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ABSTRACT

CONGESTION CONTROL FOR NETWORKS IN CHALLENGED

ENVIRONMENTS

GUOHUA ZHANG, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professor: Yonghe Liu

Congestion occurs when resource demands exceed the capacity of a network.

The goal of congestion control is to use the network as efficiently as possible. While

extensive efforts have been devoted to providing optimization based, distributed con-

gestion control schemes for efficient bandwidth utilization and fair allocation in the

Internet and wireless networks, little consideration was given to congestion control for

networks in challenged environments, specifically for networks with time-varying link

capacities and networks that intermittently communicate. In this dissertation, we ex-

plore optimal congestion control strategies for such networks based on optimization

techniques and repeated game model.

For networks with time varying link capacities, we explicitly model link capac-

ities to be time varying and investigate the corresponding optimal congestion control

strategies. In particular we propose a primal-dual congestion control algorithm which

is proved to be trajectory stable in the absence of feedback delay. Different from sys-

tem stability around a single equilibrium point, trajectory stability guarantees the

system is stable around a time varying reference trajectory. Moreover, we obtain suf-
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ficient conditions for the scheme to be locally stable in the presence of delay. The key

technique is to model time variations of capacities as perturbations to a constant link.

Furthermore, to study the robustness of the algorithm against capacity variations, we

investigate the sensitivity of the control scheme and through simulations study the

tradeoff between stability and sensitivity.

For a set of challenged networks where continuous end-to-end connectivity may

not exist, network nodes may only communicate during opportunistic contacts (they

are often referred to as delay tolerant networks or opportunistic networks). While

custody transfer can provide certain reliability in delay in these networks, a custo-

dian node cannot discard the message unless its life time expires or the custody is

transferred to another node after a commitment. This creates a challenging decision

making problem at a node in determining whether to accept a custody transfer: on

one hand, it is beneficial to accept a large number of messages as it can potentially

advance the messages toward their ultimate destinations and network utilization can

be maximized; on the other hand, if the receiving node over-commits itself by accept-

ing too many messages, it may find itself setting aside an excessive amount of storage

and thereby preventing itself from receiving further potentially important, high yield

(in terms of network utilization) messages. To solve this congestion control problem,

we apply the concepts of revenue management, and employ dynamic programming to

develop congestion control strategies. For a class of network utility functions, we show

that our solution is optimal. More importantly, our solution is distributed in nature

where only the local information such as available buffer of a node is required. This

is particularly important given the nature of delay tolerant networks where global

information is often not available and the network is inherently dynamic. Our simu-

lation results show that the proposed congestion management scheme is effective in

avoiding congestion and balancing network load among the nodes.

iv



In the above scheme, we have assumed that the time horizon is finite in making

the decision of resource allocation. However, in practice, in certain situations, it

might be difficult or impossible to predict when the dynamic behavior will stop. As

an alternative solution, we also employ repeated games to model the decision making

for custody transfer and propose a new congestion control strategy. The repeated

game based approach is particularly suitable for the situations where a node cannot

be certain when a contact will occur and when the dynamic behavior is going to stop.

Our simulation results show that the control strategy based on repeated games is

effective in avoiding congestion and balancing network load.
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CHAPTER 1

INTRODUCTION

1.1 Congestion Control in the Internet

The Internet is a worldwide-interconnected computer network that transmits

data by packet switching based on the TCP/IP suite. Originated from the modest

research network ARPANET, the Internet experienced exponential growth in the past

three decades. Today, it connects hundreds of millions of machines and end systems.

It is generally believed that the great success of the Internet should be attributed to

the success of its protocols [1].

In the Internet protocol architecture, two protocols are defined for data trans-

mission right above the IP layer. One is User Datagram Protocol (UDP), a simple

and minimal protocol to send messages over the IP layer. It is transaction oriented,

without guarantee of delivery and duplication protection. Another one is Trans-

mission Control Protocol (TCP). TCP is primarily used by file transfer applications

which need reliable, in-sequence delivery of packets from the source to the destination.

Congestion control is implemented within the transport layer protocol TCP.

Congestion occurs when resource demands exceed the available capacity. Early

in the Internet evolution, it was recognized that unrestricted access to the Internet

resulted in poor performance in the form of low network utilization and high packet

loss rates. This phenomenon known as congestion collapse, led to the development of

the first congestion control algorithm for the Internet [18]. The basic idea behind the

algorithm was to detect congestion in the network through packet losses. Upon de-

tecting a packet loss, the source reduces its transmission rate; otherwise, it increases
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the transmission rate. The original algorithm has undergone many minor, but im-

portant changes, but the essential features of the algorithm used for the increase and

decrease phases of the algorithm have not changed through the various versions of

TCP, such as TCP-Tahoe, Reno, NewReno, SACK. We next use TCP Reno to explain

the mechanism of congestion control.

1.1.1 TCP Reno

TCP Reno has performed remarkably well and has prevented severe congestion

as the Internet expanded by five orders of magnitude in size, speed, load, and con-

nectivity. TCP Reno is the only deployed congestion control scheme in the current

Internet.

A TCP Reno source sends packets using a sliding window algorithm. Its send-

ing rate is controlled by the congestion control window size, which is the maximum

number of packets that have been sent, yet not acknowledged. When the congestion

window size becomes 0, the source must wait for an acknowledgement before sending

a new packet. This is the “self-clocking ” feature, which automatically slows down

the source when a network becomes congested and round-trip time (RTT) increases.

Since the number of packets sent every RTT is determined by the window size, the

source rate is controlled by the window size divided by RTT. The key idea of TCP

Reno is to additively increase congestion window size for additional bandwidth and

multiplicatively decrease it while network congestion is detected.

A connection starts with a small window size of one packet, and the source

increments its window by one every time it receives an acknowledgement. This dou-

bles the window size every RTT and is called slow start. In this stage, the source

exponentially increases its rate and can catch the available bandwidth quickly. When

the window size reaches the slow start threshold (ssThreshold), the source enters
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the congestion avoidance stage, where it increases its windows by the reciprocal of

the current window size for each acknowledgement (ACK). This increases the window

size by one in each RTT and is called as additive increase. When a loss is detected

through duplicate ACKs, the source halves its window size, updates the value of the

ssThreshold, and performs a fast recovery by retransmitting the lost packets. When

a loss is detected through timeout expiration, the congestion window is set to one,

and the source reenters the slow start stage. The whole stages of TCP Reno has been

shown in Figure 1.1.

RTT

cwnd

1

W/2

W

ssThreshold

Slow Start

Timeout

Time

1

Congestion Avoidance

Figure 1.1: Congestion Window of TCP Reno

There are some drawbacks in using packet loss as an indiction of congestion.

First, high utilization of bandwidth can be achieved only with a full queue. This is

ill-suited to heavy-tailed TCP traffic. Second, the loss-based TCP will be degraded

if it is used in wireless environments, where losses can be due to other effects.

It is worth noting the variant of TCP congestion control such as TCP Vegas

algorithm uses queueing delay in the network as the indictor of congestion instead

of packet loss. TCP Vegas updates its congestion window size based on end-to-end

delay.
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In the current Internet, the source algorithm is carried out by TCP, and the

link algorithm is carried out by active queue management schemes to be discussed

below.

1.1.2 Active Queue Management (AQM)

The AQM algorithm runs on a router, which updates and feedbacks congestion

information to end-users. The feedback is in the form of packet loss, delay, and

marking.

1.1.2.1 Droptail

Droptail is the simplest AQM scheme in the current Internet. It is just a first-in-

first-out (FIFO) queue with limited capacity, and it simply drops any coming packets

when the queue is full. Since it is simple and easy to implement, Droptail is the

dominant AQM in the current Internet.

The congestion information in a Droptail queue is updated by the queueing

process and is represented by the size of backlog buffer. The delay-based TCP al-

gorithms such as TCP Vegas receive this information by sensing the changes in the

round-trip delay.

For loss based TCP algorithm such as TCP Reno, the Droptail queue sends

back one bit of information by a packet drop, which indicates that the router buffer

is full and the network is congested.

1.1.2.2 Random Early Detection (RED)

RED was introduced as a mechanism to break synchronization among TCP

flow [32]. Currently, it is primarily used as a mechanism to maintain small queue

lengths in the Internet. Under RED, a packet is dropped or marked with a certain
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probability which depends on the queue length. Instead of using the current queue

length, RED maintains an exponentially-average estimate of the queue length and

uses this to determine the marking probability. The basic idea is that, if the average

queue length is large, then the packets should be marked with a high probability to

let the source know that the level of congestion at the link is high, otherwise the

marking probability is low.

Let b be the average queue length at a link. The marking probability at a link

is determined according to the following profile:

f(b) =







0 if b ≤ Bmin,

K(b − Bmin) if Bmin < b < Bmax,

1 if b > Bmax

(1.1)

where K is some constant, and Bmin and Bmax are some thresholds such that the

marking probability is 0 if the average queue length is below Bmin, and is equal to 1

if the average queue length is above Bmax.

The RED marking or dropping probability profile is shown in Fig 1.2.

Bmax

1

Slope = K

Bmin

Figure 1.2: RED probability profile
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1.1.2.3 Explicit Congestion Notification (ECN)

The Internet as it is today doesn’t guarantee a high quality-of-service to its

users. One of the reasons is that users in the Internet estimate the level of congestion

by measuring packet loss or delay. Thus, a bad event (either high loss or high delay)

has to occur before users can infer network congestion. To counter this problem, a

protocol called ECN has been proposed for congestion indiction at the links [10, 18].

ECN marks allow routers to notify users about incipient congestion. A packet is said

to be marked if a particular bit in its header is set to one. When the destination

receives a packet with the ECN bit set equal to one, it conveys this information back

to the source in the ACK packet. The TCP congestion control algorithm at the

source can then treat this information in a manner similar to packet loss and cut its

transmission rate. By providing early congestion notification, the ECN protocol can

significantly reduce queueing delays and packet loss rates.

1.1.3 Convex Optimization based Congestion Control Scheme

Designs of congestion control started from intuition with little preliminary the-

oretical support, and were validated by simulations under simple network scenarios

before deployment. Approximate mathematical models, whether stochastic or de-

terministic, continuous or discrete, were set up later to study their behaviors and

possible refinements, but usually in a very small scales.

Over the past decade, theoretical research on congestion control of the Internet

has been widely studied [8, 10–12, 18, 20–22]. Large strides have been taken in bringing

analytical model into Internet congestion control. Key to these advances has been the

explicit modeling of the congestion measure that communicates back to data sources

the information on congestion in network resources being used. It is assumed that
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each network link measures its congestion by a scalar variable (termed shadow price)

and that sources have access to the aggregate price of links in their path [5]. The

shadow price can be packet loss probability, queueing delay etc. From the discussion

in Section 1.1, we can know that these assumptions are implicitly present in many

variants of today’s TCP protocols.

In [5, 6], Kelly et al studied the dynamic pricing and congestion control of the

Internet by applying the supply and demand principle in economics. To provide

multiple services, congestion control problems are modeled to price the resources

and optimize the aggregate utility of all users. In kelly’s seminal work, fairness and

utilization issues on resource allocation can be integrated into a unified dynamic and

distributed congestion system.

1.1.3.1 Resource Allocation and Congestion Control

Consider a large network shared by many users, where the goal is to share the

network resource in a fair manner. The network resources that we consider here

are the link bandwidths. There is no universally accepted definition of fairness. We

usually associate a utility function with each user in the network, and refer to a

resource allocation scheme as being fair if it maximizes the sum of utilities of all the

users in the networks.

Fair Resource Allocation

A network is modeled as a set of resources indexed by l, called links, with

finite capacities cl. It is shared by a set of sources, indexed by i. Let Ui(xi) be the

utility of source i as a function of its rate xi. Associated with each source is a route

which is a collection of links in the networks. Let R be a routing matrix whose (l, i)

entry is 1 if source i’s route includes link l and is 0 otherwise. Ui(xi) should be an
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increasing, strictly concave, continuously differential function of the nonnegative rate.

The resource allocation problem can be formulated as in [5], that is,

max
x≥0

∑

i

Ui(xi) s.t. Rx ≤ c, (1.2)

where x is the vector of source rates and c is the vector of link capacities. The

constraint says that, at each link l, the aggregate source rate
∑

i Rlixi does not exceed

the capacity cl. Since we assume that the utility functions are strictly concave, then

the above convex optimization problem has a unique optimal solution.

The utility functions under this framework are closely related with the fairness

criteria. It has been argued in [7] that

U(x) = w log(x) (1.3)

can lead to weighted proportional resource allocation. Intuitively, for a feasible small

perturbation x∗ +δx of the optimum x∗, the decrease of the objective function should

be
∑

i

U ′
i(x

∗
i )δxi =

∑

i

wi
δxi

x∗
i

≤ 0

The discussion of other types of fairness is referred to [7].

To solve the problem (1.2), we have to know the utility functions and routes

of all the sources in the networks. In a large network such as the Internet, it is

impractical to get global information of the network, we have to devise distributed

solutions, where each source adapts its transmission rate based on local information.
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Primal Algorithm

The function pl(x) is assumed to be nonnegative and denotes the penalty func-

tion corresponding to the capacity constraint at link l. This is commonly referred to

as price at link l. The price at link l is a function of the total arrival rate
∑

i:l∈i xi

at link l, and can be interpreted as a measure of congestion at link l. Consider the

following problem where the constraints are embedded into the objective (1.2) by

using penalty function,

max
x≥0

∑

i

Ui(xi) −
∑

l

∫ ∑

i:l∈i xi

0

pl(x)dx (1.4)

where l ∈ i means that link l belongs to source i’s route.

A first-order necessary condition for the optimum follows, for each i,

U ′
i(xi) −

∑

l∈i

pl

(
∑

j:l∈j

xj

)

= 0

In continuous time, we have the following gradient-ascent algorithm that can be used

to solve (1.4), and be used as source controller.

ẋi = ki

(

1 −
1

U ′
i(xi)

∑

l∈i

pl

(
∑

j:l∈j

xj

))

(1.5)

where ki is a positive function of xi and pl

(∑

j:l∈j xj

)
. The algorithm (1.5), with ap-

propriate price function pl(·) (a static function), is referred to as the primal algorithm.

The most important feature of (1.5) is that source i’s congestion controller only

depends on the sum of the link prices along its route. Therefore, if there is a protocol

that can compute the sum of link prices along its route, then it can implement its

congestion controller in a distributed manner, without requiring any coordination with
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other sources in the network. The price of pl(·) will be computed by the routers in the

network, it only depends on the total arrival rate at link l, each link’s computation

can be performed without requiring any coordination with other links. Thus, the

source controller (1.5) is completely decentralized, except for the requirement of a

protocol to communicate the link prices to the sources.

The primal algorithm also bears the following properties:

• The utility functions of the sources are not necessarily the same throughout

the networks. This allows complete freedom of fairness control associated with

utility function. It can also be applied to model networks with different types

of applications [19].

• Note that current congestion control schemes hold dynamics at sources. One at-

tractive feature of the primal algorithm is that it can be applied to approximate

current TCP schemes with appropriate utility functions.

• As the penalty function of the capacity constraints, pl(·) may have different

choices for different purposes. With appropriate choice of such function, the

optimal value of the primal control can approximate that of (1.2) arbitrarily

closely.

Dual Algorithm

Consider the Lagrangian [53] of the problem (1.2),

L(x; p) =
∑

i

Ui(xi) − pT (Rx − c)

=
∑

i

(

Ui(xi) − xi

∑

l∈i

pl

)

+ pT c

(1.6)
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where p is the vector of the Lagrange multipliers, or shadow prices. Then we have

the dual problem as in [12]

min
pl≥0

D(p) :=
∑

i

max
xi≥0

(

Ui(xi) − xi

∑

l∈i

pl

)

+
∑

l

plcl (1.7)

The maximization over xi can be carried out by individual sources based only on the

aggregate price of its route as follows:

xi = U ′−1
i

(
∑

l∈i

pl

)

(1.8)

where U ′−1
i (·) denotes the inverse of the derivative of Ui. Note that when the utility

function Ui is convex, xi is a decreasing function of the aggregate price
∑

l∈i pl.

To solve (1.7), consider the gradient vector of the objective function D(p), for

each l,

∂D

∂pl

= cl −
∑

i:l∈i

xi

Then one candidate for the link control could be

ṗl = −γl
∂D

∂pl

Thus, an algorithm to compute the shadow price at link l becomes

ṗl = γl

(
∑

i:l∈i

xi − cl

)

(1.9)

where γl should be positive function. Since pl has to be nonnegative, it is usually

taken as

ṗl = γl

(
∑

i:l∈i

xi − cl

)+

pl

(1.10)
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(1.10) is simply the law of supply and demand. If the demand
∑

i:l∈i xi exceeds the

supply cl, increase price; otherwise, decrease it. Since each link only uses the total

arrival rate into it to compute its price, it is a distributed algorithm.

The algorithm (1.8) and (1.10) is referred to as dual algorithm.

Primal-Dual Algorithm

Another approach for solving the resource allocation is to use the primal algo-

rithm at the sources and the dual algorithm at the links. Thus, we continue to use

the same algorithm at the source as in the primal algorithm:

ẋi = ki

(

1 −
1

U ′
i(xi)

∑

l∈i

pl

(
∑

j:l∈j

xj

))

(1.11)

The link prices are generated according to the dual algorithm at links:

ṗl = γl

(
∑

i:l∈i

xi − cl

)+

pl

(1.12)

It is worth noting that we only use general the utility function to explain the

congestion control algorithms. If a specific utility function is chosen, the format of the

congestion control algorithms may have the corresponding change, but the property

of congestion control algorithm does not change.

1.1.3.2 Stability Analysis of Congestion Control Algorithm

For congestion control in the Internet, we are also concerned about the dynamics

of the congestion control protocols in the domain of control theory. In particular, we

are interested in the stability of the equilibrium point, especially in the presence of

feedback delay, and in performance metrics such as speed of convergence, capacity
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tracking, etc. The property of stability of congestion control is critical because our

ultimate goal is to use the mechanism in a rather uncontrolled environment, where

users come and go at will. It is therefore clear that any control that is designed for

use in a real environment should be stable, that is, it should not exhibit the behavior

that a slight deviation from the equilibrium point (also called optimum) will lead the

control away from this point.

Stability of congestion control mechanisms can be qualitatively evaluated by the

Lyapunov stability theorem [42]. There is no general principle to construct Lyapunov

functions. Sometimes it is not easy to construct Lyapunov function. Whether or not

the Lyapunov stability theorem can be employed to prove the stability of congestion

control mechanisms lies in constructing an ideal Lyapunov function. Fortunately,

stability can be established by showing that, with an appropriate formulation of an

overall optimization problem, the network’s implicit objective function provides a

Lyapunov function for congestion control mechanisms [6].

In the primal algorithm, the penalty function is used as Lyapunov function,

that is,

V (x) =
∑

i

Ui(xi) −
∑

l

∫ ∑

i:l∈i xi

0

pl(x)dx (1.13)

Then it is easy to verify that

dV

dt
=
∑

i

∂V

∂xi

ẋi

is strictly positive when x is not an equilibrium point of (1.5), and zero otherwise.

Therefore, we can conclude that the primal algorithm is stable. The detailed discus-

sion on the stability of the primal algorithm is referred to [5].

For the dual algorithm and primal-dual algorithm, we can also construct Lya-

punnov functions to prove that the dual algorithm and the primal-dual algorithm are

stable. The detailed discussion of the stability analysis is referred to [18].
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In the above discussion on stability analysis, we assume that there is no delay

in the control system. In such cases, we can construct a Lyapunov function to prove

that a congestion control algorithm is globally stable.

