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ABSTRACT 

 

GERMANIUM BASED NANOTUBES: FACT OR FICTION? 

 

Somilkumar Jagdishchandra Rathi, M.S 

 

The University of Texas at Arlington, 2008 

 

Supervising Professor:  Asok K Ray 

 Unlike carbon nanotubes, nanostructures of Ge, a group IV semiconductor, have not 

been fully explored. In particular, there is limited data available on Germanium-based 

nanotubes. The aim of this thesis is to explore the structural and electronic properties of 

Germanium based nanotubes and their potential future electronic applications. We have thus 

performed a systematic ab initio study of the electronic and geometric structures of three 

different types of single-walled SiGe and GeC nanotubes in armchair (n, n) and zigzag (n, 0) 

(3<n<11) configurations using hybrid density functional theory and the finite cluster 

approximation. Also we provide the detailed analysis of pure Si (armchair, zigzag and chiral) 

and Ge nanotubes in the armchair and zigzag format with similar dimensions. The Gaussian '03 

suite of programs was used for all computations which involved full geometry and spin 

optimizations. A detailed stability investigation of the topologically similar nanotubes with 

dependence of the electronic band gaps on the tube diameters, energy density of states, and 

dipole moments have been carried out. Using the Mulliken charge analysis, charge density 

distribution along the tube lengths is also calculated. In depth structural analysis and distribution 

of molecular orbitals are also reported. The spatial positions of the atoms, ionicity, and 



v 

curvature are the primary governing factors in the determinations of the stabilities and the 

electronic behavior of the nanotubes. The interesting findings from this detailed study of Ge 

based hybrid nanotubes can be useful to fabricate and manipulate the future nano-electronic 

devices. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview of Carbon nanotubes 

Discovery and synthesis of the “buckyball” C60 in the early 1990’s led scientists towards 

a new miracle material called carbon nanotubes (CNTs) which are thin tubes of carbon atoms 

[1,2]. With the tremendous success of CNTs, over the years quasi-one-dimensional 

nanostructures such as nanotubes and nanowires have stirred extensive interests in condensed 

matter physics and in fact, the entire research world, partly because of their fascinating 

electronic and mechanical properties and partly because of novel technological applications [3-

11]. Single walled nanotubes particularly have been studied more extensively both 

experimentally and theoretically. One interesting fact observed both experimentally and 

theoretically in the case of carbon nanotubes is that single walled carbon nanotubes are 

believed to exhibit metallic or semiconducting behavior depending on the tube diameter and 

chirality. Length and curvature also are found to influence the structure and energetics of a 

nanotube [1-18]. Conductivity enhancement in CNTs bundles doped with alkali metals and 

metal-semiconductor and semiconductor-semiconductor transitions induced by intercalating 

alkali atoms has also been studied extensively [19,20]. Study of structure-dependent Coulomb 

blockade of carbon nanotubes showed that Coulomb staircase is evident at lower temperatures, 

could be suppressed by temperature elevation [21]. On the application side of CNTs numerous 

studies have been performed. For example, transistor based on carbon nanotubes offer a 

unique functionality. It can operate as a ballistic field-effect transistor, with excellent 

characteristics even when scaled to 10 nm dimensions [22]. An effective forward-biased p-n 

junction, without dopants, can also be created from carbon nanotubes by appropriately biasing 

the nanotube device [23]. Also sensors based on CNTs have demonstrated high sensitivity 
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towards the detection of electromagnetic and acoustic signals as well as different chemicals 

[24-25]. A wealth of information is also available on the transport properties of CNTs. Koller et 

al. [26] investigated linear and nonlinear transport in interacting single wall carbon nanotubes 

that are weakly attached to ferromagnetic leads. They also derived the equations of motion 

which account for an arbitrarily vectored magnetization of the contacts. Schonenberger [27] 

while carrying out the studies on transport properties of CNTS showed that because of the low 

carrier density and therefore reduced screening, the Fermi energy can be tuned by electrostatic 

gates. Also Schonenberger [27] showed that single walled nanotubes (SWNTs) offer many 

advantages over multiwalled nanotubes (MWNTs) for spin transport studies, including increased 

scattering lengths, well-defined electronic band structure, enhanced Coulombic interactions 

(leading to novel physical phenomena), and the possibility to modify the nanotube resistance 

with a capacitively coupled gate. The electrical properties of individual bundles, or "ropes," of 

single-walled carbon nanotubes have been measured by Bockrath et al. [28] below 10 kelvin, 

and the low-bias conductance was suppressed for voltages less than a few millivolts. In 

addition, they found out that dramatic peaks were observed in the conductance as a function of 

a gate voltage that modulated the number of electrons in the rope. They interpreted these 

results in terms of single-electron charging and resonant tunneling through the quantized 

energy levels of the nanotubes composing the rope. Martel et al. [29] fabricated field-effect 

transistors based on individual single- and multi-wall carbon nanotubes and analyzed their 

performance. They showed that transport through the nanotubes is dominated by holes and, at 

room temperature. Also they reported that by varying the gate voltage the conductance of a 

single-wall device can be successfully modulated the by more than 5 orders of magnitude. A 

model carbon nanotube (CNT)-(CH)n-CNT structure is studied  by Bruque et al. [30] to 

understand the electron transport through an interface between two conjugated systems. They 

reported that conductance of the CNT-(CH)n-CNT structures strongly depends on the bonding 

angle of the (CH)n-CNT bond and the minimum-energy relaxed geometry is relatively coplanar. 
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Also the relationship of the conductance on the length of the (CH)n depends on the geometry of 

the (CH)n-CNT interface. Exhaustive research has also indicated that nanotube and nanoform 

conformations are not possessed by only carbon but also by many other elements and 

compounds [31-43]. 

 
1.2 Nanotubes of Pure Silicon 

 
 Moving on to Silicon, we know that Si resides is in the column IV of the periodic table 

below carbon and progressively increasing research is currently being performed in the area of 

silicon nanotubes and nanostructures. Research in recent years has underscored the 

importance and development of silicon at nanoscale. Nano-silicon is believed to be a potential 

candidate for diverse applications such as creating better disease detectors and biochemical 

sensors, as well as tiny electronics such as ultra-high density memory chips for ultra fast 

computing. It is widely believed that Si nanotubes (SiNTs) and nanoforms will be the next most 

compatible and miscible materials with the current micro and nanoelectronics devices [44-49].It 

is well known fact that carbon prefers sp2 hybridization with π bonding, which helps to form 

graphitic, tubular and aromatic structures. On the other hand, silicon tends to prefer tetrahedral 

sp3 bonding. Hence, forming tubular structures of Si (thereby forcing Si to have sp2 bonding) 

was initially considered to be hypothetical at best. As a result, considerable theoretical and 

experimental efforts have been carried out over the past and recent years to investigate the 

existence and fabrication of SiNTs. One of the earliest theoretical works on SiNTs was done by 

Fagan et al. [50] using ab inito density functional theory (DFT). They showed that the band 

structure, electronic density of states, and cohesive energies of single-walled SiNTs are similar 

to that of CNTs having the same type. They also found relevant discrepancy concerning the 

energy difference between the cohesive energies per atom for tubes compared to the 

corresponding bulk structure. In a follow up study, Fagan et al. investigated the stability and 

thermal behavior of SiNTs and CNTs from first principles calculations and Monte Carlo 

simulations with the Tersoff empirical potential [51].The band gap was found to decrease with 
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increasing tube diameter but significant discrepancies were observed in the thermal stabilities 

and cohesive energies of SiNTs and CNTs compared with corresponding bulks. Seifert et al. 

[52] performed atomistic stimulations on silicides and SiH nanotubes using nonorthgonal tight-

binding DFT scheme and their results supported the possible existence of SiNTs. Another 

theoretical work by Zhang et al [53] using the semi empirical molecular orbital PM3 method, at 

the HF/3-21G  and HF/3-21G (d) levels of theory and concluded that dangling bond terminated 

SiNTs exist as severely puckered structure (with a corrugated surface) with Si-Si distances 

ranging from 1.85 Å  to 2.25 Å. Barnard and Russo [54] used an ab inito pseudopotential  DFT-

GGA method with the Perdew-Wang exchange correlation functional (PW91) to study the 

structure and energetics of single-walled armchair and zigzag SiNTs. They showed that the 

individual cohesive energies and strain energies are both dependent on the nanotube diameter 

and chirality. Also, Zhang et al. [55] using hybrid DFT have clearly shown that SiNTs exist stably 

in armchair configuration. In a more recent work, a study of possible structures of SiNT via 

Tight-Binding Molecular Dynamics was done by Zhang and co-workers [56]. Predictions of 

gearlike structures containing alternating tetrahedral and trigonal-planar Si configurations were 

made.  

Comparison of single-walled SiNT (both gearlike and hexagonal) with corresponding 

CNTs has been done by Yang et al. [57]. A recent study on double walled silicon nanotubes 

(DWSiNTs) with faceted wall surfaces (with Hydrogen passivation effects included) using first-

principle calculations have been reported by Zhao et al. [58]. They showed that hexagonal and 

tetrahedral like structures of these DWSiNTs are almost energetically equal. Classical potential 

studies of the stability of infinite and finite clean and hydrogenated open-ended SiNTs was 

performed by Ponomarenko et al. [59] to study their energetics. Thermal behavior of Si 

nanocages and nanotubes using classical molecular dynamics simulations based on Tersoff 

potential has been studied by Kang et al. [60]. Their results were in good agreement with 

previous density functional theory results. Mechanical characteristics of SiNTs have also been 
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studied by various groups. For example molecular dynamics simulation of temperature effect, 

strain rate and vacancies on tensile and fatigue behavior of Si based nanotubes using Tersoff-

Brenner man body potential functions has been performed by Jeng et al. [61]. Bai et al. [62] 

have provided evidence for the possible existence of one dimensional single-walled Si 

nanostructure having square, pentagonal and hexagonal building blocks, all of which have 

different local geometries from diamond Si but still maintains four-fold co-ordinations. Their 

calculations showed that the nanotubes have zero band gaps, suggest that their structure were 

possibly metallic rather than semi-conductor. The response of hypothetical SiNTs under axial 

compression has been investigated by Kang et al. [63] using atomistic simulations. Electronic 

and Magnetic properties of Si based nanotubes after doping with transition metals has also 

been examined by different groups [64-66]. There are some novel experimental evidences in 

literature which show the presence of nanotubular forms of silicon.  

More recently, the presence of Y-, T- branched and coiled tubular structures with the 

help of Transmission electron microscopy and electron energy loss near-edge technique has 

been confirmed [67]. Crescenzi et al. [68] has reported single nanotubes constituted by oxidized 

silicon atoms with diameter ranging from 2 to 35 nm and atomic arrangement compatible with a 

puckered structure and different chiralities. They have also reported that SiNTs can be 

semiconducting as well as metallic character. Yamada et al. [69] has confirmed the presence of 

multiwall nanotubes composed of rolled-up quasi two dimensional honeycombs nets of silicon 

atoms with the help of electron microscopy and electron diffraction technique. Si nanotubes 

have been successfully prepared in the labs also. Self assembled SiNTs with one-dimensional 

structure have been synthesized from silicon monoxide powder under critically hydrothermal 

conditions by Tang et al. [70]. Sha et al. [71] successfully fabricated SiNTs by chemical vapor 

deposition process using nanochannel Al2O3 substrate. Using molecular beam epitaxy, 

synthesis of SiNTs on porous alumina has been done by Jeong et al. [72]. 
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1.3 Nanotubes Based on Pure Ge and Related Compounds 

Given that germanium is in the column IV of the periodic table as carbon and silicon 

and is isoelectronic with them, it has been suggested that Ge and associated compounds at 

nanoscale might also be promising candidates for future nanoelectronics based technologies 

[73, 74]. As compared to previously mentioned CNTs and SiNTs, not much has been reported 

on one dimensional Ge based nanotubes. One of the initial density-functional tight binding study 

was performed by Seifert et al. [75], where the tubes were constructed by rolling sheets of 

polygermyne. The results obtained indicated a possibility of germanium nanotubes with 

interesting photoluminescence properties and the GeH nanotubes were found to be semi-

conducting, with the gap size growing from about 1.1eV from the smallest nanotube towards the 

value of 1.35eV of germyne sheets. Using ab initio total energy calculations Singh and group 

members [76] demonstrated that the nanotubes of germanium with atomic structure based on 

an alternate prism and antiprism stacking of hexagonal rings, can be stabilized by metal 

encapsulation.  

Germanium carbide (GeC) in bulk form is an indirect wide band gap semiconductor in 

both polytypes 3C and 2H (zinc-blende and wurtzite), has high bulk modulus, and the 

percentage of covalency is comparable to SiC. Another important characteristic of bulk GeC is 

the significantly ionic nature due to rather compact orbitals [77, 78]. It is reasonable to assume 

that the unique properties of bulk GeC, along with properties due to quantum size effects, would 

reflect in GeC structures in the nanoscale regime. Charge transport properties of plasma 

deposited a-GeXCY:H amorphous semiconductors can be correlated with nanostructures 

consisting of nanometer-size germanium clusters organized in large domains of approximate 

sizes of 100 nm [79]. Domrachev et al. [80] have successfully prepared Ge-filled CNTs with an 

average diameter of 15–100 nm, and Ge-filled carbon microtubes (CMTs) with an average 

diameter of 100-8000 nm, using MOCVD techniques. They used powder X-ray diffraction 

(XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning 
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Auger microscopy (SAM), Raman spectroscopy, and field emission measurements in order to 

characterize composite structures of arrays of CNTs/Ge nanowires (GeNWs) and 

CMTs/GeNWs. A more complicated atomic arrangement of Si and Ge in tubular forms, which 

are known as SiGe nanotubes (a hybrid structure) and one dimensional structure in form of 

SiGe nanowires have also been focus of scientific community lately. Very recently, by means of 

ab initio calculations, Migas and Borisenko [81] showed that SiGe and Si-Ge core-shell 

nanowires with the <001> orientation and having a diameter of 1.5 nm display a competitive 

indirect-direct character of the gap. To illustrate the unique features of SiGe nanotubes, Schmidt 

and Eberl created these tubes using two different methods [82].Using general method they were 

able to prepare nanotubes, which yielded an aspect ratio of 60 and also by involving specialized 

method they successfully prepared nanotubes of length 20µm with diameter of 530nm. 

Theoretical analysis and molecular dynamics simulations done by Zang et al. demonstrated, 

that a free standing Si nanofilm may bend into a nanotube with Ge as inner layer, opposite to 

the normal bending configuration defined by misfit strain [83]. Also they noticed that such rolled-

up nanotubes can accommodate a high level of strain, even beyond the magnitude of lattice 

mismatch. 

This thesis is organized as follows: Chapter 2 contains theory, Chapter 3 contains the 

discussions on bare Si and Ge nanotubes, followed by GeC and SiGe nanotubes in Chapters 4 

and 5. Chapter 6 presents the conclusions and suggestions for future work. 
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CHAPTER 2 

THEORY 

2.1 Introduction 

Density functional theory (DFT) methods are the most widely used approximate first 

principles approach to computational material science today. DFT is in principle an exact 

formulation for the ground state of many-electron systems and it expresses ground state 

properties– such as equilibrium positions, total energies, and magnetic moments as functionals 

of the electron density ( )r�ρ . Conceptually simpler and formally rigorous density functional 

theory provides an elegant way of mapping a N variable system to a single variable, the 

system’s density, and hence reducing the computational cost significantly over the traditional ab 

initio theories such as Hartree-Fock theory, while retaining the much of the computational 

accuracy. 

  The initial attempt to formulate the density functionals was based on the Thomas-

Fermi model due to Thomas [84] and Fermi [85]. Within the model, the total energy is 

expressed as a functional of the electron density. However, the model suffered from 

inaccuracies stemming from the crude formulation of the kinetic energy functional and the mean 

field approximation to the electron-electron interaction. Later on, Dirac included electron 

exchange contributions to the Thomas-Fermi functional but then, it still suffered from electron 

correlation effects [86]. Two elegant theorems by Hohenberg and Kohn [87], which made the 

Thomas-Fermi model and similarly the Hartree theory exact, brought DFT theory to the forefront 

of electronic structure theory [88-94]. Here is a short description of density functional theory 

starting with Born-Oppenheimer nonrelativistic approximation.                                                      
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2.2 Theory 

For an isolated system with N electrons in the Born-Oppenheimer nonrelativistic 

approximation, is given by 

Ψ=Ψ EH                               (2.1) 

Where Η  is the Hamiltonian in atomic units, 
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                                      (2.3) 

is the “external” potential due to nuclei of charges αZ acting on the 
thi electron. E is the 

electronic energy and ),...,,( 2 ni xxxΨ=Ψ is the many-electron wave function, where 

ix denote the particle coordinates and spins. It has been an important goal of physics to solve 

this many particle problem for a few decades. Generally speaking, there are two approaches. 

One is to consider the many-electron wave function ),...,,( 2 ni xxxΨ . In the Hartree 

approximation [95], in which the many-electron wave function is constructed from the product of 

single particle functions, 

),...,,( 2 ni xxxΨ = )()...()( 2211 nn xxx ΨΨΨ                   (2.4) 

Each of the functions )( 11 xΨ  satisfies a one-electron Schrödinger equation with a potential 

term arising from the average field of the other electrons, 
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where the Coulomb potential iΦ is given by Poisson’s equation 
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2
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and extV is the potential due to the nuclei. Considering Pauli Exclusion Principle, the simple 

product wave function can be replaced by a single determinantal function, which leads to the 

so-called Hartree-Fock approximation [96-97]. The inclusion of Fermi statistics which introduces 

an additional, nonlocal exchange term in the Schrödinger equation improves the total energy 

calculation, but the single particle picture, with the wave function described in terms of orbital 

with particular spins and occupation numbers is unchanged. It has noted that a single 

configuration (Slater determinant) wave function must inevitably lead to a poor energy since the 

lowest-lying configuration is generally only one of very many with comparable energies, and a 

better approximation would result from taking a linear combination [98]. This approach known 

as “configuration interaction” (CI) includes the correlation effects beyond Hartree-Fock 

approximation by improving the many-particle wave functions. In principle, CI provides an exact 

solution of the many-electron problems. In practice, however, the explosive increase in the 

number of configurations with increasing electron number limits its application to only small 

systems with relatively few electrons. Furthermore, the complexity of the resulting solutions 

means that a simple interpretation of the results is often difficult. 

 An alternative approach which is originated from the Thomas-Fermi model [84-85] is 

based on the density of electrons in the system, n(r), 

∫ ∫ ΨΨ= ).,...,,(),...,,(*...)( 21212 nnn rrrrrrdrdrNrn               (2.7) 

The Thomas-Fermi model assumes that the motions of the electrons are uncorrelated and that 

the corresponding kinetic energy can be described by a local approximation based on the 

results for uniform electron gas, [ ] 3/5
)(rn . Shortly after, Dirac [86] proposed that exchange 

effects can be included by incorporating a term derived from the exchange energy density in a 

homogenous system. The exchange potential in a system of variable density could be 
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approximated by a term with a local dependence ~ [ ] 3/1
)(rn on electron density. In fact, this 

dependence on the density is a consequence of the concept of the “exchange” or “Fermi” hole, 

i.e., the region near an electron is avoided by electrons of the same spin, and not on the 

exchange potential in a homogenous system. The Thomas-Fermi model provided a prototype 

for modern density functional theory based upon two Hohenberg-Kohn theorems [87]. 

 Note that the Hamiltonian in (2.2) contains the number of electrons N and the external 

potential )(rv . Hence, N and )(rv will determine all properties for the ground state. In place of 

N and )(rv , the first two Hohenberg-Kohn theorem legitimizes the use of electron density 

)(rn as the basic variable. It states: The external potential )(rv is determined, within a trivial 

additive constant, by the electron density )(rn . 

