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ABSTRACT

SUBCELLULAR STRUCTURE MODELING AND TRACKING FOR CELL

DYNAMICS STUDY

QUAN WEN, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professor: Jean Gao

The introduction of sensitive and fast electronic imaging devices and the devel-

opment of biological methods to tag proteins of interest by green fluorescent proteins

(GFP) have made a full understanding of live cell dynamics achievable. With the

latest hardware technology, such as high speed laser scanning confocal microscopy

(LSCM), it has now become critical to develop automatic quantitative data analysis

tools to keep pace with and to fully exploit the functionalities of state-of-the-art hard-

ware. One task of such tools is the motility analysis of subcellular structures. This

dissertation provides a series of computational approaches for studying subcellular

structure motility.

Firstly, a semi-automatic single object tracking approach using sequential Monte

Carlo (SMC) method is developed. To achieve reliable tracking, a flow of criterion for

object feature selection, matching, and evaluation criteria are designed: a grid-based

minimum variance (GMV) feature selection rule, a mean minimum to maximum ra-

tio (MMMR) similarity measurement, and the feature evaluation tests by feature

convergence ratio (FCVR) and feature consistence ratio (FCSR).
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Secondly, to handle complex scenario of multiple interacting subcellular struc-

ture motion, we apply reversible jump Markov chain Monte Carlo (RJMCMC) method

to sample the distribution of the dimension varying joint state which is the combina-

tion of the states of multiple individual subcellular structures. Five RJMCMC moves

are constructed, including object appear move, disappear move, update move, height

swap move, and identity swap move. The evolution of each individual state in the

joint state is sampled by the update move. In order to deal with the random appear-

ance locations of subcellular structures, a marker residual image guided appearance

model is proposed to detect the newly appearing object, and the appear move and

the disappear move are applied to generate samples resulting from the new object

appearance. To prevent the RJMCMC sampling from being trapped at the local

maxima, the identity swap move is also constructed. The proposed RJMCMC SMC

tracking approach is applied to numerous time-lapse LSCM video sequence tracking

in both 2D+T and 3D+T domains.

Finally, from a perspective different from the SMC framework, we model the

multiple object tracking as a bipartite graph matching problem between the consecu-

tive image frames. To save the possible high cost of graph matching, a Markov chain

Monte Carlo data association (MCMCDA) method with deletion move, switch move,

and addition move is developed to approximate the optimal solution.
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CHAPTER 1

INTRODUCTION

The introduction of sensitive electronic imaging devices and the development of

methods to tag proteins of interest by green fluorescent protein (GFP)[1], [2], [3] have

been the drivers to live-cell study. A direct example is observing the motion of GFP

expressed proteins that are transported in vesicles moving from place to place along

microtubule tracks. Understanding the motility of these subcellular structures like

organelles, vesicles, or mRNAs is critical to understand how cells regulate the delivery

of specific proteins from the site of synthesis to the site of action at subcellular

level. The knowledge of regulation and how it is deranged in various diseased or

malfunctioned states will eventually lead to a better understanding of such diseases

as diabetes, hypercholesterolemia, and many viral infections. At present, biologists

either laboriously track a few subcellular structures by hand, or use commercially

available particle tracking programs whose performance is far below expectations for

various demands.

The image data sets obtained using laser scanning confocal microscope (LSCM)

can be classified into two categories. The first one is the two spatial dimension time

series (2D+T) image sequence, and the second one is three spatial dimension time

series (3D+T) image sequence. In a 2D+T image sequence, an image at a time point

is taken for the whole specimen at a certain focus plane. For a 3D+T video sequence,

images at a certain time point are recorded at different heights (focus planes), which

overcomes the out-of-focus limitation for 2D+T and provides a better 3D knowledge

of object temporal change.

1
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Figure 1.1. A green fluorescent protein (GFP) labeled image obtained from Laser
Scanning Confocal Microscope (LSCM).

Figure 1.1 shows an example of 2D GFP image obtained from LSCM. The green

regions are proteins of interest that vary in both size and intensity due to the spatial-

temporal distribution of GFP in a specimen. Different from traditionally well studied

video objects, subcellular structures observed by LSCM have distinctive properties:

• Variable object size, ranging from large to small;

• Changing number of objects caused by out-of-focus or dying out of fluorophore;

• Large shape deformation due to relatively long time elapse between adjacent

frames;

• Lacking of stable object features resulted from inconstant fluorescence;

• Diverse motion modalities, such as Brownian motion and translational motion;

• Cluttered environment and high noise due to photo bleaching.

These characteristics pose challenges to subcellular structure tracking, to which com-

monly used motion analysis and object tracking techniques can not be simply applied.
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Toward the goal of subcellular structure motility analysis, Chapter 2 describes a

semi-automatic single object tracking approach using sequential Monte Carlo (SMC)

method. Object feature selection, matching, and evaluation criteria are developed for

robust tracking. This methodology benefits biologists when the motility of a specific

structure is interested [4], [5], [6].

The core of the dissertation goes to Chapters 3 and 4 where the motion tracking

of multiple interacting objects is dealt with. Chapter 3 describes the tracking for a

non-linear, non-Gaussian, state dimension changing system in 2D+T. The reversible

jump Markov chain Monte Carlo (RJMCMC) moves, including object appear move,

disappear move, update move, height swap move, and identity swap move, are con-

structed to sample the distribution of the dimension varying joint state [7], [8], [9].

Chapter 4 presents an extension of the 2D+T object tracking to 3D+T space.

Finally, Chapter 5 [10] tackles the object tracking from a different perspective,

where multiple object tracking is modeled as a bipartite graph matching problem be-

tween the consecutive image frames. To save the possible high cost of graph match-

ing, a Markov chain Monte Carlo data association (MCMCDA) method with deletion

move, switch move, and addition move, is provided to approximate the optimal solu-

tion.



CHAPTER 2

A PARTICLE FILTER APPROACH FOR SUBCELLULAR
STRUCTURE TRACKING

2.1 Introduction

The introduction of high resolution electronic imaging devices and the develop-

ment of methods to tag proteins of interest by green fluorescent protein (GFP) have

been the drivers to live cell study. Understanding the motility of subcellular particles

like organelles, vesicles, or mRNAs is critical to understand how cells regulate deliv-

ery of specific proteins from the site of synthesis to the site of action at subcellular

level. The knowledge of regulation and how it is deranged in various diseased or

malfunctioned states will eventually lead to a better understanding of such diseases

as diabetes, hypercholesterolemia, and many viral infections. At present, biologists

either laboriously track a few vesicles by hand, or use commercially available particle

tracking programs whose performance needs to be amended for various demands.

2.1.1 Subcellular Structure Motility Study

There are a plethora of motility analysis methods on microscopy video data

at cellular level. Compared with GFP molecules at sub-cellular level, cells have

less shape deformation and displacement between frames. Therefore, cells can be

tracked by the evolution of active contour methods [11], [12], [13], [14], or simply

by a template matching [15]. However, motility study at sub-cellular level is more

complicated. From the visual perception point of view, there are two categories of

GFP molecules that are under investigation. One is small spot-like separated GFP

4
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molecular particles, and another type is larger GFP molecular clusters (consisted of

a number of neighbored spots) which are what this chapter will deal with.

Spot-like molecular particle tracking has been investigated widely in the study of

molecular mobility properties [16], [17], [18], [19], [20], [21]. There are two situations

in finding spot correspondence between consecutive video frames as summarized by

[22]: 1) there is only one detectable object in the image frame. Therefore the tracking

task is to detect the location of the object by Gaussian fitting [16], [17] or the centroid

of the object [18], without the need of object detection from the image frames before

or after the current one; 2) the number of detectable objects in the image is more

than one, in which the image information before/after the current image frame is

required for object matching [19], [20], [21]. In the work by [20] and [21], the spatial

configuration of the image intensity of the protein spot is assumed to be no change.

This assumption does not hold in the tracking of GFP-labelled subcellular structures.

In [19], only the displacement information is used to associate the spots between the

consecutive image frames to construct the trajectories.

Different from the spot-like particles, the GFP molecule clusters observed by

laser scanning confocal microscopy (LSCM) have distinctive properties: 1) variable

object size, ranging from large to small; 2) changing number of objects caused by

transporting out of the focal plane or photobleaching of the fluorophore; 3) large

shape deformation as time elapses; 4) lacking of salient features among objects in the

recorded images; 5) diverse motion modalities, such as Brownian motion and non-

Brownia motion, including directed motion, confined motion, and anomalous diffusion

[23]; 6) cluttered and noisy image background due to detector noise. These charac-

teristics pose challenges to subcellular structure tracking and make the previously

developed object tracking techniques not directly applicable here. For an example,

conventional rectangular template-based tracking [15], [24] works well in a sparse ob-



6

ject environment with no large shape deformation. Furthermore, large inter-frame

displacement and noise may mislead the shape evolution for active contour/surface-

based tracking methods [11].

2.1.2 Feature Selection, Matching, and Evaluation

To develop tracking methods that are robust in differentiating objects from the

background, one of the important issues is the selection of stable and distinctive fea-

tures during the tracking process. Such features may include shape corners, edges,

contours, spectral parameters, color histograms, or intensity of objects. While exten-

sive efforts have been devoted to better and robust tracking framework, limited work

has been done on distinctive feature selection for tracking process. To tackle feature

selection in a low-resolution and noisy image, recent endeavor has been presented by

[25]. In the work, features that best distinguish object from background are defined

to be the best for tracking. The method selects features by a linear combination of

RGB color components and by maximizing the contrast between foreground and back-

ground. However, the unique properties of GFP particles limit the extension of this

approach being applicable here. This is because GFP images are gray scale (pseudo

color) and cannot provide a color space to be used for the calculation. Secondly, since

the objects in GFP image are visually similar and close to each other, it is difficult to

define a background separating the adjacent objects. This causes the variance ratio

criterion to fail to find the highly discriminative features. Lastly, this method is not

suitable to handle larger shape deformations due to the specification of a fixed rect-

angular box. Feature evaluation criteria have been studied by [26]. Two evaluation

criteria, repeatability rate and information content, have been proposed to evaluate

geometric stability and to measure the distinctiveness of features, respectively.
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2.1.3 Object Tracking Techniques

Kalman filtering (KF) techniques have been most commonly-used for object

tracking [24], [27], which deals with linear and uni-Gaussian modal systems. The

limitations come from its incapability in handling non-linear and multi-modal sys-

tems. Methods such as extended Kalman Filter EKF, Gaussian sum filtering (GSF),

unscented Kalman filter (UKF), and grids-based methods have been introduced to

overcome the shortcomings of Kalman filtering. Nonetheless, none of them provides

a more efficient way as the later introduced particle filter (PF) 1 [28], [29], [30], [31],

[27]. Since its debut in 1993 [32], particle filter has been used as a major method to

deal with nonlinear/non-Gaussian systems. For a visual tracking problem, the defi-

nition of the observation model of particle filter plays a critical role in the successful

application of it [33]. Model-based observation model is one of the most common

methods in visual tracking, in which the state is modeled by the geometric property

of an open/closed curve or simply by a bounding box. Either the edge information

along the curve [34], [35], [36], or the color histogram information within the closed-

curve or bounding box [37], [38], [39] is used as observation. A combined observation

of both edge and color histogram is used by [40]. When applied to GFP labeled

subcellular structure tracking, the major limitations of the model-based approaches

stems from lacking of edge information along the contour, not enough pixels for color

histogram calculation, or unstable intensity information due to photobleaching.

2.1.4 This Work

The goal of this chapter is to design a particle filter based computational frame-

work for subcellular structure tracking. Figure 2.1 illustrates the overall concept of

1Word “particle” here is a computational unit used for data sampling and is different from the

ones used in subcellular “particles” that refer to subcellular structures.
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Step 5:  Tracking the subcellular structure using particle filterStep 4:  Feature selection

Start

EndObject disappearing or end of image sequenceNo Yes
Figure 2.1.Flow chart of the particle filter tracking algorithm.

region tracking by particle filter. A novel observation model by a grid-based minimum

variance (GMV) feature selection method and a mean minimum to maximum ratio

(MMMR) for feature matching are first described. Then we introduce how the track-

ing process based on a particle filter is carried out. To evaluate the performance of
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the proposed feature selection and matching techniques, two evaluation criteria, fea-

ture convergence ratio (FCVR) and feature consistence ratio (FCSR), are introduced,

which conform with the Gestalt visual perception theory.

The rest of the paper is organized as follows. First, we introduce the par-

ticle filter based tracking algorithm and feature selection and matching criteria in

Section 2.2. The experimental results and evaluation are presented in Section 2.3.

Conclusions and future work are given in Section 2.4.

(a) (b)

(c) (d)

Figure 2.2. Comparison of segmentation methods. (a) Part of the original intensity
image; (b) result by applying thresholding algorithm; (c) result by applying the Canny
edge detection; and (d) result by Marker-guided Watershed method.
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2.2 Particle Filter Based Tracking Algorithm

2.2.1 Subcellular Structure Segmentation

The tracking process starts with the specification of object of interest. A region

containing the object of interest is manually selected at the beginning of the automatic

tracking process. A 3× 3 averaging filter [1/9, 1/9, 1/9; 1/9, 1/9, 1/9; 1/9, 1/9, 1/9] is

applied to the image for de-noising purpose.

As introduced in section 2.1, the GFP objects in the LSCM image sequences

are unique in several aspects. Since the GFP objects in the LSCM image sequences

are close to each other in a highly noisy environment without distinguishable bound-

aries, it is challenging to segment out the objects accurately. Furthermore, due to

large shape deformation, a pre-defined fixed object shape description is not a feasible

solution, too. Therefore, to segment the object of interest, proper image processing is

needed. Here, we use a marker-guided watershed method to segment the object [41].

Compared with the thresholding and Canny edge detection segmentation techniques,

marker-guided watershed method keeps consistence with human perception as shown

in Fig. 2.2. The result of marker-guided watershed method is accurate enough for our

object description and feature selection. Furthermore, the maker-guided watershed

method shows highly robust performance when segmenting objects in different image

frames.

2.2.2 Feature Selection by Grid-based Minimum Variance and Feature
Matching by Similarity Measurement

Before we introduce the particle filter based tracking for the segmented ob-

ject, we first describe the criteria used for feature selection and matching during the

tracking process.
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From the segmented particle of interest, intuitively all the pixels of the whole

region would be utilized for the consequent object tracking. However, not every

pixel conveys useful and robust information for the tracking process. The usage

of the whole region is catastrophic for image sequences acquired under undesirable

conditions. Therefore, the region tracking problem is often relaxed to the process

of sub-region tracking stipulated by robust features. There are several methods in

the literature on region feature representation, such as texture [42], histogram [43],

and salient points [44]. Nonetheless, the characteristics of GFP image are unlike well

studied common images. High frequency features such as edges and corners are not

reliable in the GFP tracking due to the large shape deformation and noisy object

environment. Furthermore, the segmentation results are not always ready for the

direct application of the above methods.

Our idea is to exclude the pixels that are not suitable for robust visual tracking.

Based on the Gestalt law of visual perception, we define four criteria for robust feature

selection in GFP images: 1) homogeneity; 2) stability; 3) majority; and 4) proportion.

For homogeneity, the features of a GFP object are defined as the pixels with the

smallest intensity variance within its local support region L. The intensity variance

σ2
L of a feature pixel with its local support is calculated as:

σ2
L =

1

NL

∑

~p∈L

(I(~p)− µL)2, (2.1)

where I(.) is the intensity of pixel ~p, NL is the number of pixels in L, and µL is

the mean intensity of local support L and calculated as: µL = 1/NL

∑
~p∈L I(~p).

Considering GFP objects illuminate themselves, a stable feature point and its local

support should have higher intensity than the background and other darker area of

the same GFP object. This intensity stability threshold is denoted as Ih. Majority

in Gestalt law means that besides the feature point itself, a larger proportion of the
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local support, say larger than the majority threshold T , should belong to the GFP

object. The forth criterion of proportion is from the histogram point of view, and

implies that the larger region should have more feature points than the smaller one

when the first three criteria are satisfied. We thus develop a grid-based minimum

variance (GMV) method for feature selection by taking into consideration of both the

region segmentation and reliability of each sub-region to be tracked. The method is

summarized as follows:

Algorithm of GMV Feature Selection

1. Establish the stability threshold Ih, majority threshold T , and the size of each

n× n sub-region, e.g. 3× 3.

2. Find the minimum bounding rectangle (MBR) of the segmented object. If the

length or the width of the MBR is not a multiple of n, extend it to be a multiple

of n by expanding the MBR toward right or the bottom of the image with a

minimum increase. The newly delineated region is called extended minimum

bounding rectangle (EMBR).

3. Uniformly divide MBR or EMBR into square sub-regions with size n× n.

4. Repeat for all the sub-regions of MBR or EMBR

(a) Construct candidate features set Ω by selecting an object pixel satisfying

the criteria of stability threshold Ih and majority threshold T .

(b) If Ω is empty, go to step 4 for next sub-region.

(c) If Ω is not empty, apply Eq. (2.1) to each pixel in Ω, and select the one

with the smallest σ2
L as a feature point. For candidates with the same σ2

L,

the one with largest µL is selected. If this is still not met, the one with the

largest number of object pixels in its local support is chosen.

5. End Repeat.
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(a) (b) (c)

Figure 2.3. Illustration of GMV feature selection method. (a) Segmented object with
its boundary (purple contour). (b) The result of applying grid lines (red doted lines)
to (a). (c) Feature selection result by GMV method. Burgundy pixels are the selected
feature points.

Supposing a GFP object is segmented as shown in Fig. 2.3(a), the object region

is uniformly divided into sub-regions with size of n × n, say 3 × 3, represented as

red dotted squares in Fig. 2.3(b). Within each sub-region, we select all the points

satisfying the Gestalt stability and majority criteria as candidates and choose the

one with the lowest local support variance σ2
L as the feature point to represent the

sub-region to comply with the homogeneity criterion. The selected feature points are

shown in Fig. 2.3(c). Using the GMV feature selection, it is possible that one sub-

region has no feature point extracted as shown in the two orange regions of Fig. 2.3(c).

This is because the local support intensities of all the pixels in the sub-regions are less

than the stability threshold Ih and violate the stability criterion. This is the desired

result and is one of the advantages of GMV over simple uniformly sampling of the

region for feature selection. Also, the gray-shaded sub-regions have no feature points

due to the numbers of pixels of them are less than the majority threshold T = 5.

The superiority of GMV lies in its consistence and convergency of correspondences

for GFP cluster tracking, which is to be quantitatively proved in the experimental

section.
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(a) (b)

(c) (d)

Figure 2.4. Comparison of feature selection methods. The red cross and yellow plus
signs indicate the positions of the selected feature points and the boundary pixels,
respectively. (a) is for USS. (b) is for MIP. (c) is for Harris corner. (d) is for GMV.

The GMV feature selection method was compared with three other often used

feature selection methods, namely uniform sub-sampling (USS), maximum intensity

pixel (MIP), and Harris corner detector [45]. USS is a method of uniformly sub-

sampling the region of interest. MIP method uses pixels with highest intensity as

features. With the number of feature pixels in MIP set to be the same as USS

method, as seen in Fig. 2.4, the selected feature points of different methods have

different patterns. In Fig. 2.4(a), the USS method does not consider the local pixel

information such as intensity or gradient, so the selected feature pixels have no obvious

patterns except they are uniformly distributed. For the MIP method, the feature

points aggregate in the high intensity parts, as shown in Fig. 2.4(b). The corner

pixels detected by Harris method are shown in Fig. 2.4(c). Here, the parameter k

for Harris corner detection in R = Det − kT 2
r , the last equation of [45], is set to
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be k = 0.04. We set the threshold value of R to be 0.01 of the maximum observed

point strength. Reader please refer to [45] for the detailed descriptions of R, Det, k,

and T 2
r . On the other hand, feature points of GMV tend to represent the intensity

composition of the whole region.

One important aspect in object tracking is how to measure the similarity be-

tween a selected feature point and its correspondence. The mostly used similarity

measurement between feature points is normalized cross-correlation (NCC ). This rule

works well for feature points executing translational motion and with less intensity

distortion, but it is sensitive to feature points undergoing affine motion. To overcome

this limitation, a different similarity measurement between feature point ~ps in frame

k and candidate point ~pt in frame n is defined as:

S(~ps, ~pt) =
1

|L|
∑

~p∈L

min[Ik(~p), In(~p + ~pt − ~ps)]

max[Ik(~p), In(~p + ~pt − ~ps)]
, (2.2)

where L is the local support region for ~ps at time k, |.| is the cardinality operation,

Ik, In are the image functions at time k and n, respectively. The ratio of min/max

measures the similarity of two pixels in the two support regions corresponding to

points ~ps and ~pt, respectively. We call S(~ps, ~pt) mean minimum to maximum ratio

(MMMR). The ratio returns a value in the range of [0, 1]. It reaches its maximum

value of one when two pixels have the same intensity, and minimum value of zero

when one of the pixels is zero intensity. In the case when max(x, y) = 0, we set

min(x, y)/ max(x, y) = 1. This ratio also gives larger similarity value to two pixels

with higher intensity values comparing to lower ones with the same intensity differ-

ence. For example, if I(~ps) = 80, I(~pt) = 100, I(~pt)− I(~ps) = 20, the min/max ratio

is 0.8. However for another pair of pixels, I(~ps) = 30, I(~pt) = 50, I(~pt)− I(~ps) = 20,

the min/max ratio is 0.6 which is lower than the previous one. A candidate point
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with the highest MMMR in the search window will be picked up as the matching

feature for feature point ~ps.

