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ABSTRACT

ARCHITECTURES AND METHODS FOR ENERGY-EFFICIENT QUERYING

AND INDEXING IN WIRELESS SENSOR NETWORKS

Kyungseo Park, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professor: Ramez Elmasri

Wireless sensor networks have been an active research area for about a decade due to

their adaptability to applications involving long-term environmental monitoring. Recent tech-

nologies make it possible that a small device equipped with multi-purposed sensors, small CPU

and memory, wireless transmitter and receiver, and software can form a network, measure some

quantitative phenomena and communicate with each other seamlessly. In wireless sensor net-

works, one of the basic applications is to monitor events and measure values at places that

people cannot reach easily or where a long term sensing task is required. In this case, we need

to know the properties of diverse types of sensor network queries and data that are different

from traditional ones. Also, we need to solve the intrinsic sensor network problem, energy

saving, since users want to gather data for a long term and it is generally not feasible to replace

batteries in sensor devices after the sensors are deployed.

In order to solve this problem, first, we classify sensor network queries and find a suitable

network system that includes different routing and storage types for each type of query. Second,

energy efficient indexing and data gathering methods for sensor networks are studied. In energy

efficient indexing, we propose a sectioned tree index, which divides the network area into

v



several squares and each square has a local index subtree organized within that square. Local

trees are interconnected to form one big tree in the network. Local trees are also built based on

any algorithm that is energy consumption aware at each sub-root node in a locally centralized

way. In energy efficient data gathering, we create energy-efficient data gathering routing tree

when we consider two-way communication for reliable transmission and collision prevention.

This makes the problem intractable, and we prove our problem is NP-complete by showing

that a known NP-complete problem is a special case of our problem. In order to get an energy-

efficient routing tree, we propose several heuristic techniques that backtrack one or two steps

(BT1 and BT2). We give various values as parameters in measuring energy equation and

simulate our proposed algorithms in diverse conditions.
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CHAPTER 1

INTRODUCTION

Sensors are devices that sense or detect natural phenomena, such as temperature or hu-

midity. Many sensors have now become multi-functional devices that incorporate advanced

micro electronics and wireless communication technology. Sensors have become multi func-

tional devices that not only sense multiple phenomena but also perform multiple functions other

than sensing or measuring [2, 3]. A sensor platform can be composed of four units: sensing

unit, processing unit, communication unit, and power unit [2]. This device can be as small as a

penny and still contain multi functional sensor for sensing unit, small CPU and storage device

such as memory for processing unit, wireless transmitter and receiver for communication unit,

and batteries for power unit.

These sensors can be used to measure some physical values, detect phenomena, or mon-

itor a certain area to determine whether an event occurs or not. Often these sensors are de-

ployed in areas where people cannot reach easily or where a long term sensing task is required.

Hundreds or even thousands of these sensors form networks so that they can measure, detect,

monitor phenomena and transfer their measured data wirelessly to a certain location where

users such as scientists or researchers can analyze them. This technology is known as wireless

sensor networks (WSN). A typical scenario of WSN is as follows: Sensors are randomly de-

ployed at an area of interest. After a certain amount of time, they communicate with each other

to know where their neighbors are. Then they build their own network so that their measured

data can be transferred to a base station by multi-hop routing. Queries can be submitted by

users later. The queries can be disseminated through the network and the sensors perform the

1
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tasks required by the query. The sensors can then report data to the base station depending on

the queries they received.

Based on the characteristics mentioned above, wireless sensor networks are used in many

areas. Examples of applications include military or surveillance applications [4, 5, 6], habitat

monitoring [7, 8, 9], environmental monitoring such as volcano, wildfire, and water contami-

nation [10, 11, 12, 13], structural monitoring such as bridges, mines, and buildings [14, 15, 16],

underwater monitoring [17, 18, 19], healthcare and medical care monitoring [20, 21, 22, 23],

and traffic and parking monitoring [24, 25, 26].

The technologies of wireless sensor networks are mainly based on the technologies de-

veloped for wireless ad-hoc networks. In wireless ad-hoc networks, data are forwarded via

nodes and the next hop can be determined dynamically depending on network connectivity

because of node mobility. Wireless sensor networks have been developed on the properties

of wireless ad-hoc networks such that the networks communicate using multi-hop techniques,

need multi-hop routing protocol, and communicate with each other seamlessly. However, there

exist differences between traditional wireless ad hoc networks and wireless sensor networks

[2]:

• The number of nodes in sensor networks can be much larger than in ad-hoc networks.

• The density of node deployment in sensor networks can be higher than in ad-hoc net-

works.

• Sensor nodes are more likely to fail for communication.

• Sensor nodes are more limited in energy, memory capacity, and computational capacity.

There are also research challenges in wireless sensor networks, such as the following:

• Energy management due to limited battery power and long term monitoring.

• Topology control, deployment

• Localization, time synchronization

• Scalability
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• Coverage

• Route discovery and maintenance

• Efficient data gathering, aggregation, and in-network processing

• Efficient processing of massive amounts of data.

• Data storage

• Security, privacy, resiliency, and fault-tolerance

• Real time data acquisition and analysis

• Quality of services

The main research contributions of this thesis are in analyzing and developing energy

efficient indexing and data gathering techniques for wireless sensor networks. As a prelude to

this research, we first overview and evaluate the different types of sensor networks and different

types of queries that are used in WSN applications. There are many kinds of schemes, algo-

rithms, structures, and architectures for WSN to solve a particular problem. Different schemes

have their own characteristics that fit best in particular situations. Much of the previous re-

search has focused on individual algorithms in each branch of WSN research such as routing

protocols and storage schemes. To properly evaluate and compare these techniques, it is nec-

essary to study different types of WSN architectures by combining different types of routing

protocols and storage schemes.

In diverse wireless sensor networks applications, we can have different types of queries

depending on what the applications want to pursue. Researchers have classified the queries in

wireless sensor networks in many ways. In this work, we classify the WSN queries based on

various criteria. Different network schemes that are combination of different routing protocols

and storage schemes are evaluated for different query types in terms of metrics such as the

number of transmissions, energy, delay, life span, and local storage capacity. Through analysis

and simulation, we determine what kind of routing and storage is most suitable for which

particular query characteristics.
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Figure 1.1: Power analysis of Rockwell’s WINS sensor nodes [1]

Among the issues of research challenges in wireless sensor networks discussed above,

energy constraint is the most critical issue to allow the networks to perform long enough to

fulfill their objectives while operating on limited battery resources. Moreover, sensors are

mostly deployed in areas where people cannot reach easily and sensors are powered by batter-

ies. Therefore, the batteries cannot be replaced or recharged when they are depleted. As we

can see in figure 1.1, most power 1 is consumed when sensor nodes are communicating (trans-

mission(TX) and reception(RX)) and idle. Many researchers have been working on the issue of

energy-efficiency of wireless sensor networks by trying to save energy during the most energy

consuming tasks (transmission, reception, and idle). This work will mainly focus on energy

efficient indexing and data gathering in order to save energy when nodes are communicating

with each other.

From the study of characteristics of different network schemes and query types, we con-

sider how to minimize energy usage when queries are disseminated to the network and data are

gathered to the user. Queries can be disseminated to all the nodes in the network, or some nodes

1We can refer to this graph when comparing energy usage since energy is calculated by multiplication of power

and time spent
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in the part of the network that users are interested in. Also, the queries can be disseminated by

a flooding method or by a routing protocol that considers energy consumption or shortest path

to reach. Our interest here is to build a network scheme that minimizes energy consumption

when queries are disseminated to all the nodes or some subset of nodes in the network. We

consider spatial queries that asks values of some phenomena within a certain area. The main

purpose is to save energy by building several local trees that can take care of their own areas

and by reducing energy inefficient query dissemination paths. This is possible because most of

energy is consumed by wireless communication that sends and receives data [27]. Therefore

we try to reduce the number of nodes that consume energy because they are on an unnecessary

paths to disseminate queries. This proposed scheme is called sectioned tree. We divide the

whole network into several sections, within which local trees are constructed. The local trees

are built and organized within the sections so that they can prevent several paths or branches

from forwarding queries that consume extra energy.

We also consider energy saving for the other direction of dissemination, which is data

gathering. Once queries are disseminated into sensor nodes, they measure and sense what they

are supposed to depending on the given queries. There are several ways to report their data

to a sink node, where all the sensed data are gathered. The naive way is to report all the data

sensed from all the nodes whenever they measure or sense. But in this case, there could be a

hot spot node that consumes energy severely, which drives it to deplete the node energy very

rapidly. Therefore, in-network processing is proposed that merges similar or related data within

a network and report one representative data from a certain group [28]. This technique can save

energy since it can reduce the number of transmissions and receptions. Based on this idea, we

try to reduce more energy by building an energy-efficient data gathering tree. We prove that

finding an optimal solution for data gathering tree is NP-complete, then we propose heuristic

algorithms that can build an energy efficient data gathering tree. In the next three sections, we
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discuss these of the research problems that we cover in this thesis. Then we give a summary of

our contributions in section 1.4.

1.1 Study of queries and network schemes

The ultimate goal for sensor networks is to query information that was collected from

sensors. To achieve this goal, we need to try to solve several intrinsic problems, some of

which are related to queries. One criterion for classifying query types is based on time. These

categories are historical queries, snapshot queries, and long-running queries according to [29].

• Historical queries request a result through data that has been accumulated from the past.

• Snapshot queries request a result from data that is being currently sensed.

• If these queries are extended to keep running for a certain period of time, they are long-

running queries.

Besides the time criterion, we need to have more criteria to better characterize each type

of query. Many papers [29, 30, 31, 32, 33, 28] discussed query types for sensor network data

systems. These papers use different terms to represent similar query concepts, and also they

have their own ways to categorize queries. We divide queries into several atomic elements that

can be orthogonal to each other as much as possible so that we can analyze the relationship

among them.

There could be different architectures needed to maximize the overall performance in

sensor networks depending on what kind of query types we use. Among these architectures,

one of the new emerging areas is storage architecture for sensor networks. In general, sensor

network storage can be classified into local storage, external storage, and data-centric storage

depending on where or how to store the sensed data [34]. Local storage stores what each sensor

sensed on its own storage space. For external storage, all the data is sent to an external storage

and saved on it. Data-centric storage stores data on a different node from the sensing node.
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(See figure 1.2.) Each type of storage scheme has certain advantages based on the particular

type of query. One goal of this paper is to specify the relationship between type of storage and

the query types that each storage supports best.

sink

Local Storage
Detecting node = 

Saving node

sink

External Storage
Single storage site

sink

Data-centric Storage
Distributed storage 

site

Figure 1.2: Three types of storage

To store data, we need to have not only actual storage, but also a scheme for forward-

ing the data to the storage from the sensing sources. That means, storage cannot exist by

itself without being supported by data dissemination or routing protocols. Models for data

delivery required by sensor network applications are classified into continuous, event-driven,

and observer-initiated [3]. Continuous data delivery is useful for periodic monitoring systems,

which have to send data periodically. Event-driven delivery is that an event triggers an action,

which is usually sensing or forwarding data to a sink. Observer-initiated delivery is that sources

do sensing, gathering, or forwarding data whenever users send a query.

Besides these classifications, we need to classify architectures for routing protocols so

that we can connect data-delivery type, storage type, and query type. Routing protocols can be

classified into hierarchical, data-centric, and geographical. Hierarchical routing is a protocol

that has more than one level of data transmission and a typical example of this is a clustering

structure in which sensor nodes are divided into clusters and each cluster has its own cluster

head. Data-centric routing is a protocol that can handle data that is named by attribute-value
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pairs. Geographical routing uses physical sensor locations in its protocol and is a neither hier-

archical nor data-centric in this paper2. We analyze the various combinations of storage, data

delivery, and query types to determine which combinations perform best together in sensor

networks. We take into account the number of transmissions and energy consumed throughout

the whole network, and the delay for packets from source to sink. After we evaluate and com-

pare each combination, we determine what kind of combination is suitable for each particular

sensor network application.

1.2 Energy-efficient query indexing

Wireless sensor networks have hundreds or thousands of sensors with physical com-

ponents and logical functions of being able to sense, store, process, and communicate data.

Applications of sensor networks are used for monitoring events and measuring values at places

where people cannot reach easily or where a long term sensing task is required. In order to

keep sensors alive long enough to fulfill their duty, energy is an important issue, since sensor

nodes work depending on limited battery power, which is not feasible or difficult to charge

or substitute. Most energy is consumed when sensors are communicating [27]. In-network

data processing is useful for reducing the number of transmissions and eventually lowering

energy consumption [28]. When we treat spatial queries in sensor networks, we typically use

in-network aggregation for data processing to save energy. This kind of scheme uses tree based

structures to aggregate data. In this case, when we disseminate a query into the network or

gather data from sensor nodes, we would like to find a path that consumes energy least. But,

getting an optimal solution for energy efficient topology of wireless sensor networks is an NP-

complete problem [35]. Therefore, we suggest a predetermined scheme that supports energy

efficient paths heuristically. To accomplish this, we propose an indexing structure that has

2Some hierarchical and data-centric protocols also utilize sensor locations.
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several sections, each of which has its own local root and a local tree, which does not have a

connection with sensor nodes in other sections except through the local root.

Our proposed scheme is based on the following assumptions: 1. A network has sections

that divide the network into smaller pieces that can be basic units of area posed by a spatial

query. 2. In each section, a local tree with a local root exists and the local root connects to a

node in a different section so that they make one big tree. 3. Local trees are built based on

either Prim’s minimum spanning tree or Dijkstra’s shortest path algorithms [36] so that each

local tree can consume less energy than when these algorithms are not applied. 4. For query

dissemination, we use Minimum Bounding Rectangle (MBR) indexing so that the query can be

disseminated into a minimum number of nodes that are in a query area. To evaluate this scheme,

we have six different network structures and four different query types. The simulation shows

our proposed scheme saves energy when a spatial query is disseminated into the network and

data is sent back to the base station.

1.3 Energy-efficient data gathering

Wireless sensor networks consist of sensor nodes equipped with a CPU, memory, wire-

less communication unit, and multi-functional sensors. In wireless sensor networks, a sink

node (or a base station) usually sends a query to source nodes and they send back the sensed

data to the sink node based on the query. Wireless sensor networks may have hundreds or thou-

sands of sensor nodes with physical components and logical functions to sense, store, process,

and communicate data. Applications of sensor networks are used for monitoring events and

measuring values at locations where people cannot reach easily or where a long term sensing

task is required. Some application examples include civil structural monitoring [14], habitat

monitoring [7], and environmental monitoring such as wildfires [12]. Energy has been an im-

portant issue because sensor nodes depend on limited battery power, and it is not feasible or
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difficult to charge or replace batteries in many sensor network applications. Therefore, if we

can save energy where the most part of it is consumed, which is wireless data communication

between sensor nodes [27], then it can eventually prolong lifetime of wireless sensor networks.

In-network data processing is useful for reducing the number of transmissions and hence

lowering energy consumption [28]. When we treat spatial queries in sensor networks and

especially for queries that request aggregated data such as sum or average, we typically use

in-network aggregation for data processing to save energy. An example of this type of spatial

query is ”report average temperature in a specific region every 10 minutes for 1 month.” In this

query, a base station (sink node) sends the query once, but it receives aggregated data from

the sensor (source) nodes periodically. When data from source nodes are sent back to the sink

node, it is common to use a tree based structure for in-network processing and gathering data

so that each node processes data from its children to create a partial result . In the example

query, which is spatial and periodic, all the sensor nodes transmit data once per period (every

10 minutes), hence each node has to transmit data many times (24 hr× 6 times/hr× 30 days =

4,320 times) during the duration (1 month) designated by the query for data gathering. Mean-

while, the query is just disseminated once. Therefore, we would like to focus on energy saving

for data gathering, since this constitutes a large percentage of the total energy consumption for

these common types of queries.

We get an energy efficient data gathering tree by applying an accurate energy measuring

equation on the links between communicating nodes. We build an energy measuring equation

that has many parameters in order to reflect real world variations as much as possible. Our

energy model is based on the one used in LEACH ([37]) and considers overhearing energy

as used in [38]. Most previous work assumed one way transmission without considering the

fact that the sender can receive a control packet such as ACK (Acknowledgement). In order

to consider energy consumed by control packets, we apply two-way communication as used

in IEEE 802.11 or S-MAC ([39]) that has control packets for reliable data transmission and
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collision prevention. Based on these assumptions, we prove that our Energy-efficient Data

Gathering (EDG) problem is NP-complete by showing that the EDG problem is equivalent to

Min-Power Symmetric Connectivity (MSC, [40]). Since the EDG problem is NP-complete,

we propose two polynomial time heuristic algorithms that construct more energy efficient data

gathering tree structures than existing algorithms such as Energy Conserving Routing Tree

(ECRT) [41], Local Optimization (LOCAL-OPT) [41], and the well known Prim’s minimum

spanning tree (MST) algorithm [36].

