e2, e3, …, e2
n-k are the coset 

leaders for the corresponding rows. r is decoded correctly only if the error pattern is a coset 

leader. All the 2k n-tuples of any given coset have the same syndrome. The syndromes for 

different cosets differ. 

Summarizing the decoding process for a linear block code: The first step is to compute 

the syndrome s = r.HT. This helps to locate the corresponding coset leader, say et, for this 
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syndrome. The deduced coset leader is used to decode r as v = r + et. u is easily obtained from 

v since it is in the systematic form. 

 

3.1.4. Error Detecting and Correcting Capabilities 

An important property of a code is the code’s minimum distance, also known as the 

minimum Hamming distance. Hamming distance is the number of positions in which two code 

words differ. The minimum Hamming distance, dmin, is the least possible distance between a 

pair of code words for a given code. It determines the error-detecting/correcting capabilities of 

the code. The rows of generator matrix G define a basis for the code vectors. For Hamming 

codes, the basis (rows of G) satisfies even parity conditions. This characterizes dmin (= 3) for a 

Hamming code.  

If a code has minimum distance dmin, no error patterns of dmin – 1 or fewer errors can 

change one code vector into another code vector. Therefore, the random error-detecting 

capability of a block code with minimum distance dmin is dmin – 1. 

 

         

 

Figure 3.4. 2D representation of redundancy around each code vector and the concept of dmin

In order to be able to detect and correct an error correctly, the received vector must lie 

in the space surrounding the corresponding transmitted vector (Figure 3.4). If the received 

vector differs from the transmitted vector in t places (t errors); it can be corrected only if  

     t ≤ ⎣ ⎦2/)1d( min−      (3-12) 

Where  denotes the largest integer no greater than (d⎣ 2/)1d( min− ⎦ min – 1)/2. 

dmin

Code 
Vector 

Redundant 
space 
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 For a Hamming code dmin = 3. Hence it can detect up to 2 bit errors and can detect and 

correct a single bit error. 

 

3.1.5. Cyclic Hamming Codes 

Cyclic Hamming codes can be represented as a polynomial. For v = (v0, v1, …, vn-1), the 

code polynomial is 

    v(X) = v0X0 + v1X1 + v2X2 + …+ vn-1Xn-1   (3-13) 

The power of X denotes the position of the code vector component. For example, the vector (1 

0 0 1 0 1 1) is represented as 1 + X3 + X5 + X6.  

The encoding and decoding circuits of a cyclic code consist of shift registers with 

feedback connections. The power of X represents the number of serial shifts of the components 

through the circuit. Due to the cyclic structure of the code, the circuit may be designed to 

decode the first received bit and decode subsequent bits using the same circuitry. Thus a cyclic 

code saves hardware but increases the computational delay which is not favorable for NOR 

Flash. On the other hand, the linear decoding process explained in Section 3.1.3 can be made 

parallel making the circuit faster. Therefore linear Hamming codes are preferred over cyclic 

Hamming codes for implementation in NOR Flash devices. 

 Hamming codes are very simple to understand and implement. They are well-suited 

when the BER has to be improved from around 10-10 to 10-15. They fail to detect and correct 

multi bit errors and hence are inefficient as raw BER increases to 10-6. 

 

3.2. Multi Bit Error Correction: BCH Codes 

The Bose-Chaudhuri-Hocquenghem (BCH) codes are a generalized form of Hamming 

codes for multi bit error detection and correction. They include both binary and multilevel codes. 

Multi level BCH codes are suitable for correcting burst errors. Since the errors in a Flash device 

are random, it is convenient to use binary BCH codes for Flash memory. 
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Before evaluating BCH codes, a review of finite field arithmetic is required in order to 

understand and utilize multi bit error correcting codes. Binary arithmetic is a subset of finite field 

arithmetic. A finite field is a set of finite elements over which math operations like addition, 

subtraction, multiplication and division generate values which belong to the same set. More 

formally it can be said that addition, subtraction, multiplication and division are closed on the 

field. A finite field is also known as a Galois field (GF). A Galois field in which the elements can 

take q different values is referred to as GF(q) [16]. In GF(p), where p is a prime number, 

modulo-p arithmetic is used. An example of modulo-2 arithmetic is shown in Figure 3.5. 

+ 0 1 
0 0 1 
1 1 0 

(a) 

. 0 1 
0 0 0 
1 1 0 

(b) 

Figure 3.5. (a) Modulo-2 addition (b) Modulo-2 multiplication 

In any prime size field, there is always at least one element whose powers constitute all 

the nonzero elements of the field [16]. This element is called the primitive. For example, in 

GF(5), the number 3 is primitive because: 

30 = 1  

31 = 3 

32 = 4 

33 = 2(all modulo-5) 

The pattern repeats for higher powers of 3. 

 The finite field GF(p) can be extended to a field of pm elements where m is any positive 

integer. The field thus formed, GF(pm), is called an extension field of GF(p). For binary BCH 

codes, GF(2) and its extension field GF(2m) are used. 
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 A single bit error detection and correction code like a Hamming code differs from a multi 

bit error detection and correction code in the manner in which the data bits are utilized to 

generate redundant space. For a Hamming code there is only one set of linearly independent 

equations, hence it can detect and correct only single bit errors. On the other hand, if multiple 

sets of linearly independent equations are superimposed on the same data bits, a code that can 

correct multiple errors, each corresponding to a linearly independent set of equations is 

obtained. 

 

3.2.1. The Mechanics 

Code vectors in polynomial form can be represented graphically. For example, u = (1 1 1) ≡ 

u(X) = 1+X+X2 is represented as shown in Figure 3.6. 

 

Figure 3.6. Graphical representation of u = (1 1 1)
 

For a polynomial of degree n, n+1 distinct points describe the polynomial completely. 

The idea behind BCH codes is to store more than n+1 points satisfying the polynomial. This is 

oversampling the polynomial. While reading out data, as long as any set of n+1 correct points is 

read out, the information polynomial u(X) can be rebuilt.  

 
Figure 3.7. Oversampling polynomial u(X) 
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In the above example, u(X) is oversampled with 5 points, a, b, c, d and e (Figure 3.7). 

When these points are transmitted point e is disturbed. Polynomials are constructed using all 

permutations of n + 1 (= 3, here) points. The results are tabulated in Table 3.1.  