Based on the similarity measurement, we define the distance function between

points ~ps and ~pt as:

D(~ps, ~pt) = 1− S(~ps, ~pt). (2.3)

The distance function defined by Eq. (2.3) is more robust to deal with affine motions

than NCC measurement, which can be seen in the experiment section.

2.2.3 Subcellular Structure Tracking by Particle Filter

For the initially segmented subcellular structure as described above, the tracking

process is described by a state space model. The state of the subcellular structure

at different time t can be modeled as a first order Markovian process with state Xt,

t = 0, 1, · · ·, and the output of the system is denoted as observation Zt, t = 1, 2, · · ·,
measured from the image sequence. The dependence relationship between the states

and observations is illustrated in Fig. 2.5.Xt-1Zt-1 XtZt Xt+1Zt+1StateObservation
Figure 2.5.Diagram of discrete state space model.

For a Markovian process, the current state Xt of the subcellular structure is

only conditionally dependant on its previous state Xt−1, and the image observation Zt
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is only conditionally dependant on the current state Xt. This relationship is described

by conditional probability density functions:

p(X0), t = 0 Initial state (2.4)

p(Xt|Xt−1), t ≥ 1 Transition density (2.5)

p(Zt|Xt), t ≥ 1 Observation density. (2.6)

Particle filter (PF) is used to approximate the above conditional probability

density functions. It is a sub-optimal filter, also known as sequential Monte Carlo

(SMC) method [27]. The main idea of PF is to recursively generate particles (samples)

that approximate the probability distributions under investigation. The particles

allow further estimates of the probability distributions, including minimum mean

square error (MMSE) and maximum a posteriori (MAP) estimates. For instance, if

we let X0:t = {X0, · · · ,Xt} and Z1:t = {Z1, · · · ,Zt}, which represent the states and

the observations up to time t respectively, the posterior probability distribution of

interest is p(Xt|Z1:t). This can be approximated by particles as:

p(Xt|Z1:t) ≈
Ns∑
i=1

wi
tδ(Xt −Xi

t), (2.7)

where δ is the Dirac delta function, Xi
t is the particle with wi

t as its normalized sample

weight, and Ns is the number of samples. When the prior density function is chosen

as the importance function, the sample weights of the particles can be recursively

updated as:

wi
t = wi

t−1p(Zt|Xi
t). (2.8)

To estimate p(Zt|Xi
t) in Eq. 2.8, we need to consider individual segmented re-

gions each particle {Xi
t} is associated with. This is because after the state transition

process from {Xi
t−1} to {Xi

t}, the Ns particles originally associate in the same refer-

ence region Rr at the beginning of the tracking may now be affiliated with different
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regions. We denote the region a particle associated with as Ri. Without loss of

generality, the observation density for a given particle can be approximated by the

matched feature points distributions with each being a Gaussian distribution. Hence,

p(Zt|Xi
t) can be estimated as:

p(Zt|Xi
t) ∝ exp{

∑

~ps∈Rr,C(gs)∈Ri

−λD2[~ps, C(~ps)]}, (2.9)

where C(~ps) is the matching point of ~ps in the region Ri, and λ is a probability

normalization parameter.

The whole particle filter algorithm for tracking subcellular structure is summa-

rized below:

Framework for Region Tracking by Particle Filter

1. Select a rectangle window and segment the subcellular structure of interest at

the beginning of the tracking process. This is carried out by the marker-guided

watershed method with human in the loop. Feature points inside the segmented

region, Rr, are extracted by GMV algorithm. Use the mean of the coordinates

of the feature points as the initial state X0, sample it with Ns particles and

represent X0 as {Xi
0}, i = 1, · · · , Ns, each with particle weight 1/Ns.

2. Set {Xi
t−1} = {Xi

0}.
3. Apply state transformation Eq. (2.5) to each particle in {Xi

t−1}, and obtain

{Xi
t}.

4. Apply marker-guided watershed method to segment image frame at t (to save

computation cost, only regions having at least one particle in {Xi
t} are seg-

mented). Associate each particle with the region containing it. Thus we get Ri

for each particle in {Xi
t}.

5. Apply Eq. (2.9) to each pair of Ri and {Xi
t}, and select the region Ri with

maximum p(Zt|Xi
t) as the correspondent region at time t for Rr.
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6. Update the particle weights by Eq. (2.8), and re-sample the state Xt, we get

new {Xi
t} using systematic resampling [27].

7. Set t = t + 1.

8. Goto step 3.

2.3 Experimental Results

In this section, we provide the experimental results from the proposed region

tracking by particle filter. Our goal is to study the motility of caveolin-1-GFP which is

a GFP tagged caveolin-1 protein. The motility is studied by investigating the control-

ling functions of microtubules and actin cytoskeleton on caveolin-1-GFP structures.

CHO K1 cells were transfected with the caveolin-1-GFP. The image sequences were

acquired by a Leica TCS-SP laser scanning confocal microscope with a 100X, 1.4

NA, plan-apochromatic lens using a computer controlled 488 nm argon laser to excite

GFP. The images are of size 512×512 with a time interval of 1.6 second between two

frames. We will first present the results of the tracking performance on two types

of GFP object movement, namely non-Brownian motion and Brownian motion. The

evaluation of feature selection and matching is given at last.

2.3.1 Tracking Results

In the experiment, the state is defined as Xt = [ut, vt, ut−1, vt−1]
T , where ut, vt

are horizontal and vertical coordinates at frame t. The state prediction by Eq. (2.5)

is simplified as: Xt = FXt−1 + Qt, where F = [2, 0, -1, 0; 0, 2, 0, -1; 1, 0, 0, 0; 0, 1,

0, 0], and the covariance matrix of Qt as Σq = [15, 0, 0, 0; 0, 15, 0, 0; 0, 0, 0, 0; 0,

0, 0, 0]. λ in Eq. (2.9) is set to be 5. The number of particles is set to be Ns = 100.

Here we demonstrate the performance of our method by applying it to track both

Brownian and non-Brownian motions.



20

(a) (b)

Figure 2.6. Non-Brownian motion particle selection. (a) Frame 108 where a rectangle
window containing object of interest is selected; (b) The enlarged image of the selected
window with the object of interest segmented by watershed algorithm.

2.3.1.1 Tracking Non-Brownian Motion

A portion of the image frame is depicted as a white rectangle in Fig. 2.6(a). The

object of interest in the selected window is segmented by the watershed algorithm

as the white contour in Fig. 2.6(b). Following the algorithm of region tracking by

particle filter in Section 2.2, the tracking result is shown in Fig. 2.7. Since the

object of interest recently appears, its intensity is much lower than its neighbors.

Nonetheless, once the object is selected, our method tracked it successfully in its

whole life span, despite the large shape deformations in the intermediate frames.

After frame 120, the object merged with its neighbors. As can be seen from Fig. 2.7,

where the tracked object is indicated by the white boundary, the shape change is

dramatic in size and boundary. The imperfect segmentation result is produced by

the segmentation method. The tracking trajectory of the object is shown in Fig. 2.8,

where the gravity center, [um, vm]T , of the tracked object is used. The center is

calculated by:

[um, vm]T =
1

N

N∑
i=1

[ui, vi]
T , (2.10)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.7. Tracking non-Brownian motion. The tracked object is marked by white
contour. (a) to (l) are image frames from 109 to 120.
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where [ui, vi] is the horizontal and vertical coordinates of the ith pixel that belongs

to the tracked cluster, and N is the number of the pixels in the tracked region.

Figure 2.8.The trajectory of the non-Brownian motion particle.

2.3.1.2 Tracking Brownian Motion

The tracking performance of our method on Brownian motion is illustrated in

Fig. 2.9 and Fig. 2.10. As shown in Fig. 2.9(a), the object in selected window is to

be tracked. Its enlarged image is viewed in Fig. 2.9(b). Although photo-bleaching

happened in the whole video sequence and the neighbor and shape of the tracked

object changed a lot, our method successfully tracked the object of interest from

frame 1 to the last frame 220 of the video sequence, as shown in Fig. 2.10. Same as

before, the imperfect segmentation result is caused by watershed method. Figure 2.11
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draws the trajectory of the object. As predicted, localized, tethered movement can

be seen.

(a) (b)

Figure 2.9. Brownian motion particle selection. (a) Frame 1 where a white rectangle
region delimitating the object of interest is selected; (b) The enlarged image of the
white square region in (a) with the object of interest segmented as the white contour.

2.3.2 Feature Evaluation Methods

As mentioned in Section 2.1, the convergence and consistence of selected fea-

tures are important in tracking subcellular structures. The discrimination and ro-

bustness of features are two major concerns. We interpret the discrimination and

robustness of features points selected in region tracking as feature convergence ratio

(FCVR) and feature consistence ratio (FCSR). The idea of FCVR is illustrated in

Fig. 2.12. Suppose there are four regions A, B, C, and D in frame t− 1 as shown in

Fig. 2.12(a), we denote them as RA, RB, RC , RD, respectively. Similarly, for frame t

as shown in Fig. 2.12(b), there exist four regions represented by R1, R2, R3, R4. The

region of interest is RA with NfA feature points. The correspondence of each feature

point in region RA is searched in frame t and scatters in R1, R2, R3, R4, with each

region having a number of Nf1, Nf2, Nf3, Nf4 feature points, respectively. Suppose
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.10. Tracking Brownian motion. The tracked object is depicted by white
contour. (a) to (i) are image frames with number 30, 60, 90, 120, 150, 165, 180, 210,
and 220.

region R1 is the correspondent region with respect to region RA determined by the

maximum likelihood in particle filter, we define the FCVR for region RA as:

FCVR =
Nf1

NfA

. (2.11)

For the case in Fig. 2.12, Nf1 = 6, NfA = 10, and FCVR = 0.6. The higher the

FCVR, the better the feature selection method.
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Figure 2.11.The trajectory of the Brownian motion particle.

B
A

C
D

1 2

3 4

(a) (b)

Figure 2.12. Illustration of feature convergence. (a) is the frame at time t-1. (b) is
the frame at time t. Region A in (a) has ten feature pixels indicated by orange dots.
The feature pixels’ correspondences scatter in different regions in (b).
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B
A

C
D

1 2

3 4

(a) (b)

Figure 2.13. Illustration of feature consistence. (a) is the frame at time t-1. (b) is
the frame at time t. Region A in (a) has ten feature pixels indicated by orange dots.
Its feature pixels’ correspondences indicated by orange dots in (b) are confined in one
region by restricted search.

On the other hand, FCSR is defined as the mean similarity value between the

correspondent points in the correspondent region and their original feature points of

the tracked region. Let us use Fig. 2.13 for illustration. In Fig. 2.13, suppose region

R1 is the correspondent region of RA. The FCSR is defined as:

FCSR =
1

NfA

∑

~ps∈RA,C(~ps)∈R1

S[~ps, C(~ps)] (2.12)

where S(.) is the MMMR measurement as introduced in Eq. (2.2), C(~ps) is the cor-

respondence of feature point ~ps in region R1. Same as FCVR, the higher the FCSR,

the better the feature selection method.

As can be seen from the definitions of FCVR and FCSR, we do not emphasize

the discrimination and robustness of each individual feature. Instead, what we are

most interested in is the properties of the whole feature set residing in the region of

interest.

Figure 2.14 shows the evaluation result of the previous non-Brownian motion

tracking when using proposed GMV feature selection, USS, and Harris corner de-

tector. In the case that one method fails tracking the object correctly, we manually

correct it to continue the tracking process. The means of FCVR and FCSR for GMV
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are 0.76 and 0.74, respectively, while for USS they are 0.64 and 0.70. For Harris

corner detector, they are 0.65 and 0.70. This indicates the GMV method is the best

for feature selection among the three.

We also validate the performance of feature selection by comparing the final

tracking results. Given the human interactively segmentation region from watershed

as ground truth, we validate the tracking results by checking the similarity measure-

ments. This is reflected as the summed distance function D2 defined in Eq. 2.3 for

all feature points between two frames. We use
∑

D2 difference between the region

with the smallest
∑

D2 excluding the ground truth region and the ground truth re-

gion as an indication of correct tracking or not. If the
∑

D2 difference is larger

than zero, it means that the tracking is correct. Or else, the tracking is wrong, since

the decision for the tracked region selection in Eq. 2.9 is made based on the smallest

∑
D2. In other words, whenever the

∑
D2 difference is less than zero, it indicates

a wrong decision was made.

Figure 2.14(c) shows the normalized
∑

D2 difference for three different fea-

ture selection methods. As can be seen, our method keeps all the normalized
∑

D2

difference values above zero in the life time of the GFP labeled non-Brownian mo-

tion particle tracking, while the USS method fails the tracking in frames 114 and 117.

Although Harris method gives relatively comparable or even better result in terms of

overall normalized
∑

D2 difference, it fails in frame 114 indicated by less than zero

normalized
∑

D2 difference.

To evaluate the similarity measurement MMMR, we compare it with the most

used normalized cross-correlation (NCC ). NCC is defined as:

NCC=

∑
~p∈L[Ik(~p)−Īk][In(~p+ ~m)−Īn]

[∑
p∈L[Ik(~p)−Īk ]2

∑
p∈L[In(~p+ ~m)−Īn]2

] 1
2

, (2.13)
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(a)

(b)

(c)

Figure 2.14. Evaluation results of the feature selection methods. (a) is for FCVR.
(b) is for FCSR. (c) is for the mean D2 difference.
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Figure 2.15. Evaluation results of the similarity measurements. (a) is for FCVR. (b)
is for FCSR. (c) is for the mean D2 difference.

where L is the local support or template of a point of interest, ~p is a point in L, Ik and

In represent image functions of frames k and n, respectively, ~m is the displacement

vector, Īk and Īn are the mean values of the image function within the local support

template. Here we use the absolute value of NCC as our similarity measurement.

This means that both the 1 and -1 of original NCC will have the same similarity

value. Thus the absolute value NCC is more robust to pixel doing motion with local

spatial change than original NCC. In the rest of this section, we use NCC instead of

absolute value of NCC, for simplicity.

Similar to GMV and USS, the comparison results between MMMR and NCC

are illustrated in Fig. 2.15. Comparing to FCV R of 0.76 and FCSR of 0.74 by

MMMR, the average of FCV R and FCSR by NCC feature matching in each frame

time are 0.47 and 0.60, respectively. The better performance can also be seen in

Fig. 2.15(c). The normalized
∑

D2 difference values of NCC are below zero in

frames 14, 15, 17, 19, and 20, which indicate the failure of the tracking process.

2.4 Conclusions

In this chapter, we presented a particle filter based framework for GFP labeled

subcellular structure tracking in confocal microscopy image sequences. This frame-
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work is supported by a novel GMV feature selection method and an MMMR feature

matching method. The experimental results show the method can successfully track

both Brownian and Non-Brownian motions in a cluttered environment and withstand

a wide range of object shape changes. The robustness of the framework conveys the

potential to the analysis of other scientific image sequence data such as total internal

reflection fluorescence microscope (TIRFM) video sequences.

For the future work, we plan to extend the current method to automatic object

detection and multi-object tracking (MOT). As the general problem of MOT, we will

tackle situations like: 1) the object is split into several ones with or without dramatic

intensity change; 2) the merging of several protein clusters; and 3) object moves fast

in the z direction (the object intensity difference between the in-focus and the out-of-

focus confocal images is large), where the region information changes spectacularly

and feature points alone are not enough for the tracking problem.



CHAPTER 3

TRACKING MULTIPLE INTERACTING SUBCELLULAR
STRUCTURES IN 2D+T

3.1 Introduction

The introduction of sensitive and fast electronic imaging devices and the devel-

opment of biological methods to tag proteins of interest by green fluorescent proteins

(GFP) have made a full understanding of live cell dynamics achievable. With the lat-

est hardware technology, such as high speed confocal microscopy, it has now become

critical to develop automatic quantitative data analysis tools to keep pace with and

to fully exploit the functionalities of state-of-the-art hardware. At present, biologists

either laboriously track a few particles by hand frame to frame, or use commercially

available particle tracking programs whose performance is far below expectations.

We lack a general computational methodology on how to represent, track, and model

the motility of subcellular structures to meet the essential research needs from the

biology research community.

An example of GFP labeled image obtained from laser scanning confocal micro-

scope (LSCM) is shown in Figure 1.1. The green parts of the image are subcellular

structures of interest, varying both in size and intensity caused by the different three

dimension distribution of GFP inside the cell. The highly noisy background can be

seen as scattered green speckles.

The technical challenges for subcellular structure mobility analysis come from

small object size, nearly homogeneous object visual appearance, and objects being

close to each other. Research has been carried out on cell segmentation and tracking

31
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using simple model-free heuristic intensity thresholding [15] or model-based active

contour tracking [14]. However little effort has been focused on subcellular track-

ing, which is much more challenging than cell tracking since cells have restricted

movement and larger object size. The commonly developed wealth of object tracking

techniques can not be directly applied here. For instance, conventional template-

based feature matching methods work well in a sparse object environment and are

restricted to non-deformable object tracking [15], [24]. The curve/surface evolution

based tracking methods are susceptible to noise and inter-frame object displacement

[11]. Furthermore, how to model object interaction during the tracking process is

missing in current research work.

Another challenge of subcellular structure motility study is the number of ob-

jects of interest. Instead of one object moving, there may be dozens of subcellular

structures moving simultaneously in the cell with a high chance of interacting with

each other and object appearing/disappearing. How to associate the tracked objects

with observed objects depends on the trajectory association approach. Two com-

monly used algorithms are multiple-hypothesis tracking (MHT) [46] and joint prob-

abilistic data association (JPDA) [47]. Original MHT algorithm proposed by [46]

decomposed the tracking problem into the state estimation and the data association

components. The data association is NP-hard though attempts have been made to

generate k-best hypothesis in polynomial time [48]. JPDA algorithms aim to find the

state estimate by evaluating the measurement-to-track association probabilities, in

which the data association can be modeled as random variables and jointly estimated

by Expectation-Maximization (EM) iterations [49]. Classical MHT based methods

need to handle exponential computation complexity, and JPDA methods face the

problem of combinatorial complexity [50]. Furthermore, both algorithms generally

do not model the interaction among objects. Certain work has targeted to model the
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interaction between multiple objects during the tracking process [51], [52], [53]. The

basic idea is to apply Markov random field (MRF) [54] as a penalty term to keep

the objects from touching each other. By doing that, the tracker will not associate

different trajectories to the same observation. As mentioned by [52], this method can

not handle situations when objects really overlap with each other, and will lose track

of the object.

There have been several algorithms on modeling the variable number of objects

during tracking, such as finite set statistics (FISST) [55] and trans-dimensional se-

quential Monte Carlo (TD-SMC) [56], with the inefficiency in handling both large

number of objects and large changes in the object number. The reversible jump

Markov chain Monte Carlo (RJMCMC) method by [57] provides a mechanism solv-

ing the comparison between trans-dimensional probabilities, and has been applied

to multiple object tracking [51], [52]. However, the assumption that object will

appear/disappear in the fixed regions of the image scene is not applicable in our

subcellular image sequence, where this can happen in any part of the image scene.

To overcome the deficiencies in current methods for multiple interacting object

tracking, we present a tracking framework based on sequential Monte Carlo (SMC)

method and approximate the joint state distribution at different times using RJM-

CMC sampling method. To solve the problem of handling objects overlapping, we

introduce an extra dimension to augment object state from 2D plane to 3D space,

and define a height swap move for the RJMCMC sampling process to traverse the

possible scenarios of interaction between the objects. The restriction on the location

of objects appearing or disappearing is also removed by introducing an appearance

model from segmentation and treating the state of the background as part of the

joint state. Experiment results on synthetic and real confocal videos show that by
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modeling the object interaction in 3D space, our method can detect object splitting,

merging, appearing, disappearing, and overlapping.

The rest of the chapter is organized as follows. A brief introduction to the SMC

method is put in Section 3.2, followed by the joint state modeling of variable number of

2D interacting subcellular structures in Section 3.3. The RJMCMC sampling method

with a height swap move is detailed in Section 3.4. The 2D subcellular structure

representation and measurement are presented in Section 3.5. The 2D marker residual

image guided appearance model and the 2D observation model are introduced in

Section 3.6 and Section 3.7, respectively. We summarize the whole algorithm of SMC

method for 2D subcellular structure tracking in Section 3.8. The experimental results

and conclusions are given in Section 3.9 and Section 3.10, respectively.

