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ABSTRACT

A CONTEXT-AWARE LEARNING, PREDICTION AND MEDIATION
FRAMEWORK FOR RESOURCE MANAGEMENT IN SMART
PERVASIVE ENVIRONMENTS

NIRMALYA ROY, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professor: Sajal K. Das

Advances in smart devices, mobile wireless communications, sensor networks,
pervasive computing, machine learning, middleware and agent technologies, and hu-
man computer interfaces have made the dream of smart environments a reality. An
important characteristic of such an intelligent, ubiquitous computing and communica-
tion paradigm lies in the autonomous and pro-active interaction of smart devices used
for determining inhabitants’ important contexts such as current and near-future loca-
tions, activities or vital signs. ‘Context Awareness’ is perhaps the most salient feature
of such an intelligent computing environment. An inhabitant’s mobility and activi-
ties play a significant role in defining his contexts in and around the home. Although
there exists optimal algorithm for location and activity tracking of a single inhabi-
tant, the correlation and dependence between multiple inhabitants’ contexts within
the same environment make the location and activity tracking more challenging. In
this thesis, first we propose a cooperative reinforcement learning policy for location-

aware resource management in multi-inhabitant smart homes. This approach adapts



to the uncertainty of multiple inhabitants’ locations and most likely routes, by vary-
ing the learning rate parameters. Using the proposed cooperative game-theory based
framework, all the inhabitants currently present in the house attempt to minimize
this overall uncertainty in the form of utility functions associated with them. Joint
optimization of the utility function corresponds to the convergence to Nash equilib-
rium and helps in accurate prediction of inhabitants’ future locations and activities.
Hypothesizing that every inhabitant wants to satisfy his own preferences about ac-
tivities, next we look into the problem from the perspective of non-cooperative game
theory where the inhabitants are the players and their activities are the strategies of
the game. We prove that the optimal location prediction across multiple inhabitants
in smart homes is an NP-hard problem and to capture the correlation and interac-
tions between different inhabitants’ movements (and hence activities), we develop a
novel framework based on a non-cooperative game theoretic, Nash H-learning ap-
proach that attempts to minimize the joint location uncertainty of inhabitants. Our
framework achieves a Nash equilibrium such that no inhabitant is given preference
over others. This results in more accurate prediction of contexts and more adap-
tive control of automated devices, thus leading to a mobility-aware resource (say,
energy) management scheme in multi-inhabitant smart homes. Experimental results
demonstrate that the proposed framework is capable of adaptively controlling a smart
environment, significantly reduces energy consumption and enhances the comfort of
the inhabitants.

To promote independent living and wellness management services in this smart
home environment we envision sensor rich computing and networking environments
that can capture various types of contexts of patients (or inhabitants of the envi-
ronment), such as their location, activities and vital signs. However, in reality, both

sensed and interpreted contexts may often be ambiguous, leading to fatal decisions if

vi



not properly handled. Thus, a significant challenge facing the development of real-
istic and deployable context-aware services for healthcare applications is the ability
to deal with ambiguous contexts to prevent hazardous situations. In this thesis, we
propose a quality assured context mediation framework, based on efficient context-
aware data fusion and information theoretic system parameter selection for optimal
state estimation in resource constrained sensor network. The proposed framework
provides a systematic approach based on dynamic Bayesian network to derive con-
text fragments and deal with context ambiguity or error in a probabilistic manner.
It has the ability to incorporate context representation according to the applications’
quality requirement. Experimental results demonstrate that the proposed framework
is capable of choosing a set of sensors corresponding to the most economically effi-
cient disambiguation action and successfully sensing, mediating and predicting the
patients’ context state and situation.

Energy-efficient determination of an individual’s context (both physiological
and activity) is an important technical challenge for this assisted living environments.
Given the expected availability of multiple sensors, context determination is viewed as
an estimation problem over multiple sensor data streams. We develop a formal, and
practically applicable, model to capture the tradeoff between the accuracy of context
estimation and the communication overheads of sensing. In particular, we propose
the use of tolerance ranges to reduce an individual sensor’s reporting frequency, while
ensuring acceptable accuracy of the derived context. We introduce an optimization
technique allowing the context service to compute both the best set of sensors, and
their associated tolerance values, that satisfy the QoINF target at minimum commu-
nication cost. Experimental results with SunSPOT sensors are presented to attest to

the promise of this approach.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

Advances in smart devices, mobile wireless communications, sensor networks,
pervasive computing, machine learning, middleware and agent technologies, and hu-
man computer interfaces have made the dream of smart pervasive environments a

7

reality. According to Cook and Das [22], a “smart environment” is one that is able to
autonomously acquire and apply knowledge about its users and their surroundings,
and adapt to the users’ behavior or preferences with the ultimate goal to improve
their experience in that environment. The type of experience that individuals ex-
pect from an environment varies with the individual and the type of environment
considered. This may include the safety of users, reduction of cost of maintain-
ing the environment, optimization of resources (e.g., energy bills or communication
bandwidth), task automation or the promotion of an intelligent independent living
environment for healthcare services and wellness management. An important charac-
teristic of such an intelligent, pervasive computing and communication paradigm lies
in the autonomous and pro-active interaction of smart devices used for determining
users’ important contexts such as current and near-future locations, activities, or vital
signs.

In this sense, ‘context awareness’is a key issue for enhancing users living ex-
perience during their daily interaction with computer systems, as only a dynamic

adaptation to the task at hand will make computing environments just user friendly

and supportive. The combination of awareness with information appliances, or rather
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the implementation of awareness in information appliances became known as context
awareness [104], since a device should act within its current context of use, by being
aware of the various aspects of its current environment. Context awareness is con-
cerned with the situation a device or user is in, and with adapting applications to
the current situation. But knowing the current context an application or system is
used in and dynamically adapting to it only allows to construct reactive systems, i.e.,
systems which run after changes in their environment. To maximize their usefulness
and user support, systems should rather adapt in advance to a new situation and be
prepared before they are actually used. This demands the development of proactive
systems, i.e., systems which predict changes in their environment and act in advance.
To this end, we strive to develop methods to learn and predict future context, to
mediate ambiguous context, enabling systems to become proactive with regard to
their context of use. Our concept is to provide applications not only with informa-
tion about the current user context, but also with predictions of future user context.
When equipped with various sensors, a system should classify current situations and,
based on those classes, learn the user’s behaviors and habits by deriving knowledge
from historical data. The focus of this thesis is to forecast future user contexts lu-
cidly by extrapolating the past and derive techniques that enable context prediction
in pervasive systems and leaves decisions about starting actions to applications built

on top of it.

1.2 Challenges

An instance of such an intelligent indoor environment is a smart home [27] that
perceives the surroundings through sensors and acts on it with the help of actuators.
In this environment, user’s mobility and activity create an uncertainty of their loca-

tions and hence subsequent activities. In order to be cognizant of his contexts, the
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smart environment needs to minimize this uncertainty. An analysis of his daily rou-
tine and life style reveals that there exist some well defined patterns of these contexts.
Although these patterns may change over time, they do not change too frequently
and thus can be learned. An optimal algorithm for location (activity) tracking in
an indoor smart environment, based on dictionary management and online learning
of the inhabitant’s mobility profile, followed by a predictive location-aware resource
management (energy consumption) scheme for a single inhabitant smart home is
discussed in [94]. However, the presence of multiple inhabitants with dynamically
varying profiles as well as preferences make such tracking much more challenging.
This is due mainly to the fact that the relevant contexts of multiple inhabitants in
the same environment are often inherently correlated and inter-dependent on each
other. Therefore, the learning and prediction (decision making) paradigm needs to
consider the joint (simultaneous) location/activity tracking of multiple inhabitants
which we address in this thesis. Furthermore, hypothesizing that each inhabitant
in a smart home behaves in such a way as to fulfill his own objectives and maxi-
mizes his utility, the residence of multiple inhabitants with varying preferences might
lead to conflicting goals. Thus, a smart home must be intelligent enough to strike
a balance between multiple preferences, eventually attaining an equilibrium state.
This motivates us to investigate the multi-inhabitant location tracking problem from
the perspective of stochastic game theory, where the inhabitants are the players of
the game. The goal here is to achieve an equilibrium so that the system (i.e., smart
home) is able to probabilistically predict the inhabitants’ locations and activities with
sufficient accuracy in spite of possible correlations.

In this thesis we also look into how the various types of contexts of patients (or
inhabitants of the environment), such as their location, activities and vital signs can

provide health related and wellness management services in an intelligent, energy-
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efficient way so as to promote independent living. However, in reality, both sensed
and interpreted contexts may often be ambiguous, leading to fatal decisions if not
properly handled. Thus, a significant challenge facing the development of realistic
and deployable context-aware services for healthcare applications is the ability to

deal with ambiguous contexts to prevent hazardous situations.

1.3 Problem Statement

Our main focus of research is on user centered learning and prediction of con-
text and presenting a context-aware middleware framework for autonomous resource
management and ambiguous context mediation subsystem. Context, in the field of
pervasive computing, has been defined in different ways. One of the first definitions
of context in [106] states that it comprises computing, user and physical properties.
The definition adopted within this thesis is the one by Dey et.al. [32], according to
which context is any information which can be used to characterize the situation of
an entity, where an entity is a person, place or object that is considered relevant to
the interaction between a user and an application, including the user and the appli-
cation themselves. We define context awareness as incorporating learned, predicted,
future context into the device behavior and being prepared to future situations. We
can define the problem statement as follows: What are the necessary concepts, ar-
chitectures and methods for context learning and prediction, context modeling and
mediation in smart pervasive systems? Thus, the research goal is to evaluate and, if
necessary, develop methods for learning, predicting, modeling and mediating context

with the limited resources of pervasive systems.



1.4 Scope and Methodology

A smart home aims at building intelligent automation with a goal to provide
its inhabitants with maximum possible comfort, minimum resource consumption and
thus reduced cost of home maintenance. ‘Context Awareness’ is perhaps the most
salient feature of such an intelligent environment. An inhabitant’s mobility and activ-
ities play a significant role in defining his contexts in and around the home. Although
there exists optimal algorithm for location and activity tracking of a single inhabi-
tant, the correlation and dependence between multiple inhabitants’ contexts within
the same environment make the location and activity tracking more challenging. In
this thesis, first we propose a cooperative entropy learning policy for location-aware
resource management in multi-inhabitant smart homes. This approach adapts to the
uncertainty of multiple inhabitants’ locations and most likely routes, by varying the
learning rate parameters and minimizing the Mahalanobish distance. However, the
complexity of multi-inhabitant location tracking problem was not characterized in this
work. But the optimal location prediction across multiple inhabitants in smart homes
is an NP-hard problem. Next, to capture the correlation and interactions between
different inhabitants’ movements (and hence activities), we develop a novel framework
based on a game theoretic, Nash H-learning approach that attempts to minimize the
joint location uncertainty of inhabitants. Our framework achieves a Nash equilibrium
such that no inhabitant is given preference over others. This results in more accurate
prediction of contexts and more adaptive control of automated devices, thus leading
to a mobility-aware resource (say, energy) management scheme in multi-inhabitant
smart homes. Experimental results demonstrate that the proposed framework is
capable of adaptively controlling a smart environment, significantly reduces energy

consumption and enhances the comfort of the inhabitants.
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To promote independent living and wellness management services in a smart
home environment we envision sensor rich computing and networking environments
that can capture various types of contexts of patients (or inhabitants of the environ-
ment ), such as their location, activities and vital signs. Given the expected availability
of multiple sensors, context determination may be viewed as an estimation problem
over multiple sensor data streams. We develop a formal, and practically applicable,
model to capture the tradeoff between the accuracy of context estimation and the
communication overheads of sensing. In particular, we propose the use of tolerance
ranges to reduce an individual sensor’s reporting frequency, while ensuring acceptable
accuracy of the derived context. We introduce an optimization technique allowing the
Context Service to compute both the best set of sensors, and their associated toler-
ance values, that satisfy the QoINF target at minimum communication cost. We also
propose a novel framework for context mediation, based on efficient context-aware
data fusion and information theoretic reasoning. The proposed framework provides a
systematic approach based on dynamic Bayesian network to derive context fragments
and deal with context ambiguity in a probabilistic manner. It has the ability to in-
corporate context representation within the applications and also easily composable
rules to mediate ambiguous contexts. We have implemented a demonstration of the
use of our model. Experimental results demonstrate that the proposed framework is
capable of choosing a set of sensors corresponding to the most economically efficient

disambiguation action and successfully predicting the patients’ situation.

1.5 Results
The present thesis analyzes prerequisite for user centered learning and predic-
tion of context and present a framework for autonomous resource management in

smart home environment and ambiguous context mediation subsystem with appli-
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cation to smart healthacre. The developed system is being implemented in terms
of a flexible software framework and evaluated with real-world data from everyday

situations.

1.6 Organization

The remainder of this thesis is split into six Chapters. Chapter 2, which de-
fines the specific goals and presents the general concept for context-aware resource
management through learning and prediction in a cooperative multi-inhabitant smart
home. In Chapter 3 we look into the same problem from non-cooperative perspective
to strike a balance between multiple preferences of the inhabitants. Chapter 4 then
shows how context information is useful in providing health related and wellness man-
agement services in an intelligent way so as to promote independent living. Chapter
5 then presents the determination of this health related context in an efficient way
using the resource constrained sensor network. In Chapter 6, related work is summa-
rized and this thesis is positioned among and against other publications with regard
to novelties in our approach and differences to previous work. Finally, in Chapter
7 the thesis is summarized by pointing out the main arguments and the scientific

contribution and giving an outlook on possible future research.



CHAPTER 2
COOPERATIVE MOBILITY AWARE RESOURCE MANAGEMENT

2.1 Introduction

The vision of ubiquitous computing was first conceived by M. Weiser at Xerox
PARC as the future model for computing [121]. The most significant characteris-
tic of this computing paradigm lies in smart, pro-active interaction of the hand-held
computing devices with their peers and surrounding networks, often without explicit
operator control. Hence, the computing devices need to be imbued with an inher-
ent sentience [54] about their important contexts. This context-awareness is perhaps
the key characteristic of the next generation of intelligent networks and associated
applications. The advent of smart homes is germinated from the concept of ubig-
uitous computing in an indoor environment with a goal to provide the inhabitants
with sufficient comfort at minimum possible operational. Obviously, the technology
needs to be weaved into the inhabitants’ everyday life such that it becomes “tech-
nology that disappears” [121]. A careful insight into the features of a smart home
reveals that the ability to capture the current and near-future locations and activities
(hence ‘contexts’) of different inhabitants often becomes the key to the environment’s
associated “smartness”. Intelligent prediction of inhabitants’ locations and routes
aids in efficient triggering of active databases or guaranteeing a precise time frame of
service, thereby supporting location-aware interactive, multimedia applications. This
also helps in pro-active management of resources such as energy consumption.