Table 3.1. Reconstructing the oversampled polynomial u(X) 

          Points 
 

Corresponding 
polynomial 

a, b, c 
 

u(X) 

a, b, d 
 

u(X) 

a, b, e 
 

u1*(X) 

a, c, d 
 

u(X) 

a, c, e 
 

u2*(X) 

a, d, e 
 

u3*(X) 

b, c, d 
 

u(X) 

b, c, e 
 

u4*(X) 

b, d, e 
 

u5*(X) 

c, d, e 
 

u6*(X) 

 

u(X) occurs more frequently than any other polynomial (ui*(X) represents any 

polynomial other than the correct one). Hence it is assumed that u(X) is the information vector 

that was transmitted. This illustrates how oversampling a polynomial helps to recover the actual 

data at the receiving end. 

 

3.2.2. Encoding 

The encoding process for BCH codes can be explained in the following manner: The 

first step is to oversample u(X) which is done by multiplying it with g(X). The code polynomial 

can be written as v(X) = u(X).g(X) (Equation 3-5). u cannot be assumed to be oversampled 

since it represents user information which has to be protected. Therefore the only means of 
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introducing redundancy is via appropriate selection of g. The example in Section 3.2.1 showed 

that for every error to be detected there should be at least two redundant points or samples. 

Therefore for t errors to be detected g should introduce atleast 2t redundant samples. This 

implies g(X) should have at least 2t roots. 

Consider formulating these statements mathematically, i.e. showing how the 2t roots of 

g(X) help introduce redundancy in u(X) by oversampling it.  

If n denotes the length of the code word v and k is the length of the information vector u then n 

and k are related such that the number of redundant symbols is  

n – k ≤ mt [15] 

where m is a positive integer (m ≥ 3) defined in terms of n as n = 2m – 1 and t is the maximum 

number of errors that can be corrected (t < 2m-1). 

 The generator polynomial g(X) for a binary BCH code is the lowest degree polynomial 

over GF(2) which has (α, α2, α3, …, α2t) as its roots i.e. g(αi) = 0 for 1 ≤ i ≤ 2t [15]; where α is a 

primitive element in GF(2m). Lowest degree polynomial implies g(X) has only (α, α2, α3, …, α2t) 

as its roots and no roots other than these. Using a binary Galois field is a typical scenario since 

information is generally represented as a combination of 1’s and 0’s. An extended binary field 

GF(2m) uses binary symbols of length m. 

 The 2t roots of g(X) indicate that for t bit errors to be detected and corrected at least 2t 

redundant samples are introduced. g(X) can be represented in the factored form. The generic 

way of doing this is 

   g(X) = (X + α).(X + α2). (X + α3)… (X + α2t)   (3-14) 

However, according to the definition of g(X), its coefficients lie in GF(2). Therefore, equation (3-

14) is not the correct definition of g(X) in terms of its roots. Instead g(X) can be defined in terms 

of minimal polynomials of each of (α, α2, α3, …, α2t). To include all roots that may have 

coefficients over GF(2m), the following procedure is used: 
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The minimal polynomial Φ(X) of any element β in GF(2m) is defined as the polynomial of 

smallest degree over GF(2) having β as its root, i.e. Φ(β) = 0. For example, the minimal 

polynomial of 0 in GF(2m) is X and that of 1 is X + 1.  

Suppose the minimal polynomial of αi for 1 ≤ i ≤ 2t is denoted by Фi(X). Therefore, the factored 

form of g(X) can be written as 

    g(X) = LCM{Ф1(X), Ф2(X), …, Ф2t(X)}   (3-15) 

LCM: Least Common Multiple 

Equation (3-15) is simplified using the concept of conjugates in a finite field, explained below: 

If β is an element in GF(2m), then the element (β)p^2, which also belongs to GF(2m) 

satisfies [f(β)]p^2 = f(βp^2). β and (β)p^2 are called conjugates. Conjugates are transparent to the 

order of equations. 

f(X): polynomial with binary coefficients. 

Every even power of α in GF(2m) can be written in terms of an odd power and a power 

of 2. For example, α12 = (α3)4 = (α3)2^2. Therefore every even power of α is a conjugate of some 

preceding odd power of α. In the above example, α12 is a conjugate of α3. 

Appendix A shows that a root and its conjugate have the same minimal polynomial. 

Therefore all roots contained in the even polynomials are contained in the odd polynomials as 

well. Therefore the even polynomials do not contribute to g(X) and can be eliminated. The 

expression for g(X) is reduced to 

   g(X) = LCM{ Ф1(X), Ф3(X), …, Ф2t-1(X)}    (3-16) 

This is the generator polynomial for a binary t-error-correcting BCH code of length 2m – 1.  

For a single-error-correcting BCH code of length 2m – 1, the generator matrix is 

    g(X) = Ф1(X)      (3-17) 

Since α is a primitive element of GF(2m), Ф1(X) is a primitive polynomial of degree m. Therefore, 

the single-error-correcting BCH code of length 2m – 1 is a Hamming code. [15] 
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 Thus while a single-error-correcting Hamming code is defined by a single primitive 

polynomial, a t-error-correcting BCH code is defined by t primitive polynomials as explained in 

Equation (3-16). 

 Here is an illustrative example:  

For a (15, 5) (= (n, k)) triple-error correcting code. The assumption t = 3 makes the example 

simpler to understand. 

n = 15 = 2m – 1 => m = 4. 

Let α be a primitive element in GF(24). According to the definition; α, α2, α3, α4, α5 and α6 are 

the roots of g(X) for the this code. The minimal polynomials for α, α2 and α4 are identical 

(Appendix A) and 

   Ф1(X) = Ф2(X) = Ф4(X) = 1 + X + X4       (3-18) 

The minimal polynomials for α3 and α6 are the same, 

   Ф3(X) = Ф6(X) = 1 + X + X2 + X3 + X4    (3-19) 

The minimal polynomial for α5 is, 

     Ф5(X) = 1 + X + X2    (3-20) 

Taking the LCM, the generator polynomial for the (15, 5) triple-error correcting BCH code is, 

g(X) = 1 + X + X2 + X4 + X5 + X8 + X10

 The parity-check matrix for BCH codes can be derived from the roots of g(X). Since the 

code polynomial, v(X) = u(X).g(X), v(X) has α, α2, α3, …, α2t as its roots. Hence, for 1 ≤ i ≤ 2t,  

    v(αi) = v0 + v1αi + v2α2i + … + vn-1α(n-1)i = 0  (3-21) 

This equation can be written as a product of two matrices where each element of the resulting 

vector equals Equation (3-21) for the corresponding i; 1 ≤ i ≤ 2t. 
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  (v0, v1, …, vn-1). =0=v.M  (3-22) 

⎥
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⎥
⎥
⎥
⎥
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Comparing this with v.HT = 0 (Equation 3-8) the parity-check matrix, H = MT, for the BCH code: 

   H =     (3-23) 
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3.2.3. Decoding 

Decoding BCH codes involves detecting and correcting a larger number of errors as 

compared with single bit error detection and correction in Hamming codes. 