3.2 Sequential Monte Carlo Methods for Bayesian Estimation

3.2.1 State Space Model

For a system described by Markovian state Xt, (t = 0, 1, · · ·), and observation

Zt, (t = 1, 2, · · ·), the dependence relationship between the states and observations

can be illustrated in Figure 2.5. The current state Xt is conditionally dependent

only on its previous state Xt−1, and the observation Zt is conditionally dependant on

the current state Xt. This relationship can be described as conditional probability

density functions:

p(X0), t = 0, Initial state (3.1)

p(Xt|Xt−1), t ≥ 1, State transition density, (3.2)

p(Zt|Xt), t ≥ 1, Observation density. (3.3)

Based on the state space model in Figure 2.5, we define X0:t , {X0, · · · ,Xt}
and Z1:t , {Z1, · · · ,Zt}, which represent the time series of states and the observations
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up to current time t, respectively. Given the posterior density p(Xt−1|Z1:t−1) at time

t − 1, the predicted density of prior density can be propagated from time t − 1 to t

via the Chapman-Kolmogoroff equation,

p(Xt|Z1:t−1)=

∫
p(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1. (3.4)

Once the new observation variable Zt is available at time t, the prediction

density can be updated as:

p(Xt|Z1:t) =
1

K
p(Zt|Xt)p(Xt|Z1:t−1), (3.5)

where K =
∫

p(Zt|Xt)p(Xt|Z1:t−1)dXt is a normalizing factor.

3.2.2 Sequential Monte Carlo Methods

In the high dimensional case, the system is often non-linear and multimodal,

therefore, it is intractable to determine equations (3.4) and (3.5) analytically. Sequen-

tial Monte Carlo methods are often applied to approximate the true state density us-

ing a set of random samples. The density approximated by N samples is represented

as p̂(Xt−1|Z1:t−1) with:

p̂(Xt−1|Z1:t−1) =
N∑

i=1

w
(i)
t−1δ(Xt−1 −X

(i)
t−1), (3.6)

where w
(i)
t−1 is the associated weight related to sample X

(i)
t−1, and is normalized such

that
∑N

i=1 w
(i)
t−1 = 1.

Plugging equation (3.6) into equation (3.4), the approximated prediction den-

sity, p̂(Xt|Z1:t−1), can be written as:

p̂(Xt|Z1:t−1) =
N∑

i=1

p(Xt|X(i)
t−1)w

(i)
t−1. (3.7)
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By further applying equation (3.7) to equation (3.5), we get p̂(Xt|Z1:t), the

approximation of the update density:

p̂(Xt|Z1:t) ∝ p(Zt|Xt)
N∑

i=1

p(Xt|X(i)
t−1)w

(i)
t−1. (3.8)

Equation (3.7) indicates the prediction density can be represented as a mixture of

densities from the N samples. The approximated posterior density from equation

(3.8) will be further sampled to get new particles X
(i)
t , (i = 1, . . . , N), with new

weights. The whole procedure iteratively goes on during the Monte Carlo simulation

process. Typically, there are two major methods to draw samples from p̂(Xt|Z1:t),

namely importance sampling and Markov chain Monte Carlo (MCMC) [58]. Impor-

tance sampling is widely used in particle filtering [59] applications, and suffers from

sample impoverishment and degeneracy problems [27]. For our multiple object track-

ing problem, to deal with the changing number of subcellular structures, a method

based on reversible jump Markov chain Monte Carlo (RJMCMC) is designed to sam-

ple from equation (3.8). More details will be presented in Section 3.4 .

3.3 Modeling Variable Number of 2D Interacting Subcellular Structures

3.3.1 Joint State Space Representation

The joint state X of multiple subcellular structures at time t is denoted as:

Xt = {Xt.i|i ∈ nt}, (3.9)

where nt, with its cardinality |nt| ≥ 1, is the set of object identity number indicating

which objects contribute to represent the joint state. The ith subcellular structure of

interest is represented as a rectangular bounding box with state Xt.i = (l, w, θ, x, y, z)T

which describes the box size with length l and width w, orientation angle θ specified

by the major eigenvector of object region, and bounding box center position (x, y, z).

Here z is an augmented variable to model the interaction between objects.
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To include the background information more naturally into the calculation of

the observation likelihood, unlike work from [52] and [51], we treat the background

as an object in our joint state model, and introduce its state at time t as Xt.0 =

(l0, w0, θ0, x0, y0, z0). Since the state of the background normally does not change in

the same video sequence, it can be treated as a constant vector, and the background

state transition probability therefore is:

p(X(t+1).0|Xt.0) = p(X(t+1).0 = (l0, w0, θ0, x0, y0, z0)
T ) = 1. (3.10)

x y
z y z yx y

Figure 3.1. Illustration of changing the overlapping relationship between two objects
by swapping their z coordinates.

3.3.2 Object Interaction Model

The idea of modeling the interaction between objects as the overlapping rela-

tionship in the z direction of the image is illustrated in Figure 3.1, where there are

two overlapped objects (an orange square and a blue rectangle shown in 2D dimen-

sion). In the left part of Figure 3.1, the orange square is under the blue rectangle

as shown in the left z-y plane. In the right part of Figure 3.1, the z coordinates of
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the two objects are swapped, and the orange square is above the blue rectangle. The

coordinate change in the z direction causes the difference of the observed images in

the x-y plane. This change will be detected by a height swap move in RJMCMC that

traverses the possible overlap combinations between the overlapped objects. More

description will be provided in Section 3.4. Without loss of generality, we set z0 = 0,

which is part of the background state vector, and z of other individual object state

will be always larger than z0. The observation of the background can be easily mea-

sured by eliminating observations of other objects on top of it based on the object

segmentation result.

3.3.3 Joint State Transition Density

Given state parameter vector Xt and object identity indicator set nt, the joint

distribution is denoted as p(nt,Xnt). The general state transition density function

p(Xnt |Xnt−1) can be re-written as p(nt,Xnt |nt−1,Xnt−1) and is further factorized as

following:

p(nt,Xnt|nt−1,Xnt−1) = p(Xnt |nt, nt−1,Xnt−1)p(nt|nt−1,Xnt−1), (3.11)

where p(nt|nt−1,Xnt−1) is the probability distribution of nt conditioned on nt−1 and

Xnt−1 , modeling the change of the number of the objects, p(Xnt |nt, nt−1,Xnt−1) models

the joint state parameters of all the objects in set nt. Simplifying by introducing z to

each individual state Xt.i, we can assume independence between the individual state of

each object, and delay the object dependence check till the observation measurement

stage. Thus p(Xnt |nt, nt−1,Xnt−1) can be factorized as:

p(Xnt|nt, nt−1,Xnt−1) ,
∏
j∈Bt

p(Xnt.j)
∏
i∈St

p(Xnt.i|X(nt−1).i), (3.12)
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where St = nt ∩ nt−1 is the set of objects at time t− 1 that remain active at time t,

Bt = nt \ nt−1 is the set of objects that are not in set nt−1. Probability distribution

p(Xnt.j) will be discussed in Section 3.4.3.

3.4 RJMCMC Method for 2D+T Tracking Sample Generation

3.4.1 Acceptance Ratio For RJMCMC in SMC Framework for 2D+T
Tracking

Markov chain Monte Carlo (MCMC) method is commonly used for sampling the

distribution of high dimensional data. The idea is to construct a Markov chain (MC)

transition kernel that has the distribution of interest as MC’s invariant distribution.

Metropolis-Hastings (MH) algorithm is often used to construct the MC transition

kernel [60]. The general form of MH algorithm acceptance ratio is as:

α(X, Y ) =
π(Y )q(X|Y )

π(X)q(Y |X)
, (3.13)

where X is the current sample, Y is the proposed sample, π(.) is the density distribu-

tion of interest, and q(.|.) is the proposal distribution. MH algorithm works only in

the case where the dimensions of X and Y are the same. In our subcellular structure

tracking problem, the number of the tracked objects changes. So does the dimension

of joint state Xnt . To deal with the sampling problem of MH algorithm in changing

dimensionality, Green [57] proposed the RJMCMC method as an extension of MCMC.

The main idea of RJMCMC method is to match the dimension of the current sample

and the proposed sample by using auxiliary variable vectors, say U and U′, and fit

them into the general form of MH algorithm in equation (3.13). Using the posterior

distribution p(nt,Xnt |Z1:t) as the target distribution and applying Bayes’ theorem,

the general form of RJMCMC acceptance ratio for SMC method is as:

α(n′t,X
′
nt
;nt,Xnt)=

p(Zt|n′t,X′
nt
)p(n′t,X

′
nt
|Z1:t−1)pm′qm′(nt,Xnt;n

′
t,X

′
nt
)

p(Zt|nt,Xnt)p(nt,Xnt|Z1:t−1)pmqm(n′t,X
′
nt
;nt,Xnt)

∣∣∣∣
∂(X′

nt
,U′)

∂(Xnt,U)

∣∣∣∣, (3.14)
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where U and U′ are the auxiliary random variable vectors guarantying that the map-

ping from (Xnt ,U) to (X′
nt

,U′) is a one-to-one mapping, which is so called dimension

matching between Xnt and X′
nt

. pm is the move specified probability and qm is the

proposal function for U, where m, m ∈ {d, a, u, s, h}, represents the move types with

d, a, u, s, and h corresponding to disappear move, appear move, update move, identity

swap move, and height swap move, respectively. The sum of the move probabilities

is set to be one as pd + pa + pu + ps + ph = 1. The last term of equation (3.14) is

the Jacobian of the one-to-one mapping from (Xnt ,U) to (X′
nt

,U′). In this chaper,

we present how to design both the trans-dimensional and within-dimensional moves

of RJMCMC in a way such that the Jacobian term is always equal to one. Reader

please see Appendix A for details.

3.4.2 RJMCMC Move Proposals for 2D+T Tracking

In our proposed RJMCMC sampling method, there are five RJMCMC moves

defined, namely disappear move, appear move, update move, identity swap move, and

height swap move. Disappear move and appear move are trans-dimensional moves in

which the dimension of the joint state Xnt will change. In the disappear move, we

propose a new joint state by deleting the state of one subcellular structure from the

current joint state. On the other hand, the appear move proposes a new joint state by

adding the state of one subcellular structure to the current joint state. The rest three

move modalities are within-dimensional moves. For the update move, we propose a

new joint state by updating the state of one subcellular structure using random walk

[60]. Identity swap move is to propose a new joint state by switching the states of

two subcellular structures. Similarly, height swap move proposes a new joint state by

exchanging only the z values of the states of two subcellular structures.
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In the following subsections, we will present the proposal move function qm(n′t,X
′
nt

;

nt,Xnt) case by case, in which subscript m corresponds to the respective five move

modalities aforementioned.

3.4.2.1 Disappear Move

For the disappear move, an object with identity number i is uniformly selected

from the current identification number set nt and its individual state is deleted from

the joint state. The disappear move proposal is:

qd(n
′
t,X

′
nt

; nt,Xnt) = qd(i)qd(n
′
t,X

′
nt

; nt,Xnt , i), (3.15)

where qd(i) = 1/|nt| is the proposal distribution for selecting i, i ∈ {nt \ 0}, with

| · | as the set cardinality operator, and qd(n
′
t,X

′
nt

; nt,Xnt , i) = 1. The deterministic

mapping from Xnt to X′
nt

is as {. . . ,X′
nt.j = Xnt.j, . . .}, where j ∈ {nt \ i}.

3.4.2.2 Appear Move

For the appear move, an object with identity number i is uniformly selected

from set {At ∪ n̄t \ nt}, with n̄t = ∪N
k=1n

(k)
t−1, where N is the number of samples at

time t− 1 and At is the possible new object set at time t. At is constructed by image

processing techniques and will be discussed in Section 3.6. The individual state of

the identification number i is added to the joint state. The appear move proposal is:

qa(n
′
t,X

′
nt

; nt,Xnt) = qa(i)qa(n
′
t,X

′
nt

; nt,Xnt , i), (3.16)

with qa(i) = 1/|At ∪ n̄t \ nt| as the proposal distribution for selecting i, i ∈ {At ∪
n̄t \ nt}, qa(n

′
t,X

′
nt

; nt,Xnt , i) = qa(U), where qa(U) is the proposal of generating

the state for the newly added object. The formulation of qa(U) will be presented in

Section 3.6. The deterministic mapping relation from (Xnt ,U) to X′
nt

is as X′
nt.i = U,

i ∈ {At ∪ n̄t \ nt} and {. . . ,X′
nt.j = Xnt.j, . . .}, j ∈ nt.
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3.4.2.3 Update Move

For the update move, an object identity number i is uniformly selected from the

current identification number set nt, and random walk is applied to it. The update

move proposal is:

qu(n
′
t,X

′
nt

; nt,Xnt) = qu(i)qu(n
′
t,X

′
nt

; nt,Xnt , i), (3.17)

where qu(i) = 1/|nt| is the proposal distribution for selecting i, i ∈ {nt\0}, qu(n
′
t,X

′
nt

;

nt,Xnt , i) = qu(U), where qu(U) is a Gaussian distribution. The deterministic map-

ping relation from (Xnt ,U) to (X′
nt

,U′) is as {U′ = −U,X′
nt.i = Xnt.i + U},

i ∈ {nt \ 0}, and {. . . ,X′
nt.j = Xnt.j, . . .}, j ∈ {nt \ i}.

3.4.2.4 Identity Swap Move

For the identity swap move, two objects i and j in the current object set nt

are uniformly selected and their identities are exchanged. The identity swap move

proposal is:

qs(n
′
t,X

′
nt

; nt,Xnt) = qs(i, j)qs(n
′
t,X

′
nt

; nt,Xnt , i, j), (3.18)

where qs(i, j) = 1/(
|nt|
2 ) is the proposal distribution for selecting the pair (i, j), and

qs(n
′
t,X

′
nt

; nt,Xnt , i, j) = 1. The deterministic mapping from Xnt to X′
nt

is as {X′
nt.i =

Xnt.j,X
′
nt.j = Xnt.i}, i ∈ {nt \ 0}, j ∈ {nt \ 0}, and {. . . ,X′

nt.k = Xnt.k, . . .}, k ∈
{nt \ i \ j}.

3.4.2.5 Height Swap Move

For the height swap move, using the bounding box BB(Xnt.i) information of

each individual object state Xnt.i, we construct an overlap set Ont as:

Ont = {(i, j) : i ∈ {nt \ 0}, j ∈ {nt \ 0}, BB(Xnt.i) ∩BB(Xnt.j) 6= ∅}. (3.19)
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Then a pair of overlapped objects (i, j) is uniformly selected from Ont and the heights

of the two objects are swapped by the z values of Xnt.i and Xnt.j. The height swap

move proposal is:

qh(n
′
t,X

′
nt

; nt,Xnt) = qh(i, j)qh(n
′
t,X

′
nt

; nt,Xnt , i, j), (3.20)

where qh(i, j) = 1/|Ont |, and qh(n
′
t,X

′
nt

; nt,Xnt , i, j) = 1. The deterministic map-

ping from Xnt to X′
nt

is {z′nt.i = znt.j, z
′
nt.j = znt.i, ξ

′
nt.i = ξnt.i, ξ′nt.j = ξnt.j},

ξ ∈ {l, w, x, y, θ}, (i, j) ∈ Ont , and {. . . ,X′
nt.k = Xnt.k, . . .}, where k ∈ {nt \ i \ j}.

3.4.3 Acceptance Ratios

Applying the proposals of the different moves to equation (3.14), we get the

following acceptance ratios αd, αa, αu, αs, and αh for disappear move, appear move,

update move, identity swap move, and height swap move, respectively:

αd(n
′
t,X

′
nt

; nt,Xnt)=
p(Zt|n′t,X′

nt
)p(n′t,X

′
nt
|Z1:t−1)paqa(i)qa(U

′)
p(Zt|nt,Xnt)p(nt,Xnt|Z1:t−1)pdqd(i)

, (3.21)

αa(n
′
t,X

′
nt

; nt,Xnt)=
p(Zt|n′t,X′

nt
)p(n′t,X

′
nt
|Z1:t−1)pdqd(i)

p(Zt|nt,Xnt)p(nt,Xnt|Z1:t−1)paqa(i)qa(U)
, (3.22)

αu(n
′
t,X

′
nt

; nt,Xnt) =
p(Zt|n′t,X′

nt
)p(n′t,X

′
nt
|Z1:t−1)

p(Zt|nt,Xnt)p(nt,Xnt |Z1:t−1)
, (3.23)

αs(n
′
t,X

′
nt

; nt,Xnt) =
p(Zt|n′t,X′

nt
)p(n′t,X

′
nt
|Z1:t−1)

p(Zt|nt,Xnt)p(nt,Xnt|Z1:t−1)
, (3.24)

αh(n
′
t,X

′
nt

; nt,Xnt)=
p(Zt|n′t,X′

nt
)

p(Zt|nt,Xnt)
. (3.25)

For the evaluation of p(nt,Xnt|Z1:t−1), we use its mixture approximation as in equa-

tion (3.7):

p̂(nt,Xnt |Z1:t−1) =
1

N

N∑

k=1

p(nt,Xnt |n(k)
t−1,X

(k)
nt−1

), (3.26)
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where p(nt,Xnt |n(k)
t−1,X

(k)
nt−1

) is evaluated by using equation (3.11) and equation (3.12)

as:

p(nt,Xnt|n(k)
t−1,X

(k)
nt−1

)=p(nt|n(k)
t−1,X

(k)
nt−1

)
∏
j∈Bt

p(Xnt.j)
∏
i∈St

p(Xnt.i|X(k)
(nt−1).i), (3.27)

with Bt = nt \ n
(k)
t−1, St = nt ∩ n

(k)
t−1 as previously introduced in section 3.3. There

are two cases for object identification number j in Bt, j ∈ At and j 6∈ At. At is

the possible new object set at time t as mentioned in appear move. For the first

case, p(Xnt.j) = pnew, with j ∈ At. For the second case, p(Xnt.j) is defined to be

p(Xnt.j) ,
∑

i∈N
(j)
t−1

p(Xnt.j|X(i)
nt−1.j)/|N (j)

t−1|, with N
(j)
t−1 = {i : j ∈ n

(i)
t−1}, the set of

samples at time t− 1 containing object j. n
(i)
t−1 is the object set for particle i at time

t − 1. p(nt|n(k)
t−1,X

(k)
nt−1

) is defined to be equivalent for all nt, n
(k)
t−1, and X(k)

nt−1
, since

we assume the equal chance of each object set nt.

3.5 2D Subcellular Structure Detection and Representation

One of the difficulties in tracking multiple caveolar structures is how to detect

and represent the objects in the image scene. Although for common GFP image

sequence, a thresholding method can easily distinguish the foreground from the back-

ground, it suffers from being incapable of separating objects in the foreground. As

shown in Fig. 3.2(a), the object with a white boundary in the left portion and the ob-

ject with a yellow boundary in the middle are under-segmented. Another widely used

segmentation method in biological image applications [61] is watershed. Figure 3.2(b)

displays the result that has looped segmented objects, which is difficult for multiple

object tracking. The result of direct allocating regional maxima on the original image

is illustrated in Fig. 3.2(c). However, we can see an over-labeled number of objects

by regional maxima even after the image was first filtered by a low pass filter.
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(a) (b)

(c) (d)

Figure 3.2. Comparison of segmentation methods. (a), (b), (c), and (d) are original
images superimposed by segmentation results by thresholding, watershed method,
regional maxima, and marker image, respectively. Different objects are indicated by
different color boundaries.

To achieve a reliable segmentation, our segmentation algorithm starts with a

morphological reconstructive opening for object detection [62]. Regional maxima is

used to represent each object. The idea is similar to track a human being movement

by only tracking the face without using the whole body information, since the face

information is enough to distinguish each person in most cases. For an image at time

t with intensity as It and a structuring element as S, the gray-scale reconstructive

opening operation } is represented as:

It }C S = It ¯C (It ◦ S), (3.28)

where ¯ is the gray scale reconstruction operation, ◦ is the gray scale morphological

opening, and C is the connectivity definition for ¯. We use the regional maxima of

It }C S to identify each object.
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Nonetheless, the regional maxima of It}C S is unable to provide enough feature

information for object matching during the tracking process. Therefore, we apply the

morphological dilation operation on each regional maximum to include more feature

information under the condition that the dilated objects do not overlap with each

other. Since the size of objects varies a lot, from medium (about 100 pixels) to

small (about 20 pixels), we apply a smallest structure element [0, 1, 0; 1, 1, 1; 0, 1, 0]

for the dilation operation, which is iso-tropic in horizontal and vertical directions.

The corresponding binary image at time t is called marker image, denoted as Mt.

The dilated version of regional maxima superimposed on the real image is shown in

Fig. 3.2(d).

The benefit of using dilated regional maxima of It }C S to detect object comes

from the fact that it can provide well labeled object results for close-neighbored ob-

jects and is more robust in the whole image sequence. Here, we emphasize more

on the object identification and characterization ability of the dilated regional max-

ima for tracking purpose, not its capability to produce accurate object segmentation

boundary, though this can be refined by post-processing.