Given the wide variety of smart, indoor location-tracking paradigms, let us sum-

marize below some of the important ones. The Active Badge [45] and Active Bat [46]
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use infra-red and ultrasonic time-of-flight techniques for indoor location tracking. On
the other hand, the Cricket Location Support System [92] delegates the responsibil-
ity of location reporting to the mobile object itself. RADAR [4], another RF-based
indoor location support system, uses signal strength and signal-to-noise ratio to com-
pute 2-D positioning. The Easy-living and the Home projects [72] use real-time 3D
cameras to provide stereo-vision positioning capability in an indoor environment. In
the Aware Home [87], the embedded pressure sensors capture inhabitant’s footfalls,
and the system uses this data for position tracking and pedestrian recognition. The
Neural Network House [82], Intelligent Home [77] and Intelligent House_n [57] projects
focus on the development of adaptive control of home environments to anticipate the
needs of the inhabitants.

In an earlier work [94], we proposed location-aware resource management con-
sidering a single-inhabitant smart home. However, the presence of multiple inhabi-
tants with varying preferences and requirements makes the problem more challenging.
A suitable balance of preferences arising from multiple inhabitants [108] needs to be
considered. Thus, the environment (or system) needs to be more smart to extract
the best performance while satisfying the requirements of the inhabitants as much as

possible.

2.1.1 Our Contributions

In this chapter we have developed a framework for mobility-aware resource man-
agement in multi-inhabitant smart homes, based on a dynamic, cooperative learning
technique. Here the resource management means the reduction of the consumption
of energy. The movement pattern and various activities of the inhabitants always
create an uncertainty of their locations and subsequent activities. In order to be

cognizant of the inhabitants’ contexts, the system needs to minimize this uncertainty
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which can be measured by Shannon’s entropy [26]. An analysis of inhabitants’ daily
routines reveals that every inhabitant has some patterns in daily-life that can be
learnt. Although the life style (pattern) changes over time, such changes are not fre-
quent and random. This observation helps us assume that the inhabitant’s mobility
and associated activities follow a piece-wise stationary, ergodic, stochastic process [7],
with some value of entropy (uncertainty) associated with it. The novelty of our work
lies in the development of a new framework based on cooperative game theory and
reinforcement learning to minimize the overall uncertainty associated with multiple
inhabitants currently present in the smart home. This is performed by developing a
joint utility function of entropy. Optimization of this utility function asymptotically
converges to Nash Equilibrium [8]. Minimizing the utility function of uncertainty
helps in accurate learning and estimation of inhabitants’ contexts (locations and as-
sociated activities). Thus, the system can control the operation of automated devices
in an adaptive manner, thereby developing an amicable environment inside the home
and providing sufficient comfort to the inhabitants. This also aids in minimizing the
energy usage, leading to a reduction of overall maintenance cost of the house.

The rest of the chapter is organized as follows. The problem definition, basic
concepts of cooperative framework and information theoretic estimation of location
uncertainty are discussed in Section 2.2. The new game-theoretic learning framework
that minimizes uncertainty associated with all inhabitants, is presented in Section 2.3.
In Section 2.4 we present the analytical model for estimation and classification process
of different values of uncertainty level. Section 2.5 demonstrates the use of the pro-
posed framework in resource optimization in multi-inhabitant smart homes. Simu-
lation results in Section 2.6 delineates the efficiency of our framework. Section 2.7

concludes the chapter with pointers to future researches.
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2.2 Preliminaries
The smart home environment, basic concepts of cooperative framework, infor-
mation theoretic estimation of location uncertainty and the learning in cooperative

environments are discussed here.

2.2.1 Overview of Smart Homes

The MAVHome (Managing An intelligent Versatile Home) [27] is a multi-
disciplinary research project at the University of Texas at Arlington. It is focused on
the creation of an intelligent home environment capable of perceiving its surround-
ings through the use of sensors, and thereby adopting suitable actions by using the
actuators. In such a smart computing platform there exists movements of inhabitants
interacting with their surrounding environments through the hand-held devices. The
overall goal is to provide the inhabitant’s comfort at an optimal cost. Efficient and
intelligent estimate and prediction of inhabitants’ contexts (location and activity) is

the most necessary component of such a smart home.

2.2.2 Cooperative Framework for Inhabitants Mobility

Our proposed framework is based on symbolic interpretation of the inhabitant’s
movement (mobility) within the home, which is captured by sampling the in-building
sensors (RF-ID readers or pressure switches). Thus, the movement history of an
inhabitant is assumed as a string “vivgvz...” of symbols (sensor-ids) where v; € ¢
(the alphabet set). We argue that the inhabitant’s mobility and current location is
merely a reflection of his/her movement history (profile), which can be learned over
time in an on-line fashion. Characterizing such mobility as a probabilistic sequence
suggests that it can be defined as a stochastic process V = {V;}, while the repetitive

nature of identifiable patterns adds stationarity as an essential property, leading to
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PrlV; = v = PrlViy = v for all v; € ¥ and for every shift [. The movement of

the set of inhabitants inside the smart home always create an uncertainty in their
locations and activities. The concept of entropy [26] in information theory is the

most fair measure to estimate this uncertainty.

2.2.3 Information Theoretic Estimate for Location Uncertainty

The entropy H,(X) of a discrete random variable X with probability mass
function p(z), v € X, is defined by: Hy(X) = — > ., p(v)log, p(r). The limiting
value “lim, ,oplog,p = 0” is used in the expression when p(x) = 0. The relative
entropy between two probability mass functions p(z) and ¢(x), x € X, is given by
D(pllg) = > exp(®) log%. This relative entropy is a fair measure of the inef-
ficiency of assuming that the distribution is ¢, when the actual distribution is p.
Also, the conditional entropy is defined as H(Y'|X) =3 . p(x) H(Y|X = x). For
any set {Vi,Va,...,Vi} of k discrete random variables with distribution given by
p(v1, vo, ..., vg) = Pr{Vi = vy, Vo = vy, ..., Vi = vi], where v; € 9, the joint en-
tropy is given by H(Vy, Vo, ..., Vi) = Zle HWV; | Vi, Vo, ..., Vi_1). The additive
terms on the right-hand side carry necessary information which makes the higher-

order context models more information-rich as compared to the lower-order ones.

2.2.4 Learning in Cooperative Environments

Our investigation in this chapter is focussed on n-player cooperative repeated
games. Let n denote the number of inhabitants, s the set of states, a; the set of
actions available to inhabitant ¢ with A = (a; X ag X ... X a,,) as the joint action space,
m:sx Axs— [0,1] the probability of selecting a policy/route of moving from state
s to s on performing action A, and H; the utility function of the i-th inhabitant

defined by s x A — H. We assume the inhabitants are fully rational in the sense
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that they can fully use their available histories or beliefs to construct future route
strategy. Each inhabitant ¢ keeps a count Céj which represents the number of times
user j has followed an action for a specific route in the past for each j and a; € A;,
where 1 < j <n and ¢ # j. When the game is encountered, inhabitant ¢ believes the
relative frequencies of each of j's move as indicative of j's current route. So for each
inhabitant j, inhabitant ¢ assumes j plays action a; € A; with probability [20]:
ci
m(a;)i = Z—]C] (2.1)
bjEA; “b;

We consider these counts as reflecting the observations an inhabitant has regarding the
route strategy of the other inhabitants. As a result, the decision making component

should not directly repeat the actions of the inhabitants but rather learn to perform

actions that optimize a given reward or utility function.

2.3 Imhabitant’s Utility Function based on Cooperative Learning

In a smart home environment, an inhabitant’s goal is to optimize the total utility
it receives. To address these requirements of optimization, the decision making com-
ponent of smart home uses reinforcement learning to acquire a policy that optimizes
overall uncertainty of the inhabitants which in turn helps in accurate prediction of
inhabitants’ locations and activities. In this section we present an algorithm from an
information-theoretic perspective for learning a value function that maps state-action

pairs to future discounted reward using Shannon’s entropy measure.

2.3.1 Entropy Learning based on Individual Policy
Most reinforcement-learning (RL) algorithms use evaluation or value functions
to cache the results of experience for solving discrete optimal control problems. This

is useful in our case because close approximations to optimal entropy value function
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lead the inhabitant directly towards its goal by possessing some good control policies.
Here we closely follow the Q-learning (associate values with state-action pairs, called
Q values as in Watkins’ Q-learning) [120] for our Entropy learning (H-learning) al-
gorithm that combines new experience with old value functions to produce new and
statistically improved value functions in different ways. First, we discuss how the al-
gorithm uses its own system beliefs to change its estimate to optimal value functions
called update rule. Then we discuss a learning policy that maps histories of states
visited, probability of action chosen (m(a;);), current hamming distance (dj,) and the
utility received (H¢ (s, ar)); into a current choice of action. Finally, we claim that this
learning policy results in convergence when combined with the H-learning update
rule.

To achieve the desired performance of smart homes, a reward function, r, is
defined that takes into account the success rate of achieving the goal using system
beliefs. Here r is the instantaneous reward received which we have considered as
success rate of the predicted state. One measure of this prediction accuracy can be
estimated from per-symbol Hamming distance (dj) which provides the normalized
symbol-wise mismatch between the predicted and the actual routes followed by the
inhabitants. Intuitively, this measure should have correspondence with the relative
entropy between the two sequences. A direct consequence of information theory helps
in estimating this relationship [94].

Using the state space and reward function, the H-learning is used similar to
Q-learning algorithm to approximate an optimal action strategy by incrementally

estimating the entropy value, Hy(s;, a;), for state/action pairs. This value is the pre-
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dicted future utility that will be achieved if the inhabitant executes action a; in state

s¢. After each action, the utility is updated as
HtJrl(St, CLt) = (1 — Oé)Ht<8t, at) —+ Oé[rt + ’}/I('IHEIE Ht<8t+17 at+1)] (22)

where H,; is the estimated entropy value at the beginning of the ¢-th time step, and
St, Gy, Ty are the state, action and reward at time step t. Update of Hy11(s, a;) depends
on minge4 Hi(s441, ar41) which relies on comparing various predicted actions [109].
The parameters o and v are both in the range 0 to 1. When the learning rate
parameter « is close to 1, the H-table changes rapidly in response to new experience.
When the discount rate 7 is close to 1, future interactions play a substantial role in
defining the total utility values. After learning the optimal entropy value, a; can be
determined as

a; = {112}41 Hy (s, aq) (2.3)

Here we propose a learning policy that selects an action based on the function
of the history of the states, actions and utility. This learning policy makes decision
based on a summary of history consisting of the current state s, current estimate of
the entropy value function as a utility, number of times inhabitant j has used its action
a; in the past and Hamming distance (dj). Such a learning policy can be expressed
as the probability Pr(als, Hi(st, a:), w(a;)i, dp), that the action a is selected given the

history. An example of such a learning policy is a form of Boltzmann exploration [109]:

eﬂ(aj)th(St,at)/dh
Pr(als, Hi(st, ar), m(a;)i, dp) = S~ o Hy (sy.a0) /) (2.4)

The differential distance parameter, dj,, will be decreased over time as the inhabitant
reaches its goal. Consequently, the exploration probability is increased ensuring the

convergemnce.
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2.3.2 Entropy Learning based on Joint Policy

For cooperative action learners (CAL), the selection of the actions should be
done carefully. To determine the relative values of their individual actions, each in-
habitant in a CAL algorithm maintains beliefs about the strategy of other inhabitants.
From this perspective, inhabitant i predicts the Expected Entropy Value (EEV) of
its individual action a; at t-th time step as follows

EEVi(@) = " He{(51:a-509) U (s, i)} [ o), (25)

a_;€EA j#i

2.3.3 A New Algorithm for Optimizing Joint Uncertainty

In this section we describe an algorithm (see Figure 2.1) for a rational and con-
vergent cooperative action learner. The basic idea is to vary the learning rate used
by the algorithm so as to accelerate the convergence, without sacrificing rationality.
In this algorithm we have a simple intuition like “learn quickly while predicting the
next state incorrectly”, and “learn slowly while predicting the next state correctly”.
The method used here for determining the prediction accuracy is by comparing the
current policy’s entropy with that of the expected entropy value earned by the coop-
erative action over time. This principle aids in convergence by giving more time for
the other inhabitants to adapt to changes in the inhabitant’s strategy that at first
appear beneficial, while allowing the inhabitant to adapt more quickly to the other
inhabitants’ strategy changes when they are harmful [8].  We use two learning rate
parameters, namely “succeeding” (Js) and “failing” (), where d; < 7. The term
|A;| denotes the number of available joint actions of i-th inhabitant. The policy is
improved by increasing the probability so that it selects the highest valued action
according to the learning rate. The learning rate used to update the probability de-

pends on whether the inhabitant is currently succeeding (d,) or failing (d;). This is
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Procedure CAL
Input: Individual and joint expected entropy values
Output: Decision on the learning rate
1. Let o and 5 > J, be the learning rates. Initialize
Hy(s¢,ar) < 0, Pr(als, H(ss, ar), m(a;)i, dp) < ﬁ
2. Repeat
a) From state s select action a with probability
Pr(a|s, Hi(s, ar), m(a;)q, dp)
b) Observing reward H; and next state s;, update
Higq1(se,a8) — (1 — a)Hy(sg,a0) + afry + yminge 4 Hy(Se11, arr1)]
c) Calculate Joint Entropy value as
EEVi(ai) =20 jea H{ (st azigy) U (s, aigr)) } [T m(a—i);
d) Update Pr(als, Hi(s;, ar),m(a;)i, dp) as
Pr(als, He(st, ar), m(a;j)i, dp)<— Pr(als, Hy(s¢, ar), m(a;)i, dp)+
) if a = argming Hy(s, ay)
ﬁ otherwise
where,
5= { ds 1f Hii(sy,ar) > EEVi(a;)
0y otherwise

Figure 2.1. Procedure of a Cooperative Action Learner (CAL) .

determined by comparing the current estimation of the entropy value following the
current policy, 7, in the current state with that of following the joint policy. If the
individual entropy value of the current policy is smaller than the joint expected en-
tropy value, then the larger learning rate d; is used in the sense that the inhabitant
is currently “failing”.