If there exists delay in the congestion control systems, it is difficult to establish

global stability. Therefore, we turn to look for local stability. The technique in dealing

with local stability is as follows: we linearize the system around its equilibrium point,

employ Laplace transform to transform it from the time domain to the frequency

domain, and derive sufficient conditions for local stability. The derived conditions

limit the choice of the parameters of congestion control algorithms.

In this thesis, different from existing work, we focus on congestion control in

challenged environments, particularly, networks with varying link capacity and net-

works that intermittently communicate. Below, we first examine these two types of

challenged networks, then present the motivation of our research.

1.2 Congestion Control in Networks with Time-Varying Link Capacities

In this section, we first examine the factors to cause the link capacity to vary,

then investigate the impact of link capacity variation on congestion control.

In wireless environments, there are many factors that affect the wireless links,

and cause the link capacities to vary. We here list some important differences between

a wired link and wireless link [16, 17]:

• Decreasing signal strength. Electromagnetic radiation attenuates as it passes

through matter. Even in free space, the signal will disperse as the distance

between sender and receiver increases (Path loss).

• Interference from other sources. Radio sources transmitting in the same fre-

quency band will interference with each other.



15

Figure 1.3: Small-scale and large-scale fading (reference [15])

• Multipath propagation. Multipath propagation occurs when portions of the elec-

tromagnetic wave reflect off objects and the ground, taking paths of different

lengths between a sender and receiver. Moving objects between the sender and

receiver can cause multipath propagation to change over time.

• Shadow Fading. A signal transmitted through a wireless channel will typically

experience random variation due to blockage from objects in the signal path,

giving rise to random variation of the received power at a given distance.

Figure 1.3 shows the time varying link capacity caused by link fading.

In multihop wireless networks such as wireless mesh networks, radio-equipped

nodes can communicate with their neighbors directly when they are within the radio

transmission ranges. Two nodes that are away from each other may rely on inter-

mediate nodes to relay traffic. In such networks, there are unique challenges in the

wireless contexts. In particular, the wireless channel is a spatially shared resource.

Wireless nodes within the interference range compete for the same wireless channel.

Wireless link contention in such networks causes the link capacities to be time varying

[9]. In order to achieve high end-to-end throughput in an efficient manner, network

resources such as power can sometimes be allocated to change link capacities [25].
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It is well known that the presence of wireless links can significantly affect the

performance of end-to-end transport protocols [31]. Congestion control in today’s In-

ternet is based on an assumption that almost all packet losses result from congestion.

Packet losses on wireless links that are from corruption rather than congestion violate

this assumption. In order to effectively handle this situation, several schemes suitable

for wireless networks have been proposed to either provide the sender with explicit in-

formation about congestion such as Explicit Congestion Notification (ECN) or shield

effect of wireless losses on congestion control indication [14] such as Indirect-TCP,

MTCP, WTCP, and Snoop.

A time varying link capacity can cause variation of inter-packet delay [31].

Those transport protocols that consider increased delay as an indication of conges-

tion will be affected. More important, time-varying link capacities change the TCP

dynamics, and the optimization solution to network utility maximization [25, 26].

1.3 Congestion Control in Intermittently Communicating Networks

In this section, we first compare the TCP based Internet with an important

class of challenged networks (also termed delay tolerant networks or disruption tol-

erant networks), then explain why TCP breaks in these challenged networks, and

finally describe the structure of delay tolerant networks and congestion control in

such networks.

For the existing TCP/IP based Internet service model, a number of key as-

sumptions, although often not explicitly stated, are made: an end-to-end path exists

between a data source and its peer(s), the maximum round-trip time between any

node pairs in the network is not excessive, and the end-to-end packet drop probability

is small [47]. Unfortunately, a class of challenged networks, which may violate one

or more of the assumptions, are becoming important and may not be well served by
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the current end-to-end TCP/IP model. This class of challenged networks are qualita-

tively characterized by intermittent connectivity, long or variable delay, asymmetric

data rates, and high error rates.

Challenged networks arise primarily as a result of various forms of host and

node mobility, but may also come into being as a result of disconnection due to power

management or interference [47, 69]. Examples of such networks include terrestrial

mobile networks, military ad-hoc networks, sensor/actuator networks, deep space

communication etc.

TCP is ill suited for operation over a path characterized by extremely long

propagation delay, particularly if the path contains intermittent links. TCP com-

munication requires that the sender and receiver negotiate a connection that will

regulate the flow of data. Establishment of TCP connection typically entails at least

one round-trip time (RTT) before any application data can flow. If transmission la-

tency exceeds the duration of the communication opportunity, no application data

will flow at all [68, 70]. There is a generic, two-minute timeout implemented in most

TCP stacks: if no data is sent or received for two minutes, the connection breaks.

However, in interplanetary networks such as Earth-Mars communication, the RTT is

roughly eight minutes at Mars’ closest approach to Earth, with a worst-case RTT of

approximately 40 minutes. Thus, normal TCP can not work at all for Earth-Mars

communication. The high delay also exists in some sparse sensor networking, where

sensor readings aren’t needed in real time.

Delay tolerant networks overcome the problems associated with intermittent

connectivity, long or variable delay, asymmetric data rates, and high error rates by

using store-and-forward message switching. Whole messages or pieces (fragments)

of such messages are moved forward from a storage place on one node to a storage

place on another node along a path that eventually reaches the destination. Store-
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Figure 1.4: The overaly network approach

and-forward methods are similar to those methods used in today’s voice mail and

email systems. Storage places on nodes can hold messages indefinitely. These storage

places are called persistent storage, opposed to the very short-term storage provided

by memory chips in Internet routers. Internet routers use memory chips to store

(queue) incoming packets for a few milliseconds while they are waiting for an available

outgoing router port. The nodes in delay tolerant networks need persistent storage

to store messages because a communication link to the next hop may not be available

for a long time; a message, once transmitted, may need to be retransmitted if an error

occurs at a downstream (toward the destination) node or link, or if a downstream node

declines acceptance of a forwarded message. In order to move messages (or fragments

thereof) forward, the message switching techniques provide the network nodes with

immediate knowledge of the size of messages, and therefore the requirements for

immediate storage space and transmission bandwidth.

Delay tolerant networks implement store-and-forward message switching by

overlaying a new protocol layer, called the bundle layer, at the application layer

or at least above the transport layer. Figure 1.4 shows the overlay network approach.

The bundle protocol is an example of what is generally called an overlay net-

work, and can run on top of the current Internet protocol suite as well as the more
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esoteric protocols for complex sensor networks, and other challenging environments.

The protocol packages a unit of application data along with any required control in-

formation into a “bundle” that is similar to an email message. Nodes then forward

this bundle along a path consisting of several intermediate nodes that each can store

it for significant periods. Thus, the bundle protocol is an overlay network store-and-

forward protocol. The bundle layer ties together low layers among networks so that

application programs can communicate across networks.

The bundle protocol includes a way to transfer responsibility for retransmissions

to another node. The node that is currently responsible for handling retransmission

of some fragment of a bundle is called the custodian for that fragment. The bun-

dle layer supports hop-by-hop retransmission by means of custody transfers. Such

transfers are arranged between the bundles of successive nodes, at the initial request

of the source application. When the current bundle layer custodian sends a bundle

to the next node, it requests a custody transfer and starts a time-to-acknowledge

retransmission timer. If the next hop bundle layer accepts custody, it returns an ac-

knowledgement to the sender. If no acknowledgement is returned before the sender’s

time-to-acknowledge expires, the sender retransmits the bundle. A bundle custodian

must store a bundle until either another node accepts custody or the bundle’s time-to-

live expires. Custody transfers don’t provide guaranteed end-to-end reliability. The

bundle layer uses a reliable transport layer protocol together with custody transfer

to move points of retransmission progressively forward toward the destination. The

advance of retransmission points minimizes the number of potential retransmissions,

and the total time to convey a bundle reliably to its destination.

Since bundles have to traverse lower-layer networks, they are ultimately subject

to whatever restrictions exist on those networks in terms of maximum packet sizes.
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For example, on most IP networks it is safest to assume that single packets should

be less than 1,500 bytes long.

Congestion control in delay tolerant networks refers to the handling of con-

tention for the persistent storage at nodes of such networks. It is difficult to be

implemented because contacts may not arrive for some time in the future, accumu-

lated data may not have an opportunity to drain in the immediate future; received

messages for which custody has been accepted can’t be discarded except under ex-

treme circumstances or on expiration. The current approach uses a priority queue

for allocating custody storage. First, messages that are too large are denied custody

transfer. Next, messages are spooled FCFS based on priority. The potential problem

arising from this approach is that arriving higher priority messages may not have cus-

tody storage available if lower priority messages arriving earlier have been custodially

received.

In [47], Fall proposed two potential mechanisms to deal with congestion, i.e.,

proactive or reactive methods. Proactive methods generally involve some form of

admission control to avoid the onset of congestion in the first place. In many cases,

a single region may be under the administrative control of a single entity. For the

reactive method, the possible schemes include reserving buffer space as a function of

custody space, rejecting incoming connections for new messages when buffer space is

full, arranging for custody transfers to other potential custodians that may not be the

most desirable next hop and discarding non-custody bundles in favor of any bundles

requiring custody transfers. The reactive method will result in degraded performance.

In all, the above delay tolerant network architecture aims to provide interoper-

able communications between and among a wide range of networks which may have

exceptionally poor and disparate performance characteristics. The design embraces

message switching similar to today’s voicemail and email systems. Interestingly, delay
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tolerant networks can be overlaid upon the TCP/IP based Internet easily, and tie to-

gether dramatically different types of networks with unusual connectivity properties

[47].

1.4 Repeated Game and Network Resource Allocation

In this section, we first introduce game theory, then briefly describe repeated

game theory and its applications in network resource allocation.

1.4.1 Basics of Game Theory

Game theory aims to model situations in which multiple players interact or

affect each other’s outcomes [84]. It provides a rich set of tools for understanding

how such players may desire to act in practice and how the rules and structure of the

environment can impact their behaviors, and has been applied to study networking

problems in an attempt to build more efficient and robust systems [84]. In order to

introduce game theory, we start by describing what is perhaps the most well known

and well-studied game below [83, 84].

Prisoners’ Dilemma Two prisoners are on trial for a crime and each one faces

a choice of confessing to the crime or remaining silent. If they both remain silent, the

judge will not able to charge them and they will get short term penalties, say 2 years,

for minor offenses. If only one of them confesses, his term will be 1 year and he will

be used as a witness against the other, who in turn will get a sentence of 5 years. If

they both confess, they both will get a sentence of 4 years.

Clearly, there are a total of four outcomes depending on the choices made by

each of the two prisoners. We can succinctly summarize the payoff incurred in these

outcomes via Table 1.1. Each of the two prisoners has two possible strategies

“Confess” or “Silent”. The two strategies of prisoner P1 correspond to the two rows
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Table 1.1: Payoff matrix of Prisoners’ Dilemma

P1

P2
Confess Silent

Confess (4, 4) (1, 5)
Silent (5, 1) (2, 2)

and the two strategies of P2 correspond to two columns of the matrix. The entries of

the matrix are the payoffs incurred by the players in each situation. Such a matrix

is called payoff matrix because it contains the payoff incurred by the players for each

choice of their strategies. The only stable solution in this game is that both prisoners

confess.

Formally, a game consists of a set of players, {1, 2, . . . , n}. Each player i has his

own set of possible strategies, say Si. To play the game, each player i selects a strategy

si ∈ Si. We will use s = (s1, . . . , sn) to denote the vector of strategies selected by the

players and S = ΠiSi to denote the set of all possible ways in which players can pick

strategies.

The vector of strategies s ∈ S selected by the players determines the outcome

for each player; in general, the outcome will be different for different players. To

specify the game, we need to give, for each player, a preference over the set of all

strategy vectors S. The simple way to specify a preference is by assigning, for each

player, a value to each outcome. In some games values will be payoffs to the players

and in others the costs incurred by the players. We can denote these functions by

ui : S → R and ci : S → R, respectively. Clearly, costs and payoffs can be used

interchangeably, since ui(s) = −ci(s).

The Prisoners’ Dilemma game has a very special property: each player has a

unique best strategy, independent of the strategies played by the other players. We

say that a game has a dominant strategy solution if it has this property.
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More formally, for a strategy vector s ∈ S we use si to denote the strategy

played by player i and s−i to denote the (n−1)− dimensional vector of the strategies

played by all other players. We use ui(s) to denote the payoff (or cost) incurred by

player i. We also use the notation ui(si, s−i) when it is more convenient. Using this

notation, a strategy vector s ∈ S is a dominant strategy solution, if for each player i,

and each alternate strategy vector s′ ∈ S, we have that

ui(si, s
′
−i) ≥ ui(s

′
i, s

′
−i)

Having a single dominant strategy for each player is an extremely stringent

requirement for a game and very few games satisfy it.

Since games rarely possess dominant strategy solutions, we need to seek a less

stringent and more widely applicable solution concept. A desirable game-theoretic

solution is one in which individual players act in accordance with their incentives,

maximizing their payoff. This idea is best captured by the notion of a Nash equilib-

rium, which has emerged as the central solution concept in game theory.

A strategy vector s ∈ S is said to be a Nash equilibrium if for all players i and

each alternate strategy s′i ∈ Si, we have that

ui(si, s−i) ≥ ui(s
′
i, s−i).

In other words, no player i can change his chosen strategy from si to s′i and thereby

improve his payoff, assuming that all other players stick to the strategies they have

chosen in s. Observe that such a solution is self-enforcing in the sense that once the

players are playing such a solution, it is in every player’s best interest to stick to his

or her strategy.
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Clearly, a dominant strategy solution is a Nash equilibrium. Moreover, if the

solution is strictly dominating, it is also the unique Nash equilibrium.

The detailed discussion of game theory is referred to the excellent reference [83].

1.4.2 Repeated Game and Resource Allocation

Informally, repeated game theory considers an interaction not as a single play

but rather a sequence of similar plays occurring over time, with the actions in one

period potentially impacting the state of the world and the actions of players in future

periods.

Repeated game theory is an appropriate tool for modeling network resource

allocation based on the following reasons [83, 85].

1. Repetition is an inherent aspect of almost all networked problems.

Routing and congestion control are examples of plays which are constantly

repeated in similar environments. Individual players repeatedly interact with

the same networks, often to accomplish the same or a similar set of tasks.

Further, in P2P networks, individuals repeatedly interact with the same or

behaviorally similar individuals to share files.

2. Repeated game theory is a well understood dynamic game theory.

The best-understood class of dynamic games is that of repeated game. The

previous research provides appropriate tools and concepts for the analysis of

repeated game. These concepts have been shown to be robust to a wide array

of practical assumptions in networking and these dynamics have been observed

and documented in practice.

3. Repetition can significantly alter the outcome of a game. The outcome

of a repeated game can differ from the outcome of the particular stage game. If

the players’ actions are observed at the end of each period, it becomes possible
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for players to condition their play on the past play of their opponents, which can

lead to equilibrium outcomes that don’t arise when the game is played only once.

One example of this in the repeated prisoner’s dilemma is the “unrelenting”

strategy — cooperate until the opponent defects; if ever the opponent defects,

then defect in every subsequent period.

The prevalence of repetition in networking suggests that repeated games are

appropriate models for networked applications.

1.5 Motivation of Research

In this dissertation, we explore congestion control strategies in networks with

challenging environments, i.e., networks with time varying link capacity and inter-

mittently communicating networks.

Optimization based congestion control approaches have been extensively used

over the past several years to study resource allocation problems in wireline networks,

and such approaches have resulted in a deep understanding of the ubiquitous Trans-

mission Control Protocol (TCP) and resulted in improved solutions for congestion

control mechanisms in wireline networks. Unfortunately, since there exist fundamen-

tal differences between wireless networks with time varying link capacity and tradi-

tional wireline networks, the significant differences prevent verbatim applications of

the existing congestion control mechanisms in wireline networks to the situations in

wireless networks [9, 30].

In wireline networks, the link capacity is usually known and fixed, the equilib-

rium of the distributed primal or dual solutions to a convex optimization problem

that maximizes the aggregate system performance (or utility) is fixed. The analysis

of stability of optimal solution focuses on the unique equilibrium point. However

wireless environments can change the link capacities, therefore change the dynamics
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of congestion control mechanisms, and the optimal solution to network utility maxi-

mization. In this regard, the approaches developed for traditional wireline networks

can not be directly applied to these challenging problems. We have to seek t solutions

suitable for the ever changing environments, i.e., the formulation of network utility

maximization developed for traditional wireline networks should be adapted to time

varying link capacities, the control scheme should be able to adapt to the changing

conditions, stability of congestion control algorithms should be guaranteed even if

there exists perturbation of link capacity on the congestion control systems.

In intermittently communicating networks, while custody transfers provide a

technique to handle congestion, it is still very unclear how one can set up a network

so that custody transfers will actually solve the likely congestion. In [47], Fall pro-

posed two potential congestion control schemes, unfortunately, they are only in the

conceptual stage; how to develop applicable congestion control algorithms based on

these concepts needs a lot of research.

For intermittently communicating networks, there doesn’t exist an end-to-end

path, the networks are inherently dynamic, the global information is not available, two

nodes can only communicate during opportunistic contacts. The convex optimization

based congestion control algorithms developed for the Internet can not be applied

to such networks. Therefore, an alternative optimization approach is necessary to

effectively avoid congestion and optimize the network resources.

Whether or not delay tolerant networks can handle congestion as applications

are deployed will be a good indicator for the success of this technology. Thus, it is

imperative that effective congestion control algorithms be developed to optimize the

network resources.

Game theory has long been used to model the routing decisions of networks.

However, once we move to dynamic and resource constrained settings, such as delay
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tolerant networks, traditional models are no longer sufficient. Instead, new models

that capture the dynamic nature of the decisions and the resource constraints of the

networks are needed. In intermittently communicating networks like delay tolerant

networks, there exist situations in which the number of rounds is finite, but there is

no knowledge when the game is going to stop. Every node can not be sure that it

is going to play the next round with different opponents since the communication is

intermittent. Since the repeated game can capture this kind of dynamic behaviors,

it will be beneficial to apply repeated game theory to study the congestion control

problem in delay tolerant networks.

1.6 Main Contributions and Organization

Chapter 2 explores congestion control mechanisms for a class of networks with

time varying link capacities. We explicitly model link capacities to be time vary-

ing and investigate congestion control problems based on the convex optimization

approach. Since the link capacity is time varying, the optimization solution of the

congestion control algorithm is not a unique equilibrium point, it is a reference trajec-

tory. Correspondingly, we introduce trajectory stability instead of stability around a

single equilibrium point, and prove that the proposed primal-dual congestion control

algorithm is trajectory stable in the absence of feedback delay. Moreover, we obtain

sufficient conditions for the scheme to be locally stable in the presence of delay. Our

key technique is to model time variations of capacities as perturbations to a constant

link. Furthermore, to study the robustness of the algorithm against capacity vari-

ations, we investigate the sensitivity of the control scheme and through simulations

study the tradeoff between stability and sensitivity.

In Chapter 3, we study congestion control mechanism for intermittently com-

municating networks, where end-to-end path may not exist, propagation delay is
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excessively large, TCP breaks. We apply the concept of revenue management, and

employ dynamic programming to develop a congestion management strategy for this

class of networks. For a class of network utility functions, we show that our solution

is optimal. More importantly, our solution is distributed where only the local infor-

mation such as available buffer of a node is required. This is particularly important

given the nature of the intermittently communicating networks where global infor-

mation is often not available and the network is inherently dynamic. Our simulation

results show that the proposed congestion management scheme is effective in avoiding

congestion and balancing network load among the nodes.

In Chapter 4, we employ repeated games to study congestion control mecha-

nism for the intermittently communicating networks such as delay tolerant networks.