There are two popular approaches, namely, the Standard Algebraic Decoding Method 

and Massey’s Step-by-Step Decoding Algorithm [20]. There are several modifications made to 

the Step-by-Step algorithm [21- 23]. The basic Step-by-Step algorithm [20] has been analyzed 

here. 

 
3.2.3.1. Standard Algebraic Decoding Method 

This method closely emulates the mechanics described earlier (Section 3.2.1). The 

decoding process has two steps: Error detection and Error Correction. 

 To detect errors all probable nth degree information polynomials (u(X)) are constructed 

using all possible permutations of n+1 points. If the polynomials are not all equal, it implies at 

least one of the points is disturbed. Errors are corrected by identifying the most frequently 

occurring polynomial, from amongst those constructed in the previous step, and assuming it to 
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be the stored information u. The point(s) common to the remaining (less frequently occurring, 

hence assumed to be erroneous) polynomials is/are said to be the disturbed sample(s). 

This process can be mathematically formulated in the following manner: 

Suppose the code vector stored at a memory location is v(X). If r(X) is the vector that is 

read out and e(X) is the error pattern then 

r(X) = v(X) + e(X) 

The syndrome S is constructed in order to determine the presence or absence of errors. If S is 

non-zero it indicates the presence of errors and vice versa. For a t-error-correcting BCH code, S 

is a 2t-tuple since H is a 2t x n matrix. 

    S = (S1, S2, …, S2t) = r.HT = e.HT   (3-24) 

where Si = r(αi) = e(αi) for 1 ≤ i ≤ 2t. 

 Error Correction involves finding the exact locations of disturbed samples and 

correcting the samples by complementing them. The error-location algorithm for BCH codes is 

designed to detect locations of multiple-errors. Equation (3-24) shows that S depends only on 

the error pattern e. Suppose e(X) has ν errors at locations Xj1, Xj2, …, Xjν. 

    e(X) = Xj1 + Xj2 + …+ Xjν     (3-25) 

where 0 ≤ j1 < j2 < …< jν ≤ n. 

Combining Equations (3-24) and (3-25); 

      S1 = αj1 + αj2 + …+ αjν     (3-26) 

S2 = (αj1)2 + (αj2)2 + …+ (αjν)2 

S3 = (αj1)3 + (αj2)3 + …+ (αjν)3

. 

. 

. 

S2t = (αj1)2t + (αj2)2t + …+ (αjν)2t
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where αj1, αj2, …, αjν are unknown. Any method for solving these equations is a decoding 

algorithm for the BCH codes. [15] 

 Let βp = αjp for 1 ≤ p ≤ ν. These are the error location numbers. Equation (3-26) is 

rewritten as 

          S1 = β1 + β2 + …+ βν     (3-27) 

S2 = β1
2 + β2

2 + …+ βν2 

S3 = β1
3 + β2

3 + …+ βν3

. 

. 

. 

S2t = β1
2t + β2

2t + …+ βν2t

The error locator polynomial is defined [15] as: 

    σ(X) = (1 + β1X)(1 + β2X) … (1 + βνX)   (3-28) 

             = σ0 + σ1X + σ2X2 + … + σνXν

The roots of this polynomial specify the locations of the errors. S1, S2, …, S2t can be written in 

terms of the roots of σ(X). 

For the (15, 5) BCH code example (Section 3.2.2) suppose the received systematic code 

polynomial is, 

r(X) = X3 + X5 + X12

The syndrome components are remainders when r(X) is divided by Ф1(X), Ф3(X), Ф5(X) 

(Equation 3-18, 3-19 and 3-20) successively, 

b1(X) = 1,     (3-29) 

b3(X) = 1 + X2 + X3

b5(X) = X2

Using the power and polynomial representations of the elements in GF(24) and substituting α, 

α2 and α4 into b1(X), 
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S1 = S2 = S4 = 1 

Substituting α3 and α6 into b3(X),  

S3 = 1 + α6 + α9 = α10, 

S6 = 1 + α12 + α18 = α5

Substituting α5 into b5(X),  

S5 = α10

 The error locator polynomial is determined by an iterative procedure known as 

Berlekamp’s iterative algorithm. The roots of this polynomial or the error location numbers are 

found using Peterson’s substitution method [18] or Chien’s search algorithm [19], the latter 

preferred because of available optimizations of its hardware implementation. The simplest way 

to implement Chien’s search algorithm is using a look-up table. This is impractical for large 

block sizes. Another hardware circuit used is called the Chien searcher [21]. The complexity of 

the circuit increases in proportion to the block length. Hence it too is inefficient for long block 

codes. 

 Summarizing standard algebraic decoding method, the first step is to compute the 

syndrome, S = r. HT in order to detect errors. If S is nonzero, which implies there are errors in 

the received word, then the error location polynomial is determined from the components of S. 

The roots of this polynomial give the error-location numbers. Once the error locations have 

been identified, correcting these errors is to complement the bit at that position. 

 The Step-by-Step decoding algorithm (Section 3.2.3.2) proposed by Massey is an 

efficient alternative to the standard algebraic method. 

 

3.2.3.2. Massey’s Step-by-Step Decoding Algorithm 

The step-by-step decoding algorithm corrects erroneous bits by checking the impact of 

changing (complementing) each bit on the total number of errors in the code word. If changing a 
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bit reduces the number of errors, then the change is retained else the bit is changed back to its 

original value. This algorithm has been explained by Massey in [27]. 

It is easier to implement this algorithm since it avoids calculating the coefficients of an 

error locator polynomial and searching the roots [21]. It exploits the cyclic nature of BCH codes. 