Proposition 1 Our CAL algorithm converges to a Nash Equilibrium if the following

two conditions hold:

i) Optimization towards Believing in Rationality:

EEVi(a;) € argming, (Hy1(se, ar))Vt
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The joint expected entropy value tends to be one of the candidates of the set of all

optimal entropy values followed by our H-learning process defined previously.

ii) Convergence towards Playing in Believing:

limy oo |Hit1(se,a1) — EEVi(a;)] =0

The difference between the current entropy value following the current policy m in
the current state with that of the joint entropy value tends to 0.
These two properties guarantee that the inhabitant will converge to a stationary
strategy that is optimal given the actions of the other inhabitants. As is standard
in the game theory literature, it is thus reasonable to assume that the opponent is
fully rational and chooses actions that are in its best interest. When all inhabitants
are rational, if they converge, then they must have converged to a Nash equilibrium.
Since all inhabitants converge to a stationary policy, each rational inhabitant must
converge to the best response to the opponent choice of actions. After all, if all
inhabitants are rational and convergent with respect to other inhabitant strategies,
then convergence to a Nash equilibrium is guaranteed [8].
Proposition 2 The learning rate o (0 < a < 1) decrease over time such that it
satisfies > ° o =00 and >~ a? < oo
Proposition 3 Each inhabitant samples each of its actions infinitely often. Thus
probability of inhabitant ¢ choosing action a; is nonzero. Hence Pr;(a;) # 0
Proposition 4 The probability of choosing some nonoptimal action in the long run
tends to zero since each inhabitant’s exploration strategy is exploitive.
Hence, lim;_.o, Pr(als, Hi(s, at), m(a;)i, dp) = 0

Proposition 2 and 3 are required conditions for our Entropy learning algorithm.

They ensure that inhabitants could not adopt deterministic exploration strategies and
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become strictly correlated. The last proposition states that the inhabitants always
explore their knowledge. This is necessary to ensure that an equilibrium will be

reached.

2.4 Classification and Estimation of the Uncertainty Level

Mahalanobis distance [102] is a very useful way of determining the “similarity”
of a set of values from an unknown sample to a set of values measured from a col-
lection of “known” samples. In our scenario, the entropy values calculated by the
inhabitants once in an individual mode and on the other hand in a cooperative mode
in the smart home environment are correlated to each other. From this perspective
we have used Mahalanobis distance as the basis for our analysis which takes distrib-
ution of the entropy correlations into account compared to the traditional Euclidean
distance. The advantage of using this approach lies in extending the inhabitants to
choose the most efficient route with the minimum entropy value.

To provide the most efficient route to the inhabitants of smart home, we consider
an N-dimensional space of individual Entropy Value Level (EVL) ¢ = [p1, 02, 03, ---, ON]
evolved by N different actions at different time instant. In our model, due to coopera-
tive learning among the inhabitants, another set of EVL such as e = [ey, €9, €3, ..., en]
could be evolved due to the joint actions of the inhabitants. Thus we have two differ-
ent estimation of the entropy values. One estimation has been done due to individual
action and the other estimation is due to joint actions in a cooperative environment.
Therefore we have two points, p and e, in the N-dimensional space representing two
different EVL “states”.

Let us have two groups, G; and Gs, consisting of different inhabitants distin-
guished by their EVL measures. For example, group G; may contain inhabitants who

provide route in accordance with EVL, p, and group G in accordance with e. If we
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Figure 2.2. Geometric Interpretation of Entropy Value Level Classification.

now have one new entropy value h, the problem is to classify it as either belonging
to Gy or Go. We reduce this problem to the classification of two Gaussian groups by
means of multi-dimensional statistical analysis. For characterizing these two groups,
we choose two N-dimensional Normal (Gaussian) distributions N, (i1, V) for group
G1 and N, (uz, V) for group Gs, respectively. Therefore for these two cases, we have
the following characteristic functions:

1) p1 = (1112 pan) T for Gy assuming as “succeeding” cases, and jiy = (pio1 oz plon )
for G, assuming “failing” cases, where 7' denotes transposition. Here p; and o rep-
resent the means for all the entropy in the multivariate space defined by the EVL
in the model. These points can be called as group Entropy Centroid. For each new
entropy values, we can then compute the Mahalanobis distances from each of the
group Entropy Centroid. We would classify the EVL as belonging to the group to

which it is the closest, that is, where the Mahalanobis distance is the smallest.
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2) The Covariance matrix V = [oy;] is the same for both the distributions.

Our N-dimensional EVL measures are given by h = [hq, hg, ..., hy|. For
the two-group case, we use a linear discriminant function that can also be thought
of as multiple regression. In general, we fit a linear equation of the type: z =
x1h1 + x2ho + ... + xyhy which is a scalar product of vectors  and h, where the vec-
tor ¥ = [21, 9, ..., xy] represents unknown regression coefficients. We have defined
the following decision rule depending upon some threshold value y, such that h € G;
if z <y, otherwise h € G,.

Thus we reduce the classification issue into two problems: a) to determine the
N unknown coefficients z1, s, ....xxy so that the distance between the projections of
mean vectors py and g on vector x is maximal, and b) to choose point y between
these projections on vector x, minimizing the probability of wrong classification which

in turn provides the optimal EVL to the inhabitants.

The overall classification process is shown in Figure 2.2 for two naturally oc-

curring EVL groups G; and G,, which can be divided by the line x1hy + 22hy = ¥.

Mahalanobis distance: Mahalanobis distance [102], D2

-, 1s a generalized

measure of the distance between two correlated groups as it adequately accounts for
the correlations. If our point h belongs to group Gy, then variable z defined previously

has one-dimensional normal distribution with mean and variance as follows [102].

N N

N
Z1 = le,ull = a:T,u1 O'z = Z inxjo—ij = $TV£L' (26)
=1

i=1 j=1
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In a similar way if h belongs to group G», then z has a normal distribution with mean
z9 and the same variance.
N N N
Z9 = le,u% = QZT/LQ O'z = Z inxjo-ij = ITVI (27)
i=1 i=1 j=1

The distance between groups G; and G, can be expressed as

Dy, = (1o — )"V pz — 1) (2.8)

using Equations (2.6) and (2.7). Now we need to find out the constants 1, xo, ...z N

maximizing the so called Mahalanobis distance D?, = @2;%)2 The solution of x as

obtained from [102] is * = V"!(ua — p1). Thus, the guaranteed best entropy value
level can be determined as z = z1hy + x2he + ... + Tyhy.

Next we need to minimize the misclassification probability. Classification is
the process by which a decision is made whether a particular inhabitant belongs to
a particular group. Let N; denote the number of inhabitants that truly belong to
group G, and let Ny denote the number of inhabitants that truly belong to group
Gs. Let Ni; be the number of inhabitants that actually belong to group G; and
assigned to group G (i.e., correctly classified). Let Nj5 be the number of inhabitants
that belong to group G; but are assigned to group G, (i.e., incorrectly classified).
Similarly, N»; denote the number of inhabitants that belong to group G, but are
incorrectly classified into Gy, and N,y denote the number of inhabitants that belong
to group G, and are correctly classified into G,. Then the total number of incorrectly
classified inhabitants is Nj5 + No; and hence the probability of incorrectly classified

inhabitants is ¥ = % where N is the total number of inhabitants. Thus

denotes the probability of choosing group G; when the correct group is Gy or vice
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versa. The probability (1) of choosing group G, when the true one is G; can be

expressed as [95]

- 21) _ Nig
o, N

U1 = PrlGa|Gi] = Prlz > y|Gi] = 1 — &(Z (2.9)

where ® denotes the normal distribution function. Similarly, the probability (1) of

choosing group G; when the true one is G, can be expressed as

— N.
bo = PriGi|G) = Priz <ylgs) = 1 - o(Z ) = =2

(2.10)

Assuming the threshold value of the entropy value level y as %, the total probability

of misclassification can be expressed as

=11+ = Pr[Gs|Gi] + Pr[Gi|Gs]

- -y -2y

= 2 -e(E ) 201 - 6
- 2@(_%):W (2.11)

2.5 Resource and Comfort Management in Smart Homes

One of the objectives behind the development of smart homes is to provide
the inhabitants with maximum possible comfort at minimum possible energy con-
sumption. However, the inhabitants’ location uncertainty inside the house leads to
uncertainty in their activities and operation of smart indoor appliances. Once this
uncertainty is minimized for the entire set of inhabitants, the house becomes intelli-
gent enough to make more accurate estimations of the inhabitants’ activities and aids
them with smart control of automated devices. The novelty of our approach lies in

the development of mobility-aware resource management framework, which considers
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multiple inhabitants inside the house. Efficient estimation of most likely locations
and routes used by these set of inhabitants helps in pro-active, automated operations
of smart devices, thus developing an amicable environment inside the house, while

conserving the energy dissipation as much as possible.

2.5.1 Mobility-Aware Energy Conservation

The energy consumption over the entire smart home needs to be optimized for
reducing the maintenance cost. At the same time we need to consider the inhabi-
tant’s comfort by reducing the explicit manual operation and control of smart devices
and appliances. Today’s houses mostly use static energy management scheme, where
a fixed number of devices (electric lights, fans, etc) are kept on for a certain fixed
amount of time. Intuitively, this results in sufficient loss of valuable energy inside
the house. One obvious solution is to manually control these devices while leaving or
entering particular locations inside the house. However, such manual operations are
in the opposite pole of inhabitants’ comfort and automation. Hence, a smart energy
management system needs to be designed that will operate in a proactive fashion
while considering unnecessary wastage of in-house resources. We argue that location
awareness is the key behind such energy management framework. The automated
devices (e.g., lights and fans) operate in a pro-active mode to conserve energy during
the absence of any inhabitant in particular locations inside the house. These de-
vices also attempt to bring the indoor environment in an amicable condition before
the user actually enters into those specific locations. Also, whenever a particular
location/region of the house becomes unoccupied by the inhabitants, the automated
devices are switched off to conserve the energy.

Let P;; denote the power of the i-th device in the j-th zone, n denote the max-

imum number of devices which remained turned on in the particular zone, R denote
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the number of zones, t; <t <ty denote the time that device remains turned on, and
p(t) denote the probability density function of uniform time distribution. Then the

expected average energy (€) consumed due to lights and devices will be given by [94]:

to —t1 + A
2

g=2" 1T

R

> Py, (2.12)

1 =1

J

where A; is the time-lag between the time of device-operation and the first inhabi-

tant’s entrance in the zone (e.g., room).

UNIT HEAT EXTRACTION
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Figure 2.3. Room Air Temperature Weighting Factors.

2.5.2 Smart Temperature Control System

We have developed a distributed temperature control system in various locations
of the house, for energy conservation. The temperature control system is intelligent
enough to bring the temperature of specific locations (inside the home) into a comfort-
able one before the inhabitant enters those locations. The operation of temperature

control is termed as pre-conditioning. The time needed for this pre-conditioning is
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pre-conditioning period and the rate of energy required during this period is known
as pre-conditioning load. When the inhabitant is about to leave a particular loca-
tion, say [, the predictive location management system estimates its most probable
set of routes and near future location (say /). The pre-conditioning period (Wr) is
obtained by estimating the time taken by the inhabitant to move from [ to ls, i.e.,
W = t;, —t;,. During this period, the constant rate of energy at full capacity is sup-
plied to bring down the temperature to the comfort level. The shorter the duration
of pre-conditioning period Wy, the larger is the pre-conditioning load. In order to
estimate this load, it is required to know the characteristics of air temperature vari-
ation caused by constant unit rate of heat extraction from the specific locations. As
depicted in Figure 2.3, Wr is often termed as room air temperature weighting factors
for unit heat extraction [64]. Modern air-conditioning systems usually express this in
time series, which might be defined as temperature weighting factors for unit heat
extractions. If H(t) and ¢(t) respectively denote heat extraction and air temperature

deviation at time ¢, then the relation is:
H(t) =Y W.(j)e(t - ), (2.13)

where W, (j) is known as the weighting factor for heat extraction in the indoor envi-
ronment. In our smart home, we have considered three major components of W, (j)
responsible for heat exchange, namely walls, glass-windows and furniture. Thus, we

have,

Wz(]) = sz<j)+wzg<j)+wzf(j)
D N ARG

kg
=2 Zyi )y (0) = C4U, (2.14)
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where Z,,(i,j), Z,(i,j) are respectively Z-response factors [64] for i-th wall and glass

window, A, (7), Ay(7) are the respective areas of i-th wall and glass window, C/ is the
heat capacity of the furniture and U is the volume of room space. Using the values
of H(t) and p(t), Vt = 0 to oo, we can derive a series of equations from Equation

(2.13):

W.(0)p(0) = 1
W.(0)p(1) + W.(1)p(0) = 1
W.(0)p(2) + W.(1)p(1) + W.(2)p(0) = 1

(2.15)

The solutions for ¢(7) for all j can now be obtained successively from the above set of
equations. The temperature deviation without heat extraction until the occupancy of
the inhabitants in that particular location is calculated first. Let the total tempera-
ture deviation during start of occupancy be represented by A(y). Let Hp(t) denotes

the rate of heat extraction during ¢ hours of pre-conditioning. Then
Hpo(t) = —22 (2.16)

In the cooling mode, once the air conditioning is stopped (inhabitant’s departure
from specific location of the house), the temperature of that region increases rapidly.
The same mechanism is repeated whenever the inhabitant is about to move into the
specific locations inside the house. The pre-conditioning period is followed by the

conditioned period, when the room temperature is kept constant at a reference level.

