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ABSTRACT

IMAGE MIRRORING, ROTATION AND INTERPOLATION IN THE WAVELET

DOMAIN

Theju Isabelle Jacob, M.S.

The University of Texas at Arlington, 2008

Supervising Professor: K. R. RAO

JPEG2000, the international standard for still image compression, uses the

wavelet transform. The filters used in JPEG2000 for transformation are the 9/7

Daubechies filters and the 5/3 Le Gall filters. At present, to achieve image mirroring

or rotation for images, one has to convert them back to spatial domain and proceed.

This thesis presents methods by which it can be implemented in the wavelet domain,

without extra computational complexity. To do so, one manipulates the transform

domain coefficients so that the condition of perfect reconstruction still holds true.

The thesis also discusses a method to achieve image interpolation, which would

result in a higher resolution image from a lower resolution one. One manipulates the

wavelet domain coefficients of the image for the same. For comparison purposes, one

takes the low frequency component obtained after the wavelet transform of the image,

which acts as the low resolution image, try to predict the rest of the components, and

then reconstruct the original image. The reconstructed image is then compared with

the original image.
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CHAPTER 1

INTRODUCTION

Image mirroring and rotation in the transform domain allows one to obtain

mirrored and rotated images from the transform domain components of the original

image. It allows one to do away with the necessity of having to convert the transform

domain components of the original image back to time domain first. Initially, it is

shown how this can be accomplished for the wavelet transform which is in use in the

JPEG2000 image codec. Later on, a new method to obtain a higher resolution image

from a lower resolution one, again manipulating the wavelet domain coefficients, is

discussed. This chapter discusses the wavelet transform and its relation to filterbanks.

Chapter 2 discusses the JPEG2000 image codec. Chapter 3 discusses image mirroring

and rotation, while chapter 4 discusses image interpolation. Conclusion is given in

chapter 5.

1.1 Wavelet Transform

Wavelets emerged as a means of analysing nonstationary signals. The wavelet

transform, in its essence, offers a multiscale view of the signal. A single function

known as the wavelet exists, whose contracted version can be used for fine temporal

analysis, and dilated version that can be used for fine frequency analysis.

The basis functions in the Fourier transform are complex exponentials. In the

case of wavelet transform, the basis functions are obtained by translation and dilation

of a single prototype wavelet given by[6]:
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ψj,k(t) = 2j/2ψ(2jt− k) (1.1)

where j, k ε Z. This parameterization of the time or space location by k and the

frequency or scale by j turns out to be very effective.

Thus, a function f(t) belonging to L2(R) can be represented by the series:

f(t) =
∑
j,k

aj,k2
j/2ψ(2jt− k) (1.2)

which can be rewritten using (1.1) as:

f(t) =
∑
j,k

aj,kψj,k(t) (1.3)

The two-dimensional set of coefficients aj,k is called the discrete wavelet transform

(DWT) of f(t). A more detailed form indicating how the aj,k’s are evaluated can be

written using inner products as:

f(t) =
∑
j,k

< ψj,k(t), f(t) > ψj,k(t) (1.4)

1.2 Concept of Multiresolution

It can be proved that applying the discrete wavelet transform to a signal is

equivalent to applying a discrete set of filters. Consider the case of multiresolution

as discussed next. First, a scaling function is defined and then the wavelet is defined



3

in terms of the same. One define a set of scaling functions in terms of the integer

translates of the basic scaling function by:

φk(t) = φ(t− k) kεZ φεL2 (1.5)

Let the subspace of L2(R) spanned by the above functions be V0, for all integers

k from negative infinity to positive infinity. The size of the subspace spanned by the

scaling functions can be changed by changing the time scale of the scaling functions.

A two-dimensional family of functions is generated from the basic scaling function by

scaling and translation by:

φj,k(t) = 2j/2φ(2jt− k) (1.6)

Let Vj be the space of functions spanned by the above. Then, the set of functions

f(t) which belong to Vj can be represented as a linear combination of φj,k(t). For j >

0, the span is larger since φj,k(t) is narrower and is shifted in smaller steps, and hence

represents finer detail. For j < 0, φj,k(t) is wider and is shifted in larger steps and

so, represent coarser information. The space they span, is smaller. It can be thought

of it as follows:

Vj ⊂ Vj−1 jεZ (1.7)

One could expand the above to represent a nesting of spanned spaces as:

...V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2... ⊂ L2 (1.8)
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In short, the space that contains high resolution signals will contain low resolution

ones as well. One could hence say that the spaces have to satisfy a natural scaling

condition:

f(t) ε Vj ⇔ f(2t) ε Vj+1 (1.9)

The nesting of spaces as is shown in (1.8) implies that if φ(t) is in V0, then it is

also in V1, which is in turn spanned by φ(2t). Hence, one could express φ(t) in terms

of φ(2t) as:

φ(t) =
∑
n

h0(n)
√

2φ(2t− n), nεZ (1.10)

Now, consider the functions which span the difference between spaces scanned

by the various scales of the scaling function. They are the wavelet functions, denoted

by ψj,k(t). The wavelets would be orthogonal to the scaling functions, and so, Wj,

the space spanned by wavelets would be the orthogonal complement of Vj in Vj+1.

They are denoted as follows:

< φj,k(t), ψj,l(t) >= 0 (1.11)

Here, j,k,l all belong to Z. Again,

Vj+1 = Vj
⊕

Wj (1.12)

...W−2

⊕
W−1

⊕
W0

⊕
W1

⊕
W2... = L2 (1.13)
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One could also write it as:

W−∞
⊕

.....
⊕

W−1 = V0 (1.14)

As the wavelets reside in the space spanned by the next narrower scaling func-

tion Wj ⊂ Vj+1, they can be represented by a weighted sum of shifted scaling functions

as is shown in:

 
 

  H0 

  H0  (↓2) 

  H1  (↓2) 

  (↓2) 

 (↓2) 

LL 

LH 

  H0  (↓2) 

  H1 

 (↓2) 

  H1  (↓2)  (↓2) 

HL 

HH 

    Input 

Figure 1.1. Representation of a 2 channel filter bank for analysis of images. H0 and
H1 represent low pass and high pass filters respectively.(↓2) represents downsampling
by 2.

ψ(t) =
∑
n

h1(n)
√

2φ(2t− n) nεZ (1.15)

The coefficients of expansion in (1.10) and (1.15) are the ones which become the filter

coefficients in our filter bank.
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1.3 Wavelets and Filter Banks

To obtain wavelet domain coefficients of an image, one applies a set of filters to

rows and columns of the image, followed by down sampling. To reconstruct the image

from the coefficients, one up samples them, and then subject them to a different set of

filters which hold a certain relation with the filters on the transmitter side. Analysis

can be represented as shown in Fig.1.1.

 

 

  F0  (↑2)  (↑2) 

  F1  (↑2)  (↑2) 

   F1 

  F0  (↑2)  (↑2) 

  F1  (↑2)  (↑2) 

   F0 

LL 

LH 

HL 

HH 

Output 

 

Figure 1.2. Synthesis Filter Bank. F0 and F1 are low pass and high pass filters
respectively.(↑2) represents upsampling by 2.

In the top branch of Fig.1.1, the rows are filtered by H0, followed by down

sampling of rows by 2. Filtering of columns by H0 and down sampling of columns

by 2 would lead to a LL component. Filtering of columns by H1 followed by down

sampling of columns by 2 would lead to a LH component. Similarly, filtering of rows

by H1, down sampling by 2, followed by filtering by H0 and further down sampling by

2 would produce HL. Filtering of both rows and columns by H1 with down sampling

at appropriate places would lead to HH.
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The synthesis filter bank is shown in Fig.1.2. Each of the LL, LH, HL and HH

components are given as input to the filter bank. Each of them are up sampled along

columns by 2. LL is filtered along the columns by F0, up sampled along rows, and

then filtered along rows by F0. LH is filtered along columns by F1, up sampled along

rows, and filtered along rows by F0. HL is filtered along columns by F0, up sampled

along rows, and filtered along rows by F1, while HH is filtered along columns by F1,

up sampled along rows, and filtered along rows again by F1.



CHAPTER 2

JPEG 2000 STILL IMAGE COMPRESSION STANDARD

The growth in demand for a better image compression standard gave rise to

the JPEG2000 still image compression standard, developed jointly by the Inter-

national Organization for Standardization (ISO), International Telecommunication

Union (ITU) and the International Electrotechnical Commission (IEC). In JPEG2000,

the image coding system is not only optimized for efficiency, but also for scalability

and interoperability in network and mobile environments. Internet and multimedia

applications have become widespread today, and JPEG2000 provides a powerful tool

for designers and users equally of networked image applications.