The decoding algorithm is explained below: 

 Errors are detected by computing the syndrome S (Equation 3-10). A nonzero value of 

the syndrome indicates the presence of errors.  

 For correcting the errors: The weight of the error pattern e indicates the number of 

errors in r. Each bit of r is successively complemented (one bit at a time) and the weight of the 

resulting error pattern is observed. If the weight reduces it implies the bit under consideration 

was erroneous and has been corrected by complementing it. On the other hand, if the weight 

increases, it is assumed that the bit is not disturbed and its value should remain unchanged. 

Since this method involves changing the received symbols one at a time and testing the 

resultant weight of error pattern, it is called the step-by-step algorithm. 

To formulate this algorithm mathematically, consider the received vector is r(X) which is 

equal to v(X) + e(X) where v is the transmitted (stored) code word and e is the error pattern. 

For a t-error correcting BCH code (Equation 3-24) 

S = (S1, S2, …, S2t) = r.HT = e.HT

where Si = r(αi) = e(αi) for 1 ≤ i ≤ 2t. 

A non zero value of S indicates the presence of errors in r. 

The total number of non zero elements in e, i.e. the Hamming weight of e, gives the 

total number of errors in the received code word. This helps the decoder determine when it 

should stop complementing the code word bit-by-bit. 

Massey defines a procedure [20] to determine the weight of e. The total number of 

errors can be estimated by determining the singularity or non singularity of matrix, Lj. (Equation 

3-30)  
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The matrix Lj [20] is defined for any binary BCH code having code length n and any j such that 1 

≤ j ≤ n-1, Lj is the j x j matrix 

   Lj =    (3-30) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
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⎢
⎢
⎢

⎣

⎡

−−−− j4j23j22j21j2

12

1

S...SSSS
.
.
.

0...1SSS
0...001S

3

Lj is singular if the weight of e is j -1 or less, and is non-singular if the weight of e is j or j+1 [20]. 

Using this property the number of errors can be defined in terms of det(L1), det(L2), …, 

det(Lt). For example, det(L4) = 0 implies that the number of errors is three or less. The exact 

number of errors can be determined in terms of the relations among det(L1), det(L2), .., det(Lt). 

For example, if det(L1) ≠ 0, det(L2) ≠ 0, and det(Lp) = 0 for p = 3, 4, …, t, then two errors have 

occurred [20]. The only thing that is of consequence here is whether det(Lp) (1 ≤ p ≤ t) is equal 

to zero or not.  

The process of complementing bits and checking the weight of the resulting error 

pattern against the weight of the actual error pattern can be done by decoders in parallel. This 

reduces the computational time at a nominal hardware overhead. This makes this algorithm one 

of the prime choices for use in low latency NOR Flash.  

Thus, broadly, there are two error correction codes to choose from – Hamming and 

BCH. Selecting an appropriate one depends on the current BER of the array and the required 

BER (~ 10-15 for NOR). The error correction capacity of the algorithm is a function of these 

parameters. 

 

3.3. Computing Required Error Correction Capacity 

The current BER of a memory array can be computed from the voltage distribution 

curves (Section 2.4).  
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 The current BER for a given memory array is denoted by Pe which denotes the 

probability of one exclusive bit to be in error in the array. Using this, the probability that a single 

bit is in error in a k-bit block is given by  

    1 – (1-Pe)k = current BER of the k-bit block   (3-31) 

After using ECC, the size of the encoded block (parity + data) = n (say) and the maximum no. of 

errors that can be corrected = t 

Therefore the probability of an error in a n-bit block after applying ECC is given by 

P(error in a n-bit block after ECC) = PECC

= 1 – P(all possible errors that the ECC can correct) 

  = 1 – {P(0 error) + P(1b error) + P(2b error) + … + P(t-bit errors)} 

      = 1 – { nC0.Pe
0.(1-Pe)n + nC1.Pe

1.(1-Pe)n-1 + … + nCt.Pe
t.(1-Pe)n-t} 

= 1 - n∑
=

t

0i

C .Pi e
i.(1-P )e

n-I      (3-32) 

If Pnew is the BER of the array after using ECC, then Pnew is the target BER of the array. Pnew 

can be computed by solving the following relation: 

      1 - ∑
=

t

0i

nCi.Pe
i.(1-Pe)n-i = 1 – (1 – Pnew)k   (3-33) 

Thus, the required error correction capacity of an error correction code is a function of 

the current bit error rate and the target bit error rate. [31] also uses a similar relation to compute 

the improved bit error rate after using a single bit correcting Hamming code on a 512-bit NOR 

block. 

 

 

There are two main choices for an error correction code for low latency Flash memory. 

[36] also lists these as possible methods to improve Flash device reliability. For lower bit error 

rates of the order of 10-12 a single error correcting Hamming code is a viable choice because its 

error correction capacity suffices at low BER levels such as these and the Hamming decoding 

algorithm involves very simple math which may be implemented using XOR gates. For higher 
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BER in high density devices today (~10-7), multiple error correction is required. The BCH code is 

a good option. Although it is mathematically more involved than the Hamming algorithm, there 

are relatively simpler BCH decoding algorithms which have simple implementations [21-23]. 

Massey’s step-by-step decoding algorithm is one example. The required error correction 

capacity of the code can be computed as a function of the current array bit error rate and the 

expected or target bit error rate. These algorithms are used as a starting point for optimizing 

methods to ensure reliability of data in a Flash device. 
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CHAPTER 4 

IMPLEMENTATION AND RESULTS 

Presently NOR Flash memory have an on-chip Hamming code implemented in 

hardware. These codes suffice when bit error rates are of the order of 10-12. However for 

technology nodes 45nm and 32nm the raw BER is in the range 10-7 to 10-11. This necessitates 

multi bit error correction in the memory array. From Equation 3-33, it can be shown that 2 bit 

error correction on a 256-bit or smaller block of data helps achieve the required target BER of 

10-15. The Hamming and BCH algorithms studied earlier serve as a good starting point. These 

algorithms have been combined and modified to obtain architectural schemes which have 

latencies < 10ns and a high error correction capacity making them suitable for NOR Flash. 

 

4.1. Error Correction Architectures for NOR Flash 

Tradeoffs between latency, error correction capability and complexity differ for 

Hamming codes and BCH codes. Considering that higher order errors are less likely, 

combinations of these two codes are investigated further to take advantage of simple fast 

algorithms for more common single bit errors and using slower stronger algorithms for less likely 

higher-order errors in order to minimize the performance impact on XiP NOR. 