 The proof is rather straightforward. Consider the electron density )(rn for the 

nondegenerate ground state of some N-electron system. It determines the number of electrons 

by 

Ndrrn =∫ )(            (2.8) 

 If )(rn also determines )(rv , it follows that )(rn determines the ground-state wave 

function Ψ and hence all other electronic properties of the system. Suppose that there were two 

external potentials v and 1v differing by more than a constant, each giving the same )(rn for its 

ground state, we would then have two Hamiltonians H and 1H whose ground-state densities 

were the same although the normalized wave functions Ψ and 1Ψ would be different,  

Ψ=Ψ EH                      (2.9) 

1111 Ψ=Ψ EH                       (2.10) 

E and 1E  are the ground-state energies for H and 1H respectively. Therefore, the expectation 

value of H in 1Ψ would be greater than E , namely, 
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111111 |||| Ψ−+Ψ=ΨΨ< HHHHE         

111111 |||| Ψ−Ψ+ΨΨ= HHH                                           (2.11) 

        [ ]∫ −+= drrvrvrnE )()()( 11                      

Similarly, the expectation value of 1H in Ψ would be greater than 1E , 

Ψ−+Ψ=ΨΨ< |||| 111 HHHHE  

        Ψ−Ψ+ΨΨ= |||| 1HHH                                   (2.12) 

        [ ]∫ −+= drrvrvrnE )()()( 1             

Adding (2.11) and (2.12), we obtain 

EEEE +<+ 11                                       (2.13)       

This is a contradiction, and so there cannot be two different external potentials that give the 

same ground-state densities. 

 Thus, )(rn determines both N and v and hence all properties of the ground state. 

Therefore, the ground state total energy can be written as a functional of the electron density, 

[ ] [ ] [ ] [ ] [ ]∫ +=++= nFdrrvrnnVnVnTnE HKeene )()(                 (2.14) 

where [ ]nT  is the kinetic energy, [ ]nVne is the nuclei-electron interaction energy and [ ]nVee  is 

the electron-electron Coulomb interaction energy and [ ]nFHK  is a universal functional of )(rn  

in a sense that [ ]nFHK  is defined independently of the external potential )(rv , 

[ ] [ ] [ ]nVnTnF eeHK +=                         (2.15)  

 The second Hohenberg-Kohn theorem states: For a trial density )(1 rn , such that 

0)(1 ≥rn and ∫ = Ndrrn )(1 , 

[ ]10 nEE ≤                      (2.16) 
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where [ ]1nE  is the energy functional of (2.14). 

 This theorem gives the energy variational principle. It means that the ground-state 

electron density is the density that minimizes [ ]nE . The proof is as follows. Since the first 

theorem assures that )(1 rn which determines its own 1v , Hamiltonian 1H , and wave 

function 1Ψ , can be taken as a trial function for the Hamiltonian H of interest with external 

potential v . Thus, 

[ ] [ ] [ ]nEnEnFdrrvrnH HK ≥=+=ΨΨ ∫ 11111 )()(||                (2.17) 

The variational principle (2.16) requires that the ground-state density satisfy the following 

stationary principle, 

[ ] [ ] }{ 0)( =−− ∫ NdrrnnE µδ                     (2.18) 

which gives the Euler-Lagrange equation 

)(

][
)(

)(

][

rn

nF
rv

rn

n HK

δ
δ

δ
δ

µ +=
Ε

=                   (2.19) 

The quantity µ is the chemical potential. 

 If we knew the exact ][nFHK (2.18) would be an exact equation for the ground-state 

density. Once we have an explicit form either approximate or accurate for ][nFHK , we can 

apply this method to any system. Equation (2.19) is the basic working equation of density-

functional theory. However, accurate computational implementations of the density-functional 

theory are far from easy to achieve, because of the unfortunate fact that is hard to obtain the 

explicit form of the functional ][nFHK . Although the Hohenberg-Kohn theorems do not give 

insights of actual methods of calculation, and it is usually )(rv rather than )(rn that is known, 

that is known, they provide confidence that it is sensible to seek solutions of many-body 

problems based on the density rather than the wave functions. 
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 Early attempts to approximate the universal functional ][nFHK used the Thomas-Fermi 

approximation for the kinetic component ][nT . It was soon realized that only very crude 

answers can be obtained with this local functional for the kinetic energy, no matter how 

sophisticated the approximation for the ][nVee  component is. Kohn and Sham therefore 

proposed a highly nonlocal functional giving the major part of the kinetic energy and the scheme 

makes the density functional theory practical. They invoked a noninteracting reference system, 

with the Hamiltonian, 

∑∑ +∇−=
N

i

ieff

N

i

is rvH )()
2

1
(

2
                                (2.20) 

For which the ground-state electron density is exactly )(rn . There will be an exact 

determinantal ground-state wave function for this system. 

[ ]ns
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21                          (2.21) 

where the iΨ are the N lowest eigenstates of the one-electron Hamiltonian sh : 

[ ] iiieffis rvh Ψ=Ψ+∇−=Ψ ε)(
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and 
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),()(                  (2.23) 

The kinetic energy is then given by ][nTs , 
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This is the kinetic energy of the independent electrons (i.e. electrons without mutual Coulomb 

repulsion) in their ground state, under the action of an external potential such that their ground 

state density is )(rn . Then the universal functional can now be rewritten as 
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[ ] ][][ nVnTnF eeHK +=  

 ( )][][][][][][ nJnVnTnTnJnT eess −+−++=  

 ][][][ nEnJnT xcs ++=                                                                                      (2.25) 

where ][nJ is the classical Coulomb interaction energy, 

∫ −
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while the defined quantity 

][][][][][ nJnVnTnTnE eesxc −+−≡                                                                              (2.27) 

is called the exchange-correlation energy. Here, we note that ][nTs is not the true kinetic 

energy of the interacting system whose ground state density is )(rn , but in the final optimized 

description it is much closer to the kinetic energy ][nT than the Thomas-Fermi kinetic energy. 

The exchange correlation energy ][nExc includes two parts of contributions: one is from the 

non-classical effects of the electron-electron interactions and the other is from the kinetic 

energy. The Euler equation now becomes  
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where the Kohn-Sham effective potential is defined by 
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The Kohn-Sham computational scheme for DFT is shown in the flowchart in figure 2.1. As we 

can see from equation (2.29) that the effective potential effv  is also a functional of the electron 

density, such that equations (2.22) to (2.30) have to be solved self-consistently. We can start 

with a guessed density )(0 rn which is usually constructed from the atomic wave functions. 

Then calculate the effective potential effv through equation (2.29) and use it in equation (2.22) 

to solve the single-electron Schrödinger equation. A new electron density )(rn will be formed 

from equation (2.23). Once the convergent requirement is achieved, we can compute the total 

energy from equations. (2.14, 2.24 to 2.27).  

 

 

Figure 2.1 Flowchart for DFT calculations 

 The single Euler equation (2.22) has the same form as the Hartree equation but 

includes a more general local effective potential that incorporates the exchange and correlation 

interactions between electrons. Therefore, the computational efforts to solve the Kohn-Sham 

equations will be the same as to solve the Hartree equations and significantly less than to solve 

the Hartree-Fock equations, which, by definition lack of correlation effects. In principle, the 

Kohn-Sham equations will yield exact ground state properties if exact exchange correlation 

potential is given. However, the Kohn-Sham scheme does not provide methods to obtain the 
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explicit exchange and correlation functionals and therefore, approximations have to be 

considered. 

 There are basically three distinct approximations in DFT to the exchange correlation 

functionals, namely, the local density approximation (LDA), the generalized gradient 

approximation (GGA) and the hybrid approximation. 

2.2.1. Local Density Approximation 

 This local density approximation was proposed by Kohn and Sham. They showed that it 

could be applied to the limiting case of a slowly varying density [89]. 

∫= drnrnnE xc

LDA

xc )()(][ ε                              (2.31) 

where )(nxcε is the exchange and correlation energy per particle of a uniform electron gas of 

density )(rn . The functional derivative of ][nE LDA

xc  gives the local approximation to the Kohn-

Sham exchange-correlation potential 
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The Kohn-Sham equation becomes 
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)()()( nnn cxxc εεε +=                   (2.34) 

where )(nxε  is the exchange energy per particle of a homogenous electron gas, 

s

xc
r

rnn
4582.0

)(
3

4

3
)( 3/1

3/1

−=






−=
π

ε                 (2.35) 

and )(ncε  is the correlation energy per particle of a homogenous electron gas, 
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Here sr  is the Wigner-Seitz radius, 

n
rs

1

3

4 3 =π                     (2.37) 

The Kohn-Sham-LDA is further extended to the spin dependent case by replacing the scalar 

external potential )(rv  by a spin dependent potential )(rvαβ  and replacing the charge density 

)(rn  by the density matrix )(rnαβ [99-101]. The electron densities with spin projection up 

)(rnα  and down )(rnβ  are treated separately. Similarly, one can deal 

with )()()( rnrnrn βα += , along with the polarization [ ] )(/)()()( rnrnrnr βαζ −= . ζ  takes 

values between -1 (fully polarized downwards) and +1 (fully polarized upwards). The spin-up 

and spin-down densities are generated from the spin-up and spin-down Kohn-Sham wave 

functions. This so-called local spin density (LSD) approximation improved LDA for atomic and 

molecular systems with unpaired spins. 

 LDA and its spin generalization LSD allow one to use the knowledge of the uniform 

electron gas to predict properties of the in homogenous electron gases occurring in atoms, 

molecules and solids. The success and importance of LDA and LSD computational schemes in 

the solid state computations can hardly be exaggerated. Specifically, LSD usually has moderate 

accuracy for most systems of interest, making errors of order 5-10%. It’s most remarkable 

feature is it’s reliability, making the same kinds of errors on every system it’s applied to. The 

success of LDA and LSD is attributed to the fact that the exchange-correlation hole 

),( 21 rrn LDAxc  is spherically symmetric and it obeys the sum rule which corresponds to the fact 

that, if an electron has been found at 1r  , then there is one less electron left to find elsewhere 

(i.e , by integral over all 2r ), 

∫ −= 1),( 221 drrrn LDAxc                   (2.38) 
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where the exchange-correlation hole ),( 21 rrn LDAxc  is defined by 
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with ][nJ  being the classical Coulomb interaction. This is true because for every 1r ,  

),( 21 rrn LDAxc  is the exact exchange-correlation hole of a homogenous electron gas with density 

)( 1rn . Hence, the LDA and LSD describe the total charge of ),( 21 rrn LDAxc  correctly. 

2.2.2. Generalized Gradient Approximation 

 Since the LDA formula for xcE  is formally justified for systems with slow varying 

densities, it seemed natural to seek gradient corrections to 
LDA

xcE  by the gradient expansion 

approximation (GGA), which expands the functional in a Taylor series in gradients of the density 

[102]. 
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However, GGA does not give better energy than LDA for systems such as atom and molecule. 

The reasons can be summarized as (1) GGA exchange-correlation hole improves the LDA hole 

only at short separations, but is poorly damped and oscillatory at large separations, and (2) 

GGA violates the sum rule of the exchange-correlation hole. Accordingly, Perdew and others 

introduced the so-called generalized gradient approximation [103-107] such that the exchange 

correlation energy can be written as a functional of both the density and its gradient: 

∫ ∇∇= ))(),(),(),((],[ 3 rnrnrnrnrfdnnEGGA

xc βαβαβα               (2.41)   

The first modern GGA proposed the idea of truncating the gradient expansion for the exchange-

correlation hole. Considering the problems encountered by GGA, Perdew et al. [107,108] 

proposed several versions of GGA functional by introducing the real-space cutoff procedure on 

the hole, which restores the sum rule or the normalization and negativity conditions on the GGA 
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hole and generates a short-ranged hole whose angular and system average was much closer to 

the true hole. The Perdew-Wang 1991 (PW91) GGA functional [108] incorporates no free 

parameters and is entirely determined from uniform electron gas properties and extract 

constraints. The Perdew-Burke-Ernzerhof [107] functional is a simplified and refined version of 

the PW91 functional. Becke [99] derived an exchange functional known as B88 incorporating 

the known behavior of the exchange hole at large distances outside a finite system. Lee, Yang 

and Parr [104] obtained the correlation energy as an explicit functional of the density and its 

gradient and Laplacian, now generally known as the “LYP” functional. 

 The well-known GGA functionals systematically improve the LDA and, in some 

calculations, approach the accuracy of traditional quantum chemical (e.g. Configuration 

Interaction) methods, at much less computational cost. However, according to the quasilocal 

nature of GGA, the dispersion or long-ranged van der Waals interaction arising from long-

ranged correlated electronic density fluctuations in the weak bonding systems such as noble 

gas dimmers could not be accurately described by either LDA or GGA. On the other hand, 

similar to LDA, GGA has the difficulty to describe the hole centered for from the electron 

causing the hole. 

2.2.3. Hybrid Density Functional Method 

 Considering the local or semi local nature of LDA and GGA, Becke proposed the so-

called Hybrid Density Functional method which incorporates the exact treatment of exchange by 

Hartree-Fock theory with DFT approximations for dynamical correlation. This idea was 

motivated by re-examination of the adiabatic connection, 

∑++=
i

iee rvVTH )(λλ λ                   (2.42) 

where λ is an inter-electronic coupling-strength parameter that “switches on” the 

12

1
r

Coulomb repulsion between electrons. 0=λ  Corresponds to the non-interacting Kohn-



 

 21 

Sham reference system, while 1=λ corresponds to the fully interacting real system, with 

)(rn being fixed as the exact ground state density of λH . The ][nExc can be written as  

][][

1

0

nUdnE xcxc

λλ∫=                   (2.43) 

where, 

][||][ nJVnU neenxc −ΨΨ= λλλ                   (2.44) 

The obvious first approximation for the λ dependence of the integrated in equation (2.43) is a 

linear interpolation, resulting in the Becke’s half-and-half functional: 

( )10&

2

1
][ xcxc

hh

xc UUnE +=                  (2.45) 

where 
o

xcU is the exact exchange energy of the KS determinant and 
1

xcU is the potential energy 

contribution to the exchange-correlation energy of the fully interacting system. This half and half 

functional has the merit of having a finite slope as 0→λ , and becomes exact if 
DFT

xcE 1, =λ  is exact 

and the system has high density. However, its does not provide a good quality of the total 

energy and the uniform gas limit is not obtained. Due to this Becke proposed the semi-empirical 

generalization of 3-parameter hybrid exchange-correlation functional 

GGA

cc

GGA

x

LSDA

x

exact

o

LSDA

xc

B

xc EaEaEEaEE
xx

∆+∆+−+= )(3
           (2.46) 

where oa , xa and ca are semiempirical coefficients to be determined by an appropriate fit to 

experimental data. 
exact

xE is the exchange energy of the Slater determinant of the Kohn-Sham 

orbitals. 
GGA

xE∆  is the gradient correction for the exchange and 
GGA

cE∆  is the gradient 

correction for the correlation. 

2.3 Computational Details 

One of the primary considerations involved in these calculations is the determination of 

the methodology scheme which can efficiently reproduce the geometric and electronic details 



 

 22 

with a high degree of accuracy and low computational overhead. Therefore all of our first 

principles calculations have been performed using hybrid density functional theoretical 

formalism incorporating HF exchange with DFT exchange-correlation functional. Specifically 

we have we used the hybrid functional B3LYP [101, 104] and the Los Alamos National 

Laboratory double-ζ basis set (LANL2DZ) [109] as implemented in the Gaussian 03 suite of 

programs [110]. For the Si and Ge atoms, the Hay–Wadt pseudo-potential [109] and the 

associated basis set are used for the core (for Si 1s, 2s, 2p and for Ge 1s, 2s, 2p, 3s, 3p, 3d) 

and the valence electrons, respectively. For the C atom, the all electron Dunning–Huzinaga 

double-ζ basis set is employed [109] (See tables 2.1 to 2.5 for the basis set parameters used 

for Si, Ge, and C atoms).  

Since all calculations were performed using the Gaussian 03 suite of programs, we 

briefly describe below, using flow charts, how Gaussian 03 works: 

1. Start with a guess density 0ρ (usually the superposition of neutral atomic densities is used). 

2. Establish grid for charge density and exchanger correlation potential 

3. Compute Kohn-Sham matrix (equivalent to the F matrix in Hartree-Fock method) elements 

and overlap integrals matrix. 

4. Solve the equations for expansion coefficients to obtain KS orbitals. 

5. Calculate the new density ρ  

7. If self-consistency in the charge density is reached, then go to step 8. Otherwise set ρρ =0  

and go to step 1. 

8. Calculate derivatives of energy vs. atom coordinates, and update atom coordinates. This may 

require denser integration grids and re computing of Coulomb and exchange-correlation 

potential. 

9. If gradients are still large, or positions of nuclei moved appreciably, go to step 1. 

10. Calculate properties and print results. 

A typical flowchart for calculations in Gaussian 03 suite of programs is shown in figure 2.2. 
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To check the validity of the present theoretical scheme, calculations on Si, Ge and C 

atoms, Si2, Ge2, SiH, GeH, CH, and GeC dimers were performed and matched with 

experimental observations. For Si atom, the ionization potential and electronic affinity are 

8.462 eV and 0.896 eV to be compared with the experimental values of 8.151 eV and 1.385 

eV, respectively [111]. For Si dimers our bond length is 2.20 Å compared to the experimental 

value of 2.25 Å and for SiH our values are 1.547 Å in comparison with experimental value of 

1.52 Å [111]. For Ge atom, the ionization potential and electron affinity are 8.01eV and 

0.841eV to be compared with the experimental values of 7.9 eV and 1.233eV, respectively and 

for C atom, our values are 11.604eV and 0.789eV, and the experimental values are 11.262eV 

and 1.2eV, respectively [111]. A very large basis set is necessary for the theoretical electron 

affinity to approach the value of the experimental electron affinity and this was not considered 

to be necessary and computationally feasible for the large clusters representing the nanotubes 

studied in this work. For C-C dimer, our bond length is 1.34 Å and binding energy is 2.68eV 

compared to the experimental values of 1.31 Å and 3.145eV, respectively [111]. For Ge-Ge 

dimer, our values for bond length and binding energy are 2.52 Å and 1.17eV to be compared 

with the experimental values of 2.40 Å and 1.36eV, respectively [111]. For GeC dimer our 

values for the theoretical binding energy and bond lengths are 1.45eV and 1.98 Å to be 

compared with the experimental value for the binding energy of 2.38eV [111].  
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Table 2.1 Basis Functions for Silicon Atom  
 

Exponents 
(αi) 

Coefficients 
(ci) 

s orbitals  

1.2220000 -0.570733903 

0.2595000 1.2823826070 

0.0931100 1.0000000000 

p orbitals  

2.5800000 -0.0777249974 

0.2984000 1.0197869670 

0.0931100 1.0000000000 

 
 
 
 

Table 2.2 Basis Functions for Germanium Atom  
 

Exponents (αi) Coefficients (ci) 

s orbitals  

0.8935000 -2.175659078 

0.4424000 2.449346675 

0.1162000 1.000000000 

p orbitals  

0.1877000 -0.1006778966 

0.2623000 1.0306255650 

0.7980000 1.0000000000 
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Table 2.3 Hay- Wadt Pseudopotentials for Silicon Atom 
 

nk ζk dk 

d potential   

1 505.3138 -10.0000 

2 103.2221 -84.9236 

2 23.4569 -30.3299 

2 6.7506 -12.1049 

2 2.1603 -1.8945 

s-d 
potential 

  

0 689.4911 3.0000 

1 114.1729 60.5207 

2 35.7424 201.3086 

2 9.4530 65.9400 

2 2.2544 19.0301 

p-d 
potential 

  

0 88.9379 5.000 

1 76.7774 6.6414 

2 56.1481 247.5972 

2 21.1874 129.3715 

2 6.8277 47.4617 

2 2.1001 11.7377 
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Table 2.4 Hay- Wadt Pseudopotentials for Germanium Atom 
 

nk ζk dk 

f potential   

1 318.2167583 -28.00000000     

2 61.5370967 -180.98916760 

2 13.2986899 -55.00439090 

2 3.8985215 -19.79065260 

2 1.2137666 -1.85335720 

s-f potential   

0 205.1886932        3.00000000 

1 68.9790278          65.22625580 

2 27.9194879 225.23545220 

2 8.5481650 94.01254720 

2 2.3173734 29.94150050 

p-f potential   

0 33.2488002 5.00000000 

1 15.7777247 23.47781570 

2 14.9260722 45.09804140 

2 5.8416394 56.33269570 

2 1.8349575 16.60586400 

d-f potential   

0 42.0206343 3.00000000 

1 19.2096363 23.73715180 

2 9.4133917 56.47922490 

2 3.3282907 25.89018350 

2 0.8522331 3.02298360 
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Table 2.5 Dunning/Huzinaga Basis Set for Carbon Atom  
 

Exponents (αi) Coefficients (ci) 

s orbitals  

4232.6100 0.002029 

634.8820 0.015535 

146.0970 0.075411 

42.4974 0.257121 

14.1892 0.596555 

1.9666 0.242517 

5.1477 1.000000 

0.4962 0.542048 

0.4533 0.517121 

p orbitals  

18.1557 0.018534 

3.9864 0.115442 

1.1429 0.386206 

0.3594 0.640089 

0.1146 1.000000 
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Figure 2.2 Flowchart for Gaussian 03 calculations. 
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The theoretical bond lengths obtained for GeH and CH are 1.63 Å and 1.14 Å as compared to 

the experimental values of 1.59 Å and 1.10 Å, respectively [111]. Thus, overall, our choices of 

hybrid density functional theory and the pseudopotential with the associated basis set can be 

considered to be quite satisfactory. All nanotubes have been hydrogen terminated at the two 

ends to saturate the dangling bonds and to simulate the effects of infinite tubes. All structures 

reported here are geometry as well as spin optimized using the Gaussian ’03 suite of programs 

[110] at the supercomputing center of the University of Texas at Arlington. The force 

convergence criterion was set to be 0.0001eV/Å. 
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CHAPTER 3 

PURE SILICON AND GERMANIUM NANOTUBES 

3.1 Construction of Nanotubes 

  The method of constructing SiNTs and GeNTs is entirely based on single walled CNT 

approach. It can be conceptualized by wrapping a graphite like sheet of Si or Ge to form a 

tubular cylindrical structure. Depending upon the number of layers used while wrapping we can 

get either single walled or multi walled nanotube. In the present report, the scope of our 

research is only limited to single walled cases. These nanotubes can be simply defined in terms 

of length and chirality. Diameter and length of the tube can be uniquely described in terms of 

the magnitude of the components of chiral vector Ch = na1 + ma2 with integers n and m (which 

denotes the number of unit vectors along two directions in the honeycomb crystal lattice of 

graphene sheet) and a and b are the unit vectors of a hexagonal, grapheme like sheet (figure 

3.1). Now depending on these integers n and m there can be three different kinds of nanotubes. 