1.4 Problems and contributions

1.4.1 Performance evaluation of queries and network schemes

Many kinds of application of wireless sensor networks have different purposes. Because

of this reason, the network system should be built based on the fact, such as what phenomena

they measure, how frequently they measure and report sensed data, what kind of structure they

use, and what kind of algorithms they use. These should be determined in terms of what users

emphasize on, such as long term functionality, quick response time, or reliability. Therefore,

we classify sensor network queries into individual elements that can represent their own char-

acteristics. After we combine these elements, we can get characteristics of all the possible

combination of queries. We also combine different storage types and different routing pro-

tocols so that we can determine what kind of network schemes are best for particular query

types in terms of number of transmission, energy, end-to-end delay, life span and local storage

capacity.

1.4.2 Energy-efficient query indexing

Our contributions affect three features of network structure. First, we have virtual sec-

tions, within which local trees are constructed, so as to prevent several branches from forward-

ing queries or data that might consume extra energy. Second, we use MBR as a spatial query
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indexing method through all the connected local trees, so in order to use less energy as queries

are disseminated only into the designated area. Third, we use existing tree building algorithm

such as Prim’s minimum spanning tree in a local tree, so that we have less energy consumption

than other tree building methods. Our scheme is feasible and scalable, since the algorithms are

calculated at local sub-roots that take care of only limited number of nodes.

1.4.3 Energy-efficient data gathering

Unlike existing research that consider approximation of energy model, we apply an en-

ergy measuring equation that considers two-way communication to the energy-efficient data

gathering problem. We also consider overhearing energy and idle energy so that we can mea-

sure more accurate energy consumption. We define energy-efficient data gathering (EDG) tree

problem and prove it as NP-complete by proof by restriction method. Since the problem is

proven as NP-complete, we propose heuristic algorithms to find energy-efficient solutions for

the EDG tree problem.

1.5 Organization of Thesis

The remainder of the thesis is organized as follow. Chapter 2 describes related work

that contain different types of routing protocols and storage schemes. It also describes query

dissemination, indexing techniques, and data gathering problems. In chapter 3, we discuss

spanning tree problems. We introduce backgrounds of heuristic techniques, genetic algorithm

and simulated annealing, and also discuss our techniques for the two heuristic algorithms.

Chapter 4 presents the study of sensor network architecture. It includes study of sensor query

classification and network schemes, such as routing protocols and storage schemes. Cost anal-

ysis and experimental result will be shown for performance evaluation of various query types

and network schemes. Chapter 5 proposes sectioned tree that has pre-determined number of

square areas and local trees within them to disseminate queries into a particular area energy
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efficiently. It also describes how we construct sectioned tree and how we save energy in query

dissemination. Chapter 6 defines energy-efficient data gathering problems, proves the problem

is NP-complete, and proposes heuristic algorithms to solve the problem. Experiments will be

done to compare the proposed algorithms and existing algorithms, such as genetic algorithm,

simulated annealing, and several techniques proposed by other work. Finally, we conclude this

thesis with future research direction in chapter 7.



CHAPTER 2

RELATED WORK

2.1 Routing Protocols

Routing protocols in wireless sensor networks can be classified into three types, flat

routing, hierarchical routing, and location based routing [42]. In the network that uses flat

routing, all the nodes play the same role and collaborate each other to perform a sensing task.

Some of the examples of flat routing include: Sensor Protocols for Information via Negotiation

(SPIN) [43], Directed Diffusion [44], and Rumor Routing [45].

Heinzelman et al. proposed the sensor protocols for information via negotiation (SPIN)

in [43]. The SPIN protocol disseminates information among sensors and reduces the number

of redundant data communication through meta-data negotiations. This protocol uses the idea

that neighboring nodes have similar sensed data, and therefore only nodes can disseminate

data that other nodes do not have. Intanagonwiwat et al. proposed directed diffusion that is

also classified as data centric routing protocol. The directed diffusion creates data by attribute-

value pairs and eliminates redundancy by in-network aggregation. A base station broadcasts

interests, which is a task to be done by the sensor nodes. A gradient is created in each node

when it receives an interest, and it decides the flow of interest. Braginsky et al. proposed rumor

routing, which is a variation of directed diffusion. Directed diffusion can flood queries to the

whole nodes in the network, which is not efficient when only a part of nodes are interested

in the queries. Rumor routing routes the queries only to a particular region where the nodes

detected a specific event. Agents carry the information that a certain node has a particular event

and spread it out through the network so that other nodes can know the route to that node.

14
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Some of the examples of hierarchical routing include: Low-Energy Adaptive Cluster-

ing Hierarchy (LEACH) [37], Threshold-sensitive Energy Efficient sensor Network protocol

(TEEN) [46], Two-Tier Data Dissemination (TTDD) [47], and Virtual Grid Architecture rout-

ing [48].

Heinzelman et al. proposed another routing protocol, which is known as low-energy

adaptive clustering hierarchy (LEACH) in [37]. This is hierarchical clustering protocol that

has cluster heads and their members. Since a cluster head communicate with a base station, it

needs to aggregate data from its members. The protocol has a rotation algorithm that changes

the role of cluster head within a cluster so that they can prevent one node from depleting its

energy rapidly. However, a cluster head should report its members’ data directly to the base

station by one hop transmission. Therefore, a cluster head that is far away from a base station

can consume more energy than the one close to the base station, since energy is consumed pro-

portional to the radio range. Manjeshwar et al. proposed threshold-sensitive energy efficient

sensor network protocol (TEEN) in [46]. Unlike LEACH, TEEN has multi level cluster struc-

ture. This enables nodes to consume less energy than LEACH. Data from the lowest level can

be reported its cluster head. Then the cluster heads in the lowest level forms second level clus-

ter. In this case, cluster heads in the lowest level are the members of the second level clusters.

Now, there is a second level cluster head, which takes care of its members. It is repeated until

a base station can form a cluster. By this way, data from the lowest level can be forwarded to

the base station by multi-hop routing, which spends less energy than LEACH, since the radio

range of cluster heads can be decreased. Luo et al. proposed two-tier data dissemination in

large scale wireless sensor networks (TTDD) in [47]. Unlike LEACH or TEEN, TTDD uses

mobile sink that can travel around stationary sensor nodes. In order to get data from where

an event happens, sensor nodes build grid structure that enables two-tier data dissemination.

Instead of waiting for a query from a sink, the data source proactively builds grid structure so

that they can forward information. Once a mobile sink floods a query into all the nodes in a
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cell (lower tier), the nearest dissemination node to the sink forwards the query to a dissemina-

tion node that holds the event by multi-hop routing through other dissemination nodes (higher

tier). Al-Karaki et al. proposed a virtual grid architecture routing in [48]. In this work, they

build virtual grid that contains square clusters. Each cluster is called a zone. In a zone, one

node is selected as a cluster head among the nodes in the zone. This node is also called a local

aggregator, which aggregates data from its zone. Also, these local aggregators form a bigger

network, which performs global aggregation. This structure is similar to TTDD in that it uses

two level hierarchical structure to report data. Since choosing global points optimally is proven

as NP-hard, they proposed an exact algorithm that uses integer linear program formulation and

several approximate algorithms.

Location based routing protocols have basically an assumption that nodes know their

positions and they can know their neighbors’ positions. Therefore, when a node forwards

a packet to the other node, they can choose any neighbor geographically that has a certain

advantage for considering what each protocol focuses on. Some of the examples of location

based routing protocols include: Greedy Perimeter Stateless Routing for wireless networks

(GPSR) [49], Geographical and Energy Aware Routing (GEAR) [50], and Geographic Power

Efficient Routing in sensor networks (GPER) [51].

Karp et al. proposed greedy perimeter stateless routing (GPSR) for wireless networks in

[49]. In this work, they proposed greedy forwarding that a node forwards a packet to a node that

is geographically nearest node to the destination. This is based on the idea that we can choose a

next hop node, which is locally optimal. The assumption for this is that all the nodes know their

positions by global positioning system (GPS) or by any other methods that can determine the

position. Also, when they build a neighbor list, a node knows the position of its neighbors. Yu

et al. proposed geographical and energy aware routing (GEAR) in [50]. There are two phases

in order to forward packets to all the nodes in a target region. The first phase is to forward

the packets towards the target region. When there is a closer neighbor to the destination,
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GEAR picks a next-hop node among all the neighbors that are closer to the destination. If it

cannot find any node closer to the destination, GEAR picks a next-hop node that minimizes

some cost value of this neighbor. The second phase is to disseminate the packet within the

region. For the energy-aware neighbor selection, GEAR uses learned cost and estimated cost.

This energy-aware neighbor selection is to used for the first phase and recursive geographic

forwarding or restricted flooding algorithm is to used for the second phase. Wu et al. proposed

geographical power efficient routing in sensor networks (GPER) in [51]. The main idea of

this protocol is that a source node forwards a packet to a neighbor that is on the route for the

sub-destination node if it conserves power. GPER is composed of three basic protocols, which

are RouteWithinNeighbors, GPER, and GPER-2. RouteWithinNeighbors enables a sensor to

choose the best next node in its radio range. GPER protocol establishes routes for destinations

that are not within the radio range of the source node. When a destination node is outside the

radio range of a source node, it uses dynamic sub-destination adjustment function so that it

can forward a packet to the destination in the end. In the case of no neighbor is closer to the

destination than the current node, they adopt planar perimeter algorithm from GPSR. GPER-2

is designed to treat large variations of density in sensor networks.

2.2 Query Classification

Several previous work categorize or classify the queries that can be used in sensor net-

work applications or in monitoring systems. Some of them focus on whole queries and others

focus on only aggregate queries.

In TinyDB [28], Madden et al. have a taxonomy for aggregate queries. They classify

aggregate queries based on four different criteria. Among the aggregate functions such as

MAX, MIN, COUNT, SUM, AVERAGE, MEDIAN, COUNT DISTINCT, and HISTOGRAM,

these criteria are whether an aggregate is duplicate sensitive or not, whether it is an exemplary
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or a summary, whether it is monotonic or not, and how much storage is required for each partial

state record.

Bonnet et al. discuss three types of queries for monitoring applications, which are his-

torical, snapshot, and long-running in [29]. A historical query is typically aggregate query

over historical data. A snapshot query is a query that is interested at a given point of time. A

long-running query is over a time interval.

In ACQUIRE, [30], Sadagopan et al. classify sensor network queries into four cate-

gories. The first criteria is continuous versus oneshot queries. The second is whether a query

is aggregate or not. The third is whether a query has sub-queries or not. And, the fourth are

queries for replicated data or queries for unique data.

In [31], Kaya et al. classify queries based on response characteristics and analyze the

sensor network performance in terms of traffic load. The attributes for the classifications are re-

sponse attempt, response generation method, and response transmission. Based on the response

attempt, queries can be divided into continuous and oneshot queries. Response generation

method is a criteria to classify queries into simple and complex. By the response transmission,

queries can be divided into either concatenated or immediate.

Li et al. propose a distributed index especially for multi-dimensional range queries in

[32]. They focus on a specific query type, which has two properties, multi-dimensional and

range. While they present a framework for cleaning and querying noisy sensors, they classify

query types into three forms in [33], which are single source queries (SSQ), non-aggregate

queries (SNAQ), and aggregate queries, which can be divided into summary aggregate queries

(SAQ) and exemplary aggregate queries (EAQ).

Ratnasamy et al. introduce data-centric storage and compared with external storage or

local storage in [34, 52]. In [34], they evaluate communication cost regarding the number of

transmissions and use asymptotic cost O(n) for message flooding and O(
√

n) for point-to-

point routing when n nodes are evenly distributed in the square grid topology. They propose
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Geographic Hash Table (GHT) that hashes keys into geographic coordinates so that key-value

pair data is stored at a specific node, which resides nearest to the hashed coordinates by that

hash function and retrieved by a query by the same function. Also, they use GPSR [49] as their

underlying routing protocol and use variation of perimeter right-hand rule for finding home

nodes, which are nearest nodes of packet destination.

2.3 Query Dissemination

In [28], Madden et al. talk about in-network data aggregation, which distributes aggre-

gate queries, and aggregates data while nodes at low tree levels pass their data up to parents.

This method can reduce the number of transmissions compared to server-based approach, and

eventually saves energy. This in-network data aggregation is one fundamental idea of this

thesis. Energy-efficient query dissemination is the second fundamental concept, as we next

describe related works to this concept. In [53], Madden et al. suggest semantic routing tree,

which is an index over a particular attribute that can help a query forwarded to only appropriate

nodes that have values within the interval held by its ancestors. This can reduce energy that

might be used by query flooding. Soheili et al. expand this to a two dimensional semantic tree

of spatial query index in [54]. In this work, they use MBR of node’s position and the positions

of its descendants as an index to disseminate a spatial query into only an index MBR of spe-

cific area that intersects the query MBR. This also reduces energy consumption by preventing a

query from being disseminated into areas that do not intersect the query MBR. In [55], Coman

et al. propose an energy efficient query processing method for spatiotemporal region query.

They try to disseminate a query only to a small subset of nodes in the network and the spatial

query processing is performed closer to the data sources.

In [56], Beaver et al. talk about location aware routing for data aggregation in sensor

networks. Unlike the traditional tree building method, they propose an algorithm that nodes
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can choose their parents to be aware of the same group so that it can reduce the number of

messages against a query that has a group-by clause.

When we consider energy consumption in data communication of sensor networks,

transmitting a packet is important since it consumes most energy at each node. Several pa-

pers work on energy minimization in broadcasting packets or wireless data communication. In

[57], Yang et al. propose a dynamic query-tree that adjusts tree structure dynamically. They

consider energy balancing when sensor nodes broadcast data and assumes only leaf nodes can

measure data and non-leaf nodes can only forward messages. In [58], Čagalj et al. talk about

energy-efficient broadcasting in all wireless networks. They show that the minimum broadcast

cover (MBC) problem is NP-complete when an arbitrary set of nodes is given.

It is also important to use a proper energy model to evaluate energy consumption in

sensor networks. In [59], Khan et al. consider only transmission energy when they treat

energy-efficient routing schemes in wireless sensor networks. In [41], Buragohain et al. con-

sider both transmission and reception energy but they ignore the energy change depending on

the distance between two nodes. They propose power aware routing for sensor databases by

adopting minimum degree spanning tree (MDST) and showing it is an NP-complete problem.

Basu et al. emphasize the importance of overhearing in wireless sensor networks in [38]. Their

energy model includes energy for transmission, reception, and overhearing and consider RF

propagation path loss, which we follow as our energy model.

2.4 Data Gathering

Data communication consumes most of the energy that each node dissipates in sensor

networks. There are two directions for communication: sending a query and gathering the data

for query results. In general, a query is disseminated from a base station to the sensor field,

and data are gathered from the sensor field and conveyed to the base station. Here, we can
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consider two problems, broadcasting and data gathering. In [60], Wieselthier et al. discuss

energy-efficient broadcast and multicast trees. Before the problem is proven as NP-complete,

they proposed a heuristic algorithm, Broadcast Incremental Power (BIP). On the other hand,

the data gathering tree problem is regarded as simpler than the broadcasting problem. In [61],

Hong et al. proposed two approximate algorithms, Cumulative Increment Algorithm (CIA)

and Cumulative Sum Increment Algorithm (CSIA) to solve wireless broadcasting problem that

uses Cooperative Wireless Advantage (CWA), which is also shown to be NP-complete.

For data gathering, in [38], while Basu et al. emphasize the effect of overhearing energy,

they consider both the data gathering problem and the data dissemination problem. In their data

gathering problem, they assume simple media access control (MAC) protocol, where there is

no IEEE 802.11 carrier-sense multiple access protocol with collision avoidance (CSMA/CA).

But in common practice, the two way communication MAC protocol such as IEEE 802.11 or

S-MAC [39] is used frequently for reliable data transmission and collision prevention. In this

thesis, we consider this so that the data gathering tree problem can better reflect reality. In

[62], Liang et al. focus on a data gathering problem whose size of data could vary depending

on a query. This applies to queries that typically do not involve aggregation. Cheng et al.

define strong minimum energy topology in wireless sensor networks and study a problem that

assigning transmit power to each sensor so that a topology containing only bidirectional links is

strongly connected in [35]. Then they prove the problem is NP-complete and propose heuristic

algorithms of performance ratio of 2 to approximate the problem.

Power or radio range assignment to minimize the total power consumption by the net-

works has been researched in the area of ad hoc networks. Kirousis et al., in [63] study MIN

RANGE ASSIGNMENT problem and prove that the problem is NP-hard in 3-dimensional

space. In [64], Clementi et al. prove that the MINIMUM RANGE ASSIGNMENT problem is

NP-hard in 2-dimensional space. In [40], Althaus et al. propose MIN-POWER SYMMETRIC
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CONNECTIVITY problem that is similar to the previous two problems and propose approxi-

mation algorithms.



CHAPTER 3

SPANNING TREE PROBLEMS

3.1 Introduction

A problem of minimum spanning tree is to find a minimum sum of costs on edges of the

spanning tree. Well known methods to solve a minimum spanning tree problems include Prim’s

algorithm [65] and Kruskal’s algorithm [66]. These algorithms can solve a minimum spanning

tree problem in O(E log E) time[36]. Besides a minimum spanning tree problem, we have

many variants of it. Many of these problems fall in the criteria of NP-hard problem depending

on their constraints. Degree constrained spanning tree [67] remains NP-complete if we try to

find a tree in which no node has degree more than 2 incidents. Maximum leaf spanning tree

problem [68] has its constraints, which is the number of leaves. Bounded diameter spanning

tree problem [68] is to find a spanning tree in which the sum of the weights of the edges is

bounded by an integer B and there is no simple path with more than D edges. Capacitated

spanning tree problem [69] has a constraint of the capacity of edges.