2.5.3 Estimation of Inhabitants’ Comfort
While the goal behind the deployment of smart homes lies in providing the

inhabitants with sufficient comfort, this comfort is actually a subjective measure ex-
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perienced by the inhabitants themselves. Thus, it is quite difficult to objectively

estimate their comfort in smart homes. In-building climate, specifically temperature,
plays an important role in defining this comfort. Moreover, the amount of manual
operations and the time spent by the inhabitants in performing the house-hold ac-
tivities also have significant influence on the inhabitants’ comfort. We define the
comfort as a joint function of temperature, manual operations and time spent by the
inhabitants. Obviously, increase in the temperature-deviation, the number of manual
operations and the amount of time spent reduces the overall comfort experienced by
the inhabitant. If A(p), M and 7 represent the temperature deviation, number of
manual operations and time an inhabitant spent in house-hold activities, then the

associated comfort for that inhabitant is represented by the following equation:

Comfort = f (@, %, %) (2.17)

It should be noted that the reduction of joint entropy by using the co-operative learn-
ing algorithm, described in Figure 2.1, endows the house with sufficient knowledge
of the inhabitants’ contexts. This helps in accurate estimate of current and future
contexts (location, routes and activities) of the multiple inhabitants present in the
house. Successful estimate of these contexts results in adaptive control of environ-
mental conditions and automated operation of devices. This is necessary to reduce

the empirical values of A(y), M and 7, thereby increasing the overall comfort.

2.6 Simulation Experiments

In this section, we study the performance of our mobility-aware resource opti-
mization framework for multi-inhabitant smart home. After describing our simulation
environment and assumptions, we present the performance results.

We have developed an object-oriented discrete-event simulation for support-
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ing inhabitants’ movements, estimation of their locations, and comfort management
scheme. The data used for simulation is obtained from the X10 controller Active-
Home kit [117] deployed in the appliances in the MAVHome [27]. The time spent by
the inhabitant in different locations is obtained from the motion-sensors placed along
the walls. The different events are inhabitants’ actions (behaviors), which result in
the probabilistic movement of one or more inhabitants from one station to another
depending on their lifestyle. An event queue is used for holding and scheduling these
dynamic events. During the inhabitants’ probabilistic movements across the house
from one location to the another, the set of sensor-ids are collected. The inhabitants
are also assumed to follow a different lifestyle in the weekends and holidays, with
more household activities than during the weekdays.

Before presenting the details of the experimental results, let us enumerate a set
of common assumptions used in our simulation: (i) The co-operative, game-theoretic
framework for uncertainty minimization is performed in the smart home with an av-
erage number of 5 regular inhabitants and 3 visitors. (ii) The time spent at each
destination is assumed to be uniformly distributed between the maximum and mini-
mum stay at that particular destination. This maximum stay is different for regular
inhabitants and visitors. (iii) The delay between sensory data-acquisition, processing
and triggering the actuators is assumed to be negligible. (iv) The decision-making
associated with the resource and comfort management is performed as the inhabitants
leave every location for their next station. (v) The entire set of results is presented
by sampling every sensor at a time and observing the simulation environment for a

period of 10 weeks.
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Figure 2.4. Variation of Entropy (Uncertainty).

2.6.1 Performance Results

The main objective of the co-operative, learning framework is to reduce the
location uncertainty (entropy) associated with individual and the entire set of inhab-
itants. Figure 2.4 shows the variation of the individual and joint entropy over the
entire time period of the simulation. It should be noted that the game-theoretic learn-
ing framework reduces the joint entropy quickly to a low value. While the entropy
of every inhabitant lies in the range ~ 1-3, the visitor’s entropy is typically higher
~ 4. This is quite logical as the house finds the location contexts of the visitors more
uncertain than the residents (inhabitants). The joint entropy of all inhabitants and
visitors is even reduced to a further lower value (< 1). This entropy minimization

procedure formulated by co-operative learning helps increase the efficiency of the lo-
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Figure 2.5. Accuracy in Location Estimation.

cation estimation technique. Figure 2.5 demonstrates that our proposed co-operative
learning strategy is capable of estimating the location of all the inhabitants with al-
most ~ 90% accuracy within 3 weeks span. The house takes this time to learn the
joint movement patterns of all inhabitants. The success rate of location estimation
for visitors is however 50%-60%, as the house finds it difficult to get the knowledge
of the random visitors.

Efficient location estimation is a key factor to meet the minimum energy con-
sumption in the house. While moving from a particular zone to another, correct
estimation of location and routes helps in triggering the actuators only along those
predicted (estimated) locations and routes, thereby attempting to minimize the en-

ergy consumption. In Figure 2.6 we have compared this amount of energy consump-
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tion scheme resulting from our mobility-aware resource management framework with
the static energy plans and observed that our scheme is capable of saving almost 50%
of the energy consumption in comparison with today’s houses, using static energy
model. We believe that this scheme has the power to reduce the maintenance cost
by conserving sufficient amount of energy. As discussed earlier, the comfort of an
individual inhabitant is a subjective quality and is rather difficult to quantify. While
there exists no appropriate model for analyzing this comfort, we rely on measuring
the individual parameters responsible for this comfort. Figure 2.7 points out that suc-
cessful estimation of inhabitants’ routes and locations reduces the manual operations
performed by the inhabitants and the time required for performing those operations.

The scheme results in almost ~ 12%-17% manual operations and time spent by
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the inhabitants in comparison to the current houses using static energy management

scheme.

2.7 Summary

In this chapter, we have developed a novel mobility-aware resource manage-
ment framework for a multi-inhabitant smart home [96]. Characterizing the mobility
of inhabitants as a stationary, ergodic, stochastic process, our framework uses the
information theoretic measure to estimate the uncertainty associated with all the
inhabitants present in the house. A co-operative learning paradigm based on dy-
namic game theory is formulated, which learns and estimates the inhabitants’ loca-

tion (route) profiles by minimizing the overall entropy (uncertainty) associated with
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it. Automated activation of devices and conservation of energy along these estimated
locations and routes provide the inhabitants with necessary comfort at a near optimal
cost. We believe that this is an integral step toward realization of smart pervasive
computing paradigm. In the next chapter we will focus on multi-inhabitant joint lo-
cation uncertainty problem from non-cooperative point of view using stochastic game

theory.



CHAPTER 3

NON-COOPERATIVE CONTEXT-AWARE RESOURCE
MANAGEMENT FRAMEWORK

3.1 Introduction

Advances in smart devices, mobile wireless communications, sensor networks,
pervasive computing, machine learning, middleware and agent technologies, and hu-
man computer interfaces have made the dream of smart environments a reality. Ac-
cording to Cook and Das [22], a “smart environment” is one that is able to au-
tonomously acquire and apply knowledge about its inhabitants and their surround-
ings, and adapt to the inhabitants’ behavior or preferences with the ultimate goal to
improve their experience in that environment. The type of experience that individuals
expect from an environment varies with the individual and the type of environment
considered. This may include the safety of inhabitants, reduction of cost of maintain-
ing the environment, optimization of resources (e.g., energy bills or communication
bandwidth), or task automation. An instance of such an indoor environment is a
smart home (e.g., MavHome!) that perceives the surroundings through sensors and
acts on it with the help of actuators.

An important characteristic of such an intelligent, ubiquitous computing and
communication paradigm lies in the autonomous and pro-active interaction of smart
devices used for tracking inhabitants’ important contexts such as current and near-
future locations as well as activities. “Context awareness” is indeed a key to build a
smart environment and associated applications. For example, the embedded pressure

sensors in the Aware Home [87] capture inhabitants’ footfalls, and the system (i.e.,

'Managing an Adaptive Versatile Home [27]
35
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smart home) uses these data for position tracking and pedestrian recognition. The
Neural Network House [82], the Intelligent Home [77], the Intelligent Housen [57]
and the MavHome [27, 118] projects focus on the development of adaptive control
of home environments by also anticipating the location, routes and activities of the
inhabitants. The Active Badge [45] and Active Bat [46] takes the help of infra-red
and ultrasonic time-of-flight techniques to provide indoor location tracking frame-
work. On the other hand, MIT’s Cricket Location Support System [92] delegates the
responsibility of location reporting to the mobile object itself. RADAR [4], another
RF-based indoor location support system uses signal strength and signal-to-noise ratio
to compute 2-D positioning. Microsoft’s Easy-living and Microsoft Home [72] projects
use real-time 3D cameras to provide stereo-vision positioning capability in an indoor
environment. Intelligent prediction of these contexts helps in efficient triggering of
mobility-aware services.

Now, it is not difficult to understand that an inhabitant’s mobility and activity
create an uncertainty of their locations and hence subsequent activities. In order to
be cognizant of his contexts, the smart home needs to minimize this uncertainty as
captured by Shannon’s entropy measure [26]. An analysis of his daily routine and life
style reveals that there exist some well defined patterns of these contexts. Although
these patterns may change over time, they do not change too frequently and thus can
be learned. This simple observation leads us to assume that the inhabitant’s mobility
or activity is a piece-wise stationary, ergodic, stochastic process with an associated
uncertainty (entropy), as originally hypothesized by Bhattacharya and Das [7] for
personal mobility tracking in wide area wireless cellular networks.

In an earlier work [94], we designed an optimal algorithm for location (activity)
tracking in an indoor smart environment, based on dictionary management and online

learning of the inhabitant’s mobility profile, followed by a predictive location-aware
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resource management (energy consumption) scheme for a single inhabitant smart
home. However, the presence of multiple inhabitants with dynamically varying pro-
files as well as preferences make such tracking much more challenging. This is due
mainly to the fact that the relevant contexts of multiple inhabitants in the same envi-
ronment are often inherently correlated and inter-dependent on each other. Therefore,
the learning and prediction (decision making) paradigm needs to consider the joint
(simultaneous) location/activity tracking of multiple inhabitants. In another prelim-
inary work [97], we proposed a cooperative entropy learning policy for location-aware
resource management in multi-inhabitant smart homes. This approach adapts to the
uncertainty of multiple inhabitants’ locations and most likely routes, by varying the
learning rate parameters and minimizing the Mahalanobish distance [95]. However,
the complexity of multi-inhabitant location tracking problem was not characterized
which we address in this Chapter [98].

Furthermore, hypothesizing that each inhabitant in a smart home behaves in
such a way as to fulfill his own objectives and maximizes his utility, the residence of
multiple inhabitants with varying preferences might lead to conflicting goals. Thus,
a smart home must be intelligent enough to strike a balance between multiple pref-
erences, eventually attaining an equilibrium state. If each inhabitant is aware of
the situation facing all others, a Nash equilibrium is a combination of determinis-
tic or randomized strategies, one for each inhabitant, from which no inhabitant has
an incentive to unilaterally move away. This motivates us to investigate the multi-
inhabitant location tracking problem from the perspective of stochastic game theory,
where the inhabitants are the players of the game. The goal here is to achieve a Nash
Equilibrium so that the system (i.e., smart home) is able to probabilistically predict
the inhabitants’ locations and activities with sufficient accuracy in spite of possible

correlations.
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The major contributions of this work are summarized below.

We characterize the joint location uncertainty (entropy) of multiple inhabitants
in a smart environment. In particular, we prove that optimal tracking and hence
prediction of location across multiple inhabitants is an NP-hard problem where
optimality is defined as attaining a lower bound on entropy.

Based on the stochastic game theory and following the Nash Q-learning ap-
proach, we develop a novel Nash H-learning framework that exploits the cor-
relation of mobility patterns across multiple inhabitants and attempts to min-
imize the joint uncertainty. This is achieved by developing a new joint utility
function of entropy. We prove that our game theoretic framework attains Nash
equilibrium. Minimizing the joint utility function helps in accurate learning and
estimation of inhabitants’ locations and activities. We also derive worst-case
performance bounds of our proposed framework.

Although there may exist an exponential number of possible routes (sequence
of locations) that the inhabitants may follow in a smart indoor environment,
we have developed an efficient scheme to predict the most likely routes jointly
followed by multiple inhabitants. This scheme is based on the concepts of
joint-typical-set of sequences and asymptotic equipartition property (AEP) in
information theory, that provide only a small subset of sequences with a large
probability mass.

The knowledge of the inhabitants’ contexts such as locations and associated ac-
tivities, helps the smart home control automated devices in an intelligent man-
ner, thus providing sufficient comfort to the inhabitants. The predictive Nash
H-learning framework leads to an efficient mobility-aware resource management
scheme that brings intelligence automation with reduced energy consumption

and hence the overall maintenance cost of the smart home.
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e We perform extensive experiments using a combination of simulation traces
and real data collected from the X10 controller ActiveHome kit [117], deployed

in the MavHome [119]. Experimental results demonstrate that the Nash H-

learning framework performs better than predictive schemes optimized for only

individual inhabitants’ location/activity.

The rest of the chapter is organized as follows. Section 3.2 brings out the mo-
tivation and illustrates with the scenario of an indoor floor plan of a smart home.
Section 3.3 reviews an existing information theoretic approach for optimal location
tracking of individual inhabitants, and also discusses its limitation in optimally han-
dling multiple inhabitants. In Section 3.4 we prove that the optimal (joint) location
prediction problem across multiple inhabitants is NP-hard. The game theory based
Nash H-learning framework that minimizes joint uncertainty associated with multiple
inhabitants, is then presented in Section 3.5. Subsequently, we prove the convergence
to Nash equilibrium and derive worst-case performance bounds. Section 3.6 describes
how to capture the inhabitants’ most likely routes and Section 3.7 develops a predic-
tive, mobility-aware resource management scheme in multi-inhabitant smart homes.
Experimental results in Section 3.8 delineates the efficiency of our proposed frame-

work, and Section 3.9 concludes this chapter.

3.2 An Illustrative Example

Figure 3.1 gives the floor-plan of a typical smart home together with the place-
ment of motion-sensors along the inhabitant’s routes. A quick look into the floor-plan
reveals that this smart home’s coverage area can be partitioned into different zones.
While moving from one zone to another, the inhabitant goes through an array of
coverage areas of different sensors along the path. When the system needs to contact

the inhabitant, it will initiate a prediction scheme to predict the inhabitant’s current
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Figure 3.1. Example Floorplan of a Smart Home.

location together with his most likely paths. In order to control the location uncer-
tainty of the inhabitant, the system also relies on location information provided by
the in-building sensors from time to time. This helps in reducing the search space for
the next prediction. As shown in Figure 3.2, the smart home network correspond-
ing to Figure 3.1 can be represented by a connected graph G = (V,E), where the
node-set V.= {A,B,C,D,E, F,G,K,L,M,0,P,Q,R,W,...} represents the zones
and the edge-set E represents the action/movement between a pair of zones.