If m=0, the nanotubes are called zigzag. If n=m, the nanotubes are called armchair. Otherwise, 

they are called chiral. All of our nanotubes are hydrogen terminated at the two ends to saturate 

the dangling bonds. 

 

Figure 3.1 2D-graphene sheet with lattice vectors.  



 

 

 

31 

3.2 Results and discussions for pure Si nanotubes  

In this section we present a detailed analysis of armchair (n, n), zigzag (n, 0) with n = 3 

to 9 and chiral nanotubes with (n, m) with n = 2 to 6 and m = 1 to n-1 for pure SiNTs. As 

mentioned earlier all the nanotubes are spin as well as geometry optimized. Figures 3.2 to 3.4 

show the different tube morphologies. In terms of diameter the smallest chiral nanotube studied 

is (2, 1) tube with stoichiometry Si50H6, and the largest structure is Si342H22 (6, 5), for zigzag 

nanotube smallest is Si66H6 (3, 0) and largest is Si198H18 (9, 0). In case of armchair nanotubes, 

the smallest structure is Si60H12 (3, 3) and largest is Si180H36 (9, 9). We have further divided 

chiral nanotubes into sub-groups depending on the chiral vector n, for example if n is 3 then m 

will have values 1 and 2 (from our definition of chiral nanotubes), so a sub-group of (3,1), (3,2) 

chiral tubes is formed. Similarly for n = 4 we have (4, 1), (4, 2), (4, 3) three chiral nanotubes 

under one sub-group and so on. While constructing the nanotubes initial bond lengths were 

assumed to be uniform throughout the tube. We know the fact that both carbon and silicon fall 

under the same group in the periodic table still their chemical behavior is quite different from 

each other. The reason to this difference is the type of hybridization they form. Carbon prefers 

sp2 while silicon prefers sp3 hybridization state. We have calculated the binding energy per atom 

using the formula: 

)()()([
)(

1
baC HSiEHbESiaE

ba
E −+

+
= ]      (3.1) 

where a and b are number of Si and H atoms respectively ,E(Si) and E(H) are ground state 

energies of Si and H atoms respectively and E(SiaHb) is the total energy of the optimized 

clusters representing the nanotubes. 

Tables 3.1 to 3.3 show the binding energies per atom for all different nanotubes. 

Average value of binding energy of armchair nanotubes is found to be 3.09 eV/ atom with the 

largest SiNT studied (9, 9) has value of 3.13 eV/atom which is about 68 % of the bulk binding 

energy of 4.63 eV/ atom.  
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Figure 3.2 (Top) Smallest (3, 3) and (bottom) largest (9, 9) armchair Si nanotubes. 
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Figure 3.3 (Top) Smallest (3, 0) and (bottom) largest (9, 0) zigzag Si nanotubes. 
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Figure 3.4 (Top) Smallest (2, 1) and (bottom) largest (6, 5) chiral Si nanotubes. 
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Table 3.1 Electronic States, Binding Energies Per Atom (Eb) in eV, HOMO-LUMO Gaps in eV, 
Diameters in Å, and Dipole Moments in Debye for Armchair Si Nanotubes. 

 

Nanotube Model State EB(eV)  Gap(eV) Diameter (Å) Dip.Mnt (Debye) 

 (3,3) Si60H12 
1A1 2.981 0.933 6.737 0.000 

(4,4) Si80H16 
1A1 3.058 0.937 8.984 0.105 

(5,5) Si100H20 
1A1 3.095 1.028 11.229 0.008 

(6,6) Si120H24 
1A1 3.109 1.061 13.476 0.000 

(7,7) Si140H28 
1A1 3.125 1.054 15.722 0.003 

(8,8) Si160H32 
1A1 3.133 1.019 17.968 0.002 

(9,9) Si180H36 
1A1 3.138 0.993 20.214 0.027 

 
 
 
Table 3.2 Electronic States, Binding Energies Per Atom (Eb) in eV, HOMO-LUMO Gaps in eV, 

Diameters in Å, and Dipole Moments in Debye for Zigzag Si Nanotubes. 
 

Nanotube Model State EB (eV) Gap (eV) Diameter (Å) Dip.Mnt(Debye) 

(3,0) Si66H6 
3AG 2.883 0.633 3.890 0.000 

(4,0) Si88H8 
3AG 2.994 0.650 5.187 0.248 

(5,0) Si110H10 
3B 3.061 0.622 6.484 0.147 

(6,0) Si132H12 
1A 3.102 0.560 7.780 0.000 

(7,0) Si154H14 
3AU 3.139 0.455 9.077 0.000 

(8,0) Si176H16 
3A2 3.155 0.219 10.374 0.000 

(9,0) Si198H18 
3B 3.172 0.367 11.670 0.057 
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Table 3.3 Electronic States, Binding Energies Per Atom (Eb) in eV, HOMO-LUMO Gaps in eV, 
Diameters in Å, and Dipole Moments in Debye for Chiral Si Nanotubes. 

 

 
 
 
 
 
 

  

Nanotube Model State EB (eV) Gap (eV) Diameter (Å) Dip.Mnt (Debye) 

(2,1) Si50H6 
1A1 2.813 0.949 3.431 1.878 

(3,1) Si44H8 
1A1 2.940 0.956 4.675 0.822 

(3,2) Si66H10 
1A1 2.966 0.454 5.652 0.471 

(4,1) Si46H10 
1A1 2.941 1.041 5.942 0.275 

(4,2) Si44H12 
1A1 2.952 0.847 6.862 0.000 

(4,3) Si134H14 
1A1 3.103 1.068 7.887 0.969 

(5,1) Si180H36 
1A1 3.07 0.462 7.219 20.930 

(5,2) Si90H14 
1A1 3.064 0.615 8.098 0.022 

(5,3) Si180H16 
1A1 3.144 0.141 9.077 0.023 

(5,4) Si226H18 
1A1 3.169 1.039 10.127 0.300 

(6,1) Si158H14 
1A1 3.133 0.580 8.503 9.739 

(6,2) Si192H16 
1A1 3.151 0.129 9.351 0.000 

(6,3) Si66H18 
1A1 3.031 1.159 10.292 0.024 

(6,4) Si132H20 
1A1 3.129 0.512 11.304 0.192 

(6,5) Si342H22 
1A1 3.217 0.890 12.369 0.687 
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In zigzag nanotubes the smallest structure (3, 0) gave a binding energy of 2.88 eV/atom and 

biggest structure (9, 0) yielded 3.17 eV/ atom. In case of chiral tubes as there are different sub-

groups, we have considered the biggest structure among each group for binding energy 

analysis i.e. (2, 1), (3, 2), (4, 3), (5, 4), and (6, 5) nanotubes. Figures 3.5 to 3.10 show the per 

atom variations of binding energies of silicon with total number of atoms and nanotube 

diameter. Clearly from the figures 3.5 to 3.10 we can predict that the value of binding energies 

are attaining a saturation level as we increase the number of atoms or increase the diameter of 

the tube. The non-linearity in the energy relationship indicates that binding energy is not only 

purely dependent on diameter but also has contribution from the curvature of the tube. We 

believe that the binding energy per atom of extremely large nanotube will be close to that of 

graphene like sheet of Si. 

As from tables 3.4 to 3.6 it is quite evident that there is a little variation in bond lengths 

of Si-Si atom in armchair, zigzag and chiral nanotubes. Figures 3.11 to 3.13 show the tube 

diameter variation with number of atoms. Considering the case of (7, 7) armchair nanotube the 

Si-Si bond lengths vary from 2.188 Å to 2.666 Å throughout the tube. For (4, 0) zigzag nanotube 

average bond lengths vary from 2.230 Å to 2.332 Å, and in chiral (4, 3) they vary from 2.177 Å 

to 2.314 Å. A detailed analysis shows that bond lengths show more alternations on the edges 

than the middle part of tube. The average optimized bond length remains almost constant in 

case of armchair nanotubes except the smallest structure (3, 3) (bond lengths expanded). There 

is a decreasing pattern in case on zigzag nanotubes and bond lengths get shortened also. 

Same pattern is observed in the case of chiral nanotubes. The diameters of 7.62 Å and 10.11 Å 

for (6, 0) and (8, 0) respectively, are not much different from 7.44 Å and 9.22 Å as reported by 

Fagan et al. [51] and 7.48 A and 9.96 Å by Barnard and Russo [54] in their papers. Looking at 

overall trend, the SiNTS bond lengths gets contracted after the geometry is optimized. Over all if 

we compare the structural trends of different SiNTs with CNTS, we find that the bond length 

alternations are more pronounced and hence, there is a weak π-π bonding and a tendency of 
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bond delocalization exists in SiNTs and which accounts for the corrugated tubular shapes of 

armchair, zigzag and chiral nanotubes.    

  

 
Figure 3.5 Binding energy as a function of the total number of atoms in the Si armchair 

nanotubes. 
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Figure 3.6 Binding energy as a function of the total number of atoms in the Si zigzag nanotubes. 

 
 
 



 

 

 

40 

 
 
 
Figure 3.7 Binding energy as a function of the total number of atoms in the Si chiral nanotubes. 
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Figure 3.8 Binding energy as a function of the tube diameter in the Si armchair nanotubes. 
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Figure 3.9 Binding energy as a function of the tube diameter in the Si zigzag nanotubes. 
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Figure 3.10 Binding energy as a function of the tube diameter in the Si chiral nanotubes. 
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Table 3.4 Average, Minimum, Maximum Bond Lengths (in Å) of Armchair Si Nanotubes. 
 

Nanotube Ave.B.L Min.B.L Max.B.L 

(3,3) 2.257 2.164 2.292 

(4,4) 2.248 2.188 2.281 

(5,5) 2.245 2.190 2.269 

(6,6) 2.244 2.184 2.256 

(7,7) 2.242 2.188 2.266 

(8,8) 2.241 2.189 2.264 

(9,9) 2.241 2.188 2.264 

 
 

Table 3.5 Average, Minimum, Maximum Bond Lengths (in Å) of Zigzag Si Nanotubes. 
 

Nanotube Ave.B.L Min.B.L Max.B.L 

(3,0) 2.349 2.285 2.386 

(4,0) 2.309 2.230 2.332 

(5,0) 2.281 2.248 2.309 

(6,0) 2.272 2.233 2.293 

(7,0) 2.268 2.238 2.281 

(8,0) 2.262 2.253 2.270 

(9,0) 2.247 2.227 2.256 
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Table 3.6 Average, Minimum, Maximum Bond Lengths (in Å) of Chiral Si Nanotubes. 
           

Nanotube Ave.B.L Min.B.L Max.B.L 

(2,1) 2.402 2.234 2.496 

(3,1) 2.348 2.260 2.479 

(3,2) 2.296 2.173 2.361 

(4,1) 2.284 2.195 2.353 

(4,2) 2.267 2.190 2.334 

(4,3) 2.265 2.177 2.314 

(5,1) 2.280 2.189 2.466 

(5,2) 2.260 2.188 2.314 

(5,3) 2.250 2.182 2.284 

(5,4) 2.249 2.180 2.281 

(6,1) 2.269 2.206 2.417 

(6,2) 2.248 2.191 2.274 

(6,3) 2.245 2.181 2.276 

(6,4) 2.246 2.183 2.288 

(6,5) 2.253 2.189 2.286 
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Figure 3.11 Tube diameter as a function of the total number of atoms in Si armchair nanotubes. 
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Figure 3.12 Tube diameter as a function of the total number of atoms in Si zigzag nanotubes. 
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Figure 3.13 Tube diameter as a function of the total number of atoms in Si chiral nanotubes. 
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We have also studied the Mulliken charge distribution for the SiNTs and found that all 

the armchair nanotubes have covalent bonding which is evident from the figures 3.14. On the 

other hand zigzag nanotubes are predominantly ionic type (figure 3.15), since charge transfer 

occurs between Si atoms almost everywhere in the tube except in the middle of the tube where 

we found a ring of atoms with covalent type bonding. For chiral nanotubes there is no fixed 

trend. The arbitrarily taken chiral (4, 3) structure has predominant ionic type bonding (figure 

3.16) near the edges and covalent type bonding in the center region. Among all the nanotubes 

we have studied, three of them (2, 1), (5, 1), and (6, 1) have very high dipole moment values, 

which indicates their high over all highly asymmetric charge distribution. All other nanotubes 

have very low dipole moments which is manifestation of their symmetric charge distribution. The 

structures with high dipole moments may be expected to be synthesized in nanotube-bundles. 

In order to predict the conducting properties of nanotube, it is highly important to study 

the possible metallic or semi-conducting behavior of these nanotubes. To do so, we have 

calculated the highest-occupied-molecular-orbital to lowest-unoccupied-molecular-orbital 

(HOMO-LUMO) gaps for all the nanotubes under considerations. Band gaps for different SiNTs 

are listed in tables 3.1 to 3.3. The gaps for armchair SiNTs are in the range of 0.93 eV to 1.02 

eV. Figures 3.17 to 3.22 show the band gap variation with number of atoms and tube diameter. 

In case of armchair nanotubes there is a monotonous increase in band gaps values as we move 

from (3, 3) to (6, 6), after that gaps values tend to decrease as we approach (9, 9) nanotubes 

(figure 3.17 and 3.20). As seen from the figures 3.18 and 3.21, for  zigzag SiNTs there is 

monotonous decrease in gap from the 0.63 eV (3, 0) nanotube till 0.219 eV (8,0) nanotube, then 

again it goes up for the (9,0) nanotube. For chiral nanotubes oscillatory pattern has been 

observed with the increase in diameter. We can clearly see in the figures 3.19 and 3.22 that 

chiral nanotubes (3, 2), (5, 1), (5, 3) are small gap materials but does not indicate any metallic 

behavior where as (6, 2) chiral tube has a possible metallic characteristics. At this point, we 

cannot predict the long term variance of band gaps with diameter.  
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Figure 3.14 Mulliken charge distribution for the relaxed armchair (5, 5) nanotube. The scale 
used is depicted. 
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Figure 3.15 Mulliken charge distribution for the relaxed zigzag (5, 0) nanotube. The scale used 

is depicted. 
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Figure 3.16 Mulliken charge distribution for the relaxed chiral (4, 3) nanotube. The scale used is 

depicted. 
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Figure 3.17 Gap as a function of the total number of atoms in the Si armchair nanotubes. 
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 Figure 3.18 Gap as a function of the total number of atoms in the Si zigzag nanotubes. 
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Figure 3.19 Gap as a function of the total number of atoms in the Si chiral nanotubes. 
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Figure 3.20 Gap as a function of the tube diameter in the Si armchair nanotubes. 
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Figure 3.21 Gap as a function of the tube diameter in the Si zigzag nanotubes. 
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Figure 3.22 Gap as a function of the tube diameter in the Si chiral nanotubes. 
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Figure 3.23 Gaussian broadened (σ = 0.05 eV) density of states (DOS) plots for Si nanotubes. 
HOMO energy is set to zero 
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Current analysis of band gaps of SiNTs shows the possible application in the field of molecular 

electronics where Si based nanotubes are more desirable over CNTs. Figures 3.23 is showing 

the energy density of state for armchair (5, 5), zigzag (5, 0) and chiral (5, 4), the respective 

band gaps are reflectedin plot. DOS was convoluted with a gaussian of width 0.05 eV and 

Homo is adjusted at zero. 

3.3 Results and discussions for pure Ge nanotubes 

In this section we present a detailed analysis of pure Ge nanotubes in both armchair 

and zigzag configurations for dimensions from (3, 3) to (11, 11) and (3, 0) to (11, 0), 

respectively. In terms of diameter the smallest armchair nanotube studied is (3, 3) tube with 

stoichiometry Ge60H12, and the largest structure is Ge220H44 (11, 11) (figure 3.24), for zigzag 

nanotube smallest is Ge66H6 (3, 0) and largest is Ge242H22 (11, 0) (figure 3.25).    

 We know the fact that carbon and germanium fall under the same group in the periodic 

table still their chemical behavior is quite different from each other, the reason to this difference 

is the type of hybridization they form. C prefers sp2 while Ge prefers sp3 hybridization state. We 

have calculated the binding energy per atom using the formula: 

)()()([
)(

1
baC HGeEHbEGeaE

ba
E −+

+
= ]      (3.2) 

where a and b are number of Ge and H atoms respectively ,E(Ge) and E(H) are ground state 

energies of Ge and H atoms respectively and E(GeaHb) is the total energy of the optimized 

clusters representing the nanotubes. Tables 3.7 to 3.8 show the binding energies per atom for 

all different nanotubes. Figure 3.26 shows the per atom variations of binding energies of 

germanium with diameter.  Average value of binding energy of armchair nanotubes is found to 

be 2.56 eV per atom with the largest GeNT studied (11, 11). In zigzag nanotubes the smallest 

structure (3, 0) gave a binding energy of 2.47 eV per atom and biggest structure (11, 0) yielded 

2.61 eV per atom with average binding energy as 2.56 eV per atom. Clearly from the figure 3.26 

we can predict that the value of binding energies are attaining a saturation level as we increase 

the number of atoms or increase the diameter of the tubes.  
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Figure 3.24 (Top) Smallest (3, 3) and (bottom) largest (11, 11) armchair Ge nanotubes. 
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Figure 3.25 (Left) Smallest (3, 0) and (right) largest (11, 0) zigzag Ge nanotubes. 
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Table 3.7 Electronic States, Binding Energies Per Atom (Eb) in eV, HOMO-LUMO Gaps in eV, 
Diameters in Å, and Dipole Moments in Debye for Armchair Ge Nanotubes. 