The proposed optimized architectures are summarized in Table 4.1. 

The decoding algorithms for each of these architectures are discussed briefly here. A 

mathematical explanation is covered in Chapter 3. 

 

4.1.1. Single Bit Hamming Code 

 Hamming codes (Section 3.1) can detect and correct single bit errors and only 

detect two bit errors. These are the simplest block codes and have been the primary choice for 

 
43



  

an ECC in Flash memory until now. However they are inefficient in improving data reliability in 

high BER MLC Flash devices.  

Figure 4.1 illustrates the decoding process for a single bit ECC Hamming code. Section 

3.1.2 explains the encoding. A part of the decoder circuit is used for encoding. 

Table 4.1. Summary of optimized architectures for latency-constrained Flash systems 

 
Code 

 

 
Key Concept 

 
Single bit Hamming code 

 

 
 1 bit ECC. 
 Adding even parity to certain data groups. 

 
Dual bit Hamming code 

 

 
 2 bit ECC 
 Limiting error possibilities to data bits only 

by duplicating Hamming parity. 
 

BCH code 
 

 
 ≤ 2 bit ECC 
 Oversampling data to add redundancy. 

 
 

Hierarchical BCH 
 

 
 ≤ 2 bit ECC 
 Performance improvement by using BCH to 

correct multi bit errors and Hamming  

 

The Decoding Algorithm (Section 3.1.3) for a single bit ECC Hamming code is 

explained below: 

 The primary step is to determine if an error has occurred or not. A non-zero output from 

the syndrome computation block indicates a single bit error in either the data or its parity. (This 

block helps determine parity bits when used for encoding). If there is no error, then the decoding 

process comes to an end. However, if the syndrome is not zero, the error pattern corresponding 

to the syndrome pattern is determined. This is bit pattern is added (modulo-2) to the input bits to 

obtain the corrected output vector. 
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Input bit string

Compute syndrome 
(s)

Is s=0?

Stop

Yes

No

Detect error pattern 
(e)

Add error pattern to input 
bit string to correct error

Error detection

Error correction

No error

 

Figure 4.1. Single bit Hamming decoding algorithm 

It is assumed that there is at most a single bit error in the input. The syndrome may be nonzero 

for higher number of errors as well and may correspond to an incorrect error pattern. In this 

case, an input bit may be erroneously ‘corrected’. 

 Figure 4.2 shows the block diagram of a Hamming decoder. It has been color coded 

with respect to the flow diagram (Figure 4.1) to depict the functionality of the blocks. 
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Syndrome Calculation Circuit
(XOR gates)

Error Pattern Detection Circuit
 multi-input AND gates

+ + +

r0 r1 r(n-1)

r(n-1)r0 r1

v0 v1 v(n-1)

s0 s1 s(n-1)

Input register = vector stored in flash (r)

Output register = corrected vector (v)

n XOR gates

Figure 4.2. Hamming decoder block diagram 

 A Hamming code is the simplest to understand and the easiest to implement single bit 

correction code. However, it does not suffice for bit error rates as high as 10-6.  Complex codes 

can take care of higher number of errors; however, it will be highly beneficial if Hamming codes 

can be modified to provide more than single bit error correction. This way the simple 

implementation of Hamming codes can be exploited to provide stronger protection. 

 

4.1.2. Dual Bit Hamming Code 

 A Hamming code has a minimum Hamming distance of 3. This allows only single bit 

error detection and correction. If the distance is increased to 4, double bit error detection only is 

possible. However, it can be shown that for a very small block size (4 or 7 data bits, i.e (8, 4) or 
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(12, 7) codes) 2 bit errors can be detected and corrected. (The additional parity bit is for 2-bit 

error detection). 

 The encoding process is the same as for a Hamming code. The decoding process is 

shown in Figure 4.3. 

Input bit string

Compute syndrome 
(s)

Is s=0?

Stop

Yes

No

Re-compute parity 
bits

Add re-computed parity to 
received parity

Error detection

Error correction

No error

Refer lookup table to 
determine pair of 

erroneous bits

 

 

Figure 4.3. Dual Bit Hamming Code Flow Diagram 

The Decoding Algorithm for 2-bit error correction using Hamming codes: 

 Before starting the decoding process, the presence of errors should be detected. The 

syndrome computation block does this. The number of errors detected is also important 

because the correction process differs for single and double bit errors. The error correction 

process for correcting a single bit error has been described in Section 3.1.3. For a double bit 

error, parity bits are recomputed using the disturbed (received) data. The recomputed parity is 

 
47



  

added (modulo-2) to the received parity. The bit string obtained from this operation is compared 

against a lookup table (Table 4.2) to determine the double bit error pattern. 

 This algorithm works correctly only under the assumption that errors occur in data bits 

alone, not in parity bits. For protecting parity bits, two Hamming codes should be used in 

tandem. But the resultant overhead is unacceptable. 

Applicability to small block sizes only 

This scheme is applicable only to (7, 4) and (11, 7) Hamming codes.  

Consider a (7, 4) code. The number of data bits is 4 and the number of parity bits is 3. 

Therefore the total number of possible 3-bit patterns (on adding received and recomputed 

parity) is 23 or 8 (including the all-zero pattern). For a 4-bit data block, the number of data bit 

pairs is 4C2 which is equal to 6. It has been observed that a one-to-one correspondence exists 

between erroneous data pairs and 3-bit patterns obtained by adding received and recomputed 

parity (Table 4.2). (The all-zero pattern indicates no error!). This correspondence is independent 

of the values of the data bits themselves. 

Say, data = (d1 d2 d3 d4) (MSB)  

   parity = (p1 p2 p3) (MSB) 

A similar relation can be found for a (11, 7) code. For larger data block sizes, the 

number of data bits is far larger than the number of parity bit combinations. Hence there cannot 

be an injective relation between the two. Therefore this scheme fails. 