Some of the finer points of the standard, as discussed in [2], are as follows:

• Superior low bit-rate performance

• Continuous tone and bi-level compression

• Lossless and lossy compression

• Progressive transmission by pixel accuracy and resolution

• Region-of-interest (ROI) coding

• Open architecture

• Robustness to bit errors

• Protective image security

The JPEG2000 encoder and decoder are as shown in Fig.2.1. The image data

is first subjected to a discrete transform, followed by quantization and entropy cod-

ing. At the decoder side, the operations follow the reverse order as those at the

8
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 Figure 2.1. General block diagram of JPEG2000 (a)encoder and (b)decoder.[2].

encoder side. Entropy decoding is followed by dequantization, followed by an inverse

transform.

One could briefly outline the steps involved in the entire process as follows [2]:

• The source image is first decomposed into components.

• The components are further decomposed into rectangular tiles. The tile component

thus forms the basic component of the reconstructed image.

•Wavelet transform is applied to each tile, thereby decomposing the tile into different

resolution levels.

• The resolution levels consist of subbands of coefficients that describe the frequency

characteristics of local areas of the tile components.

• The subbands of coefficients are quantized and collected into arrays of code blocks.

• The bit planes of coefficients in a code block are entropy coded.

• The encoding can be done to allow certain regions of interest to be coded at a higher

quality than the background.

• Markers are added to the bit stream for the purpose of error resilience.

• The code stream has a main header at the beginning that describes the original

image and various decomposition and coding styles which are used to reconstruct the



10

 

Figure 2.2. Tiling, DC-level shifting, color transformation and DWT of each image
component.[2].

image as desired.

One could, on including dc-level shifting (which is subtraction of a constant

value from all image pixels) and color transformation for color images (which is

transformation between various color subspaces) depict the same process as shown in

Fig.2.2.

2.1 JPEG2000 Filters

When wavelet transform is applied to the image blocks, they are decomposed

into a number of subbands. These subbands contain coefficients that describe the

horizontal and vertical spatial frequency characteristics of the original image block.

For the forward transform, the 1-D set of samples is decomposed into low pass and

high pass samples. While the low pass samples present the low resolution version of

the original image component, the high pass samples present the residual version of

the original image component, which is required for its perfect reconstruction.
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Table 2.1. Daubechies 9/7 Analysis and Synthesis Filter Coefficients[2]

Analysis Filter Coefficients
i Low-Pass Filter High-Pass Filter
0 0.6029490182363579 1.115087052456994
±1 0.2668641184428723 -0.5912717631142470
±2 -0.07822326652898785 -0.05754352622849957
±3 -0.01686411844287495 0.09127176311424948
±4 0.02674875741080976

Synthesis Filter Coefficients
i Low-Pass Filter High-Pass Filter
0 1.115087052456994 0.6029490182363579
±1 0.5912717631142470 -0.2668641184428723
±2 -0.05754352622849957 -0.07822326652898785
±3 -0.09127176311424948 0.01686411844287495
±4 0.02674875741080976

The transform can be irreversible or reversible. The default irreversible trans-

form is the Daubechies 9/7 filter, whose analysis and synthesis coefficients are given

in Table 2.1. The default reversible transform is given by means of Le Gall 5/3 fil-

ters, the coefficients of which are given in the Table 2.2. As one could see, they are

symmetric filters.

The scaling functions for each of the filters discussed are shown in Fig.2.3.

Two filtering modes are supported in the JPEG2000 standard: convolution

based and lifting based. The signal should be extended periodically for either of the

modes to be implemented. The extension takes care of the correct filtering operation

at the boundaries of the image. The number of samples by which the boundary is to

be extended is actually dependent on the filter length.

The filtering operation is performed by buffering the entire image data and then

applying the filters along the horizontal and vertical directions. After transformation,

all of the coefficients are quantized. The quantization operation is lossy unless the
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 Figure 2.3. Scaling function shown for Daubechies 9/7 and Le Gall 5/3 filters.

quantization step is 1 and the coefficients are integers, as is the case in the reversible

Le Gall 5/3 filters. Entropy coding, which follows the quantization step, is achieved

by means of an arithmetic coding system. The following chapter discusses image

mirroring and rotation in the wavelet domain.
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Table 2.2. Le Gall 5/3 Analysis and Synthesis Filter Coefficients[2]

Analysis Filter Coefficients
i Low-Pass Filter High-Pass Filter
0 6/8 1
±1 2/8 -1/2
±2 -1/8

Synthesis Filter Coefficients
i Low-Pass Filter High-Pass Filter
0 1 6/8
±1 1/2 -2/8
±2 -1/8



CHAPTER 3

IMAGE MIRRORING AND ROTATION

Image mirroring and rotation has been studied and implemented before in the

literature [3,4,12,14]. The cases found in the literature deal with transforms such

as the cosine transform and sine transform. This chapter deals with the wavelet

transform as applied to the JPEG 2000 image codec[2].