Once the marker image is obtained, we use the minimum bounding box (MBB)

to represent each marker. Suppose a single pixel in one subcellular object is repre-

sented as a 2D vector u = (x, y)T , where x and y are the coordinates in the 2D plane

and T is the transpose operation, the center position vector ū = (x̄, ȳ)T of the region

can be calculated as:

ū =
1

L

L∑
i=1

ui, (3.29)

where L is the number of pixels in the region. The covariance matrix of the position

vector u for the object region can be obtained by:

Σp =
1

L

L∑
i=1

uiu
T
i − ūūT . (3.30)
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The direction of the major eigenvector v1 of covariance matrix Σp determines the

orientation angle θ in object state Xt.i. The largest lengths of segmented object in

the directions of major eigenvector v1 and minor eigenvector v2 decide length l and

width w in Xt.i. An illustrative graph is provided in Figure 3.3.V1V2lw
Figure 3.3. Segmented object representation. The region of interest is delimited by
the solid curve line and is represented using a dotted rectangle, object center, and
major eigenvector.

The relationship between regional maxima of It }C S, markers and their MBBs

are shown in Fig 3.4. As can be seen from the superimposed images, more pixel

information is added to MBB representation of each object while still keep its identity

separated.

3.6 2D Marker Residual Image-Guided Appearance Model

Unlike other multiple object tracking methods, in which objects appear/disappear

only in certain fixed regions [63], [51], [52], in our data sets, objects can appear/disappear

in any part of the cytoplasm. This poses a big challenge for the varying object num-
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 3.4. From regional maxima image to state. (a) is the original image. (e)
is regional maxima image. (f) is marker image. (g) is the MBB image of marker
image. (b), (c), and (d) are the original images superimposed by (e), (f), and (g),
respectively. Different regional maxima, markers, and MBBs are indicated by different
color boundaries in the superimposed image.

ber tracking problem. Here we introduce a marker residual image in order to solve

the problem. For a marker image Mt with n markers, it can be represented as:

Mt = ∪n
i=1Mt.i. (3.31)
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(a) (b)

(c) (d)

Figure 3.5. Marker residual image. (a) Marker image of frame 61. (b) Marker image of
frame 62. (c) Marker residual image of frame 62. (d) Original image superimposed by
marker residual image, with different markers indicated by different color boundaries.

where Mt,i is a binary image with segmented object i. A new image called marker

residual image Mt that depicts the newly appearing objects is defined as:

Mt = {Mt.i : Mt.i ∩Mt−1 = ∅, i = 1, · · · , n}. (3.32)

As illustrated in Fig. 3.5, marker images M61 and M62 are shown in Figs. 3.5(a) and

(b), respectively. From the residual imageM62, the two newly detected object regions

can be seen in Fig. 3.5(c).
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From the newly detected n objects, a set of binary images Mt.i, (i = 1, · · · , n),

is available and the object set is denoted as At. The previously introduced proposal

function qa(U) for the new object is defined as follows:

qa(U) =





p(Xnt.j|Mt.j), if j ∈ At

∑
i∈N

(j)
t−1

P (Xnt.j|X(i)
(nt−1).j)/|N (j)

t−1|, if j 6∈ At,
(3.33)

where p(Xnt.j|Mt.j) generates the state (l, w, θ, x, y) by a Gaussian distribution cen-

tered around the object in the image Mt.j, N
(j)
t−1 = {i : j ∈ n

(i)
t−1} is the set of samples

at time t− 1 containing object j.

3.7 2D Observation Model

The joint observation model is defined as:

p(Zt|Xt) =
∏
i∈nt

p(Zt.i|Xt.i). (3.34)

For the measurement of each individual object state Xt.i, we use the amount and

intensity profile of the pixels inside its bounding box to match with its reference

Rt.i, which is obtained at the beginning of each object trajectory. Three properties

between Xt.i and Rt.i are considered in our observation measurement: (1) area; (2)

intensity mean; (3) sorted sum-of-absolute-differences (SSAD). The intuition behind

the first one is that although the shape of the subcellular structure is unstable, its

size is relatively stable. The intensity mean and SSAD are used to characterize the

intensity profile of pixels inside the state bounding box, with intensity mean for the

global similarity and SSAD for the similarity in detail. Thus we define the observation

model for each individual object as:

p(Zt.i|Xt.i) = p(Za
t.i|Xt.i)p(Zm

t.i|Xt.i)p(Zd
t.i|Xt.i), (3.35)
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with p(Za
t.i|Xt.i), p(Zm

t.i|Xt.i), and p(Zd
t.i|Xt.i), for area measurement, intensity mean,

and SSAD, respectively.

Suppose the set of intensity of pixels inside the bounding box of Xt.i is An =

{a1, . . . , aj, . . . , an}, where n is the amount of pixels and aj stands for the intensity

of the individual pixel. The mean intensity of An is:

IAn =
n∑

j=1

aj/n. (3.36)

Same to Rt.i, we have its intensity set Bm = {b1, . . . , bj, . . . , bm} and intensity mean

IBm =
∑m

j=1 bj/m, with m as the amount of pixels.

We define p(Za
t.i|Xt.i) as:

p(Za
t.i|Xt.i) ∝ exp

(
−λa

(
1− min(n,m)

max(n,m)

)2
)

. (3.37)

Similarly, p(Zm
t.i|Xt.i) is defined by:

p(Zm
t.i|Xt.i) ∝ exp

(
−λm

(
1− min(IAn , IBm)

max(IAn , IBm)

)2
)

. (3.38)

Here, λa, λm are hyperparameters.

We define the SSAD between two regions as the intensity sets matching prob-

lem. Supposing there are two equal-sized objects An and Bn, where n stands for

the number of pixels in the object, we use the minimum sum-of-absolute-differences

(SAD) between An and Bn as the distance measurement between them. SAD has

been used a lot in image similarity comparison problem. Nonetheless, it is limited

to template-type matching, where the pixel correspondences between two images are

already established. Unfortunately, the template-type matching does not work in

our case, since the object is deforming and its intensity is not stable at any specific

part. Thus we have to find the minimum SAD between An and Bn by enumerating

n! possible cases. The computation cost is high in tracking case. Here we propose
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one method saving the computation cost from weak lower bound ω(2n) to tight upper

bound O(n lg n) by sorting the pixels in An and Bn in descending order to get A′
n and

B′
n and let the one-to-one correspondence pair as a′i ∼ b′i, then the minimum SADmin

between An and Bn is as:

SADmin(An, Bn) =
n∑
i

|a′i − b′i)|. (3.39)

Please see Appendix B for our proof.

To handle the mismatched size of An and Bm, without loss of generality, let m <

n, we use the first m high intensity pixels in each set for the computation of SADmin.

The intuition is that in LSCM images, objects are discerned and characterized by their

illuminance intensity. The final intensity similarity between An and Bm is defined by

SSAD(An, Bm) =
1

min{n,m}
min{n,m}∑

i

|a′i − b′i)|, (3.40)

Finally, p(Zd
t.i|Xt.i) is as:

p(Zd
t.i|Xt.i) ∝ exp

(−λd · (SSAD(An, Bm))2
)
, (3.41)

with λd as a hyperparameter too. The intuition of SSAD is that for the small subcellu-

lar structure, its salient points are the pixels with high intensity value. By comparing

the intensity values of these salient points, we can get the information about how

similar two small structures are, since there is no obvious spatial pattern of the pixels

within such small areas.

In the overlapping situation when the spatial support of Xt.i is occluded by

other objects, we define an Euclidean transformation T (a composition of translation

and rotation), which translates the center of Rt.i to the center of Xt.i and rotates it to

have the same orientation as Xt.i, as shown in Fig. 3.6. Let R′
t.i = T (Rt.i). We use the

un-occluded spatial parts of Xt.i and R′
t.i for intensity mean and SSAD calculation.
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In the case that at least one of Xt.i and R′
t.i is fully overlapped by the upper objects,

p(Zt.i|Xt.i) can not be measured. We use the best guess for the observation, which is

the mean of the observations of all the samples of object i at previous time t− 1.R’t.i=T(Rt.i)Rt.i Xt.iθt.i( xt.i, yt.i )R’t.i
Figure 3.6.Illustration of the Euclidean transformation when overlapping.

3.8 Summary of the Algorithm for Multiple 2D Subcellular Structure
Tracking

The algorithm for multiple subcellular structure tracking is summarized as fol-

lows:

1. Automatically detect the subcellular structures using marker residual image.

Estimate the state X0.i of each individual subcellular structure, and combine

them into X0. Sample the joint state X0 with N samples. Thus the initial

distribution of X0 is approximated by p(X0) ≈ {X(s)
0 }, s = 1, . . . , N . Set t = 0.

2. Set t = t+1. Draw a sample of Xt from the prediction density
∑N

s=1 p(Xt|X(s)
t−1)/N .

3. Apply RJMCMC method to draw N samples.

(a) Draw a sample w from the uniform distribution on (0, 1).

(b) If 0 ≤ w < pd, apply disappear move. Delete the state of one subcellular

structure from the joint state using equation (3.15).

(c) If pd ≤ w < pd + pa, apply appear move. Add the state of one subcellular

structure to the joint state using equation (3.16).
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(d) If pd + pa ≤ w < pd + pa + pu, apply update move. Update the state of one

subcellular structure in the joint state using equation (3.17).

(e) If pd +pa +pu≤w<pd + pa + pu + ps, apply identity swap move. Swap the

states of two subcellular structures in the joint state using equation (3.18).

(f) If pd + pa + pu + ps ≤ w, apply height swap move. Swap the heights of two

subcellular structures in the joint state using equation (3.20).

(g) Calculate the acceptance ratio α(Xt,X
′
t) based on the move type using

equations (3.21), (3.22), (3.23), (3.24), and (3.25).

(h) Draw a sample w′ from the uniform distribution on (0, 1). If w′ < α(Xt,X
′
t),

use X′
t as the new joint state; else use Xt. Add the new state to the final

sample set.

4. Go to step 2.

3.9 Experimental Results

To investigate the performance of our proposed methods, we demonstrate the

experimental results using both synthetic images and confocal microscopy images.

3.9.1 Synthetic Image Sequence Tracking

The synthetic image sequence is of size 80× 80 and has nine frames with added

Gaussian noise (Figure 3.7). It contains the phenomena of object overlapping and

disappearing. The four objects in the sequence are O1, O2, O3, and O4 with size

10 × 5, 14 × 7, 9 × 6, and 7 × 7, respectively. In the sequence, objects O1 and

O2 execute translational motion with corresponding constant vertical and horizontal

speeds as (2, 2) and (−2,−2), respectively, and overlap with each other. Objects

O3 and O4 perform Brownian motion, and object O3 disappears in Frames 8 and
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Figure 3.7. Tracking results of synthetic image sequence. (a) to (i) are image frames
with number 1 to 9.

9. A clustering method based on expectation maximization (EM) algorithm [64] was

applied to separate the background and foreground.

As can be seen in Figure 3.7(b), our method detected the overlapping event

between objects O1 and O2, and continued to track them till the end of the image

sequence even after the full occlusion of object O1 in frames 3 and 4. The tracking

result reveals that object merging (frames 3 and 4) and splitting (frames 6 and 7),

though not explicitly modeled in the algorithm, can be handled successfully. The

disappearing of object O3 in frames 8 and 9 was also detected correctly.
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For the parameter initialization, the state transition density of (l, w, θ, x, y) for

the synthetic data is set to be a Gaussian distribution with zero mean vector and

covariance matrix Σ = [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 0.1, 0, 0; 0, 0, 0, 30, 0; 0, 0, 0, 0, 30].

The random walk covariance matrix is chosen as Σ = [0.1, 0, 0, 0, 0; 0, 0.1, 0, 0, 0;

0, 0, 0.01, 0, 0; 0, 0, 0, 9, 0; 0, 0, 0, 0, 9]. For the augmented variable z, p(zt.i|z(t−1).i) is set

to be a uniform distribution on (0, 1). pd, pa, pu, ps, and ph are heuristically set to be

0.1, 0.1, 0.6, 0.1, and 0.1, respectively. λa = 7, λm = 5, and λd = 0.4. For RJMCMC

sample generation, sample number N = 800 was used in the experiment. pnew is

set to be 0.005. The covariance matrix of (l, w, θ, x, y) for the Gaussian distribution

p(Xnt.j|Mt.j) is set as Σ = [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 0.1, 0, 0; 0, 0, 0, 2, 0; 0, 0, 0, 0, 2].

(a) (b) (c)

(d) (e) (f)

Figure 3.8. Original real image sequence one. (a) to (f) are image frames at time 0
sec, 1.6 sec, 3.2 sec, 4.8 sec, 6.4 sec, and 8.0 sec.
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(a) (b) (c)c

(d) (e) (f)

Figure 3.9. Results of marker image superimposed on the real image sequence, with
different markers indicated by different color boundaries. (a) to (f) are image frames
at time 0 sec, 1.6 sec, 3.2 sec, 4.8 sec, 6.4 sec, and 8.0 sec.

3.9.2 Real Image Sequence Tracking

An image sequence by Leica TCS-SP laser scanning confocal microscope was

obtained to study of the trafficking of caveolar membranes on microtubules and the

actin cytoskeleton. Caveolae are plasma membrane specializations that mediate the

internalization of extracellular ligands, including cholera toxin B and some viruses.

Caveolin 1 is a marker protein for caveolar membranes. Time lapse sequences of cells

expressing caveolin 1-GFP were taken with a Leica TCS-SP laser scanning confocal

microscope with a 100x objective lens. The video images are of size 512× 512 with a

time interval of 1.6 sec between two frames. We observed the average size of tagged

structures is less than 10× 10 pixels and appear/disappear, split and merge as time
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(a) (b) (c)

(d) (e) (f)

Figure 3.10. Results of marker residual image superimposed on real image sequence
one, with different residual markers indicated by different color boundaries. (a) to (f)
are image frames at time 0 sec, 1.6 sec, 3.2 sec, 4.8 sec, 6.4 sec, and 8.0 sec.

goes on, which indicates challenges caused by small size, homogeneous regions, and

change of motion modality. Tracking results of two types of motion modalities, Brow-

nian and translational motion, will be presented. Similar as before, image background

will be separated using an expectation maximization (EM) method.

3.9.2.1 Brownian Motion

As an example of Brownian motion tracking, image sequences of a small portion

of the image scene, from 0 second to 8.0 second, are shown in Figure 3.8. The marker

images superimposed on the original images at different times are shown in Figure 3.9,

with related marker residual images shown in Figure 3.10. The final tracking results
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Figure 3.11. Tracking result confocal image sequence one. (a) to (f) are image frames
at time 0 sec, 1.6 sec, 3.2 sec, 4.8 sec, 6.4 sec, and 8.0 sec.

are shown in Figure 3.11, where the tracked subcellular structures are depicted as

rectangular bounding boxes.

Initially there are six objects detected at 0 second. Then object O7 appears at

1.6 seconds. At 3.2, 4.8, and 6.4, and 8.0 seconds, both objects O1 and O7 disappear.

In the whole process, objects O2, O3, O4, and O6 show constrained Brownian motion.

Object O5 demonstrates unconstrained Brownian motion with a large displacement.

Notice that at 1.6 sec, there are two possible new objects detected. As shown in

Figure 3.10(b), one is delimited by white boundary and the other is delimited by gray

boundary. Our algorithm correctly differentiates that the one with gray boundary is

a true new object, which is detected as object O7 in Figure 3.11(b). The one with
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white boundary is ended up being the matching target for object O5 that is already

alive at 0 second.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 3.12. Original real image sequence two. (a) to (o) are image frames at time 0
sec, 1.6 sec, 3.2 sec, 4.8 sec, 6.4 sec, 8.0 sec, 9.6 sec, 11.2 sec, 12.8 sec, 14.4 sec, 16.0
sec, 17.6 sec, 19.2 sec, 20.8 sec, and 22.4 sec.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 3.13. Marker image superimposed on the original image sequence two. Differ-
ent markers are delimitated by different color boundaries. (a) to (o) are image frames
at time 0 sec, 1.6 sec, 3.2 sec, 4.8 sec, 6.4 sec, 8.0 sec, 9.6 sec, 11.2 sec, 12.8 sec, 14.4
sec, 16.0 sec, 17.6 sec, 19.2 sec, 20.8 sec, and 22.4 sec.



62

3.9.2.2 Translational Motion

The sequence we present here shows caveolin trafficking displaying both short-

range saltatory movements and long-range microtubule-based movements that these

cells exhibit. Data analysis results for one video sequence are presented here. Its

recording time span is 22.4 second with a 1.6 second interval between frames. A

region of 38×32 pixels out of the original 512×512 image is used to demonstrate the

tracking result. Several of the typical motion patterns (appear, disappear, re-appear,

translation, and Brownian) were observed within the selected window.

The original images are shown in Fig. 3.12. The corresponding marker images

and marker residual images superimposed on original images are shown in Fig. 3.13

and Fig. 3.14, respectively. 24 new objects are detected from the resulting marker

residual images. After the RJMCMC move detection, 12 of them are selected. The

tracking result for these 12 objects are shown in Fig. 3.15 where the same object is

depicted by the same color. These objects exhibit either translational (objects O2 and

O8), or Brownian (objects O1, O4, O7, O9, O10), or a combination of both (objects

O3, O5, O6, O11, O12). As an obvious example, object O2 executes translational

motion, moving from the upper left corner to the lower right corner. Figure 3.16

displays the tracking trajectories of these objects over the 22.4 second recording time.

To quantitatively evaluate the tracking performance, we compared the results

with ground truth that is obtained by a human-in-the-loop segmentation editor. The

average displacement error between the center of the tracked subcellular structure

and the center of the ground truth was calculated for each video frame at 1.6 second

recording interval (Fig. 3.17). Fig. 3.18 shows the change of number of objects during

tracking process. “Truth” means the real number of objects. “Correct” tracked

objects means that an object is in the ground truth and is tracked by our method.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 3.14. Marker residual image superimposed on the original image sequence two.
Different marker residuals are delimitated by different color boundaries. (a) to (o)
are image frames at time 0 sec, 1.6 sec, 3.2 sec, 4.8 sec, 6.4 sec, 8.0 sec, 9.6 sec, 11.2
sec, 12.8 sec, 14.4 sec, 16.0 sec, 17.6 sec, 19.2 sec, 20.8 sec, and 22.4 sec.
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3
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Figure 3.15. Tracked object image superimposed on original image sequence two.
Different objects are delimitated by different color boundaries. (a) to (o) are image
frames at time 0 sec, 1.6 sec, 3.2 sec, 4.8 sec, 6.4 sec, 8.0 sec, 9.6 sec, 11.2 sec, 12.8
sec, 14.4 sec, 16.0 sec, 17.6 sec, 19.2 sec, 20.8 sec, and 22.4 sec.
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Figure 3.16. Object trajectories. The trajectories of different objects are drawn with
different colors. The “+” sign and “◦” sign indicate the start and end positions of
each trajectory, respectively.
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Figure 3.17. The time series plot shows the comparison of the average distance from
ground truth in pixels (averaged per substructure at each frame time) between our
method and mean shift multiple object tracking method.
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“Missing” objects means that an object is in the ground truth and is not tracked by

our method like object O1 after 3.2 second and object O4 after 6.4 second. The two

missing objects are due to un-stability at the image boundary. “Incorrect” means

an object is not in the ground truth and is tracked by our method like object O12

between 12.8 seconds and 14.4 seconds. Objects with long life spans, such as objects

O2, O3, O5, and O6, are reliably detected.

As a comparison study, we carried out the tracking experiment by using mean

shift method [65] that is recognized for good performance in non-rigid object tracking

(Fig. 3.17 and Fig. 3.19). The original mean shift object tracking method only tracks

one object and can not deal with a variable number of multiple objects with object

appearing and disappearing. We extend it by combining our multiple object detection

method to track multiple object and use distance threshold to prevent two objects

from falling to the same location. As can be seen from Fig. 3.17, the overall average

distance error is 1.2101 pixels for our method compared to 1.5939 pixels for mean

shift multiple object tracking method. When compared on the tracked number of

subcellular structures, our method is better than mean shift method. The mean

shift method tends to retain objects which is reflected as the increasing number of

incorrectly detected object in Fig. 3.19.

The initialization of state transition density of (l, w, θ, x, y)T is set to be a

Gaussian distribution with zero mean vector and covariance matrix Σ = [0.5, 0, 0, 0, 0;

0, 0.5, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 20, 0; 0, 0, 0, 0, 20]. The random walk covariance matrix

of (l, w, θ, x, y)T is Σ = [0.1, 0, 0, 0, 0; 0, 0.1, 0, 0, 0; 0, 0, 0.1, 0, 0; 0, 0, 0, 3, 0; 0, 0, 0, 0, 3].