Since many of the spanning tree problems are in NP-hard, researchers have adapted

some of the heuristic techniques, such as genetic algorithms and simulated annealing. In this

chapter, we study several techniques that solve variants of spanning tree problems by applying

several heuristic techniques. In the following two sections, we explain briefly two methods

that are used in this thesis, simulated annealing and genetic algorithm. In the third section, we

introduce several techniques that were used to solve many kinds of minimum spanning tree

problems by these techniques.

23



24

3.2 Genetic Algorithm

3.2.1 Biological Background

Genetic algorithm was first developed by Holland in 1975. In his book ”Adaptation in

natural and artificial systems”, he described how to apply Darwin’s theory of natural evolution

to optimization problems. The genetic algorithm, therefore, is directly derived from the prin-

ciples of genetics and natural evolution [70]. This algorithm is based on a stochastic method

that depends on probability distribution. The algorithm is not guaranteed to find the optimal

solution, instead it can find a solution which is quite a bit close enough to the optimal solu-

tion. Therefore, this genetic algorithm is useful and used to solve NP-complete problems by

suggesting ”acceptably good” solution.

In real world, a cell is the structural and functional unit of all living organisms. In the

cell, there is a cell nucleus that contains chromosome, in which all the genetic information are

stored. Properties of species that determine the characteristics of an individual are encoded in

genes. Each gene encodes a trait, such as eye color. Alleles are possibilities of the genes for

the particular property. The set of all the genes of a specific species is called genome. Each

gene has its own position and it is called locus. A complete genetic sequence on one set of

chromosomes is called genome. The entire combination of genes in genome is called genotype.

During reproduction, parents create their new offspring by recombination (or crossover). Genes

combined from the parents create a chromosome that has a combination of genetic information

from the two. Also, the offspring can be mutated, which means a small part of information in

chromosome is changed because of copying errors caused by many reasons.

3.2.2 Basic of Genetic Algorithm

The genetic algorithm mimics this biological sequences. The algorithm starts with ran-

dom generation of population of n chromosomes [70, 71, 72]. It evaluates each chromosome

in the initial population by using the fitness function. Now, new population is created by re-
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peating four steps, selection, crossover, mutation, and accepting. In the first step, selection,

the algorithm chooses two parent chromosomes based on the fitness function. In this case, the

better value from the fitness function, the more chances to have to be chosen as parents. The

second step, crossover, selects genes from parents chromosome with a crossover probability,

then cross over the parents chosen from the selection step to create a new offspring chromo-

some. At the third step, mutation takes place by giving mutation probability to each locus of

new offspring chromosome. Now, the newly created offspring join the existing population.

After this, new generated population will be considered as the algorithm repeats the previous

four steps. At the end of this repetition, there is a terminating condition, so that the process can

stop when the condition is satisfied.

Evolutionary algorithm includes genetic algorithm, evolution strategies, and evolution

programming [73]. Since the discussion about the difference between evolutionary and genetic

algorithm is beyond the scope of this thesis, we just use the main concept of two algorithms

interchangeably. Figure 3.1 shows overview of sequences of genetic algorithm.

 1: begin
 2: initialize population with randomly generated candidate solutions
 3: evaluate each candidate solution
 4: while (termination condition not satisfied) do
 5: select parents
 6: crossover pairs of parents to create a offspring
 7: mutate the offspring
 8: evaluate the new candidate
 9: replace  the new candidate generating a new population
10: end while
11: end

Procedure 1: Genetic Algorithm

Figure 3.1: Pseudocode of genetic algorithm
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Raidl et al. proposed edge sets to represent spanning trees as suitable codes for evolu-

tionary algorithm in [74]. This spanning tree encoding technique is applied to solve NP-hard

problem degree constrained minimum spanning tree so that their technique performs well in

initialization, recombination, and mutation in terms of locality, heritability, and computational

efficiency. Chou et al. studied the factors of genetic algorithm that influence performance for

solving spanning tree problem in [75]. Since there are many variations of techniques in each

step, such as encoding methods, crossover methods, and mutation methods, they experimented

combinations of the techniques and evaluated the performance to solve degree constrained min-

imum spanning tree problem. By their result, the best solution quality can be performed when

they combine determinant encoding, uniform crossover, and exchange mutation.

3.2.3 Genetic Algorithm in This Thesis

In chapter 6, we use the genetic algorithm to solve our problem, energy-efficient data

gathering tree (EDG-tree) problem. This algorithm will be compared to many other algorithms.

In this section, we describe techniques used in our genetic algorithm in detail.

• Initialization Phase

We create 20 trees as chromosomes for initial population. One is from Prim’s minimum

spanning tree [65] and the others are from random generated trees. The reason why we

choose Prim’s minimum spanning tree algorithm is that it is proven as 2-approximation

algorithm for the Min-power Symmetric Connectivity (MSC, [40]) problem, which will

be discussed in chapter 6. Traditionally, the population size is also generated randomly,

however, 20 to 30 initial candidates are considered as good population size [74].

• Evaluation Phase

In order to evaluate each chromosome, we use our energy model that summate cost on

edges as a fitness function.

• Selection Phase
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In order to select suitable parents chromosomes, many methods have been introduced,

such as roulette wheel, Boltzman selection, tournament selection, rank selection, best

selection, and steady state selection as described in [76]. Among the methods, we choose

two chromosomes as parents that are randomly chosen from top 20% pool of the initial

population.

• Crossover Phase

In order to implement crossover, we have also many methods such as one point, two

points, uniform, arithmetic, and heuristic method. Since we are using tree representation,

we adopt edge-set representation and edge crossover that was proposed by Raidl in [77].

In the first step, we find all the common edges from both parents trees. These edges will

definitely form a new offspring tree. Next, we find edges that belong to either of parents,

not both of them and make it a temporary edge set. Using the disjoint set algorithm as

described in [36], we try to build an offspring tree by choosing one edge by edge from

the temporary edge set so that the tree always satisfies tree building condition.

• Mutation Phase

Mutation has also many techniques, such as flip bit, boundary, non-uniform, uniform,

and Gaussian method. In our algorithm, we simply choose one edge that belongs to the

offspring tree, then replace it with one that belongs to the temporary edge set. If an edge

does not create a tree, then the random selection will happen until an offspring tree is

created. But if there is no edge that can replace an existing one, mutation will not occur.

3.3 Simulated Annealing

3.3.1 Background

Thermodynamic annealing [78, 79] is a process for glass or metal to have a solid structure

of their crystals. The glass or metal is heated up to a certain temperature at which they can be
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melted into the liquid state. In this state, the molecules of hot glass or metal are free to move

about. After that, if the temperature drops rapidly, these molecules get out of equilibrium and

eventually make the crystal have many defects. On the other hand, if the temperature drops

slowly, they form a highly ordered and pure crystal. Also, the molecules of a crystal solidify

into a minimal energy state. Simulated annealing is an applied algorithm based on simulating

the real thermodynamic annealing.

Simulated annealing [80] can solve combinatorial optimization problems. It was initially

invented by Kirkpatrick et al. in [78] and applied to a thermodynamic annealing problem. This

is one of the techniques that can get heuristic solution when the exact optimal solution is not

feasible because the problem is intractable to solve. The simulated annealing method is based

on stochastic techniques. It also has an algorithm that can try to escape from local minima and

eventually get a global solution. It chooses not only downhill moves 1 obviously but also uphill

moves depending on a stochastic value, which is compared to a factor, Temperature. This

means even though the algorithm meets a new value, which is not as good as the current value,

it permits the value as the new current value with a probability related to the Temperature. This

enables the algorithm to escape from a local minima. The Temperature mimics temperature

used in the real world when annealing is applied to glass or metal.

3.3.2 Simulated Annealing in This Thesis

We modified the pseudocode of simulated annealing for the traveling salesman problem

(TSP)[79] to apply it to solve energy-efficient data gathering tree (EDG-tree) problem that will

be discussed in Chapter 6.

The simulated annealing algorithm works as follows: Once an initial tree is determined

randomly, based on query types, the total energy consumed by the whole network is calcu-

lated. This value is saved as current cost that is later compared to a new cost from a new tree.

1If we consider minimization problem.
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We set initial Temperature value as an average energy that each node consumes. Now, for a

pre-determined number of iterations, the actual annealing step is executed with a decreasing

Temperature by each iteration. The decreasing rate of the Temperature can be adjusted by a

factor, which mimics how fast temperature drops in the real world.

begin
  1: for i 1 to n_temps do
  2:  temperature factor * temperature
  3: for j 1 to local_iteration do
  4:         current_cost  cost evaluation for TC

  5: //try to replace an edge with a random edge 
  6:         TT pickOneEdge()
  7:         trial_cost  cost evaluation for TT

  8: delta  current_cost - trial_cost
  9: if delta > 0 then // better cost
10: TC  TT

11:    n_swaps   n_swaps + 1
12: else
13: p random real number between 0 and 1
14: m  e( delta / temperature )

15: if p < m then
16:     TC TT

17:     n_swaps   n_swaps + 1
18: end if
19: end if
20: exit when n_swaps > global_iteration
21: end for
22: end for
end

Procedure 2: innerLoop

Figure 3.2: Pseudocode of simulated annealing

In each annealing step, with the same Temperature, a new tree is constructed by replacing

one existing edge with a new edge. The energy for the new tree is calculated to get a new cost.

The construction for the new tree is described in more detail in the next paragraph. If the new



30

cost is cheaper than the current cost, the new edge replaces the existing one and eventually

sets a new tree (line 9∼11 in Figure 3.2). If the new cost is worse than the current cost, still

we have a chance to allow the new tree to be a current tree. Line 13 generates a random

number between 0 and 1 and set it to p, then line 14 generates a value that follows decreasing

exponential function so that the value can be between 0 and 1 and set it to m. If we have a large

delta value, m will be close to 0, and a new tree with higher cost is unlikely to be accepted

since the probability of p being less than m decreases. Therefore, line 15 condition may accept

the new tree even though the new cost is worse than the current one, and if the condition is not

satisfied, the new tree will be discarded.

When the procedure pickOneEdge is called by line 6 in the procedure innerLoop

(Figure 3.2), the procedure pickOneEdge (Figure 3.3) will replace one existing edge with

another edge, which is not in the current tree. To replace one edge (u, v), first, we have to select

a new edge (i, j) from a set of edges that are not currently participating the tree, (i, j) ∈ E c
T ,

where E ′ = ET ∪ E c
T . Second, the new edge should connect the two trees that were caused

by absence of the old edge, (u, v). It is straightforward that these two conditions guarantee not

creating a cycle. The pseudocode of pickOneEdge is represented in Figure 3.3: Initially,

we have ET ⊂ E ′ and |ET | = |V | − 1 (line 1). An edge (u, v) is then chosen randomly (line

2) and ET is newly set as ET − {(u, v)}, which makes |ET | = |V | − 2 (line 3). V is now

separated into two subsets V1 and V2 (V1 ∪ V2 = V and V1 ∩ V2 = φ), each of which forms

two different trees2. Then, we choose (i, j) randomly, which satisfies, (i, j) ∈ E c
T , where

(i ∈ V1 and j ∈ V2) or (i ∈ V2 and j ∈ V1), and (u, v) 6= (i, j) (line 5). This can be

implemented by using disjoint set as described in [36]. The new edge (i, j) is added to ET

(line 6) and finally, the new tree T is returned to the procedure innerLoop (line7).

2We allow one vertex tree
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begin
  1:     ET is ready // |ET|=|V|-1
  2:  pick (u,v) randomly, which satisfies (u,v) � ET

  3: take out (u,v) from ET  ET � {(u,v)} // |ET|=|V|-2
  4:     // V is now separated into V1 and V2 due to taken out (u,v)
  5:     choose (i,j) from ET

c , which satisfies 
          {(i�V1 and j�V2) or (i�V2 and j�V1)} and (i,j) � (u,v)
  6:     ET  ET�{(i,j)}
  7:     return T(V,ET)
end

Procedure 3: pickOneEdge

Figure 3.3: Pseudocode of replcaing one node with another

3.4 Summary

In order to solve spanning tree problem that is proven as NP-complete, we use global

optimization techniques, genetic algorithm and simulated annealing to compare them with our

own algorithm. Among many specific techniques in each step of them, we implement ge-

netic algorithm and simulated annealing so that they can represent their own properties. These

algorithms will be compared with other techniques in chapter 6.



CHAPTER 4

SENSOR NETWORK ARCHITECTURE

4.1 Introduction

In this chapter, we study characteristics of many kinds of network schemes and query

types that are used in different applications of wireless sensor networks. First of all, we classify

sensor network queries into several criteria, time, aggregation, filter, dimension, and replica-

tion. These criteria are divided into sub-criteria so that each of them represents fundamental

characteristics. We also discuss different types of storage schemes and routing protocols and

study their characteristics. Now, we have many types of queries that are combined from sub-

criteria and different types of network schemes that are combined from different storage types

and routing protocols. We analyze worst case cost in terms of the number of transmissions,

energy consumption in a hot spot node, end-to-end delay, life span and local storage capacity.

In order to know the cost for the average case, we simulate the query dissemination, aggregat-

ing data, storing sensed data, and report them. We measure three major metrics, the number of

transmissions, energy consumption, and end-to-end delay through the simulation.

The remainder of this chapter is organized as follows. Section 4.2 classifies queries into

several criteria and discuss the characteristics of each criterion. Section 4.3 studies existing

storage types and routing protocols. In section 4.4, we analyze cost for the worst case in terms

of different metrics. Section 4.5 shows the result of simulation that represents average case.

Finally, section 4.6 summarizes this chapter.

32
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4.2 Sensor Query Classification

Sensor network queries can be classified into five different groups. The criteria we use

for classification are time, aggregation, filter, dimension, and replication. We discuss each of

these criteria next.

Table 4.1: Query classification and different terms in several papers

criteria classification [29] [30] [31] [32] [33] [28]

time
one-shot snap-shot one-shot one-shot

continuous long-running continuous continuous
limited-range historical

aggregation

spatial-aggregate aggregate complex aggregate aggregate
temporal-aggregate aggregate complex aggregate aggregate

aggregate-summary aggregate complex summary summaryaggregate

aggregate-exemplary aggregate complex exemplary exemplaryaggregate
non-aggregate non-aggregate non-aggregate

filter filtering complex range
non-filtering simple

dimension
one-dimensional simple simple single source

multi-dimensional complex multi-
dimensional

replication
replicated queries for

replicated data

unique queries for
unique data

1) Time range when a query is applied:

• If a user just wants to know data at a specific moment, the query is posed just once

and data is returned only for the particular moment. This is called one-shot query

since the start time and end time for the time range is the same.

• If a user wants to know data periodically from a particular moment (usually from

now on) to logically infinite time, it is called continuous query. In this case the start

time can be ’now’ and the end time is ’infinite’ if the user wants to know the result

starting at the time the query is posed.
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• When a continuous query has a particular end time other than infinite, it can be a

query that has limited range.

2) Aggregate queries versus non-aggregate queries. Aggregate queries can further be classified

into spatial-temporal and exemplary-summary.

• If a user wants to know an average or any other aggregate data from several sensors

that are in a certain region, this is called a spatial-aggregate query. If a user wants

to know an average data for a certain period from one sensor, it is called temporal-

aggregate query.

• AVG, SUM, and COUNT can be classified as summary-aggregate since they need

to compute some properties over the entire set of values. MIN and MAX are called

exemplary-aggregate since they return a representative value from the set of all

values [28].

3) Filter versus non-filter. Based on this, we can have filtering query, which returns sensor

data only if it is within a specified range and non-filtering query, which returns all sensor

data. When a range is given in a query, it filters out data that are out of range and gives

results only satisfying the range condition back to the user.

4) Number of types of sensed data. One-dimensional query requests only one type of sensed

data, and multi-dimensional query requests two or more types of sensed data. For exam-

ple, a query asking only for temperature is one-dimensional and a query asking for both

temperature and brightness is multi-dimensional.

5) Replicated or unique. If multiple sensors sense the same or similar data, the query can

return replicated data. If each sensor measures unique data, the query gets unique data

as a result.

For all the classifications discussed so far, terms used in other referenced papers, and

their matching relationship is summarized in Table 4.1. The first two columns give our classi-
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fication criteria, and the other columns are for listing different terms for the same concepts as

used in several papers.

Some of the criteria are orthogonal since they have no dependency on each other. For

example, criteria for filtering and dimension are orthogonal, so they can be used in a query

at the same time. For example, ”give me a sensor number with values of temperature and

humidity whose temperature is between 50 and 60 and whose humidity is between 20 and 30”

is a mixture of filtering query and multi-dimensional query.

A taxonomy for aggregate queries is discussed in [28]. The first is whether a result is

sensitive or not regarding to duplicates. MAX and MIN functions are duplicate insensitive and

COUNT, SUM, and AVERAGE are duplicate sensitive. The second is exemplary versus sum-

mary aggregation. The third is whether the aggregate is monotonic or not. When a new value

is added on the previous data set, if the result is monotonically increasing or decreasing, it is

monotonic aggregate, otherwise, it is not monotonic. COUNT,MAX,and SUM are monotoni-

cally increasing and, MIN is monotonically decreasing. But AVG is not monotonic since the

result can be fluctuating whenever a new value is added. The fourth depends on partial state

records, which are related to the amount of state. For example, a partial AVG record consists of

a pair of values, COUNT and SUM, while a partial COUNT record needs only a single value.