This chapter begins with a discussion of the property of perfect reconstruction,

followed by the key idea behind achieving image mirroring and rotation in the wavelet

domain.

3.1 Property of Perfect Reconstruction

One says that a filter bank obeys the property of perfect reconstruction, when

it recovers the input signal exactly. This section discusses the conditions for perfect

reconstruction. Recall from chapter 1 that there were filters H0 and H1 on the analysis

side (Fig.1.1), and F0 and F1 on the synthesis side (Fig.1.2). Here, a subscript of

0 denotes low pass filters, while a subscript of 1 denotes high pass filters. If the

operators of upsampling and downsampling were not present, the condition of perfect

reconstruction, with a l-step delay would, in the z-domain, result in [7]:

F0(z)H0(z) + F1(z)H1(z) = z−l (3.1)

An overall delay can be expected, as each individual filter is causal.

14



15

Now consider the upsampling and downsampling operators which introduce

aliasing. In the z domain, v = (↓2)x and u = (↑2)x would result in

V (z) =
1

2
[X(z1/2) +X(−z1/2)] and U(z) = X(z2) (3.2)

Therefore, downsampling followed by upsampling w = (↑2)(↓2)x would result in W(z)

= 1
2
(X(z) + X(-z)). The transform of (↑2)(↓2)H0x is 1

2
(H0(z)X(z) +H0(−z)X(−z)).

The function turns out to be even. The aliasing term in the function H0(−z)X(−z)

gets multiplied by F0(z) in the synthesis step. This term has to cancel the alias term

F1(z)H1(−z)X(−z) from the second channel. The condition for alias cancellation

can be thus put across as [7]:

F0(z)H0(−z) + F1(z)H1(−z) = 0 (3.3)

To summarize, consider a signal x(n) passed through the filter bank. After

being passed through the low pass filter bank H0, one gets H0(z)X(z). Downsampling

produces:

1
2
[H0(z

1/2)X(z1/2) +H0(−z1/2)X(−z1/2)]

Upsampling produces:

1
2
[H0(z)X(z) +H0(−z)X(−z)]

Multiplying by F0(z) produces the output from the low pass channel. Similarly, the

output from the high pass channel can be obtained by replacing H0(z) by H1(z) and

F0(z) by F1(z). Hence :

low pass channel: 1
2
F0(z)[H0(z)X(z) +H0(−z)X(−z)]
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high pass channel: 1
2
F1(z)[H1(z)X(z) +H1(−z)X(−z)]

On combining the output from the above two channels, one gets:

1

2
[F0(z)H0(z) + F1(z)H1(z)]X(z) +

1

2
[F0(z)H0(−z) + F1(z)H1(−z)]X(−z) (3.4)

For perfect reconstruction to hold true for a two-channel filter bank, two conditions

are thus needed :

F0(z)H0(z) + F1(z)H1(z) = z−l (3.5)

F0(z)H0(−z) + F1(z)H1(−z) = 0 (3.6)

3.2 Product Filters

A product filter is defined as follows[7]:

Pm(z) = Fm(z)Hm(z), m = 0, 1. (3.7)

For the purpose of alias cancellation, suppose one choses F0(z) = H1(−z) and F1(z)

= -H0(−z). In this case, it can be found that P1(z) = -P0(−z).

P1(z) = −H0(−z)H1(z) = −H0(z)F0(z) = −P0(−z) (3.8)
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The reconstruction equation can thus be written as1 P0(z) - P0(−z) = 2z−l.

Since the left side of the equation is odd, hence the factor l is also odd. On normalizing

P0(z) by zl, one gets P(z) = zlP0(z). Thus P(-z) = −zlP0(−z). The reconstruction

equation is thus P0(z) - P0(−z) = 2z−l, which when multiplied by zl, becomes:

P (z) + P (−z) = 2 (3.9)

That is, the product filter should thus be a half band filter.