For the augmented variable z, p(zt.i|z(t−1).i) is set to be a uniform distribution on

(0, 1). pd, pa, pu, ps, and ph are set to be 0.1, 0.1, 0.6, 0.1, and 0.1, respectively.

λa = 7, λm = 5, and λd = 0.4. For RJMCMC sample generation, we set sample

number N = 800 in the experiment. Pnew is set to be 0.005. The covariance matrix
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of (l, w, θ, x, y) for the Gaussian distribution p(Xnt.j|Mt.j) is set as Σ = [1, 0, 0, 0, 0;

0, 1, 0, 0, 0; 0, 0, 0.1, 0, 0; 0, 0, 0, 2, 0; 0, 0, 0, 0, 2].
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Figure 3.18. The time series of the number of tracked object by our method. The
truth means that the real number of object. The correct tracked object means that
object is in the ground truth and tracked by our method. The missing object means
that object is in the ground truth and not tracked by our method. The incorrect
means object is not in the ground truth and is tracked by our method.

3.10 Conclusions

A framework based on sequential Monte Carlo (SMC) method is presented in

this chapter for automatic multiple interacting subcellular structure tracking. To

model the interaction between objects, we augment objects representation in the 2D

plane by an extra dimension and evaluate the overlapping relationship in the 3D

space. RJMCMC algorithm with a novel height swap move is applied to sample the

distribution of the varying dimension joint state efficiently. Different multiple object

interaction modalities are detected and handled during the tracking process. The

experiment results show that our method is feasible and effective. Although object

splitting and merging are not explicitly modeled in our framework, the experiment
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Figure 3.19. The time series of the number of tracked object by mean shift multiple
object tracking method. The truth means that the real number of object. The correct
tracked object means that object is in the ground truth and tracked by our method.
The missing object means that object is in the ground truth and not tracked by our
method. The incorrect means object is not in the ground truth and is tracked by our
method.

results show that by modeling the object interaction in 3D space, our method can

detect such object interacting event correctly.



CHAPTER 4

TRACKING VARIABLE NUMBER OF MULTIPLE
SUBCELLULAR STRUCTURES IN 3D+T

4.1 Introduction

In Chapter 2 and Chapter 3, the image sequences we worked on are 2D plane

image stacked in time order. We call it 2D+T image data. In this section, we are

going to deal with 3D volume image stacked in time order. At each frame time, the

LSCM provides 3D subcellular volume information about the specimen. We call this

kind of image stack sequences as 3D+T volume data. A 3D subcellular volume taken

by LSCM is shown in Fig. 4.1. As can be seen from Fig. 4.1, tracking subcellular

structure in 3D space has the following challenges:

• Variable object size, ranging from very large to very small;

• Changing number of objects caused newly-exited or dying out of fluorophore;

• Large shape deformation due to relatively long time elapse between adjacent

frames;

• Lacking of stable object features resulted from inconstant fluorescence;

• Diverse motion modalities, such as Brownian motion and translational motion;

• Cluttered environment and high noise due to photo bleaching.

The subcellular structure tracking for 3D+T volume data follows the sequential Monte

Carlo (SMC) framework of the 2D+T tracking method. In this chapter, we focus on

how to generate the state representation for the 3D subcellular structure.

The rest of this chapter is organized as follows. In Section 4.2, we represent the

variable number of multiple 3D subcellular structures by joint state. The RJMCMC

69
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Figure 4.1. The volume rendering of a 3D green fluorescent protein (GFP) volume
obtained from the laser scanning confocal microscope (LSCM). The unit ratio of x,
y, and z axes is x:y:z=5:5:1.

sampling method for 3D+T tracking is detailed in Section 4.3. The detection and

representation of 3D subcellular structure are described in Section 4.4. We introduce

the marker residual volume guided object appearance model in Section 4.5, and give

the observation mode in Section 4.6. The summary of the whole algorithm for 3D

subcellular structure tracking is described in Section 4.7. Finally experimental results

and conclusions are presented in Section 4.8 and Section 4.9.

4.2 Modeling Variable Number of 3D Subcellular Structures

4.2.1 Joint State Space Representation

The joint state X of multiple 3D subcellular structures at time t is denoted as:

Xt = {Xt.i|i ∈ nt}, (4.1)

where nt, with its cardinality |nt| ≥ 1, is the set of object identity number indicating

which objects contribute to represent the joint state. The object i of interest is

represented as an oriented bounding volume (OBV) with state Xi = (x, y, z, l, w, h,

γ, β, α)T , where, (x, y, z) is the center of the OBV in the Cartesian coordinate system
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of the image volume, (l, w, h) are the length, width, and height of the OBV, (γ, β, α)

are the rotation angles about the x̂, ŷ, and ẑ axes which pass through the OBV center

and parallel to x, y, and z axes, respectively.

Similar to the 2D+T image sequence case, we treat the background as an object

in our joint state model and introduce its state at time t as Xt.0 = (x0, y0, z0, l0, w0, h0,

γ0, β0, α0)
T , in order to include the background information more naturally into the

calculation of the observation likelihood. The inclusion of the background information

into the likelihood calculation can facilitate the prevention of objects from being

attracted to the same high likelihood location when there are other candidate locations

available and the determination of object appearing and disappearing. Since the state

of the background normally does not change in the same 3D volume sequence, it can

be treated as a constant vector. The background state transition probability therefore

is:

p(X(t+1).0|Xt.0) = p(X(t+1).0 = (x0, y0, z0, l0, w0, h0, γ0, β0, α0)
T ) = 1. (4.2)

4.2.2 Joint State Transition Density

Given state parameter vector Xt and object identity indicator set nt, the joint

distribution is denoted as p(nt,Xnt). The general state transition density function

p(Xnt |Xnt−1) can be re-written as p(nt,Xnt |nt−1,Xnt−1) and is further factorized as

following:

p(nt,Xnt|nt−1,Xnt−1) = p(Xnt|nt, nt−1,Xnt−1)p(nt|nt−1,Xnt−1), (4.3)

where p(nt|nt−1,Xnt−1) is the probability distribution of nt conditioned on nt−1 and

Xnt−1 , modeling the change of the number of the objects, p(Xnt |nt, nt−1,Xnt−1) models

the joint state parameters of all the objects in set nt. Although collisions between

3D subcellular structures can happen in real, we treat such effects as the noise in the
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system equation and assume the independence between the individual states of each

object. Thus p(Xnt |nt, nt−1,Xnt−1) can be factorized as:

p(Xnt|nt, nt−1,Xnt−1) ,
∏
j∈Bt

p(Xnt.j)
∏
i∈St

p(Xnt.i|X(nt−1).i), (4.4)

where St = nt ∩ nt−1 is the set of objects at time t − 1 that remain at time t,

Bt = nt\nt−1 is the set of new objects that are not in set nt−1. Probability distribution

p(Xnt.j) will be discussed in Section 4.3.3.

4.3 RJMCMC Method for 3D+T Tracking Sample Generation

4.3.1 Acceptance Ratio for RJMCMC in SMC Framework for 3D+T
Tracking

Following the introduction of RJMCMC acceptance ratio in Chapter 3, the

general form of RJMCMC acceptance ratio of SMC method for 3D+T tracking is as:

α(n′t,X
′
nt
;nt,Xnt)=

p(Zt|n′t,X′
nt
)p(n′t,X

′
nt
|Z1:t−1)pm′qm′(nt,Xnt;n

′
t,X

′
nt
)

p(Zt|nt,Xnt)p(nt,Xnt|Z1:t−1)pmqm(n′t,X
′
nt
;nt,Xnt)

∣∣∣∣
∂(X′

nt
,U′)

∂(Xnt,U)

∣∣∣∣, (4.5)

where U and U′ are the auxiliary random variable vectors guarantying that the map-

ping from (Xnt ,U) to (X′
nt

,U′) is a one-to-one mapping, which is so called dimension

matching between Xnt and X′
nt

. pm is the move specified probability and qm is the

proposal function for U, where m, m ∈ {u, s, d, a}, represents the move types with

u, s, d, and a corresponding to update move, identity swap move, disappear move,

and appear move, respectively. The sum of the move probabilities is set to be one as

pu +ps +pd +pa = 1. The last term of equation (4.5) is the Jacobian of the one-to-one

mapping from (Xnt ,U) to (X′
nt

,U′). In this chapter, we present how to design both

the trans-dimensional and within-dimensional moves of RJMCMC in a way such that

the Jacobian term is always equal to one. Reader please see Appendix A for details.
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4.3.2 RJMCMC Move Proposals for 3D+T Tracking

We apply four moves for the 3D+T object tracking, namely update move, iden-

tity swap move, disappear move, and appear move. These four moves can be classified

into within-dimensional move and trans-dimensional move. The within-dimensional

move will not change the dimension of the joint state Xnt , while Trans-dimensional

move will. Update move and identity swap moves belong to the first category, and

disappear move and appear move belong to the second one. For the update move, we

propose a new joint state by updating the state of only one 3D subcellular structure

using random walk [60]. Identity swap move is to propose a new joint state by switch-

ing the states of two 3D subcellular structures. In the disappear move, we propose a

new joint state by deleting the state of one 3D subcellular structure from the current

joint state. Vice versa, the appear move proposes a new joint state by adding the

state of one 3D subcellular structure to the current joint state.

4.3.2.1 Update Move

For the update move, an object identity number i is uniformly selected from the

current identification number set nt, and random walk is applied to it. The update

move proposal is:

qu(n
′
t,X

′
nt

; nt,Xnt) = qu(i)qu(n
′
t,X

′
nt

; nt,Xnt , i), (4.6)

where qu(i) = 1/|nt| is the proposal distribution for selecting i, i ∈ {nt\0}, qu(n
′
t,X

′
nt

;

nt, Xnt , i) = qu(U), where qu(U) is a Gaussian distribution. The deterministic map-

ping relation from (Xnt ,U) to (X′
nt

,U′) is as {U′ = −U,X′
nt.i = Xnt.i + U},

i ∈ {nt \ 0}, and {. . . ,X′
nt.j = Xnt.j, . . .}, j ∈ {nt \ i}.
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4.3.2.2 Identity Swap Move

For the identity swap move, two objects i and j in the current object set nt

are uniformly selected and their identities are exchanged. The identity swap move

proposal is:

qs(n
′
t,X

′
nt

; nt,Xnt) = qs(i, j)qs(n
′
t,X

′
nt

; nt,Xnt , i, j), (4.7)

where qs(i, j) = 1/(
|nt|
2 ) is the proposal distribution for selecting the pair (i, j), and

qs(n
′
t,X

′
nt

; nt,Xnt , i, j) = 1. The deterministic mapping from Xnt to X′
nt

is as {X′
nt.i =

Xnt.j,X
′
nt.j = Xnt.i}, i ∈ {nt \ 0}, j ∈ {nt \ 0}, and {. . . ,X′

nt.k = Xnt.k, . . .}, k ∈
{nt \ i \ j}.

4.3.2.3 Disappear Move

For the disappear move, an object with identity number i is uniformly selected

from the current identification number set nt and its individual state is deleted from

the joint state. The disappear move proposal is:

qd(n
′
t,X

′
nt

; nt,Xnt) = qd(i)qd(n
′
t,X

′
nt

; nt,Xnt , i), (4.8)

where qd(i) = 1/|nt| is the proposal distribution for selecting i, i ∈ {nt \ 0}, with

| · | as the set cardinality operator, and qd(n
′
t,X

′
nt

; nt,Xnt , i) = 1. The deterministic

mapping from Xnt to X′
nt

is as {. . . ,X′
nt.j = Xnt.j, . . .}, where j ∈ {nt \ i}.

4.3.2.4 Appear Move

For the appear move, an object with identity number i is uniformly selected

from set {At ∪ n̄t \ nt}, with n̄t = ∪N
k=1n

(k)
t−1, where N is the number of samples at

time t− 1 and At is the possible new object set at time t. At is constructed by image
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processing techniques and will be discussed in Section 4.5. The individual state of

the identification number i is added to the joint state. The appear move proposal is:

qa(n
′
t,X

′
nt

; nt,Xnt) = qa(i)qa(n
′
t,X

′
nt

; nt,Xnt , i), (4.9)

with qa(i) = 1/|At∪n̄t\nt| as the proposal distribution for selecting i, i ∈ {At∪n̄t\nt},
qa(n

′
t,X

′
nt

; nt,Xnt , i) = qa(U), where qa(U) is the proposal of generating the state

for the newly added object. The formulation of qa(U) will be presented in Section

4.5. The deterministic mapping relation from (Xnt ,U) to X′
nt

is as X′
nt.i = U,

i ∈ {At ∪ n̄t \ nt} and {. . . ,X′
nt.j = Xnt.j, . . .}, j ∈ nt.

4.3.3 Acceptance Ratios

Plugging the proposal for each move, we get the following acceptance ratios

αu, αs αd, and αa for update move, identity swap move, disappear move, and appear

move, respectively:

αu(n
′
t,X

′
nt

; nt,Xnt) =
p(Zt|n′t,X′

nt
)p(n′t,X

′
nt
|Z1:t−1)

p(Zt|nt,Xnt)p(nt,Xnt |Z1:t−1)
, (4.10)

αs(n
′
t,X

′
nt

; nt,Xnt) =
p(Zt|n′t,X′

nt
)p(n′t,X

′
nt
|Z1:t−1)

p(Zt|nt,Xnt)p(nt,Xnt|Z1:t−1)
, (4.11)

αd(n
′
t,X

′
nt

; nt,Xnt)=
p(Zt|n′t,X′

nt
)p(n′t,X

′
nt
|Z1:t−1)paqa(i)qa(U

′)
p(Zt|nt,Xnt)p(nt,Xnt|Z1:t−1)pdqd(i)

, (4.12)

αa(n
′
t,X

′
nt

; nt,Xnt)=
p(Zt|n′t,X′

nt
)p(n′t,X

′
nt
|Z1:t−1)pdqd(i)

p(Zt|nt,Xnt)p(nt,Xnt|Z1:t−1)paqa(i)qa(U)
. (4.13)

For the evaluation of p(nt,Xnt |Z1:t−1), we use its mixture approximation as in

equation (3.7):

p̂(nt,Xnt |Z1:t−1) =
1

N

N∑

k=1

p(nt,Xnt |n(k)
t−1,X

(k)
nt−1

), (4.14)
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where p(nt,Xnt |n(k)
t−1,X

(k)
nt−1

) is evaluated by using equation (3.11) and equation (3.12)

as:

p(nt,Xnt|n(k)
t−1,X

(k)
nt−1

)=p(nt|n(k)
t−1,X

(k)
nt−1

)
∏
j∈Bt

p(Xnt.j)
∏
i∈St

p(Xnt.i|X(k)
(nt−1).i), (4.15)

with Bt = nt \ n
(k)
t−1, St = nt ∩ n

(k)
t−1 as previously introduced in section 3.3. There

are two cases for object identification number j in Bt, j ∈ At and j 6∈ At. At is

the possible new object set at time t as mentioned in appear move. For the first

case, p(Xnt.j) = pnew, with j ∈ At. For the second case, p(Xnt.j) is defined to be

p(Xnt.j) ,
∑

i∈N
(j)
t−1

p(Xnt.j|X(i)
nt−1.j)/|N (j)

t−1|, with N
(j)
t−1 = {i : j ∈ n

(i)
t−1}, the set of

samples at time t− 1 containing object j. n
(i)
t−1 is the object set for particle i at time

t − 1. p(nt|n(k)
t−1,X

(k)
nt−1

) is defined to be equivalent for all nt, n
(k)
t−1, and X(k)

nt−1
, since

we assume the equal chance of each object set nt.

4.4 Automatic 3D Subcellular Structure Detection and Representation

4.4.1 Automatic 3D Subcellular Structure Detection

We use the regional maxima to label and detect 3D subcellular structure. For

an volume at time t with intensity as I3t and a 3D structuring element as S3, the 3D

gray-scale reconstructive opening operation }3 is represented as:

I3t }C3 S3 = I3t ¯C3 (I3t ◦3 S3), (4.16)

where ¯3 is the 3D gray scale reconstruction operation, ◦3 is the 3D gray scale

morphological opening, and C3 is the 3D connectivity definition for ¯3. We use the

regional maxima of I3t }C3 S3 to identify each object. Since the size of object varies

a lot, from medium (about 100 voxels) to small (about 10 voxels), we apply the 6-

connected connectivity as the 3D structure element, which is iso-tropic in x, y and z

axis directions. Each of the regional maxima of I3.t }C3 S3 is dilated once to include
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 4.2. From regional maxima to state. (a) is the original volume. (b) is the
regional maxima volume. (c) is the marker volume. (d) is the state volume. (e), (f),
and (g) are regional maxima volume, marker volume, and state volume embedded in
the original volume. The unit ratio of x, y, and z directions is x:y:z=5:5:1.

more voxel information. The corresponding binary volume is called marker volume

M3.t.

An example of regional maxima and marker volume are shown in Fig. 4.2(b)

and Fig. 4.2(c), with Fig. 4.2(e) and Fig. 4.2(f) as the results of embedding them into

the original volume, respectively.
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Figure 4.3.Illustration of the oriented bounding volume.

4.4.2 3D Subcellular Structure Representation

Suppose a single voxel in one subcellular object is represented as a 3D vector

u = (x, y, z)T , where x, y, z are the coordinates in the 3D space and T is the transpose

operation, the center position vector ū = [x̄, ȳ, z̄]T of the region can be calculated as:

ū =
1

L

L∑
i=1

ui, (4.17)

where L is the number of voxel in the marker volume. The covariance matrix of the

position vector u for the marker volume can be obtained by:

Σp =
1

L

L∑
i=1

uiu
T
i − ūūT . (4.18)

The eigenvalue of covariance matrix Σp are λ1, λ2, and λ3, with their corresponding

eigenvectors v1, v2, and v3, respectively. Without lost of generality, we let λ1 ≥
λ2 ≥ λ3. The eigenvectors v1, v2, and v3 determine the OBV orientation of the

subcellular structure. The length l, width w, and height h of OBV are determined by

the distance of the projection of the object to the corresponding eigenvectors v1, v2,
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and v3, respectively. As illustrated in Fig. 4.3, the shape and orientation OBV can

be described fully by v1, v2, v3, l, w, and h.

An example of the state volume generated from marker volume is illustrated in

Fig. 4.2(d), It is embedded into the original volume as Fig. 4.2(g). As can be seem from

Fig. 4.2(d), the state volume can keep the 3D subcellular structure labeled correctly

with the benefit of keeping the description of the 3D structure mathematically simple.

The rotation matrix produced by the eigenvectors v1, v2, and v3 needs to be

converted to rotation angle γ, β, and α which are used in the state representation.

Let v1 = [v1.x, v1.y, v1.z]
T , v2 = [v2.x, v2.y, v2.z]

T , and v3 = [v3.x, v3.y, v3.z]
T , and suppose

that the major, medium, minor axes of the 3D object have the same directions as x,

y, and z axes originally, to let the object has the new orientation described by v1,

v2 and v3, the angles that the object rotates about the x̂, ŷ, and ẑ axes, which pass

through the center of OBV and parallel to x, y, and z axes are γ, β, α, respectively.

Here we suppose that the OBV center is fixed. We use the following formula for the

conversion between the eigenvectors and rotation angles [66]:




cosαcosβ cosαsinβsinγ−sinαcosγ cosαsinβcosγ+sinαsinγ

sinαcosβ sinαsinβsinγ+cosαcosγ sinαsinβcosγ−cosαsinγ

−sinβ cosβsinγ cosβcosγ



=




r1.x r2.x r3.x

r1.y r2.y r3.y

r1.z r2.z r3.z




, (4.19)

from Eq. 4.19, we get

β = tan−1
2

(
−r1.z,

√
r2
1.x + r2

1.y

)
, (4.20)

α = tan−1
2

(
r1.y

cos β
,

r1.x

cos β

)
, (4.21)

γ = tan−1
2

(
r2.z

cos β
,

r3.z

cos β

)
, (4.22)

where tan−1
2 (y, x) is a function returning an angle by computing ordinary tan−1( y

x
)

and using the x and y signs to determine the quadrant of the resulting angle. Here
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we only let −π
2
≤ β ≤ −π

2
. In the case β = ±π

2
, only α± γ, the sum or the difference

of α and γ, can be computed, we set α = 0.0 according to convention, and get

β =
π

2
, (4.23)

α = 0.0, (4.24)

γ = tan−1
2 (r2.x, r2.y), (4.25)

or

β = −π

2
, (4.26)

α = 0.0, (4.27)

γ = − tan−1
2 (r2.x, r2.y). (4.28)

Reader please see Appendix C for details.

4.5 3D Marker Residual Volume-Guided Appearance Model

Same to the situation facing 2D+T tracking that the object will appear or

disappear in any part of the 3D volume due to the newly-exited or dying out of

fluorophore, we introduce the marker residual image-guided appearance model to

solve the problem. For a 3D volume I3.t at time t, its marker volume M3.t can be

denoted as:

M3.t = ∪n
i=1M3.t.i. (4.29)

where M3t.i is a binary 3D volume with segmented object i. A new image called

marker residual volume M3.t that depicts the newly appearing objects is defined as:

M3.t = {M3.t.i : M3.t.i ∩M3.(t−1) = ∅, i = 1, · · · , n}. (4.30)

An illustration of marker volume and marker residual volume is shown in Fig. 4.4.