There are also distributive, algebraic, holistic, unique, and content-sensitive aggregates.

4.3 Storage Types and Data Routing Schemes

There are several schemes for data delivery in the sensor network. We can classify the

schemes based on when and how the data should be delivered to the sink. The top class would

be classified into continuous, event-driven, and observer-initiated in terms of the data delivery

required by the application [3].
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• Continuous: data is generated and forwarded to a sink continuously according to the task

that is already embedded in the sensor network or disseminated into the network initially

when the network is initialized. This is useful for periodic monitoring application.

• Event-driven: data is generated or triggered by an event and is forwarded to a sink. This

can be used in any situation that needs event-driven results such as managing parking

spaces.

• Observer-initiated: data is generated by the way that is specified in a query, which is

disseminated into the sensor network when a user wants it.

We now show the relationships between data dissemination types and storage types.

Storage types are generally classified into three categories: local storage, external storage, and

data-centric storage [34]. Local storage means that sensor nodes store what they sensed on their

own storage space. Usually the storage is a small amount of cache or memory equipped on the

sensor node. External storage is that all the data sensed from sensors is sent to an external

storage and saved generally on a fixed hard drive attached to a computer. Data-centric storage

requires that data are assigned names based on the type of data produced by the sensors, and

stored at a particular node by a predetermined way, for example, geographic hashing function

[34]. Determining where to store is based on the ’name’ rather than specified by a node address.

So far, many data routing schemes have been proposed. We classify them into several

categories that have intrinsic properties. Those are geographical, hierarchical, and data-centric

data routing schemes.

• In geographical routing, nodes know the spatial position of their neighbors.

• Hierarchical routing provides a structured level on the network topology such as cluster-

ing or grid-based virtual topology [81].

• Data-centric routing uses named-data to route a packet unlike the traditional routing

scheme that uses IP address. Typically, the type of query and data includes attribute-

value pairs.
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Figure 4.1: Sample topologies for analysis (a) Basic geographic topology (b) Hierarchical
topology (c) Number of neighbors

We now discuss the routing schemes that our analysis in section 5 is based on. In ge-

ographical data routing, we assume a simple topology that has n homogeneous sensor nodes

evenly distributed in a square area as shown in Figure 4.1(a). All the nodes have abilities to

sense phenomena, relay packets, and aggregate data from neighbors. Among them, there are

source nodes that send sensed data and sink nodes that receive the data and connect to a base

station, which is outside the sensor network. In hierarchical routing, we assume a simple model

that looks like LEACH (Low-Energy Adaptive Clustering Hierarchy [37]), but has an ability

for cluster heads to communicate with neighboring ones in a multi-hop way, and can finally for-

ward packets to the base station. Basic sensor nodes deployment is the same as in a geographic

data dissemination scheme (see Figure 4.1(b)). In data-centric routing, we use a scheme that is

similar to Directed Diffusion [82], but the assumption is that the scheme supports not only the

typical scenario of vehicle detection, whose interest and data has attribute-value pairs, but also

the scenario for general sensing tasks, such as measuring temperature or humidity. It also uses

the same topology as the one used in geographical scheme.

If we combine data delivery types and storage types, we can find several good matching

pairs as shown in Table 4.2. The first column represents data delivery types and the second
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column is for the three storage types. The third column, relevance, means how well the first

column and the second column correlate when their basic properties are considered.

Table 4.2: Matching for data delivery types and storage types

data delivery storage relevance what to send typical examples type
local low x x -

continuous external high raw data, answer send me the temperature A
data-centric low x x -

local low x x -
event-driven external high raw data, answer send me a data if a is occupied B

data-centric low x x -
local high raw data, answer varies C

observer-initiated external high raw data, answer varies D
data-centric high raw data, answer varies E

We can see that both continuous and event-driven data delivery are well matching with

external storage type. The other two storage types are not appropriate for the two data delivery

types in that the main purpose of continuous and event-driven data delivery is to send data

to a base station so that the data can be handled in a real time way. But, for the observer-

initiated type, it is well matching with all three storage types. Therefore, we consider only

observer-initiated case for cost analysis in section 4.4.

We now give some definitions of terms that are used in the remainder of this paper.

• A task determines a job that the sensor network has to do. For example, a task could be

to measure temperature or humidity or both. It can be installed on the network before

the sensors are deployed or it can be forwarded by a user when necessary. It is usually a

long-running query, which is periodically continuous.

• Raw data is collected from sensors without being modified, such as pure measurement

from a sensor.

• Query is a question or an interest to get a result from the sensor database. It is distin-

guished from task since it is more specific than task.
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• Answer is a response from a specific query. It is also called result in the general database

area.

4.4 Cost Analysis

In this section, we evaluate four sample queries in terms of three metrics based on the

combinations of storage type and routing schemes. The followings are the three metrics that

we consider:

• Number of transmissions: we count the number of transmissions in the network when a

query is issued from a sink until the sink gets an answer from the sources.

• Energy: we model the amount of energy dissipated in the network after a query is issued

from a sink until the sink gets an answer from the sources. Total amount of energy

dissipated in the network and energy dissipated in a particular node are considered.

• Delay: we model the time taken after a query is issued until the sink gets an answer.

From section 4.2, we have 36 combinations of queries by considering the criteria time,

aggregation, filter, and dimension. The four cases of combining, one-shot and temporal ag-

gregation are excluded because of contradiction. Among those 32 combinations, we pick four

cases to analyze with storage types.

• Case 1: one-shot, non-aggregate, non-filtering, and one-dimensional. An example is

”give me the value of current temperature at sensor #1”.

• Case 2: limited-range, spatial-aggregate, non-filtering, and one-dimensional. An exam-

ple is ”give me the value of average temperature at sensor #1 through #9 every 1 minute

for the next one hour”
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• Case 3: limited-range, temporal-aggregate, filtering, and one-dimensional. An example

is ”give me the value of average temperature of all the values sensed at sensor #1 every

1 minute for next one hour if it is greater than 70.”

• Case 4: continuous, spatial-aggregate, filtering, and multi-dimensional. An example is

”give me the values of average temperature if it is greater than 70 and average humidity

if it is between 20 and 30 at sensors #1 through #9 every 1 minute from now on.”

The sample network that is used in cost analysis satisfies the following conditions:

• All the sensors are static and homogeneous

• Transmission range includes all the one-hop nodes as neighbors

• Sources can be any sensor nodes in the network and a sink can be any node either at one

of the four corners or at one of the four sides.

• The link between two nodes is robust, so there is no retransmission

• Sensor nodes have enough storage capacity so as to hold what they sense without loss

For the cost analysis of the three metrics, we use n sensor nodes evenly distributed in the

grid networks for geographical routing scheme, which forms
√

n by
√

n square grid topology

as shown in Figure 4.1(a). A transmission range of a node can cover only one-hop neighbor.

Therefore, four nodes at the corners have 3 neighbors, 4(
√

n − 2) nodes at the sides have 5

neighbors, and the other inner nodes have 8 neighbors. Figure 4.1(c) shows the number of

neighbors at nodes in the geographical routing network. A base station that connects sensor

network and outer network is reachable by one hop from the sink. For the hierarchical routing

scheme, the topology model is basically the same as in geographical one, and every cluster

head has eight cluster members as shown in Figure 4.1(b). A transmission range for a cluster

head is to cover its neighbor cluster heads (up to eight) so that they can communicate with each

other.

Table 4.3 shows the dominant factors when the corresponding query classification is

included in a particular query. tD is a duration of limited range that specifies when a query
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is effective. tP is time for one period and tL is the average life time of sensors. nS is the

number of sensors that participate in an aggregate query and nd is the number of dimensions.

pi represents a probability that the dimension of i is satisfied. Now, we analyze each metric

one by one and we only consider the worst case scenario so that each result has upper bound.

4.4.1 The number of transmissions

Table 4.3: Query classification and its dominant factor

classification characteristics dominant factors
one-shot x = t1 .

limited range t1 ≤ x ≤ t2
tD

tP

continuous x ≥ t1
tL

tP

non-aggregate . .
spatial-aggregate . nS

temporal-aggregate . .
filtering . pi

multi-dimensional . nd

We consider two routing schemes, geographical and hierarchical for the metric number

of transmissions. All three storage types are evaluated in geographical routing, and local stor-

age and external storage are considered in hierarchical routing since data-centric storage is not

suitable for hierarchical clustering scheme. In Table 4.4, ’Q’ stands for sending query (or task),

’S’ for storing sensed data, ’A’ for aggregating data, and ’R’ for sending answers. ’Geo’ stands

for geographical routing scheme and ’Hier’ for hierarchical scheme. ’LS’, ’ES’, and ’DCS’

stands for local storage, external storage, and data-centric storage, respectively.

The case 1 query is about a simple query that is composed of one-shot, non-aggregate,

non-filtering, and one-dimensional. We can calculate the number of transmissions by consid-

ering the steps for sending query (or task), storing sensed data, aggregating data, and sending

answers with respect to the three types of storage, local, external and data-centric. Since the

geographical routing scheme knows where to send packets, the maximum number of transmis-
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sions for the peer-to-peer communication is O(
√

n). In Figure 4.4, for the case of local storage

in geographical routing, the maximum number of transmissions is 2
√

n, which is the sum of

the number of transmissions that are needed to send a query and sending an answer. It also

takes 2
√

n for external storage, but the
√

n in row Q is for sending task instead of query. And

4
√

n is for the data-centric storage case. The first
√

n in the row Q of the data-centric storage

column is to send a task to the designated node and the last
√

n is for sending actual query by

peer-to-peer unicast way. For the local storage and external storage in hierarchical routing, it

is 2(
√

m + 1), where m is the number of cluster heads in the network.

Table 4.4: Number of transmissions in case 1 and 2

case Case 1 Case 2
routing Geo Hier Geo Hier
storage LS ES DCS LS ES LS ES DCS LS ES

Q
√

n
√

n
√

n ,
√

n
√

m + 1
√

m + 1 nS
√

n nS
√

n nS
√

n ,
√

n
√

m+1
√

m+1
S x

√
n

√
n x

√
m + 1 x tD

tP
nS
√

n tD
tP

nS
√

n x nS
tD
tP

(
√

m+1)

A x x x x x tD
tP

(nS -1)
√

n x x (nS -1) tD
tP

x

R
√

n x
√

n
√

m + 1 x tD
tP

√
n x tD

tP

√
n tD

tP

√
m x

Table 4.5: Number of transmissions in case 3

routing Geo Hier
storage LS ES DCS LS ES

Q
√

n
√

n
√

n,
√

n
√

m + 1
√

m + 1

S x tD
tP

√
n tD

tP

√
n x tD

tP
(
√

m+1)
A x x x x x
R pi

√
n x pi

√
n pi(

√
m+1) x

Table 4.6: Number of transmissions in case 4

routing Geo Hier
storage LS ES DCS LS ES

Q nS
√

n nS
√

n nS
√

n,nS
√

n nS (
√

m+1) nS (
√

m+1)
S x nd

tL
tP

nS
√

n nd
tL
tP

nS
√

n x nd
tL
tP

nS (
√

m+1)

A nd
tL
tP

(nS -1)
√

n x x nd
tL
tP

x

R tL
tP

(p1+p2)
√

n x tL
tP

(p1+p2)
√

n tL
tP

(p1+p2)(
√

m+1) x
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The case 2 query is for limited-range, spatial-aggregate, non-filtering, and one-dimensional.

In this example, we need to have tD
tP

factor to determine frequency, which is how many trans-

missions are in a given limited range of time. The total number of transmissions in the whole

network is equal to the sum of all the rows. nS( tD
tP

+ 1)
√

n is for both local storage and

external storage in geographical routing. ( tD
tP

+ 1)(nS + 1)
√

n is for data-centric storage.

tD
tP

(nS +
√

m − 1) +
√

m + 1 is for local storage, and (nS
tD
tP

+ 1)(
√

m + 1) is for external

storage in hierarchical routing.

The case 3 query is for limited-range, temporal-aggregate, filtering, and one-dimensional.

The factor pi is needed for local storage and data-centric storage due to the element filtering

that satisfies the temperature condition. They don’t need to send all the values they measure.

Among them, local storage has least number of transmissions since it aggregates and filters at

the sensing node itself after tD minutes pass. (pi + 1)
√

n is for local storage, ( tD
tP

+ 1)
√

n is

for external storage, and (pi + tD
tP

+ 2)
√

n is for data-centric storage in geographical routing.

Similarly, (pi + 1)(
√

m + 1) is for local storage, and ( tD
tP

+ 1)(
√

m + 1) is for external storage

in hierarchical routing.

The case 4 query is for continuous, spatial-aggregate, filtering, and multi-dimensional.

This query has two dimensions, which are temperature and humidity. Since it has also filtering,

we need to have p1 and p2 for probabilities of satisfying the two conditions, temperature and

humidity, respectively. To calculate number of samplings, tL is used instead of tD, since it is

continuous query. tL
tP

(nd(nS−1)+(p1+p2))
√

n+nS

√
n is for local storage, (nd

tL
tP

+1)nS

√
n is

for external storage, and ( tL
tP

(p1 +p2 +ndnS)+2nS)
√

n is for data-centric storage in geograph-

ical routing. ( tL
tP

(p1+p2)+nS)(
√

m+1)+nd
tL
tP

is for local storage and (nd
tL
tP

+1)nS(
√

m+1)

is for external storage in hierarchical routing. So far, all the number of transmissions is for the

worst case.
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4.4.2 Energy

[83] suggests the total amount of energy consumed by the network for each transmitted

packet as the summation of energy consumed for transmitting, receiving, and reading only

header. Based on this, we have our own model for energy consumption of unicast way in the

networks and it neglects energy for processing:

Eu = etx + erx + (mi − 1)eoh (4.1)

where Eu is the total amount of energy consumed by networks for transmitting one

packet by unicast way, etx is the amount of energy consumed by a sender for transmitting one

packet, erx is for receiving one packet, eoh is for overhearing any packet that is not destined

to the node, and mi is the number of neighbors that are within a radio range of the ith node.

Based on this basic model, we can extend it to the amount of energy consumed by peer-to-peer

unicast way.

We can derive the maximum amount of energy spent by transmitting a packet from

source to sink based on the equation (4.1).

Ess =

√
n∑

i=1

Eu (4.2)

and if we plug (4.1) in (4.2), we get,

Ess =

√
n∑

i=1

(etx + erx + (mi − 1)eoh) (4.3)

=
√

n(etx + erx) + (7 · √n− 6)eoh (4.4)

When we consider the total energy dissipated by all the sensors in the network, we can

analyze it by the same way we did in section 4.4.1. For example, if we consider the first case,

Eu

√
n is spent for sending query and the same amount is spent for sending an answer since
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Eu is an amount of energy that is consumed by sending a packet from a source to a sink.

Therefore, the total energy consumed by a query case 1 in local storage is 2Eu

√
n, which

is 2Ess. By the same way, we can have 2Ess and 4Ess for external storage and data-centric

storage, respectively. Since these results are proportional to the number of transmissions in the

network intuitively, we only focus on the amount of energy dissipated in a hot spot node, which

can be a sink, an aggregate node, or a node for data-centric storage depending on situations.

This is needed since the network is not available if a hot spot node with an important role

dies. Here, we have also several assumptions: a sink is at one of the 4 corners. An aggregate

node or a storage node for the data-centric storage is one of the inner nodes, whose number of

neighbors are 8.

Table 4.7: Energy dissipated in a hot spot node in case 1

routing Geo Hier
storage LS ES DCS LS ES
node sink aggN sink sink storage sink aggN sink

Q etx + eoh x etx + eoh etx + eoh,etx + eoh erx ctx + coh ctx + crx ctx + coh

S x x erx x erx x x crx

A x x x x x x x x
R erx x x erx etx + eoh crx ctx + crx + coh x

Table 4.8: Energy dissipated in a hot spot node in case 2

routing Geo Hier
storage LS ES DCS LS ES
node sink aggN sink sink storage sink aggN sink

Q nS (etx+eoh) etx+erx+7eoh nS (etx+eoh) nS (etx+eoh),etx+eoh erx ctx+coh ctx+crx ctx+coh

S x x nserx x ns
tD
tP

erx x x tD
tP

nScrx

A x nserx x x x x nScrx x
R tD

tP
erx

tD
tP

(etx+eoh) x tD
tP

erx
tD
tP

(etx+eoh) tD
tP

crx
tD
tP

(ctx+coh) x
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Table 4.9: Energy dissipated in a hot spot node in case 3

routing Geo Hier
storage LS ES DCS LS ES
node sink aggN sink sink storage sink aggN sink

Q etx+eoh etx+erx+7eoh etx+eoh etx+eoh,etx+eoh erx ctx+coh ctx+crx ctx+coh

S x x tD
tP

erx x tD
tP

erx x x tD
tP

nScrx

A x x x x x x x x
R pierx pi(etx+eoh) x pierx pi(etx+eoh) picrx pi(ctx+coh) x

Table 4.10: Energy dissipated in a hot spot node in case 4 (geographical routing)

storage LS ES DCS
node sink aggN sink sink storage

Q nS (etx+eoh) etx+erx+7eoh nS (etx+eoh) (nS+1)(etx+eoh) erx

S x x nd
tL
tP

nSerx x nd
tL
tP

nSerx

A x nd
tL
tP

(nS -1)erx x x x

R tL
tP

(p1+p2)erx
tL
tP

(p1+p2)(etx+eoh) x tL
tP

(p1+p2)erx
tL
tP

(p1+p2)(etx+eoh)

We adopt only approximate unitless ratio of 5:3:1 to give values for energy of trans-

mitting, receiving, and overhearing from [84]. Also, we adopt channel path loss model from

[51],

ρ = aδγ + b (4.5)

where ρ is transmission power, δ is a distance between sending node and receiving node,

γ is power loss constant (2 < γ < 4), and a and b are constants. We choose γ = 3, a = 1, and

b = 0 to simplify the model. Therefore, a cluster head consumes 27 times more energy than a

general node in geographical routing in transmitting, receiving, and overhearing a packet. The

notation for energy consumed by cluster heads is ctx, crx, and coh, respectively, as shown in

Table 4.7.