Repeated game model can effectively capture the dynamic behaviors happening in

delay tolerant networks, especially the situations where there is no the knowledge

when the dynamic behavior is going to stop. The proposed congestion control strat-

egy is completely distributed where only the local information of a node is required.

The control strategy can avoid complicated computation when dynamic programming

techniques are applied to infinite time horizon.

Chapter 5 concludes this dissertation.



CHAPTER 2

CONGESTION CONTROL IN NETWORKS WITH TIME VARYING
LINK CAPACITIES

2.1 Introduction

Edging toward wide deployment, a critical challenge facing networks with time

varying link capacities such as wireless multihop networks is the design and devel-

opment of transport protocols that can simultaneously guarantee high bandwidth

utilization and fairness across multiple users [2]. The unique characteristics underly-

ing such networks are essentially two-fold: the potentially high bandwidth and larger

number of flows, and the time varying link capacities over the multi-hop environment.

Indeed, extensive related work exists in the literature. First, the inadequacy of

TCP when facing the exploding Internet bandwidth has promoted extensive research

toward new congestion control schemes targeted at high utilization, low queueing

delay, and fairness [18]. Owing to the seminal work by Kelly [5], congestion control

has mainly been formulated as utility maximization problems and distributed control

theory based solutions have been devised accordingly [8, 10, 18, 23, 24, 36]. The pro-

posed schemes generally consist of two components: a source algorithm that adjusts

sending rate in response to congestion in its path, and a link algorithm that updates a

congestion measure and feeds it back, implicitly or explicitly, to the sources utilizing

the link.

In parallel, intensive research efforts have been devoted to designing congestion

control algorithms capable of accommodating error-prone and time varying wireless

links, which have been demonstrated to be well beyond normal TCP’s reach [31].

While earlier approaches, such as I-TCP and Snoop-TCP [14], have mainly been

29
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engineered based on empirical techniques, recent efforts have embraced the above

optimization and control theory based approach [25, 27–29]. For example, a hop-by-

hop congestion control scheme is proposed specifically for wireless networks in [28],

and various performance metrics to be maximized in wireless networks are studied in

[27].

Surprisingly, these congestion schemes developed for wireless networks often

have assumed constant link capacities (or a fixed portion of a certain constant band-

width). While such assumptions suit wireline networks comfortably, it certainly will

limit the application scopes of the proposed algorithms in the wireless domain. It is

well known that wireless channels are characterized by inherent time-varying capac-

ities that have been shown to significantly reduce the throughput of TCP [14, 15].

The failure of TCP in such a scenario is the consequence of its inability to distinguish

packet loss caused by flow congestion or link errors (or equivalently, reduced link

bandwidth). Using constant capacities to model wireless links can not fully capture

this effect and in particular that on congestion control algorithms. While an optimal

congestion control scheme in conjunction with power control has been developed for

multi-hop wireless networks considering time-varying link capacities, the requirement

of knowledge of network-wide interference limits its practicability [25].

In this chapter, we explore congestion control algorithms in networks with time

varying link capacities, and use multi-hop wireless networks such as wireless mesh

networks as application examples. We propose a primal-dual congestion control algo-

rithm and prove it to be trajectory stable in the absence of feedback delay. Different

from existing works that can only guarantee system equilibrium at a single point, we

show that the system is stable around a sequence of time-indexed equilibrium points

that in turn jointly form a time varying reference trajectory. Moreover, by model-

ing capacity variation as perturbation to a fixed channel, we further obtain sufficient
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conditions for the primal-dual scheme to be locally stable. Furthermore, to study the

robustness of the algorithm against capacity variations, we investigate the sensitivity

of the control scheme. Using tractable scenarios, we demonstrate that local stabil-

ity and system sensitivity in the presence of feedback delay can achieve a balancing

tradeoff by tuning the gain of source controllers. Through extensive experimental

studies, we show that the algorithm excels in a wide variety of system setups and

investigate the effects of different parameters on system stability and sensitivity.

This chapter is organized as follows. In Section 2.2, we motivate our work. In

Section 2.3, we further examine the convex optimization based framework of the con-

gestion control mechanism. In Section 2.4, we present several definitions of stability

as background. In Section 2.5, we prove that in the absence of feedback delay, the

algorithm is trajectory stable. When feedback delay is present, we derive in Section

2.6 sufficient conditions for the system to be locally stable. Subsequently, system sen-

sitivity with respect to link capacity perturbation is analyzed in Section 2.7. Section

2.8 describes our experimental studies. Finally, we conclude in Section 2.9.

2.2 Motivation

Congestion control in the wireline domain has attracted tremendous research

interests owing to the inadequacy of TCP when facing high bandwidth-delay product.

While extensive work [5, 8, 10–12, 18, 20, 21, 23] has been done on congestion control

thereafter, a common assumption is that the capacity of a link is fixed, i.e., the link

capacity is not time varying. This assumption surely is valid for wireline networks.

Wireless links, on the contrary, are characterized by time variations. Such variations

are direct results of changes in signal to noise ratio (SNR), which in turn are caused

by the mobility of wireless devices and/or fluctuations of the surrounding physical

environment [15]. While adaptive modulation and coding schemes can be employed
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at the physical layer, they only target a desired bit/frame error probability at the

cost of varying transmission rate. Indeed, even for wireline networks, bandwidth can

vary due to various reasons. For example, due to link sharing, a router may only have

access to a portion of the bandwidth which can fluctuate over time [46].

It is pointed out in [31] that variable bandwidth is one of the intrinsic char-

acteristics that affect the performance of transport protocols in wireless networks.

However, the authors only qualitatively address how bandwidth variations affect the

system performance, no formal analysis regarding this was presented. A distributed

hop-by-hop congestion control scheme is developed for multi-hop wireless networks

in [28]. The scheme is shown to be stable in the absence of round trip propagation

delay. However, the authors assume that channel variations can be effectively masked

by physical layer coding and modulation schemes and hence can be considered as a

“constant channel” at higher layers.

For research on active queue management, the authors proposed an Adap-

tive Virtual Queue(AVQ) algorithm [21]. Although the AVQ scheme can adaptively

change the virtual link capacity to get high utilization via a predefined dynamic

law, its dynamic behavior is different from that owing to time-varying wireless chan-

nels. The time varying link capacity in wireless networks can not be described by

a deterministic differential equation and hence the research results for AVQ cannot

be directly applied to design congestion control mechanisms for networks with time

varying link capacities.

Time varying link capacities can change the TCP dynamics, and the optimal

solution to network utility optimization. Unfortunately, little consideration is given to

congestion control dynamics caused by link capacity variations. Thus, we have to seek

the solutions suitable for the ever changing environments. Specifically, the formulation

of network utility maximization developed for traditional wireline networks should
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be adapted to time varying link capacities, the control scheme should be able to

adapt to the changing conditions, stability of congestion control algorithms should

be guaranteed even if there exist perturbations of link capacities on the congestion

control systems.

2.3 Problem Formulation and Algorithm Design

2.3.1 Preliminary

Triggered by the seminal work by Kelly, congestion control has then been devel-

oped and analyzed as distributed algorithms solving appropriately formulated utility

maximization problems [5]. Intuitively, consider a wireline communication network

with L links, each with a fixed capacity of cl, and S sources with transmission rates of

xs for s ∈ S. Assume that each source s uses a fixed set L(s) of links to route its traf-

fic through and possesses an increasing, strictly concave, and twice differential utility

function Us(xs). A congestion control scheme can be formulated as to maximize the

total utility
∑

s∈S Us(xs) over the source rates {xs, s ∈ S}, subject to the constraints

of total link capacity, i.e.,
∑

s:l∈L(s) xs ≤ cl for all links. Formally, the optimization

problem is

max
∑

s∈S

Us(xs) (2.1)

s.t.
∑

s:l∈L(s)

xs ≤ cl,∀ l ∈ L (2.2)

xs ≥ 0, s ∈ S. (2.3)
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Corresponding to the above objective, distributed solutions allowing individual

sources to adjust their transmitting rates generally have taken the following form:

ẋs(t) = f



xs(t),
∑

l∈L(s)

pl(t)



 (2.4)

ṗl(t) = g



pl(t),
∑

s∈S(l)

xs(t)



 . (2.5)

Here pl(t) denotes the price of link l that may correspond to link congestion, loss

probability, etc. f(·) and g(·) are the control functions for updating the transmission

rate and price at the source and link, respectively. A unique equilibrium can be

derived as the solution for the utility maximization problem for Equations (2.4) and

(2.5) under certain conditions. Actually the above control based solutions are termed

primal-dual algorithm, as differential equations are used at both the sources and links

for updating. On the contrary, if a static function is employed at the links to generate

congestion signal, it is termed primal algorithm and if the sources use static functions

to regulate packet rates, it is termed dual algorithm.

Before formally formulating our problem, we remark that we assume that link

capacities in networks with time varying link capacities are independent of each other.

Indeed this assumption represents a certain degree of simplification of reality. How-

ever, eliminating the interference allows us to much more clearly understand the effect

of the link variations on the congestion control scheme. Indeed this assumption is not

without its own real applications. For example, by using different codes (CDMA),

frequencies (FDMA), or time allocation (TDMA), non-interfering wireless links can

be achieved in multihop wireless networks such as mesh networks. In reality, OFDM

and MIMO systems, such as Nortel’s wireless mesh network products, have enabled

wireless nodes to engage in simultaneous communication on multiple channels at the



35

same time. Furthermore, with the increasing application of directional antenna, non-

interfering links can also be created in the spatial domain. For works employing

similar assumptions, we refer to [15].

2.3.2 Problem Formulation

For completeness, we rephrase congestion control for utility maximization but

in an all wireless network (wireline links with fixed capacities can be considered a

special case). Given the set of wireless links L and the set of traffic sources S. Each

source s ∈ S identifies a unique source-destination pair and correspondingly a flow

between them. Associated with each source is a route r composed of a subset {l} ⊂ L

of links. If route r uses link l, we write l ∈ r. Let R be the set of routes. The routing

matrix R, of dimension |L| × |S|, is thus defined by

Rlr =







1 if route r uses link l

0 otherwise

(2.6)

Let xr ≥ 0 be the flow (source sending) rate associated with route r ∈ R and cl(t)

be the time-varying “capacity” of link l ∈ L. As each link l may be used by several

routes, let yl be the total arrival rate of traffic on logical link l. Then, the vector of

link rates y is given by the relationship y = Rx, where y = (yl, l ∈ L) and source

rate x = (xr, r ∈ R) are both column vectors. For the utility function associated with

each source, we restrict ourselves to weighted proportionally fair utility functions of

the form Ur(·) = wr log(·), where wr is the weight for flow r. This function has been
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shown to be particularly suitable for wireless networks [27]. The congestion control

problem for utility maximization can then be summarized as

max
∑

r∈R

wr log xr (2.7)

s.t.
∑

r:l∈r

xr ≤ cl(t), ∀ l ∈ L, xr ≥ 0, r ∈ R. (2.8)

Again, the key difference in our problem formulation lies in the right side of

Equation (2.8), namely the time varying channel capacity. Correspondingly, the

congestion control algorithm must be capable of accommodating the fluctuations

while maintaining system stability and optimality. Towards this end, we define a

capable primal-dual algorithm below.

2.3.3 Congestion Control Algorithm

Define Lagrangian function

L(x,λ) =
∑

r∈R

wr log xr −
∑

l∈L

λl

(
∑

r:l∈r

xr − cl(t)

)

=
∑

r∈R

(

wr log xr − xr

∑

l∈r

λl

)

+
∑

l∈L

λlcl(t)

(2.9)

where λl(l ∈ L) is the Lagrangian multiplier. By differentiating Equation (2.9) with

respect to xr, we have

∂L

∂xr

=
wr

xr

−
∑

l∈r

λl = 0 (2.10)

From the above equation, we get

xr =
wr
∑

l∈r

λl

(2.11)
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We remark that in Equations (2.9)-(2.11), if t is given, then cl(t) is fixed and bounded.

The problem will degenerate to the one presented in [5] and solutions proposed therein

hence can be employed. However, as we will show later, the time-varying character-

istic of the link capacity will challenge us to explore new techniques for a stability

proof and furthermore, sensitivity study.

Let xr(t) denote the flow rate of route r at time t. We define the source

rate controller (primal algorithm) that adapts its rate according to the following

differential equation

ẋr(t) = kr

(

wr − xr(t)
∑

l∈r

λl

)

(2.12)

where λl, the Lagrangian multiplier, can also be considered as the link price of link

l. Although Equation (2.12) is analogous in shape to those developed for wireline

networks [5], the key difference dwells in λl, which now is not only determined by the

aggregate rate yl(t) on link l, but also affected by the variations of link capacity cl(t).

This is further elaborated by the dual algorithm for price updating on each link given

by [18]

λ̇l(t) = hl(λl(t)) [yl(t) − cl(t)]
+
λl

(2.13)

Here, hl(λl(t)) is a non-decreasing continuous function in a generic form used for price

updating. Specific functions can be determined for different purposes. [yl(t)− cl(t)]
+
λl

is defined as

[yl(t) − cl(t)]
+
λl

=







yl(t) − cl(t) if λl > 0,

max(yl(t) − cl(t), 0) if λl = 0.

Before proceeding to the analysis of this congestion control scheme, we recapit-

ulate our motivation. If t is fixed, cl(t) is a constant and our model can be reduced

to the standard model as stated in (2.1), which has been shown to possess a unique



38

optimum to the optimization problem. However, since cl(t) is time-varying, the opti-

mum to (2.7) is not unique. Instead, the optimum is time varying as well. Our key

objective in this chapter is thus to prove the stability and optimality of the above

proposed congestion algorithm, even when coping with time varying link capacities.

2.4 Several Definitions of Stability

In order to better understand the analysis of stability in Section 2.5, we briefly

present several definitions of stability in this section. The detailed discussion of

stability of dynamic systems is referred to [39, 40, 42].

This section is concerned with differential equations of the form

ẋ(t) = f(x(t), t), x(t0) = x0 (2.14)

where x ∈ R
n, t ≥ 0.

The system defined by (2.14) is said to be autonomous, or time-invariant, if f

does not depend on t, and non autonomous, or time-varying, otherwise.

Without loss of generality, we will always assume that f(x(t), t) satisfies f(0, t) =

0 and study the stability of the origin x = 0. ‖ · ‖ stands for the Euclidean norm on

a real field with appropriate dimension.

Definition 2.1 Stability in the sense of Lyapunov

x = 0 is called a stable equilibrium point of (2.14), if, for all t0 ≥ 0 and ε > 0, there

exists δ(t0, ε) > 0 such that

‖x0‖ < δ(t0, ε) > 0 ⇒ ‖x(t)‖ < ε, for all t ≥ t0

where x(t) is the solution of (2.14) starting from x0 at t0.
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Definition 2.2 Uniform Stability

x = 0 is called a uniformly stable equilibrium point of (2.14) if, in the preceding

definition, δ can be chosen independent of t0.

Definition 2.3 Asymptotic Stability

x = 0 is called an asymptotically stable equilibrium point of (2.14), if

1. x = 0 is a stable equilibrium point of (2.14),

2. x = 0 is attractive, that is, for all t0 ≥ 0, there exists δ(t0), such that

‖x0‖ < δ ⇒ lim
t→∞

‖x(t)‖ = 0

that is, there exists δ > 0, and for every ε > 0 there exists a T (ε) > 0 such that

‖x(t0)‖ < δ implies that ‖x(t)‖ < ε for all t ≥ T + t0

Definition 2.4 Global Asymptotic Stability

x = 0 is called a globally asymptotically stable equilibrium point of (2.14), if it is

asymptotically stable and limt→∞ ‖x‖ = 0 for all x0 ∈ R
n.

It is worth noting that the difference between asymptotic stability and globally

asymptotic stability lies in how to choose the initial value of x0. For asymptotic

stability, x0 can only be in a closed ball of radius h centered at 0 ∈ R
n (h is a small

positive real number). For globally asymptotic stability, x0 can be in anywhere in

R
n, that is, x0 ∈ R

n.

The above definitions of stability of dynamic system (2.14) focus on a unique

equilibrium point. We now turn to the trajectory stability.

In trajectory stability, a reference trajectory x∗(t) is employed instead of a

single equilibrium point 0. x∗(t;x∗
0, t0) is deemed trajectory stable if for all t0 and

ε > 0, there exists δ(ε, t0) > 0 such that ‖x(t;x0, t0) − x∗(t;x∗
0, t0)‖ < ε for all t ≥ t0

if ‖x0 − x∗
0‖ < δ. x∗(t;x∗

0, t0) is said to be asymptotically stable if it is stable and
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convergent, where convergence roughly requires that for any t0 there exists a δ1(t0)

such that ‖x0 − x∗
0‖ < δ1 implies that limt→∞ ‖x(t;x0, t0) − x∗(t;x∗

0, t0)‖ = 0.

Figure 2.1 illustrates the equilibrium point (xe) stability in plane space. Fig-

ure 2.2 illustrates asymptotically stable equilibrium point. Figure 2.3 illustrates the

trajectory stability. The major difference between equilibrium point stability and

trajectory stability is that for trajectory stability, equilibrium point is time varying,

the equilibrium points form a reference trajectory.

��
��
��
��

x2

x1

xe

x0

δ(ε, t0)

ε

Figure 2.1: Equilibrium point stability

Interested readers are referred to [40] for detailed discussions on trajectory

stability.

2.5 Stability Analysis without Delay

If link capacities are constant, the unique system equilibrium resides on a single

point, which indeed is guaranteed by extensive designs [8, 18]. On the contrary, if the

link capacities are time varying, the equilibrium of the system becomes dependent

on time t. In other words, the equilibrium x̄r(t) of the system is a curve rather than
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t = T (ε) + t0

x1

x2

x0

xe δ

ε

Figure 2.2: Asymptotically stable equilibrium point

x x(t;x0, t0)

x
∗(t;x∗

0 , t0)

t

Figure 2.3: Trajectory-stability illustration

a point, as it is varying with t. In this section, we adopt the concept of trajectory

stability to investigate this time varying system stability without considering propa-

gation time delay, and show that our proposed congestion control scheme is trajectory

stable.

The goal of the congestion control algorithm is to force the actual trajectory

of the system to follow the reference one. In other words, the actual trajectory

should stay near the reference trajectory at all times. Since the link capacities are

time-varying, their values can not be known in advance. In this case, an open-loop

control law will never reach the desired goal. Fortunately, the congestion control
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scheme introduces feedback into the control law. This feedback can guarantee that

the actual trajectory converges to the reference trajectory provided that the primal-

dual algorithm is properly designed. Notably, if the link capacities are constant, the

reference trajectory degenerates into a single equilibrium point. In this case, the

primal-dual algorithm is asymptotically stable around the equilibrium point. This

degenerated case actually corresponds to the wireline case where link capacities are

fixed.

Following the above argument, when the system delay is zero, we have the

following theorem.

Theorem 2.1 The proposed primal-dual algorithm is asymptotically stable in the

name of trajectory-stability.

Proof: Denote the optimal transmission rate of user r as x̄r(t). Let xr(t) be any

other rate that satisfies the constraints in (2.7) at time t. Let λ̄l(t) and λl(t) be

the corresponding link prices for
∑

r:l∈r x̄r(t) and
∑

r:l∈r xr(t) respectively. Let x(t) =

(xr(t), r ∈ R). For simplification, define qr(t) =
∑

l∈r λl(t), i.e., qr(t) is the sum of the

prices of all links on route r at time t. Let q(t) = (qr(t), r ∈ R), and λ(t) = (λl(t), l ∈

L). From the definition of the routing matrix, we have q(t) = RT
λ(t), where T

stands for the transpose of a matrix. As routing matrix R is usually required to be

of full row rank, given q(t), there exists a unique λ(t) such that q(t) = RT
λ(t).