Marker volume M3.8 and M3.9 are shown as Fig. 4.4(a) and (b), respectively. Residual
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volume M3.9 is shown as Fig. 4.4(c) with it embedded in the original volume as

Fig. 4.4(d).

(a) (b)

(c) (d)

Figure 4.4. Marker residual volume generation. (a) is marker volume M3.8. (b) is
marker volume M3.9. (c) is marker residual volume M3.9. (d) is original volume
embedded with M3.9. The unit ratio of x, y, and z directions is x:y:z=5:5:1.

EachM3.t.i, the ith component inM3t, is treated as possible new object and used

to form the possible appearing object set At, which is mentioned in Section 4.3.2.4.

The previously introduced proposal function qa(U) for the new object is defined as

follows:

qa(U) =





p(Xnt.j|M3.t.j), if j ∈ At

∑
i∈N

(j)
t−1

P (Xnt.j|X(i)
(nt−1).j)/|N (j)

t−1|, if j 6∈ At,
(4.31)
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where p(Xnt.j|M3.t.j) generates the state (x, y, z, l, w, h, γ, β, α) by a Gaussian distri-

bution centered around the object in the image M3.t.j. N
(j)
t−1 = {i : j ∈ n

(i)
t−1} is the

set of samples at time t− 1 containing object j.

4.6 3D Observation Model

The joint observation model is defined as:

p(Zt|Xt) =
∏
i∈nt

p(Zt.i|Xt.i). (4.32)

For the measurement of each individual object state Xt.i, we use the amount and

intensity profile of the voxels inside its bounding volume to match with its reference

Rt.i, which is obtained at the beginning of each object trajectory. Three properties

between Xt.i and Rt.i are considered in our observation measurement: (1) volume; (2)

intensity mean; (3) sorted sum-of-absolute-differences (SSAD). The intuition behind

the first one is that although the shape of the subcellular structure is unstable, its

volume is relatively stable. The intensity mean and SSAD are used to characterize

the intensity profile of voxels inside the state bounding volume, with intensity mean

for the global similarity and SSAD for the similarity in detail. Thus we define the

observation model for each individual object as:

p(Zt.i|Xt.i) = p(Zv
t.i|Xt.i)p(Zm

t.i|Xt.i)p(Zd
t.i|Xt.i), (4.33)

with p(Zv
t.i|Xt.i), p(Zm

t.i|Xt.i), and p(Zd
t.i|Xt.i), for volume measurement, intensity

mean, and SSAD, respectively.

Suppose the set of intensity of voxels inside the bounding volume of Xt.i is

An = {a1, . . . , aj, . . . , an}, where n is the amount of voxels and aj stands for the

intensity of the individual voxel. The mean intensity of An is:

IAn =
n∑

j=1

aj/n. (4.34)
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Same to Rt.i, we have its intensity set Bm = {b1, . . . , bj, . . . , bm} and intensity mean

IBm =
∑m

j=1 bj/m, with m as the amount of voxels.

We define p(Zv
t.i|Xt.i) as:

p(Zv
t.i|Xt.i) ∝ exp

(
−λv

(
1− min(n,m)

max(n,m)

)2
)

. (4.35)

Similarly, p(Zm
t.i|Xt.i) is defined by:

p(Zm
t.i|Xt.i) ∝ exp

(
−λm

(
1− min(IAn , IBm)

max(IAn , IBm)

)2
)

. (4.36)

Here, λv, λm are hyperparameters.

The SSAD between two volumes is the same as SSAD between two regions

which is the intensity sets matching problem. Finally, p(Zd
t.i|Xt.i) is as:

p(Zd
t.i|Xt.i) ∝ exp

(−λd · (SSAD(An, Bm))2
)
, (4.37)

with λd as a hyperparameter too. The intuition of SSAD is that for the small subcellu-

lar structure, its salient points are the voxels with high intensity value. By comparing

the intensity values of these salient points, we can get the information about how sim-

ilar two small structures are, since there is no obvious spatial pattern of the voxels

within such small volumes.

4.7 Summary of the Algorithm for Multiple 3D Subcellular Structure
Tracking

The algorithm for 3D+T subcellular structure tracking is as follows:

1. Automatically detect the subcellular structures using marker residual volume.

Estimate the state X0.i of each individual subcellular structure, and combine

them into X0. Sample the joint state X0 with N samples. Thus the initial

distribution of X0 is approximated by p(X0) ≈ {X(s)
0 }, s = 1, . . . , N . Set t = 0.

2. Set t = t+1. Draw a sample of Xt from the prediction density
∑N

s=1 p(Xt|X(s)
t−1)/N .
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3. Apply RJMCMC method to draw samples.

(a) Draw a sample w from the uniform distribution on (0, 1).

(b) if 0 ≤ w < pu, apply update move. Update the state of one subcellular

structure in the joint state using equation (4.6).

(c) If pu ≤ w < pu + ps, apply identity swap move. Swap the states of two

subcellular structures in the joint state using equation (4.7).

(d) If pu + ps ≤ w < pu + ps + pd, apply disappear move. Delete the state of

one subcellular structure from the joint state using equation (4.8).

(e) If pu +ps +pd ≤w, apply appear move. Add the state of one subcellular

structure to the joint state using equation (4.9).

(f) Calculate the acceptance ratio α(Xt,X
′
t) based on the move type using

equations (4.10), (4.11), (4.12), and (4.13).

(g) Draw a sample w′ from the uniform distribution on (0, 1). If w′ < α(Xt,X
′
t),

use X′
t as the new joint state; else use Xt. Add the new state to the final

sample set.

4. Go to step 2.

4.8 Experimental Results

The real 3D+T volume sequence data we used for experiment has total of 147

3D volumes, each with a size of 160 × 140 × 22 voxels taken with a 0.88 seconds

interval. We use a 15 × 13 × 22 portion of the 3D volume spanning 7.04 seconds

to evaluate our algorithm, as shown in Fig. 4.5. Here the unit ratio of x, y, and z

directions is set to be 5:5:1 for better 3D rendering effect instead of the original unit

ratio 10:10:1. As can be observed from Fig. 4.5, which is the volume rendering of the

original volume, the subcellular structures are very close to each other with different
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.5. Volume rendering of a portion of the 3D green fluorescent protein (GFP)
volume sequence obtained from the laser scanning confocal microscope (LSCM). (a)
to (i) are volumes at time 0 sec, 0.88 sec, 1.76 sec, 2.64 sec, 3.52 sec, 4.40 sec, 5.28
sec, 6.16 sec, and 7.04 sec. The unit ratio of x, y, and z directions is x:y:z=5:5:1.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.6. Results of marker volume embedded in the real volume sequence, with
different marker volume indicated by different color. (a) to (i) are volumes at time
0 sec, 0.88 sec, 1.76 sec, 2.64 sec, 3.52 sec, 4.40 sec, 5.28 sec, 6.16 sec, and 7.04 sec.
The unit ratio of x, y, and z directions is x:y:z=5:5:1.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.7. Results of marker residual volume embedded in the real volume sequence,
with different marker residual volume indicated by different color. (a) to (i) are
volumes at time 0 sec, 0.88 sec, 1.76 sec, 2.64 sec, 3.52 sec, 4.40 sec, 5.28 sec, 6.16
sec, and 7.04 sec. The unit ratio of x, y, and z directions is x:y:z=5:5:1.
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3D shape and size. For the volume rendering, we developed a 3D animation graphical

user interface (GUI) application by using Visualization ToolKit (VTK) 5.0.

4.8.1 Results of Marker Volume and Marker Residual Volume

We use expectation-maximization (EM) algorithm [64] to separate the back-

ground and foreground. The marker volumes at each volume time embedded in the

original 3D volume are illustrated in Fig. 4.6. As shown in Fig. 4.6, the markers

can label the 3D subcellular structures correctly. Some green parts seem not being

labeled. This is because they are far away from their regional maxima and we only

use regional maxima with their neighboring voxels included by the 3D dilation opera-

tion to represent the 3D subcellular structures. The marker residual volumes are also

shown in Fig. 4.7, with 10 new 3D subcellular structures detected in which a total

of seven, one, and two new 3D subcellular structures are detected at time 0 second,

3.52 seconds, and 5.28 seconds, respectively.

4.8.2 Tracking Results

The final tracking results of our method are shown in Fig. 4.8. Our algorithm

can track different subcellular structure movement modalities such as Brownian mo-

tion and translational motion. The object appearing and disappearing phenomena

are also correctly detected. Although there are 10 new 3D subcellular structures de-

tected by marker residual volume, only nine of them are tracked by our RJMCMC

method. Among the nice objects, object O1 is doing translational motion, the oth-

ers are having Brownian movement. The movement of each subcellular structure is

clearly demonstrated by its trajectories shown in Fig. 4.9 with different view angles.

As can be seen in Fig. 4.9(b) and (d), the 3D+T volume sequence tracking results can

provide more subcellular structure information than 2D+T image sequence which is
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Figure 4.8. Tracking results of subcellular structures embedded in the real volume
sequence, with different subcellular structure indicated by different color. (a) to (i)
are volumes at time 0 sec, 0.88 sec, 1.76 sec, 2.64 sec, 3.52 sec, 4.40 sec, 5.28 sec, 6.16
sec, and 7.04 sec. The unit ratio of x, y, and z direction is x:y:z=5:5:1.
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Figure 4.9. Different views of the tracked trajectory. (a) is viewed with azimuth =
34◦, elevation = 32◦. (b) is viewed from y axis direction. (c) is viewed from z axis
direction. (d) is viewed from x axis direction. The unit ratio of x, y, and z axes is
x:y:z=5:5:1.

only able to provide subcellular structure information at a fixed z level. If the acquir-

ing z axis position is fixed at 20, the movement information of objects O1, O2, and

O8 will be lost.

It worth noticing that at time 3.52 seconds the marker residual volume detects

a new subcellular structure (Fig. 4.7(e)), our RJMCMC moves correctly reject this

fake new object and keep object O6 alive. Two real new objects O8 and O9 detected



91

0 0.88 1.76 2.64 3.52 4.40 5.28 6.16 7.04
0

1

2

Time (seconds)

A
ve

ra
g

e 
d

is
ta

n
ce

 e
rr

o
r 

(p
ix

el
s)

Figure 4.10.Average distance error at each time by our method.

at time 5.28 (Fig. 4.7(g)). Object O8 lasts till the end of the sequence. Object O9

just exists for 1.76 seconds at time 5.28 seconds and 6.16 seconds.
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Figure 4.11.Evaluation of the number of tracked object at each time by ourmethod.

The quantitative performance of our algorithm is evaluated by the ground truth

which is obtained by a human-in-the loop segmentation editor. The average displace-

ment error between the center of the tracked subcellular structure and the center of

the ground truth was calculated for each 3D volume at 0.88 seconds recording interval

(Fig. 4.10). The average distance error is 0.9361 pixels for the testing sequence. Here

the distance unit is in terms of the pixel in the x-y plane. Fig. 4.11 shows the change

of number of objects during tracking process. “Truth” means the real number of
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objects in the ground truth. “Correct” tracked objects means that an object is in the

ground truth and is tracked by our method. ”Missing” objects means that an object

is in the ground is not tracked by our method. “Incorrect” means an object is not in

the ground truth and is tracked by our method. Our method tracked the number of

object during the whole volume sequence time correctly.

As for the parameters used in our method, the state transition density of

(x, y, z, l, w, h, γ, β, α)T is set to be a Gaussian distribution with zero mean vector

and covariance matrix Σs which is a 9 × 9 diagonal matrix with Σs11 = 4, Σs22 = 4,

Σs33 = 0.01, Σs44 = 0.5, Σs55 = 0.5, Σs66 = 0.05, Σs77 = 0.16, Σs88 = 0.16, and

Σs99 = 2.5. The random walk covariance matrix Σr of (x, y, z, l, w, h, γ, β, α)T is

also a 9 × 9 diagonal matrix with Σr11 = 1, Σr22 = 1, Σr33 = 0.0009, Σr44 = 0.01,

Σr55 = 0.01, Σr66 = 0.0025, Σr77 = 0.01, Σr88 = 0.01, and Σr99 = 0.09. The RJMCMC

move probabilities pu, ps, pd, and pa are set to be 0.7, 0.1, 0.1, and 0.1, respectively.

λv = 7, λm = 5, and λd = 0.4. For RJMCMC sample generation, we set sample

number N = 500 in the experiment.

4.9 Conclusions

We have presented a sequential Monte Carlo (SMC) framework for variable

number of 3D multiple subcellular structure tracking. To detect the subcellular

structure, regional maxima of the original volume after applying 3D gray-scale re-

constructive opening operation are used to label each object, with the OBV of the

dilated regional maxima as the state description for each object. The individual state

of each object is then combined into joint state to represent the multiple objects. The

marker residual volume appearance model is proposed to detect new objects. RJM-

CMC moves such update move, identity switch move, disappearing move, and appear-

ing move are applied to generate the samples of the dimension changing joint state
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efficiently. Both visual and quantitative experiment results show that our method can

track different motion modalities such as Brownian motion and translational motion,

and detect object appearing and disappearing correctly.



CHAPTER 5

MERGE AND SPLIT DETECTION IN TRACKING PROTEIN
CLUSTERS

5.1 Introduction

The introduction of sensitive electronic imaging devices and the development

of methods to tag proteins of interest by green fluorescent protein (GFP) have been

the drivers to live-cell study. Understanding the motility of these GFPs is a key to

understanding how cells regulate delivery of specific proteins from the site of synthesis

to the site of action. At present, biologists either laboriously track a few vesicles by

hand, or use commercially available particle tracking programs whose performance

is far below expectations for various demands. One GFP image obtained from laser

scanning confocal microscope (LSCM) is shown in Fig. 1.1. The green parts of the

image are the GFP clusters of interest. Currently, there are two categories of GFP

molecule that are under investigation. One is the separated small spot-like GFP

molecular particle. Another is the larger GFP molecular cluster, consisting of a

number of close contacted spots. Molecular mobility properties of spot-like molecular

particles have been investigated a lot [22]. Nonetheless, most methods assume that

the spatial configuration of the spot intensity does not change, and will easily fail

to handle the GFP molecular clusters. The 2D+T GFP molecular cluster image

sequences obtained by LSCM have distinctive properties: 1) variable cluster size; 2)

large shape deformation; 3) clusters are close to each other; 4) variable number of

objects; 5) diverse motion modalities, such as Brownian motion, and Non-Brownian

motion; 6) lacking of distinctive features to discern clusters. These specialties impose

94



95

lots of challenges for tracking multiple GFP clusters. Commonly used motion tracking

techniques can not be well applied. For instance, template matching method works

only when the object of interest has no large deformation and is in a sparse object

density environment without high noise. Large inter-frame displacement will mislead

the curve/surface evolution of the active contour/surface-based tracking method [11].

Furthermore, there are a few literatures on one of the challenging problems in

multiple visual object tracking, which is the splitting and merging of visual objects.

Under the assumption of slow inter-frame object movement, Yang et al. [67] use

Euclidean distance to detect such interaction between objects. Virtual measurements

use the split and merge functions to resolve the measurement conflict [68]. In [69],

the split and merged measurements are represented by a sparse matrix and solved by

MCMC based auxiliary particle filter. The basic assumptions are:

1. Objects are almost non-deformable, thus the tracked objects can be well ap-

proximated by circles, ellipses or rectangles;

2. Objects have the same size and shape before and after the interaction.

Unfortunately, GFP clusters have large deformation, and different size and shape.

Withers et al. [70] tackle this situation using the region overlap information between

the consecutive image frames. However, it is limited to slow cell movement.

On the other hand, one of the difficulties in multiple object tracking (MOT) is

data association which establishes the connections between the tracks and observa-

tions. Two famous algorithms for data association are multiple-hypothesis tracking

(MHT) and joint probabilistic data association (JPDA) [50]. MHT has the problem of

exponential computation complexity. JPDA is limited to the fixed number of targets

and cannot initialize or delete target. Recent literatures successfully treat data asso-

ciation as NP-hard combinatorial problem, and approximate the optimal solution by

Markov chain Monte Carlo (MCMC) method [71], [72]. In this chapter, we propose a
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novel multiple GFP clusters split and merge tracking framework combined with asym-

metric region matching strategy. To save the possible high exponential computation

cost, we adapt Markov chain Monte Carlo data association (MCMCDA) method into

our framework to find the approximate optimal solution. The method is free of the

size and movement of GFP cluster.

The remainder of the chapter is organized as follows. We model the GFP clus-

ters splitting and merging by the asymmetric distance between regions and the region

tracking by bipartite graph in Section 5.2 and Section 5.3, respectively. The MCM-

CDA method is introduced in Section 5.4. In Section 5.5, we present the experiment

results. Finally, conclusions and future work are discussed in Section 5.6.1BAt -1 t A 12t -1 t
(a) (b)At -1 t1 At -1 t 1t -1 t

c) (d) (e)

Figure 5.1. Object matching scenarios. (a) is object merging. (b) is object splitting.
(c) is object equal match. (d) is object disappearing. (e) is object appearing.
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5.2 Modeling of Clusters Split and Merge

5.2.1 Properties of Asymmetric Distance

The interaction between multiple protein clusters is modeled as region splitting

and merging. It is assumed that one region will not split and merge with other regions

at the same time. Before defining the asymmetric distance, we suppose there is an

asymmetric region distance measure AD(R1, R2) ∈ [0, 1] between two regions R1 and

R2, having the property that AD(R1, R2) 6= AD(R2, R1) in general. Representing

regions in frame t−1 and t by Ri
t−1, i = 1, · · · , nt−1 and Rj

t , j = 1, · · · , nt, respectively,

we define forward asymmetric distance (FAD) as FAD(Ri
t−1, R

j
t ) = AD(Ri

t−1, R
j
t ) and

backward asymmetric distance (BAD) as BAD(Ri
t−1, R

j
t ) = AD(Rj

t , R
i
t−1). Different

object matching scenarios between regions of consecutive frames are shown in Fig. 5.1,

with FAD represented by the solid arrow lines and BAD represented by the dashed

arrow lines. The introduction of BAD will facilitate the detection of object splitting.

Ideally, the asymmetric distance should have the Strict Asymmetric Distance

Properties as follows:

1. FAD < BAD, when objects merge;

2. FAD > BAD, when object splits;

3. FAD = BAD, when object is equal match;

4. FAD = 1 ∧BAD = ∅, when object disappear;

5. FAD = ∅ ∧BAD = 1, when object appear;

Here, BAD = ∅ means that BAD does not exist, and the same to FAD = ∅.
Due to the uncertainties in the system and observation models, strict asymmetric

distance properties do not always hold. Therefore, validation threshold γv and scale

threshold γs are introduced to relax the conditions with the Relaxed Asymmetric

Distance Properties as:
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1. Objects merge: FAD≤γv ∧BAD>γv ∧BAD/FAD>γs;

2. Object splits: FAD>γv ∧BAD≤γv ∧ FAD/BAD>γs;

3. Object equal match:

(a) FAD≤γv ∧BAD>γv ∧BAD/FAD ≤ γs;

(b) FAD>γv ∧BAD≤γv ∧ FAD/BAD ≤ γs;

(c) FAD≤γv ∧BAD≤γv;

4. New object appear: FAD > γv ∧BAD > γv for Rj
t ;

5. Existing object disappear: FAD > γv ∧BAD > γv for Ri
t−1;

In the zero denominator case, the quotient is set to infinity.

Combining FAD and BAD, the distance between two regions in different con-

secutive frames is defined as:

D(Ri
t−1,R

j
t )=min[FAD(Ri

t−1,R
j
t ), BAD(Ri

t−1,R
j
t )]. (5.1)

In the context of image frame, without loss of generality, p(Rj
t |Ri

t−1) is assumed to

be a Gaussian distribution as :

p(Rj
t |Ri

t−1) = K exp(−λD2(Ri
t−1, R

j
t )), (5.2)

where K, λ are constant parameters guarantying that p(Rj
t |Ri

t−1) is a distribution.

5.2.2 Definition of Asymmetric Distance

The calculation of the asymmetric distance having the properties mentioned in

Section 5.2.1 for the detection of regions splitting and merging is defined as follows. At

beginning, we subsample the region Rs and represent it by its sample pixels {gsi : i =

1, · · · , N}, N is the total number of the sample pixels. Then the correspondent pixels

in region Rt are found for each sample pixel of Rs by a greedy searching strategy.