Table 4.11: Energy dissipated in a hot spot node in case 4 (hierarchical routing)

storage LS ES
node sink aggN sink

Q ctx+coh ctx+crx ctx+coh

S x x nd
tL
tP

nScrx

A x nd
tL
tP

(nS -1)crx x

R tL
tP

(p1+p2)crx
tL
tP

(p1+p2)(ctx+crx) x
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Table 4.7 is an example that shows energy dissipated in a specific node in terms of each

storage when query case 1 is applied to. ’aggN’ stands for an aggregate node, and ’storage’ is

a storage node that is used in data-centric storage scheme. For example, in Table 4.7, etx+eoh

energy is consumed to send a query at a sink node in local storage of geographical routing

scheme. Here, we don’t consider energy for receiving a packet from a base station. When a

sink node sends a query packet, it needs to spend etx, and when its neighbor relays this packet

to the third node, the sink node can overhear this packet since the transmission ranges are the

same. When an answer is sent from a source node to the sink node, it spends erx, since the

packet is destined to the sink node. Also, we don’t consider the energy for relaying this packet

to the base station. By the same way, we can get the whole energy model for the other three

query cases, which is not shown due to the space. Through the summation of these four steps,

we can get the whole energy consumed by a specific node, which can be a candidate for hot spot

node in the network. For the local storage, a sink and an aggregate node can be candidates for

hot node. A sink node and a storage node can also be candidates for hot node in a data-centric

storage. Comparisons through evaluation of each value is discussed in section 4.4.5.

4.4.3 End-to-end Delay

In case of reducing energy consumption in sensor networks by decreasing the transmis-

sion range, there is a trade-off between energy and delay. If we have shorter transmission

range, it will increase the number of hops for packet delivery, and it finally affects the end-

to-end delay. Therefore, we need to consider end-to-end delay with energy consumption. We

assume the end-to-end delay is proportional to the number of hops from a source to a sink.

Since we consider only the worst case, the number of hops from a source to a sink can be

bounded by linear combination of
√

n or
√

m, which are the number of hops from the farthest

source to a sink. For the local storage and external storage in geographical routing scheme, the

end-to-end delay is
√

n, for the data-centric storage in geographical routing scheme, it is 2
√

n,
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since it needs to send query to a storage node and get the answer from it. And for both local

and external storage in hierarchical routing scheme, it is
√

m + 1. For the delay point of view,

hierarchical way is superior to the other schemes since it uses cluster heads to relay packets,

which can use fewer number of hops to transmit data to a sink than geographical scheme.

4.4.4 Life span and local storage capacity

If any answers from sensing nodes cannot be forwarded to a sink, the network is not

any more useful. Due to the energy depletion in hot spot node or any reasons that make the

network useless, we need to consider life span, how long does the network work. Meanwhile,

if local storage is filled up with data, it is going to lose future data. Since we do not suggest any

advanced algorithm to treat these, we just compare basic characteristics of each combination

of storage and routing scheme.

4.4.5 Evaluations for Metrics

Table 4.12 shows all the results from the three metrics. Here, we used no units to compare

relative values in each case. For cost evaluation, we used 9 sensor nodes for nS , 60 minutes

for tD, 1 minute for tP , 1 for probability of pi, 240 minutes for average life time of sensors,

which is tL, 1 for p1, which is probability for temperature being greater than 70, and 1 for p2,

which is probability for humidity being between 20 and 30. Since we consider the worst case,

we choose 1 for all the probabilities.

Any storage types in hierarchical routing outperforms geographical routing in terms of

the number of transmissions. But, as we mentioned earlier, hot nodes will die faster than

nodes in geographical routing since the cluster heads consume more energy due to the longer

transmission range. In case 3, local storage outperforms other schemes in terms of both the

number of transmissions and energy since case 3 contains temporal aggregate query. For the

temporal aggregate, the sensing node does not need to send data to an aggregate node, since the
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node itself aggregates all the data, which saves energy. For the filtering query such as case 4,

local storage and data-centric storage can reduce the number of transmissions and save energy

if the probability that satisfies filtering condition decreases. When we give 0.1 as p1 and p2,

the number of transmissions for local storage and data-centric storage drop from 428,571 and

476,190 to 385,803 and 433,422, respectively.

Figure 4.2 shows the comparative analysis with different weights for the number of

transmissions, energy, and delay. Figure 4.2(a) has equal weights, while each of figures

4.2(b)∼4.2(d) give extra weight to one of the three measures. The values in Table 4.12 are

normalized to the biggest number in each metric. These values are calculated to get normal-

ized weighted cost.

For Figure 4.2(a), three metrics have equal weights as 1/3. In this case, external storage

in hierarchical routing has the best cost for query case 1 and local storage in hierarchical routing

has the best cost for query cases 2 to 4. This result is applied to figures 4.2(b) and 4.2(d), which

are weighted on the number of transmissions and end-to-end delay. Meanwhile, for Figure

4.2(c), which is weighted on the metric energy, local storage in geographic routing has the best

cost for query cases 1, 3, and 4, external storage in geographic routing has the best cost for

query cases 1 and 2. This comparative analysis shows what kind of storage has the best cost,

when a specific metric is emphasized.

4.5 Experimental Results

In this section, we evaluate three metrics by simulation to have average cases.

4.5.1 Assumptions for simulation

The link status is robust, so there is no retransmission due to the channel error. Nodes

are static and distributed evenly on the square grid. The number of nodes is 9801, which
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is same as in the section 4.4. Nodes in geographical routing are homogeneous but ones in

hierarchical routing are not homogeneous. A cluster head has transmission range that can cover

its eight cluster head neighbors, but a cluster member can only cover its one-hop neighbors. The

fundamentals in simulation is based on cost analysis, which are introduced in Table 4.4 through

Table 4.11. Discrete time event driven simulator is used to simulate all the combinations of four

query cases and five different routing and storage types.

For a geographical routing, a sink node is generated randomly among the nodes in the

right most side (column), and a source is generated randomly at any nodes except a sink node

itself and nodes in four sides. And an aggregate query such as case 2 and 3 restrict nodes to

be aggregated as neighbors for the source, which are generally 9 nodes including the source

node itself. For a hierarchical routing, a sink node is generated randomly among the right most

cluster heads, and a source can be any node regardless of its being cluster head or member. But

for spatial aggregate query such as query case 2 and 4, a query is restricted to have 9 nodes to

be aggregated.

In addition to counting the number of transmission at each node, the number of receiving

a packet and the number of overhearing a packet are counted to calculate energy consumed in

the whole network or a specific node, which can be a hot-spot node. Therefore the energy

in Table 4.12 represents a hot-spot node in the network, which can be either a sink node or

aggregation node. A delay is measured from a query packet is sent into the network to an

answer packet is received at the sink node. But for the query cases 2,3, and 4, which has

periodic sensing duration, the delay is summation of the time for a query packet being delivered

to the source node and the time for the last answer packet being sent to the sink node. The

simulation ends when the last packet is sent back to the sink or when a certain node runs out of

energy, which causes the network not to be alive.
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4.5.2 Results for the simulation

Table 4.12 shows the simulation results for the three metrics depending on 4 query cases

and 5 storages. Figure 4.2 shows the comparative analysis with different weights for the num-

ber of transmissions, energy, and delay in average case. For the equal weights on the three

metrics (figure (4.2(a))), hierarchical local storage is most efficient overall in four different

query cases when three metrics are equally considered. Hierarchical local storage has the over-

all lowest number of transmissions and the overall delay since it uses longer transmission range

that shorten the number of hops for forwarding packets. The merit in the number of transmis-

sions and the delay bring the overall best cost to the hierarchical local storage in Figure 4.2(a).

But hierarchical storages are not efficient to be used in one-shot and non-aggregate query such

as query case 1 since the geographical storages outperform them.

External storages for both geographical and hierarchical routing is not suitable for lim-

ited range or continuous query cases since they have to send data periodically without having

any aggregation or filtering, which increases the number of transmissions and energy consump-

tion. In the delay point of view, geographical data centric storage has the worst cost, since it

needs extra hops to save sensed data and retrieve them.

Table 4.12: Results for the simulation

metrics Number of transmissions Energy Delay
routing Geo Hier Geo Hier Geo Hier
storage LS ES DCS LS ES LS ES DCS LS ES LS ES DCS LS ES
case1 116.4 116.4 224.9 41.8 41.8 0.1 0.1 0.2 3.6 3.6 1.2 1.3 1.8 0.5 0.5
case2 1185.8 5761.8 4242.6 303.2 1919.2 3.2 8.2 7.5 25.1 219.5 1.4 1.5 1.9 0.7 0.7
case3 94.5 640.2 512.2 31.6 209.0 0.1 0.9 1.0 3.3 24.9 1.1 1.4 1.1 0.4 0.5
case4 1467.3 10999.8 7337.2 450.9 2425.5 5.8 16.3 14.8 32.4 300.3 1.4 1.6 1.9 0.7 0.4
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4.6 Summary

We classify sensor network queries and apply them to various storage types that are

distinguished by different routing schemes. We have five different criteria and several sub-

classification for queries. Besides evaluations for query types versus storage types based on

fixed parameters, we can verify the results by simulation. This is needed since we only evalu-

ated the worst case.

In this chapter, we re-establish the classification of queries in sensor networks, data deliv-

ery models, storage types, and data dissemination schemes. After we pick four representative

queries, we apply them to storage types by means of applying different kinds of data dissem-

ination schemes. We see the difference of maximum possible number of transmissions in its

evaluation depending on the combinations of query types and storage types. When a query has

specific characteristics, it has a storage type that match well the query in terms of the number

of transmissions, energy, delay, or some combinations of them.
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Figure 4.2: Performance cost comparison for each query case and storage type with different
weight for the three metrics (a) Equal weights on the three metrics (b) Weight on the number
of transmission (c) Weight on energy (d) Weight on end-to-end delay



CHAPTER 5

ENERGY-EFFICIENT INDEXING

5.1 Introduction

Among the many possible query types and network schemes in the previous chapter, we

focus on spatial query and network scheme that uses geographical tree routing, since hierar-

chical network scheme generally consumes more energy than plain type network scheme. In

this chapter, we propose a new network scheme for energy-efficient query dissemination. This

scheme has many virtual squares that have locally organized trees so that a query can be dis-

seminated into the particular square area without consuming extra energy. We add this scheme

on MBR indexing so that we can save more energy than a network scheme that only uses MBR

indexing. This network scheme is called sectioned tree. We then simulate our sectioned tree in

different conditions and measure energy consumption for two different queries.

The remainder of this chapter organized as follows. Section 5.2 presents motivation for

this work. We describe the sectioned tree construction, how to save energy and cost evaluation

in section 5.3. Section 5.4 shows our experimental result, when sample queries are applied to

the sectioned tree. Finally, we summarize this chapter in section 5.5.

5.2 Motivation

5.2.1 Energy-efficient network model

In order to disseminate queries into sensor nodes and gather appropriate data from them,

it is required to have energy-efficient network structure since the sensor network is energy

limited. Because of this, many researchers have tried to find optimal energy-efficient network

structure to increase network lifespan, but they find that an optimal solution to minimize en-

54
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ergy consumption in wireless sensor networks or wireless networks that use broadcast is an

NP-complete problem [41, 58]. Sensor network topology can be mapped to a graph, which

has sensor nodes as vertices and links between nodes as edges. From this, a routing tree for

fully aggregated queries 1 with reception cost is proven to be NP-complete, which is the same

problem as minimum degree spanning tree (MDST) that is known to be NP-complete [41].

Also, it is necessary to save energy when a sensor node forwards a query message. In this case,

usually broadcasting method is used and minimum energy broadcasting data problem in two

dimensional Euclidean metric space is also proven to be NP-complete [58]. Our focus is to

find an energy efficient network structure that saves energy when queries are disseminated and

data is sent back to a base station by proposing the sectioned indexing tree for spatial queries.

5.2.2 Energy model

Our energy model is based on [38], which considers energy consumption in overhearing

message. Overhearing energy is consumed when a node receives a message that is not destined

to it due to being within the radio range of a sender. Energy consumed in transmission (Etx) is

proportional to the power of 2 to 4 due to path loss depending on the medium.

Etx = Etxelec + εdα (5.1)

where, Etxelec is the energy consumption by transmitter electronics, ε is an amplifier character-

istic constant, d is a distance between two communicating nodes, and α is the path loss, which

is 2 in this paper. Energy consumed in reception is independent of the distance and it needs

only Erxelec, which is generally same as Etxelec, and we define Eelec,

Eelec = Etxelec = Erxelec (5.2)
1This produces one result value from several nodes that are related to the query
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For overhearing, we consider the node consumes less energy than that of receiving data,

since it is possible for a sensor node to have a mechanism of early discarding of a message

that is not destined to it [38]. Therefore, we assume the ratio of energy spent in receiving and

overhearing data is 1:β (,where 0 < β < 1).

Eoh = βEelec (5.3)

When a message is transmitted from a node u to v, the amount of energy consumed

by nodes that are participating the transmission, Euv, is the sum of energy of transmission,

reception, and overhearing.

Euv = Etx + Erx + (n− 1)Eoh

= (2 + β(n− 1))Eelec + εdα (5.4)

where, n is the number of neighbors that is within the radio range of u. In equation 5.4, since

β, Eelec, ε, and α are constants, and n is dependent on d, so d is the dominant factor for Euv.

Also, since the per byte energy consumed in communication is a couple of thousand times

higher than in any other internal processing, such as cpu execution and memory handling [27],

we assume that we disregard the amount consumed by running Dijkstra’s or Prim’s algorithms

or any internal query or data processing.

5.2.3 Spatial queries

Queries in sensor network have been classified using different criteria [29, 33, 32, 28, 85,

30]. In any sensor network applications that require spatial and temporal information, such as

monitoring applications, queries can be classified based on point and range of space and time.

A point in spatial query represents a location of one sensor node in which a query is interested.

A range in a spatial query represents an area, which could be a rectangle that includes one
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or more sensor nodes. A point in temporal query means a specific moment. And, a range in

temporal query means a time interval that has a logical starting point and a logical end point.

Among these, we focus on a space range query, whose packets are disseminated into a certain

region and sensor nodes in the region should return in-network aggregated value that represents

the region.

5.2.4 In-network data aggregation and MBR indexing

Traditional in-network data aggregation methods such as TAG [28], are not suitable for

a spatial query that has location information, since it supports one dimensional attribute con-

ceptually but it does not consider physical location of nodes, which can be represented as two

dimensional attributes. Due to this reason, [54] suggests a distributed spatial index (SPIX) for

a spatial query on top of a routing tree. In SPIX, every node has its MBR that includes itself

and all of its descendants. A node can transmit queries only to any of its children who has an

MBR that intersects the query MBR.

In-network data aggregation works as follows: when data is gathered and aggregated in

a network, leaf nodes can just pass data up to their parents. A parent waits until all the children

report their data and aggregates the data based on the given query. This process is repeated

recursively until the final aggregate is calculated at the root node.

5.3 Sectioned Tree

5.3.1 Overview of sectioned tree

We assume each node has a global positioning system (GPS) and that nodes are randomly

deployed in a square area. The sequence of building a sectioned tree has three phases. In phase

I, global information, such as MBR of the entire network, the number of sections, and positions

of a sink node and anchor of each section, is exchanged globally. And local information is

exchanged within each section. In the phase II, local trees that are determined by Dijkstra’s
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Figure 5.1: Two tree models (a) Naive routing tree (b) Sectioned tree

shortest path algorithm or Prim’s minimum spanning tree algorithm are constructed at each

section. In phase III, local trees are interconnected each other and make one global tree. An

MBR for spatial indexing is assigned to each node in the network during phase III.