This error control scheme has an overhead of nearly 30-50%. Therefore it can be 

applied only in very small but sensitive areas of the memory device, for example, the Flash File 

System (FFS). The FFS is a small percentage of the entire memory. Therefore, although the 

absolute overhead is very high, it is still a very small number with respect to the storage 

capacity of the entire chip. 
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Table 4.2. Lookup table for erroneous data bit pairs and corresponding 3-bit pattern for (7, 4) 

Hamming code 

 
Erroneous data bits pair

 

 
Sum of parity 

 
(d1, d2) 

 

 
011 

 
(d1, d3) 

 

 
101 

 
 

(d1, d4) 
 

 
001 

 
(d2, d3) 

 

 
110 

 
(d2, d4) 

 

 
010 

 
(d3, d4) 

 

 
100 

 

Thus, Hamming codes for very small block sizes can provide 2-bit error correction. The 

implementation is very simple. However, due to the extremely high overhead it finds limited 

applicability. This calls for a need to have algorithms which will be effective for multi-bit error 

correction in the entire array. The tradeoff would be obviously, higher complexity and higher 

latency. 

 

4.1.3. BCH Code 

Hamming codes find limited applicability as BER increases. Stronger algorithms are 

required to maintain data reliability. BCH codes are a good choice because they can be 

designed for any level of error correction. 

The encoding process is explained in detail in (Section 3.2.2). Encoding takes place 

when data is written into memory, and need not be done during the write cycle. As a result 

latency is not a tight constraint for the encoder. So the BCH encoder may work satisfactorily 
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even if its design is not highly optimized. On the other hand, decoding always occurs during the 

read cycle. As mentioned earlier, there is a latency constraint of 10ns on the decoder. The 

decoder architecture described in this section has been optimized for latency (and area, in case 

of a hardware only implementation). 

It was found (Section 3.2.3) that the step-by-step decoding algorithm is one of the most 

optimum ones for application in XiP NOR. (Section 3.2.3.2) provides a complete mathematical 

analysis of the algorithm. It has been explained graphically in 

The Decoding Algorithm (two-bit error correction) using BCH codes 

 As for the previous algorithms, the first step is to check for errors. This is done using a 

syndrome computation block. An all-zero syndrome indicates there is no error, or an 

undetectable error. If the syndrome is non-zero, determinants L1 and L2 are computed. 

Compute 
syndrome (s)

Compute 
det(L1) and det(L2)

Is s=0?

No

Yes

Complement 
data bit

What is value of 
(L1, L2)?

(0,0)

(1,0)No error!

(0,1)

1 bit error 
# errors reduced

3 bit error 
# errors increases;

Revert back to 
original bit

End

 

Figure 4.4. Step-by-step BCH decoding algorithm for 2-bit error correction 
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An assumption is made that at most two bits may be disturbed. The singularity/non singularity of 

each determinant helps determine the initial number of erroneous bits. Each data bit 

complemented at a time and the total number of errors are checked again. If the number of 

errors decreases, then the complemented bit was in error and has been corrected by 

complementing it. On the other hand, if the total number of errors increases, it implies an error 

was introduced upon complementing the data bit. Hence it is reverted back to its original value. 

This step is executed until the number of errors is zero or until all data bits have been checked. 

This process can be done in parallel using one decoding engine for each data bit. (Correcting 

parity bits is not required). As a result the entire decoding process executes in one cycle. 

 

r0 r1 rn-1 rn

Received bit string 
(data+parity)
(one data bit 

complemented)

Syndrome computation blocks0 sn-k-1

n

n-k

A

Compute 
Det(L1)

Compute 
Det(L2)

m m n = 2m -1 

A
For data bit 0

Figure 4.5. Block Diagram of Massey’s step-by-step BCH Decoding Algorithm 
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This algorithm can be generalized for a t-error correcting code depending upon the 

required error correction capability for a given block size to maintain a BER of 10-15. As the 

number of bits to be corrected and data block size increases the algorithm becomes more 

complex, especially the determinant computation block. 

The likelihood of higher order errors although nonzero is a small number. Therefore, 

the strengths of Hamming code and BCH code can be combined if there is a scheme which 

executes the simple and fast Hamming code for lower order errors and the more complex BCH 

codes for less likely higher order errors. Such a scheme is elaborated in the next section and its 

feasibility in terms of overhead and maximum latency (area for hardware implementation) is 

studied. 

 
4.1.4. Hierarchical BCH 

 The Hamming code is simple and fast but has minimal error correction capacity while 

the BCH code is more complex but can be designed to achieve any level of error correction. 

The hierarchical ECC scheme explained here combines the strengths of both these codes. 

 The Hamming code is applied on smaller blocks of data. All these small data blocks are 

together protected by a single BCH code. The BCH code is executed only if any of the 

Hamming decoders detects a 2-bit error in the data. In the example shown in Figure 4.6, 5 bits 

of Hamming parity protect a 16 bit data block. Six such data blocks are together protected by a 

single (128, 96) 4-bit error-correcting BCH code. The BCH decoder executes only if any of the 

six Hamming codes detect a 2-bit error. 

 

Figure 4.6. Example of Hierarchical BCH code 

 The error correction capacity of the BCH code is computed using the formula given in 

(Section 3.3). 

16b 16b 5b 5b 16b 5b

6 1 2 
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The Hierarchical decoding algorithm 

 Hamming decoders work on small blocks of data, typically 16 or 32b each, correcting 

possible single bit errors and checking for 2b errors. If a 2b error is detected by any Hamming 

decoder, the BCH decoder is set into action. This decoder is initialized if a 2b error is detected 

is any of the smaller Hamming data blocks. Thus the more frequently lower order errors are 

resolved by a simple and fast Hamming code while the complex and timing intensive BCH code 

corrects only the less frequent higher order errors. Figure 4.7 explains the operation graphically. 

The Hamming-BCH hierarchical design combines the strengths of both codes at the cost of 

additional overhead in terms of data and hardware and higher latency. A sample 

implementation (Figure 4.8) will help check if these are within acceptable limits. 

 

 

Figure 4.7. Flow Diagram for the Hierarchical BCH Decoding Scheme 
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Figure 4.8. Block Diagram of the Hierarchical BCH Decoding Scheme 

  

 
4.2. Analyzing and Comparing Implementations 

 The architectures elaborated in the previous section have to be verified for possible 

applicability in the NOR Flash device. This implies studying the impact of each implementation 

on latency, RAM footprint (software) and gate count or area (hardware). There are three 

possible implementation choices (Table 4.3) – 

 Software 

 Hardware 

 Mixed (hardware + software) 

The architectures are verified for small block sizes: (7, 4) Hamming code, (15, 7) BCH 

code and a combination of (11, 7) Hamming code and (15, 7) BCH code for the hierarchical 

process. Small block sizes make it easy to validate the output. Larger block sizes will alter the 

parameters only to a tolerable extent. 
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Table 4.3. Possible Implementation Choices for ECC Architectures 

  
Single bit 
Hamming 

(7, 4) 

 
Dual Bit 

Hamming 
(7, 4) 

 
BCH code 

(15, 7) 

 
Hierarchical BCH 

HC: (11,7)  
BCH: (15,7) 

Software  
 

   

Hardware  
 

   

Mixed  
 

   

 

 

4.2.1. Software Implementation 

A software implementation is possible inside the memory chip due to the presence of 

an on-chip 8051-like microcontroller. This microcontroller operates at a clock frequency of 

40MHz. 