As a motivating example for multi-inhabitant tracking, let us consider two in-
habitants in our smart home indoor environment. We assume that inhabitant 1 starts
from zone (node) C' and attempts to reach to the destination zone (goal) G, while

inhabitant 2 starts from G and wishes to reach to the destination A. Assume an
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Figure 3.2. Graph Representing the Connectivity of Zones/Locations.

inhabitant can cross only one zone at a time, and all possible edges through which
he can travel define the degree of the currently residing node. Reaching the goal
earns a positive reward for the inhabitants. In case both inhabitants reach their goals
at the same time, both are rewarded with positive payoffs. They do not know the
locations of their goals at the beginning of learning period. Furthermore, the inhab-
itants choose their actions simultaneously. They can observe the previous actions of
both inhabitants and the current state (joint location). They can also observe the
immediate rewards after both inhabitants choose their actions.
The objective of an inhabitant in this case is therefore to reach its goal /destination

zone with a minimum number of states yielding a minimum value of the cumulative
entropy associated with the trace path. We will follow the above scenarios throughout

this chapter to validate our proposed model.

3.3 Single Inhabitant Location Tracking
As mentioned earlier, an inhabitant’s mobility creates an uncertainty of his
location and thus activity. In order to minimize such uncertainty and adapt to fluc-

tuations, one needs to build personal mobility profiles dynamically. From an in-
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formation theoretic perspective, entropy [26] is an appropriate measure to quantify
this uncertainty. In the context of personal mobility tracking in cellular wireless net-
works, Bhattacharya and Das [7] proved that it is impossible for any location tracking
scheme to track down an inhabitant by exchanging any less information, on the av-
erage, than the uncertainty generated due to its mobility. A model-independent,
predictive framework based on on-line compression and learning, was also proposed
in [7] that minimizes location uncertainty and meets this information theoretic lower
bound on entropy.

In smart indoor environment, the above framework was adopted in [94] to de-
rive a location prediction scheme that is optimal only for single inhabitants. This
framework is based on symbolic interpretation of the inhabitant’s movement (mobil-
ity) history or profile, as captured by sampling the in-building smart devices such as
sensors, RFID readers, or pressure switches. More precisely, the inhabitant’s move-
ment history is assumed to be a string 141515 ... of symbols (e.g., sensor-ids) where
v; is an element of the alphabet set, ¥). Given that our daily life has repetitive ac-
tivity patterns, we argue that the inhabitant’s current location is merely a reflection
of his mobility/activity profile that can be learned over time in an on-line fashion.
Characterizing the mobility as a probabilistic sequence of symbols suggests that it
can be defined as a stochastic process V = {V;}. The repetitive nature of identifi-
able patterns (routes) adds piece-wise stationarity as an essential property, leading to
PrlV; = v] = Pr[Viy, = 14, for all y; € 9 and for every shift . The family of optimal
Lempel-Ziv text compression algorithms such as LZ-78 [123] is suitable for efficient
encoding of these variable length routes or contexts (substrings of symbols from the
mobility profile) such that the conditional entropy corresponding to the uncertainty

due to the inhabitant’s mobility is minimized. For details, refer to [7, 94].
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Before proceeding further, let us formally define entropy and conditional entropy
of random variables of a stochastic process from information theoretic stand point
26].

Definition 1 For a discrete random variable X of a stochastic process, with probabil-
ity mass function p(x), its entropy is defined as H(X) = = 1 p(x)1g p(x). When
p(x) =0, the limiting value “lim, o plgp = 07 is used.

Definition 2 For a set {Vi,Va,...,Vi} of k discrete random wvariables with joint
probability distribution p(vy,...,vg) = PriVi = v,..., Vi = ), Yy € 0, the
joint entropy is giwven by H(Vi, Vo, ... Vi) = ZleH(V; | Vi, Va,...,Vi1), where
H(V; | Vi,Va,..., Vi) is the conditional entropy of random wvariable V; given the
history of previous (i — 1) random variables Vi, Vo, ... Vi_y.

The additive terms on the right-hand side of the equation in the above definition
carry necessary information which makes the higher order context models (explained
in the next subsection) more information-rich as compared to the lower order ones.

The above location tracking strategy is optimal for individual inhabitants only.
This is because it treats every inhabitant independently and fails to consider the
correlation between the activity and hence mobility patterns of multiple inhabitants
within the same home environment. Intuitively, independent application of the above
scheme for each individual actually increases the joint location uncertainty. Mathe-
matically, this can be observed from the fact that conditioning reduces entropy [26].
Result 1 For a stochastic ergodic process V containing the set of random variables
Vi, Vo, ..., Vi, with distribution Pr(Vi = vy, Vo =1, ..., Vi = 1),

k k
H(V)=HW,Va,....Vi) =Y _H(Vi[Vi,....Vil1) <> H(V})

i=1 i=1
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Therefore, the optimal location/activity tracking problem across multiple inhabitants
needs to incorporate their correlation so as to minimize the joint uncertainty as mea-
sured by the entropy.

Before presenting the complexity of the location prediction problem across mul-
tiple inhabitants in the next section, let us illustrate the concept of different order
contexts in the location profile represented in the symbolic domain and compute their

entropy leading to models of different orders.

3.3.1 Contexts in Location Profile

Let us consider the movement history of a typical inhabitant within the smart
home as shown in Fig 3.1. For simplicity, we only record the movement within the
different zones of the MavHome network. This means that the inhabitant must be in
one of the zones {A, B,C, D, E,F,G, K, L, M,0, P,Q, R,W ...} at any point of time.
Suppose the inhabitant wakes up at 7:00 am in the morning in a weekend day. We
track down his movement profile until 7:00 pm in the smart home. Table 3.1 shows the
time at which the zone has been changed and reported to the system. Consequently,

all that the system captures in the location profile is a sequence of zone-id’s.

Table 3.1. Inhabitant’s Location Profile between 7:00 am and 7:00 pm

Time 9:0bam | 9:3lam | 9:4bam | 1:15pm | 2:02pm
Changing zone M - R\ R— M | M —-R| R—-M | M — R
Time 2:42pm | 3:15pm | 4:05pm | 4:22pm | 4:44pm
Changing zone R K |K—-D | D—-K | K—R| R—M

From Table 3.1, let us now compare and contrast the sample sequences gen-

erated by the inhabitant’s movement with respect to time threshold and his action
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which is basically the transition from one zone to another. For the time based scheme,
we have considered two values of T, i.e., 1 hr and 1/2 hr. Observe that a smaller
value of T captures finer route granularities of the inhabitant as depicted in Table 3.2.
Regarding the action based scheme, A = 1 captures movement in the finest details
due to its one state transition feature at a time compared to A = 2 where we have
considered the state after a two step transition. A combined approach of time and
action based schemes makes the movement history more informative as it traces in
detail the routes taken by the inhabitant. The last row of Table 3.2 shows the se-
quence which generates with an hourly basis starting from 7:00am in the morning, as

well as when the zone has been changed.

Table 3.2. Zone Sequence Extracted from the Location Profile of the Inhabitant

Time dependent (T = 1hr) MMMRRRRMKDMMM ...
Time dependent (T = 1/2 hr) | MMMMMRRRRRRRRMMRKDDKMMMMM ...
Action dependent (A4 = 1) MRMRMRKDKRM ...
Action dependent ( A = 2) MMMKKM ...
Time and Action dependent MMMRMRRRRRMMRKKDDKRMMMM ...
(T = 1hr, A=1)

The iid (independent and identically distributed) model [7] takes the first step
towards learning from movement history. Unfortunately, the iid model does not carry
any information about the symbols order of appearance and falls short in such situa-
tions which we call order-0 Markov model in our context. The single step transition
or order-1 Markov model carries a little more information about the ordering, at least
to the extent of one symbol context.

In the #d model, where V;’s are independently and identically distributed, the

relative frequencies of the symbols are listed in Table 3.3. Thus the inhabitant’s



Table 3.3. Contexts of Orders 0, 1 and 2 with Occurrence Frequencies

Order-0 Order-1 Order-2

M(10) | M|M(6) R|K(1) | M|MM (3) M|RM (2) M|KR(1)

R(8) R|M(3) K|K(1) | RIMM(2) RIRM (1) DIKK(1)

K(3) M|R(3) D|K(1) M|MR(1) M|RR(1) D|KD(1)

D(2) R|R(4) K|D(1) RIMR(1) R|RR(3) R|DK(1)
KI|R(1) D|D(1) K|MR(1) K|RK(1) K|DD(1)
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residence probabilities are estimated as my, = 10/23,7p = 8/23, 71 = 3/23,7p =
2/23,and ma =g =Te =Tp =Tp =My =T =Tp =g =g = 7p = 0.

The corresponding entropy value is given by,

HY) = =Y p)lgpv)=-> mlgm,
vey vey
10 23 8 23 3 923 2 923
_ 0,23 8 23 3,28 2,623 .., 1
53970 T3y T glay T ogley = L T4bits (3-1)

Similarly, let us compute the entropy value for order-1 Markov model. From

the Markov chain in Figure 3.3, the probability transition matrix is given by

(23 13 0 0
3/8 1/2 1/8 0
0 1/3 1/3 1/3
0 0

1/2 1/2 |

Let IT = [my, g, i, 7|7 be the steady state probability vector. Solving for IT =
[Ix P with mp+7mr+7x+7p = 1, we obtain 7wy, = 9/22, 7 = 4/11, 75 = 3/22,7p =
1/11, and my = g = ¢ = Mg = Tp = Tw = T = "o = Tg = ng = 7p = 0.

Therefore, the entropy is given by
- Zﬂ'i (Z P;jlg Pi,j)

9 1 4 1 1 3 1 1 1

1.194bits

H'(V)
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Now, let us compute the conditional entropy

1/2
13 1/3
1/8 ‘ 1/3
SOOI e
N~~~
3/8 1/3 1/2
Figure 3.3. Order-1 Markov Model for Location Profile.

H(V2|V1) = —Zﬂi (Zpi,jlgpi,j)
i J

10/2 3 1 8 (3 8 1 1 3 1 2 1
= 2 Zg2 4 S (219 1 2ig2 4 2 2 (3% = (2% Z1g2
23(392+393>+23(893+2g+898)+23<3X393)+23< X2g>
—  1.182bits (3.3)

Since the joint entropy is given by

k
H(Y) = HVi,Va,...,Vi) = > H(Vi|Wi,...,Vioy)

i=1
we get H(Vy,Va) = H(Vy) + H(Va|V1) = 1.742 + 1.182 = 2.924 and by taking the
running average we arrive at an estimate of 1.462. Thus, we observe that the joint

entropy value is less than the individual entropy value according to the Result 1.

3.4 Multi-Inhabitant Location Prediction

The multi-inhabitant location prediction problem is defined as follows: For a
group of n location predictions, one for each of n inhabitants residing in the smart
home consisting of L different locations, the objective is to maximize the number of
successful predictions. The following theorem characterizes the complexity of this

problem.
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Figure 3.4. Analogy of Set-Packing Problem.

Theorem 1 The problem of maximizing the number of successful predictions of mul-
tiple inhabitants’ locations in a smart home is NP-hard.
Proof: We reduce this problem to the Set Packing problem, which is known to be
NP-hard [37]. The Set Packing problem arises in partitioning elements under strong
constraints on what is allowable partitions. The key feature is that no element is
permitted to be covered by more than one set. As shown in Figure 3.4, the input to
the Set Packing problem is a set S = {S;1,Ss,...,S¢} of € subsets of the universal
set U={1,2,...,n}, where n is the number of prediction requests as defined above.
The goal is to maximize the number of mutually disjoint subsets from S. In other
words, given the condition that each element from the universal set U can be covered
by at most one subset from S, the objective is to maximize the number of mutually
disjoint subsets from S. In order to prove the theorem, we assume that each location as
identified by the sensor is occupied by at most one inhabitant. The sensor deployment
and coverage in a smart home is assumed to be dense enough to make this distinction.
The maximum successful prediction process in a smart home having L locations

and n prediction requests, is equivalent to the Set Packing problem with 7 subsets
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and a universal set U of L elements. At any instance of time, an inhabitant i can
actually reside under the coverage of one or more sensors (locations), say [;. Then the
prediction process, predict;, for inhabitant 7 is a collection of its possible locations,
i.e., predict; = {l;}. Every such prediction is mapped to a particular subset S;. Each
single location (sensor coverage-area) of the smart home is mapped to an element of
the subset S;. The strategy that maximizes the number of successful predictions is
basically the one that maximizes the number of disjoint subsets from S. Thus, we

conclude that the multi-inhabitant optimal location prediction is NP-hard. e

Therefore, it is computationally infeasible to find an optimal strategy for max-
imizing the number of successful location predictions across multiple inhabitants. In
the following, we devise a suboptimal solution based on game theory. It attempts to
reach an equilibrium and maximizes the number of successful predictions across all

inhabitants.

3.5 Predictive Nash H-learning Framework

Hypothesizing that every inhabitant wants to satisfy his own preferences about
activities, we assume he behaves like a selfish agent to fulfill his own goals. Under this
circumstance, the objective of the system is to achieve a suitable balance among the
preferences of all inhabitants residing in the smart home. This motivates us to look
into the problem from the perspective of non-cooperative game theory where the in-
habitants are the players and their activities are the strategies of the game. Moreover,
there can be conflicts among the activity preferences. Our proposed game theoretic
framework aims at resolving these conflicts among inhabitants, while predicting their

activities (and hence locations) with as much accuracy as possible. Before going into
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the details of our framework, let us briefly review the relevant concepts of game theory

required for our purpose.

3.5.1 Stochastic Games and Equilibrium

Stochastic games model multi-agent systems where the agents are the house
and the inhabitants, pursuing their individual (often conflicting) goals. We assume
there exists no enforceable agreement on the joint actions of the inhabitants.
Definition 3 [58/ An n-player stochastic game, T, is defined as a tuple < S, A', ... A",
rt...,r" p >, where S is the state space and A is the action space of player i;
ri: Sx A x A% .. x A" — R is the payoff or reward function for player i at instant
t;p:Sx A x A% x A" — A(S) is the transition probability map, where A(S) is
the set of probability distributions over the state space S.