3.3 Mirroring and Rotation

It is known that after filtering and downsampling, one would have the following

the frequency domain:

1

2
[X(z1/2)Hm(z1/2) +X(−z1/2)Hm(−z1/2)] m = 0, 1 (3.10)

Suppose one flips the obtained sequence in the time domain, one would get the fol-

lowing in the z domain, following the z transform property.

1

2
[X(z−1/2)Hm(z−1/2) +X(−z−1/2)Hm(−z−1/2)] m = 0, 1 (3.11)

It is found that (3.11) is actually what one would receive if one were to filter the

reverse sequence using reverse analysis filters. Suppose one wants to obtain the reverse

1The 2 or any constant factor on the right side of the expression comes into the picture as a
scaling factor. It does not change anything else in the reconstruction conditions.
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sequence as the final output; in that case, one could reverse the synthesis filters and

proceed with the synthesis. This is equivalent to saying that reversing the input and

the filter would produce the output in reverse.

Now consider the case where the analysis and synthesis filters are symmetric, as

is the case of JPEG2000 9/7 and 5/3 filters. For symmetric filters, the coefficients in

forward and reverse order are the same, and hence, from the property of Z transforms,

it is known that

Hm(z) = Hm(z−1) m = 0, 1 (3.12)

Hence, on replacing Hm(z−1/2) in (3.11) by Hm(z1/2), one obtains

1

2
[X(z−

1
2 )Hm(z

1
2 ) +X(−z

−1
2 )Hm(−z

1
2 )] m = 0, 1 (3.13)

(3.13) is now the same as filtering the reverse sequence by analysis filters.

Now, let LL, LH, HL and HH be the four components obtained by passing the

image information through the two channel filter bank, each component denoting the

output of a particular branch in the filterbank. Now, in the synthesis bank, let LL’,

LH’, HL’ and HH’ denote the branches which accept the four components, LL, LH,

HL and HH respectively. Let
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J =



0000....1

000....10

00....100

0....1000

1....0000



be a reverse identity matrix of the same dimension as LL, LH, HL and HH compo-

nents. Then, one can form the mirrored and rotated images as is discussed next.

In each of the figures, the synthesis filter bank(SFB) has four nodes where it

accepts LL, LH, HL and HH components. In the case of horizontal mirroring, one

simply, reverses each of the LL, LH, HL and HH components and apply it to the

synthesis filterbank - i.e., post multiply each component matrix by J and then give

it to the filterbank. For vertical mirroring, on the other hand, premultiply each

component by J instead of postmultiplying.

For image rotation by 90 degrees, post multiply by J, take the transpose, and

then apply to SFB. One point to be noted is that, here, the2 (LH ∗ J)T is given to

HL’ and (HL ∗ J)T is given to LH’. For 270 degrees, similar set of steps are adopted

- the only difference is that here one premultiplies by J instead of post multiplying.

For 180 degrees on the other hand, one simply has to premultiply and post

multiply by J, each of the four components, and apply them to the filterbank.

2The asterisk * denotes matrix multiplication operation
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3.4 Results

The scheme outlined above was applied to the standard images,the Lena and

the Girl images. The output aftter mirroring and rotation operations, in comparison

with the original figure is as shown in this section in Fig.3.6 and Fig.3.7.    
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Figure 3.1. Horizontal mirroring.
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Figure 3.2. Vertical mirroring.

The topic of image mirroring and rotation was been discussed so far. The next

section discusses image interpolation, or resizing of images.
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Figure 3.3. Rotation by 180◦.
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Figure 3.4. Rotation by 90◦.
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Figure 3.5. Rotation by 270◦.



22

                       

Figure 3.6. Lena image with 9/7 Daubechies filter coefficients. Top left - horizontal
mirroring, Top center - rotation by 180◦, Top right - rotation by 270◦. Bottom left -
vertical mirroring, Bottom right - rotation by 90◦.
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Figure 3.7. Girl image with 5/3 Le Gall filter coefficients. Top left - horizontal
mirroring, Top center - rotation by 180◦, Top right - rotation by 270◦. Bottom left -
vertical mirroring, Bottom right - rotation by 90◦.