We construct the following Lyapunov function,

V (x(t),λ(t); t) =
∑

r∈R

∫ xr(t)

x̄r(t)

1

krσ
(σ − x̄r(t))dσ

+
∑

l∈L

∫ λl(t)

λ̄l(t)

1

hl(β)
(β − λ̄l(t))dβ

(2.15)
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We remark that the Lyapunov function we have chosen is very similar to the

one presented in [11]. However, the key difference from [18] is that, the constructed

Lyapunov function is an explicitly time dependent function. The integral scope is

time dependent in our case.

Taking the derivative on both sides of Equation (2.15), we have Equation (2.16)

and subsequently (2.17) and (2.18).

dV

dt
=
∑

r∈R

1

krxr(t)
(xr(t) − x̄r(t))ẋr(t) +

∑

l∈L

1

hl(λl(t))
(λl(t) − λ̄l(t))λ̇l(t)

=
∑

r∈R

(xr(t) − x̄r(t))

(

wr

xr(t)
−
∑

l∈r

λl(t)

)

+
∑

l∈L

(λl(t) − λ̄l(t))(yl(t) − cl(t))
+
λl(t)

=
∑

r∈R

(xr(t) − x̄r(t))

(
wr

xr(t)
− qr(t)

)

+
∑

l∈L

(λl(t) − λ̄l(t))(yl(t) − cl(t))
+
λl(t)

≤
∑

r∈R

(xr(t) − x̄r(t))

(
wr

xr(t)
− qr(t)

)

+
∑

l∈L

(λl(t) − λ̄l(t))(yl(t) − cl(t))

=
∑

r∈R

(xr(t) − x̄r(t))(q̄r(t) − qr(t)) +
∑

l∈L

(λl(t) − λ̄l(t))(yl(t) − ȳl(t))

︸ ︷︷ ︸

Sum 1

+
∑

r∈R

(xr(t) − x̄r(t))

(
wr

xr(t)
− q̄r

)

+
∑

l∈L

(λl(t) − λ̄l(t))(ȳl(t) − cl(t))

︸ ︷︷ ︸

Sum 2

(2.16)

Sum 1 =
∑

r∈R

(xr(t) − x̄r(t))(q̄r(t) − qr(t)) +
∑

l∈L

(λl(t) − λ̄l(t))(yl(t) − ȳl(t))

= (q̄(t) − q(t))T (x(t) − x̄(t)) + (λ(t) − λ̄(t))T (y(t) − ȳ(t))

= (λ̄(t) − λ(t))TR(x(t) − x̄(t)) + (λ(t) − λ̄(t))T (y(t) − ȳ(t))

= (λ̄(t) − λ(t))T (y(t) − ȳ(t)) + (λ(t) − λ̄(t))T (y(t) − ȳ(t))

= 0

(2.17)
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Sum 2 =
∑

r∈R

(xr(t) − x̄r(t))

(
wr

xr(t)
− q̄r

)

+
∑

l∈L

(λl(t) − λ̄l(t))(ȳl(t) − cl(t)) (2.18)

In (2.18), the first term
∑

r∈R(xr(t) − x̄r(t))
(

wr

xr(t)
− q̄r

)

≤ 0 since wr

xr(t)
↓ as xr(t) ↑.

The second term
∑

l∈L(λl(t) − λ̄l(t))(ȳl(t) − cl(t)) ≤ 0 as λ̄l(t) = 0 if ȳl(t) < cl(t).

Therefore, from (2.16), (2.17), (2.18) and the above argument, we have dV
dt

≤ 0. The

equality only holds when xr(t) = x̄r(t) and for each link λl(t) = λ̄l(t) or ȳl(t) = cl(t).

Consequently, we conclude that the primal-dual algorithm is asymptotically stable in

the name of trajectory-stability.

Notice that we have chosen to employ a time-variant Lyapunov function. In

the remainder of this section, we first investigate the possible application of Lasalle’s

invariance principle, and then explain the reasons that Lasalle’s invariance principle

is not applicable to our scenario.

Consider the autonomous system

ẋ = f(x). (2.19)

In a domain about an equilibrium point (without losing generality, let x = 0 be an

equilibrium point for (2.19)), if we can find a Lyapunov function V (x) whose derivative

along the path of the system is negative semidefinite, and if we can establish that

no path can stay identically at a point or points where V̇ (x) = 0, except at the

equilibrium point, then the equilibrium point is asymptotically stable. This follows

from LaSalle’s invariance principle. That is, LaSalle’s theorem enables us to conclude

asymptotic stability of an equilibrium point even when −V̇ (x) is not positive definite.
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Let us also take equation (2.19) as an example to explain the largest invariant

set in LaSalle’s invarinace principle. The largest invariant set can be defined as

S = {x ∈ D|V̇ (x) = 0}, where D is the domain of V (x). Suppose that no solution

can stay identically in S, other than the trivial solution x = 0. The equilibrium point

x = 0 is then asymptotically stable. LaSalle’s invariance principle applies only to

autonomous or periodic systems [41, 42].

In the proof of the above theorem, we prove that V̇ (x(t),λ(t); t) < 0 except

when xr(t) = x̄r(t) and for each link λl(t) = λ̄l(t) or ȳl(t) = cl(t), that is, if it is on

reference trajectory x∗(t). The Lyapunov function allows us to conclude asymptotic

stability. Lasalle’s invariance principle is not applicable for this scenario. Further-

more, since the system is time-varying, we can not apply Lasalle’s invariance principle

[41].

LaSalle’s invariance principle can relax the negative definite requirement of Lya-

punov’s theorem. It also extends Lyapunov’s theorem in another direction. LaSalle’s

invariance principle can be used where the system has an equilibrium set, rather than

an isolated equilibrium point. For our scenario, since the system is time-varying, the

equilibrium points form a reference trajectory, they are dependent on time t, thus a

time-variant Lyapunov function V (x(t),λ(t); t) is required [40, 41].

2.6 Stability Analysis with Delay

In the previous section, the trajectory stability of the primal-dual approach is

analyzed in the absence of delay. When delay is considered, generally global stability

is hard to obtain [10]. Instead, in this section, we will focus on local stability of the

congestion control scheme in the presence of round trip time delay. Our focus is to

obtain the sufficient conditions on system parameters for the system to be locally

stable. As it is reasonable to assume that the trajectories of nonlinear systems in
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a small neighborhood of an equilibrium point to be “close” to the trajectories of its

linearization near that point [42], we still use the linearization technique to study

local stability of congestion control with time delay, an approach also adopted by

[18, 20–22].

We remark that linearization is a widely used technique in analyzing local sta-

bility in congestion control, which is actually borrowed from non-linear control theory.

With no exception, we have followed the same line. The basic limitation of this local

linearization approach though is the fact that the controller is guaranteed to work

only in some neighborhood of a single operating (equilibrium) point [42]. In our case,

to handle the varying link capacities, we have chosen to linearize around its nominal

value.

Let τ f
lr be the “forward” propagation delay from r’s source s(r) to link l and τ b

lr

be the “reverse” propagation delay from link l to the source s(r) of route r. Then,

Tr = τ f
lr + τ b

lr for l ∈ r is defined as the round trip delay (or round trip time, RTT)

from source s(r) to l. Therefore, with this propagation delay considered, the source

rate controller becomes

ẋr(t) = kr (wr − xr(t − Tr)qr(t)) (2.20)

where qr(t) is the route price given by

qr(t) =
∑

l∈r

λl(t − τ b
lr) (2.21)

Our analysis will follow these steps. We will first linearize (2.20) around its local

equilibrium point. Then we will transform the system to the frequency domain and
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employ the Nyquist stability criterion to derive sufficient conditions for the system to

be locally stable.

Introducing δxr(t) = xr(t) − x̄r and δqr(t) = qr(t) − q̄r, where x̄r and q̄r are

corresponding local equilibrium points of xr(t) and qr(t) respectively. By linearizing

(2.20) around the equilibrium points x̄r and q̄r, we have

δẋr(t) = −kr(q̄rδxr(t − Tr) + x̄rδqr(t)) (2.22)

Taking the Laplace transform of the above equation and noting the fact that q̄r =

wr/x̄r yields
(

s +
krwr

x̄r

e−sTr

)

xr(s) = −krx̄rqr(s) + xr(0) (2.23)

Let D(s) be the diagonal matrix of RTTs in the Laplace domain, i.e., D(s) =

diag{e−sTr}. Let X = diag{x̄r}, W = diag{wr} and K = diag{kr}. The above

Laplace transform equation can be rewritten as

(
sI + KWX−1D(s)

)
x(s) + KXq(s) = x0, (2.24)

where x0 is the column vector of initial states given by x0 = (x0r, r ∈ R) and I is the

identity matrix given by I = diag{1}.

For the price updating procedure depicted in (2.21), we take the Laplace trans-

form and obtain

qr(s) =
∑

l∈r

e−sτb
lrλl(s) = e−sTr

∑

l∈r

esτf
lrλl(s) (2.25)
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Let R(s) denote the |L| × |S| Laplace domain routing matrix that includes both

routing and delay information, whose (l, r) entry is defined as

Rlr =







e−sτf
lr if l ∈ r,

0 otherwise.

(2.26)

Thus, from (2.25), we have

q(s) = D(s)RT (−s)λ(s) (2.27)

where q(s) = (qr(s), r ∈ R), λ(s) = (λl(s), l ∈ L).

Now we need to compute λl(s) based on the price updating algorithm given in

Equation (2.13). In order to keep this mathematical tractability, instead of taking

the Laplace transform directly over λl(t), we first assume that at equilibrium status,

cl(t) = c̄l is a constant and introduce perturbations around c̄l to “emulate” the effects

of a time varying cl(t). By investigating the consequences of perturbation on the

source controller and link dynamics, the effects of a time varying equilibrium point

can be obtained. This technique has been well applied in the control domain and

proven to be effective [42].

Following this approach, for the link price updating procedure given in (2.13),

we introduce δλl(t) = λl(t)− λ̄l, δzl(t) = cl(t)− c̄l, and δyl(t) = yl(t)− ȳl. Linearizing

(2.13) around equilibrium λ̄l gives

δλ̇l(t) = hl(λ̄l)[δyl(t) − δzl(t)] (2.28)

Taking the Laplace transform for the above equation, we have
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λl(s) =
1

s
hl(λ̄l)[yl(s) − zl(s)] (2.29)

As a result, we have

λ(s) =
1

s
diag

{
hl(λ̄l)

}
[y(s) − z(s)] , (2.30)

where y(s) and z(s) are column vectors and y(s) = (yl(s), l ∈ L), z(s) = (zl(s), l ∈ L).

In order to continue our discussion, a specific form of hl(λ̄l) is needed. For this

purpose, we choose hl(λ̄l) = βlλ̄l/c̄l as in [18]. Here β is often termed damping factor.

In the remainder of this chapter, we will employ this function for price adjustment at

the links. Based on this, from equations (2.27) and (2.30), we have

q(s) =
1

s
D(s)RT (−s)diag

{
βlλ̄l

c̄l

}

[y(s) − z(s)] (2.31)

Hence,

[

sI + KWX−1D(s) +
1

s
KXD(s)RT (−s)diag

{
βlλ̄l

c̄l

}

R(s)

]

X(s) = Z(s) (2.32)

where Z(s) = X0 + (1/s)KXD(s)RT (−s)diag
{

βlλ̄l

c̄l

}

z(s).

We remark that Equation (2.32) is different from corresponding equations in

[18] in that, in (2.32), the perturbation of the link capacity results in the existence of

the second term in Z(s). This term depicts the effect of capacity variations on the

system and for the purpose of stability analysis must be investigated.

From control theory, the system described by (2.32) is stable if all its poles lie

in the left-half of the complex plane. In other words, the solutions to
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det(sI + Q(s)) = 0 (2.33)

should only have negative real parts, where

Q(s) = KWX−1D(s) +
1

s
KXD(s)RT (−s)diag

{
βlλ̄l

c̄l

}

R(s) (2.34)

We now will determine the conditions for the system to satisfy this requirement.

Let G(s) = (1/s)Q(s), then we can write

G(s) =
1

s

[

KWX−1D(s) +
1

s
KXD(s)RT (−s)diag

{
βlλ̄l

c̄l

}

R(s)

]

(2.35)

Or equivalently,

G(s) = diag

{
e−sTr

sTr

}

diag{krTr}X

[

WX−2 +
1

s
RT (−s)diag

{
βlλ̄l

c̄l

}

R(s)

]

(2.36)

From the generalized Nyquist Criterion [43], the stability condition of the pro-

posed congestion control scheme is equivalent to the following statement: the eigenval-

ues of G(jω) should not encircle the point −1. Therefore to guarantee local stability,

we have to find conditions when the eigenvalues of G(jω) do not encircle −1 for all

values of ω. We will closely follow the line of analysis in [20]. From Lemma 3.1

in [18], we know that there exists an ω∗ such that no eigenvalues of G(jω) is real

for all ω < ω∗. Therefore, we only need to prove that under some constraints, the

eigenvalues of G(jω) don’t enclose −1 for ω > ω∗.
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For ease of exposition, we define

G1 = diag

{
√

krTrx̄r

}

WX−2diag

{
√

krTrx̄r

}

G2 = diag

{
√

krTrx̄r

}

RT (−jω)diag

{
βlλ̄l

c̄l

}

R(jω)diag

{
√

krTrx̄r

}

L = diag

{
e−jωTr

jωTr

}

Therefore,

G(jω) =

(

G1 +
1

jω
G2

)

L (2.37)

In the following, we will derive certain conditions under which the eigenvalues of G1L

do not encircle −ε and conditions for the eigenvalues of 1
jω

G2L to be bounded by

(1 − ε). Hence, if the conditions are jointly satisfied, the eigenvalues of G(jω) will

not encircle -1.

Note that

σ(G(jω)) = σ

((

G1 +
1

jω
G2

)

L

)

where σ(·) denotes the spectrum of a square matrix. Let λ be an eigenvalue of G(jω)

and v be the corresponding normalized eigenvector, i.e. ‖v‖2 = v∗v = 1. Note that

G1 is a positive definite matrix and G2 is a Hermitian matrix. According to the

matrix theory, we have

λv =

(

G1 +
1

jω
G2

)

Lv (2.38)

As G1 is positive definite, the inverse G−1
1 exists. Therefore, from (2.38) we have

λv∗G−1
1 v = v∗

(

I +
1

jω
G−1

1 G2

)

Lv (2.39)

Hence,
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λ =
v∗Lv

v∗G−1
1 v

+
1

jω

v∗G−1
1 G2Lv

v∗G−1
1 v

(2.40)

For the first term in (2.40), we note that

v∗Lv =
∑

r

|vr|
2 e−jωTr

jωTr

,

and

v∗G−1
1 v ≥ λmin(G

−1
1 ) =

1

λmax(G1)

Thus,

σ(G1L) ⊂ λmax(G1)
∑

r

|vr|
2 e−jωTr

jωTr

(2.41)

Therefore, based on the fact that as ω is varied from −∞ to ∞, π
2

e−jωTr

jωTr
does not

encircle the point −1(see [18] for its proof), we can choose kr such that λmax(G1) < επ
2

and consequently force σ(G1L) not to encircle −ε, ∀ 0 < ε < 1. Specifically, the

condition to satisfy the above requirement for G1 is given by

krq̄r < ε
π

2Tr

, ∀r ∈ R (2.42)

Next, we will analyze the second term in (2.40). Our goal is to prove

∣
∣
∣
∣

1

jω

v∗G−1
1 G2Lv

v∗G−1
1 v

∣
∣
∣
∣
< 1 − ε

Note that
∣
∣
∣
∣

1

jω

v∗G−1
1 G2Lv

v∗G−1
1 v

∣
∣
∣
∣
≤

1

ω∗

‖G−1
1 ‖2‖G2‖2‖L‖2

λmin(G
−1
1 )

(2.43)

where ‖ · ‖2 is the matrix norm given by ‖A‖2 =
√

λmax(A∗A) [44]. The above in-

equality follows directly from the Cauchy-Schwartz inequality and λmin(A) ≤ xT Ax ≤

λmax(A) for any vector x satisfying xTx = 1 and any positive-definite matrix A.
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Now, we investigate the RHS of inequality (2.43)

1

ω∗

‖G−1
1 ‖2‖G2‖2‖L‖2

λmin(G
−1
1 )

≤
1

(ω∗)2
max

r

(
1

Tr

)

×
λmax(G1)λmax(G2)

λmin(G1)

≤
1

(ω∗)2
max

r

(
1

Tr

)

λmax(G2) (2.44)

Let ρ(·) denote spectral radius of a square matrix, and

R̂(jω) = diag

{√

βlλ̄l/c̄l

}

R(jω)diag
{√

krTrx̄r

}

,

then we have

λmax(G2) = ρ
(

R̂T (−jω)R̂(jω)
)

= ρ(diag{krTrx̄r}R
T (−jω)diag

{
βlλ̄l

c̄l

}

R(jω))

≤ ‖diag{krTr}R
T (−jω)diag{βlλ̄l}‖

× ‖diag

{
1

c̄l

}

R(jω)diag{x̄r}‖

≤ ‖diag{krTr}R
T (−jω)diag{βlλ̄l}‖ × 1

(2.45)

The last inequality above uses the fact that at equilibrium point

∑

r:l∈r

x̄r = ȳl ≤ c̄l, ∀l ∈ L

For the first term in the last inequality in (2.45), if we set

βl <
minr(Tr)

krTrq̄r

(ω∗)2 × (1 − ε), (2.46)



54

we have

‖diag{krTr}R
T (−jω)diag{βlλ̄l}‖ ≤ min

r
(Tr)(ω

∗)2(1 − ε)

Therefore,

λmax(G2) < min
r

(Tr)(ω
∗)2(1 − ε) (2.47)

Combining (2.44) and (2.47), we have

1

(ω∗)

‖G−1
1 ‖2‖G2‖2‖L‖2

λmin(G
−1
1 )

< 1 − ε (2.48)

Till now, we have proven that the first term of (2.40) does not encircle ε given

the condition in (2.42) is satisfied and the second term (2.40) does not encircle (1−ε)

as shown in (2.48) and (2.43) as long as (2.46) is satisfied. Therefore, for any ω > ω∗,

if the two conditions are satisfied, the eigenvalues of G(jω) will not encircle −1 and

hence the system is locally stable.

Therefore, sufficient conditions for guaranteeing the system with time delay to

be locally stable can be summarized as







krq̄r ≤ ε π
2Tr

, ∀ r ∈ R and

βl < minr(Tr)
krTr q̄r

(ω∗)2 × (1 − ε), ∀ r ∈ R : l ∈ r.

(2.49)

2.7 Sensitivity Analysis of Link Capacity with Perturbation

In this section, we will study how to reduce the effects owing to link capacity

perturbation. Equivalently, our goal is to study proper system parameters so that the

system is robust to the perturbations. In other words, if the system is insensitive to

capacity perturbations, rate oscillations will be kept at a low level even in the presence
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of large capacity changes. Such a feature is much desired by wireless networks for

example, in order to provide quality of service to higher layer applications.

Before going to the details, let us first refresh system sensitivity using a system

characterized by linear equation Ax = b. For this example system, when A and b are

subjected to small order perturbation ∆A and ∆b, respectively, the problem becomes

(A + ∆A)(x + ∆x) = b + ∆b. Our main concern is the deviation ∆x of the solution

with respect to the perturbation of ∆A and ∆b. The system sensitivity is thus defined

as the extent of the deviation of ∆x relative to ∆A and ∆b [45]. Putting this into

the congestion control scheme we are concerned, our main target is to investigate the

deviation of system equilibrium relative to the link capacity change.

Let us consider Equation (2.32). We remark that as X0 is the initial condition

vector, its existence will not affect our sensitivity analysis and hence can be ignored.