 

Nanotube Model State Eb(eV) Gap(eV) Diameter(Å) Dip.Mnt (Debye) 

(3,3) Ge60H12 
3A 2.493 0.698 5.897 0.6217 

(4,4) Ge80H16 
1A 2.544 1.084 7.714 0.0568 

(5,5) Ge100H20 
3A 2.558 0.755 9.593 0.2321 

(6,6) Ge120H24 
3A 2.568 0.744 11.460 0.1701 

(7,7) Ge140H28 
3A 2.578 0.489 12.976 1.3922 

(8,8) Ge160H32 
1A 2.579 0.752 15.220 0.6419 

(9,9) Ge180H36 
3A 2.584 0.327 17.110 6.2446 

(10,10) Ge200H40 
3A 2.581 0.317 19.006 4.4916 

(11,11) Ge220H44 
1A1 2.588 0.710 20.886 4.4758 
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Table 3.8 Electronic States, Binding Energies Per Atom (Eb) in eV, HOMO-LUMO Gaps in eV, 
Diameters in Å, and Dipole Moments in Debye for Zigzag Ge Nanotubes. 

 

Nanotube Model State Eb(eV) Gap(eV) Diameter(Å) Dip.Mnt (Debye) 

(3,0) Ge60H12 
3A 2.473 0.642 4.163 0.0000 

(4,0) Ge80H16 
3A 2.503 0.581 5.079 0.4310 

(5,0) Ge100H20 
3A 2.541 0.345 6.420 0.0029 

(6,0) Ge120H24 
3A 2.569 0.465 7.370 0.0000 

(7,0) Ge140H28 
3A 2.584 0.693 8.549 0.0000 

(8,0) Ge160H32 
3A 2.589 0.232 9.749 0.0000 

(9,0) Ge180H36 
1A1 2.591 0.412 11.022 0.0000 

(10,0) Ge200H40 
3A 2.594 0.443 12.184 7.3912 

(11,0) Ge220H44 
1A1 2.606 0.426 13.336 6.5573 
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Figure 3.26 Binding energy as a function of the tube diameter in the Ge nanotubes. 
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The non-linearity in the energy relationship indicates that binding energy is not only purely 

dependent on diameter but also has contribution from the curvature of the tube. We believe that 

the binding energy per atom of extremely large nanotube will be close to that of graphene like 

sheet of Ge. It is interesting to notice that armchair and zigzag nanotubes have very close value 

of binding energy per atom.  

From tables 3.9 and 3.10 it is evident that there is a pattern of distortion among Ge-Ge 

bond lengths along the length of different Ge nanotubes. In armchair GeNTs the average bond 

lengths vary from 2.451 (11, 11) to 2.503 Å (3, 3). For zigzag GeNTs these values are from 

2.461 (11, 0) to 2.5442 Å (3, 0). The bond lengths are more widely distributed for smaller 

diameter nanotubes. Also in the both armchair and zigzag average bond lengths are decreasing 

with the increase in tube diameter. Looking at overall trend, the SiNTS bond lengths gets 

contracted after the geometry is optimized. Due to high curvature of the smaller diameter 

nanotubes, the bonds are highly strained in nature. Consequently, the average bond lengths of 

smaller diameter tubes will have high values. The existence of these strained bonds result in 

lower binding energy values for smaller diameter tubes. Over all if we compare the structural 

trends of different GeNTs with SiNTS, we find that the after relaxation higher diameter nanotube 

surfaces are more rippled in nature, a property which may be exploited while designing nano 

devices. The rippling in the surface structure caused by bond stretching or bending may also 

create surface dipoles and significantly modify the surface band structure. 

Among all the GeNTs we have studied, smaller diameter tubes have very low or 

negligible dipole moments (tables 3.7 and 3.8). As mentioned earlier higher diameter tubes 

showed more puckering of surface, which is a possible reason for significant values of dipole 

moments. Charge distribution along the tube length is also governing factor for induced dipole 

moments. It is assumed that the structures with high dipole moments may be expected to be 

synthesized in nanotube-bundles. One of the most important properties of a cluster or a 

nanotube is the charge density distribution.  
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Table 3.9 Average, Minimum, Maximum Bond Lengths (in Å) of Armchair Ge 
Nanotubes. 

 

Nanotube Ave.B.L Min.B.L Max.B.L 

(3,3) 2.503 2.382 2.579 

(4,4) 2.483 2.412 2.552 

(5,5) 2.468 2.389 2.507 

(6,6) 2.463 2.394 2.501 

(7,7) 2.460 2.391 2.504 

(8,8) 2.453 2.393 2.498 

(9,9) 2.454 2.342 2.491 

(10,10) 2.449 2.391 2.531 

(11,11) 2.451 2.374 2.492 
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Table 3.10 Average, Minimum, Maximum Bond Lengths (in Å) of Zigzag Ge Nanotubes. 

Nanotube Ave.B.L Min.B.L Max.B.L 

(3,0) 2.5442 2.4910 2.5923 

(4,0) 2.5331 2.4510 2.5693 

(5,0) 2.4810 2.4318 2.5076 

(6,0) 2.4938 2.4938 2.5148 

(7,0) 2.4846 2.4193 2.5089 

(8,0) 2.4800 2.4129 2.4984 

(9,0) 2.4701 2.4113 2.4891 

(10,0) 2.4677 2.3957 2.5389 

(11,0) 2.4616 2.3944 2.5368 
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While designing and incorporating the new nanotube based circuitry it is important to know the 

regions of high and low electronic charge densities. In order to give a more detailed account of 

charge distribution in the nanotubes we have performed the Mulliken charge analysis for all 

types of Ge nanotubes (figures 3.27 and 3.28). For both armchair and zigzag nanotubes a 

significant amount of charge transfer among Ge atoms has been noticed. Similar to our 

previously mentioned SiNTs mixed nature of bonding is observed. Some of the smaller diameter 

Ge tubes are more ionic in nature, whereas higher diameter tubes have essentially covalent 

type bonding.  

In order to predict the conducting properties of nanotube, it is highly important to study 

the possible metallic or semi-conducting behavior of these nanotubes. Therefore we have 

calculated the highest-occupied-molecular-orbital to lowest-unoccupied-molecular-orbital 

(HOMO-LUMO) gaps for all the GeNTs under considerations. The gaps for armchair GeNTs are 

in the range of 0.317 eV to 1.084 eV. For zigzag tubes this range is from 0.232 to 0.693 eV. The 

calculated values of gaps for pure Ge nanotubes depict an irregular pattern. In both the cases 

this trend is observed in figure 3.29. Interactions of atoms beyond the neighboring atoms can be 

one possible reason for this oscillatory trend of band gap values with respect to tube diameter. 

Figure 3.30 shows the energy density of states (DOS) for (4, 4) armchair and (6, 0) zigzag Ge 

nanotubes, respectively. The DOS is convoluted with a Gaussian of width 0.05 eV and HOMO 

is adjusted to zero. The large gaps of armchair tubes compared to the gaps in the zigzag tubes 

are clearly visible. Finally, further into the future, we expect the Ge nanotubes to open up many 

unique avenues in the field of nanoelectronics and related device features. 
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Figure 3.27 Mulliken charge distribution for the relaxed GeNT (11, 11) nanotube. The scale 
used is depicted. 
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Figure 3.28 Mulliken charge distribution for the relaxed GeNT (11, 0) nanotube. The scale used 
is depicted. 
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           Figure 3.29 Band gap as a function of the tube diameter in the Ge nanotubes. 
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Figure 3.30 Gaussian broadened (σ = 0.05 eV) density of states (DOS) plots for Ge nanotubes. 
HOMO energy is set to zero. 
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CHAPTER 4 

GERMANIUM CARBIDE NANOTUBES 

4.1 Construction of Nanotubes 

  It is clear that, any compound with a propensity for forming graphite-like sheets can be a 

modeled into a nanotube structure. Therefore all the tubes reported in the present study are 

constructed using carbon nanotube template and are also isostructural to our structures in 

previous chapters. The starting geometries of these tubular structures have been obtained by 

simply rolling of graphene like sheet of C and Ge atoms placed at different nodes of the 

honeycomb lattice along a given chiral vector. So characterized by the roll up vector (n, m) three 

types of nanotubes are possible namely armchair, zigzag and chiral. It is well known fact that 

whenever a new family nanotubes is investigated the most two important cases (armchair and 

zigzag) are studies first. The reason for this being their simple translational symmetric nature in 

comparison to the broad range of chiral nanotubes. Therefore, in the present report we have 

restricted our calculations to the armchair and zigzag structures only. Simpler in construction, the 

(n, n) armchair tubes have the two sides of each hexagons are perpendicular to the tubular axis, 

whereas in (n, 0) zigzag, the two sides of each hexagons are parallel to the tube axis [112].  

  We have studied an array of single walled GeC nanotubes both in armchair and zigzag 

configurations. With distinct atomic arrangements, these nanotubular morphologies are 

categorized in three “types” namely Type I, Type II and Type III, which can be distinguished by 

looking at their respective atomic arrangements (Figs. 4.1 to 4.3). In type I arrangement, 

alternating C and Ge atoms have only Ge or C atoms as nearest neighbors. In type II and type III 

arrangements, the nearest neighbors surrounding each C atom consists of two Ge atoms and 

another C atom and vice-versa. The difference between type II and type III GeC nanotubes lies in 

the fact that in type II nanotubes, any layer (ring of atoms) perpendicular to the nanotube axis 
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contains only one kind of atoms, either C or Ge. But in type III, the same kind of layer will 

contain alternating C and Ge atoms. Also in the case of armchair nanotubes each layer 

comprises 2n atoms for the (n, n) nanotube but for zigzag nanotubes this layer has only n atoms 

per layer. For this reason type III zigzag nanotubes can only be formed when the chiral vector n 

is an even number. Finally, from atomic bond type perspective, type I has one kind of bond 

present throughout the nanotube, namely Ge-C bond, whereas types II and III have also Ge-Ge 

and C-C bonds (figures. 4.1 to 4.3).  

In the armchair family of nanotubes, the smallest GeC conformation is a (3, 3) tube, 

represented by a cluster of Ge30C30H12, and the largest (11, 11) represented by Ge110C110H44. 

The smallest and largest GeC nanotubes in zigzag configuration studied are (3, 0) and (11, 0) 

tube, which can be denoted by Ge33C33H6 and Ge121C121H22, respectively.  

 
4.2 Results and Discussions for GeC Nanotubes. 

 When instead of graphene, hybrid structures like GeC nanotubes are studied, a best 

possible way to calculate the relative thermodynamic stability of these structures is to compare 

the binding energy or cohesive energy per atom of different nanotubes. The cohesive energy or 

the binding energy per atom for each system is computed from the following equation: 

Eb= {[a E (Ge) +b E(C) +c E (H)] - [E (Gea Cb Hc)]}/ (a +b +c)                     (4.1)                                                    

where a, b, and c are the numbers of Ge, C, and H atoms respectively. E(Ge), E (C) and E(H) 

are the spin-optimized ground state total energies of Ge, C and H atoms, respectively, and 

E(GeaCbHc) is the total energy of the geometry and spin-optimized optimized clusters 

representing the nanotubes. Tables 4.1 to 4.6 summarize the electronic states, the binding 

energies per atom, the HOMO-LUMO or the “band” gaps, the diameters, and the dipole 

moments of the three different types of GeC nanotubes. In type I armchair nanotubes, the 

smallest value of cohesive energy obtained is 3.881eV/atom (3, 3) and the largest is 

4.092eV/atom (11, 11).  
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Figure 4.1 Atomic arrangements for (a) type I (3, 3) (b) type I (11, 11) (c) type I (3, 0) (d) type I 
(11, 0) GeC nanotubes. The carbon atoms are yellow and germanium atoms are red. The 

dashed line represents the orientation of tube axis. 
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 (c)                 (d)  
                                         
Figure 4.2 Atomic arrangements for (a) type II (3, 3) (b) type II (11, 11) (c) type II (3, 0) (d) type 
II (11, 0) GeC nanotubes. The carbon atoms are yellow and germanium atoms are red. The 

dashed line represents the orientation of tube axis. 
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                          (c)                             (d) 
  
Figure 4.3 Atomic arrangements for (a) type III (3, 3) (b) type III (11, 11) (c) type II (4, 0) (d) type 
III (10, 0) GeC nanotubes. The carbon atoms are yellow and germanium atoms are red. The 

dashed line represents the orientation of tube axis. 
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Table 4.1 Electronic States, Binding Energies per Atom (Eb) in eV, HOMO-LUMO Gaps in eV, 
Diameters in Å, and Dipole Moments in Debye for Type I Armchair GeC Nanotubes. 

 

Nanotube Model State Eb(eV) Gap(eV) Diameter(Å) 
Dip.Mnt 
(Debye) 

(3,3) Ge30C30H12 
1A1 3.881 2.666 4.603 0.0897 

(4,4) Ge40C40H16 
1A1 3.977 2.785 6.088 0.1085 

(5,5) Ge50C50H20 
1A1 4.019 2.988 7.576 0.1131 

(6,6) Ge60C60H24 
1A1 4.050 3.016 9.066 0.0798 

(7,7) Ge70C70H28 
1A1 4.066 3.003 10.561 0.0000 

(8,8) Ge80C80H32 
1A1 4.077 3.003 12.054 0.0000 

(9,9) Ge90C90H36 
1A1 4.084 2.999 13.550 0.0000 

 (10,10) Ge100C100H40 
1A1 4.089 2.995 15.050 0.0005 

 (11,11) Ge120C120H44 
1A1 4.092 2.995 16.547 0.0005 
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Table 4.2 Electronic States, Binding Energies per Atom (Eb) in eV, HOMO-LUMO Gaps in eV, 
Diameters in Å, and Dipole Moments in Debye for Type II Armchair GeC Nanotubes. 

 

Nanotube Model State Eb(eV)  Gap(eV) Diameter (Å) Dip.Mnt (Debye) 

(3,3) Ge30C30H12 
1A 3.964 1.247 4.591 2.104 

(4,4) Ge40C40H16 
1A 3.941 0.941 6.156 3.942 

(5,5) Ge50C50H20 
1A 3.964 0.873 7.670 6.914 

(6,6) Ge60C60H24 
1A 3.977 0.834 9.231 6.638 

(7,7) Ge70C70H28 
1A 3.986 0.549 10.705 5.703 

(8,8) Ge80C80H32 
1A 3.973 0.601 12.319 13.227 

(9,9) Ge90C90H36 
1A 3.983 0.690 13.796 14.108 

 (10,10) Ge100C100H40 
1A 3.987 0.625 15.376 17.502 

 (11,11) Ge120C120H44 
1A 3.985 0.618 16.913 18.100 
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Table 4.3 Electronic States, Binding Energies per Atom (Eb) in eV, HOMO-LUMO Gaps in eV, 
Diameters in Å, and Dipole Moments in Debye for Type III Armchair GeC Nanotubes. 

 

Nanotube Model State Eb(eV) Gap(eV) 
Diameter 

(Å) 
Dip.Mnt 
(Debye) 

(3,3) Ge30C30H12 
1Ag 3.834 1.493 4.672 0.0000 

(4,4) Ge40C40H16 
1Ag 3.883 1.296 6.167 0.0408 

(5,5) Ge50C50H20 
1A1 3.914 1.379 7.661 0.4732 

(6,6) Ge60C60H24 
1A1 3.935 1.236 9.165 0.0000 

(7,7) Ge70C70H28 
1A1 3.939 0.882 10.688 1.2098 

(8,8) Ge80C80H32 
1A1 3.953 0.906 12.199 0.0111 

(9,9) Ge90C90H36 
1A1 3.959 0.909 13.703 0.1417 

 (10,10) Ge100C100H40 
1A1 3.964 0.918 15.222 0.3824 

 (11,11) Ge120C120H44 
1A1 3.968 0.954 16.725 0.0222 
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Table 4.4 Electronic States, Binding Energies per Atom (Eb) in eV, HOMO-LUMO Gaps in eV, 
Diameters in Å, and Dipole Moments in Debye for Type I Zigzag GeC Nanotubes. 

 

Nanotube Model State Eb(eV) Gap(eV) Diameter(Å) 
Dip.Mnt 
(Debye) 

(3,0) Ge33C33H6  
3A1 3.575 0.744 3.180 0.228 

(4,0) Ge44C44H8 
3B1 3.805 0.714 4.049 2.294 

(5,0) Ge55C55H10 
3B1 3.971 0.449 4.944 3.931 

(6,0) Ge66C66H12 
3B 4.059 0.672 5.856 19.419 

(7,0) Ge77C77H14 
3A 4.112 1.022 6.781 37.109 

(8,0) Ge88C88H16 
3A 4.143 0.552 7.706 60.527 

(9,0) Ge99C99H18 
3A 4.172 0.583 8.646 61.072 

(10,0) Ge110C110H20 
3B 4.188 0.326 9.584 19.947 

(11,0) Ge121C121H22 
3A 4.208 0.579 10.525 44.634 
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Table 4.5 Electronic States, Binding Energies per Atom (Eb) in eV, HOMO-LUMO Gaps in eV, 
Diameters in Å, and Dipole Moments in Debye for Type II Zigzag GeC Nanotubes. 

 

Nanotube Model State Eb(eV) Gap(eV) Diameter(Å) 
Dip.Mnt 
(Debye) 

(3,0) Ge33C33H6  
3A1 3.816 0.672 3.268 18.377 

(4,0) Ge44C44H8 
3A 3.876 0.603 4.173 1.072 

(5,0) Ge55C55H10 
3A 3.918 0.465 5.060 6.794 

(6,0) Ge66C66H12 
3A 3.924 0.402 5.862 4.239 

(7,0) Ge77C77H14 
3A 3.981 0.385 6.827 7.827 

(8,0) Ge88C88H16 
3A 3.985 0.353 7.617 13.499 

(9,0) Ge99C99H18 
3A 3.997 0.202 8.743 15.996 

(10,0) Ge110C110H20 
3A 4.075 0.311 9.642 19.350 

(11,0) Ge121C121H22 
3A 4.086 0.296 10.594 32.256 

           
             

Table 4.6 Electronic States, Binding Energies per Atom (Eb) in eV, HOMO-LUMO Gaps in eV, 
Diameters in Å, and Dipole Moments in Debye for Type III Zigzag GeC Nanotubes. 

 

Nanotube Model State Eb(eV) Gap(eV) Diameter(Å) 
Dip.Mnt 
(Debye) 

    (4,0) Ge33C33H8  
3A 3.978 0.877 3.936 5.024 

    (6,0) Ge66C66H12 
3A 2.403 0.498 7.277 4.904 

    (8,0) Ge88C88H16 
3A 2.364 0.262 8.618 0.000 

(10,0) Ge110C110H20 
3B 2.491 0.306 11.985 2.590 
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The corresponding numbers for type II and III armchair nanotubes are 3.964 and 3.985 

eV/atom, and 3.834 and 3.968 eV/atom, respectively. In case of zigzag nanotubes, the smallest 

value of binding energy for type I (3, 0) is 3.575 eV/atom and largest (11, 0) is 4.208 eV/atom. 

The corresponding numbers for type II zigzag nanotubes are 3.816 and 4.086 eV/atom. Unlike 

the armchair nanotubes, the type III zigzag structures are not demonstrating continuous 

increase in binding energy with the diameter. The smallest nanotube (4, 0) has the maximum 

cohesive energy of 3.978 eV/atom and the minimum value of 2.364 eV/atom is obtained for (8, 

0) nanotube. The average value of the binding energy of type I armchair GeC nanotube is found 

to be 4.037 eV/ atom. For type II and type III, these values are 3.973 and 3.927 eV/atom, 

respectively. Zigzag type I nanotubes yield an average binding energy per atom to be 4.026eV. 

For type II and type III, these values are 3.963 and 2.809 eV/atom, respectively. It is evident 

that for both armchair and zigzag structures, type I nanotubes have the highest average 

stability. Similar trend was noticed in our previous study on SiC nanotubes [113]. Furthermore, 

type I armchair tubes are more stable than type II and III tubes, only exception being the 

smallest (3, 3) nanotube. In the case of zigzag GeC tubes, similar trend is observed with the 

exceptions of the smaller (3, 0) and (4, 0) nanotubes.  