First, we determine the correspondent pixel in region Rt by the smallest pixel distance
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among all the sample pixels of Rs, and delete the correspondence pixel together with

its local support from Rt. Then apply the same procedure to the rest of the sample

pixels of Rs. In the case that there is no candidate correspondence pixel in Rt, the

distance for that sample pixel of Rs to Rt is set to 1. We give the distance measure

between two pixels gs ∈ Rs and gt ∈ Rt as:

d(gs, gt) =
1

|L|
∑
g∈L

(
1− min(Ik(~g), In(~g + ~gt − ~gs))

max(Ik(~g), In(~g + ~gt − ~gs))

)
, (5.3)

where L is the local support of gs, ~g is the coordinate vector of g, |.| is the cardinal

operation, Ik and In are the image functions at time k, n, respectively, with Rs ⊂ Ik

and Rt ⊂ In. In the zero denominator case, the quotient is set to 1. We let dM(gsi, gti)

be the distance between the sample pixel gsi of Rs and its correspondence gti in Rt.

Finally, the asymmetric distance AD(R1, R2) is calculated as:

AD(R1, R2) =
1

N

N∑
i=1

dM(gsi, gti). (5.4)

5.3 Modeling Region Tracking by Bipartite Graph

5.3.1 Introduction to Data Association

The object tracking problem is often modeled as the state-space model. Let xi
t

be the state of the ith object at time t with dimension m , zi
t be its observation with

dimension n. Under the assumption that all the objects have the same general linear

motion model and observation model, we have [73]:

xi
t = Fxi

t−1 + w, (5.5)

zi
t = Hxi

t + v, (5.6)

where F is a m×m matrix, H is a n×m matrix, w, v are assumed to be independent

Gaussian white noises with zero means and covariance Q, R, respectively, the super-
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script i of x and z indicates the ith target. Equation (5.5) is system model and Eq.

(5.6) is observation model. The predicted mean of xi
t are x̂i−

t = Fxi
t with covariance:

P i−
t = FP i

t−1F
T + Q. (5.7)

And the predicted mean of zi
t is ẑi−

t = Hx̂i−
t , with covariance:

Si−
t = HP i−

t HT + R. (5.8)

Data association is to determine correspondence between each observation and object

at each time t. In most literature, the Mahalanobis distance between a measurement

zt and ẑi−
t is as:

[zt − ẑi−
t ]T (Si−

t )−1[zt − ẑi−
t ]. (5.9)

Equation (5.9) is used to form the validation gate to exclude associations with low

probabilities. it works well in desired situation. Difficulties come out when following

situations happen: 1) observation may be contended by the close neighbored objects;

2) object appear or disappear; 3) objects merge or split. These situations are very

common in 2D GFP clusters tracking, because of its characteristics mentioned in

Section 5.1.

5.3.2 Region Tracking by Bipartite Graph

In the 2D GFP clusters tracking problem, the objects are moving in an un-

manipulated manner. As the number of tracked clusters growing, a nature way to

generalize their motion models is to use a Gaussian diffusion process. When the state

variable consists of the horizontal and vertical coordinates, the spatial support of ob-

servation validation gate of an object at time t can be enclosed by a 2D circle centered

at the region at t− 1 with the maximum possible object displacement in consecutive

frames as its radius. This approximation is valid in our case because the movement
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Figure 5.2.Edge types and combinations.

speed of the GFP clusters is bounded. Therefore, The data association problem in

region tracking is essentially the region matching problem discussed in Section 5.2.

By treating each region as a vertex, the result of connecting all the possible matched

regions by edges forms a bipartite graph G = (Rt−1, Rt, E), where Rt−1 = ∪Ri
t−1,

i = 1, · · · , nt−1, and Rt = ∪Rj
t , j = 1, · · · , nt. nt is the number of regions in the frame

at time t, E is the set of all possible edges e(Ri
t−1, R

j
t ) between Ri

t−1 and Rj
t with

D(Ri
t−1, R

j
t ) ≤ γv.

To model object appearing and disappearing, imagining that: 1) the new region

or false alarm are produced by a virtual object in the previous frame; 2) the dead

region or occluded region has a virtual object at current frame. Thus, virtual objects

R0
t−1 and R0

t are introduced at time t− 1 and t, respectively to reflect this idea. Ap-

plying the Relaxed Asymmetric Distance Properties, we classify the edges connecting

the bipartite graph as:

• Virtual appear edge, ea;

• Virtual disappear edge, ed;
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• Equal edge, ee;

• Merge edge, em;

• Split edge, es.

The illustration for each edge type and its combination is in Fig. 5.2. A region will

automatically be assigned an edge of ea or ed if it has no any real matching edge such

as ee, em, or es. The edge set of a vertex can be represented by:

Vk = Va ∪ Vd ∪ Ve ∪ Vm ∪ Vs, (5.10)

where Va = {eai : i = 0, · · · , na}, Vd = {edi : i = 0, · · · , nd}, Ve = {eei : i = 0, · · · , ne},
Vm = {emi : i = 0, · · · , nm}, and Vs = {esi : i = 0, · · · , ns}, na, nd, ne, nm, ns are

the degrees of Va, Vd, Ve, Vm, Vs, respectively. A feasible joint edge association θ =

∪Vk, k = 1, · · · , Nv, where Nv is the total number of non-virtual objects in the

two consecutive frames, is defined such that all its real vertices satisfy the following

criteria:

1. |Va|+ |Vd|+ |Ve| ≤ 1, for real vertex.

2. |Vm| ∗ |Va| = 0 and |Vm| ∗ |Vd| = 0, for real vertex.

3. |Vs| ∗ |Va| = 0 and |Vs| ∗ |Vd| = 0, for real vertex.

4. |Ve| ∗ |Vm| = 0, for Ri
t−1, i = 1, · · · , nt−1.

5. |Ve| ∗ |Vs| = 0, for Rj
t , j = 1, · · · , nt.

6. |Vm| ∗ |Vs| = 0, for real vertex.

Here, |.| is the cardinality operation. The last three criteria stipulate that one region

can not split and merge at the same time. Therefore ambiguities caused by possible

combination of unconstrained regions splitting and merging are avoided. Since one

vertex can have the combination of equal edge with split or merge edges, the common

scenarios in tracking multiple GFP clusters when one large cluster merges with several

small clusters or splits into several small clusters can be represented by the feasible
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joint edge association θ. Also, vertex R0
t−1 only has virtual appear edge type ea, and

vertex R0
t only has virtual disappear edge type ed. Now, let R1:t = {R1, · · · , Rt}.

Using Bayes’ theorem, the posterior of θ can be represented as:

π(θ|R1:t) =
1

C
P (θ|R1:t−1)p(Rt|θ,R1:t−1), (5.11)

where C is a normalizing constant to keep π(θ|R1:t) a distribution. For an image

sequence, the effect of R1:t−1 can be blended as a reference region Rr, and θ does not

depend on R1:t−1. Applied to Eq. (5.11), yields:

π(θ|R1:t) =
1

C
P (θ)p(Rt|θ,Rr)

=
1

C
P (θ)

∏

(i,j)

p(Rj
t |Ri

r)
∏

|R0
t−1|

pa

∏

|R0
t |

pd, (5.12)

where {(i, j) : i = 1, · · · , nt−1, j = 1, · · · , nt, e(R
i
t−1, R

j
t ) ∈ θ}, Ri

r is the reference re-

gion of Ri
1:t−1, |R0

t−1| and |R0
t | are degrees of R0

t−1 and R0
t , respectively, pa is the

likelihood of the appearing edge in the image sequence, and pd is for the disappearing

edge. The prior of θ is defined to be a penalty term for real vertices having degree

larger than one and favor the simple joint edge association having less merging and

splitting, with expression as:

P (θ) = exp
( ∑

R∈(Rt−1∪Rt)

ξ · (|R| − 1)
)
, (5.13)

where ξ is the constant controlling the penalty effect.

When |(Rt−1 ∪ Rt)| is small, the optimal solution of Eq. 5.12 which maximizes

π(θ|R1:t) can be solved by traversing the whole solution space which has a size of

2|(Rt−1∪Rt)|. Nonetheless, the computational cost raises exponentially as |(Rt−1 ∪Rt)|
increase.
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5.4 Markov Chain Monte Carlo Data Association

To deal with the exponential computational cost of our method, we introduce

Markov chain Monte Carlo data association (MCMCDA) to approximate the optimal

solution of Eq. 5.12.

Markov chain Monte Carlo (MCMC) method is essentially the Monte Carlo

integration using Markov chain which constructs a sequence of samples with transi-

tion kernel P (.|.). A popular MCMC method is Metropolis-Hastings (MH) algorithm,

which provides a method to construct a Markov chain such that its stationary distri-

bution φ(.) is the distribution of interest π(.). The idea is simple. At the beginning,

randomly pick a state θ. Then sample a state θ′ from the proposal distribution q(.|θ)
and accept it with acceptance ratio :

α(θ, θ′) = min
[
1,

π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

]
. (5.14)

If θ′ is accepted, set θ = θ′. Otherwise, keep the old θ. Readers please refer [60] for

details.

Let the collection of all the feasible joint edge association θ be Ω, Metropolis-

Hastings (MH) algorithm [60] is used to traverse the set Ω and find its stationary

distribution π(θ|R1:t). Applying the proposal distribution which selects the edge

from E uniformly at random, the acceptance ratio is simplified to:

α(θ, θ′) = min
[
1,

π(θ′|R1:t)

π(θ|R1:t)

]
. (5.15)

The algorithm of the MCMCDA at time t is summarized as follows:

1. Select a θ randomly.

2. Select an e(Ri
t−1, R

j
t ) ∈ E uniformly at random.

3. Deletion Move: If e(Ri
t−1, R

j
t ) ∈ θ, then θ′ = θ \ e(Ri

t−1, R
j
t ). Go to step 6.

4. Switch Move:
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(a) If e(Ri
t−1, R

j
t ) /∈ θ, e(Ri

t−1, R
j
t ) = ee, and both region Ri

t−1 and Rj
t each have

equal edges e(Ri
t−1, R

k
t ), e(Rl

t−1, R
j
t ), respectively, and also e(Rl

t−1, R
k
t ) is

an equal edge, θ′ = θ∪e(Ri
t−1, R

j
t )∪e(Rl

t−1, R
k
t )\e(Ri

t−1, R
k
t )\e(Rl

t−1, R
j
t ).

Go to step 6.

(b) If e(Ri
t−1, R

j
t ) /∈ θ, e(Ri

t−1, R
j
t ) = ee, and only one region Ri

t−1 or Rj
t has

an equal edge e′e, θ′ = θ ∪ e(Ri
t−1, R

j
t ) \ e′e. Go to step 6.

5. Addition Move: θ′ = θ ∪ e(Ri
t−1, R

j
t ).

6. If θ′ violates the feasible joint edge association criteria, go to step 2. Otherwise,

accept θ = θ′ with probability α(θ, θ′) using Eq. (5.15).

7. If the number of samples is less than N , go to step 2.

Here the switch move is added intentionally to accelerate sample mixing rate

between different modes of π(θ|R1:t).

(a) (b) (c)

(d) (e) (f)

Figure 5.3. Original synthetic images. (a) to (f) are image frames with number 1 to
6.
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Figure 5.4. Tracking results of synthetic clusters merging and splitting images. (a)
to (f) are image frames from 1 to 6.

Table 5.1. FAD and BAD of synthetic frame 1 to 2

Cluster 2(1) 2(2) 2(3) 2(4)

1(1)
( 0.1857,

0.1893 )
( 0.6804,

0.6381 )
( 0.5509,

0.7031 )
( 1.0000,

1.0000 )

1(2)
( 0.8910,

0.9424 )
( 0.1625,

0.1666 )
( 0.1952,

0.5469 )
( 0.3253,

0.4303 )

1(3)
( 1.0000,

1.0000 )
( 0.5798,

0.1985 )
( 0.1495,

0.1395 )
( 0.7973,

0.6287 )

1(4)
( 1.0000,

1.0000 )
( 0.3715,

0.2941 )
( 0.3912,

0.6379 )
( 0.1614,

0.1587 )

Table 5.2. FAD and BAD of synthetic frame 2 to 3

Cluster 3(1) 3(2) 3(3)

2(1) ( 0.1550, 0.1772 ) ( 0.3033, 0.6784 ) ( 1.0000,1.0000 )
2(2) ( 0.6064, 0.6313 ) ( 0.1385, 0.4694 ) ( 0.2958,0.3140 )
2(3) ( 0.7885, 0.6276 ) ( 0.1337, 0.1494 ) ( 0.6241,0.3725 )
2(4) ( 1.0000, 1.0000 ) ( 0.2544, 0.4281 ) ( 0.1498,0.1250 )
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Table 5.3. FAD and BAD of synthetic frame 3 to 4

Cluster 4(1) 4(2) 4(3)

3(1) ( 0.1718, 0.2155 ) ( 0.2067, 0.5580 ) ( 1.0000, 1.0000 )
3(2) ( 0.6779, 0.3023 ) ( 0.1388, 0.1391 ) ( 0.5214, 0.2737 )
3(3) ( 1.0000, 1.0000 ) ( 0.2146, 0.3520 ) ( 0.1259, 0.1460 )

Table 5.4. FAD and BAD of synthetic frame 4 to 5

Cluster 5(1) 5(2) 5(3)

4(1) ( 0.2060, 0.1735 ) ( 0.2318, 0.6306 ) ( 1.0000, 1.0000 )
4(2) ( 0.4702, 0.2339 ) ( 0.1349, 0.1556 ) ( 0.3099, 0.2102 )
4(3) ( 1.0000, 1.0000 ) ( 0.2425, 0.5433 ) ( 0.1603, 0.1435 )

Table 5.5. FAD and BAD of synthetic frame 5 to 6

Cluster 6(1) 6(2) 6(3) 6(4)

5(1)
( 0.1731,

0.1578 )
( 0.1930,

0.3176 )
( 1.0000,

1.0000 )
( 1.0000,

1.0000 )

5(2)
( 0.4714,

0.1736 )
( 0.1592,

0.1409 )
( 0.4248,

0.1412 )
( 0.4620,

0.2840 )

5(3)
( 1.0000,

1.0000 )
( 0.2897,

0.5499 )
( 0.8720,

0.8350 )
( 0.1254,

0.1367 )

Table 5.6. Edge table of synthetic frame 1 to 2

Cluster 2(1) 2(2) 2(3) 2(4)

1(1) ∗ee n/a n/a n/a
1(2) n/a ∗ee em n/a
1(3) n/a es ∗ee n/a
1(4) n/a ee n/a ∗ee
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Table 5.7. Edge table of synthetic frame 2 to 3

Cluster 3(1) 3(2) 3(3)

2(1) ∗ee n/a n/a
2(2) n/a ∗em ee

2(3) n/a ∗ee n/a
2(4) n/a em ∗ee

Table 5.8. Edge table of synthetic frame 3 to 4

Cluster 4(1) 4(2) 4(3)

3(1) ∗ee em n/a
3(2) n/a ∗ee es

3(3) n/a em ∗ee

Table 5.9. Edge table of synthetic frame 4 to 5

Cluster 5(1) 5(2) 5(3)

4(1) ∗ee em n/a
4(2) es ∗ee es

4(3) n/a em ∗ee

Table 5.10. Edge table of synthetic frame 5 to 6

Cluster 6(1) 6(2) 6(3) 6(4)

5(1) ∗ee em n/a n/a
5(2) es ∗ee ∗es es

5(3) n/a em n/a ∗ee

5.5 Experiment Results

To evaluate the performance of our MCMCDA algorithm on detecting cluster

splitting and merging, we use both synthetic and real clusters splitting and merging

video sequences. The synthetic video sequence is to verify the expected performance
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of our method, while its ability to solve the real problem is demonstrated by the noisy

real video sequence.

5.5.1 Experiments on Synthetic Clusters Splitting and Merging Video
Sequence

To simulate clusters splitting and merging phenomena, we produce four clusters

in the video sequence. All clusters are approximated by eclipses with state parameter

x = [u, v, νu, νv, al, as, θ], where u and v are the coordinate of the center of eclipse,

νu and νv are velocity in u and v axes directions, al and as are the lengths of the

semimajor and semiminor axes, respectively, θ represent the angle between the u axis

and the semimajor axis. As shown in Fig. 5.4(a), the labeled clusters 1 and 4 are

doing Brownian motion, and the other two clusters are doing translational motion.

The system equation uses Eq. (5.5) with constant speed model, where

F =




1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1




. (5.16)
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The noise parameter w is defined to be a 7× 7 diagonal matrix as:

w =




2 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 4 0 0 0 0

0 0 0 4 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0.7 0

0 0 0 0 0 0 0.01




. (5.17)

The initial values for each object are set to x1
0 = [56, 10, 0, 0, 7, 7, pi/6], x2

0 = [20, 29,

5, 5, 10, 5, pi/4], x3
0 = [54, 50,−5, −5, 15, 7, pi/6], and x4

0 = [18, 55, 0, 0, 9, 6, pi/2]. The

intensity of the image background is set to be zero, and the intensities of each cluster

are set to be 220, 160, 190, and 250 accordingly. Gaussian additive noise with standard

deviation σ = 36 is applied to each video frame for the simulation of the intensity

disturbance. Here we use x(y) to refer to cluster y in frame x. This convention

is also used in the rest of this chapter. The whole scenario of cluster merging and

splitting is as follows: At frame 1, we detected four clusters, 1(1), 1(2), 1(3), and

1(4), by intensity thresholding method. The four clusters are moving according to

their initial values, thus 1(1) and 1(4) are doing Brownian motion, and 1(2) and 1(3)

are doing translational motion. At frame 3, clusters 2(2) and 2(3) merge together

as cluster 3(2), and continue to be merged as clusters 4(2) and 5(2). At frame 6,

cluster 5(2) splits into clusters 6(2) and 6(3). Our MCMCDA algorithm can track

the whole cluster merging and splitting process correctly, at the same time without

losing the track of clusters 1(1) and 1(4), which have no interaction with others. The

asymmetric distances FAD and BAD between consecutive frames from 1 to 6 are

shown in Tables 5.1, 5.2, 5.3, 5.4, and 5.5, where the distance is of the format as

(FAD, BAD). The edge sets are represented by edge tables in Tables 5.6, 5.7, 5.8,
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5.9, and 5.10, with each of the final selected edges indicated by an asterisk in the

front. As can been seen in Table 5.7 the merging of cluster 2(2) with cluster 2(3)

is represented by a merge edge between clusters 2(2) and 3(2) and an equal edge

between clusters 2(3) an 3(2), which can be interpreted as cluster 2(2) attached to

cluster 2(3). Similarly in Table 5.10, the splitting of cluster 5(2) is represented by

one equal edge between clusters 5(2) and 6(2) and a split edge between clusters 5(2)

and 6(3). This means that cluster 6(3) detaches from 6(2). This interpretation of the

selected edge configuration can be visually verified in Fig. 5.4.

(a) (b) (c)

(b) (e)

Figure 5.5. Original real images. (a) to (e) are image frames with number 79 to 83.

5.5.2 Experiments on Real Clusters Splitting and Merging Video Se-
quence

We test our merge and split detection algorithm by using an image sequence

acquired by Leica TCS-SP laser scanning confocal microscope with image size of

512× 512. The marker guided watershed segmentation method is applied for object

detection. Validation and scale thresholds are set to γv = 0.24 and γs = 1.3, respec-
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Figure 5.6. Molecular clusters merging and splitting images. (a) to (e) are image
frames with number 79 to 83.