Towards this end, we define

Z ′(s) = (1/s)KXD(s)RT (−s)diag

{
βlλ̄l

c̄l

}

z(s), (2.50)

and our focus becomes

[sI + Q(s)]X(s) = Z ′(s). (2.51)

General sensitivity analysis will involve matrices (in Laplace domain) R(s),

RT (−s), and [sI + Q(s)]−1. Computation of [sI + Q(s)]−1 is often dependent on the

specific system setup and becomes intractable for complex systems. To illustrate the

idea and avoid tedious matrix manipulations, we consider a simple scenario of one

source transmitting over one link in the following discussion. Then (2.51) can be

expressed as
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(

s + kλ̄e−sT +
1

s

kβλ̄x̄e−sT

c̄

)

x(s) =
1

c̄s
kβλ̄x̄e−sT esτf

z (2.52)

At equilibrium point, c̄ = x̄ and λ̄ = w/x̄, the above equation yields

(

s +
kw

c̄
e−sT +

1

s

kβwe−sT

c̄

)

x(s) =
kβw

c̄s
e−sT esτf

z (2.53)

and it follows that

x(s) =
kβwe−sT esτf

c̄s2 + kwe−sT s + kβwe−sT
z (2.54)

Define

T (s) =
kβwe−sT esτf

c̄s2 + kwe−sT s + kβwe−sT
(2.55)

In order to minimize the effect of link perturbation on source rate, we need to minimize

|T (s)|2s=jω, that is,

min
k,β

‖T (s)‖2
s=jω = min

k,β

∥
∥
∥
∥

kβw

c̄s2 + kwe−sT s + kβwe−sT

∥
∥
∥
∥

2

s=jω

(2.56)

Evidently, the above optimization depends on delay T , the source controller

gain k, and link damping factor β. Given the time delay T on the link, the range

of k and β for guaranteeing the system is local stability can be obtained through

Inequality (2.42) and (2.46).

Notice that ‖T (s)‖ is a strongly nonlinear function. Closed form expression of

the optimal solution is hard, if not impossible, to obtain. Instead, we have to rely

on numerical tools to study this function. Fig. 2.4(a) provides an illustrative result

on the dependence of ‖T (s)‖ on k given that β and T are fixed. Notice that, ‖T (s)‖

decreases as k decreases, which means the sensitivity of the system also decreases.

However, even though we can reduce the effect of link perturbation on source rates by
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reducing k, we still have to balance the tradeoff among system stability, sensitivity and

convergence rate of congestion algorithms, as a small k will result in slow convergence

rate. On the other hand, given k and delay T , as shown in Fig. 2.4(b), ‖T (s)‖

decreases as β decreases. However, at the same time, convergence rate will also

decrease.
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Figure 2.4: Numerical study of ‖T (s)‖. (a) k’s effect on ‖T (s)‖. (b) β’s effect on
‖T (s)‖.

2.8 Simulation

In this section, we perform a broad set of simulations to validate our theoreti-

cal results and study the effects of different control parameters, for example, source

controller gain k and damping factor β of the proposed algorithm.

2.8.1 System Setup

If the stability conditions are satisfied, then the system is stable. The dual

algorithm at a link for price updating in (2.13) is implemented by marking packets
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with probability (the link price) λl as an exponential function of the queue length bl

[18], given by

λl =







0 if 0 ≤ bl < thmin,l,

pmine
βl
cl

(bl−thmin,l) if thmin,l < bl < thmax,l,

1 if bl ≥ thmax,l.

(2.57)

where thmin,l, thmax,l (thmin,l < thmax,l) are the two user defined queue length thresh-

olds and pmin is the marking probability when bl = thmin,l. In our simulation,

thmin,l = 4, thmax,l = 10 packets, and pmin = 0.002. This scheme is termed E-RED

and details are given by [20, 38]. Again, the primal algorithm to perform rate update

is given by

ẋr(t) = kr

(

wr − xr(t)
∑

l∈r

λl

)

(2.58)

The above primal algorithm is implemented as a rate-based control scheme. The

reason is that rate-based control is less sensitive to round time variation than window-

based transport protocols [37].

The simulations are carried out on the ns-2 platform. In the simulations, the

buffer limit of the bottleneck link is set to be 500 packets and all packets are fixed

to 512 bytes. We set up different network topologies for global stability, and local

stability and sensitivity.

2.8.2 Global Stability

For fixed link capacities, extensive results have been shown in the literature on

global stability in the absence of delay, and hence we focus on scenarios with time

varying capacities.
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We first set up a topology with single bottleneck link as shown in Fig. 2.5. The

link capacity between node 1 and 2 is set to be 10 Mbps with a variation simulated by

a sine function, whose amplitude and period are 5 Mbps and 30 seconds, respectively.

jS1 Z
Z

ZZjS2

jSn

...
�

�
�
�

1 2 D1, D2, . . . , Dn��
��

��
��

Figure 2.5: A single bottleneck link topology

In this simulation, there are 30 traffic flows, 10 of whom stop at 100 seconds,

and resume at 250 seconds. The results are depicted in Fig. 2.6(a) and (b) and

(c). From the simulation, we observe that the trajectory stability can be guaranteed

under various chosen parameters in the sense that link utilization and source rates

can closely follow the link capacity oscillation after short transient phases, the choice

of parameters can affect the utilization of link bandwidth and oscillation amplitude.

We further notice that the stability is actually not affected by damping factor β of

the link algorithm.

We next introduce a constant rate UDP traffic flow of 1 Mbps and study the

performance on the same topology. This UDP flow arrives at 200 seconds and stops

at 250 seconds. From Fig. 2.7, we observe that as this UDP traffic flow cannot adjust

its traffic rate, its existence reduces the link utilization. We also notice that the

fluctuation of the available bandwidth introduced by the UDP flow can be effectively

absorbed by the congestion control algorithm, as the system can quickly re-stabilize

when the UDP enters and leaves the network.
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From both Fig. 2.6 and 2.7, we can see that even though smaller source con-

troller gains can reduce the oscillation amplitudes of source rates and link utilization,

they also negatively affect the transient phases. In other words, the source controllers

with large controller gains can finish the transient phase in shorter time than the ones

with small controller gains.

2.8.3 Local Stability and Sensitivity

As shown in our analysis, the local stability when delay is present significantly

depends on control parameters such as k, β, and RTTs of the system. In this set of

simulations, we set up a multi-hop network topology as shown in Fig. 2.8, and study

the effects of those control parameters on the utilization of link bandwidth, queue

length and source rates when the capacity of the bottleneck link is time varying. We

assume that the capacity of the bottleneck link 23 is 2 Mbps. The link perturbation,

if present, is simulated by a sine function whose amplitude and period are half of the

fixed link capacity and 30 seconds, respectively. The capacities of all other links are

set to be 5 Mbps.

We assume that there are 5 traffic flows in the network as shown in Fig. 2.8.

Traffic flow 5 comes at 250 seconds, and other traffic flows start at 0 second. All the

traffic flows stop at 500 seconds. Notice that flow 5 introduces dynamic traffic load

into the network. The behavior of the network (for example, time to re-stabilize)

during this transient phase is one of the key criteria measure the performance of the

congestion control algorithm.

2.8.3.1 Local Stability and Sensitivity Without Link Perturbation

In this case, we study the system performance in the absence of link pertur-

bation. We first set source controller gains in the system as [k1 k2 k3 k4 k5] =
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Figure 2.6: Global stability with link perturbation. (a) Queue length at link 12. (b)
Utilization link 12. (c) Source rate of a traffic.
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Figure 2.7: Global stability with link perturbation and UDP traffic. (a) Queue length
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Figure 2.8: A multihop network topology

[0.01 0.025 0.0125 0.025 0.025] where ki is the gain for source i, then we reduce all

the gains by half while keeping other parameters fixed and study their differences.

The results for these two cases are shown in Fig. 2.9. From Fig. 2.9(a), we can

see that the queue length is being kept between 0 and 20 packets after the transi-

tion phase, denoting a stable condition. Correspondingly, Fig. 2.9(b) shows that the

throughput of the bottleneck link oscillates around the equilibriums slightly. Fig.

2.9(c) shows one of the source rates around its equilibrium. By comparing the results

with different controller gains, we observe that adjusting source controller gains can

affect the throughput oscillation magnitude around the equilibrium. The through-

put oscillation magnitude in the transition phase (when flow 5 enters the network)

can also be reduced by adjusting the source controller gains. We also observe that

the transient phase can end faster with large source controller gains than with small

controller gains. In the simulations, we also find that our algorithm is not sensitive

to the damping factor β for price updating at the link and RTTs, which concur with

the conclusion from [37].

2.8.3.2 Local Stability and Sensitivity with Link Perturbation

In this case, we still use the scenario described in Fig. 2.8 but introduce the link

perturbation simulated by a sine wave. Before going into the details, we first remark

that in the presence of capacity variation and system delay, we observe in our simula-
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Figure 2.9: Local stability without link perturbation. (a) Queue length at link 23.
(b) Utilization of link 23. (c) Source rate of flow 2.
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tion that if perturbation is significant (large amplitude of the sine wave), the system

is unable to stabilize regardless of the parameters chosen. This actually concurs with

our analytical results as given a certain perturbation the sufficient conditions may

not be able to be satisfied by adjusting the system parameters. For a reasonable per-

turbation, however, suitable parameters chosen according to the derived conditions

can stabilize the system.

As in the case without link perturbation, we first set source controller gains in

the system as [k1 k2 k3 k4 k5] = [0.01 0.025 0.0125 0.025 0.025] where ki is the gain

for source i, then we reduce all the gains by half while keeping other parameters fixed

and study their differences. The stable scenarios with the amplitude of the sine wave

set to be 1 Mbps are shown in Fig. 2.10. We can see that the system can effectively

adapt to the capacity change and achieve stabilized queue length and link utilization.

We also observe in our simulation that the utilization of the bottleneck link depends

on values of k while maintaining this local stability. It is a balance to be carefully

tuned between the utilization of the bottleneck link and the robustness of the control

algorithm against link capacity variation.

On the other hand, if the parameters are not chosen properly according to the

conditions derived, that is, if the sufficient condition for stability is violated, the

system may not be able to stabilize either. For a large source controller gain, the

results are depicted in Fig. 2.11(a) and (b) and (c), where the large oscillations for

the source rate and the link utilization reveal an unstable system. Similar results are

observed for unsatisfactory values of the damping gain and different RTTs which are

omitted here.
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Figure 2.10: Local stability with link perturbation - stable scenario. (a) Queue length
at link 23. (b) Utilization of link 23. (c) Source rate of flow 2.
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Figure 2.11: Local stability with link perturbation — unstable scenario. (a) Queue
length at link 23. (b) Utilization of link 23. (c) Source rate of flow 2.
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2.9 Conclusion

By explicitly introducing time varying channel capacity into the utility maxi-

mization problem, we investigate congestion control in networks with time varying

link capacities, following Kelly’s seminal work. Different from conventional system

stability around an equilibrium point, we employ trajectory stability and prove that

the proposed prime-dual algorithm is stable around a time varying trajectory without

considering system delay. In the presence of system delay, we derive sufficient con-

ditions for the system to be locally stable. Furthermore, by modeling link variations

as perturbations to constant capacities, we investigate system sensitivity and provide

insightful experimental studies regarding its tradeoff with system stability.



CHAPTER 3

CONGESTION CONTROL IN INTERMITTENTLY
COMMUNICATING NETWORKS — DYNAMIC PROGRAMMING

APPROACH

3.1 Introduction

Different from conventional networks exemplified by the mighty Internet, an

important class of intermittently communicating networks (also called delay tolerant

networks or disruption tolerant networks) often faces long round trip delay, inter-

mittent connectivity, and opportunistic contacts among nodes, which can be traced

back to its origin of deep space communication [47, 50]. Correspondingly, store-and-

forward, message-oriented architectures, in contrast with the dominating end-to-end

architecture of the current Internet, are often adopted to cope with the challenged

environments [48]. In particular, to enhance end-to-end reliability, custody transfer,

is proposed where the responsibility for reliable delivery of a message (often termed a

bundle) is gradually moved toward its ultimate destination in a hop-by-hop fashion

[48].

Unfortunately, by accepting the custody of a bundle (in other words, the re-

sponsibility of reliable delivery of a bundle), a node may have to store the bundle

for a significant period of time before being able to hand it over to another node

during opportunistic contact, as discarding a bundle before its life time expires is

generally prohibited. As a result, precious storage space is committed by accepting

the custody of a bundle which may likely hinder acceptance of future custody trans-

fer requests. Therefore, it may not be entirely wise for a node to openly and widely

declare oneself to be a willing storage device for any set of bundles requested. Rather,

a carefully crafted congestion management strategy is desired in order to effectively

69
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manage the storage capacity on a node in the intermittently communicating networks

so that the network utilization can be maximized. It is this problem that this chapter

aims to address. For convenience, thereafter, we use “delay tolerant networks” and

“intermittently communicating networks” interchangeably.

Although bundle handling protocols and routing schemes specific to delay toler-

ant networks have been extensively proposed [47, 61, 64, 69, 71, 73], little results, as to

our best knowledge, exist on how to handle the above discussed congestion/resource

allocation problem. Given the plethora of potential applications of delay tolerant

networks in various domains, congestion will become imminent when the network

technology is successfully applied and proper management schemes are demanded.

Fortunately, a node cannot discard the bundle unless its life time expires or the

custody is transferred to another node after a commitment, the node indeed has the

freedom in deciding whether to accept the custody in the first place. Consequently,

two conflicting forces can be considered that are governing the receiving node’s ac-

tions: on one hand, it is beneficial to accept a large number of messages as it can

potentially advance the messages toward their ultimate destinations and network uti-

lization can be maximized; on the other hand, if the receiving node over-commits

itself by accepting too many messages, it may find itself setting aside an excessive

amount of storage and thereby preventing itself from receiving further potentially

important, high yield (in terms of network utilization) messages.

We apply the concept of revenue management, and employ dynamic program-

ming to develop a congestion management strategy for delay tolerant networks to

solve the above problem. For a class of network utility functions, we show that our

solution is optimal. More importantly, our solution is distributed in nature where

only the local information such as available buffer of a node is required. This is

particularly important given the nature of delay tolerant networks where global in-
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formation is often not available and the network is inherently dynamic. Extensive

simulation results show that the proposed congestion management scheme is effective

in avoiding congestion and balancing network load among the nodes.

This chapter is organized as follows. In Section 3.2, we investigate the related

work for delay tolerant networks. Section 3.3 briefly presents some concepts of dy-

namic programming and delay tolerant networks as basis for further investigation.

The congestion management problem is formulated in Section 3.4. In Section 3.5, we

establish the dynamic programming formulation for the defined congestion manage-

ment problem in Section 3.4. Section 3.6 studies the optimal strategies for congestion

management in delay tolerant networks with multiple nodes. In Section 3.7, we use

several simulation scenarios to show the performance of the derived optimal control

policies. Section 3.8 concludes this chapter.

3.2 Related Work

Delay tolerant in general has been the subject of a wide range of research

[47, 48, 55, 60, 61, 64, 65, 67, 69, 71, 73–75]. Among those, a set of papers have focused

on the routing problems [67, 71, 73–75]. In these works, usually buffer space in each

node is assumed to be unlimited or treated in an ad-hoc manner, as resource allocation

is not the key focus there. For example, in [66], it is assumed that the send buffer and

receive buffer have limited space in designing message ferry route, but the congestion

issue is not addressed.

While the bundle layer employs reliable transport layer protocols together with

custody transfers to offer hop-by-hop reliability, no end-to-end reliability can be guar-

anteed. In [55], the authors have developed active receipt, passive receipt, and

network-bridged receipt approaches to offer end-to-end reliability by delivering an
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active end-to-end acknowledgment over the delay tolerant network itself or another

network.

It is worth noting that the storage congestion mitigation problem is handled in

[49]. When a custodian node becomes congested, the authors propose to migrate its

stored messages to alternative storage (usually neighboring nodes) locations to avoid

losses. The problem of storage congestion on a node is approached by migrating

the stored data to neighbors. The proposed solution includes a set of algorithms to

determine which messages should be migrated to which neighbors and when. However,

this approach is a passive approach. In contrast, our approach is proactive in that

each node actively makes decisions on whether to accept a custody request in order to

avoid congestion. In [50], a financial model based approach is adopted in addressing

the congestion problem in delay tolerant networks, the concept introduced there such

as conveyance fee paid by sender and receiver of a bundle is different from the concepts

of benefits of requests and opportunity cost proposed in our work. Furthermore, our

work achieves distributed optimal solution when multiple nodes are present.

On the other hand, resource allocation has been the subject of extensive study

in related overlay networks. In [59], resource allocation in overlay networks to protect

the network from being overloaded is investigated. There, cost function and benefit

function are defined. And subsequently, the decision whether to accept packets into

the network is made by comparing the benefit of accepting a packet with cost on

relevant paths. However, the approach is a centralized one since an oracle is needed

to compute the total cost of all links in a path. While the concepts of benefit and

opportunity cost in our work are similar to the ones in [59], our approach is based on

local information of each node which makes it applicable to the dynamic environment

of delay tolerant networks.
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There also exist a set of papers studying that network capacity can be signifi-

cantly improved by exploring the node mobility in wireless networks [62, 79–81]. For

example, in [79], the authors introduced autonomous agents as additional partici-

pants in delay tolerant networks. The agents can adapt their movements in response

to variations in network capacity and demand to improve network performance. In

[81], authors investigated the delay-throughput tradeoffs in mobile ad hoc networks

under hybrid random walk and one dimensional mobility models. Our congestion

handling strategy developed later is a general approach independent of the mobility

model. Instead, it only depends on the remaining storage space in receiving nodes

and the request reward.

3.3 Preliminaries

While an introduction to delay tolerant networks has been provided in Chapter

1, we here recapitulate the properties of delay tolerant networks for better under-

standing the remaining contents of this chapter.

Delay tolerant networks have attracted tremendous interests from academia,

military and industry recently. Interested applications include interplanetary net-

works, mobile tactical military networks, communication networks for remote rural

area, which often consist of wireless communications and user mobility [47, 50]. In

these environment, often building a standard network with end-to-end connectivity

is impractical, or transmission latencies are inherently high. Often such challenges

arise due to user mobility and wireless communications.

In order to address networking issues in these challenged environments where

end-to-end connections are often absent, delay tolerant networks implement a store-

and-forward message switching architecture where each intermediate forwarding node

is embedded with storage and intelligence for forwarding decision making. This is
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achieved by overlaying a new protocol layer, termed the Bundle Layer, at the appli-

cation layer or at least above the transport layer [47]. The bundle layer stores and

forwards entire bundles (or bundle fragments) between nodes. Bundles are also called

messages, which can consist of multiple pieces of applications data. Usually, a single

bundle layer is employed across potentially heterogenous network domains in order

to form a delay tolerant network.

In order to provide reliable delivery, the bundle protocol employs a mechanism

termed custody transfer where delivery responsibility (custody) is transferred among

successive nodes in a hop-by-hop fashion. Specifically, a node holding a bundle with

custody is called custodians. When the current custodian sends a bundle to the

next node, it requests a custody transfer. If the next node accepts the custody, it

returns an acknowledgement to the sender. Accepting a message with custody transfer

amounts to promising not to delete it until either another node accepts custody (or

it is delivered to the message’s destination), or the expiration of the message’s time

to live.

The bundle layer can use reliable transport layer protocols together with cus-

tody transfers to move points of retransmission progressively forward toward the

destination. This property minimizes the number of potential retransmission hops,

and consequently reduces additional network load caused by retransmission, and the

total time to convey a bundle reliably to its destination.