CHAPTER 4

IMAGE INTERPOLATION

The aim of image interpolation is to provide a higher resolution image from

a lower resolution one. Many of the solutions to this problem rely on a statistical

approach[1]. A prominent statistical approach [1], makes use of a Hidden Markov

Tree model [10,11]. In [1], the wavelet coefficients at various scales are considered to

be occupying the nodes of the Hidden Markov Tree (HMT). A hidden state value,

determined based on the significance of a coefficient, actually dictates the value of

the coefficient.

A parent child relationship is assumed to exist between the various nodes of

the tree. Once the state of the parent coefficient is known, the probability density

function (pdf) of the child coefficients is determined, which would be given by a

Gaussian mixture model. Once the pdf is known, the child coefficients are generated

randomly. Estimation of the parameters of the pdf is another interesting aspect of

the solution discussed in the paper [1].

4.1 Interpolation error modelling

In the method proposed here, one initially takes an image and decompose it

into LL, LH, HL and HH bands. One then takes the LL component to be the low

resolution image, and try to predict the rest of the components, and then reconstruct

the original image. The original image is then compared with the reconstructed image

to draw conclusions about the effectiveness of the algorithm.
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 LH3 

 HL3 

 LL3 

 HH3 

Figure 4.1. Decomposition of image into various levels.

In order to obtain the LH, HL and HH components from LL, LL decomposed

into further three levels. Decomposing LL, one obtains level one components, say, LL1,

LH1, HL1 and HH1. LL1 is then further decomposed to obtain level two components,

say LL2, LH2, HL2 and HH2. LL2 is decomposed to LL3, LH3, HL3 and HH3 (Fig.4.1).

One then proceeds to interpolate the lower level components to obtain the higher level

ones, and then compute the interpolation error for each of the components at each

level.

For example, suppose that one applies bilinear interpolation to LH3 to obtain

LH′2, which is of the same dimension as LH2. Compare it with LH2 and compute

interpolation error. Let the error information be named as LH3 interpolation er-
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Figure 4.2. Gaussian curve fitted for HL2 interpolation error. RMSE of fit = 0.0219,
mean of distribution = 0.0578, standard deviation of distribution = 1.715.

ror. Similarly, interpolate LH2 to obtain LH1, and then compute error, which would

then be termed as LH2 interpolation error. Repeat the procedure for HL and HH

components as well.

In the next stage, one tries to model the probability distribution of each of

the error information thus obtained. It was found that a Gaussian curve fits the

probability distribution of each of the error information obtained with a reasonable

degree of accuracy, as shown in Fig.4.2 and Fig.4.3. Thus, a Gaussian curve was fitted

to the probability distribution of each of the error information at each level.
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Figure 4.3. Gaussian curve fitted for LH2 interpolation error. RMSE of fit = 0.0244,
mean of distribution = -0.0017, standard deviation of distribution = 1.026.

4.2 Interpolation error prediction and denoising

One now has the interpolation error probability distribution for levels 3 and 2.

Next one tries to predict the interpolation error distribution for level 1, i.e., the prob-

ability distribution of the error one would obtain, were one to predict LH, HL and

HH components from their level 1 counterparts. It can be observed that the mean

remains more or less the same across the levels, but variance of distribution differs.

One can make use of a property of wavelet coefficients while trying to predict the

variance of the error distribution. One considers the property of exponential decay of

coefficients across the bands at various levels. It can be explained as [1]: the variances

for the error m (σKm)2 in scale K are estimated according to
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Figure 4.4. Exponential decay of variances across scales[1].

(σKm)2 =
(σK+1

m )2

(σK+2
m )2

· (σK+1
m )2 (4.1)

where m denotes if it is LH, HL or HH, while K denotes the level at which coefficients

are located, LL being the highest level, and LL3 being the lowest level.

The exponential decay of variances across scales are shown in Fig.4.4. The same

model is essentially adopted for interpolation errors.

Thus, once the mean and variance are known, one has all of the parameters

required to specify the interpolation error distribution of level 1. Next, one proceeds
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Figure 4.5. Block diagram representing steps in image interpolation.

to interpolate level one components to obtain LH’,HL’ and HH’. The interpolated

components, as well as the probability distribution of the error are thus obtained.

This error is then treated as noise which was added to the original LH, HL and HH

components.