 It is evident from the figures 4.4 and 4.5 for types I and III armchair tubes binding 

energy per atom tends to increase monotonically achieving near saturation at (11, 11). This 

monotonous increment in binding energy is also noticed in types I and II GeC zigzag nanotubes. 

Such increase in binding energies with cluster sizes until saturation point is a well-known 

phenomenon in cluster calculations. Same saturation tendency, from (3, 3) to (11, 11) is also 

observed for type II armchair nanotubes with minor fluctuations as we move from (3, 3) to (4, 4) 

and (7, 7) to (8, 8). The rather small increase in cohesive energy with cluster size in type II is 

attributed to the geometrical arrangement. From table 4.6 and figure 4.5 it is clear that higher 

diameter type III zigzag tubular structures are less stable than all the other nanotubes reported.  
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Figure 4.4 Binding energy versus diameter for GeC armchair nanotubes. 
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Figure 4.5 Binding energy versus diameter for GeC zigzag nanotubes. 
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The overall symmetry of type I nanotubes and the presence of only Ge-C bonds in type I 

structures for both armchair and zigzag nanotubes are responsible for their higher stability. On 

the other hand type II and III nanotubes have three different types of bonds, namely Ge-C, C-C 

and Ge-Ge, which might be a possible reason for their lower stability. The unusual trend in 

stability with respect to the diameter for type III zigzag nanotubes can be possibly linked with 

the heavy structural distortion for higher diameter tubes (Fig. 4.3). It is worthwhile to note that, in 

spite of high degree of structural distortion in higher diameter type III zigzag tubes, these 

nanotubular structures retained their cylindrical geometry which justify the manufacturing of 

these tubes under suitable conditions. It is expected that these tubes can be further stabilized 

by either hydrogen passivation or by doping with proper impurity for the specific nano based 

applications.  

 Rolling of graphene like sheet into a tubular cylinder induces a strain in the structure, 

which cause a pattern of bond distortions along the nanotubes. Furthermore, bond distortion 

also depends on the spatial position of the atoms, which is clearly distinct in the armchair and 

zigzag tubes. All the relaxed nanotubes reported here are initially built with all atoms equally 

spaced, and at same radial distance from the axis. In tables 4.7 to 4.12, we report the bond 

length variations for different nanotubes. For all three types of armchair and zigzag nanotubes 

the average Ge-C and Ge-Ge bond lengths decrease as the tube diameter increases with some 

exceptions. Small diameter nanotubes by virtue of their strong curvature are highly strained and 

to minimize the strain energy Ge-C and Ge-Ge bonds expand. In contrast, C-C bond indicate a 

mixed behavior in both chiralities. The average Ge-C bond lengths in armchair and zigzag 

nanotubes are smaller than our calculated Ge-C dimer bond length reported earlier. This 

contraction of bond length indicates the efficient overlap of the orbitals and a strong binding 

character of GeC bonds within the nanotube, which is responsible for the overall stability of the 

type I nanotubes. On the other hand, Ge-C bond lengths have relatively higher values in type II 

and type III structures, resulting in lower cohesive energy per atom.   
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Table 4.7 Average, Minimum, Maximum Bond Lengths (in Å) of Type I Armchair GeC 
Nanotubes. 

 

Nanotube Ave Min Max 

(3,3) 1.887 1.824 1.898 

(4,4) 1.882 1.828 1.892 

(5,5) 1.879 1.828 1.888 

(6,6) 1.878 1.830 1.889 

(7,7) 1.877 1.829 1.889 

(8,8) 1.876 1.830 1.889 

(9,9) 1.876 1.830 1.889 

 (10,10) 1.875 1.829 1.889 

 (11,11) 1.875 1.829 1.888 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

89 

Table 4.8 Average, Minimum, Maximum Bond Lengths (in Å) of Type II Armchair GeC 
Nanotubes. 

 

 Ge-Ge C-C Ge-C 

Nanotube Ave Min Max Ave Min Max Ave Min Max 

(3,3) 2.525 2.487 2.557 1.391 1.364 1.409 1.996 1.918 2.068 

(4,4) 2.458 2.379 2.499 1.402 1.378 1.413 1.970 1.914 2.025 

(5,5) 2.426 2.374 2.474 1.409 1.375 1.428 1.953 1.912 2.006 

(6,6) 2.414 2.372 2.448 1.423 1.400 1.446 1.950 1.908 1.988 

(7,7) 2.408 2.372 2.428 1.411 1.376 1.425 1.948 1.913 1.985 

(8,8) 2.349 2.300 2.377 1.429 1.387 1.443 1.913 1.895 1.928 

(9,9) 2.394 2.352 2.444 1.418 1.380 1.441 1.935 1.906 1.973 

 (10,10) 2.349 2.294 2.379 1.430 1.387 1.445 1.911 1.892 1.926 

 (11,11) 2.348 2.292 2.380 1.430 1.388 1.445 1.911 1.892 1.926 
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Table 4.9 Average, Minimum, Maximum Bond Lengths (in Å) of Type III Armchair GeC 
Nanotubes. 

 

 Ge-Ge C-C Ge-C 

Nanotube Ave Min Max Ave Min Max Ave Min Max 

(3,3) 2.541 2.521 2.560 1.394 1.391 1.397 1.983 1.820 2.091 

(4,4) 2.442 2.419 2.465 1.412 1.411 1.412 1.955 1.826 2.051 

(5,5) 2.400 2.380 2.421 1.420 1.395 1.443 1.937 1.831 2.022 

(6,6) 2.382 2.368 2.396 1.424 1.417 1.432 1.927 1.832 1.998 

(7,7) 2.352 2.347 2.362 1.437 1.429 1.456 1.909 1.819 1.942 

(8,8) 2.350 2.347 2.353 1.433 1.422 1.444 1.907 1.837 1.937 

(9,9) 2.347 2.344 2.354 1.434 1.422 1.445 1.906 1.838 1.944 

 (10,10) 2.348 2.346 2.349 1.435 1.425 1.445 1.906 1.838 1.934 

 (11,11) 2.349 2.346 2.352 1.434 1.423 1.444 1.906 1.837 1.940 
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Table 4.10 Average, Minimum, Maximum Bond Lengths (in Å) of Type I Zigzag GeC 
Nanotubes. 

 

Nanotube Ave Min Max 

(3,0) 1.950 1.868 1.990 

(4,0) 1.908 1.858 1.933 

(5,0) 1.895 1.866 1.910 

(6,0) 1.889 1.865 1.903 

(7,0) 1.886 1.876 1.899 

(8,0) 1.884 1.853 1.898 

(9,0) 1.882 1.866 1.897 

(10,0) 1.882 1.866 1.897 

(11,0) 1.882 1.832 1.966 
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Table 4.11 Average, Minimum, Maximum Bond Lengths (in Å) of Type II Zigzag GeC 
Nanotubes. 

 

 Ge-Ge C-C Ge-C 

Nanotube Ave Min Max Ave Min Max Ave Min Max 

(3,0) 2.751 2.612 2.966 1.415 1.350 1.657 2.048 1.987 2.121 

(4,0) 2.561 2.452 2.994 1.380 1.376 1.382 1.986 1.912 2.035 

(5,0) 2.641 2.468 2.966 1.387 1.355 1.414 1.976 1.867 2.040 

(6,0) 2.498 1.999 2.965 1.419 1.374 1.491 1.947 1.433 2.165 

(7,0) 2.370 2.346 2.428 1.421 1.413 1.428 1.925 1.854 1.944 

(8,0) 2.365 2.345 2.414 1.430 1.424 1.436 1.917 1.858 1.933 

(9,0) 2.354 2.352 2.358 1.647 1.629 1.678 1.893 1.847 1.912 

(10,0) 2.397 2.355 2.478 1.423 1.411 1.434 1.927 1.835 2.022 

(11,0) 2.364 2.354 2.397 1.441 1.434 1.454 1.909 1.860 1.922 
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Table 4.12 Average, Minimum, Maximum Bond Lengths (in Å) of Type III Zigzag GeC 
Nanotubes. 

 

 Ge-Ge C-C Ge-C 

Nanotube Ave Min Max Ave Min Max Ave Min Max 

    (4,0) 2.610 2.588 2.650 1.383 1.360 1.395 2.012 1.921 2.119 

    (6,0) 2.450 2.379 2.603 1.414 1.387 1.439 1.985 1.525 2.179 

    (8,0) 2.412 2.283 2.592 1.468 1.425 1.511 1.952 1.791 2.068 

(10,0) 2.310 1.783 2.696 1.513 1.491 1.545 1.947* 1.702 1.993 

 

We note that Ge-C bonds have mixed sp2-sp3 nature, whereas Ge-Ge and C-C bonds are 

dominantly sp3 and sp2 in character respectively, which also accounts for the observed behavior 

in the bond length variations.  

 Also structure relaxation leads to a change in the radial geometry of cylindrical 

structures, which is characterized by two concentric cylindrical tubes, one consisting of Ge 

atoms and another one formed of C atoms. The radial buckling β is calculated as an absolute 

value of the difference between average radial distances of germanium and carbon atoms from 

the tube axis:          

β = | <rGe> - <rC> |                                                          (4.2) 

where <rGe> and <rC> are the average radial distances of Ge and C atoms, respectively. In 

tables 4.13 and 4.14 and figures 4.6 and 4.7, we report the variations of buckling values with 

respect to different tube diameters. For type I armchair nanotubes, there is a very small outward 

relaxation of C atoms while Ge atoms slightly move inwards and therefore the amount of 

buckling can be considered as negligible.  
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Table 4.13 Tube Diameters (in Å) and Radial Bucklings (in Å) for Types I, II and III Armchair 
GeC Nanotubes. 

 

 Type I Type II Type III 

Nanotube Diameter(Å) β (Å) Diameter(Å) β (Å) Diameter(Å) β (Å) 

(3,3) 4.603 0.0068 4.591 0.1823 4.672 0.3749 

(4,4) 6.088 0.0078 6.156 0.3074 6.167 0.2597 

(5,5) 7.576 0.0077 7.670 0.2280 7.661 0.1790 

(6,6) 9.066 0.0090 9.231 0.1999 9.165 0.1248 

(7,7) 10.561 0.0080 10.705 0.1949 10.688 0.0518 

(8,8) 12.054 0.0071 12.319 0.1219 12.199 0.0401 

(9,9) 13.550 0.0078 13.796 0.1389 13.703 0.0330 

 (10,10) 15.050 0.0059 15.376 0.1186 15.222 0.0256 

 (11,11) 16.547 0.0060 16.913 0.1086 16.725 0.0411 
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Table 4.14 Tube Diameters (in Å) and Radial Bucklings (in Å) for Types I, II and III Zigzag GeC 
Nanotubes. 

 

 Type I Type II Type III 

Nanotube Diameter(Å) β (Å) Diameter(Å) β (Å) Diameter(Å) β (Å) 

(3,0) 3.180 0.3024 3.268 0.3272   

(4,0) 4.049 0.0377 4.173 0.1859 3.936 0.6399 

(5,0) 4.944 0.0041 5.060 0.1696   

(6,0) 5.856 0.0012 5.862 0.2805 7.277 0.0257 

(7,0) 6.781 0.0017 6.827 0.0523   

(8,0) 7.706 0.0017 7.617 0.0626 8.618 0.1142 

(9,0) 8.646 0.0006 8.743 0.0032   

(10,0) 9.584 0.0058 9.642 0.0557 11.985 0.0566 

(11,0) 10.525 0.0006 10.594 0.0266   
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Figure 4.6 Tube buckling versus diameter for GeC armchair nanotubes. 
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Figure 4.7 Tube buckling versus diameter for GeC zigzag nanotubes. 
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In case of type I zigzag nanotubes, this buckling direction is reversed, with Ge atoms moving 

away from the tube axis and C atoms moving toward the axis the axis. Nonetheless, the 

amounts of buckling in the zigzag structures have almost negligible values like armchair 

nanotubes. This rather small buckling is attributed to the fact that type I nanotubes are highly 

symmetric in nature, with only one type of bonds. In types II and III for both armchair and 

zigzag, the Ge atoms shift outwards and C atoms tend to move towards the axis of the 

nanotubes resulting in significant radial buckling. Hence types II and III nanotubes may be 

considered as Ge coated nanotubes with the reconstructions of the tube surfaces being quite 

prominent. It is worth mentioning that in our previous investigation on SiC nanotubes, similar 

type of behavior was observed [113]. Buckling does appear to be a minor effect, specifically for 

type I due to the overall symmetry and might possibly be a manifestation of the finite lengths of 

the tubes. In general for both the chiralities, lesser surface reconstructions are noted with 

increasing the tube diameters. The puckered surface structure caused by bond bending may 

also induce surface dipoles and modify the surface band structure, indicating some relevant 

potential chemical applications of GeC nanotubes.  

 From tables 4.1 to 4.6, we note that type I armchair nanotubes have almost negligible 

net dipole moments, which can again be attributed to the over all symmetry of the structures. 

High values of net dipole moment after relaxation for type II armchair and zigzag and type I 

zigzag nanotubes can be explained from the fact that these nanotubes have alternate layers of 

either Ge or C atoms and thus two ends of nanotubes will always be populated by different 

kinds of atoms. Though type III nanotubes in both chiralities do not have only either Ge or C 

atoms at the ends of the tubes, asymmetry in the structures in comparison to type I tubes 

induces the small values of the dipole moments. 

 We have performed the Mulliken charge analysis for all three types of GeC. As 

expected, these structures show a significant charge transfer from Ge to C atoms since C is 

more electronegative than Ge.  
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(a)                                                                             (b) 
 
 

 
 

                            (c)                    
                                                                
 

 

 
Figure 4.8 Mulliken charge distributions for (11, 11) nanotubes. (a) type I, (b) type II and (c) type 

III. Carbon atoms gained and germanium atoms, lost charge. 
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         (a)                                                   (b)                                                    (c)           

                   

                          
 
Figure 4.9 Mulliken charge distributions for (a) type I (11, 0), (b) type II (11, 0) and (c) type III 

(10, 0) nanotubes. 
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Figures 4.8 and 4.9 indicate that type I structures exhibit more ionic bonding characteristics than 

types II and III, in other words more charge transfer occurs from Ge atom to carbon atoms. 

Carbon atoms gained and germanium atoms, lost charge to C atoms in type I nanotubes. This 

is due to the fact that only Ge-C bonds are present in type I. Since types II and III contain C-C, 

Ge-C, and Ge-Ge bonds, the nature of the bonding is a mixture of ionic and covalent bonds. 

Thus, to an extent, we can say that the mechanism of charge transfer among the atoms 

influence the stability of the nanotubes. The larger the charge transfer, stronger is the 

hybridization of Ge-C bonds and thus higher is the nanotube stability. 

 To investigate the possible metallic or semi-conducting behavior of the nanotubes, we 

have calculated the highest-occupied-molecular-orbital to lowest-unoccupied-molecular-orbital 

(HOMO-LUMO) gaps or the “band gaps’ of all the nanotubes reported in this work. Tables 4.1 to 

4.6 and figures 4.10 to 4.11 show the calculated gaps as a function of the diameters of the 

corresponding nanotubes. The results suggest that all GeC nanotubes are semi-conducting in 

nature, with a wide spectrum of band gaps ranging from 0.549 eV to 3.016 eV for armchair, 

0.262 eV to 1.022 eV for zigzag nanotubes and 0.232 eV to 0.693 eV for pure Ge zigzag 

nanotubes. Type I armchair nanotubes have the largest gaps, with smallest (3, 3) structure 

having a band gap of 2.666 eV and the largest (11, 11) structure with a band gap of 2.995 eV, 

with convergence achieved around (7, 7). Type I armchair nanotubes have band gaps which are 

systematically larger than previously studied the two bulk structures [77, 78]. Type I zigzag 

nanotubes also yield relatively higher band gap values than the other two types. Strong ionic 

nature of type I nanotubes may be responsible for localizing electronic states which results in 

wide band gap values. A similar result was reported for SiC nanotubes [113].  The band gaps 

for types II and III nanotubes are significantly lower than type I nanotubes in armchair 

configuration. Furthermore type II armchair nanotubes have comparatively lower gaps than 

corresponding type III nanotubes, with gaps indicating a downward trend with increasing 

diameter. Similar behavior has also been noted before for SiC nanotubes [113].  
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            Figure 4.10 HOMO-LUMO gaps versus diameter for GeC armchair nanotubes. 
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         Figure 4.11 HOMO-LUMO gaps versus diameter for GeC zigzag nanotubes 
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On the other hand type I zigzag nanotubes show an oscillatory behavior in band gap values with 

increasing the tube diameters. For both types II and III armchair nanotubes, the band gaps 

decrease from (3, 3) to (7, 7) with minor oscillatory pattern noted thereafter. The irregularities in 

gap values for these zigzag tubes can possibly be a manifestation of smaller diameters, which 

ultimately gives rise to atomic interactions well beyond the nearest neighbors. Band gaps for 

nanotubes with higher diameter are expected to approach the limiting values of the 

corresponding graphene like sheets. GeC nanotubes with wide spectrum of band gaps can 

potentially be used in some nano-optical based applications and in the low voltage based 

nanoelectronics circuits as insulators where the excitation energy is not enough to overcome 

the gap barrier.  

 The highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular 

orbitals (LUMO) of the three types of nanotubes are shown in figures 4.12 to 4.17. It is evident 

from the figures that HOMO is localized to C atoms in type I armchair and zigzag nanotubes 

consistent with the higher charge transfer from Ge to C atoms. The delocalized nature of the 

electrons is clearly visible for types II and III armchair and zigzag nanotubes which is a 

manifestation of the aromatic behavior of C-C bonds and the mixed ionic and covalent behavior 

of the nanotubes. This delocalization of the orbital is a reminiscent of the lower stabilities of type 

II and III nanotubes discussed earlier.  

 Figures 4.18 and 4.19 show the energy density of states (DOS) for GeC armchair (6, 6), 

and zigzag (6, 0) nanotubes, respectively. The DOS is convoluted with a Gaussian of width 0.05 

eV and HOMO is adjusted to zero. The large gaps of type I tubes as compared to the gaps in 

the other two types is clearly visible. Further on the application side, we expect the properties of 

GeC tubes can be selectively modified by the adsorption of external functionalized groups. Wide 

band gap spectrum of three different types of GeC nanotubes also opens up an arena for 

bandgap selective engineered for nano optoelectronic devices. 
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Figure 4.12 Type I (3, 3) HOMO (top) and LUMO (bottom). 
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Figure 4.13 Type II (3, 3) HOMO (top) and LUMO (bottom). 
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Figure 4.14 Type III (3, 3) HOMO (top) and LUMO (bottom). 
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Figure 4.15 Type I (3, 0) HOMO (top) and LUMO (bottom). 
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Figure 4.16 Type II (3, 0) HOMO (top) and LUMO (bottom). 

 
 
 
  



 

 

 

110 

 
 

 

 
 

 
Figure 4.17 Type III (4, 0) HOMO (top) and LUMO (bottom). 

 
 
  
 
 
 
 
   



 

 

 

111 

 
 
 

 
 
 

Figure 4.18 Gaussian broadened (width = 0.05 eV) density of states (DOS) plots for (6, 6) 
armchair GeC nanotubes. HOMO energy is set to zero. 
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Figure 4.19 Gaussian broadened (width = 0.05 eV) density of states (DOS) plots for (6, 0) 
zigzag GeC nanotubes. HOMO energy is set to zero. 
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CHAPTER 5 

        SILICON GERMANIUM NANOTUBES 

5.1 Nanotube Construction 

With development of advanced theoretical and experimental tools, it is natural to 

imagine that tubes based on graphene like structures can be replicated or replaced by other 

materials and compounds. A more complicated atomic arrangement of Si and Ge in one 

dimensional tubular forms, which are known as SiGe nanotubes (a hybrid structure) have also 

been focus of scientific community lately. The tubes reported in the present study are all 

constructed in a fashion similar to carbon nanotubes and are analogous in geometry to our 

previous calculations on nanotubes [113, 114].  