5.3.2 Construction of sectioned tree

1. Initial information exchange : First, a base station sends information, which divides

sensor network area into several sections, to all the nodes by flooding. The shape of each

section and the number of sections are arbitrary, but in our assumption the shape is square and

the number of sections divide the network in a grid of equally sized sections. Initial section

information looks as in Fig. 5.2:Position of a base station (x,y) MBR of entire network (x1,y1,x2,y2) The number of sections Anchor position for sub-roots (x,y)
Figure 5.2: Global information
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where, the last column is to determine a sub-root among all the nodes, which is closest

to that anchor position. Second, all the sensor nodes in the network identify their positions and

calculate sections and ID of the sections they belong to. Then they exchange their information

by transmitting message only to their one-hop neighbors, as illustrated in Fig. 5.3:Node ID Node position (x,y) Section ID Section MBR (x1,y1,x2,y2) Sub-root position (x,y)
Figure 5.3: Local information

Third, they create neighbor list and add the record of Fig. 5.3 whenever the node re-

ceives information. By now, all the nodes can have base station information (position), local

information as in Fig. 5.3, neighbor list with neighbor ID, neighbor position, and section ID

where the neighbor belongs to, and its section information.

2. Construction of local trees : First, in each section, nodes calculate the distance to

the anchor point from the neighbors and themselves. And if the closest node to the anchor

point is the node itself, that node is designated as a local sub-root in the section. In this case,

there is no communication between nodes. Second, after a certain amount of time, sub-root

nodes broadcast their information to every other node in the same section to build initial local

temporary trees. In this case, distributed tree building method is used that broadcasts tree

building message to be forwarded recursively until all the leaf nodes get the message and set

their levels. After a certain amount of time, leaf nodes will start their back tracking up to the

local sub-roots. Now the sub-root nodes can know the whole picture of its section. Third,

every local sub-root nodes can run either Dijkstra’s shortest path algorithm or Prim’s minimum

spanning tree (MST) to build their energy efficient local trees by the locally centralized method.

These two known algorithms eventually set a tree when we give a specific node as a root. Since

getting an optimal solution for energy efficient topology is NP-complete, we show that the
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trees made by Dijkstra’s and Prim’s algorithm outperforms the naive tree in terms of energy

consumption when a message is delivered from a node to the other. Fig. 5.4 shows our pre-

experiment that compares three kinds of trees at different number of nodes, 50, 100, 200, 500,

and 1000.

50
 100
 200
 500
 1000

0


100


200


300


400


500


 


 


en
er

g
y


number of nodes


 Naive Tree

 Dijkstra's SP

 Prim's MST


Figure 5.4: Energy consumption in different tree structure

When we use Dijkstra’s algorithm or Prim’s MST, the global information is needed to

calculate them. If this is applied to wireless sensor network, one of the problems is to transmit

the calculated tree structure to all the nodes in the network. But this is not scalable nor energy

efficient since it needs to flood the global topology to all the nodes, but the payload size of

current technology in sensor network is limited. Therefore, one packet can not contain all

the global information of tree structure and we need at least more than one packet, which

makes several number of flooding, which causes eventually network-wide energy consumption.

Although Dijkstra’s algorithm or Prim’s MST consumes energy a lot when the information is

transmitted, we can alleviate the load of information transmission or the load of calculation at

all the nodes in the network, since our proposed scheme runs these algorithms at local sub-
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roots, where they can take care of certain number of nodes, which is determined by the number

of nodes and the number of sections in the network. Also, this is scalable as the number of

nodes increases, since we can give more number of sections that can bound the number of

nodes in one section.

The difference of properties produced by the two algorithms is as follows. Dijkstra’s

algorithm looks for the shortest path from a root to every node in a network. Since we give

Euclidean distance on the link as a weight of Dijkstra’s algorithm, initial radio range of nodes

can be dominant to determining the shape of the tree. On the other hand, if we use Prim’s

algorithm with the Euclidean distance again on the link as a weight, the initial radio range of

sensor nodes does not affect the shape of a tree, since the Prim’s algorithm always looks for the

nearest node that is not in the current spanning tree. Therefore, as a result of these properties,

energy consumption or the number of hops from a sink to a source can vary. We have various

cases of initial radio range so as to see the different results in our simulation.

3. Local trees interconnection : Now we need to build one big tree so that a message

can be disseminated to any node in the network. First, sub-root nodes exchange messages

with inter-section nodes, which are outside the section but within its radio range, and list them.

Then, later on, local sub-root nodes can use one of the inter-section neighbors as a link to

connect local trees to each other. The pseudocode for determining interconnection node is

shown in Fig. 5.5. Basically, a sub-root node tries to find a neighbor that satisfies the following

condition. A neighbor is in the other section, and an angle made by position of the sub-root,

the neighbor, and the base station is less than or equal to ±30◦. And the sub-root choose the

neighbor, whose angle is smallest. If the sub-root cannot find an appropriate node, it increases

its radio range up to its maximum power and build the neighbor list again. Then, it repeats

the angle calculation and determine its interconnection node. In Fig. 5.5, sn in line 5 means

section ID of neighbor and rrsr in line 10 means radio range of the sub-root. Second, after a

certain amount of time, the base station sends a message for building the global tree. Third,
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leaf nodes send MBR back to the base station. Along the path from leaf nodes to the base

station, in-network aggregation would be used. After this, the whole tree is created. Fig. 5.6

summarizes the sequence of construction of sectioned tree.

1: for each section si do
2: sr count the number of neighbors;

  3:     if number of neighbors > 0 then
  4: for each neighbors n do
  5: if si � sn and |angle(n,sr,bs)| � 30ºthen
  6:           let ni = n, whose angle is smallest;
  7:                 return ni;
  8:             end if
  9: else
10: rrsr = max_radio_range(sr);
11:         rebuild neighbor list;
12:        sr count the number of neighbors;
13:         if number of neighbors > 0 then
14:             for each neighbors n do
15:                 if si � sn and |angle(n,sr,bs)| � 30ºthen
16:                     let ni = n, whose angle is smallest;
17:                     return ni;
18:                 else if ni = Ø
19:                     report isolated section;
20:                 end if
21:         end if
22:     end if

Input: section si, sub-root sr, neighbor list of rs,
position of a base station bs

Output: interconnection node ni

Algorithm 1: determining interconncetion node

Figure 5.5: Pseudocode for determining interconnection node
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5.3.3 Cost evaluation of sectioned tree construction

Even though the construction procedure is quite complicated and costs a lot in terms of

energy consumption, this cost for the construction can be recovered after a number of query

dissemination and data gathering. The energy consumption is dependent on distance and num-

ber of transmission, as we can see in equations 6.1 and 5.4. If n is the number of sensor nodes

in the network and m is the number of sections, the number of transmissions in the whole net-

work can be counted at each step. In phase I, line 2 and 5 in Fig. 5.6 makes n transmissions

each, since flooding and exchange needs one transmission per node. In phase II, line 9 and 12

need n transmissions each due to the same reason. In phase III, line 16 needs m+m ·nn trans-

missions, where nn is the average number of neighbors of sub-root nodes. And, line 18 and 21

needs n transmissions each due to the same reason. So far, the cost for building a sectioned

tree is 6n + m · (1 + nn), which is upper bounded by 7n since m + m · nn is less than or equal

to n intuitively. Therefore, asymptotic cost for tree building is O(n).

5.3.4 Energy saving in query dissemination and data gathering

We build a local tree within the boundary of a given section. Thus the shape of tree or

type of tree does not matter.

MBR indexing and local trees help the sensor network save energy. Saving energy by

MBR indexing is intuitive since it can prevent the network from flooding the query and only

forwards the query to the relevant nodes whose descendants’ MBR intersect the query MBR.

This can reduce the number of transmissions and eventually save energy. But why does the

local tree in a section save energy?

MBR indexing itself is not very energy efficient when a query region includes two or

more branches from a node that has a common nearest ancestor. For example, in Fig. 5.1(a)

a query injected to the network by the sink node is forwarded to two branches by a sub-root 2

(sr2) toward the query area, Area A, which is a rectangle at the bottom of Fig. 5.1(a). Most
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of the nodes including source 1 (s1) can receive the query through a sub-root 1 (sr1), but the

source 2 (s2) should receive the query via white nodes along with the path between s2 and sr2.

These white nodes consume extra energy that may be prevented, if the s2 could have followed

the route that is connected to the sr1. The same thing might happen when data is sent back up

to the sink node by the TAG-like in-network aggregation method [28]. Therefore, we suggest

a sectioned tree structure for spatial indexing, which has local sub-trees in sections that divide

the sensor network area, so that spatial queries be disseminated to a particular query section

rather than to the whole network.

We also use adjustable transmission power and range as in [86]. After local trees are

constructed by either Dijkstra’s or Prim’s algorithm, nodes can adjust their transmission power

so that their radio range can cover only their parents and children. This can reduce the number

of nodes that overhear messages from a sender and therefore saves energy.

5.4 Experimental results

In this section, we present our simulation results based on randomly deployed sensor

nodes. The simulation is done in JAVA. We have 200 x 200 m2 area with 100 nodes (0.0025

nodes/m2) for sparse case and 400 x 400 m2 with 1000 nodes (0.00625 nodes/m2) for dense

case. Initial radio range for all the nodes is 50 m, but they can adjust their radio range when it

is requested. Sensors are all homogeneous and a sink is designated to a node that is closest to

the top right corner of the network area. We have 16 different topologies that have randomly

assigned source node for spatial point query or sections for spatial range query. Four types of

queries include query 1 through 4, which are space point and time point (query 1), space point

and time range (query 2), space range and time point (query 3), and space range and time range

(query 4). Four different initial radio ranges are applied to both sparse and dense cases, and
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1: Phase I   Initial information exchange
2:    a base station floods �global information�
3:    every nodes identify their position and determine their section
4:  they set their �local information�
5:    they exchange their �local information� with one-hop neighbors
6:    they create neighbor list
7: Phase II   Construction of temporary local trees
8:    all the nodes in each section determine their local sub-root
9:    local sub-roots flood temporary tree building message within their sections

10:    leaf nodes start to answer back to their parents
11:    nodes that receive answers write down their children
12:    they pass the answers up until local sub-roots receive them
13:    every local sub-roots run either Dijkstra�s or Prim�s algorithm
14:    they broadcast a local tree topology to their descendants
15: Phase III   Interconnection of local trees
16:    sub-roots exchange message with its inter-section nodes
17:    they determine the link connecting to other sections
18:    a base station sends a global tree building messsage
19:    global leaf nodes send MBR information to their parents
20:    nodes that receive MBR calculate their MBR to include descendant�s MBR
21:    they pass the MBR up until the base station receive it

Figure 5.6: High-level description for constructing sectioned tree

they are 50, 45, 40, and 35 m. For sectioned tree, the number of sections are from 4 to 196 that

are integer square from 2 to 14 for dense case and from 4 to 36 for sparse case.

When sensor nodes are deployed in the field, it is possible for some sensor nodes to be

isolated depending on radio range of nodes. Initially, we count isolated cases whose data is not

included in our final result. Fig. 5.7(a) and 5.7(b) shows the number of failed cases because

of node isolation by different radio range or number of sections. Failed cases include node

isolation, fail to interconnection, and any case that makes a tree incomplete. The number of

failed cases increase as the initial radio range decreases. We show next several basic features

for the simulation, which are the average of adjusted radio range of all the nodes, the average

number of neighbors of each node, and the average number of hops when a source (or section)

is given by a query. In Fig. 5.8, a legend with SD represents sectioned tree with Dijkstra’s
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algorithm in building local tree, SP represents sectioned tree with Prim’s algorithm. 1000

represents the number of nodes, which is dense case, and 100 represents sparse case. Since

Prim’s algorithm always tries to span a tree with an edge whose weight is smallest, which is a

distance in this case, the adjusted radio range is always small regardless of initial radio range

(Fig. 5.8(a)). But in Fig. 5.8(b), as the number of sections increase, the adjusted radio range is

slightly increasing since we use maximum radio range at sub-root nodes when they fail to find

their interconnection at first. This affects both Fig. 5.8(d) and 5.8(f) since as the radio range

increases, the number of neighbors within the radio range increases and the number of hops

decreases. Meanwhile, Dijkstra’s algorithm has an opposite trend to Prim’s case. As we can

see in Fig. 5.8(b), 5.8(d), and 5.8(f), as the number of sections increases, both adjusted radio

range and the number of neighbors decreases, but the number of hops increases.
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Figure 5.7: Cases of isolated node (a) failed cases in terms of initial radio range (b) failed cases
in terms of number of sections

We measure total amount of energy consumed in the whole network from queries that

are disseminated into the network until the data at the nodes are sent back to the base station
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Figure 5.8: Miscellaneous information about the simulation (a) adjusted radio range in terms
of initial radio range (b) adjusted radio range in terms of number of sections (c) number of
neighbors in terms of initial radio range (d) number of neighbors in terms of number of sections
(e) number of hops in terms of initial radio range (f) number of hops in terms of number of
sections
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in case of query 3 and query 4 2. In Fig. 5.9, SFD and SFP represent sectioned tree with flood-

ing (without MBR indexing) of Dijkstra’s and Prim’s algorithm respectively. SMD and SMP

represent sectioned tree with MBR indexing of Dijkstra’s and Prim’s algorithm, respectively.

NSF and NSM represent non-sectioned tree that has one big tree in the whole network without

having either Dijkstra’s or Prim’s algorithm. In this case, we use naive tree building algorithm.

NSF means non-sectioned tree with flooding, and NSM means non-sectioned tree with MBR

indexing. Since NSF uses flooding to disseminate the query, it has worst energy efficiency

regardless of initial radio range. Even though NSM uses MBR indexing, which prevents nodes

from flooding queries, since it does not consider minimum number of nodes to be related to a

path from a sink to the query area, its energy efficiency is worse than the various kinds of sec-

tioned tree, which are SFD, SFP, SMD, and SMP. NSF and NSM are not shown in Fig. 5.9(c)

and 5.9(d), since they do not have sections. SMP consumes the least energy in both cases,

query 3 and 4, regardless of the number of sections (Fig. 5.9(c) and 5.9(d)). SMD, which uses

MBR indexing is the second least when the number of sections is large.

Now, we consider the energy consumption including cost for initial tree construction.

The energy of building a sectioned tree is higher than that of building a non sectioned tree,

since sectioned tree needs extra flooding to exchange the information for construction as we

show the cost analysis in section 5.3.3. This is shown in Fig. 5.10 as a form of energy con-

sumption. A set of sectioned tree (SFD,SFP,SMD, and SMP) is worse than non sectioned tree

(NSF and NSM) in terms of energy consumption in query 3. This is because the amount of

construction for sectioned tree is bigger than that of query dissemination and data gathering.

But, as we give more queries and get time range result such as periodic data, then the amount

of total energy consumption of sectioned tree gets better than that of non-sectioned tree. This

is straightforward since non-sectioned tree consumes more energy for query dissemination and

data gathering, therefore as the number of queries and data gets bigger, the total energy con-

2Due to space limitation, we do not show the results for query 1 and 2
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Figure 5.9: Energy consumption for query dissemination and data gathering in dense case (a)
query 3 in terms of radio range (b) query 4 in terms of radio range (c) query 3 in terms of
number of sections (d) query 4 in terms of number of sections

sumption of non-sectioned tree passes that of sectioned tree. Generally, schemes using Prim’s

algorithm have better energy efficiency than the others, since Prim’s algorithm makes nodes

have short radio range, which affect saving energy by decreasing the distance factor, d, in

equation (5.4)

Finally, we have results for sparse case, which has 100 nodes in the network. As we

can see in Fig. 5.7, sparse network has more chances for nodes to be isolated. This makes

the reliability of data lower due to not having enough number of samples. But the behavior
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Figure 5.10: Energy consumption for query dissemination and data gathering plus initial tree
construction in dense case (a) query 3 in terms of radio range (b) query 4 in terms of radio
range (c) query 3 in terms of number of sections (d) query 4 in terms of number of sections

of energy consumption for both query dissemination and data gathering and total energy that

include initial tree construction is similar to that in the dense case. We show only query 4

case in Fig. 5.11. Fig. 5.11(a) and 5.11(b) represent the energy consumption only for query

dissemination and data gathering by different radio range and different number of sections, re-

spectively. Fig. 5.11(c) and 5.11(d) represent total energy consumption including tree building

cost by different radio range and different number of sections, respectively.



71

5.5 Summary

In this chapter, we suggested the sectioned tree, which has virtual sections in the network

and each section has a local tree that is built within the section. This sectioned tree is energy

efficient when spatial query is disseminated to an area and data is reported to a base station.

In the next chapter we extend our local tree algorithm so that it can have better energy

efficiency of data gathering than known algorithms, Dijkstra’s or Prim’s algorithms.
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Figure 5.11: Energy consumption for query dissemination and data gathering plus initial tree
construction in sparse case (a) energy for only query and data in terms of radio range (b) energy
for only query and data in terms of number of sections (c) added energy for tree building in
terms of radio range (d) added energy for tree building in terms of number of sections



CHAPTER 6

ENERGY-EFFICIENT DATA GATHERING

6.1 Introduction

In the previous chapter, we studied sectioned tree to disseminate queries in a particular

region energy efficiently. In wireless sensor networks, once spatial and temporal aggregate

queries that are interested in an aggregate value of a particular region are disseminated, all the

nodes in the area report the result to a base station periodically. Since nodes are generally ran-

domly deployed in the region, building an energy-efficient data gathering structure is important

to keep the nodes alive as long as possible. In this data gathering tree, the direction of data flow

is opposite to the one in query dissemination in the previous chapter.