A C code was written for each algorithm. These codes verify the functionality of the 

algorithm besides exploring their applicability. Codes were written for (7, 4) Hamming code, (15, 

7) BCH code and (11, 7) Hamming and a (15, 7) BCH code for the Hierarchical BCH scheme. 

An assumption was made that each C instruction takes 1 controller clock cycle to execute. This 

is a good first order estimate because the approximate cycles per instruction (CPI) for a clock 

speed of 40MHz is around 1.5 [41]. This means a single instruction takes around 1.5 clock 

cycles to execute. Besides, there may be branches within a code. 

 The latency estimates for each of the architectures are shown in Table 4.4. 

 An assembly code would make the execution at least 10-20x times faster. 

However, the on-chip 8051-like controller does not necessarily execute one instruction in a 

single clock cycle, it may take more. Therefore the latencies shown in  

Table  suggest a good ballpark figure. Since these numbers completely rule out a pure software 

solution the architectures were not investigated for RAM usage. 
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Table 4.4. Latencies for Software Implementation of ECC Architectures 

  
Single bit 
Hamming 

(7, 4) 

 
Dual Bit 

Hamming 
(7, 4) 

 
BCH code 

(15, 7) 

 
Hierarchical BCH 

HC: (11,7)  
BCH: (15,7) 

 
Software 
 

 
~40 clocks=1µs 

 

 
~40 clocks=1µs

 
~400 clocks = 

10µs 

 
~450 clocks = 

11.25µs 
Hardware  

 
   

Mixed  
 

   

 

 

4.2.2. Hardware Implementation 

Each ECC hardware implementation has been studied and optimized for latency and 

silicon area (or gate count).  

 There are several possible hardware implementation schemes available for each 

algorithm [21-23]. The appropriate one was chosen through an elimination process based on 

rough estimates of latency and gate count deduced from the basic block diagram of the 

architecture. The calculations were done by hand based on valid approximations (for example, 

a single register/flipflop stage may be approximated to take up one clock cycle = 10ns). The 

numbers deduced were expected to be within at least a 20-30% margin of the actual ones. 

Modifications were made to the chosen architectures to keep the latency within 10ns. The 

estimates for the chosen architectures are shown in Table 4.5. Table 4.6 shows the estimated 

latency and gate count for a 256-bit data block. 

 The architectures singled out based on hand analysis were finally verified by writing a 

Verilog code for each of these and synthesizing it using Synopsys Design Compiler. The latency 

and gate count obtained after synthesis are tabulated in . The numbers shown prove the 

veracity of the estimates. 
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Table 4.5. Estimated Latency and Gate Count for Hardware Implementation 

  
Single bit 
Hamming 

(7, 4) 

 
Dual Bit 

Hamming 
(7, 4) 

 
BCH code 

(15, 7) 

 
Hierarchical BCH 

HC: (11,7)  
BCH: (15,7) 

 
Software 
 

 
~40 clock 

cycles = 1µs 
 

 
~40 clock 

cycles = 1µs 

 
~400 clock 

cycles = 10µs 

 
~450 clock cycles = 

11.25µs 

 
Hardware 

 
Lat. ~10ns 
Gates~150 

 

 
Lat. ~10ns 
Gates~180 

 

 
Lat. ~10ns 
Gates~360 

 

 
Lat. ~20ns 
Gates~510 

 
 
Mixed 
 

 
 

   

 

Table 4.6. Estimated Latency and Gate Count for 256b Generic Codes 

  
Single bit 
Hamming 
(265, 256) 

 
Dual Bit 

Hamming 
 

 
BCH code 

 
(255, 239) 

 
Hierarchical BCH 

(n = 2m – 1) 
HC (38, 32) 

BCH (255, 239) 

 
Software 
 

    

 
Hardware 

 
Lat. ~10ns 

Gates~1200 
 

 
N/A 

 

 
Lat. ~10ns 

Gates~2500
 

 
Lat. ~20ns 

Gates~4000 
 

 
Mixed 
 

- 
 

- - - 

 

   

 It is clear that a hardware implementation of ECC algorithms will help to improve data 

reliability without making hefty demands of the bandwidth and silicon area. For the small data 

blocks considered for synthesis, the overhead in terms of parity bits per data bit is very large. 

However, the ratio decreases significantly as the data block size is increased keeping the 

latency and gate count within acceptable limits.  
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 Figure 4.9 shows the gate-level circuit representation for a (7, 4) Hamming code and 

Figure 4.10 shows the circuit for a (15, 7) BCH code after synthesizing the respective Verilog 

codes. 

r0 r1 r2 r3 r4 r5 r6

+ + +

+ + + + + + +

s0 s1 s2

e0 e1 e2 e3 e4 e5 e6

r0
r1 r2 r3 r4 r5 r6

Corrected Vector

Received 
vector (r)

Computation of 
syndrome (s)

Error correction 
circuit

 

Figure 4.9. Gate Level Circuit for a (7, 4) Hamming Code 
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Figure 4.10. Gate Level Circuit for a (15, 7) BCH Code. 

Table 4.7. Latency and Gate Count for Synthesized Hardware Designs 

  
Single bit 
Hamming 

(7, 4) 

 
Dual Bit 

Hamming 
(7, 4) 

 
BCH code 

 
(15, 7) 

 
Hierarchical BCH 

HC: (11, 7) 
BCH: (15, 7) 

 
Software 
 

 
~40 clock 

cycles = 1µs 
 

 
~40 clock 

cycles = 1µs 

 
~400 clock 

cycles = 10µs 

 
~450 clock cycles = 

11.25µs 

 
Hardware 

 
Lat. ~3ns 
Gates~70 

 

 
Lat. ~4ns 

Gates~110 
 

 
Lat. ~7ns 

Gates~320 
 

 
Lat. ~8ns 

Gates~450 
 

Mixed N/A 
 

N/A N/A N/A 
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4.2.3. Mixed Implementation 

A mixed implementation typically employs hardware for timing sensitive tasks and uses 

software for the variable blocks in the design. In this case, a pure hardware analysis satisfies 

both latency and area constraints making it the best choice for an on-chip ECC in NOR Flash. 