  We have designed an array of single walled SiGe nanotubes both in armchair and 

zigzag configurations. Furthermore, with distinct atomic arrangements, these nanotubular 

morphologies are categorized in three “types” namely Type I, Type II and Type III, which can be 

distinguished by looking at their respective atomic arrangements (figures. 5.1 to 5.3). In type I 

arrangement, alternating Si and Ge atoms have only Ge or Si atoms as nearest neighbors. In 

type II and type III arrangements, the nearest neighbors surrounding each Si atom consists of 

two Ge atoms and another Si atom and vice-versa. The difference between type II and type III 

SiGe nanotubes lies in the fact that in type II nanotubes, any layer (ring of atoms) perpendicular 

to the nanotube axis contains only one kind of atoms, either Si or Ge. But in type III, the same 

kind of layer will contain alternating Si and Ge atoms. Also in the case of armchair nanotubes 

each layer comprises 2n atoms for the (n, n) nanotube but for zigzag nanotubes this layer has 

only n atoms per layer. For this reason type III zigzag nanotubes can only be formed when the 

chiral vector n is an even number.  
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(a) (b)            
 

 

 (c)                                                                                                            (d)              

Figure 5.1 Atomic arrangements for (a) type I (3, 3) (b) type I (11, 11) (c) type I (3, 0) (d) type I 
(11, 0) SiGe nanotubes. The silicon atoms are yellow and germanium atoms are red. 
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                         (a)                         (b) 
 

 

                   

 

 

                     (c )                                      (d)  
 
Figure 5.2 Atomic arrangements for (a) type II (3, 3) (b) type II (11, 11) (c) type II (3, 0) (d) type 

II (11, 0) SiGe nanotubes. The silicon atoms are yellow and germanium atoms are red. 
 
 



 

 

 

116 

              

                (a)                                                                                                             (b) 
 

 

(c) (d) 
 

Figure 5.3 Atomic arrangements for (a) type III (3, 3) (b) type III (11, 11) (c) type III (4, 0) (d) 
type III (10, 0) SiGe nanotube.The silicon atoms are yellow and germanium atoms are red. 
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In the armchair family of nanotubes, the smallest SiGe conformation is a (3, 3) tube, 

represented by a cluster of Si30Ge30H12, and the largest (11, 11) represented by Si110Ge110H44. 

The smallest and largest SiGe nanotubes in zigzag configuration studied are (3, 0) and (11, 0) 

tube, which can be denoted by Si33Ge33H6 and Si121Ge121H22, respectively. 

5.2 Results and Discussions 

In order to calculate the relative stability of these structures, binding or cohesive energy 

calculation has been done. Moreover, the identical chemical composition of these structures, 

allows us to compare their energies per atom directly. Tables 5.1 to 5.6 enlist the stoichiometry 

and respective binding or cohesive energy per atom for all the three types of armchair and 

zigzag SiGe nanotubes. The cohesive energy or the binding energy per atom for each system is 

computed from:  

Eb= {[a E (Si) +b E (Ge) +c E (H)] - [E (Sia Geb Hc)]} / (a +b +c)                    (5.1)                                                    

where a, b, and c are the numbers of Si, Ge, and H atoms respectively. E(Si), E(Ge) and E(H) 

are the spin-optimized ground state total energies of Si, Ge and H atoms, respectively, and 

E(SiaGebHc) is the total energy of the geometry and spin-optimized clusters representing the 

nanotubes. For type I armchair nanotubes, the smallest value of cohesive energy obtained is 

2.733 eV/atom (3, 3) and the largest is 2.844 eV/atom (11, 11). The corresponding numbers for 

types II and III armchair tubes are 2.758 and 2.851 eV/atom, and 2.761 and 2.848 eV/atom, 

respectively. In case of zigzag nanotubes, the smallest value of binding energy for type I (3, 0) 

is 2.663 eV/atom and largest (11, 0) is 2.855 eV/atom. The corresponding numbers for type II 

and type III zigzag nanotubes are 2.624 and 2.852 eV/atom and 2.769 and 2.841 eV/atom, 

respectively. Among armchair SiGe nanotubes the overall highest stability is reported for type II 

tubes, whereas type I zigzag tubes have the highest cohesive energy values among the zigzag 

family, only exception being the smaller (4, 0) and (6, 0) nanotubes.   
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Table 5.1 Electronic States, Binding Energies per Atom (Eb) in eV, HOMO-LUMO Gaps in eV, 
Diameters in Å, and Dipole Moments in Debye for Type I Armchair SiGe Nanotubes. 

 

Nanotube Model State Eb(eV) Gap(eV) Diameter(Å) 
Dip.Mnt 
(Debye) 

(3,3) Si30Ge30H12 
1A1 2.733 1.630 5.670 0.510 

(4,4) Si40Ge40H16 
1A1 2.768 1.388 7.474 0.051 

(5,5) Si50Ge50H20 
1A1 2.807 1.296 9.287 0.041 

(6,6) Si60Ge60H24 
1A1 2.822 1.226 11.108 0.161 

(7,7) Si70Ge70H28 
1A1 2.830 1.146 13.189 0.355 

(8,8) Si80Ge80H32 
1A1 2.836 1.094 14.762 0.059 

(9,9) Si90Ge90H36 
1A1 2.839 1.054 16.593 0.033 

(10,10) Si100Ge100H40 
1A1 2.842 1.024 18.422 0.175 

(11,11) Si120Ge120H44 
1A1 2.844 1.006 20.314 0.045 
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Table 5.2 Electronic States, Binding Energies per Atom (Eb) in eV, HOMO-LUMO Gaps in eV, 
Diameters in Å, and Dipole Moments in Debye for Type II Armchair SiGe Nanotubes. 

 

Nanotube Model State Eb(eV)  Gap(eV) Diameter (Å) Dip.Mnt (Debye) 

(3,3) Si30Ge30H12 
1A 2.758 1.635 5.658 0.614 

(4,4) Si40Ge40H16 
1A 2.763 1.196 7.463 0.209 

(5,5) Si50Ge50H20 
1A 2.774 0.980 9.319 0.314 

(6,6) Si60Ge60H24 
1A 2.792 1.022 11.130 0.389 

(7,7) Si70Ge70H28 
1A 2.804 0.986 12.577 0.339 

(8,8) Si80Ge80H32 
1A 2.843 1.032 14.753 1.213 

(9,9) Si90Ge90H36 
1A 2.847 0.995 16.586 1.873 

(10,10) Si100Ge100H40 
1A 2.849 0.971 18.418 0.783 

(11,11) Si120Ge120H44 
1A 2.851 0.944 20.251 1.816 
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Table 5.3 Electronic States, Binding Energies per Atom (Eb) in eV, HOMO-LUMO Gaps in eV, 
Diameters in Å, and Dipole Moments in Debye for Type III Armchair SiGe Nanotubes. 

 

Nanotube Model State Eb(eV) Gap(eV) 
Diameter 

(Å) 
Dip.Mnt 
(Debye) 

(3,3) Si30Ge30H12 
1A 2.761 1.318 5.669 0.549 

(4,4) Si40Ge40H16 
1A 2.791 1.288 7.467 0.157 

(5,5) Si50Ge50H20 
1A 2.814 1.209 10.860 0.312 

(6,6) Si60Ge60H24 
1A 2.826 1.104 11.672 0.310 

(7,7) Si70Ge70H28 
1A 2.834 1.044 12.533 0.238 

(8,8) Si80Ge80H32 
1A 2.840 0.981 14.759 1.647 

(9,9) Si90Ge90H36 
1A 2.843 0.937 16.589 0.111 

(10,10) Si100Ge100H40 
1A 2.846 0.905 18.422 0.242 

(11,11) Si120Ge120H44 
1A 2.848 0.905 20.246 0.311 
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Table 5.4 Electronic States, Binding Energies per Atom (Eb) in eV, HOMO-LUMO Gaps in eV, 
Diameters in Å, and Dipole Moments in Debye for Type I Zigzag SiGe Nanotubes. 

 

Nanotube Model State Eb(eV) Gap(eV) Diameter(Å) 
Dip.Mnt 
(Debye) 

(3,0) Si33Ge33H6 
3A 2.663 0.413 3.977 0.3623 

(4,0) Si44Ge44H8 
3A 2.727 0.338 4.898 8.9124 

(5,0) Si55Ge55H10  
3A 2.772 0.671 6.001 5.5598 

(6,0) Si66Ge66H12 
3B 2.779 0.486 7.242 11.6279 

(7,0) Si77Ge77H14 
3A 2.835 0.681 8.308 26.9628 

(8,0) Si88Ge88H16 
3A 2.847 0.138 9.471 8.0597 

(9,0) Si99Ge99H18 
3A 2.851 0.358 10.608 22.1378 

(10,0) Si110Ge110H20 
3A 2.854 0.643 11.787 11.6471 

(11,0) Si121Ge121H22 
3A 2.855 0.228 12.938 27.3387 
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Table 5.5 Electronic States, Binding Energies per Atom (Eb) in eV, HOMO-LUMO Gaps in eV, 
Diameters in Å, and Dipole Moments in Debye for Type II Zigzag SiGe Nanotubes. 

 

Nanotube Model State Eb(eV) Gap(eV) Diameter(Å) Dip.Mnt (Debye) 

(3,0) Si33Ge33H6 
3A 2.624 0.638 4.058 9.0545 

(4,0) Si44Ge44H8 
3A 2.656 0.397 5.122 3.4061 

(5,0) Si55Ge55H10  
3A 2.708 0.584 6.013 9.5329 

(6,0) Si66Ge66H12 
3A 2.714 0.326 7.277 4.4765 

(7,0) Si77Ge77H14 
3A 2.731 0.427 8.316 34.6908 

(8,0) Si88Ge88H16 
3A 2.761 0.407 9.703 15.6026 

(9,0) Si99Ge99H18 
3A 2.802 0.475 10.640 3.0211 

(10,0) Si110Ge110H20 
3A 2.838 0.579 11.784 3.3500 

(11,0) Si121Ge121H22 
3A 2.852 0.532 12.949 13.5679 
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Table 5.6 Electronic States, Binding Energies per Atom (Eb) in eV, HOMO-LUMO Gaps in eV, 
Diameters in Å, and Dipole Moments in Debye for Type III Zigzag SiGe Nanotubes. 

 

Nanotube Model State Eb(eV) Gap(eV) Diameter(Å) 
Dip.Mnt 
(Debye) 

(4,0) Si44Ge44H8 
3A 2.769 0.680 4.871 

 
2.298 

(6,0) Si66Ge66H12 
3A 2.801 0.304 7.197 

 
2.846 

(8,0) Si88Ge88H16 
3B1 2.837 0.401 9.472 

 
1.228 

(10,0) Si110Ge110H20 
3A 2.841 0.164 11.792 

 
1.928 

 

The stability trend reported here is different from our previous calculations on SiC and GeC 

nanotubes [113, 114], where type I nanotubes were found to be energetically more favorable.    

It is evident from figure 5.4 that for armchair tubes binding energy per atom tends to 

increase monotonically achieving near saturation at (11, 11). This monotonous increment in 

binding energy is also noticed in SiGe zigzag nanotubes (Fig. 5.5). It is well known fact that 

distances between the atoms play a major role in stabilizing the tubes, which is evident in 

smaller diameter nanotubes. But as we increase the tube diameter, interaction between 

diametrically opposite atoms decreases and thus stabilizes the tubes. Also the higher diameter 

tube surfaces are more planar in comparison to highly curved smaller diameter tubes; this 

flatness of surface reduces the σ-π hybridizations thus increasing the stability of higher 

diameter nanotubes. As mentioned earlier, all the different types of nanotubes have different 

atomic arrangements which results in distinct geometries of these tubes. The presence of only 

one kind of bond (Si-Ge) in type I tubes, layered configurations of atoms in type II tubes, and 

alternative atom placement in type III can also affect the overall stability of these nanotubes.  
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Figure 5.4 Binding energy versus diameter for SiGe armchair nanotubes. 
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Figure 5.5 Binding energy versus diameter for SiGe zigzag nanotubes. 
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As suggested by Cabria and group members [115], comparatively less stable smaller diameter 

tubes can be neatly anchored over the vacancy in the wall of larger diameter tubes to form 

different nano-junctions. This technique of anchoring the tubes can be very promising in not 

only stabilizing the smaller diameter less stable SiGe tubes but also in designing the nano 

interconnect junctions in the circuitry. It also helps to saturate some of the dangling bonds which 

play a major role in cluster calculations.  Doping with proper impurity (p-type or n-type) or 

hydrogen passivation along the length of tube is also well sought alternative in increasing the 

stability of nanotubes. 

When a graphene like sheet is rolled into a tubular cylinder, the corresponding bonds 

between the atoms are strained and distorted. The degree of the distortion also depends on the 

spatial position of the atoms, which is clearly distinct in the armchair and zigzag tubes. All the 

relaxed nanotubes reported here are initially built with all atoms equally spaced, and at same 

radial distance from the axis. In tables 5.7 to 5.12, we report the bond length variations for 

different nanotubes. For all three types of armchair and zigzag nanotubes the average Si-Ge, 

Ge-Ge and Si-Si bond lengths show a mixed pattern as the tube diameter changes. In case of 

type I armchair and types II and III zigzag tubes Si-Ge bonds tend to contract as diameter is 

increased. Ge-Ge bond lengths in type II armchair decrease initially as we move from (3, 3) to 

(7, 7) then increase as we approach largest (11, 11) nanotube. But for type III in armchair 

configuration and types II and III in zigzag format a declining trend for Ge-Ge bond lengths is 

observed with some exceptions. An oscillatory pattern is reported in Si-Si bonds for all different 

types of nanotubes. It is known that both Si and Ge atoms favor sp3 hybridization, whereas all 

the nanotubes presented here are based on the graphite templates which make the atoms 

essentially three fold coordinated or sp2 hybridized. During the relaxation of nanotubes, these 

atoms try to retain their preferred sp3 hybridization state which not only accounts for distortion in 

the tubular structure but also for the differences in bond length values for different nanotubes.  
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Table 5.7 Average, Minimum, Maximum Bond Lengths (in Å) of Type I Armchair SiGe 
Nanotubes. 

 

Nanotube Ave.B.L Min.B.L Max.B.L 

(3,3) 2.372 2.301 2.399 

(4,4) 2.370 2.302 2.397 

(5,5) 2.362 2.303 2.387 

(6,6) 2.357 2.304 2.387 

(7,7) 2.355 2.297 2.375 

(8,8) 2.351 2.295 2.371 

(9,9) 2.350 2.296 2.370 

(10,10) 2.349 2.296 2.369 

(11,11) 2.308 2.252 2.331 
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Table 5.8 Average, Minimum, Maximum Bond Lengths (in Å) of Type II Armchair SiGe 
Nanotubes. 

 

 Si-Si Ge-Ge Si-Ge 

Nanotube Ave Min Max Ave Min Max Ave Min Max 

 (3,3) 2.252 2.199 2.287 2.523 2.462 2.556 2.365 2.339 2.373 

 (4,4) 2.257 2.205 2.306 2.477 2.419 2.510 2.361 2.337 2.390 

(5,5) 2.244 2.191 2.271 2.372 2.314 2.401 2.315 2.305 2.329 

 (6,6) 2.239 2.176 2.276 2.373 2.322 2.412 2.312 2.295 2.329 

 (7,7) 2.242 2.191 2.270 2.370 2.313 2.402 2.312 2.300 2.326 

 (8,8) 2.268 2.213 2.294 2.436 2.394 2.456 2.361 2.331 2.382 

 (9,9) 2.268 2.213 2.294 2.433 2.390 2.451 2.359 2.330 2.378 

 (10,10) 2.268 2.213 2.294 2.430 2.388 2.448 2.358 2.330 2.376 

 (11,11) 2.268 2.213 2.293 2.429 2.389 2.447 2.357 2.330 2.376 
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Table 5.9 Average, Minimum, Maximum Bond Lengths (in Å) of Type III Armchair SiGe 
Nanotubes. 

 

 Si-Si Ge-Ge Si-Ge 

Nanotube Ave Min Max Ave Min Max Ave Min Max 

(3,3) 2.294 2.275 2.324 2.518 2.478 2.565 2.346 2.270 2.391 

 (4,4) 2.310 2.303 2.319 2.455 2.449 2.462 2.367 2.312 2.397 

 (5,5) 2.285 2.277 2.292 2.457 2.457 2.457 2.365 2.305 2.395 

 (6,6) 2.282 2.274 2.290 2.445 2.443 2.448 2.386 2.303 2.359 

 (7,7) 2.280 2.272 2.288 2.439 2.436 2.442 2.359 2.301 2.394 

 (8,8) 2.279 2.271 2.288 2.435 2.430 2.439 2.357 2.300 2.389 

 (9,9) 2.278 2.270 2.287 2.432 2.427 2.437 2.355 2.300 2.385 

 (10,10) 2.277 2.269 2.285 2.430 2.426 2.435 2.353 2.298 2.383 

 (11,11) 2.280 2.274 2.285 2.429 2.422 2.436 2.352 2.293 2.374 
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Table 5.10 Average, Minimum, Maximum Bond Lengths (in Å) of Type I Zigzag SiGe 
Nanotubes. 

 

Nanotube Ave.B.L Min.B.L Max.B.L 

 (3,0) 2.331 2.327 2.351 

 (4,0) 2.382 2.366 2.395 

 (5,0) 2.339 2.339 2.399 

 (6,0) 2.329 2.308 2.344 

 (7,0) 2.374 2.339 2.383 

 (8,0) 2.367 2.331 2.384 

 (9,0) 2.346 2.312 2.386 

 (10,0) 2.317 2.292 2.324 

 (11,0) 2.316 2.278 2.329 
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Table 5.11 Average, Minimum, Maximum Bond Lengths (in Å) of Type II Zigzag SiGe 
Nanotubes. 

 

 Si-Si Ge-Ge Si-Ge 

Nanotube Ave Min Max Ave Min Max Ave Min Max 

 (3,0) 2.279 2.275 2.282 2.561 2.547 2.583 2.402 2.391 2.429 

(4,0) 2.249 2.230 2.268 2.461 2.425 2.482 2.383 
  

2.364 
2.397 

(5,0) 2.296 2.263 2.330 2.499 2.487 2.526 2.374 2.351 2.393 

(6,0) 2.293 2.266 2.317 2.470 2.483 2.507 2.371 2.355 2.385 

(7,0) 2.284 2.261 2.302 2.454 2.426 2.471 2.368 2.334 2.398 

(8,0) 2.289 2.274 2.326 2.423 2.388 2.447 2.333 2.319 2.365 

(9,0) 2.265 2.255 2.278 2.376 2.359 2.385 2.320 2.295 2.334 

(10,0) 2.251 2.246 2.259 2.377 2.369 2.392 2.317 2.293 2.328 

(11,0) 2.248 2.237 2.265 2.378 2.369 2.394 2.318 2.274 2.388 
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Table 5.12 Average, Minimum, Maximum Bond Lengths (in Å) of Type III Zigzag SiGe 
Nanotubes. 

 

 Si-Si Ge-Ge Si-Ge 

Nanotube Ave Min Max Ave Min Max Ave Min Max 

 (4,0) 2.307 2.288 2.340 2.555 2.503 2.593 2.370 2.333 2.396 

 (6,0) 2.259 2.227 2.278 2.494 2.431 2.537 2.348 2.310 2.391 

 (8,0) 2.266 2.246 2.288 2.466 2.399 2.512 2.354 2.320 2.399 

 (10,0) 2.251 2.232 2.263 2.383 2.375 2.389 2.317 2.280 2.326 

 

It is worthwhile to notice, that the layered type construction is favored by both Si-Si and Ge-Ge 

atoms which is evident from the relatively higher stability of the type II armchair and types I and 

II single walled SiGe nanotubes. These nanotubes while constructed in multiwalled manner also 

had similar kind of layered configurations [81, 82]. 