We define the problem as Energy-efficient Data Gathering (EDG) tree problem and prove

the problem is NP-complete. In our energy model, we consider two-way communication in-

cluding transmission, reception, overhearing, and idle energy. We propose two heuristic algo-

rithms to solve the EDG tree problem and compare the energy efficiency with other techniques.

The remainder of this chapter is organized as follows. Section 6.2 describes network and

energy model that is used through this chapter. We define our EDG problem in section 6.3. We

propose heuristic algorithms to solve our EDG problem in section 6.4. Section 6.5 shows our

experimental results, which compare our heuristic algorithms with existing ones while varying

the parameters of the energy equations. Finally, we conclude our work and discuss future work

in section 6.6.

73
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6.2 Backgrounds

6.2.1 Network Model

We first define the terms that will be used throughout this paper in a graph theoretical

manner and then we describe the EDG-tree problem.

An initial undirected graph G = (V,E) is given. V is a set of nodes. V has exactly one

root node r and many general nodes i as its elements. E is a set of edges, whose element (i, j)

is formed when node j is within an initial radio range rmax of i, by symmetry, node i is also

within the initial radio range of j. An acyclic subgraph T = (V,E ′) of G is defined to restrict

the node radio ranges. An edge (i, j) ∈ E ′ is incident on nodes i and j. The radio range

of node i is ri (≤ rmax), which will be set to the same length as the longest edge of all the

incidents on node i. Ni is a set of neighboring nodes of node i, whose elements are within ri.

Fi(⊆ Ni) is a set of family nodes, whose members are either a parent or children of node i or

both. A cost (weight) function on an edge (i, j), cij is the sum of all the transmitting, receiving,

overhearing, and idle energy consumed by all the related nodes when a message is sent from

node i to node j.

6.2.2 Energy Model

In wireless sensor networks, communication energy is consumed when a message is sent

from one node to another. In general, energy is consumed when a node is sending, receiving,

and overhearing a packet or a node is idle. Our energy model is based on [38], which considers

energy consumption in overhearing messages. Overhearing energy is consumed when a node

receives a message that is not destined to it due to being within the radio range of a sender.

Energy consumption in one bit data transmission (Etx) is proportional to distance raised to the

power of 2 to 4 due to path loss depending on the medium.

Etx = Etxelec + εdα (6.1)
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where, Etxelec is the energy consumption by transmitter electronics, ε is an amplifier charac-

teristic constant, d is a distance between two communicating nodes when the radio range of

a sender is assumed to be the same as the distance, and α is the path loss whose value is 2

to 4. In this work, we assume that the value of α is 2. Energy consumption in reception

(Erx) is independent of the distance and it needs only Erxelec, which is consumed by receiver

electronics.

Erx = Erxelec (6.2)

For energy consumption in overhearing (Eoh), an overhearing node consumes the same amount

of energy as when a node receives one bit data.

Eoh = Erxelec (6.3)

We let Etxelec = Erxelec as assumed in [37] and use the symbol Eelec for both. We assume

that a collision avoidance MAC protocol such as IEEE 802.11 or S-MAC is used ∗. In these

protocols, in order to send a message from one sensor node to the other, RTS (ready to send),

CTS (clear to send), DATA (actual message to be transmitted), and ACK (acknowledgement)

packets are necessary to avoid DATA packet collision. Because of this reason, two communi-

cating nodes have to be symmetric in terms of reachability. That means that each one of the

two nodes should be able to send a message to the other node. We give an example when a

message is transmitted from node i to node j through a multi-hop path in figure 6.1. In figure

6.1(a), after node i sends a RTS packet to node j, since node i is out of bound of the radio range

of node j, a CTS packet that is in response to the RTS packet cannot reach node i. Therefore,

we have to assign radio range on nodes so that both nodes on each link can communicate with

each other. Hence, node i sets its radio range so that it can reach not only its children to send

∗Other protocols are also used in sensor networks, but our work focuses on this protocol
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Figure 6.1: Two types of radio range for RTS and CTS (a) asymmetric (b) symmetric

CTS and ACK packets, but also its parent to send RTS and DATA packets. Therefore, its radio

range must cover the length of the longest edge that connect node i to nodes in Fi .

To calculate the amount of energy that is associated with an edge, we need to add total

energy consumption related to completing message transmission from one node to the other.

In figure 6.1(b), the cost on an edge (i, j) is the sum of transmitting energy of RTS and DATA

and receiving energy of CTS and ACK at node i, transmitting energy of CTS and ACK and

receiving energy of RTS and DATA at node j, receiving energy of RTS at node a, receiving

energy of CTS at node b, and overhearing energy of RTS at node d. In this case, the overhearing

energy of CTS (from node j) at node d is excluded since node d goes to sleep mode after

receiving RTS from node i due to NAV (Network Allocation Vector) that indicates a period for

sleeping. Also, we need to consider idle energy of node c and e, which is not directly related

to communication between node i and j.

In order to consider energy for idle time, we assume our simplified duty cycle that looks

like figure 6.2. Since our energy model is based on energy consumption (Joule) per one bit

transmission, we convert idle time into bits, whose amount of data is assumed to be transferred

for the given idle time. We assume one cycle is corresponding to time for which 300 bytes

(2400 bits) data is transferred. Therefore, if we assume DATA is 200 bytes, RTS, CTS, and
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ACK are 10 bytes, and if we assume that converted bytes for one duty cycle (bc) is 300 bytes,

then converted bytes for idle time is 70 bytes (560 bits). We set bw as the sum of bytes for RTS,

CTS, DATA, and ACK. We set k as the ratio of idle energy to receive energy. Typically, this

ratio varies from 0.5 to 1 depending on wireless devices and experiments [87, 88, 89]. This is

summarized in table 6.1 with the actual energy consumption in each case.

RTS CTS DATAIdle Ack Idle

CTS DATA AckRTSIdle Idle

RTSIdle

NAV (sleep)

CTSIdle

NAV (sleep)

Idle

Sender

Receiver

RTS 
Overhearer

CTS 
Overhearer

Idler

bc

bw

Figure 6.2: Cycle diagram for different nodes with energy consumption

Generally, the total amount of energy associated with the edge (i, j), Eij is represented

as follows:
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Table 6.1: Energy consumption in each case. Initially Eidle for node b is k( bc−bw

2
+|RTS|)Eelec.

But it is changed for simplification.

node Etx (energy for transmission) Erx (energy for reception) Eidle (energy for idle)
i |RTS + DATA|(εri

2 + Eelec) |CTS + ACK|Eelec k(bc − bw)Eelec

j |CTS + ACK|(εrj
2 + Eelec) |RTS + DATA|Eelec k(bc − bw)Eelec

a, d N/A |RTS|Eelec k bc−bw
2 Eelec

b N/A |CTS|Eelec k bc−bw
2 Eelec

c,e N/A N/A kbcEelec

Eij = |RTS + DATA|(εri
2 + Eelec) + |CTS + ACK|(εrj

2 + Eelec)

+ |RTS + CTS + DATA + ACK|Eelec

+ n1|RTS|Eelec + n2|CTS|Eelec

+ 2k(bc − bw)Eelec + (n1 + n2)k(
bc − bw

2
)Eelec

+ (N − n1 − n2 − 2)kbcEelec (6.4)

where, ri and rj are the radio ranges of nodes i and j respectively, n1 is the number of neighbors

that overhear the RTS packet, n2 is the number of neighbors that overhear the CTS packet, N is

the total number of nodes in the sensor field, and |packet| is the size of the ’packet’ in bits. If we

assume that |RTS| = |CTS|, and we simplify the equation (6.4), we get following equation

Eij = αεri
2 + βεrj

2 + γnEelec + δEelec (6.5)

where, n is the number of nodes that receive RTS or CTS packet (n1 + n2), α is |RTS| +
|DATA|, β is |CTS| + |ACK|, γ is |RTS| − k/2(bc + bw), and δ is 2(|RTS| + |CTS| +
|DATA|+ |ACK|) + k(Nbc − 2bw).

Finally, we add up the energy consumption by all the edges in a tree T to get the energy

consumption by the whole network, E .
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E =
∑

(i,j)∈E′
Eij (6.6)

6.3 Problem Definition

Given sensor nodes with maximum radio range and a designated sink node, we would

like to gather data from all the sensor nodes and relay the data to the sink node using in-network

aggregation so that the sink node gets one result data. An example query in this case is to report

average temperature of all the sensors every 10 minutes for 1 month. When a temperature value

is passed up to its parent, the parent aggregates the data from all of its children by counting the

number of its children and by summing up their temperatures. Then, it adds its own temperature

and augments the count by one, and passes this information to its parent. By repeating this,

the sink node can finally know the total number of nodes in a tree and process the total sum

of the temperature values in the tree. It can then calculate the average temperature. This in-

network aggregate processing is proposed and well described in [28]. In-network processing

guarantees that all the sensor nodes can send a packet only once to its parent for one cycle of a

query. Therefore, the number of transmissions of actual data packets is the same as the number

of edges in the EDG-tree. Our problem is to find a tree which minimizes the sum of energy

cost on all its edges.

Although most researchers provide equations to estimate energy consumption at a node,

our model estimates energy consumption on a link between two nodes. The main reason is that

our heuristic algorithms for incrementally constructing an energy-efficient tree require edge-

based energy measurement. Our model will produce the same accuracy as a node-based model

once a tree structure is determined, but we use more accurate formulas to estimate energy con-

sumption during the process of constructing an energy-efficient tree structure. This will be

explained in more detail in section 6.4. Now, we provide a decision form of our EDG-tree

problem to prove that the problem is NP-complete.
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Energy-efficient Data Gathering Tree (EDG-tree)

Instance: A graph G = (V, E), a subgraph of G, a tree T = (V, E ′), whose |E ′| = |V |−1 and

having no cycle, where E ′ ⊂ E, an edge (i, j) ∈ E ′, which is incident on node i(∈ V ) and node

j(∈ V ), a radio range assignment on a node i, ri : V (T ) → R+, the number of overhearing

nodes from i and j, nij , a cost (weight) function on an edge (i, j), cij(ri, rj, nij) : E ′(T ) → R+,

which is defined in equation (6.5), and a positive constant B ∈ R+.

Question: Is there a cost assignment set, C = {cij|∀(i, j) ∈ E ′} such that a tree T has

cij(ri, rj, nij) for all (i, j) ∈ E ′, whose ri (or rj) is the same length as the longest one of all the

edges of node i (or j) and, which satisfies
∑

(i,j)∈E′
cij(ri, rj, nij) ≤ B?

T represents a general tree, which can be any subgraph of G, constrained to be a structure

that satisfies two conditions, i) |E ′| = |V | − 1, ii) having no cycle. Our goal is to find an

energy-efficient T that satisfies the additional constraints specified in the Question above.

To prove the NP-completeness of the EDG-tree problem, we show the problem is equiv-

alent to an existing NP-complete problem, Min-Power Symmetric Connectivity (MSC), which

is shown as NP-hard in [64]. We provide a proof by restriction [68] that shows that the EDG-

tree problem contains the MSC problem as a special case. That means, if we add restrictions

on the instances of the EDG-tree problem, then the restricted problem can be equivalent to the

MSC.

Min-power Symmetric Connectivity (MSC)

Instance: An edge weighted graph G = (V, E, c), undirected edge between nodes u and v,

uv, the cost c(uv) of an edge uv ∈ E corresponding to the (symmetric) power requirement

p(u, v) = p(v, u), maximum cost edge incident to u in a spanning tree T for a node u ∈ V ,

uuT , i.e., uuT ∈ T and c(uuT ) ≥ c(uv) for all uv ∈ T , a range assignment for V , r : V → R+,
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the cost of r, c(r) = c(uuT ) = |uuT |2, where |uuT | denotes the Euclidean distance between u

and uT , and a positive constant B ∈ R+.

Question: Given a connected edge-weighted graph G = (V, E, c), is there a spanning tree T

of G, which satisfies the power cost of the spanning tree T , p(T ) =
∑
u∈V

c(uuT ) ≤ B?

Proof. First of all, we show that the instances of the EDG problem is sufficient to include

those of the MSC problem. Common instances of both problems include a tree, an edge, and a

radio range assignment. Implicit power requirement in EDG includes that in MSC since EDG

assigns power to nodes so that it satisfies the condition, ri ≥ |ij| and rj ≥ |ij|. The number

of overhearing nodes is only included in instances of EDG but not in MSC, and is used in the

cost function. The differences between the problems are in the definition of the cost (weight)

functions on edges. The first difference between the two cost functions is that the cost function

has three arguments in EDG and one argument in MSC. The second difference is that the EDG

problem minimizes the sum of costs assigned on edges, while the MSC problem minimizes the

sum of costs assigned on nodes.

Based on these instances, now we show that the EDG problem contains the MSC prob-

lem as a special case. In MSC, the purpose is to find a tree that minimizes the sum of c(uuT ) of

all the nodes in the network, which means that the cost is assigned on the nodes. In this case,

the cost of one node i is |iiT |2, i.e., |ai|2 as shown in figure 6.3(a). Meanwhile, in EDG, the

purpose is to find a tree that minimizes the sum of c(ri, rj, nij) of all the edges in the network,

which means energy is consumed by all the edges. This sum of the cost of edges can be repre-

sented as the energy consumed by nodes. When we consider the case where node i sends data

to node j, the cost on the edge (i, j) is αεri
2 +βεrj

2 +γnEelec + δEelec based on equation (6.5).

Since this cost is consumed by an edge, we need to separate it into two nodes so that cost can

be assigned on a node. The cost on node i is the sum of energy that is necessary for sending

RTS and DATA packets to node j, (|RTS| + |DATA|)(Eelec + εri
2), for receiving CTS and



82

ACK packets from node j, (|CTS|+ |ACK|)Eelec, and for idle time, k(bc− bw)Eelec. Similarly

, when node i receives data from another node, say a, the cost on node i is the sum of energy

that is necessary for receiving RTS and DATA packets from node a, (|RTS|+ |DATA|)Eelec,

for sending CTS and ACK packets to node a, (|CTS|+ |ACK|)(Eelec+εri
2), and for idle time,

k(bc − bw)Eelec. Also, node i can overhear neighboring nodes communicate, such as data from

j to d. The cost for overhearing is (m2 + m3)(|RTS|+ k bc−bw

2
)Eelec, where m2 and m3 are the

number of RTS and CTS sending nodes that node i overhears. Finally, m4kbcEelec is added to

consider a situation that node i does not do anything but idle listening, where m4 is the number

that node i works as just a idle listener. This is shown in figure 6.3(b), where ri is represented

as |ai|, which is the actual value for ri.

Generally, a node i sends data just once to its parent node in the tree and receives data

multiple times depending on the number of its child nodes. In the equation 6.7, we set m1 as

the number of children that node i has. Therefore, the cost for node i can be rewritten as

c(i) = (|RTS + DATA|)(Eelec + εri
2)

+ (|CTS + ACK|)Eelec + k(bc − bw)Eelec

+ m1{(|CTS + ACK|)(Eelec + εri
2)

+ (|RTS + DATA|)Eelec + k(bc − bw)Eelec}

+ (m2 + m3){|RTS|Eelec + k/2(bc − bw)Eelec}

+ m4kbcEelec (6.7)

If we still assume that |RTS| = |CTS| and rewrite equation (6.7) in terms of ri
2,

c(i) = αri
2 + β (6.8)

where, α = ε(|RTS + DATA + CTS + ACK|), and β = Eelec{(m1 + 1)|RTS + CTS +

DATA+ACK|+(m1 +1/2(m2 +m3)+1)k(bc− bw)+ (m2 +(k +1)m3)|RTS|+m4kbc}.
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This means that the cost equation (6.8) is a general form of cost function of MSC, when

α is 1 and β is 0, which reduces the cost c(i) of the EDG to exactly the same as c(i) of MSC.

So far, we have shown that the cost function of EDG on an edge that has three arguments can

be rewritten as that of MSC on a node. Therefore, we show that the MSC problem is a special

case of the EDG problem. This concludes the proof.i cb ja dc(i)=|ai|2c(j)=|jd|2
(a)

i cb ja dc(i,j)=cij(ri,rj,nij)               =cij(|ai|,|jd|,nij)c(j)=α2|jd|2+β2c(i)=α1|ai|2+β1
(b)

Figure 6.3: Equivalent cost separation from edges to nodes. Dotted line represents the longest
edge of node i and j respectively. (a) Cost of MSC (b) Cost of EDG

6.4 Heuristic Algorithms

In this section, we propose two heuristic algorithms that try to minimize the sum of edge

costs. One of the two algorithms that we propose backtracks one step (BT1) and the other

backtracks two steps (BT2). BT1 and BT2 use backtracking when the algorithms span the

nodes step by step to create a tree as an augmentation to Prim’s minimum spanning tree (MST)

algorithm. The backtracking implies that the algorithm can delete an edge that was already

chosen for a local optimal solution at a previous step and replace it with a new edge since the

new edge can minimize the total cost of a tree at the current step. These are later compared to

existing algorithms that were proposed in [41] in section 6.5.
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For cost, we choose an edge based cost instead of node based cost. Once the edge (i, j)

is determined as part of a spanning tree (see figure 6.1(b)), we can easily calculate energy

consumption on the edge by nodes i and j, when data is transferred from node i to node j. This

includes energy for transmitting RTS and DATA and receiving CTS and ACK at node i and for

transmitting CTS and ACK and receiving RTS and DATA at node j. The overhearing energy

consumed by neighbors of either node i or j can be easily added to that edge (see table 6.1).