Given a state s, the inhabitant agents independently perform their actions
at,...,a", for a* € A, and receive rewards ri(s,a',...,a"), for i = 1,...,n. The
state s changes to the next state s’ based on transition probabilities, satisfying the
constraint

Z p(s'|at,...;a") =1
s,8'€8

In a stochastic game, the objective of each player is to maximize the sum of
rewards, with factor 3 € [0,1). If 7 denotes the strategy of player i for choosing the

optimal state action pair , then for a given initial state s, the objective of player 7 is

to maximize the sum of rewards:

Ri(s, w72, ..., 7" = ZﬁtE(THWI, c, T S =8) (3.4)

where E(.) is the expected value.
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Definition 4 [58/ A Nash equilibrium is a joint strategy where each agent is a best

response to the others. For a stochastic game, each agent strategy is defined over the
entire time horizon of the game. Hence, in a stochastic game ', a Nash equilibrium
point is a tuple of n strategies (wl, 7%, ..., 7 such that for alls € S, i=1,...,n

and V't € 1T,

where I1' is the set of all strategies available to agent i.

A fundamental result related to equilibria in stochastic games states that every n-
player stochastic game possesses at least one Nash equilibrium point in stationary
strategies [88]. Let us now develop a suitable multi-agent learning framework that

maximizes the number of successful location predictions in smart homes.

3.5.1.1 Representation of Stochastic Games

Considering the previous example, the individual action space of inhabitant i
is given by a’ = {all possible edges from the current residing node} for i = 1,2.
The individual state space is s° = {A,B,C,D,E,F,G,K,L,M,0,P,Q,R,W} for
i = 1,2. The joint state space is given by S = {(4, B), (A,C),..., (W, R)} where a
state s’ = (s' x s?) represents the inhabitants’ joint location.

Instead of calculating the entropy at each and every step, we have considered
three different values of entropy to generate Nash H values from our proposed al-
gorithm. If inhabitant 1 and inhabitant 2 respectively reach their goal/destination
zones, then they achieve the minimum entropy value (assume 0.01 instead of 0 for our
calculation purpose). Here we define the reward (r?) function as inversely proportional

to this entropy value. Thus in this case , ri = 100.
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If they would come into the same state, we consider the entropy as 1.0 and
added a penalty factor with the reward function for accelerating the convergence
towards the goal. Therefore, ri = —1.

If they appear in any other distinct zones than the destination, then we assume
entropy achieves a higher value and reward (r!) becomes 0.

So, if an inhabitant reaches the goal state, it receives a reward of 100. If it
reaches another state without colliding with the other inhabitant, its reward is zero.
If it collides with the other inhabitant, it receives —1 and both inhabitants are bounced
back to their previous states. Let s’ = /(s,a) be the potential new state resulting

from choosing action a in state s. The reward function is, for i = 1,2, is defined as

100, ifé(s, al) = Goal;
ri=1q =L ifl(s},ab) = ((s?.a?) and ((s?,a?) # Goal;, j = 1,2 (3:6)

0, otherwise

3.5.2 Entropy (or H) Learning

The concept for general-sum games builds from the Nash equilibrium [83], in
which each player effectively holds a correct expectation (generally expressed in terms
of payoff, reward or utility value) about the other players behaviors, and acts ratio-
nally with respect to this expectation. Acting rationally means the agent follows the
strategy which corresponds to a best response to the others’ strategies. Any devi-
ation would make that agent worse off from achieving that equilibrium point. In
extending the @-learning [58] to our multi-inhabitant smart home context aware re-
source management problem we adopt the basic framework of general sum stochastic
games. In single-agent systems, the concept of optimal ()-value can be defined in
terms of an agent maximizing its own expected payoffs with respect to a stochastic

environment. In multiagent systems, ()-values are contingent on other agents strate-
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gies. In the framework of general-sum stochastic games, the optimal Q)-values are
the subset of the ()-values received in a Nash equilibrium, and referred as Nash -
values. The goal of learning is to find Nash )-values through repeated game. Based
on learned )-values, the agent can then derive the Nash equilibrium and choose its
actions accordingly. In Nash @Q-learning [58] algorithm, the agent attempts to learn
its equilibrium )-values, starting from an arbitrary guess. Thus here the Nash Q-
learning agent maintains a model of other agents (-values and uses that information
to update its own (Q-values based on the payoff value and takes their equilibrium
actions in each state.

Our proposed Nash H-learning algorithm in this section enhanced the Nash
(Q-learning algorithm in that it captures the location uncertainty in terms of entropy
at each and every step of the inhabitants’ path. Thus, in our case, Nash H-value
is determined which satisfies both Nash condition as well as our imposed entropy
minimization constraint.

We assume that the inhabitants are fully rational in the sense that they can
fully use their location histories to construct future routes. Each inhabitant ¢ keeps
a count CJ representing the number of times an inhabitant j has followed an action
a € A. When the game is encountered, inhabitant i believes the relative frequencies
of each of j>s movements as indicative of j°s current route. So for each inhabitant 7,
the inhabitant i believes j plays action a € A with probability:
__a
- Yeall

This set of route strategies forms a reduced profile of strategies for which in-

P(a)’ (3.7)

habitant ¢ adopts a best response. After the game, inhabitant ¢ updates its possible
belief of its neighbor appropriately, given the actions used by other inhabitants. We

consider these counts as reflecting the observations an inhabitant has regarding the
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route strategy of the other inhabitants. As a result, the decision making component
should not directly repeat the actions of the inhabitants but rather learn to perform
actions that optimize a given reward (or utility) function.

Indeed, the decision making component of a smart home applies learning to
acquire a policy that optimizes joint uncertainty of the inhabitants’ activities which
in turn helps in accurate prediction of their activities and thus locations. For this op-
timization, our proposed entropy learning algorithm, called Nash H-learning (NHL),
learns a value function that maps the state-action pairs to future reward using the
entropy measure, H. It combines new experience with old value functions to pro-
duce new and statistically improved value functions. The proposed multi-agent Nash

H-learning algorithm updates with future Nash equilibrium payoffs.

Procedure NHL
Input: Individual entropy values
Output: Joint entropy values

1. Let the learning agent be indexed by 7;

2. t:=0, Htj(s,al,...,a") =0, Vse€S and o’ c A, j=1,...,n;

3. Repeat

4. Choose action a!;

5 Compute 7},...,7%, ai,...,a? and sS4, = §';

6 for (j=1,...,n),

7 ] (s,a',....a") = (1 —a)H](s,a',....a") + oy [r] + BNash H] ()],

where oy € (0,1) is the learning rate
and Nash H}(s') = [[1_, 7 (s')H}(s')
t:=t+1;
9. until (true)

00

Figure 3.5. Nash H Learning Algorithm (NHL).

Figure 4.4 describes the pseudo-code of the Nash H-learning algorithm which

has been explained next with a reference to each line number of the algorithm. (1.&2.)
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A learning agent, indexed by 7, learns about its H-values by forming an arbitrary guess
at time 0. We have assumed this initial value to be zero, i.e., Hi(s,a',... a™) = 0.
(4.) At each time ¢, the agent i observes the current state and takes its action.
(5.) After that, it observes its own reward, actions taken by all other agents and
their rewards, and the new state s’. (7.) It then calculates a Nash Equilibrium
ml(s'), 7%(s'), ..., 7"(s') at that stage and updates its own H-values as follows.
H(s,a',...,a") = (1—w)H{(s,a',...,a") + o [r; + BNash H(s')]

n

where Nash H}(s') = Hﬂ'j(S/)HZ(S/) (3.8)
=1

where the learning rate parameters oy and [ are in the range 0 to 1. For every agent,
information about other agents’ H-values is not given, so agent i« must learn about
those values too. Agent i forms conjectures about those H-functions at the beginning
of the game. We have assumed Hg(s, a',...,a") =0, for all j and all s,a’,...,a". As
the game proceeds, agent ¢ observes other agents’ immediate rewards and previous
actions. That information can then be used to update agent ¢’s conjectures on other
agents’ H-functions. Agent i updates its beliefs about agent j’s H-function, i.e.,
Htj+1(57 a',...,a") according to the same updating rule it applies to its own. Thus,

we have

ol (s,a',...,a") = (1 —a)H](s,a",...,a") + a [ri + BNash Htj(s’)} (3.9)

3.5.3 Convergence of NHL Algorithm
The convergence proof of the proposed Nash H-learning algorithm is based on
two basic assumptions:
1. Every state s € S and every action a® € A* for k = 1,..., n are visited infinitely

often.
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2. The learning rate o, satisfies the following condition: 0 < ay(s,al, ..., a") <1,
and ay(s,at,...,a") = 0if (s,al,...,a") # (ss,af,...,a?). In other words, the
updates occur only on H-function elements which correspond to current state

s; and actions ay, ..., a}.
Our proof relies on the following result, which establishes the convergence of a general
functional-learning process updated by a pseudo-contraction operator. Let I/ be the

space of all utility functions.

Result 2 [58): Let there exists a number v such that 0 < v < 1 and a sequence
At > 0 converging to zero with probability 1 such that |P,U — PU,| < 4|U — U] + A

for allU € U and U,E[P,U,]. Then the following condition holds:
Pr [(Ut+1 = (1 — Oét)Ut + Oét[PtUt]) — U*] =1 (310)

where P, is a pseudo-contraction operator. In other words, we can say that the itera-
tive utility function U, converges to the Nash Equilibrium U, with probability 1.
Replacing the general utility function U by the entropy or H function corresponding

to H-learning, we get
Pr [(Ht+1 = (]_ — Oét)Ht + O{t[.Pth]) — H*] = 1.
For our n-player stochastic game we define the operator P, as:

PH"(s,a',...,a") =rF(s,a',... a") + prt(s) ... 7" (s ) H*(s'), fork=1,...,n
(3.11)
where s’ is the state at time £+ 1 and 7%(s’) is an equilibrium strategy at that stage of
the game corresponding to the utility function H*(s'). We now state the main result
along with its proof:

Result 3 Forn-player stochastic game in smart homes, E|PH,| = H, = (H], ..., H")
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Proof: If v*(s',wl, ..., 7") is agent k’s equilibrium payoff and (7w1(s),...,77(s)) is its
n 1

Nash Equilibrium point, then v*(s', 7}, ..., 77) = 7l(s),..., 7%(s) H*(s) according to

[58]. Based on this relation, we can state that

HFS a', ... a") =rF(s,a', ... a") + 52]9(3']3,&1, a8 HE(S)

s'eS

= Zp(s'[s, a',...,a") x [ry(s,a', ... a") + Bp(s]s,at, . aM)m(s) . (s HE(S)]

s'eS

= E[PFH!(s,d',...,ad")]

Combining Equations (3.10)—(3.12), we arrive at the following conclusion:

Result 4 The predictive H-learning framework described by the iterative Equation (3.9)

almost surely converges to the Nash Equilibrium. That is,

Pr[Hy . — H,] — 1, where Hi = (1 — o) H; + oy [rF + ﬁH 7l (s Hy(s") [ (3.13)
j=1

We have proved the convergence of Nash H-learning under the assumption of
some technical conditions expressed in equations (3.10) (3.11) (3.12) (3.13). If there is
a unique equilibrium H-function then learning consistently converges, but sometimes
it fails to converge if it has different equilibrium H-functions. Specifically the learning
process converges to Nash H-values if every game that arises during learning has a
global optimum point, and the agents update the H-values according to the rules. It
will also converge if every game has a saddle point, and agents update in terms of
these. In general, properties of convergence during learning are difficult to ensure.
Nonetheless, establishing sufficient convergence conditions for this learning process

may provide a useful insight.

3.5.4 Computing Nash H-values

A Nash equilibrium for two inhabitants consists of a pair of strategies (7}, 72)

in which each strategy is a best response to the other. T'wo shortest paths that do not



o8

interfere with each other constitute a Nash equilibrium, since each path (strategy) is
a best response to the other. Different variants of the Nash equilibrium path followed

by the two inhabitants are shown in Table 3.4.

Table 3.4. Zone Sequences Extracted from Location Profile

Inhabitant 1 | Inhabitant 2
CMRDG GOLRMA
CMRDG GDKRMA
CMRDG GDRMA

CMRKDG | GOLRMA

CMRKDG | GDKRMA

CMRKDG GDRMA

Table 3.5. Stationary Strategy for Inhabitant 1

State 7l (s)
(Cx) Action CM
M x) Action MR, MA

—_ ]

R x) | Action RM, RB, RW, RK, RD, RL, RQ, RP
D x) Action DK, DR, DL, DG

An example strategy for inhabitant 1 is shown in Table 3.5. In the right column,
all possible actions are represented for a given state of the sequence “CM RDG”. The
notation (s z) refers to any state where the first inhabitant is in zone s with an option
to transit to zone x after the action (transition) being performed. States that cannot
be reached given the path are omitted in the table. The strategy shown represents
the path for the inhabitant 1 to reach its destination in Figure 3.6. This is the best

response to inhabitant 2’s path in that graph.
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Figure 3.6. Nash Equilibrium Paths for Two Inhabitants.

The value of the game for inhabitant 1 is defined as its accumulated reward

when both inhabitants follow their Nash equilibrium strategies,

[e.e]

R (so) = Y B'E(r|m}, 72, 50)

t=0
Considering initial state as sy = (C'G) and location profile as “CM RDG” for

inhabitant 1, this reward becomes, given 3 = 0.99,
RYCG) =0+0.99 x 0+ (0.99)% x 0+ (0.99)% x 100 = 97.0

RY(MO) =0+0.99 x 0+ (0.99)* x 100 = 98.0
Considering the location profile as “C'M RK DG”, this reward becomes,

R(CG) =040.99 x 0+ (0.99)% x 0+ (0.99)* x 0+ (0.99)* x 100 = 96.05

Based on the values for each state, we can then derive the Nash H-values for

inhabitant 1 in state sq,

H'(so,a',a%) =1} (so,a',a®) + 3> p(s'|so,a’,a®) R (s)

S
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Therefore, when inhabitant 1 is on the path “C'’M RDG” and inhabitant 2 is on

the path “GDRM A”, we can derive the Nash H-values as follows by considering a

collision at state “R”,
Hl(s9,CM,GD) = —1+0.99R"(CG) = —1+0.99 x 97.0 = 95.03,

Again when inhabitant 1 is on the path “CM RDG” but inhabitant 2 is on the path

“GOLRMA” or “GDKRMA”, the Nash H-value has been increased due to the

absence of any conflict,
H!(s9,CM,GO) = 0+ 0.99R"(CG) =0+0.99 x 97.0 = 96.03.