3.4 Problem Formulation

While nodes in delay tolerant networks may offer custody transfer, this decision

is at their own discretion. Furthermore, a node that has been accepting messages and

corresponding custodies can decide, on its own, to cease the accepting option if its

local resources become substantially consumed. Similarly, the accepting operation
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can be resumed at the node when resources become more plentiful after, for example,

the messages are successfully transferred to its downstream nodes. It is this decision

as to whether to accept the custody of a message given the current resource constraint

we are addressing in this chapter. In doing so, our goal is to maximize the overall

system benefit subject to the constraints of the system resources.

Before proceeding further on the formal model, we remark that routing algo-

rithm can affect the performance of delay tolerant networks significantly. Unfortu-

nately, complete knowledge of the delay tolerant network and routes is often not

available in advance nor are they static. In order to focus on the buffer management

problem, we follow [49] and separate the management mechanism form the route

selection problem.

3.4.1 System Model

Without loss of generality, assume that node i + 1 is any node to whom node

i can forward messages by custody transfer. Similarly, node i − 1 can be considered

as any node that wants to forward messages to its downstream custodian i during

a contact opportunity. Node i − 1 sends a request for a new custodian to fulfill

the bundle transfer. It then waits for acknowledgement from its neighbor node. If

node i receives a request for custodian from its neighbor node i − 1, it will decide

whether to accept or reject the request based on the current available storage space,

and predefined optimal control strategies. Here we assume that the storage space is

the key resource constraint. Notice that we have not made any assumption regarding

the contacts among nodes and hence can accommodate different mobilities.

By accepting a bundle, a node accumulates a certain amount of benefit denoted

by B` > 0, where ` ∈ {1, · · · ,m} is the index of the class of benefits. The benefit

functions can be of various forms and correspondingly different optimization goals can
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ii − 1 i + 1

Figure 3.1: Simple DTN Scenario

be achieved. For example, by properly adjusting the benefit function, performance

issues such as throughput and policy issues such as fairness can be addressed [59].

Notably, the benefit can be a function of the bundle size with different weights

based on their corresponding traffic priorities. For simplicity, we assume that the bun-

dle sizes of different priorities are homogeneous in volume and thus indistinguishable

when filling the buffer if they are accepted. We also assume that arrivals of requests

for custody occur at discrete points in time, which are called decision epochs. No-

tice that the arrival requests (events) drive the decision epochs, in other words, the

decision epochs are not deterministic but rather given by the arrival requests them-

selves. We also assume that the departure of a message can occur at anytime between

decision epochs.

Over finitely many decision epochs, i.e., a finite time horizon, our objective is to

determine the optimal congestion management strategies that maximize the expected

total benefits by accepting/forwarding the bundles, subject to the request and buffer

constraints. Formally, the objective is to choose congestion management strategies

that maximize the total expected reward

E

[
T∑

t=1

rtut

]

, (3.1)

over a time horizon of T decision epochs, where rt ∈ {B1, B2, . . . , Bm}, and ut = 1

if the transfer request is accepted at decision epoch t, ut = 0 otherwise; E(·) is

mathematical expectation.
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We here remark that in this model, for each hop of custody transfer, the benefit

is accumulated. And these benefits are summarized across the whole network over

a finite time period. Additionally, unlike many economic models, our model does

not try to reach an equilibrium state based on the rationality of participant nodes or

influence noncooperative behavior. Rather, the goal is to optimize the overall revenue

by accepting bundle transfer requests under the assumption of minimally cooperative

(nonrational) behaviors of nodes [5, 57].

3.4.2 State Variable and Action Variables

at+1

bt

at

xt

bt+1

Figure 3.2: State transition relation

We define the state variable at to be the remaining capacity at time t. Since

we assume that a request arrives at a node at time t and drives the decision epoch,

departures can occur after the decision epoch during opportunistic contact between

the current custodian and its future custodian. The remaining capacity in the current

node at decision epoch t + 1 may include the space released by bundles transferred

to the next custodian during opportunistic contacts. Let the request size be xt at

decision epoch t, and the released space available for next decision epoch t+1 be bt+1.

The transfer relation shown in Fig. 3.2 can be described by the following transfer

function.

at+1 = at − utxt + bt+1 (3.2)
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where ut has been defined in (2.1); bt+1 = 1 if the bundle is successfully transferred

to the next custodian, bt+1 = 0 otherwise; xt = 1.

As we have said before, storage space may be released in time duration between

decision epoch t and decision epoch t+1 due to message departure. Since the released

space is only beneficial to arrivals at decision epoch t + 1 and later, bt+1 is indexed

with t + 1.

3.4.3 Opportunity Cost and Benefit Function

Our goal is to choose the optimal strategies for maximizing the expected sum

of benefits. Toward this, we need to consider two conflicting forces. First, it is

wasteful to commit resources to requests that are not “desperate” for that resource,

i.e., not enjoying the maximal possible benefit from occupying the resource. Second,

it is equally dangerous to gamble that each resource can be occupied with maximal

benefit gained without knowing the sequence of requests coming in the future. The

key aspect of the above situations is that each decision can not be viewed in isolation

since one must balance the desire for high benefit request with the undesirability of

low future benefit request.

We use opportunity cost and benefit function to balance the above two conflict-

ing forces. The opportunity cost measures the value of the storage capacity, which is

the benefit that may be lost by higher benefit request as a result of consumption of the

above resource by the lower benefit request. Theoretically, the opportunity cost can

be captured by defining a value function Vt(·), which measures the optimal expected

benefit as a function of the remaining capacity at at time t [51]. The opportunity

cost is then the difference between the value function at at and the value function at

at − 1, that is, Vt(at) − Vt(at − 1). Obviously, the theoretical analysis of the optimal

control strategies will heavily rely on the value function Vt(·).
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On the other hand, the benefit function, as we have discussed before, denotes

the gain of moving a bundle to the next hop. It can be defined according to users’

specifications in the systems (for example as a function of the bundle size and priority).

While there is no strict limitation to choose benefit function, the choice of benefit

function should guarantee that the value of benefit function and opportunity cost are

comparable.

3.5 Single Node Congestion Control

In this section, we will focus on the decision for custody acceptance/rejection for

a single node. The case for multiple nodes will be studied in the next section. Toward

this end, we present a dynamic programming approach to the problem formulated in

the previous section.

Dynamic programming can handle situations where decisions are made at de-

cision epochs. The outcome of each decision may not be fully predictable but can

be anticipated to a certain extent before the next decision is made. The objective

usually is to maximize a certain reward. A key aspect of such a situation is that a

decision can not be viewed in isolation since one must balance the desire for high

present reward with the undesirability of low future rewards. Dynamic programming

can capture this tradeoff. At each decision epoch, the dynamic programming tech-

nique ranks decisions based on the sum of the present reward and the expected future

reward, assuming optimal decision making for subsequent decision epochs [54]. Our

technique will follow this storyline as well.

Recall that the value function Vt(·) denotes the value of the remaining capacity

at time t, that is, the value of remaining capacity at time t is Vt(at). We assume that
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the probability of an arrival of class ` at time t is denoted by p`(t), and at most one

request arrives in one decision epoch. Subsequently, we easily yield

m∑

`=1

p`(t) ≤ 1 (3.3)

Evidently, the arrival probability may vary with time t, and hence the mix of classes

that arrive may vary over time. This varying probability, as we will see later, will not

affect the optimal control strategies, but it will incur extra computation.

For now, let us assume that a decision epoch will be driven by a request of one

message, that is, at most one message request arrives in one decision epoch (the case

for one request of multiple message custody transfer will be discussed in 3.5.2).

Let rt be a random variable, with rt = B` if a request for class ` arrives at

decision epoch t, and rt = 0 otherwise. Note that the probability P(rt = B`) = p`(t).

Our goal is to maximize the sum of the current reward and the reward to go, i.e.,

max
u∈{0,1}

{

rtu + Vt+1(at − uxt + bt+1)

}

(3.4)

Since xt = 1, we can rewrite (3.4) as

max
u∈{0,1}

{

rtu + Vt+1(at − u + bt+1)

}

(3.5)

Intuitively, the above objective function targets at achieving a balance between

the current reward (rt = B`) to accept a request and the potential value (Vt+1) of the

available buffer space (i.e., remaining capacity in the buffer).

Let

V̂t+1(at) = Vt+1(at + bt+1) (3.6)
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The optimal value functions Vt(at) for each decision epoch (or time period) t

can be written as follows.

Vt(at) = E

[

max
u∈{0,1}

{rt(t)u + V̂t+1(at − u)}

]

(3.7)

Given the finite time horizon being considered, the boundary conditions here

are

Vt(0) = 0, t = 1, . . . , T.

and

VT (aT ) = rT .

Here rT stands for a salvage reward for the remaining amount of resource at the

end of the time horizon. If aT = 0 then rT = 0; if aT 6= 0, we assume that rT is

a concave function of the remaining capacity aT such as piece-wise linear function.

This assumption will guarantee that the value function Vt(·) is also concave.

3.5.1 Optimal Strategy for Accepting Custody Transfer

In this subsection, our goal is to prove the following theorem regarding the

optimal policy for the congestion control.

Theorem 3.1 For a class j request with reward rt = B` arriving at decision epoch

t, it is optimal to accept the request if and only if

rt ≥ ∆V̂t+1(at) (3.8)

where ∆V̂t+1(at) = V̂t+1(at) − V̂t+1(at − 1)
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This theorem actually denotes that for a request, if the benefit (rt) is greater

than its opportunity cost (∆V̂t+1(at)), the message shall be accepted and the decision

actually is optimal.

To prove the above theorem, we first prove Lemma 3.1-3.3 that will be employed

to deduce expression suitable for proving Theorem 3.1.

Lemma 3.1 If x, y are integers, and x ≥ y, we have

V̂t(x) = V̂t(x − y) +
x∑

k=x−y+1

∆V̂t(k)

where ∆V̂t(k) = V̂t(k) − V̂t(k − 1).

V̂t(x) = V̂t(x) − V̂t(x − 1) + V̂t(x − 1)

= V̂t(x) − V̂t(x − 1) + V̂t(x − 1) − V̂t(x − 2)

+ · · · − V̂t(x − y) + V̂t(x − y)

= V̂t(x − y) +
x∑

k=x−y+1

∆V̂t(k)

(3.9)

Lemma 3.2

max
u∈{0,1}

{rtu + V̂t+1(x − u)} = V̂t+1(x)

+ max
u∈{0,1}

{(rt − ∆V̂t+1(x))u}

where ∆V̂t+1(x) = V̂t+1(x) − V̂t+1(x − 1) is the expected marginal value of remaining

capacity in decision epoch t + 1.
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From Lemma 3.1, it is apparent that

V̂t+1(x) = V̂t+1(x − y) +
x∑

k=x−y+1

∆V̂t+1(k) (3.10)

In equation (3.10), note that if y = 0, the last summation disappears. Let y = u,

then we have

V̂t+1(x − u) = V̂t+1(x) −
x∑

k=x−u+1

∆V̂t+1(k) (3.11)

As u can be 0 or 1, (3.11) can be changed to

V̂t+1(x − u) = V̂t+1(x) − ∆V̂t+1(x)u (3.12)

By (3.12), the expression

max
u∈{0,1}

{rtu + V̂t+1(x − u)} (3.13)

can be rewritten as

max
u∈{0,1}

{rtu + V̂t+1(x − u)}

= max
u∈{0,1}

{rtu + V̂t+1(x) − ∆V̂t+1(x)u}

= V̂t+1(x) + max
u∈{0,1}

{(rt − ∆V̂t+1(x))u}

By Lemma 3.2, the Bellman equation (2.12) can be rewritten as

Vt(at) = E

[

max
u∈{0,1}

{rt(t)u + V̂t+1(at − u)}

]

= V̂t+1(at) + E

[

max
u∈{0,1}

{(rt − ∆V̂t+1(at))u}

] (3.14)
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And as a result, we can now prove Theorem 3.1. We will use mathematical

induction to prove Theorem 3.1. In order to prove the above theorem, it is necessary

to investigate the concavity of the value function Vt(·) and ∆Vt(·). To do so, we need

the Definition 3.1 and Lemma 3.3.

Definition 3.1 A function defined on the set of nonnegative integers g : Z+ → R is

concave if it has nonincreasing differences, that is, g(x + 1) − g(x) is nonincreasing

in x ≥ 0.

The above definition can be considered as a discrete version of concave definition of a

continuous function defined on R. Additionally, we also present the following lemma

from [51].

Lemma 3.3 Suppose g : Z+ → R is concave. Let f : Z+ → R be defined by

f(x) = max
a=0,1,...,m

{ap + g(x − a)}

for any given p ≥ 0 and nonnegative integer m ≤ x. Then f(x) is concave in x ≥ 0

as well.

Interested readers are referred to [51] for details on the proof of Lemma 3.3.

Using Lemma 3.3, we will prove Theorem 3.1 below.

Proof of Theorem 3.1:

We first prove that the function Vt(x) is concave in x. The proof is by induction

at decision epochs. Note that in the terminal decision epoch T , there are two possi-

bilities: the first one is that aT = 0, then VT = 0; the second one is that aT 6= 0 and

then rT 6= 0. For the second case, we assume that the remaining capacity receives a

salvage reward that is concave in aT . For the above two cases, VT (aT ) is concave in

aT .
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Assume Vt+1(x) is concave in x at decision epoch t+1. Since V̂t+1(x) = Vt+1(x+

bt+1), it is also concave at decision epoch t + 1. By Lemma 3.3, we can easily know

that

E

[

max
u∈{0,1}

{rt(t)u + V̂t+1(at − u)}

]

is concave because it is simply the expectation of maxu∈{0,1}{rt(t)u + V̂t+1(at − u)}

based on the probability P(rt = B`) = p`(t). Therefore, we conclude that Vt(x) is

concave.

We can also prove that ∆V̂t(x) ≥ ∆V̂t+1(x) by way of induction. The intuition

of this inequality is that the value of additional capacity at any point in time has a

decreasing marginal benefit and the marginal value at any given remaining capacity

x decreases with time.

From the above argument, we can know that the optimal value can be achieved

if and only if rt ≥ ∆V̂t+1(at).

Theorem 3.1 guarantees that if the node follows the accepting condition rt ≥

∆V̂t+1(at), the node will have best rewards in finite time periods.

3.5.2 Discussion

In this subsection, we first analyze the properties of setting a fixed opportunity

cost, then discuss the case of one request for multiple message custody transfer.

Note that ∆V̂t+1(at) is a function of at, that is, the opportunity cost dynam-

ically varies with remaining capacity of at. The opportunity cost increases as the

remaining capacity decreases. While setting a fixed opportunity cost to accept or

reject a request is simple, to be effective, the opportunity cost must be updated af-

ter accepting a request. Without this ability to make opportunity cost a function
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of capacity, however, a simple static opportunity cost is indeed a dangerous form of

control [51].

In the above discussion, for the sake of simplicity, we have also assumed that

only one request arrives at each decision epoch. Indeed, the approach can be easily

generalized to the scenario where multiple requests can arrive at the same decision

epoch. If a message contains custodian transfer request for multiple bundles, the

receiving node may decide to partially accept any quantity q in the range 0 ≤ q ≤ Q

given a request of Q ≥ 1 units. In this case the analysis in 3.5.1 still holds by serializing

the unit requests and applying the above steps. In other word, the group arrival drives

a decision epoch, accepting node then serializes all requests contained in the group

arrival with a certain rule. The optimal control strategies can decide whether each

request can be accepted or not one by one based on the dynamic opportunity costs.

However, a message may contain custodian transfer requests for multiple bun-

dles and the request must be satisfied in an all-or-none basis. In other words, given

a request containing Q > 1 bundles, all Q bundles or none must be accepted. In this

case, the value function may not be concave. The marginal value of capacity may

actually increase [51], and the congestion management strategies developed in Section

3.5.1 may not be optimal. To address this issue, we first must specify the distribution

of group sizes to model how much demand we have from groups of various sizes. This

in fact does not increase the theoretical difficulty. The difficulty lies in that the value

function may not be concave which can make the optimality issue intractable [51, 66].

We also remark that the benefit function itself does not address the issue about

how the message is forwarded. On the contrary, the route itself shall be decided by

the routing algorithms. In other words, we rely on the routing algorithm to prevent

the loops or tossing back of messages for artificial benefit inflation.
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3.6 Network Congestion Control

In the above section, we have studied the optimal congestion control policy

for a single node case. In this section, we first extend dynamic programming based

approach in Revenue Management (RM) to network capacity control with multiple

resources, then develop the congestion management strategies for delay tolerant net-

works with multiple nodes.

3.6.1 Optimal Policy with Global Information

Suppose that the network has n nodes and there are m requests. Each request

may need a combination of resources on the n nodes. Define an incident matrix

A = [alh]n×m, where alh = 1 if resource on node l is used by request h and alh = 0

otherwise. As a result, the hth column of A, denoted by Ah, is the incidence vector for

request h; the lth row, denoted by Al, has an entry of one in column h corresponding to

a request h that uses resource on node l. If the network topology is fixed and routing

path is predefined, we can easily construct the incidence matrix A with appropriate

dimensions based on schemes that the requests use the resources.

Demand in period t can be modeled as the realization of a single random vector

B(t) = (B1(t), . . . , Bm(t)). If Bh(t) = Bh > 0, a request h arrives and the benefit to

accept it is Bh; if Bh(t) = 0, then there is no request with type of h. A realization

B(t) = 0 means that there is no request at time period t.

The state of the network can be described by x(t) = (x1(t), . . . , xn(t)), where

xl(t) is the remaining buffer capacity of resource on node l at time period t. Let

uh(t) be the decision variable for a request at time period t. uh(t) = 1 if request

h is accepted in time period t, uh(t) = 0 otherwise. The decision to accept, uh(t),

is a function of the remaining capacity vector x(t) and benefit Bh of request h. In

other words, uh(t) = uh(t,x, Bh). Since we can accept at most one request in any
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period, if the current remaining capacity is x(t), then the following condition should

be satisfied:

x(t) ≥ Ah.

Similar to Section 3.5, let Vt(x) denote the optimal value function for networks. Then

Vt(x) satisfies the following Bellman equation.

Vt(x) = E

[

max
uh∈{0,1}

{

Bh(t)uh + V̂t+1(x − Ahuh)

}]

(3.15)

Appropriate boundary conditions for the above Bellman equation can be set at de-

cision epoch T provided that the salvage benefit at decision epoch T is concave.

Subsequently, as in 3.5.1, we can deduce the optimal control strategy form the above

equation as follows.

uh(t,x, Bh) =







1 if Bh ≥ V̂t+1(x) − V̂t+1(x − Ah) and

x(t) ≥ Ah,

0 otherwise.

(3.16)

The idea behind the above optimal control policy is that accepting a request h with

benefit Bh if and only if there are sufficient remaining capacities in relevant resources

and benefit is greater or equal to the opportunity cost to occupy the storage spaces.

The structure of the value function for network case (3.15) is similar to the

value function for the single node (2.12). However, this is partially resulted from

the assumption that global information is available and centralized calculation can

be performed. This is most likely impractical for delay tolerant networks where the

network is potentially highly dynamic in almost every aspect.
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3.6.2 Distributed Optimal Policy

The above analysis follows the classic revenue management with an unrealistic

assumption on the availability of global information. Furthermore, even if the global

information were available, the potential large dimension of the state space would

often render the solution hopeless in practice. Fortunately, the unique setup of delay

tolerant networks naturally provides an approach toward a distributed solution.

The key for a distributed solution is the independence of the resource require-

ment at each node in the network. In a conventional resource management strategy,

the resources are requested simultaneously at multiple nodes in order to pave the end-

to-end path. This is actually reflected in the above analysis when global information

is available. In such a scenario, if one of the nodes could not fulfill the request, the

request actually will be rejected. Fortunately, for delay tolerant networks, end-to-

end path is often not present and hop-by-hop forwarding and control is employed.