This is possible because nodes i and j will know their radio ranges during the spanning tree

construction. However, if we use node based cost, we have to consider all kinds of energy that

one node consumes. But nodes that are not in the spanning tree do not know yet their radio

range since their family nodes (Fi) are not determined, and thus overhearing energy consumed

by some nodes in the spanning tree cannot be calculated exactly. That means that a node in the

spanning tree cannot determine how many nodes that are not yet included in the spanning tree

will reach it. This makes the edge based cost more appropriate than the node based one, since

it does not need to know as much information about neighboring nodes. The cost function has

three arguments as defined in equation (6.5), which are radio range of a sender (ri), radio range

of a receiver (rj), and the number of neighboring nodes that overhear any RTS or CTS packet

(N ).

6.4.1 Backtracking-1 Algorithm

We now propose a heuristic algorithms for the EDG problem since the problem is proven

to be NP-complete. The BT1 (BackTracking-1) is based on Prim’s MST in that it creates a

spanning tree by adding incrementally a node whose edge cost to the other nodes in a spanning

tree is minimized. The backtracking feature is added to Prim’s algorithm to support and correct

cases that the basic MST algorithm does not consider. This is necessary because our cost model

refers to both sender’s and receiver’s radio ranges to use an edge based cost. Due to this reason,

even though a node is included in a current spanning tree, once the node’s radio range needs to
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be increased † to span another node, we have to recalculate the cost of all the edges attached to

this node. This is because when the radio range is increased, one of the arguments in the cost

function is changed, which affects the cost. The BT1 considers this situation and gives a chance

to backtrack to its previous step to find out if there is any edge that is more energy-efficient.

If there is, it changes the edges so that they can be the current optimal solution while they

are creating the spanning tree. Otherwise, it keeps the current spanning tree. This situation is

illustrated in figure 6.4.

Given a partial tree T = (V, E ′) at step n-1 (figure 6.4(a)), the edge set of the current

spanning tree, E ′ is {(a, b), (b, c), (b, d)} (edges in a current spanning tree are represented by

thick lines). The numbers on the edges represent the distance between two nodes and numbers

in parentheses are the cost on the edges. Assume that node a is a root. Now, node d spans

node e, because the edge (d, e) is the least cost among the candidate edges, (d, g), (d, e), (b, e),

and (c, e). Next, the edge (e, f) is selected and added to E ′ at step n-1 (figure 6.4(b)). In this

case, since node f is set to be a child of e, the radio range of node e is increased from 47 to 71.

That requires that the cost of edge (d, e) should be recalculated because the edge cost considers

radio range of both nodes d and e. Even though the cost for (d, e) is increased to 280, it still

remains less than any other candidate edges to be included in set E ′, (b, e), (c, e), (d, g) and

(e, g). At the next step (figure 6.4(c)), node e tries to span g since it is less than the cost of

(d, g). When node g is included in the set E ′, the radio range of node e is again increased from

71 to 90, thus changing the cost on (d, e) again (280 to 340). The total cost of the spanning tree

can be decreased when the edge (b, e) is chosen instead of (d, e). The total cost of the spanning

tree in the figure 6.4(c) is 1809, while that in the figure 6.4(d) is 1808. BT1 chooses the tree

in figure 6.4(d) since its cost is less than that in figure 6.4(c). In order to consider this kind of

case, we propose an algorithm that can backtrack one step and rebuild part of a tree.

†But it is still less than the node’s maximum radio range
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Figure 6.5 shows the pseudocode for the BT1 algorithm. Backtracking begins at line 16

when the radio range of a node in a spanning tree is increased because of a newly added node.

For backtracking one step, it is necessary to have at most E iterations for the outer loop. When

a cycle is created, we have to find a case that consumes the least energy by deleting one edge

from the cycle. If we let EC be the set of edges forming a cycle and let VC be the set of nodes

on the cycle, it takes |ECVC | time to test all the cases. Therefore, the backtracking feature cost

is O(V E2) in the worst case, since |EC | ≤ |E| and |VC | ≤ |V |.

6.4.2 Backtracking-2 Algorithm

Next, we propose a second algorithm BT2 (BackTracking-2), which is a variation of

BT1. BT2 backtracks up to two previous steps to try to find better solutions. Let (umin, vmin)

be an edge whose cost is minimum among all other candidate edges. Node umin is in a current

spanning tree and node vmin is not. Let node v1 be either umin or vmin. Let u2 be one of nodes

that is in the current spanning tree and is within a maximum radio range of v1, but is different

from umin. When v1 looks back at u2, BT2 connects them as in BT1. In BT2, if the radio range

of u2 is also increased due to the newly created edge, (v1, u2), then the node u2 backtracks

again and tries to find u3, which is a node in the spanning tree and within maximum radio

range of u2 and so it can be connected to u2. BT2 tries to find the minimum cost spanning tree

by comparing all the possible sub-trees created by combination of all the (v1, u2) and (u2, u3)

and deletion of appropriate edges to avoid cycles. BT2 always maintains the graph so that it

can meet the requirement of being a spanning tree, and the algorithm calculates the total cost

of the spanning tree. In other words, while the edges (v1, u2) and (u2, u3) are being created,

BT2 deletes edges from a cycle one by one so that it can find the minimum cost spanning tree.

Basically, since BT2 repeats backtracking one more step, the running time for backtracking-2

is the square of that of BT1. In the worst case, the backtracking-2 feature takes O(V 2E4),

which is still a polynomial time.
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6.5 Experimental Results

In this section, we show various results of our simulation. As we mentioned in the

section 6.2.2, there are many parameters that can affect the amount of energy consumed by all

the nodes in the network. We simulated Prim’s MST algorithm, Energy Conserving Routing

Tree (ECRT) and Local Optimization (LOCAL-OPT) as proposed in [41], in order to compare

them with BT1 and BT2. Also, we implemented heuristic algorithms such as genetic algorithm

(GA) and simulated annealing (SA) as described in sections 3.2 and 3.3 for the purpose of

comparison. The parameters that we varied are the number of nodes in a network, size of data

packet, the amplifier constant, the electronic energy, and the ratio between idle energy and

receiving energy. Our simulation was done in JAVA and executed on an Intel Pentium 4 (1.6

GHz) computer. In each experiment, we gave 10 different seeds and got an average total energy

and running time.

Prim’s MST creates a spanning tree by incrementally adding a node whose edge cost is

minimum to the current tree. In our simulation, Euclidean distance between two nodes is used

as the cost of Prim’s MST. Since MST is proven to be 2-approximation algorithm for the MSC

problem in [40], we basically compare other algorithms with MST. ECRT and LOCAL-OPT

([41]) are proposed to maximize the lifetime of the resulting tree. In our simulation, these are

slightly modified to minimize energy consumption, which is the goal of this paper. At every

step, ECRT determines the energy consumption of the tree constructed so far, and adds an edge

that will minimize the energy consumed by the resulting new tree instead of considering the

lifetime. LOCAL-OPT switches the parent of the current node when the new tree with the new

parent consumes less energy than before. This also considers minimizing energy consumption

instead of maximizing the lifetime.
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6.5.1 Overview of simulation

We compared our two algorithms, BT1 and BT2, with three algorithms: MST, ECRT,

LOCAL-OPT, GA, and SA. We varied the number of nodes from 20 to 100 when data size is

10 bytes and 200 bytes, electronic energy (Eelec) is 50.0 nJ/bit, amplifier constant (ε) is 0.01

nJ/bit/m2, and the ratio between idle energy and receiving energy is 0.5. Figure 6.6 shows

the energy consumption by all the nodes in the network when the nodes send their data once

to their parents in response to a data gathering query. ECRT can be regarded as similar to BT1

or BT2 without a backtracking feature. As we can see in figure 6.6, LOCAL-OPT consumes

more energy than the other six algorithms regardless of the number of nodes. In addition to it,

since the total energy consumed by these six algorithms (Prim’s MST, ECRT, BT1, BT2, GA,

and SA) are very close to each other, we compare only these six algorithms to take a closer

look at their results.

6.5.2 Percentage Gain

Percentage gains are measured by comparing the energy consumption of each algorithm

with Prim’s MST algorithm using the equation: (MST − cost)/MST × 100, where cost is

the energy consumption by BT1, BT2, ECRT, GA, or SA. That gives the percentage gains

compared to Prim’s MST. In the figure 6.7(a), when the data size is 10 bytes, BT2 outperforms

BT1 in all the cases of different numbers of nodes, and BT1 outperforms ECRT in most of

the cases. Also, BT2 outperforms all the other algorithms except the number of nodes are 20

and 40. This is because the number of nodes are too small to reflect the performance of BT2

algorithm when the number of nodes are 20. Also, GA and SA are not optimized to solve this

EDG problem, they show irregular percentage gain depending on different number of nodes.

This makes GA outperform the other algorithms when the number of nodes are 40.

To examine the effect of varying data size further, we evaluated percentage gain for

different data sizes, from 10 to 200 bytes. As we can see in figure 6.7(b), the percentage gain
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of all five algorithms are decreasing as the data size increases except GA. This means that the

more idle time and the less energy for data communication, the more percentage gain for all

the algorithms. BT1 is almost same as ECRT, but outperforms GA or SA in most cases. BT2

outperforms all the other algorithms regardless of data size. This test is done when the number

of nodes is 80.

Next, we gave various values of Eelec, electronic energy, which can vary based on the

type of sensor (see figure figure 6.8(a)). Initially, we used 50 nJ/bit from [37], but we also

gave different values such as 0.5, 1, 5, 10, 20, and 30 nJ/bit. This is also done when the

number of nodes is 80. BT2 outperforms all the other algorithms regardless of Eelec. BT1 is

also better than ECRT in all the different electronic energy values. But, behavior of SA, which

is not optimized for solving EDG problem, BT1 is not better than SA when electronic energy

is 0.5, 1, and 5 nJ/bit.

We also tested percentage gain with respect to different amplifier constant (ε) from 0.01

to 0.1 nJ/bit/m2 (see figure 6.8(b)). [37] used 0.1 as the value of ε. BT2 algorithm outper-

forms all the other algorithms when the value is low (0.01-0.05). But as the amplifier constant

value increases, percentage gain of BT2 decreases and GA or SA have better percentage gain

than BT2 when the value is high (0.06-1.0).

Finally, we tested the effect of idle energy (see figure 6.9). In order to cover possible

ratio of idle energy to receiving energy, we consider various ratios that includes existing exper-

imental values [87, 88, 89]. Typically, idle energy is less than receiving energy, which can be

represented as a ratio less than 1.0. Therefore in most reasonable ratios, which is less than 1.0,

BT2 algorithm outperforms all the other algorithms. Also, BT1 outperforms the other three

algorithms. We showed the ratio that is bigger than 1.0 to give information when idle energy

passes receiving energy.
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6.5.3 Running time

Even though we propose a heuristic algorithm, it is necessary to measure actual running

time for average case analysis. Also we need to consider the trade-off between cost and running

time. We have seen so far that BT2 creates a tree that uses the least energy cost with BT1 and

MST in all cases of the different parameters, number of nodes, data size, electronic energy, and

amplifier constant. BT2 saves more than BT1, and BT1 saves more than MST. The running

time for these algorithms is a reverse order of cost with respect to the number of nodes (figure

6.10). This shows the trade-off between cost and running time in our simulation, since the

most cost saving algorithm, BT2, takes the most time among the algorithms. However, since

the algorithm is only run once, and data gathering will be carried out many times, the savings

in energy cost is more important than the running time of the algorithms that create the data

gathering tree.

6.6 Summary

In this chapter, we defined the EDG-tree problem as a minimum cost spanning tree prob-

lem with edge based cost and we proved that the problem is NP-complete. Unlike existing

data gathering tree, we considered two-way data communication including overhearing and

idle energy as we calculate costs on an edge in order to perform a more realistic simulation.

Many parameters that affect real energy consumption were also considered to have more pre-

cise simulation results. As heuristic algorithms for the EDG problem, we proposed BT1 and

BT2 algorithms that backtrack one or two steps so that they can find better local solution while

they are creating a spanning tree. BT1 and BT2 outperform existing algorithms in terms of

cost saving.
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Figure 6.4: Backtracking model (thick line: edges in a spanning tree, thin line: the least cost
edge among the candidate edges, dotted line: candidate edges) (a) step n-1 (i) (b) step n-1 (ii)
(c) step n (i) (d) step n (ii)
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Input: G=(V,E)
Output: T=(VT,ET)

  1: VT� {r}, E T� Ø, step � 0 // r; root node
  2:while |VT| |V| do
  3:     step � step + 1
  4:     wmin� infinity, wuv� 0
  5:     for all u  VT do
  6:         ru�max {dist(u,uT)} for all (u,uT) ET , where uT VT

  7:         for all v adj(u) in V, but not in VT do
  8:             rv� dist(u,v)
  9:             ru�max {ru,rv}
10:             wuv� weight (rv,ru,#overhear)
11: if wuv < wmin then // find u and v whose wuv is minimum
12:                (umin,vmin) � (u,v)
13:            end if
14: end for
15: end for
16: if dist(umin,vmin) > ru then // backtracking begins
17:         v1� umin or vmin , ES� ET  {(umin,vmin)}
18: for all (v1,u2) E and (v1,u2) T , where u2 VT do
19:        ES� ES {(v 1,u2)}, V S�  VT  {v}
20:             find a set of edges and nodes, EC and VC,which make a cycle including (v1,u2)
21: for all (i,j)  EC do
22:            EC� EC \ {(i,j)}, E S� ES \ {(i,j)}
23: for all n VC do // radio range adjustment
24:                     rn� max { dist(n,nT) } for all (n,nT) ES , where nT VT

25:                calculate cost for ES

26:                     Emin� ES, whose cost is minimum
27: end for
28: end for
29:         end for
30:     end if
31:     VT�VT {v min}, ET� Emin

32: end while
33: return T(VT,ET)

Algorithm 2: Backtracking-1 (BT1)

Figure 6.5: The pseudocode of BT1 algorithm
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Figure 6.6: Overview of energy consumption (a) energy (data size = 10 bytes) (b) energy (data
size = 200 bytes)
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Figure 6.7: Percentage gain for various number of nodes and data size (a) percentage gain in
terms of number of nodes (b) percentage gain in terms of data size
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Figure 6.8: Percentage gain for various electronic energy and amplifier constant (a) percentage
gain in terms of electronic energy (b) percentage gain in terms of amplifier constant
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

Throughout this thesis, first we studied characteristics of queries in wireless sensor net-

works and various network schemes that include storage schemes and routing protocols. We

studied what kind of queries are suitable for what kind of network schemes when we con-

sider the number of transmissions, energy consumption, end-to-end delay, life span, and local

storage capacity. Second, we proposed sectioned tree that saves energy when we disseminate

spatial query to an area of interest. The proposed scheme, sectioned tree, also saves energy

when the network gathers data and report them to a base station. It uses existing method for

local tree construction, which is not guaranteed to save energy. Third, because of this reason,

we proposed heuristic algorithms that backtrack one or two steps to build an energy-efficient

local tree to gather data from the networks. In this case, we considered two-way communi-

cation, overhearing energy, and idle energy, so that the algorithm and simulation can reflect

more precise real world situation. For the second and third work, we focused on the spatial and

temporal query that report sensed data periodically for user’s area of interest.

7.1 Summary of Contributions

• Performance evaluation for queries and network schemes. We have performance eval-

uation that consider query characteristics and different network scheme that considers

storage scheme and routing protocols. Characteristics of queries and network schemes

in wireless sensor networks are studied and evaluated to determine what kind of queries

are suitable for what kind of network schemes in terms of different factors that should be

considered in designing an application of wireless sensor networks.
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• Energy-efficient sectioned tree for query dissemination. On top of MBR spatial index-

ing, we propose sectioned tree that divides network area into several grid sections within

which local trees are built. This saves energy more than MBR indexing only when we

disseminate queries to areas of interest. This sectioned tree uses only one path to dis-

seminate queries to one section, which saves more energy than when we use only MBR

indexing that may use multiple paths.

• Energy-efficient data gathering tree. We define energy-efficient data gathering tree prob-

lem that considers two-way communication that prevents packet collision, overhearing

energy consumed by idle nodes, and idle energy consumption by nodes. We prove the

EDG problem is NP-complete and propose heuristic algorithms that backtrack one (BT1)

or two (BT2) steps back when it creates a tree based on MST. This saves energy when

data are gathered and reported to a base station.

7.2 Future Research Direction

We considered homogeneous sensor nodes that perform same tasks throughout our the-

sis. But, since the real world wants to have many different situations, we need to consider

heterogenous sensor nodes that collect different types of data, that have different hardware

specification, and that have different architecture, for example. Also we need to handle homo-

geneous sensor data to eventually provide appropriate information from sensor field to users.

Therefore future research can include architectures that consider heterogeneous sensor nodes

and data management from sensed data.
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