Now if we look to the other way round as inhabitant 1 is on the path “CM RK DG”
and inhabitant 2 is on the path “GDRM A” we can derive the Nash H-values as fol-

lows by considering a collision at state “R”,
H!(s9,CM,GD) = —140.99R'(CG) = —140.99 x 96.05 = 94.08,

Again when inhabitant 1 is on the path “CM RK DG” and inhabitant 2 is on
the path “GOLRMA” or “GDKRMA”, the Nash H-value has been increased due

to the absence of any conflict,
H(s9,CM,GO) = 0+ 0.99R"(CG) =0+ 0.99 x 96.05 = 95.08.

The Nash H-values for both the inhabitants in state (CG) are shown in Ta-
ble 3.6. There are two Nash equilibria for this game (H'(sq), H*(sy)), and each is a

global optimal point with the value (96.03,96.03).

3.5.5 Worst-Case Analysis
In a smart home environment, multiple inhabitants act autonomously without

an authority regulating their day-to-day activities in order to achieve some “social



61

Table 3.6. Nash H-Values

GOLRMA | GDKRMA GDRMA
CMRDG | 96.03, 96.03 | 96.03, 96.03 | 95.03, 95.03
CMRKDG | 95.08, 95.08 | 95.08, 95.08 | 94.08, 94.08

optimum” such as minimization of overall (joint) uncertainty across all inhabitants’
locations and activities. In our system where multiple inhabitants share a common
resource, we use the ratio between the worst possible Nash equilibrium and social op-
timum as a measure of the effectiveness of the system. Basically, we are investigating
the cost of the lack of coordination as opposed to the lack of information (on-line al-
gorithms) or lack of unbounded computational resources (approximation algorithms).
The basic assumption here is that every inhabitant always attempts to benefit from
the underlying utility function associated with him. Now the question is: how much
performance is lost because of this? The answer to this question provides the basis
for worst-case analysis or coordination ratio, given by the ratio of worst possible cost
and optimal cost. Note that, although Nash Equilibrium attains a balance between
the preferences of all inhabitants, it is not necessarily optimal. The deviation from
optimality in this environment can be estimated using this worst-case analysis [70].
Result 5 The worst-case coordination ratio for m inhabitants taking m actions is
given by (15;;1)-

Proof: The problem is identical to that of throwing m balls in m bins and attempting

to find expected maximum number of balls in a bin. The bound follows from [70].
We believe that this lower bound is tight and if N denotes the expected max-
imum number of balls in a bin, we conjecture that the coordination ratio of any

number of inhabitants taking m actions is also N.
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Theorem 2 The coordination ratio of any number of inhabitants with m actions is
at most N' = 3+ /AmIgm.
Proof: A quantity associated with an equilibrium in our context is the expected
entropy over all actions for a specific route. From this perspective, inhabitant i
maintains beliefs about the strategy of other inhabitants and predicts the Expected
Entropy Value (EEV) of its individual action a’ at (¢ + 1)-th time step as follows:

EEVi,(a") = Y Hi{(sa',...,a")U(s,a',..,a [Py (3.14)

a"ieA J#

We call it the Nash equilibria cost which we wish to compare with the social optimum
entropy, ¥. More precisely, we want to estimate the coordination ratio as the worst
case ratio, C' = max{Nash equilibria cost / U} where the maximum is taken over
all equilibria. Computing the social optimum (V) is an NP-hard problem (equivalent
to the partition problem, see Theorem 1). However, for the purpose of upper bounding
C, it suffices to use simple approximations: ¥ > max{H/ ,(s,a',...,a"), EEV}"(a’)/n}

Using a martingale concentration bound known as the Azuma-Hoeffding in-
equality 2 [41], we will show that the utility (entropy) of a given action a’ exceeds
(N — 1)¥ with probability at most # . Then, the probability that the maximum
utility on all actions does not exceed (N — 1)¥ is at least % It follows that the
expected maximum utility is bounded by (1 — L)(N — 1)U + L(m¥) < NU. It
remains to show the probability that the utility of a given action a’ exceeds (N —1)¥
is indeed small, at most #

Let X; be a random variable denoting the contribution of inhabitant ¢ towards

the utility of action a/. In particular, Pr[X; = H;] = P and Pr[X; =0] =1—P.

2 Azuma-Hoeffding inequality: Suppose that for each i > 0 there exist real numbers a; and
b; such that P(Y; € Ja;,b;]) = 1. Then for any ¢ > 0 we have P[S, — E(S,) > ne] <
exp (—271282 /Z;L:_Ol(bi - ai)Q)
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Clearly, the random variables X1, ..., X,, are independent. We are interested in es-
timating the probability Pr[Y" X; > (N — 1)U]. Since the entropy H;i; and prob-
abilities P may vary a lot, we do not expect the sum »_ X; to exhibit the good
concentration bounds of sum of binomial variables. However, we can get a weaker
bound using Azuma-Hoeffding inequality which gives very good results for probabil-
ities around 0.5. In our case, the probabilities are either 0 or 1.

Let u; = E[X;] and consider the martingale S; = Xy +...+ X+ 1+« -+ fn-
Now notice that | Siy1 — S¢ |= | Xeg1 — tus1 |< Hipr. We can then apply the Azuma-

Hoeffding’s inequality:
2
x i 2
P[Sn - E(Sn) > :L‘] < 6xp(_5/ZHt+l )
Let © = (N —3)W. Since E(S,) = > p; = EEV}, (a;) < 2V, we get that the entropy

of action @/ exceeds (N — 1)¥ with probability at most ezp(—% />, Hi ). Tt is

easy to establish that
> Hiy' < max{mHym(y | Hiy /m)*) < my®
Thus, the probability that the entropy of action a’/ exceeds (N — 1)¥ is at most

exp(—3(N —3)?/m). For N = 3+ v/4mIgm, this probability becomes 1/m? and the

proof is complete [70].

3.6 Inhabitants’ Joint-Typical Routes

The collection of indoor locations inside the smart homes actually forms the
routes (paths) of the inhabitants. Although there may be an exponential number of
possible routes in general, in the long run the inhabitants typically follow only a small
subset of them according to the mobility profiles. The concepts of jointly-typical set
and asymptotic equipartition property (AEP) [26] in information theory help us derive

this small subset of highly probable routes maintained by a particular inhabitant.
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While the concept of jointly-typical set is valid for any number of sequence-
sets, for the sake of simplicity, we discuss with the help of only two sets of sequences.
Let Z and )Y denote discrete and finite sets and let Przy be a probability mass
function (pmf) on Z x Y. Let z" = (z1,...,2,) € Z" denote an n-length se-
quence of symbols from Z. Similarly, let y"” denote an element of V™. Also, let
(Z™,9") = [(Z1,1), .-, (2, Vn)] denote an n-length sequence of random variables
drawn according to the product measure on Z" x Y" obtained from the pmf Prz y.

Then

Prob[Z2" = 2", V" =y"| = Przayn(2",y") = H Przy(zi, ;)

i=1

Jointly Typical Routes

Set of All Routes

Figure 3.7. Jointly-Typical Routes.

Result 6 [26] The set of jointly-typical sequences 7™ = {(z™y") € Z" x Y"} for
the joint probability mass function Prz y is a set of sequences which hold the following

relations

—1
\71gp7“z",yn(2n,yn) —H(Z,Y)| < e

-1
=1 Pra«(=") — H(Z)|

AN
M

IA
@)

= 1g Pry(y") ~ H) (3.15)
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As shown in Figure 3.7, the most important feature of the jointly-typical set is that it

is sufficiently small and contains most of the probability mass of the set of sequences,
ie., Pr[(Z™)") € ’]Z(n)] — 1. This is basically the AEP for stationary ergodic
process [26]. This encompasses the inhabitant’s most likely routes and determines
the average nature of the large route-sequences.

Result 7 [26] AEP assures that that asymptotically almost all the probability mass is
concentrated in the jointly-typical set. This encompasses the inhabitants’ most likely
activities and paths and determines the average nature of the large route-sequences.

Formally, for fixed e > 0, as n — 00,
pPr{(zny") e1M] —1 (3.16)

If Prl¢,¢s] denotes the joint probability of the two inhabitants’ contexts (routes)
Y and Z, each of length L(¢), their probabilistic difference is computed as: § =
|Pr(py, o] — 27 5@H(EI)| - Clearly, 6 provides the gap between the ideal probability
of typical routes and the probability of a particular route stored in the dictionary.
Choosing a higher value of ¢ leads to the inclusion of a large number of typical
mobility profiles and the framework starts deviating from the typical-set of routes. In
our experiments, we have used § < 0.01. Thus, the system captures a typical set of
inhabitant’s movement profiles from the H-learning scheme and uses them to predict
the inhabitants’ most likely routes.

To clarify the concept of jointly-typical set, we consider the following two se-
quences from Figure 3.6: CM RDG for Inhabitant 1 and GOLRMA or GDKRM A
Inhabitant 2, which correspond to a Nash equilibrium path. Now the joint se-
quence generated by both the inhabitants is given by C. G, M,O, R, L, D, R, G, M, A
orC,G,M,D,R,K,D,R,G, M, A. All other joint sequences are as follows: “C,G, M,



66
D? R? R7 'D7 M7 G? A”; “07 G? M’ 07 R7 L7 R? R? D’ M7 G7 A”; “07 G? M7 'D7 R7 K’ K? R7

D, M,G, A" and “C,G,M,D,R,R, K, M,D,A,G".

Table 3.7. Context of Orders 0 with Occurrence Frequencies

C(1) | G2) | M(2) | O(1) | k(2) | L(1) | D) | A1) | -
C(1) | G(2) | M(2) | D(2) | R(2) | K(1) | A1) | - -
C(1) | G(2) | M(2) | D(2) | R(2) | A1) | - - -
C(1) | G2) | M(2) | O(1) | R(2) | L(1) | K(1) | D(1) | A(1)
C(1) | G2) | M(2) | D(2) | R(2) | K(2) | A(1) | - -
C) | GR) | M(2) | D2) | R2) | K1) | AQ) | - -

Then we calculate Prz y, considering the first row of Table 3.7,

Prob[Z" = 2", V" =y"] = Prznyn (2", y") = HP'r’gy(zi, Yi)
i=1

1 2 2 1 2 1 1 1
= (xS X (= x =) x (= x =) x(—x —)~4x107® (3.
(11 X 11) X (11 X 11) X (— x —) X (11 X 11) x 10 (3.17)

and verify that

-1
n

Now here the set of the sequences which contains most of the probability mass is
“GMR”. So, in this case, the joint typical routes of both the inhabitants is “GM R”.
Similarly, for all other paths of both the inhabitants from Figure 3.6, we can obtain
the typical route segment as “GMDR”, “GMDR”, “GMR”, “GMDRK”, “GMDR”.
Considering all of the instances visited by both the inhabitants the joint typical route
is given by

“GMRGMDRGMDRGMRGMDRKGMDR”.
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3.7 Resource and Comfort Management

The objectives of a smart home include how to efficiently automate device con-
trol, provide the inhabitants with maximum possible comfort, minimize operational
cost and consumption of resources, say energy. By managing the uncertainty related
to the inhabitant’s location, the house can facilitate accurate predictions of inhabi-
tants’ activities that help smart control of automated devices and appliances, leading
to better resource utilization. Minimizing energy consumption reduces the mainte-
nance cost, furthermore, reduction in explicit manual operations and control, in turn,
increases the inhabitants’ comfort. In the following, we develop a mobility-aware

resource management scheme for multiple inhabitant smart homes.

3.7.1 Mobility-Aware Energy Conservation
Let us first consider two simple but extremely useful energy management schemes.

In the worst-case scenario, a house may use a static scheme where a certain number
of devices (electric lights, fans, etc.) are switched on for a fixed amount of time
during a day. Intuitively, this results in unnecessary energy consumption. On the
other hand, in the best-case scenario, devices are manually controlled every time
while leaving or entering particular locations inside the house. However, such manual
operations are against the smart home’s goals of intelligent building automation and
support of calm computing. We believe a smart energy management scheme ought
to use the predicted routes and activities from the NHL algorithm for smart control
of devices, thus minimizing unnecessary consumption of valuable resources. This will
allow devices like lights, fans or air-conditioner operate in a pro-active manner to
conserve energy during the inhabitant’s absence in specific locations (zones) in the

home. These devices also attempts to bring the indoor environment, such as temper-
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ature and light control, to amicable conditions before the inhabitant actually enters

into those locations.

3.7.2 Estimation of Inhabitants’ Comfort

The comfort is a subjective measure experienced by the inhabitants, and hence
quite difficult to derive analytically. In-building climate, specifically temperature,
plays the most important role in defining this comfort. Moreover, the amount of
manual operations and the time spent by the inhabitants in performing the house
hold activities also have significant influence on the inhabitants’ comfort. We define
the comfort as a joint function of temperature deviation, A(f), number of manual
device operations (M) and time spent (7) for those activities by the inhabitants
in the last Chapter. Our mobility-aware resource management framework attempts
to reduce empirical values of these controlling parameters, thereby increasing the
inhabitants’ comfort. Note that the reduction of joint entropy by using our proposed
NHL algorithm described in Figure 4.4, endows the house with sufficient knowledge
for accurate estimate of current and future contexts (locations, routes and activities)
of multiple inhabitants in the house. Successful estimate of these contexts results in

adaptive control of environmental conditions and automated operation of devices.

3.8 Experimental Study

In this section, the proposed Nash H-learning framework is implemented and
we conduct a series of experiments in MavHome [118] smart home environment to
study its performance on a group of three inhabitants in a smart home equipped with
smart devices and wireless sensors. The inhabitants wear radio frequency identifi-
cation (RFID) tags and are tracked by RFID-readers. The house is equipped with

explicit monitoring of inhabitants’ activities and locations for performing a trace-
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driven simulation of the inhabitant’s mobility followed by the resource management

scheme.