Furthermore, structure relaxation leads to a change in the radial geometry of the 

cylindrical structures, which is characterized by two concentric cylindrical tubes, one consisting 

of Si atoms and another one formed by Ge atoms. The radial buckling ‘β’ is calculated as an 

absolute value of the difference between average radial distances of silicon and germanium 

atoms from the tube axis:          

β = | <rSi> - <rGe>          (5.2) 

where <rSi> and <rGe> are the average radial distances of Si and Ge atoms, respectively. In type 

I armchair tubes Si atoms which are slightly more electronegative in nature as compared to Ge 

atoms tend to shift away from the tubular axis, whereas Ge atoms move towards the axis. For 

types II and III tubes, there is a very small outward relaxation of Ge atoms while Si atoms 

slightly move inward. In case of zigzag nanotubes, except type I (6, 0), (7, 0) tubular structures 

and smaller (3, 0) and (4, 0) type II tubes Ge atoms relax away from the nanotube axis with 
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small shift of Si atoms in the opposite direction. Hence, depending on the relative positions of 

the Ge and Si atoms, type I armchair  tubes can be considered Si coated, while types II and III 

armchair nanotubes and all three zigzag tubes (with some exceptions) can be considered as Ge 

coated. It is worth mentioning that in our previous investigation on GeC and SiC nanotubes, 

similar type of behavior was observed where atoms with different electronegativities tend to 

displace from their initial positions [113, 114]. From tables 5.13 and 5.14 it is clear that, the 

amount of buckling in the SiGe structures is small and value decreases as the tubes grow in 

diameter.  It is illustrated from figures 5.6 and 5.7 that in type I armchair and type III zigzag 

nanotubes buckling value decreases as tube diameter is increased. Types II and III armchair 

tubes also show the similar behavior but with some oscillatory patterns. For types I and II zigzag 

tubes, buckling value fluctuates around (5, 0) to (9, 0) but eventually reduces as we increase 

the tube diameter. In the present investigation, buckling does appear to be a minor effect, and 

might possibly be a manifestation of the finite lengths of the tubes. Slight differences in the 

electronegativities of Si and Ge atoms can also contribute to the reconstruction of the surfaces. 

The puckered surface structure caused by bond stretching or bending may also create surface 

dipoles and significantly modify the surface band structure.  

From tables 5.1 to 5.6, we note that SiGe armchair nanotubes have small net dipole 

moments, whereas zigzag conformations have relatively significant values of dipole moments. 

Among armchair tubes type I has the lowest dipole moments which can be attributed to the 

overall symmetry of the structures and presence of only Si-Ge bonds. Smaller values of net 

dipole moment after relaxation for type II armchair nanotubes can be explained from the fact 

that these nanotubes have alternate layers of either Si or Ge atoms and thus two ends of 

nanotubes will always be populated by different kinds of atoms. Though type III armchair 

nanotubes do not have only either Si or Ge atoms at the ends of the tubes, asymmetry in the 

structures in comparison to type I tubes induces the small values of the dipole moments. In 

summary, alternative layered arrangement for types I and II zigzag tubes, comparatively smaller 
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diameters with longer tube lengths, and higher bond distortion with bonds stretching along the 

tube length give rise to significant amount of dipole values in the zigzag tubes. 

One of the most important properties of a cluster or a nanotube is the charge density 

distribution. While designing and incorporating the new nanotube based circuitry it is important 

to know the regions of high and low electronic charge densities. In order to give a more detailed 

account of charge distribution in the nanotubes we have performed the Mulliken charge analysis 

for all types of SiGe nanotubes. As expected, these structures show a significant charge 

transfer from Ge to Si atoms since Si is relatively more electronegative than Ge. Figure 5.8 

clearly indicates that type I armchair structures exhibit more ionic bonding characteristics than 

types II and III, in other words more charge transfer occurs from Ge to Si atoms in type I 

nanotubes. This is due to the fact that only Si-Ge bonds are present in type I. Since types II and 

III contain Si-Si, Si-Ge, and Ge-Ge bonds, the nature of the bonding is a mixture of ionic and 

covalent bonds which are also evident in the figure 5.8. Investigating the zigzag SiGe structures 

(Fig. 5.9), the types I and III also show a charge transfer pattern among the Si and Ge atoms. 

As the size of Si atoms are smaller than the corresponding Ge atoms stronger nuclear forces 

compel the charge accumulation over these atoms. The main source of charge is the outer shell 

of Ge atoms which tend to lose the charge to the scavenging Si atoms. Mixed nature of bonding 

is also reported for zigzag SiGe structures. Type II zigzag structures show a unique spread of 

charge along the tube. It can be viewed from figure 5.9 that type II structure (11, 0) is divided 

into positive and negative regions, furthermore irrespective of the electronegativities, Si atoms 

and Ge atoms loose or gain the charge. This unique feature can be exploited in the developing 

the p-n junction type devices where different sections have different charge concentrations.  
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Table 5.13 Tube Diameters (in Å) and Radial Bucklings (in Å) for Types I, II and III Armchair 
SiGe Nanotubes. 

 

 Type I Type II Type III 

Nanotube Diameter(Å) β (Å) Diameter(Å) β (Å) Diameter(Å) β (Å) 

 (3,3) 5.670 0.596 5.658 0.284 5.669 0.152 

 (4,4) 7.474 0.555 7.463 0.197 7.467 0.217 

 (5,5) 9.287 0.527 9.319 0.022 10.860 0.087 

 (6,6) 11.108 0.513 11.130 0.029 11.672 0.073 

 (7,7) 13.189 0.488 12.577 0.064 12.533 0.069 

 (8,8) 14.7628 0.485 14.753 0.064 14.759 0.152 

 (9,9) 16.593 0.481 16.586 0.053 16.589 0.142 

 (10,10) 18.422 0.477 18.418 0.048 18.422 0.136 

(11,11) 20.314 0.022 20.251 0.045 20.246 0.071 
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Table 5.14 Tube Diameters (in Å) and Radial Bucklings (in Å) for Types I, II and III Zigzag SiGe 
Nanotubes. 

 

 Type I Type II Type III 

Nanotube Diameter(Å) β (Å) Diameter(Å) β (Å) Diameter(Å) β (Å) 

(3,0) 3.977 0.625 4.058 0.175   

(4,0) 4.898 0.286 5.122 0.028 4.871 0.503 

 (5,0) 6.001 0.288 6.013 0.219   

 (6,0) 7.242 0.004 7.277 0.019 7.197 0.328 

 (7,0) 8.308 0.545 8.316 0.021   

 (8,0) 9.471 0.367 9.703 0.016 9.472 0.169 

 (9,0) 10.608 0.035 10.640 0.056   

 (10,0) 11.787 0.045 11.784 0.017 11.792 0.019 

 (11,0) 12.938 0.009 12.949 0.109   
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Figure 5.6 Tube buckling versus diameter for SiGe armchair nanotubes. 
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Figure 5.7 Tube buckling versus diameter for SiGe zigzag nanotubes. 
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   (a)                                                                                      (b) 
            

 

 
                                                                                    (c) 

 
 
 
 

Figure 5.8 Mulliken charge distributions for armchair (11, 11) nanotubes. (a) type I (b) type II 
and (c) type III. Silicon atoms gained and germanium atoms, lost charge. 
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 (a)                                                       (b)                                                      (c)  
  

 
 

Figure 5.9 Mulliken charge distributions for zigzag (11, 0) nanotubes. (a) type I, (b) type II and 
(c) type III. 
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 Thus, to an extent, we can say that the mechanism of charge transfer between atoms 

influences the stability of the nanotubes. 

The energy difference between the highest-occupied-molecular-orbital (HOMO) and 

lowest-unoccupied-molecular-orbital (LUMO) level is regarded as band gap energy. To 

investigate the possible metallic or semi-conducting behavior of the nanotubes, we have 

calculated these HOMO-LUMO gaps of all the nanotubes. Tables 5.1 through 5.6 and figures 

5.10 and 5.11 illustrate the calculated gaps as a function of the diameters of the corresponding 

nanotubes. It is evident that all SiGe nanotubes are semi-conducting in nature, with a wide 

spectrum of band gaps. Armchair SiGe nanotubes have the largest gaps in all types than 

corresponding zigzag nanotubes. The gap is decreasing with increasing diameter and 

approaching saturation. These saturation values are approximately 1eV, 0.94eV and 0.90eV for 

types I, II, and III, respectively. On the other hand in zigzag SiGe nanotubes for all types, gap 

and tube diameter have an alternating relationship. However unlike in the other two types, gap 

and tube diameter relationship in type III zigzag nanotubes can be characterized by a 

predominant decreasing trend. It is interesting to notice that relative position of Si and Ge atoms 

in armchair SiGe nanotubes is affecting the electronic properties but it does not have any 

significant influence in zigzag configurations. The average band gap values for types I, II, and III 

armchair nanotubes are 1.21eV, 1.09 eV and 1.08eV, respectively. The corresponding values 

for zigzag nanotubes are 0.44eV, 0.48eV and 0.38eV. Relatively stronger ionic nature of type I 

armchair nanotubes may be responsible for the localizing electronic states which results in 

wider band gap values. In general electrons are more localized in armchair tubes than 

corresponding zigzag structures, a greater value of band gaps is expected. The pronounced 

irregularities in gap values for the zigzag tubes can possibly be a manifestation of smaller 

diameters which ultimately gives rise to atomic interactions well beyond the nearest neighbors. 

Band gaps for all the nanotubes with increase in diameter are expected to approach the limiting 

values of the corresponding graphene like sheets.  
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Figure 5.10 HOMO-LUMO gaps versus diameter for SiGe armchair nanotubes. 
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Figure 5.11 HOMO-LUMO gaps versus diameter for SiGe zigzag nanotubes. 
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The highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular 

orbitals (LUMO) of all the different types of nanotubes are shown in figures 5.12 to 5.17. It is 

evident from the figures that HOMO is localized to Si atoms in armchair nanotubes consistent 

with the higher charge transfer from Ge to Si atoms. All the HOMO orbitals are mainly 

composed of p orbitals of the respective atoms. The slight delocalized nature of the electrons in 

types II and III is observed, which is a manifestation of mixed ionic and covalent behavior of the 

nanotubes. In general orbitals are of localized character in armchair tubes. For zigzag SiGe 

tubes delocalized nature of the orbitals is clearly visible in the plots. Interestingly, this diffused 

behavior of orbitals is not distributed along the tube length. This fact exposes some of the 

possible regions where the electron delocalization is unfavorable. As mentioned earlier in 

comparison to armchair tubes, SiGe nanotubes in zigzag form have lower values of band gaps, 

which can also be possibly linked with the delocalized nature of the electrons which is known for 

reducing the band gap values. HOMO and LUMO energy level plots also expose many possible 

favorable sites on the surface of SiGe nanotubes where external functionalized groups can be 

comfortably adsorbed, and that can significantly tune the electronic properties. As proposed 

earlier, a technique to saturate the less stable nanotubes is hydrogen passivation, but while 

doing so one can significantly alter the electronic properties, specifically band gaps of the 

nanotubes open up as hydrogen atoms will trap the extra electrons from the tubes.  

Figures 5.18 and 5.18 show the energy density of states (DOS) for (7, 7) armchair and 

(4, 0) zigzag nanotubes, respectively. The DOS is convoluted with a Gaussian of width 0.05 eV 

and HOMO is adjusted to zero. The large gaps of armchair tubes compared to the gaps in the 

zigzag tubes are clearly visible. Finally, further into the future, we expect the SiGe nanotubes to 

open up many unique avenues in the field of nanoelectronics. Such areas include the 

developments of novel nano solar cells and photovoltaics, nanojuntions and interconnects, and 

nano device components. 
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                                                     (a) 
 

 

                                                           (b) 
 

 
Figure 5.12 Type I (3, 3) HOMO (top) and LUMO (bottom). 
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                          (a) 
 
 
 
 

 
                                                             (b) 
 
 
 

Figure 5.13 Type II (3, 3) HOMO (top) and LUMO (bottom). 
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                                            (a) 
 

 
 
                                                                             (b) 
  
 

Figure 5.14 Type III (3, 3) HOMO (top) and LUMO (bottom). 
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                (a) 
 
 

                                                      (b) 
 
 
 

Figure 5.15 Type I (3, 0) HOMO (top) and LUMO (bottom). 
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               (a) 
 

 
                                                            (b) 
 

 
Figure 5.16 Type II (3, 0) HOMO (top) and LUMO (bottom). 
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                                                             (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                     (b) 
 
                                                             (b) 

 

Figure 5.17 Type III (4, 0) HOMO (top) and LUMO (bottom). 
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Figure 5.18 Gaussian broadened (width = 0.05 eV) density of states (DOS) plots for armchair 
nanotubes. HOMO energy is set to zero. 
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Figure 5.19 Gaussian broadened (width = 0.05 eV) density of states (DOS) plots for zigzag 
nanotubes. HOMO energy is set to zero. 
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CHAPTER 6 

  CONCLUSIONS 

In summary, ab initio calculations using hybrid density functional theory and finite 

cluster approach have been performed for pure Si nanotubes. We have reviewed briefly the 

past work on Si nanotubes and presented a systematic analysis of armchair, zigzag, and chiral 

nanotubes. Our result showed that Si-Si bond length alternation is more pronounced in SiNTs 

than that in CNTs which shows a strong tendency for bond delocalization. Also as the number 

of Si atoms and tube diameter increases, the binding energy per atom for all zigzag and chiral 

nanotubes approaches saturation value. This is consistent with our previous research for 

armchair Si. The band gaps of all the different nanotubes that we have studied vary from 0.22 

eV for zigzag (8, 0) to 1.15 eV for chiral (6, 3) which follows an oscillatory fashion between 

semi-metallic and small gap semiconductors. These results may have potential applications in 

nanodevices of the future. The Mulliken charge analysis shows that the zigzag structures have 

predominantly ionic bonding while the armchair and some of the chiral structures are covalently 

bonded. At this point we predict that the stability and electronic properties of SiNTs can be 

further increased by providing a suitable sp3 bonding environment either by doping with other 

elements or by proper hydrogenation. 

Using the same functional and basis set, we have studied three different types of 

armchair and zigzag GeC and pure Ge nanotubes. Detailed analysis and comparison for 

stability and geometry have been performed along with the evolution of electronic properties 

with the tube diameters. The three different types of nanotubes type I, type II, and type III have 

different atomic arrangement with the constraint of Ge to C ratio as 1:1 is maintained in all 

different GeC structures. The spatial positions of the Ge and C atoms, ionicity, and curvature 
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are the primary governing factors in the determinations of the stabilities and the electronic 

behaviors of the nanotubes. In both the cases armchair and zigzag GeC, type I tubes are found 

to be the most stable nanotubes among the three different types. As the nanotube diameter 

increases the cohesive energy of nanotubes increases and tends to approach saturation level 

with exception of type III zigzag GeC nanotubes. The results also suggest that all the nanotubes 

studied are semi-conducting in nature, with type I GeC tubes having widest band gap values. In 

types II and III for armchair and zigzag GeC tubes, the Ge atoms shift outwards and C atoms 

tend to move towards the axis of the nanotubes resulting in significant radial buckling. A reverse 

trend with negligible buckling values is obtained for type I tubes. In the case of pure Ge 

nanotubes the cohesive energy values tend to saturate as the diameter is increased. Also pure 

Ge tubes are semi-conducting with mixed ionic and covalent bonding nature. Rippled surfaces 

of relaxed zigzag Ge tubes are also observed after the relaxation.  

Within the same theoretical framework we have extended our work to type I, II and III 

armchair, and zigzag SiGe nanotubes. Detailed analysis and comparison for stability and 

geometry have been performed along with the evolution of electronic properties with the tube 

diameters. The constraint of Si to Ge ratio as 1:1 is also maintained in all different SiGe 

structures. Once again the relative positions of the Si and Ge atoms, ionicity, and curvature are 

the primary governing factors in the determinations of the stabilities and the electronic behaviors 

of the nanotubes. Despite of surface reconstructions and structural distortions, tubes retained 

their cylindrical structures, which justify the stable single walled tubular forms of SiGe. The 

results also suggest that all the nanotubes studied are semi-conducting in nature, with a wide 

spectrum of band gaps. Also structure relaxation leads to a change in the radial geometry of the 

cylindrical structures making types II and III tubes Ge coated, and type I tubes to be Si coated 

with some exceptions.  

 Finally, further into the future it is envisioned that Ge based tubes will have potential 

applications in wide band gap nano-optoelectronic devices and selective bandgap circuitry of 
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future. Particularly type I GeC nanotubes have wide band gaps and can potentially be used in 

the low voltage based nanoelectronics circuits as insulators where the excitation energy is not 

enough to overcome the gap barrier. Furthermore, band gaps and other properties of GeC 

nanotubes can be modified by attaching external functionalized groups. Doping with proper 

impurities (p type or n type) can also lead to desired change in electronic properties. Nano 

interconnect junctions in the circuitry can also be designed using some of these tubes. 

Specifically, smaller diameter tubes can be neatly anchored over the vacancy in the wall of 

larger diameter tubes to form different nano-junctions. GeC nanotubes can also be successfully 

envisioned as futuristic hydrogen storage devices owing to surface charge distributions. Some 

of the SiGe nanotubes due to their unique charge distribution pattern can be exploited in the 

developing the nano p-n junction type devices where different sections have different charge 

concentrations. It is also envisioned that SiGe tubes should have potential applications in novel 

nano solar cells and photovoltaics, nanojuntions and interconnects, and nano device 

components.    

.  
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CODE TO GENERATE THE COORDINATES AND SAMPLE COORDINATES 
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C CODE TO GENERATE COORDINATES 

C RAYMOND ATTA-FYNN AND SOMILKUMAR RATHI 

         IMPLICIT NONE 

       INTEGER NMAX, II, JJ, KK, LL, NCOUNT, ICOUNT, NUNIT 

       INTEGER NAT, NC, N1, N2, N0, N, TP1, TP2, TP3, R 

       INTEGER ALPHA, BETA, EULER, WW2 

       REAL*8  PI, A, A0, FAC1, FAC2, NNDIST, D, PHI0, Z0 

       REAL*8  SN, THETA, Q, ZZ0, PHI, DSIH 

       REAL*8  INP1, INP2, INP3, WW1, WW, RR, X0, Y0 

       PARAMETER(NMAX=10000) 

       REAL*8  XX(NMAX), YY(NMAX), ZZ(NMAX) 

       INTEGER NNMAP(NMAX,10), ILIST(NMAX) 

       CHARACTER*2 PP(NMAX) 

       PI = 2.0*ASIN(1.0) 

       FAC1 = SQRT(3.0) 

       NNDIST = 2.352 

       DSIH   = 1.547 

       A0 = NNDIST*FAC1 

       WRITE(*,*)'ENTER FIRST DIMENSION' 

       READ(*,*)N1 

       WRITE(*,*) 

       WRITE(*,*)'ENTER SECOND DIMENSION' 

       READ(*,*)N2 

       WRITE(*,*) 

       WRITE(*,*)'ENTER THE NUMBER OF UNIT CELLS' 

       READ(*,*)NUNIT 
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       N = N1*N1 + N1*N2 + N2*N2 

       SN = SQRT(FLOAT(N)) 

       D = SN*A0/PI 

       IF(N1.EQ.0)N0=N2 

       IF(N2.EQ.0)N0=N1 

       IF((N2.NE.0) .AND. (N1.NE.0))THEN 

           CALL GCD(N1, N2, N0) 

       END IF 

       WRITE(*,'(A,X,I3,X,A,X,I3,X,A,X,I3)') 

     >      'GCD OF' , N1, 'AND', N2, 'IS', N0 

       WRITE(*,*) 

          N = N1*N1 + N1*N2 + N2*N2  

       SN = SQRT(FLOAT(N)) 

       D = SN*A0/PI 

             TP1 = N1 - N2 

       TP2 = 3*N0  

       TP3 = MOD(TP1,TP2) 

       IF(TP3.EQ.0)THEN 

          R = 3 

       ELSE 

          R = 1 

       END IF 

       NC = 4*N/(N0*R) 

       NAT = NUNIT*NC 

       THETA = ACOS((N1 + 0.5*N2)/SN) 

       A = A0*SQRT(FLOAT(3*N))/(FLOAT(N0*R)) 
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       WRITE(*,*)'PARAMETERS FOR SILICON CHIRAL NANOTUBE ARE:' 

       WRITE(*,*) 

       WRITE(*,'(A,A,I3,A,I3,A)')'DIMENSIONS:', '(',N1,',',N2,')' 

       WRITE(*,*) 

       WRITE(*,'(A,F12.6)')'DIAMETER (IN ANGSTROM):',D 

       WRITE(*,*) 

       WRITE(*,'(A,F12.6)')'CHIRAL ANGLE (IN DEGREES):',THETA*180./PI 

       WRITE(*,*) 

       WRITE(*,'(A,I3)')'NUMBER OF ATOMS PER UNIT CELL:', NC 

       WRITE(*,*) 

       WRITE(*,'(A,I3)')'NUMBER OF UNIT CELLS REQUESTED:', NUNIT 

       WRITE(*,*) 

       WRITE(*,'(A,I3)')'TOTAL NUMBER OF ATOMS TO BE GENERATED:', NAT 

       WRITE(*,*) 

       Q = 0.5*FLOAT(NC)  

       EULER = 0  

       TP3 = N1/N0        

       IF(TP3.EQ.1)EULER=1 

       IF(TP3.EQ.2)EULER=1 

       IF(TP3.EQ.3)EULER=2 

       IF(TP3.EQ.4)EULER=2 

       IF(TP3.GT.4)THEN 

          DO II = 1, TP3-1 

             CALL GCD(II, TP3, TP2) 

             IF(TP2.EQ.1)EULER = EULER + 1 

          END DO 
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       END IF 

        WRITE(*,'(A,I3,A,X,I3)')'EULER FUNCTION OF',TP3, 'is', EULER 

       WRITE(*,*) 

       INP1 = FLOAT(N1-N2)/FLOAT(N1)  

       INP1 = 3.0 - 2.0*INP1 

       INP1 = INP1*FLOAT(N0)/(Q*FLOAT(R)) 

       INP2 = FLOAT(N1-N2)/FLOAT(N0) 

       INP2 = INP2**(EULER-1.) 