Once the bundle is transferred to another hop, the resource originally occupied will

become immediately available. Whether this transaction will be executed will solely

dependent on the receiving node.

Based on above discussion, a request in delay tolerant networks can be expressed

as Aj = (0, . . . , 0, 1, 0, . . . , 0), where Aj is a request vector that resource is requested

on node j. Without losing generality, we assume that the value function Vt+1(x) has

a gradient ∇Vt+1(x). In other words, the value function Vt+1(x) is differentiable with

respect to vector x. Formally,

Vt+1(x) − Vt+1(x − Aj)

≈ ∇V T
t+1(x)Aj

=
∑

i∈Aj

πi(t,x) = πj(t,x)

(3.17)
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where πj(t,x) = ∂
∂xj

Vt+1(x) is the opportunity cost of resource j at decision epoch

t + 1.

From the above equation, we can see that the opportunity cost evidently de-

pends on the format of the utility function. Assume that Vt+1(x) has the following

format

Vt+1(x) =
n∑

i=1

V i
t+1(xi) (3.18)

where V i
t+1(xi) is the value function of resource i at decision epoch t + 1. Then, from

(3.17) and (3.18), we have

πj(t,x)

=
∂

∂xj

Vt+1(x) =
∂

∂xj

n∑

i=1

V i
t+1(xi)

≈ V j
t+1(xj) − V j

t+1(xj − 1)

(3.19)

From (3.19), the opportunity cost of resource j at decision epoch t + 1 only depends

on its remaining capacity.

In the above discussion, we assume that the value function Vt+1(x) is differen-

tiable with respect to vector x. If the value function Vt+1(x) is not differentiable with

respect to vector x, gradient ∇Vt+1(x) can be replaced by subgradient, it will not

affect the outcome except by introducing extra computation [56].

From Theorem 3.1 and (3.19), the congestion control policy in a node j is as

follows.

rt ≥ ∆V̂ j
t+1(a

j
t) (3.20)

where ∆V̂ j
t+1(a

j
t) = V̂ j

t+1(a
j
t) − V̂ j

t+1(a
j
t − 1). This policy can achieve network level

optimality given the value function presented (3.18).



91

One reason to choose the value function such as (3.18) is that we consider delay

tolerant networks where resources maximize a common additive value. Each resource

has information only about its value component, and maximizes that component

while exchanging information between any two resources only during their contact

opportunity.

If we choose a general value function other than the format of (3.18), the key

point is still on how to compute the opportunity cost. From (3.17), we can know that

the opportunity cost for node j at decision epoch t + 1 depends on the remaining

storage capacities in other nodes. Since it is not practical for each node to have

information about other nodes in delay tolerant networks, this is another reason that

we employ the value function as in (3.18).

For general value functions, we can use the decomposition approach to decom-

pose the general value function into the format in (3.18). The decomposition is at

the expense of losing some network information.

3.7 Simulation

We developed a discrete event-driven simulation based DTN simulator to evalu-

ate our congestion management strategy [82]. The simulation implements the conges-

tion management strategy as proposed in the previous section. To isolate the effect

of link bandwidth on the congestion management strategy, we assume that each link

has infinite bandwidth.

3.7.1 Simulation Settings

The simulated network consists of static nodes, destination, and mobile nodes

distributed in a 3000 by 3000 meters field. Static nodes are randomly distributed

in the field and generate messages following poisson processes. Each static node can



92

Table 3.1: Simulation Parameters

Parameter Value
Simulation field size 3000 × 3000 (m2)
Transmission range 150 m
Average arriving rate of a request 0.2/second
Number of static nodes 6/8
Number of mobile nodes 40/50

generate five classes of request messages, each with average generation probability of

0.2 message/second. Mobile nodes function as relay nodes and their mobility follows

the random-way-point model with random initial location as well. The random way

point model employed for mobile nodes has a moving speed uniformly distributed

in [0.2, 0.5] meters/s and the pause time of a stop is uniformly distributed in [1,

2] seconds. The destination node has unlimited storage capacity and is randomly

located in the field and ready to accept messages during opportunistic contacts. The

storage capacity in each mobile node has a size of 50 messages. Since messages have

to traverse lower layers of the network, they are ultimately subject to the restrictions

there in terms of maximum packet size. For example, on most IP networks it is safest

to assume that a single packet should be less than 1500 bytes long. Therefore, we

assume that each message has a size of 1500 bytes [69]. We consider two scenarios

with different mobile/static node mix: scenario 1 with 40/6 mix and scenario 2 with

50/8 mobile/static mix, respectively. The parameters are summarized in Table 3.1.

We assume that there is an oracle for message routing. The oracle knows

everything and can distribute routing information around the network [69]. Notice

that the oracle is only responsible for message routing. Congestion control in each

node is addressed by congestion management strategy.
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Figure 3.3: Nodes’ position snapshot at 600s for 40/6 node mix for case listed in Fig.
3.5a.

Fig. 3.3 shows a snapshot of the network. Here, the destination is marked as

D, static nodes are marked S1 − S6, mobile nodes are indexed 1-40, and the lines

stand for existing links between nodes.

The main performance metrics of congestion management strategies in the sim-

ulation are throughput of the simulated network and the buffer utilization in each

node. In order to evaluate the performance of our proposed scheme, we compare the

congestion management strategy with dynamic opportunity cost with the one with

static opportunity cost under the same routing scheme. We employ the function

w log x, where w is an adjustable weight, x is the remaining capacity of a node, to

compute the salvage reward of remaining amount of capacity, the reason to choose

such a function is to guarantee that the salvage reward is concave in the remaining

amount of capacity at the end of the time horizon.

3.7.2 Simulation Results and Discussions

As we have discussed, we separate the congestion management mechanism from

the route selection problem. The routing algorithm is based on the oracle in the sys-
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tem. Fig. 3.4 shows the distribution of hop-count of messages of two different mobile

node/static node mixes under different congestion policies (scheme with dynamic op-

portunity cost and scheme with static opportunity cost). From Fig. 3.4, we can see

that there is no significant difference in hop count among several simulation scenarios.
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Figure 3.4: Hop count distribution

Fig. 3.5 shows snapshots of buffer utilization under the two control policies

with 40/6 node mix at 600s. Fig 3.5a is the snapshot of buffer utilization with arrival

density λ1 = 1/2 of 6 poisson processes. Fig. 3.5b is the snapshot with message

arrival density λ1 = 5/9 of 6 poisson processes. Fig. 3.6 shows the snapshots of

buffer utilization with 50/8 node mix at 600s. Fig. 3.6a is the snapshot of buffer

utilization with arrival density λ1 = 1/2 of 8 poisson processes. Fig. 3.6b is the

snapshot with message arrival density λ1 = 5/9 of 8 poisson processes.

From Fig. 3.5 and 3.6, we can see that control policy with dynamic cost can

achieve much more evenly balanced loads and higher utilization in all the nodes of

the network and better throughput. Since a node can not predict the coming request

in advance, if the opportunity cost is fixed it is possible to reject the request even if



95

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90
Dynamic

Node index

U
til

iz
at

io
n 

%

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90
Static

Node index

U
til

iz
at

io
n 

%

Throughtput at 600s: 253Throughtput at 600s: 327

(a)

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90
Dynamic

Node index

U
til

iz
at

io
n 

%

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90
Static

Node index

U
til

iz
at

io
n 

%

Throughput at 600s: 375 Throughput at 600s: 281

(b)

Figure 3.5: Load distribution in nodes - 40/6 node mix. (a) message generation rate
λ = 1/2 message/second. (b) λ = 5/9 message/second.

the utilization is still low. Therefore it is a dangerous control to set a fixed cost to

obtain optimization solution in revenue and utilization [51]. On the other hand, a

dynamic policy can adapt the opportunity cost in a node based on varying storage

space and the space usage can be optimized.

Fig. 3.7 shows node utilization and throughput for 40/6 node mix at 600s,

where simulation conditions are the same as those of Fig. 3.5a except that traffics are

generated at a constant rate (0.5 message/second) from the static nodes. From Fig.

3.7, we can see that the congestion control policy with dynamic opportunity cost can

achieve better buffer utilization and throughput than the one with static opportunity
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Figure 3.6: Load distribution in nodes - 50/8 node mix. (a) message generation rate
λ = 1/2 message/second. (b) λ = 5/9 message/second.

cost even in this extreme case. For other simulation scenarios, we have very similar

results.

3.8 Conclusion

In this chapter, we have developed an optimal congestion management strat-

egy for delay tolerant networks based on the concept of revenue management and

dynamic programming. Relying only on the information of local storage space, our

scheme can be readily applied to the dynamic and often unpredictable environments

of delay tolerant networks. Our simulation results show that the proposed conges-
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Figure 3.7: Load distribution in nodes - 40/6 node mix (traffic generated at constant
speed 0.5 message/s).

tion management strategy can effectively outperform a simple static, threshold based

scheme.



CHAPTER 4

REPEATED GAME MODELING OF CONGESTION MANAGEMENT
IN INTERMITTENTLY COMMUNICATING NETWORKS

4.1 Introduction

In the previous chapter, we developed congestion control strategies for delay

tolerant networks based on the concepts of revenue management and dynamic pro-

gramming. We assumed that the time horizon is finite in making the decision of

resource allocation. However, in practice, in certain situations, it might be difficult

or impossible to predict when the dynamic behavior will stop. As an alternative so-

lution, we employ repeated games to model the decision making for custody transfer

in this chapter.

Since delay tolerant networks are dynamic in nature, they may have no fixed

topology, where nodes arrive, leave and move away changing neighborhood, every

node can not be sure that it is going to communicate with different opponents next

round. Even if the topology is fixed, since the communication between any two nodes

is intermittent, there is no knowledge when the dynamic behavior is going to stop.

This kind of communication patterns can be modeled by repeated games. Repeated

games can describe situations in which the number of communication rounds is infinite

and finite (even only once) and capture the dynamic interacting behaviors of selfish

nodes over time [94].

The power of the repeated game model is that it allows to design simple mech-

anisms that enforce cooperation in network lifetime even if there is no knowledge on

how long the network life time is. Our goal is to maximize each node’s payoff while

respecting the resource constraint of each node.

98
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The main contribution of this chapter is to employ repeated games to model the

decision making for custody transfer and propose a new congestion control strategy.

This chapter is organized as follows. In Section 4.2, we investigate the related

work. Section 4.3 briefly presents some basic knowledge of repeated game theory. The

congestion management problem is reformulated in Section 4.4. Section 4.5 studies

the custody transfer game. We propose a congestion control strategy and analyze

it in Section 4.6. In Section 4.7, we use several simulation scenarios to show the

performance of the proposed control strategy. Finally, we conclude this chapter in

Section 4.8.

4.2 Related Work

Game theory has been used to model selfish behaviors on achieving socially

desirable equilibria in networks [88–93, 96, 97].

In [92], Nurmi used a bayesian game to model energy constrained routing in

selfish ad hoc networks, discussed the structure of strategies and proposed a method

that allows the nodes to learn equilibrium strategies over time. Urpi et al developed

a model, based on bayesian game, capable of formally explaining characteristics of ad

hoc networks (the nodes’s selfishness or the network mobility), this model allows to

formally study and analyze strategies for cooperation [89].

Many peer-to-peer systems rely on cooperation among self-interested users. For

example, users of file-sharing systems who don’t share their own resources cause long

delay or download failures. When non-cooperative users benefit from free-riding on

others’ resources, the “tragedy of the commons” is inevitable. Avoiding this problem

requires an incentive for cooperation. In [90], the authors used an infinitely repeated

game to model peers’ interactions, in their model, all peers are server and client

in a game, a set of demand relationships among the peers in the network is given
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exogenously, and remains constant throughout. Lai et al employed evolutionary game

to capture the dynamic behavior in peer-to-peer networks, in each game, one player

is the client and one player is the server [91].

In [96], the authors studied optimal routing using repeated game theory, and

investigated the existence of a Nash equilibrium point that achieves the system-wide

optimum cost. In [86], Afergan used a repeated game to design incentive-based routing

systems, and viewed the exchange of pricing information at an interconnect as a

repeated game between the relevant players. Afergan et al also used repeated game

to model user behavior and studied the practical tradeoff between a user’s short-term

desire for quality and long-term desire for the network’s continued existence [87].

In static networks, game theory has long been used to model the routing de-

cisions of networks. However, once we move to dynamic and resource constrained

settings, such as sensor networks, delay tolerant networks, we need to seek new mod-

els that capture the dynamic nature of the decisions and the resource constraints of

the networks are needed.

4.3 Basics of Repeated Game

In this section, we first introduce the repeated game theory, then briefly describe

dynamic game, a variation of repeated game.

When players interact by playing a similar static game many times, the game

is called a repeated game. The building block of a repeated game, the game which is

repeated, is called the stage game. To define the repeated game, we must specify the

players’ strategy space and payoff functions. Unlike a game played once, a repeated

game allows a strategy to be contingent on past moves, thus allowing reputation

effects and retribution, which give possibility for cooperation [94, 95].



101

Table 4.1: Payoffs for the prisoners’ dilemma

Player 1

Player 2
C D

C (1, 1) (−1, 2)
D (2,−1) (0, 0)

Consider, for example, the canonical example of the Prisoners’ Dilemma. In this

game we have two players. The action space of this game is simple - each player can

either cooperate (C) or defect (D), and the players move simultaneously. Based on

their actions, each player receives a payoff as given by the matrix in Table 4.1. In the

matrix, each cell represents the payoff of a particular pair of actions. For example,

if both players play C then both get a payoff of 1, or u1(C,C) = u2(C,C) = 1.

If however, player 1 plays D but player 2 plays C, then the payoff of player 1 is

u1(D,C) = 2.

In the one-shot game, both players will play D. Regardless of what the other

does, it is always in the best interest for a particular player to defect. The only Nash

Equilibrium (NE) of this game is therefore (D,D). This also holds when the number

of rounds is finite and known, as reverse induction shows that each stage game is

equivalent to the one shot game.

When the number of rounds is infinite or unknown, other equilibrium outcomes

are possible. It is standard to use a discount factor to capture the fact that future

payments are less valuable. Typically, this factor is represented by δ (0 < δ < 1), and

can - for example - represent the time-value of money. Here δ = 1 represents perfectly

patient players whereas δ = 0 represents perfectly impatient players. It is interesting

to note that both cases can be analyzed in the same fashion, using δ as a parameter

to understand the space between the extremes.

For example, assume that Player 2 plays the following strategy:
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1. Play C,

2. If Player 1 ever plays D, then Play D forever.

Now look at player 1 in either case, fixing the strategy of Player 2 as above.

If she cooperates she receives u1(C,C) = 1 forever. However, if she deviates, she

obtains u1(D,C) = 2 once and then u1(D,D) = 0 for the rest of the game.

The sample strategy will be an equilibrium strategy if and only if the payoffs

of playing the strategy are greater than or equal to the payoffs of deviating from the

strategy and suffering the consequences. Again, we model player’s preferences over

streams of payoffs by discounting the payoffs with a decaying parameter δ. Using the

above values, we can determine whether or not the sample strategy is an equilibrium

strategy by comparing the payoffs to various actions.

While in the finitely repeated game cases, a strategy can explicitly state what

to do in each of the T periods, specifying strategies for infinitely repeated games is

trickier because it must specify actions after all possible histories, and there is an

infinite number of these. Here are the specifications of several common strategies.

• Always Defect (ALL-D). This strategy prescribes defecting after every his-

tory no matter what the other player has done.

• Always Cooperate (ALL-C). This strategy prescribes cooperating after ev-

ery history no matter what the other player has done.

• Tit-for-Tat (TFT). This strategy prescribes cooperation in the first period

and then playing whatever the other player did in the previous period: defect

if the other player defected, and cooperate if the other player cooperated.

The detailed discussion about repeated game theory is referred to reference

[83, 94].

A dynamic game is a specific kind of repeated game. It allows the possibility

that the stage game changes from period to period for a fixed set of players, possibly
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randomly as a function of the history of play [94]. The analysis of a dynamic game

typically revolves around a set of game states that describe how the stage game

varies from period to period. Each state determines a stage game, captured by writing

payoffs as a function of states and actions. The specification of the game is completed

by a rule for how the state changes over the course of play. In many applications, the

context in which the game arises suggests what appears to be a natural candidate for

the set of states. The detailed discuss about dynamic game is referred to [94].

While the repeated games are the well-studied dynamic games, the control

strategies developed for them are very complicated [83, 94, 95]. We will employ re-

peated single-decision games to model decision-making for custody transfer in delay

tolerant networks.

4.4 Problem Formulation

In this section, we reformulate the problem based on the one formulated in

Section 3.4 so that the problem formulation is suitable for description by repeated

single-decision games.

We assume that there are n nodes in a delay tolerant network. Each node can

not be sure that it is going to communicate the next round with different nodes since

the communication is intermittent and the topology may be dynamic. For each node,

there may be no knowledge when the communication with other nodes is going to

stop. The above situations can also happen in a mobile ad hoc network, where nodes

arrive, leave and move away changing neighborhood [89].

If the communication is present between any two nodes, the nodes may com-

municate to transfer messages if allowed. Figure 4.1 shows a simple communication

scenario of two nodes in a delay tolerant network. Node j may send a message trans-

fer request to node i when there exists communication opportunity between them.
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Node i makes a decision whether to accept or reject the request from node j based

on its occupied storage space and request reward. We here assume that the storage

space in each node is limited, and it is the key resource constraint in our problem.

j i

Figure 4.1: Custody transfer of two players

By accepting a message, a node accumulates a certain amount of payoff. The

payoff is defined as the difference between request reward and custodian cost. We

suppose that each message transfer request has a certain reward, which is denoted by

B`, where B` > 0, ` ∈ {1, . . . ,m} is the index of the class of rewards. The reward can

be of various forms and correspondingly different optimization goals can be achieved.

For example, by properly adjusting reward, performance issues such as throughput

and fairness can be addressed [59].

Notably, reward can be a function of the message size with different weights

based on their corresponding traffic priorities or traffic types. For simplicity, we

assume that message sizes of different priorities (or types) are homogeneous in volume

and thus indistinguishable when filling the buffer if they are accepted. We also assume

that arrivals of requests for custody occur at discrete points in time, which are called

decision epochs. Notice that the arrival requests (events) drive the decision epochs.

In other words, the decision epochs are not predetermined but rather given by the

arrival requests themselves.

It is worth noting that the custodian cost of a message in a node depends on

the occupied storage space. The custodian cost increases as the utilization of storage
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space increases. The state transition of the available storage space in a node has been

discussed in Section 3.4.2, we here follow these rules.

In this chapter, the dynamic interactions between any two nodes during op-

portunistic communication will be modeled as repeated single-decision games. The

nodes try to maximize their payoffs with the resource constraints.

4.5 The Custody Transfer Game

In this section, we will use repeated single-decision games to model the making

decision of custody transfer in delay tolerant networks. We use the words “stage

game” and “single-decision game” interchangeably later.

We suppose that any two nodes set up a game during their opportunistic com-

munication. For any two nodes that meet for games, one node may make message

transfer request, the other node can make a decision to accept the message transfer

requst or reject the message transfer request. For clarity, we take an instance of game

shown in Figure 4.1 as an example, in this situation, node j can make a message

transfer request, node i will make a decision to accept the message transfer request

or reject the message transfer request. However, this situation is not fixed. Node i

can set up another game with an other node in the future, request message transfer.

Node j can also set up a game with an other node and make a decison to accept the

message transfer request or reject the transfer request.