Table 5.11. FAD and BAD of frame 79 to 80

Cluster 80(1) 80(2) 80(3) 80(4)

79(1)
( 0.2200,

0.1721 )
( 0.2116,

0.2377 )
( 0.1789,

0.4228 )
( 1.0000,

0.6841 )

79(2)
( 0.2381,

0.3144 )
( 0.1503,

0.2050 )
( 0.1742,

0.6076 )
( 0.6431,

0.5918 )

79(3)
( 0.2450,

0.2625 )
( 0.2559,

0.2946 )
( 0.1771,

0.3608 )
( 0.2947,

0.2248 )

79(4)
( 0.2655,

0.2592 )
( 0.1909,

0.2033 )
( 0.1599,

0.2108 )
( 0.3658,

0.1571 )

79(5)
( 0.8354,

1.0000 )
( 0.6212,

0.8934 )
( 0.1848,

0.5929 )
( 0.1612,

0.1718 )

Table 5.12. FAD and BAD of frame 80 to 81

Cluster 81(1) 81(2) 81(3) 81(4)

80(1)
( 0.2000,

0.1506 )
( 0.2590,

0.2184 )
( 0.1952,

0.3833 )
( 1.0000,

0.6637 )

80(2)
( 0.3021,

0.1869 )
( 0.1732,

0.1656 )
( 0.2005,

0.2703 )
( 0.8954,

0.5733 )

80(3)
( 0.5416,

0.1731 )
( 0.3100,

0.1795 )
( 0.1745,

0.1740 )
( 0.4849,

0.1672 )

80(4)
( 0.6894,

1.0000 )
( 0.6156,

0.8633 )
( 0.1676,

0.3880 )
( 0.1608,

0.1694 )
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Table 5.13. FAD and BAD of frame 81 to 82

Cluster 82(1) 82(2) 82(3) 82(4) 82(5)

81(1)
( 0.1471,

0.1433 )
( 0.2490,

0.2632 )
( 0.1772,

0.1804 )
( 0.2168,

0.3584 )
( 1.0000,

0.6862 )

81(2)
( 0.2685,

0.2385 )
( 0.1598,

0.1527 )
( 0.2460,

0.2582 )
( 0.1977,

0.1975 )
( 0.8644,

0.6011 )

81(3)
( 0.4723,

0.1894 )
( 0.2534,

0.2041 )
( 0.4530,

0.1848 )
( 0.2310,

0.1846 )
( 0.3713,

0.1603 )

81(4)
( 0.6993,

0.8583 )
( 0.6120,

0.8789 )
( 0.2549,

0.2981 )
( 0.1675,

0.3396 )
( 0.1295,

0.1608 )

Table 5.14. FAD and BAD of frame 82 to 83

Cluster 83(1) 83(2) 83(3) 83(4)

82(1)
( 0.1580,

0.1715 )
( 0.2424,

0.2923 )
( 0.1716,

0.4342 )
( 0.7119,

0.7409 )

82(2)
( 0.2552,

0.2400 )
( 0.1934,

0.1899 )
( 0.1863,

0.2763 )
( 0.6598,

0.5985 )

82(3)
( 0.2029,

0.2099 )
( 0.2433,

0.2481 )
( 0.1536,

0.4383 )
( 0.2219,

0.2614 )

82(4)
( 0.2993,

0.2342 )
( 0.2042,

0.1945 )
( 0.1597,

0.2313 )
( 0.2157,

0.2017 )

82(5)
( 0.6643,

1.0000 )
( 0.6153,

0.7599 )
( 0.1491,

0.4308 )
( 0.1690,

0.1644 )

Table 5.15. Edge table of frame 79 to 80

Cluster 80(1) 80(2) 80(3) 80(4)

79(1) ∗ee ee em n/a
79(2) em ∗ee em n/a
79(3) ee ee ∗em ee

79(4) ee ee ∗ee es

79(5) n/a n/a em ∗ee
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Table 5.16. Edge table of frame 80 to 81

Cluster 81(1) 81(2) 81(3) 81(4)

80(1) ∗ee ee em n/a
80(2) es ∗ee ee n/a
80(3) es es ∗ee es

80(4) n/a n/a em ∗ee

Table 5.17. Edge table of frame 81 to 82

Cluster 82(1) 82(2) 82(3) 82(4) 82(5)

81(1) ∗ee ee ee em n/a
81(2) ee ∗ee ee ee n/a
81(3) es ee ∗es ∗ee es

81(4) n/a n/a ee em ∗ee

Table 5.18. Edge table of frame 82 to 83

Cluster 83(1) 83(2) 83(3) 83(4)

82(1) ∗ee ee em n/a
82(2) ee ∗ee ee n/a
82(3) ee ee ∗em ee

82(4) ee ee ∗ee ee

82(5) n/a n/a em ∗ee

tively. Here, we present portions of frame 79 to 83 here, depicting that two molecular

clusters merge and split as shown in Fig. 5.5, The phenomena is that clusters 3 and

4 in frame 79 merge together into cluster 3 in frame 80, and continue to be merged

in frame 81 as cluster 3. At frame 82, it splits into clusters 3 and 4, and merge again

in frame 83. At the same time, other clusters have no interactions. Although all the

clusters do not have large movement in this case, it is enough to show the success

of our method since the speed information is not considered in the calculation of

asymmetric distance.
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The asymmetric distances FAD and BAD between consecutive frames from 79

to 83 are shown in Tables 5.11, 5.12, 5.13, and 5.14. The edge sets are represented

by edge tables in Tables 5.15, 5.16, 5.17, and 5.18, where each final selected edge is

indicated by an asterisk in the front. The merging process of clusters 79(3) and 79(4)

is represented by one merge edge and one equal edge as shown in Table 5.15, which

can be interpreted as that cluster 79(3) attached to cluster 79(4) and the merged

result is cluster 80(3). For splitting process, cluster 81(3) is indicated by having a

split edge and an equal edge as shown in Table 5.17, which can be interpreted as that

cluster 81(3) splits into cluster 82(3) and 82(4). For the edge table between frames

79 and 80, there are a total of 16 edges there, the solution space is 216 = 65536. The

MCMCDA method is applied to find the approximate optimal solution, though it

turns out to be the optimal one.

It worth noticing that there is a tendency to establish the wrong edges between

clusters such as: 79(4) to 80(4), 80(3) to 81(4), 81(3) to 82(5), 82(2) to 83(3), and

82(5) to 83(3) by simply evaluating the distance value D between them using Eq.(5.1).

It is correctly avoided by our method.

5.6 Conclusions and Future Work

In this chapter, we propose a novel multiple GFP clusters split and merge track-

ing framework combined with asymmetric region matching strategy and MCMCDA

approximate method to find the optimal solution efficiently. It can not only track

individual clusters and the interactions between them, but also provide meaningful

interpretation about the merging and splitting interactions such as object attaching

and detaching.

In the experiment, it is also noticed that due to the noisiness of the GFP video

sequence, the calculation of the asymmetric distance is not always robust to pro-



116

vide correct edge mapping information. A more robust asymmetric distance measure

combined with other cluster information such as orientation and shape can be used

to improve its performance. However, the current algorithm provides a novel frame-

work for tracking clusters with interaction. Thus for the future work, we are going

to improve the robustness of the algorithm under different scenarios, especially when

the cluster intensity is unstable between adjacent frames in real situation. Adaptive

thresholds for validation and scale, and the connection between the broken trajecto-

ries and the complete occlusions, will also be considered in the future work.
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In this appendix, we present the calculation of the Jacobian terms of the RJM-

CMC moves.

A.1 Jacobian Calculation

Supposing we have a k -dimension variable x = [x1, x2, · · · , xk], x ∈ Rk, there

is a function f : Rk → Rk, mapping x to a k -dimension variable y = f(x), in detail

y = [f1(x), f2(x), · · · , fk(x)], y ∈ Rk. The Jacobian matrix of function f is denoted

by Jf (x). Its calculation is:

Jf (x) =
∂y

∂x
=




∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xk

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xk

...
... · · · ...

∂fk(x)
∂x1

∂fk(x)
∂x2

· · · ∂fk(x)
∂xk




. (A.1)

The related Jacobian determinant is: det |Jf (x)|.

A.2 Jacobian Terms of RJMCMC Moves

For the simplicity of the explanation, we suppose there are two objects being

tracked before each move, namely O1 with state Xnt.1 and O2 with state Xnt.2, and

let the current joint state be Xnt = {Xnt.1,Xnt.2}. The dimension of each individual

state Xnt.i, i ∈ nt, is k. So Xnt.i ∈ Rk.

A.2.1 Update Move

For update move, we update one object at a time. Suppose we generate the

auxiliary vector U ∈ Rk from the proposal to update object O2. The dimension

matching of the current joint state is {Xnt ,U}, in detail {Xnt.1,Xnt.2,U}. The pro-
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posed dimension matching joint state is {X′
nt

,U′}, in detail {X′
nt.1,X

′
nt.2,U

′}. The

mapping relation between the current joint state and the proposal joint state is:

X′
nt.1 = Xnt.1, (A.2)

X′
nt.2 = Xnt.2 + U, (A.3)

U′ = −U. (A.4)

The Jacobian term of RJMCMC update move is:

∂(X′
nt

,U′)
∂(Xnt ,U)

=

∣∣∣∣∣∣∣∣∣∣

1 0 0

0 1 0

0 1 −1

∣∣∣∣∣∣∣∣∣∣

= −1. (A.5)

A.2.2 Appear Move

In this move, we are adding object O3 with its state X′
nt.3. Suppose we gener-

ate the auxiliary vector U ∈ Rk from the proposal for the object O3. The dimension

matching of the current joint state is {Xnt ,U}, in detail {Xnt.1,Xnt.2,U}. The pro-

posed dimension matching joint state is {X′
nt
}, in detail {X′

nt.1,X
′
nt.2,X

′
nt.3}. The

mapping relation between the current joint state and the proposal joint state is:

X′
nt.1 = Xnt.1, (A.6)

X′
nt.2 = Xnt.2, (A.7)

X′
nt.3 = U. (A.8)

The Jacobian term of RJMCMC appear move is:

∂(X′
nt

)

∂(Xnt ,U)
=

∣∣∣∣∣∣∣∣∣∣

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣∣

= 1. (A.9)
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A.2.3 Disappear Move

In this move, we are deleting object O2 with its state Xnt.2. The dimension

matching of the current joint state is {Xnt}, in detail {Xnt.1,Xnt.2}. Suppose we

generate the auxiliary vector U′ ∈ Rk from the proposal for object O2. The proposed

dimension matching joint state is {X′
nt

,U′}, in detail {X′
nt.1,U

′}. The mapping

relation between the current joint state and the proposal joint state is:

X′
nt.1 = Xnt.1, (A.10)

U′ = Xnt.2. (A.11)

The Jacobian term of RJMCMC disappear move is:

∂(X′
nt

,U′)
∂(Xnt)

=

∣∣∣∣∣∣∣
1 0

0 1

∣∣∣∣∣∣∣
= 1. (A.12)

A.2.4 Identity Swap Move

In this move, we swap the identities of the two object O1 and O2. The current

joint state is {Xnt}, in detail {Xnt.1,Xnt.2}. The proposed joint state is {X′
nt
}, in

detail {X′
nt.1,X

′
nt.2}. The mapping relation between the current joint state and the

proposal joint state is:

X′
nt.1 = Xnt.2, (A.13)

X′
nt.2 = Xnt.1. (A.14)

The Jacobian term of RJMCMC identity swap move is:

∂(X′
nt

)

∂(Xnt)
=

∣∣∣∣∣∣∣
0 1

1 0

∣∣∣∣∣∣∣
= −1. (A.15)
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A.2.5 Height Swap Move

In this move, we swap the height z of the two object O1 and O2. The current

joint state is {Xnt}, in detail {Xnt.1,Xnt.2}. The proposed joint state is {X′
nt
}, in

detail {X′
nt.1,X

′
nt.2}. Since Xt.i = (l, w, θ, x, y, z), the mapping relation between the

current joint state and the proposal joint state is:

ξ′nt.1 = ξnt.1, (A.16)

z′nt.1 = znt.2, (A.17)

ξ′nt.2 = ξnt.2, (A.18)

z′nt.2 = znt.1, (A.19)

where ξ ∈ {l, w, θ, x, y}. The Jacobian term of RJMCMC identity height swap move

is:

∂(X′
nt

)

∂(Xnt)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −1. (A.20)
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In this appendix, we present our proof of the minimum/maximum sum-of-

absolute-differences SAD) between two sets of equal cardinality by using mathemat-

ical induction method.

B.1 Problem Formulation

Supposing there are two sets An and Bn, with An = {a1, . . . , ai, . . . , an} and

Bn = {b1, . . . , bi, . . . , bn}, ai ∈ R, bi ∈ R, n ≥ 1, and Fn is the set of all the bijective

mappings from An to Bn, we define a sub set of mappings F ∗
n ∈ Fn, such that f ∗n ∈ F ∗

n

satisfies the following:

f ∗n = arg min
fn∈Fn

V (fn, An, Bn), (B.1)

where

V (fn, An, Bn) =
n∑
i

|ai − fn(ai)|. (B.2)

B.2 Claim and Ideas

We propose a method to find one of the f ∗n.

Claim: Let’s rearrange sets An and Bn into monotonously increasing ordered

sets A′
n and B′

n, such that A′
n = {a′1, . . . , a′i, . . . , a′n} and B′

n = {b′1, . . . , b′i, . . . , b′n},
with a′1 < a′2 < . . . < a′n−1 < a′n, and b′1 < b′2 < . . . < b′n−1 < b′n, and define a bijective

mapping f ′n, b′i = f ′n(a′i). Then, we say that f ′n ∈ F ∗
n .

We use induction method to prove our claim. The idea is as follows. We only

need prove that f ′n ∈ F ∗
n for sets An and Bn. Assuming we construct sets An and

Bn from empty set A0 = ∅ and B0 = ∅, since the order of the construction does not

matter, we can, at each time i, i > 0, only add a′i to Ai−1, and b′i to Bi−1, till i = n.
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B.3 Lemmas

Before giving the final proof of our claim, there are two lemmas need to be

introduced first.

Lemma 1: If there is a method to divide a set An into two disjoint subset Am

and An−m, 0 < m < n, with Am ∪ An−m = An. Similarly Bm ∪Bn−m = Bn, then

V (f ∗n, An, Bn) ≤ V (f ∗m, Am, Bm) + V (f ∗n−m, An−m, Bn−m). (B.3)

The equality is established when each of the (ai, f
∗
n(ai)) pair is in the same subset

pair {An, Bn} or {An−m, Bn−m}
Proof: Since Am ∪ An−m = An and Bm ∪ Bn−m = Bn, then the combination

of the mapping f ∗m and f ∗n−m is just one case in Fn. Based on the definition of f ∗n,

we get the inequality established. The proof of equal condition is trivial, since the

(ai, f
∗
n(ai)) relation is not changed before or after the separation of the set An and

Bn.

Lemma 2:

V (f ′1, A1, B1) = V (f ∗1 , A1, B1) = V (f1, A1, B1). (B.4)

Proof: Since there is only one element in A1 and B1, the number of available mapping

from A1 to B1 is one. So f ′1 = f ∗1 = f1 = F1.

B.4 Proof

Step 1: Supposing at i = 1, we have A1 = {a′1} and B1 = {b′1}. Then follows

the construction method mentioned above, we get A2 = {a′1, a′2} and B2 = {b′1, b′2}
There are just two mappings in F2, namely f2.1 and f2.2. Let b′1 = f2.1(a

′
1) and

b′2 = f2.1(a
′
2) for f2.1, and b′2 = f2.2(a

′
1) and b′1 = f2.2(a

′
2) for f2.2. There are six

possible orders of a′1, a
′
2, b

′
1, b

′
2.
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1. case 1: b′1 ≤ b′2 ≤ a′1 ≤ a′2;

2. case 2: b′1 ≤ a′1 ≤ b′2 ≤ a′2;

3. case 3: b′1 ≤ a′1 ≤ a′2 ≤ b′2;

4. case 4: a′1 ≤ b′1 ≤ b′2 ≤ a′2;

5. case 5: a′1 ≤ b′1 ≤ a′2 ≤ b′2;

6. case 6: a′1 ≤ a′2 ≤ b′1 ≤ b′2.

It is easy to verify that f ′2 = f2.1 ∈ F ∗
2 in each case.

Step 2: Supposing that the claim for i = n − 2, n ≥ 3, is established, that

f ′n−1 ∈ F ∗
n−1. Then for i = n− 1, we add a′n to An−1, get An, and b′n to Bn−1 get Bn.

Here we have two cases to deal with. case 1: a′n is paired with b′n, then we get

the

V (fn, An, Bn) = V (fn−1, {An\a′n}, {Bn\b′n})+V (f1, a
′
n, b′n)

= V (fn−1, {An\a′n}, {Bn\b′n}) + V (f ∗1 , a′n, b′n) ; use Lemma 2

≥V (f ∗n−1, {An\a′n}, {Bn\b′n}) + V (f ∗1 , a′n, b′n) ; definition of f ∗.

case 2: a′n is paired with b′j, and b′n is paired with a′i. Use the result in Step 1, we

have

V (f2, {a′i, a′n}, {b′j, b′n})≥V (f ∗2 , {a′i, a′n}, {b′j, b′n}) ; definition of f ∗

=V (f ∗1 , {a′i}, {b′j})+V (f ∗1 , {a′n}, {b′n})

; use Step 1, for a′i < a′n, b
′
j < b′n. (B.5)

Then use the results above, we get:

V (fn, An, Bn) = V (fn−2, {An\{a′i, a′n}}, {Bn\{b′j, b′n}})+V (f2, {a′i, a′n}, {b′j, b′n})

≥V (fn−2, {An\{a′i, a′n}}, {Bn\{b′j, b′n}})

+V (f ∗1 , {a′i}, {b′j})+V (f ∗1 , {a′n}, {b′n}) ; use Eq.B.5
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≥V (f ∗n−2, {An\{a′i, a′n}}, {Bn\{b′j, b′n}})

+V (f ∗1 , {a′i}, {b′j})+V (f ∗1 , {a′n}, {b′n}) ; definition of f ∗

≥V (f ∗n−1, {An\a′n}, {Bn\b′n})+V (f ∗1 , a′n, b′n) ; use Lemma 1.

Concluding case 1 and 2, we get:

V (fn, An, Bn)≥V (f ∗n−1, {An\a′n}, {Bn\b′n})+ V (f ∗1 , a′n, b′n)

= V (f ′n−1, {An\a′n}, {Bn\b′n}) + V (f ∗1 , a′n, b′n) ; assumption of Step 2

= V (f ′n, An, Bn) ; a′n, b′n are the largest.

The proof is completed.

Similarly, we can define a subset of mappings F ∗
n ∈ Fn, such that f ∗n ∈ F ∗

n

satisfies the following:

f ∗n = arg max
fn∈Fn

V (fn, An, Bn). (B.6)

Then we rearrange sets An and Bn into monotonously increasing and decreasing

ordered sets A′
n, such that A′

n = {a′1, . . . , a′i, . . . , a′n} and B′
n = {b′1, . . . , b′i, . . . , b′n},

with a′1 < a′2 < . . . < a′n−1 < a′n, and B′
n in monotonously decreasing order b′1 >

b′2 > . . . > b′n−1 > b′n, and define a bijective mapping f ′n, b′i = f ′n(a′i). Then we claim

f ′n ∈ F ∗
n .

The proof uses the same method applied for minimum mapping, and changes

the larger equal sign to less equal sign in Lemma 1 and Step 2.
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In this section, we present the conversion between rotation matrix and angles.

C.1 Conversion Between Rotation Matrix and Angles

Let v1 = [v1.x, v1.y, v1.z]
T , v2 = [v2.x, v2.y, v2.z]

T , and v3 = [v3.x, v3.y, v3.z]
T , and

suppose that the major, medium, minor axes of a 3D object have the same directions

as x, y, and z axes originally, to let the object has the new orientation described by

v1, v2 and v3, the angles that the object rotates about the x̂, ŷ, and ẑ axes, which pass

through the center of OBV and parallel to x, y, and z axes are γ, β, α, respectively.

Here we suppose that the OBV center is fixed. We use the following formula for the

conversion between the eigenvectors and rotation angles.

The rotation matrix around x̂ axis is:

Rx̂(γ) =




1 0 0

0 cos γ − sin γ

0 sin γ cos γ




. (C.1)

Similarly,

Rŷ(β) =




cos β 0 sin β

0 1 0

− sin β 0 cos β




, (C.2)

and

Rẑ(α) =




cos α − sin α 0

sin α cos α 0

0 0 1




, (C.3)

are rotation matrices around ŷ and ẑ axes.

The total rotation matrix is:

Rx̂ŷẑ(γ, β, α) = Rẑ(α)Rŷ(β)Rx̂(γ)
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=




cos α − sin α 0

sin α cos α 0

0 0 1







cos β 0 sin β

0 1 0

− sin β 0 cos β







1 0 0

0 cos γ − sin γ

0 sin γ cos γ




=




cosαcosβ cosαsinβsinγ−sinαcosγ cosαsinβcosγ+sinαsinγ

sinαcosβ sinαsinβsinγ+cosαcosγ sinαsinβcosγ−cosαsinγ

−sinβ cosβsinγ cosβcosγ




. (C.4)

Let



cosαcosβ cosαsinβsinγ−sinαcosγ cosαsinβcosγ+sinαsinγ

sinαcosβ sinαsinβsinγ+cosαcosγ sinαsinβcosγ−cosαsinγ

−sinβ cosβsinγ cosβcosγ



=




r1.x r2.x r3.x

r1.y r2.y r3.y

r1.z r2.z r3.z




, (C.5)

from Eq. C.5, we can easily convert between rotation angles and rotation matrix.

From ration matrix to rotation angles, we get

β = tan−1
2

(
−r1.z,

√
r2
1.x + r2

1.y

)
, (C.6)

α = tan−1
2

(
r1.y

cos β
,

r1.x

cos β

)
, (C.7)

γ = tan−1
2

(
r2.z

cos β
,

r3.z

cos β

)
, (C.8)

where tan−1
2 (y, x) is a function returning an angle by computing ordinary tan−1( y

x
)

and using the x and y signs to determine the quadrant of the resulting angle. Here

we only let −π
2
≤ β ≤ −π

2
. In the case β = ±π

2
, only α± γ, the sum or the difference

of α and γ, can be computed, we set α = 0.0 according to convention, and get

β =
π

2
, (C.9)

α = 0.0, (C.10)

γ = tan−1
2 (r2.x, r2.y), (C.11)
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or

β = −π

2
, (C.12)

α = 0.0, (C.13)

γ = − tan−1
2 (r2.x, r2.y). (C.14)
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