       INP2 = INP2*FLOAT(N0)/FLOAT(N1) 

          WRITE(*,*)'Symmetry Parameter =', WW1 

       WRITE(*,*)'Integral part =', WW2 

       WRITE(*,*)'Fractional part =', WW 

       WW = WW*Q 

       WW = WW/FLOAT(N0) 

       Z0 = (FLOAT(N1-N2)*A0*0.5)/SQRT(FLOAT(3*N)) 

       PHI0 =  (PI*FLOAT(N1+N2))/FLOAT(N) 

       NCOUNT = 0 

       ALPHA = 0 

       BETA  = 0 

       ICOUNT = 0 

       II = 0 

       DO WHILE(NCOUNT.LT.NAT) 

       DO JJ = 0, N0-1 

          DO KK = 0, 1 

             IF(KK.EQ.0)THEN 

                INP1 = (WW*FLOAT(II))/Q 
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                INP2 = FLOAT(JJ)/FLOAT(N0) 

                INP3 = (A*FLOAT(II*N0))/Q 

                PHI = PHI0 + 2.*PI*(INP1 + INP2) 

                ZZ0 = Z0 + INP3 

                NCOUNT = NCOUNT + 1 

                XX(NCOUNT) = 0.5*D*COS(PHI) 

                YY(NCOUNT) = 0.5*D*SIN(PHI) 

                ZZ(NCOUNT) = ZZ0 

                PP(NCOUNT) = 'Si' 

              ELSE 

                INP1 = (WW*FLOAT(II))/Q 

                INP2 = FLOAT(JJ)/FLOAT(N0) 

                INP3 = (A*FLOAT(II*N0))/Q 

                PHI = -PHI0 + 2.*PI*(INP1 + INP2) 

                ZZ0 = -Z0 + INP3 

                NCOUNT = NCOUNT + 1 

                XX(NCOUNT) = 0.5*D*COS(PHI) 

                YY(NCOUNT) = 0.5*D*SIN(PHI) 

                ZZ(NCOUNT) = ZZ0 

                PP(NCOUNT) = 'Si' 

              END IF 

          END DO 

       END DO 

       II=II+1 

       END DO 
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       WRITE(*,*)NCOUNT, NAT 

       DO II=1,NAT 

          CALL MAP(XX,YY,ZZ,NAT,NNDIST,II,NNMAP,ILIST) 

       END DO                     

       DO II=1,NAT 

          IF((ILIST(II).EQ.1) .OR.(ILIST(II).EQ.2))THEN  

                     PP(II)='H' 

          END IF 

       END DO 

       DO II=1,NAT 

          IF(PP(II)=='H')THEN 

              DO JJ=1,ILIST(II) 

                 LL = NNMAP(II,JJ) 

                 IF(PP(LL)=='Si')THEN 

                    X0 = XX(LL)-XX(II) 

                    Y0 = YY(LL)-YY(II) 

                    Z0 = ZZ(LL)-ZZ(II) 

                    RR=X0*X0+Y0*Y0+Z0*Z0 

                    RR = SQRT(RR) 

                    X0= X0/RR 

                    Y0= Y0/RR 

                    Z0= Z0/RR 

                    XX(II) = XX(LL)-DSIH*X0 

                    YY(II) = YY(LL)-DSIH*Y0 

                    ZZ(II) = ZZ(LL)-DSIH*Z0 

                 END IF 
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              END DO 

          END IF 

       END DO 

       WRITE(*,*)'PRINTING COORDINATES'                    

       OPEN(12,FILE='CHIRAL.xyz',STATUS='UNKNOWN') 

       WRITE(12,*)NCOUNT 

       WRITE(12,*) 

       DO II = 1, NCOUNT 

          WRITE(12,44)PP(II), XX(II), YY(II), ZZ(II)            

       END DO 

       CLOSE(12) 

 

44     FORMAT(A,3F14.7)               

       STOP 

       END 

   *     Find greatest common divisor using the Euclidean algorithm 

      SUBROUTINE GCD(NA, NB, NGCD) 

      IMPLICIT NONE 

      INTEGER IA, IB, NA, NB, ITEMP, NGCD 

        IA = NA 

        IB = NB 

    1   IF (IB.NE.0) THEN 

          ITEMP = IA 

          IA = IB 

          IB = MOD(ITEMP, IB) 

          GOTO 1 



 

 

 

164 

        END IF 

        NGCD = IA 

        RETURN 

      END 

      SUBROUTINE MAP(XX,YY,ZZ,NAT,RCUT,II,NNMAP,ILIST) 

      IMPLICIT NONE 

      INTEGER II,JJ,NNMAP(10000,10),ILIST(10000),NAT 

      REAL*8  X1,Y1,Z1,XX(10000),YY(10000),ZZ(10000),RCUT,RR,EPS 

      EPS=0.00001 

      ILIST(II)=0 

           DO JJ=1,10 

              NNMAP(II,JJ)=0 

           END DO 

           DO JJ=1,NAT 

              IF(II.NE.JJ)THEN 

                 X1=XX(II)-XX(JJ) 

                 Y1=YY(II)-YY(JJ) 

                 Z1=ZZ(II)-ZZ(JJ) 

                 RR=SQRT(X1*X1+Y1*Y1+Z1*Z1) 

                 IF(RR<(RCUT+EPS))THEN 

                    ILIST(II)=ILIST(II)+1 

                    NNMAP(II,ILIST(II))=JJ 

                 END IF 

              END IF 

           END DO 

           RETURN 
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           END 

    Sample coordinates generated using this code are shown in following page.                                

 

                          Pure Silicon nanotube (3, 3).    

ATOM    X                   Y                        Z 

 

H 2.78054 1.81958 0.69545 

H -2.96607 1.49823 0.69545 

H 0.18553 -3.31781 0.69545 

H 2.78054 -1.81958 0.69545 

H 0.18553 3.31781 0.69545 

H -2.96607 -1.49823 0.69545 

Si -0.58502 3.31781 2.03689 

Si -2.5808 -2.16555 2.03689 

Si 3.16582 -1.15226 2.03689 

Si 3.16582 1.15226 2.03689 

Si -2.5808 2.16555 2.03689 

Si -0.58502 -3.31781 2.03689 

Si -3.16582 1.15226 4.07378 

Si 0.58502 -3.31781 4.07378 

Si 2.5808 2.16555 4.07378 

Si 0.58502 3.31781 4.07378 

Si -3.16582 -1.15226 4.07378 

Si 2.5808 -2.16555 4.07378 

Si -2.5808 -2.16555 6.11068 

Si 3.16582 -1.15226 6.11068 
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Si -0.58502 3.31781 6.11068 

Si -2.5808 2.16555 6.11068 

Si -0.58502 -3.31781 6.11068 

Si 3.16582 1.15226 6.11068 

Si 0.58502 -3.31781 8.14757 

Si 2.5808 2.16555 8.14757 

Si -3.16582 1.15226 8.14757 

Si -3.16582 -1.15226 8.14757 

Si 2.5808 -2.16555 8.14757 

Si 0.58502 3.31781 8.14757 

Si 3.16582 -1.15226 10.18446 

Si -0.58502 3.31781 10.18446 

Si -2.5808 -2.16555 10.18446 

Si -0.58502 -3.31781 10.18446 

Si 3.16582 1.15226 10.18446 

Si -2.5808 2.16555 10.18446 

Si 2.5808 2.16555 12.22135 

Si -3.16582 1.15226 12.22135 

Si 0.58502 -3.31781 12.22135 

Si 2.5808 -2.16555 12.22135 

Si 0.58502 3.31781 12.22135 

Si -3.16582 -1.15226 12.22135 

Si -0.58502 3.31781 14.25824 

Si -2.5808 -2.16555 14.25824 

Si 3.16582 -1.15226 14.25824 

Si 3.16582 1.15226 14.25824 
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Si -2.5808 2.16555 14.25824 

Si -0.58502 -3.31781 14.25824 

Si -3.16582 1.15226 16.29513 

Si 0.58502 -3.31781 16.29513 

Si 2.5808 2.16555 16.29513 

Si 0.58502 3.31781 16.29513 

Si -3.16582 -1.15226 16.29513 

Si 2.5808 -2.16555 16.29513 

Si -2.5808 -2.16555 18.33203 

Si 3.16582 -1.15226 18.33203 

Si -0.58502 3.31781 18.33203 

Si -2.5808 2.16555 18.33203 

Si -0.58502 -3.31781 18.33203 

Si 3.16582 1.15226 18.33203 

Si 0.58502 -3.31781 20.36892 

Si 2.5808 2.16555 20.36892 

Si -3.16582 1.15226 20.36892 

Si -3.16582 -1.15226 20.36892 

Si 2.5808 -2.16555 20.36892 

Si 0.58502 3.31781 20.36892 

H 2.96607 -1.49823 21.71036 

H -0.18554 3.31781 21.71036 

H -2.78054 -1.81958 21.71036 

H -0.18553 -3.31781 21.71036 

H 2.96607 1.49823 21.71036 

H -2.78054 1.81958 21.71036 
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C              Simple f77 code to compute EDOS using data from Gaussian log file 

C              R. Atta-Fynn S J Rathi. 

C              Alpha/beta eigienvalues (mixed or single). 

C              reads HOMO and LUMO and sets HOMO to zero 

C              Further modification by R. Atta-Fynn on Sep. 30, 3007 

               implicit none 

               real*8 energy(20000),edos(20000),ehomo,elumo 

               real*8 emin, emax,  de, xx, yy, sigma, norm, pi 

               integer NEIGEN,ii, jj, np, ncount,iset 

               character*25 ppc, ppc2, fname1, fname2 

               call rwfiles 

               pi = 2.*asin(1.) 

               ncount = 0 

               open(14,file='dos_parameters.dat',status='unknown') 

               read(14,*)ppc,np 

               if(np .le. 1)then 

                  write(*,*)'Energy points must be greater than 1' 

                  stop 

               end if 

               read(14,*)ppc,emin 

               read(14,*)ppc,emax 

               read(14,*)ppc,sigma 

               read(14,*)fname1 

               read(14,*)ppc,ehomo 

               read(14,*)ppc2,elumo 

               close(14) 
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               open(12,file=fname1,status='unknown') 

               read(12,*)NEIGEN 

               do ii=1,NEIGEN 

                   read(12,*)energy(ii) 

               end do 

               close(12) 

               de = (emax - emin)/float(np-1) 

               do ii = 1,np 

                  edos(ii)=0. 

               end do 

               do ii = 1, np 

                  xx = emin + float(ii-1)*de 

                   do jj = 1,NEIGEN 

                      yy = xx - energy(jj) 

                      edos(ii) = edos(ii) + exp( -yy*yy/(sigma*sigma)) 

                   end do 

               end do 

c              norm = sqrt(pi) * sigma * float(np) 

               norm = 1. 

                open(15,file='EDOS.dat',status='unknown') 

                do ii = 1,np 

                   yy = edos(ii)/norm 

                   xx = emin + float(ii-1)*de 

                   write(15,*)xx-ehomo, yy 

               end do 

               close(15) 
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               write(*,*) 

               write(*,*) 

               write(*,*) 

               write(*,*) 

               write(*,*)'E_HOMO has been shifted to zero energy in DOS' 

               write(*,*) 

               write(*,*)'Gaussian broadening factor in eV =', sigma 

               write(*,*) 

               write(*,*)'DOS data is in the file EDOS.dat' 

               write(*,*) 

               write(*,*)'Good Luck' 

               write(*,*) 

               write(*,*) 

               stop 

               end 

C            This subroutine rearranges EIGENVALUS from  

C            Gaussian'03 log file 

C            Raymond Atta-Fynn, Dept. of Physics 

C            The University of Texas at Arlington 

C            Date: 09-30-2007 

C            Use at your own risk 

             subroutine rwfiles 

             implicit none 

             real xx(1,1500),EMIN,EMAX,sigma 

             real yy(1,4500),alpha_gap,beta_gap,gap 

             real fac,xx2(1,1500),yy2(1,4500),ehomo, elumo 
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             integer occupied, unoccupied,ii,np,jj,iset 

             integer occupied2, unoccupied2 

             character*20 fname1, fname2, contcheck 

             write(*,*)  

             write(*,*)  

             write(*,*)  

             write(*,*)'*********************************************' 

             write(*,*)'*                                           *' 

             write(*,*)'*  Program Gaussian_dos                     *' 

             write(*,*)'*  Computes DOS from Gaussian log file      *' 

             write(*,*)'*                                           *' 

             write(*,*)'*  Written by RAY ATTA-FYNN AND SOMIL RATHI *' 

             write(*,*)'*  PHYSICS DEPT.                            *' 

             write(*,*)'*  THE UNIVERSITY OF TEXAS AT ARLINGTON     *' 

             write(*,*)'*  Copyright Sep. 2007                      *' 

             write(*,*)'*                                           *' 

             write(*,*)'*  See SOMIL RATHI FOR INPUT FILE FORMAT    *' 

             write(*,*)'*                                           *' 

             write(*,*)'*  USE AT YOUR OWN RISK                     *' 

             write(*,*)'*                                           *' 

             write(*,*)'*********************************************' 

             write(*,*)  

             write(*,*)  

             write(*,*)  

             write(*,*)'DO YOU WANT TO CONTINUE?' 

             write(*,*)  
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             write(*,*)'ENTER yes or no' 

             read(*,*)contcheck              

             write(*,*)  

             write(*,*)  

             if(contcheck=='yes')goto 156 

             if(contcheck=='no')then  

                write(*,*)'ABORTING .........' 

                write(*,*)'GOODBYE           ' 

                write(*,*)  

                write(*,*)  

             if(contcheck=='yes')goto 156 

                stop 

             end if 

156         continue 

             write(*,*)'Enter 0 for only ALPHA or 1 for ALPHA-BETA' 

             read(*,*)iset 

             fac=2.*13.605698 

             if(iset.eq.0)then 

             open(11,file='ALPHA_EIG.DAT',status='unknown') 

             read(11,*)occupied 

             read(11,*)(xx(1,jj),jj=1,occupied) 

             read(11,*)unoccupied 

             read(11,*)(yy(1,jj),jj=1,unoccupied) 

             close(11) 

             elumo = yy(1,1)*fac 

             ehomo = xx(1,occupied)*fac 
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             alpha_gap = yy(1,1) - xx(1,occupied) 

             alpha_gap = alpha_gap*fac 

             gap = alpha_gap 

             ii=occupied+unoccupied 

             open(14,file='alpha_data.out',status='unknown') 

             fname1 = 'alpha_data.out' 

             write(14,*)ii 

             do jj=1,occupied 

                write(14,'(f13.6)')xx(1,jj)*fac 

             end do 

             do jj=1,unoccupied 

                write(14,'(f13.6)')yy(1,jj)*fac 

             end do 

             close(14) 

             open(15,file='dos_parameters.dat',status='unknown') 

             write(15,*)'np 150' 

             write(15,*)'EMIN',  ehomo - 10. 

             write(15,*)'EMAX',  ehomo + 10. 

             write(15,*)'sigma 0.05' 

             write(15,*)fname1 

             write(15,*)'HOMO',xx(1,occupied)*fac 

             write(15,*)'LUMO',yy(1,1)*fac 

             close(15) 

             goto 125 

             end if 

             open(11,file='ALPHA_EIG.DAT',status='unknown') 
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             open(12,file='BETA_EIG.DAT',status='unknown') 

             read(11,*)occupied 

             read(11,*)(xx(1,jj),jj=1,occupied) 

             read(11,*)unoccupied 

             read(11,*)(yy(1,jj),jj=1,unoccupied) 

             read(12,*)occupied2 

             read(12,*)(xx2(1,jj),jj=1,occupied2) 

             read(12,*)unoccupied2 

             read(12,*)(yy2(1,jj),jj=1,unoccupied2) 

             close(11) 

             close(12) 

             alpha_gap = yy(1,1) - xx(1,occupied) 

             alpha_gap = alpha_gap*fac 

             beta_gap = yy2(1,1) - xx2(1,occupied2) 

             beta_gap = beta_gap*fac 

             gap = min(alpha_gap,beta_gap) 

             ii=occupied+unoccupied+occupied2+unoccupied2 

             open(14,file='alpha_data.out',status='unknown') 

             fname1 = 'alpha_data.out' 

             write(14,*)ii 

             do jj=1,occupied 

                write(14,'(f13.6)')xx(1,jj)*fac 

             end do 

             do jj=1,unoccupied 

                write(14,'(f13.6)')yy(1,jj)*fac 

             end do 
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             do jj=1,occupied2 

                write(14,'(f13.6)')xx2(1,jj)*fac 

             end do 

             do jj=1,unoccupied2 

                write(14,'(f13.6)')yy2(1,jj)*fac 

             end do 

             close(14) 

             open(15,file='dos_parameters.dat',status='unknown') 

             write(15,*)'np 150' 

             write(15,*)'EMIN',  ehomo - 10. 

             write(15,*)'EMAX',  ehomo + 10. 

             write(15,*)'sigma 0.05' 

             write(15,*)fname1 

             IF(gap.eq.alpha_gap)THEN 

                elumo = yy(1,1)*fac 

                ehomo = xx(1,occupied)*fac 

                write(15,*)'HOMO',xx(1,occupied)*fac 

                write(15,*)'LUMO',yy(1,1)*fac 

             END IF 

             IF(gap.eq.beta_gap)THEN 

                elumo = yy2(1,1)*fac 

                ehomo = xx2(1,occupied2)*fac 

                write(15,*)'HOMO',xx2(1,occupied2)*fac 

                write(15,*)'LUMO',yy2(1,1)*fac 

             END IF 

             close(15) 
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125          continue 

             write(*,*) 

             write(*,*) 

             write(*,*)' E_LUMO=', elumo 

             write(*,*) 

             write(*,*)' E_HOMO=', ehomo 

             write(*,*) 

             write(*,*)' Band gap in eV =', gap 

             write(*,*) 

             return 

             end 
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