In order to more clearly explain the custody transfer game, we modify Figure

4.1 into Figure 4.2 and use it to describe the custody transfer game. In the game

shown in Figure 4.2, we assume that node N t
i can make a transfer request, node i

can make a decision to accept transfer request or reject transfer request. Index t in

N t
i stands for the decision epoch (or game stage index), that is, at decision epoch (or
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game stage) t, node i sets up a game with node N t
i ∈ {1, · · · , n} \ i. We next make

no difference between decision epoch and game stage index.

Table 4.2 shows payoff matrix of a specific single-decision game seceario between

two nodes. In this game scenario, since node i’s payoff is greater than 0 if it makes

a decision to accept the transfer request, the decision to accept the transfer request

will dominate the the decision to reject the transfer request.

iN
t
i

Figure 4.2: Game scenario of two players

Table 4.2: Payoff matrix of a game scenario between node i and node N t
i .

Node N t
i

Node i
Accept request Reject request

Request transfer (1, 7) (0, 0)
Don’t request (0, 0) (0, 0)

We next take the scenario shown in Figure 4.2 as an example to describe custody

transfer game between any two nodes in a delay tolerant network.

• The players are nodes in the networks. Let i ∈ {1, · · · , n} denote a node.

N t
i ∈ {1, · · · , n} \ i denotes a node to communicate with node i at game stage

t. For simplicity, we assume that N t
i is a singleton. For node i, the N t

i can be

different in different stage game (stage game index t needs to be updated).

• Node i can make a decision to accept the transfer request or reject the trans-

fer request, its action space is Si = {accept request, reject request}. Node N t
i can

make a transfer request, its action space is SNt
i

= {request transfer, don’t request}.
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• Table 4.3 specifies a general form of payoff matrix for a stage game. The payoffs

should meet the following requirements and associated inequalities. The reason

to set these requirements is to make incentives for the custoday transfer betwen

any communication pair.

1. The situation that node 1 makes a transfer request and the request is

accepted by node 2 should lead to higher payoff than the situation that

node 1 makes no request and node 2 also ignores the request (R1 + R2 >

P1 + P2).

2. The situation that node 1 makes a transfer request and the request is

accepted by node 2 should lead to higher payoff than the situation that

node 1 makes no request or node 2 rejects the transfer request (R1 + R2 >

S1 + T2 and R1 + R2 > T1 + S2).

3. Reject request (Don’t request) dominates accept request (request transfer)

at the individual level for at least one of nodes (T2 + P2 > R2 + S2 or T1 +

P1 > R1 + S1).

Table 4.3: General form of a payoff matrix in a stage game for custody transfer

Node 1

Node 2
Accept request Reject request

Request transfer (R1, R2) (S1, T2)
Don’t request (T1, S2) (P1, P2)

In Table 4.3, Ri, Si, Ti, and Pi (i ∈ {1, 2}) stand for payoffs of node i in their

corresponding strategies, respectively.

• In order to fit the requirements specified in the above item, we define a specific

payoff matrix for each stage game, which is specified in Table 4.4. We will use

this specific payoff matrix to specify single-decision game (stage game).



108

Table 4.4: A specific payoff matrix of a stage game between node i and node N t
i .

Node N t
i

Node i
Accept request Reject request

Request transfer (1, U t
i (o

t
i, β

t
i)) (0, 0)

Don’ request (0, 0) (0, 0)

• In Table 4.4, the payoff U t
i (o

t
i, β

t
i) is defined as

U t
i (o

t
i, β

t
i) = −αi(o

t
i) + βt

i (4.1)

where αi(o
t
i) is custodian cost when the occupied storage space of node i at

game stage t is ot
i, αi(·) is some nondecreasing function, we further assume that

αi(·) is concave, differentiable with respect to ot
i; βt

i ∈ {B1, · · · , Bm} is reward

to accept a message transfer request at game stage t, it is dependent on the

type of the request.

• Node i makes a decision to accept the message transfer request or reject the mes-

sage transfer request based on control strategy defined in Section 4.6. Players

(nodes) observe each other’s actions, but not their strategies.

It is worth noting that in our game framework, node N t
i ’s payoff is 1 if it can

successfully transfer a message to node i. If node N t
i releases its occupied space, its

future custodian cost will decrease. Hence there will be possibility that it can accept

messages with low rewards. It is also beneficial to drive the system to high utility.

It is also worth noting that in our framework, we have no restriction on the num-

ber of communication rounds between node i and node N t
i (but the game stage index

t will be updated). This game model supposes that each round of communication

sets up a custody transfer game.
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In our model, each node tries to maximize its payoff with its the storage con-

straint. We assume that the storage capacity for each node is C units.

4.6 Control Strategy

In this section, we first propose the control strategy, then discuss the properties

of the proposed strategy. Our goal is to design a control strategy to maximize each

node’s payoff while respecting its resource constraint.

4.6.1 Control Strategy

In this subsection, we proposse the rule for node i to choose action in each

stage game. Even though the rule is the same in every stage. Note that this does not

necesarily mean that the action chosen in each stage will be the same.

For a node i, if node N t
i requests a message transfer during their communication

opportunity, it can make a decision using control function σi defined below. In prac-

tice, node i makes its decision based on the potential request reward and its occupied

custodian space, that is, the control strategy σi is a function of payoff U t
i (o

t
i, β

t
i):

σi[t] = σi

[
U t

i (o
t
i, β

t
i)
]

=







1 if U t
i (o

t
i, β

t
i) > 0,

0 otherwise.

(4.2)

where σi[t] = 1 stands for accepting a message transfer request at decision epoch t,

σi[t] = 0 means that a message transfer request is rejected at decision epoch t.

Note that σi[t] takes as input only local information of node i that is available at

decision epoch t. The rationale is that only information at decision epoch t can affect

U t
i (·), hence the decision of node i. Since the output of the function σi[t] depends on

the input U t
i (o

t
i, β

t
i), the strategy is reactive.
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Our model only requires that node i be able to observe its occupied storage space

and transfer request information at each decision epoch. Therefore the proposed

strategy is completely distributed approach. This control strategy is significantly

suitable for delay tolerant networks, where only local information of each node is

available.

4.6.2 Strategy Analysis

In this subsection, we analyze the proposed control strategy in repeated single-

decision games.

From Section 3.4.2, we can know that the state transition of available storage

space in node i can be described as follows.

at
i = at−1

i − σi[t − 1]xt−1
i + bt

i (4.3)

where σi[t − 1] is control strategy of node i at decision epoch t; bt
i = 1 if a message

is successfully transferred to next custodian node, bt
i = 0 otherwise; xt−1

i = 1. The

detailed explanation of equation (4.3) is referred to Section 3.4.2.

The relation between the occupied storage space and the available storage space

in node i is as follow.

ot
i = C − at

i (4.4)

From the definition of payoff U t
i (o

t
i, β

t
i), the current state can have effect on

payoff, the action taken by node i in a particular state determins its payoff. The

control strategy for node (player) i is a mapping σi
t, associating the strategy with the

occupied storage space oi
t or the available storage space at

i.

Based on the single-decision game theory and the above analysis, we yield the

following conclusions:
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1. If neighbor N t
i of node i makes a message transfer request at decision epoch t,

and node i’s payoff U t
i (o

t
i, β

t
i) ≤ 0, then the reject request will dominate the ac-

cept request. The strategy (request transfer, reject request) is Nash equilibrium.

2. If neighbor N t
i of node i makes a message transfer request at decision epoch t,

and node i’s payoff U t
i (o

t
i, β

t
i) > 0, then the accept request will dominate the re-

ject request. The strategy (request transfer, accept request) is Nash equilibrium.

The goal of each node is to maximize its payoff that accumulates over time.

For node i, the number of single-decision game rounds (stage game) is unpreditable

(infinite or finite). We assume that the future payoffs are discounted by a factor δ

for each stage game. The cumulative payoff Ūi of node i is computed as the weighted

sum of the payoff U t
i that node i obtains in each stage game:

Ūi =
∞∑

t=0

δtU t
i , (4.5)

where 0 < δ < 1. The discounting factor δ represents the degree to which the payoff

of a stage game is discounted relative to the previous stage game.

For node i, its request can be one of bids with benefits B1, B2, . . . , Bm at each

decision epoch. The question is that node i can not know the future request given

that decisions to accept “low” bids can not be reversed after knowing about future

higher bids. On the other hand, it is dangerous to gamble that the future bids will

be higher since they may never arrive.

Our control strategy is to make a decision to accept transfer request or reject

transfer request at each decison epoch based on the occupied storage space in node

i and request reward. Therefore node i makes its “best” decision based on the local

information at decision epoch t without gambling its future benefits.
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Based on the above analysis, we can know that node i balances its benefit at

the current decision epoch and its further potential benefits.

4.7 Simulation

We developed a discrete event-driven simulator based on the one in [72] to

evaluate our congestion management strategy. The simulator implements a congestion

management strategy as proposed in the previous section. To isolate the effect of link

bandwidth on the congestion management strategy, we still assume that each link

has infinite bandwidth as we did in Section 3.7.

4.7.1 Simulation Settings

In our simulation, the simulator generates delay tolerant networks consisting

of both mobile nodes and static nodes in a 3, 000 × 3, 000m2 field. Static nodes are

randomly distributed in the field and generate messages following poisson processes.

Each static node can generate five classes of request messages with probability of 0.2

for each kind of messages. Mobile nodes function as relay nodes. All nodes have

a uniform transmission range of 100m. The destination node has unlimited storage

capacity and is randomly located in the field and always ready to accept messages

during opportunistic contact with mobile nodes. The storage capacity in each mobile

node has a size of 50 messages.

The simulation parameters are shown in Table 4.5. We consider four scenarios

with different mobile/static node mix: scenario 1 with 40/20 mobile/static node mix,

scenario 2 with 50/20 mobile/static node mix, scenario 3 with 50/30 mobile/static

node mix and scenario 4 with 60/30 mobile/static node mix, respectively.

The mobility of mobile nodes is generated as follows: (1) a square region of a

given size is placed at a random position in the network, there are 20 square regions in
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Table 4.5: Simulation parameters

Parameter Value
Simulation field size 3, 000 × 3, 000 (m2)
Transmission range 100 m
Number of static nodes 20/20/30/30
Number of mobile nodes 40/50/50/60
Region size 400/400/400/400(m)

the network field; (2) 2 or 3 nodes are randomly placed in each region; (3) the nodes

placed in each region will move in random-way-point with random initial locations in

their regions. The random way point model employed for mobile nodes has a moving

speed uniformly distributed in [0.2, 0.5] m/s and the pause time of a stop is uniformly

distributed in [2, 3] seconds.

Since messages have to traverse lower layers of the network, they are ultimately

subject to the restrictions there in term of maximum packet size. For example, on

most IP networks it is safest to assume that single packet should be less than 1500

bytes long. Therefore, we assume that each message has a size of 1500 bytes [69].

It is worth noting that the routing algorithm can significantly affect the perfor-

mance of congestion control in delay tolerant networks. In order to focus on conges-

tion management, we here follow [49] and separate the congestion strategy from the

routing algorithm.

We assume that there is an oracle for message routing. The oracle knows

everything and can distribute routing information around the network. Notice that

the oracle is only responsible for message routing. Congestion control in each node is

addressed by the congestion management strategy.
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4.7.2 Custodian Cost Function

The custodian cost is zero if the utilization of a node is zero. This means that

the custodian cost is zero as long as the storage buffer is empty. As the messages

accumulate in the storage buffer, the custodian cost increases. The cost can theo-

retically go as high as infinite when the storage space is fully occupied. In practice,

the custodian cost of a node will increase until a given value Cmax when no message

transfer request can be enforced.

The utilization of storage space in node i is given by ot
i/C, where ot

i is the actual

number of messages occupying the storage space of node i at decision epoch t and C

is the storage capacity of each mobile node. In the simulation, we scale the custodian

cost of storage space in each mobile node from 0 to Cmax and choose the following

custodian cost function.

αi(o
t
i) = Cmax ×

eot
i/C − 1

e − 1
(4.6)

In the function (4.6), the custodian cost stays near 0 until the buffer utilization is

almost 1, then the custodian cost goes up very quickly. Obviously, it is a concave

and nondecreasing function with respect to variable ot
i. Given the exponential nature

of the custodian cost function, it is possible to approximate the custodian cost of a

node, the high utilization is to yield a dramatically high custodian cost value. In

practice, this custodian cost function sets variable threshold values depending on the

utilization of the storage space of a node, then filters the requests with low benefits

when the utilization is high.

It is worth noting that the custodian cost function (therefore payoff function)

is not unique. Its choice may be determined by the application domain. We here

choose an exponential function to compute the custodian cost of storage space in a

node.
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4.7.3 Simulation Results and Discussion

In this subsection, we will show the simulation results and give a brief analysis

for the simulation results.

In the simulation, we choose Cmax = 80. The rewards for the five kinds of

requests are 15, 25, 35, 45, 75 respectively. By equation (4.6), if the utilization of the

storage space is near 1, no request can be enforced. In practice, there are no strict

rules on the choice of request rewards and Cmax, the only requirement is that the

custodian cost should be comparable with request rewards.

Figure 4.3 shows the snapshots of the buffer utilization for 40/20 mobile/static

node mix at time t = 400s and t = 800s when the message arrival density generated by

each static node is 1/2 message/second. Figure 4.4 shows the snapshots of the buffer

utilization for 40/20 mobile/static node mix at time t = 400s and t = 800s when the

message arrival density generated by each static node is 2/3 message/second.

Figure 4.5 shows the snapshots of the buffer utilization for 50/20 mobile/static

node mix at time t = 400s and t = 800s when the message arrival density generated by

each static node is 1/2 message/second. Figure 4.6 shows the snapshots of the buffer

utilization for 50/20 mobile/static node mix at time t = 400s and t = 800s when the

message arrival density generated by each static node is 2/3 message/second.

Figure 4.7 shows the snapshots of the buffer utilization for 50/30 mobile/static

node mix at time t = 400s and t = 800s when the messages arrival density generated

by each static node is 2/3 messages/second. Figure 4.8 shows the snapshots of the

buffer utilization for 60/30 mobile/static node mix at time t = 400s and t = 800s

when the message arrival density generated by each static node is 2/3 message/second.

Figure 4.9 shows the throughput at t = 400 and t = 800 for several simulation

scenarios.

By analyzing the simulation results, we can obtain the following conclusions:
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Figure 4.3: Load distribution in nodes - 40/20 node mix, message arrival density =
1/2 message/second. (a) Load distribution at t = 400s. (b) Load distribution at
t = 800s.

• The congestion control strategy with dynamic custodian cost can achieve much

evenly balanced loads and higher utilization in all nodes of the network and

better throughput.

• Under the same simulation conditions except the message arrival density, the

increase in message arrival density can not significantly improve the throughput.

• Under the same simulation conditions except the mobile nodes, the more mo-

bile nodes move in the network field, the more throughput can be obtained.

The reason is that if the number of mobile nodes increases in the network field,

there will be more communication opportunity among network nodes, i.e., the

communication opportunity between static nodes and mobile nodes, the com-
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Figure 4.4: Load distribution in nodes - 40/20 mobile/static node mix, message
arrival density = 2/3 message/second. (a) Load distribution at t = 400s. (b) Load
distribution at t = 800s.

munication opportunity among mobile nodes, the communication opportunity

between mobile nodes and destination nodes.

It is worth noting that it is difficult to set a “optimal” static custodian cost as

a threshold. If this threshold is too low, the threshold can not filter any requests with

low rewards, then there will be no difference between the requests with low rewards

and the requests with high rewards. If the threshold is too high, most of the requests

will be rejected even if the utilization of the storage buffer is very low. Therefore, it is

dangerous to set a static custodian cost to obtain optimal solution. In our simulation,

we choose the average value of the five request rewards. However, the average value

does not mean that it is the optimal threshold value. Since the dynamic policy can
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Figure 4.5: Load distribution in nodes - 50/20 mobile/static node mix, message
arrival density = 1/2 message/second. (a) Load distribution at t = 400s. (b) Load
distribution at t = 800s.

adapt the custodian cost based on the varying occupied storage space, the storage

space usage can be optimized and the throughput can be improved.

4.8 Conclusion

In this chapter, we employ repeated one-decision games to model dynamic be-

haviors of delay tolerant networks. The repeated one-decision game based approach

is significantly suitable for modeling the intermittently communicating networks such

as delay tolerant networks, where every node can not be sure that it is going to com-

municate with different opponents next round and there is no knowledge when the

dynamic behavior is going to stop. Simulation results show that the proposed control
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Figure 4.6: Load distribution in nodes - 50/20 mobile/static node mix, message
arrival density = 2/3 message/second. (a) Load distribution at t = 400s. (b) Load
distribution at t = 800s.

strategy is effective in avoiding congestion and balancing network load among the

nodes.
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Figure 4.7: Load distribution in nodes - 50/30 mobile/static node mix, message
arrival density = 2/3 message/second. (a) Load distribution at t = 400s. (b) Load
distribution at t = 800s.



121

0 5 10 15 20 25 30 35 40 45 50 55 60
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

Dynamic

Node index

U
til

iz
at

io
n 

%

0 5 10 15 20 25 30 35 40 45 50 55 60
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

Static

Node index

U
til

iz
at

io
n 

%

(a)

0 5 10 15 20 25 30 35 40 45 50 55 60
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

Dynamic

Node index

U
til

iz
at

io
n 

%

0 5 10 15 20 25 30 35 40 45 50 55 60
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

Static

Node index

U
til

iz
at

io
n 

%

(b)

Figure 4.8: Load distribution in nodes - 60/30 mobile/static node mix, message
arrival density = 2/3 message/second. (a) Load distribution at t = 400s. (b) Load
distribution at t = 800s.
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Figure 4.9: The throughput for several simulation scenarios at t = 400s and t = 800s
(message arrival density = 2/3 message/second).



CHAPTER 5

CONCLUSION

In this dissertation, we explore congestions control for networks in challenged

environments.

In Chapter 1, we introduce congestion control in the Internet, and describe two

kinds of challenged networks, i.e., networks with time varying link capacities and

networks that intermittently communicate. In this chapter, we also motivate the

research in the dissertation.

In Chapter 2, we explicitly model link capacities to be time varying and study

the congestion control strategies. In particular, we propose a convex optimization

based congestion control algorithm which is proved to be trajectory stable in the

absence of feedback delay. Different from system stability around a single equilibrium

point, trajectory stability guarantees the system is stable around a time varying

reference trajectory. Moreover, we obtain sufficient conditions for the congestion

control algorithm to be locally stable in the presence of delay. We model time variation

of capacity as perturbation to a constant to evaluate the impact of link capacity

variation on the congestion control algorithm and through simulations study the

tradeoff between stability and robustness of the congestion control algorithm against

link capacity variation.

Chapter 3 explores the congestion control strategies in intermittently communi-

cating networks, where continuous end-to-end connectivity may not exist, the round

trip delay can be excessively high and TCP breaks. For this kind of challenged

networks, the optimization framework developed for the Internet based congestion
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control algorithm is not applicable. Therefore, we apply the concepts of revenue

management such as benefit function and opportunity cost, and employ dynamic

programming to study congestion control strategies in intermittently communicat-

ing networks. The developed congestion control strategies are distributed in nature

where only the local storage information of a node and the reward of the request are

required. The control scheme is especially suitable for intermittently communicating

networks, where global information is not available, and networks are inherently dy-

namic. Simulation results show that the proposed congestion control strategies are

effective to avoid potential congestion and balance network load among the nodes.

In Chapter 4, we employ repeated one-decision games to model the dynamic

behaviors of delay tolerant networks. The repeated one-decision game based approach

is significantly suitable for modeling the intermittently communicating networks such

as delay tolerant networks, where every node can not be sure that it is going to

communicate with different opponents next round and there is no knowledge when

the dynamic behavior is going to stop. Our simulation results show that the control

strategy based on repeated one-decision games is effective in avoiding congestion and

balancing network load among the nodes.
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