This makes a mixed implementation unnecessary. 

It has been shown that a hardware on-chip error correction code satisfies latency and 

die area constraints for single as well as multi bit error correction using standard ECC 

algorithms and optimized schemes using the standard algorithms. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 The aim of this thesis is to develop error correction methods for latency-constrained 

Flash systems.  

 As a first step towards this goal, it was necessary to extract error probabilities of a NOR 

Flash array from technology-specific threshold voltage data. This was not done earlier simply 

because it was not important to precisely determine the error correction capacity that is required 

to achieve a certain target bit error rate. Earlier Flash arrays had a raw BER on the order of 10-

12 for which a single bit Hamming proves to be sufficient. The BER derived from the proposed 

mathematical relations was a good starting point to determine correction requirements for the 

memory array. The next step was to review existing error correction algorithms with respect to 

NOR Flash requirements, namely, low latency (< 10ns) and low hardware gate count (< 5000 

NAND gates). Applying these constraints to existing algorithms and their architectural 

possibilities brought several shortcomings to light. For example, Hamming codes were easy to 

implement but could not help with higher order bit error rates. On the other hand, BCH codes 

had excellent correction capacities but very complex implementations. This lead to efforts to 

optimize existing architectures and develop new schemes concentrating on the strengths of 

Hamming and BCH codes.  

One such optimization is the dual bit Hamming code. This code gives 2-bit error 

correction using the simple Hamming algorithm for block sizes less that 1 byte in length. The 

small block sizes are suitable for applying error correction in Flash File Systems which have a 

read granularity of 1 byte. Flash File System is a very small but important block on the Flash 

chip. Therefore it is important to maintain its reliability. This cannot be done using the same 

block codes which are used in the memory array because of the large block sizes that are 

typically used in the array (256 bits).   
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It has been shown that the BCH code is very useful for correcting multiple bit errors with 

a latency of around 10 ns which is suitable for XiP application. The hardware complexity of this 

implementation is around 3500 NAND gates which is well within the margin set for NOR Flash. 

It is important to note that lower order errors (1 bit errors) occur at least 1012 times more 

frequently than higher order errors (2 bit errors). Therefore the BCH code is mostly correcting 

single bit errors with rare exceptions. The Hierarchical BCH code overcomes this problem by 

having the Hamming code perform error correction on the lower order errors (single bit ECC) 

and the BCH code being executed only once out of approximately 1012 times when there is a 2 

bit error. This results in an average latency equal to the latency of the Hamming code (3 – 4ns) 

along with multiple error correction capacity. This algorithm is expected to be very useful in 

Flash systems like LPDDR2 (32nm) which has a read access time of 50ns. For such a low read 

access time even a latency of 10ns proves to be a huge penalty making the Hierarchical 

scheme an implementation of choice. The applicability of these optimizations was proved in 

simulations and via implementations in both hardware and software. The software 

implementation, although not applicable proved the functionality of the algorithms while the 

hardware implementation gave a gate count well within the 5000 NAND gates constraint. 

 The proposed and analyzed algorithms take error correction in NOR Flash a step ahead 

from single bit correction to 2 bit correction at a minimal latency (< 10ns) and hardware 

overhead (< 5000 NAND gates). The software and hardware simulations proved that the 

proposed solutions provide at least 2x improvement in protecting data in NOR Flash arrays. 

Array bit error rates of the order of 10-7 for XiP Flash can be brought down to 10-15 using 2-bit 

error correction.  

 Low latency, low complexity error correction architectures make it possible to have 

reliable high storage density Flash systems at smaller geometries. 

 

 
 

 
62



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX A 

 
HOW TO COMPUTE MINIMAL POLYNOMIALS 
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 For any element β in the field GF(2m), the corresponding minimal polynomial Φ(X) is the 

polynomial of smallest degree over GF(2) such that Φ(β) = 0. Φ(X) is unique. For example, the 

minimal polynomial of 0 is X and that of 1 is X + 1. 

 Before learning to compute minimal polynomials it is essential to learn the following 

theorem. 

 

 Theorem: If f(X) is a polynomial having coefficients in GF(2) and β is an element in the 

extension field GF(2m) such that β is a root of f(X), then for any j ≥ 0, (β)2^j is also a root of f(X).  

 

[f(β)]2^j = f(β2^j)                    

 

The element β2^j is called a conjugate of β. 

 

The general equation for the minimal polynomial Φ(X) of β in GF(2m) is given as; 

 

      Φ(X) =                                   ∏
−

=

β+
1e

0i
)}i^2()^(X{

 

Where e is the smallest integer such that β2^e = β. 

 

Example: 

Consider GF(24). Let β = α1. The conjugates of β are 

 

β2 = α2,  β2^2 = α4,  β2^3 = α8  and  e = 4 (since β2^4 = α16 = α) 

 

Substituting in the general equation, the minimal polynomial for β = α1 is computed as; 
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Φ(X) = (X + β) (X + β2) (X + β4) (X + β8) 

= (X + α) (X + α2) (X + α4) (X + α8) 

= X4 + X3(α8 + α4 + α2 + α) + X2(α12 + α10 + α9 + α6 + α5 + α3) + X(α14 + α13 + α11 + α7) + α15

= X4 + X + 1            (Table below) 

Representation for the elements of GF(24) generated by (1 + X + X4) 

Power representation Polynomial representation 4-Tuple representation 

0 0 0000 

1 1 1000 

α α 0100 

α2 α2 0010 

α3 α3 0001 

α4 1 + α 1100 

α5 α + α2 0110 

α6 α2 + α3 0011 

α7 1+ α + α3 1101 

α8 1+ α2 1010 

α9 α + α3 0101 

α10 1 + α + α2 1110 

α11 α + α2 + α3 0111 

α12 1+ α + α2 + α3 1111 

α13 1 + α2 + α3 1011 

α14 1 + α3 1001 
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