3.8.1 Simulation Environment

We have developed an object-oriented discrete-event simulation platform for
generating and learning inhabitants’ mobility profiles, and predict the likely routes
that aid in the resource and comfort management scheme. In order to collect the test
data associated with the inhabitants’ life-style, the appliances in the MavHome are
equipped with X10 ActiveHome kit and HomeSeer [117], thus allowing the inhabi-
tants to automatically control the appliances. The identity of the inhabitants, their
locations and activities are captured by wireless sensors placed inside the home. The
inhabitants wear the RF-tags, which are sensed by the RF-readers to gather their
identities. The raw data [118][119] as shown in Table 4.1 is first parsed using pars-
ing tools like Perl and Tcl to remove unnecessary information. The different column
headings in Table 4.1 have the following meanings: Mark as the data and time stamp,
Zone and Number as unique sensor zone identifier and sensor number within it, State
as binary ‘on’ or ‘off” of the sensor, Level as specific value if on, Source as the net-
work mode. Subsequently, we use these data to validate the mobility-aware resource
management scheme. The energy and comfort management framework is compared
with two reference platforms: (i) energy management without any predictive scheme,
and (ii) energy management associated with per-inhabitant location prediction. The
results are presented by sampling every sensor at a time and performing simulation

experiments for a period of 12 weeks over 3 inhabitants and 2 visitors.
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Table 3.8. A Snapshot of the Collected RAW Data

Mark Zone | Number | State | Level | Source
2005 —01—03 09:47:30 |1 5 1 100 X10

2005 —01—03 09:56:17 |1 5 0 0 X10

2005 —01—03 13:04:45 | a 1 1 100 X10

2005 —01—03 13:05:37 |1 3 1 100 X10

2005 —01—03 13:06:11 | ¢ 4 1 100 X10

2005 —01—03 13:06:22 | ¢ 4 0 0 X10

2005 —01—-03 13:16:32 | S 1 1 10 ArgusM S
2005 —01—03 13:16:33 | S 2 1 152 ArgusM S
2005 —-01—-03 13:16:33 | S 3 1 13 ArgusM S
2005 — 01 —05 23:59:00 | V 23 1 100 ArgusD
2005 —01—05 23:59:01 |V 23 0 0 ArgusD
2005 —01—05 23:59:04 |V 21 0 0 ArgusD
2005 —01—05 23:59:12 |V 21 1 100 ArgusD
2005 —01—05 23:59:12 |V 21 0 0 ArgusD

3.8.2 Performance Results

We have divided the entire set of simulation results into three categories. First,
we demonstrate the accuracy of our proposed predictive scheme in multi-inhabitant
smart homes and compare the results with our previous H-learning algorithm [97]
with current modified Nash H-learning approach. Then we show the storage and
computational overhead associated with it. Finally, we discuss the effect of this

predictive framework in terms of energy conservation and inhabitants’ comfort.

3.8.2.1 Predictive Location Estimation

Recall that the Nash H-learning framework aims at reducing the location un-
certainty (entropy) associated with individual and multiple inhabitants. Figure 3.8
shows the variation of the individual and joint entropy over the entire time period

of the simulation using H-learning approach. Note that the our existing H-learning
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Figure 3.8. Variation of Entropy (Uncertainty) using H-Learning.

framework [97] reduces the joint entropy quickly to a low value. While the entropy
of every inhabitant lies in the range ~ 1-3, the visitor’s entropy is typically higher
~ 4. This is quite logical as the house finds the location contexts of the visitors more
uncertain than the residents (inhabitants). In comparison, Figure 3.9 shows that
initially the entropy associated with three individual inhabitants is around 4.0 using
Nash H-learning approach. As the predictive framework becomes knowledgable of
the inhabitants’ life-style, the individual entropy values reduce to 1.0. Therefore, the
joint entropy is quite less than the total entropy of all the inhabitants. Initially the
joint entropy is close to 8.0, but gradually it reduces to almost 1.0. The total entropy,

on the other hand, lies in the range 4.0-10.0. In this way, the entropy minimization
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procedure formulated by Nash H-learning helps increase the efficiency of the location

estimation technique.
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Figure 3.9. Variation of Entropy (Uncertainty) using Nash H-Learning.

The goal of our first experiment is to investigate into the dynamics of this en-

tropy. The Nash H-learning framework also leads to higher success rate than simple

H-learning. Figure 3.10 demonstrates that our co-operative H- learning strategy is

capable of estimating the location of all the resident inhabitants with almost 90%

accuracy within 3 weeks span. The house takes this time to learn the joint movement

patterns of all inhabitants.

The success rate of location estimation for visitors is

however 50%-60%, as the house finds it difficult to get the knowledge of the random

visitors. In comparison, Figure 3.11 shows the variation of prediction success for in-
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dividual inhabitants and joint prediction success using Nash H-learning framework.
Initially, the success-rate is pretty low as the system proceeds through the learning
stage. Once the system becomes cognizant of inhabitants’ profiles, the success rate
increases and saturates at a particular value. The individual prediction process does
not consider the correlation among different inhabitants. Thus, it fails to capture
some important contexts and results in comparatively lower prediction success upto
80%. The joint prediction, however, takes the correlation among different inhabi-
tants into account and results in higher success rate (close to 95%) than the simple
H-learning framework.

The collection of the inhabitants’ joint typical-set is the key behind the devel-
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Figure 3.10. Dynamics of Prediction Success using H-Learning.
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opment of efficient energy and temperature control system in the smart home. As
discussed earlier, the joint-typical set is relatively a small subset of all routes (of all in-
habitants) containing most of the probability mass (i.e., set of most probable routes).
Figure 3.12 provides the percentage of total routes categorized as individual and joint
typical routes. It is clear that the size of the individual and joint typical set is initially
less than 50% of total routes. This size then gradually shrinks to as low as about

10% as the system captures the relevant contexts of inhabitants’ movement-profiles.
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Figure 3.11. Dynamics of Prediction Success using Nash H-Learning.
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3.8.2.2 Storage and Computational Overhead

Another important criteria of our predictive framework is its low storage (mem-
ory) requirements. Figure 3.13 shows that the storage requirement of the joint pre-
diction scheme is sufficiently less than the total storage requirement of the individual
prediction schemes. The storage requirement of joint prediction initially starts in-
creasing and then saturates at a reasonable value of 10 Kbytes, whereas the storage
overhead for individual prediction is around 40 Kbytes.

For practical use, it is important to ensure that the savings in storage is not
negated entirely by the additional computational cost of the proposed algorithm. For
this purpose, we computed the average time complexity per day in the smart home for

our multi-inhabitant predictive framework, as well as for the existing per-inhabitant
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location-prediction algorithm [94], applied over all inhabitants. We observe that the

average number of operations for the proposed multi-inhabitant prediction is around
13414 where as the same for per-inhabitant prediction is 22357. Thus, the multi-
inhabitant predictive framework reduces the time complexity by 40% in comparison

to the per-inhabitant location tracking framework.
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Figure 3.13. Storage Overhead.

3.8.2.3 Energy Savings and Inhabitants’ Comfort

With a goal to maximize the inhabitants’ comfort with minimum energy con-
sumption, the predictive framework makes the system knowledgeable of inhabitants’

profiles. The smart temperature control system and energy management framework
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makes intelligent use of these profiles to conserve energy. Figure 3.14 shows that using
the predictive framework, the daily average energy consumption can be kept about 5
KiloWatt-hour (KW-Hr), in comparison to 9 KW-Hr for energy management scheme
without the predictive framework. Figure 3.15 shows the reduction of manual opera-
tions and time spent for all the inhabitants. The predictive Nash H-learning scheme
aids the system with sufficient automation, by reducing the overall manual operations
performed by the inhabitants and the time spent behind all such operations which in

turn increases the overall comfort.
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3.9 Summary

In this chapter, we have developed a novel mobility-aware resource management
framework in a multi-inhabitant smart home. Characterizing the mobility of inhabi-
tants as a stationary, ergodic, stochastic process, the framework uses the information
theoretic measure to estimate the uncertainty associated with all the inhabitants in
the house. It has also been shown that the direct use of per-inhabitant location track-
ing fails to capture the correlation among multiple inhabitants’ locations or activities.
We have proved that the multi-inhabitant location tracking is an NP-hard problem.
We also formulated a non-cooperative learning paradigm based on stochastic game
theory, which learns and estimates the inhabitants’ most likely location (route) pro-

files by minimizing the overall entropy associated with them. The convergence and
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worst-case performance bounds of this framework are also derived. Automated ac-
tivation of devices along the predicted locations/routes provide the inhabitants with
necessary comfort while minimizing energy consumption and cost. In the next chapter
we will focus how such context information is useful in providing health related and
wellness management services in an intelligent way to promote independent living in

a smart home environment.



CHAPTER 4
AMBIGUOUS CONTEXT MEDIATION FRAMEWORK

4.1 Introduction

Current research and development in smart environments [23, 28, 98] technol-
ogy offer a promising solution to the increasing needs of the elderly in home based
healthcare applications. Essential to such applications is what is called human-centric
computing and communication, where computers and devices are designed to adapt
to the user needs and preferences. The objective here is to create a total solution for
the perennial connection of the human with the environment, rather than focussing
merely on the devices for the sole purpose of obtaining input from the human. This
form of computing platforms are becoming ubiquitous in healthcare and nursing in-
dustry, thus transforming the patients from passive to active consumers of healthcare
benefits [29]. To this end, current research efforts have largely focused on the devel-
opment of communication technologies and intelligent user interfaces [34].

In this chapter we focus on the computational aspect of user-centric data to
provide context-aware services [28, 98] that promotes intelligent independent living,.
Context-aware applications typically derive their desired context information (implicit
input) from physical sensors and other information sources. Though sensing is be-
coming more and more cost-effective and ubiquitous, the interpretation of sensed data
as contexts is still imperfect or ambiguous. Therefore, a critical challenge facing the
development of realistic and deployable context-aware services, particularly in health
related applications, is the ability to handle ambiguous contexts. The conversion of

raw data into high-level context information requires middleware to pre-process such

80
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as filter, transform, and even aggregate the data collected from homogeneous or het-
erogeneous distributed sensors, with a goal to minimize the ambiguity of the derived
contexts. Only with reasonably accurate context(s), can applications be confident to
make adaptative and better decisions. The context processing could involve simple
filtering based on a value match, or sophisticated data correlation or data fusion tech-
niques [16, 80]. Contexts may also include various aspects of relevant information;
they may be instantaneous or durative, ambiguous or unambiguous. Furthermore,
heterogeneous information source sensors usually have different measurement objects,
different resolutions and accuracies, and different data rates and formats. Thus, the
mapping from sensory output to the context information is a non-trivial task. We
believe context-aware data fusion plays a critical role in improving the accuracy of
the derived contexts by reducing their ambiguity, although the exact fusion technique

to use is application and domain specific. This motivates our work.

4.1.1 Related Work

The ubiquitous computing paradigm [121] implies smart (i.e., pro-active) inter-
action of computing and communication devices with their peers and surrounding
networks, often without explicit operator control. Hence, such devices need to be
imbued with an inherent sentience [54] about their important contexts that can auto-
matically or implicitly sense information about their state and the presence of users
(inhabitants) in order to take action on those contexts. This concept has led to various
projects smart homes or environments in general [22, 23]. Existing work such as the
Reactive Room [24], Neural Network House [82], Intelligent Room [21] and House_n
[60] do not provide explicit reusable support for users to manage or correct uncertainty
in the sensed data and their interpretations, and thereby assume that the sensed con-

texts are unambiguous. The work reported in [34] provided a toolkit to enable the
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integration of context data into applications, however, no mechanism is provided for
sensor fusion or reasoning about contexts to deal with ambiguity. Although other
works such as [61] proposed mechanisms for reasoning about contexts, yet they do
not provide well defined context-aware data fusion model nor address the challenges
associated with context ambiguity and users’ situation prediction. Distributed medi-
ation of ambiguous contexts in aware environments was discussed in [31] that allow
the user to correct ambiguity in the sensed input. Multimodal Maps [15] for travel
planning addresses ambiguity by using multimodal fusion to combine different inputs
and then prompting the user for more information to remove the remaining ambiguity
as much as possible. Remembrance Agent [93] uses context to retrieve information

relevant to the user and explicitly addresses ambiguity in its manual interface.
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Figure 4.1. A Middleware Framework for Ambiguous Context Mediation.




83

Alongside, significant efforts have been made to develop middleware systems
that can effectively support context-aware applications in the presence of resource
constraints (e.g., sensor networks), also considering requirements for sensory data or
information fusion from middleware perspective [1]. For example, DFuse [73] is a data
fusion framework that facilitates dynamic transfer of different application level infor-
mation fusion into the network in order to save power. In adaptive middleware [55] for
context-aware applications in smart home setups, the application’s quality of context
(QoC) requirements is matched with the QoC attributes of the sensors with the help
of a utility function. Similarly, in MiLAN [49], application’s quality of service (QoS)
requirements are matched with the QoS provided by the sensor networks. However,
in this scheme, the QoS requirements of the applications are assumed to be prede-
termined, which the applications should know in advance in addition to the quality
associated with the type of sensors it can make use of. Given that in ubiquitous
computing environments, the nature (number, types and cost off usage, and benefits)
of such sensors available to the applications usually vary, it is impractical to include
a priori knowledge about them. The selection of right sensor with right informa-
tion at the right moment was originally introduced in [114], while the structure of an
optimal sensor configuration constrained by the wireless channel capacity was investi-
gated in [13]. By eliminating the simplifying assumption that all contexts are certain,
in an earlier work [99], we designed a context-aware data fusion algorithm based on
dynamic Bayesian network to mediate ambiguous context. But an intelligent sensor
management that provides energy-efficiency as well as a way to manage quality of
context requirements, which may change over time with changes in patient’s state,
has not been considered before. In this chapter an information theoretic approach is
taken to decide an optimal sensor configuration to determine the best current state

of the patient while satisfying the application QoC requirements. For end user an
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ontological rule based approach using semantic web technology is proposed for fur-
ther reduction of context ambiguity with applications to context-aware healthcare
services. By eliminating the simplifying assumption that all contexts are certain, in
this chapter we propose a middleware architecture as shown in Fig. 4.1 (explained in
Section 4.5.2) that supports a variety of services, ranging from context-aware data
fusion to ambiguous context mediation subsystem with applications to context-aware

healthcare services [99]. The major contributions of this work are summarized later.

4.1.2 Example Scenario

As an example, let us take the scenario of a home care patient after hospi-
talization for cardiac infarction. Although such a patient should be guaranteed a
good qual