This leads to the next step in our interpolation algorithm, which is, image de-

noising in the wavelet domain. One makes use of an already existing image denoising

algorithm [5]. The algorithm receives an input matrix and noise distribution char-

acteristics, and produces a denoised image. One feeds the interpolated components,

as well as predicted interpolation error distribution characteristics, and obtain de-

noised LH, HL and HH components, thus completing the estimation of LH, HL and

HH components. Once these components are present, one can recontruct the original

image making use of the LL component already present.
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Table 4.1. Interpolation Results.(PSNR in dB)

Image Bicubic Method HMT based[1] Proposed Method
Lena 29.47 33.97 34.02
Girl 32.70 36.10 36.18
Boat 27.28 30.26 30.30
Peppers 39.98 41.74 42.26

4.3 Results

Lena as well as Girl images in original and interpolated form is shown in this

section. A comparison with exisitng methods in terms of PSNR(dB) is shown in table

4.1.
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Figure 4.7. Lena image obatined after interpolation.
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Figure 4.8. Original Girl Image.
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 Figure 4.9. Girl image obatined after interpolation.



CHAPTER 5

CONCLUSIONS

This chapter concludes, and also give directions for possible future work. A

method for image mirroring and rotation in wavelet domain in the case of JPEG2000

filters has been presented. One could investigate extending the case for a general

perfect reconstruction filter bank, including the asymmetric cases too. One could

explore rotaion by 45◦ and 135◦ as well. In the case of image interpolation, currently

the image error is modeled as Gaussian. Since the wavelet coefficients themselves are

modelled as a mixture of Gaussian functions, one could try to model the noise in the

same manner, and denoise the image for each Gaussian function seperately.

One could extend the mirroring, rotation and interpolation methods to color

images as well. Mirroring and rotation is straighforward, since one simply has to

repeat what was done for grayscale images for each of the color components (Fig.5.1).

For rotation by a certain angle, for example, one would have to rotate each of the

color components by the same angle. A simple block diagram representation for image

interpolation for color images is shown in Fig.5.2.
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Figure 5.1. Image mirroring for a color image whose red(R), green(G) and blue(B)
components are given.
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Figure 5.2. Image interpolation for a color image whose red(R), green(G) and blue(B)
components are given.
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IMAGE DENOISING ALGORITHM
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The image denoising algorithm used here is based on the work in [5]. In [5],

a method for the removal of noise from digital images based on a statistical model

of the coefficients of an overcomplete multiscale oriented basis is described. The

coefficients are modeled based on a Gaussian scale mixture (GSM), the product of

a Gaussian random vector, and an independent hidden random scalar multiplier. A

random vector x is a GSM, if and only if it can be expressed as the product of a

zero-mean Gaussian vector u and an independent positive random variable
√
z

x =
√
zu (A.1)

Here, equivalent denotes equivalent in distribution. The variable z is the multiplier.

The vactor x is thus an infinite mixture of Gaussian vectors, whose density is deter-

mined as

px(x) =

∫
p(x/z)pz(z)dz (A.2)

The pdf of x when conditioned on z is Gaussian. The probability density pz(z) need

to be specified in order to complete the model. A noninformative prior known as

Jeffrey’s prior is used for the same and in the current context, one obtains

pz(z) ∝ 1

z
(A.3)

The procedure for image denoising can be outlined as follows:

1)Decompose the image into pyramid sub bands at different scales and orientations.

2)Denoise each sub band.

3)Invert the pyramid transform and obtain the denoised image.

The assumption made is that the image is corrupted by independent additive

white Gaussian noise of known variance. Thus, a vector y corresponding to a neigh-
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bourhood of N observed coefficients of the pyramid representation can be expressed

as:

y = x + w =
√
zu + w (A.4)

Both u and w are zero-mean Gaussian vectors, with associated covariance ma-

trices Cu and Cw. Further details about obtaining them are given in [5].

For each neighbourhood, one estimates xc, the reference coefficient at the center

of the neighbourhood, from y, the set of observed coefficients. The Bayes least squares

(BLS) estimate is the conditional mean

E(xc|y) =

∞∫
0

p(z|y)E(xc|y, z)dz (A.5)

Here, the coefficient neighbourhood vector x is Gaussian when conditioned on

z. The expected value in (A.5) would thus become a local linear estimate, which is

given by:

E(x|y, z) = zCu(zCu + Cw)−1y (A.6)

The remaining component in (A.5) is computed as

p(z|y) =
p(y/z)pz(z)

∞∫
0

p(y|α)pα(α)dα

(A.7)

.

Further details and results of denoising can be found in [5].
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