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ABSTRACT 

 

FIRST-PRINCIPLES STUDY ON HARD/SOFT SmCo5/Co(Fe) 

NANOCOMPOSITE MAGNETIC MATERIALS 

 

 

 

 

Dangxin Wu, PhD. 

 

The University of Texas at Arlington, 2008 

 

Supervising Professor: Qiming Zhang 

More than a decade ago, exchange-spring permanent magnets containing soft 

and hard magnetic phases have been proposed to enlarge maximum energy product 

values through exchange coupling between the magnetically soft and hard phases. 

Indeed some later experiments have shown some promises in this regard. However, 

there are still many pending fundamental issues in the understanding and enhancement 

of the exchange coupling. In this dissertation, we have performed first-principles study 

based on the density functional theory to tackle some of these issues, including the 

effects of soft phase properties and interfacial conditions on the exchange coupling, 

using SmCo5 as hard phase material and Co (CoFe) as soft phase material. 



 v

On the soft phase effects, we have investigated the structural, electronic and 

magnetic properties of FeCo alloys and found that the alloys are only stable in bcc-type 

structures and prefer chemically non-cubic geometries in a wide composition range. 

Due to this non-cubic preference, appreciable uniaxial magnetic anisotropy energies 

have been produced, which consequently facilitates the inter-phase magnetic interaction 

and enhances the overall magnetization in exchange-coupled nanocomposite systems. 

On the interface effects, we have constructed a SmCo5/Co multilayer model 

system with optimized atomic structure. The non-collinear magnetic structures were 

calculated to explore the exchange coupling dependence on the variation of the atomic 

composition across the interface. It is found that the inter-phase exchange coupling is 

strongly dependent on the interfacial conditions between the hard and soft phases.  

We have also investigated the possibility of FeCo nanowires as potential high 

performance permanent magnets considering their high shape anisotropy. We studied 

the electronic structure and magnetic properties of FeCo nanowires and calculated their 

magnetocrystalline anisotropy energies and shape anisotropy energies. 
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CHAPTER 1 

INTRODUCTION 

 

Permanent or hard magnetic materials have been playing a very important part 

in modern technology and they are indispensable in our modern life. They are used to 

fabricate generators, motors, loudspeakers, microphones, computer hard discs, sensors 

and countless other products for uses in automotives, telecommunication, data 

processing, all kinds of electronics, aerospace and medical imaging, etc.  

One of the most important parameters of a permanent magnetic material is its 

maximum energy product, (BH)max, which characterizes the strength of the permanent 

magnet. The past century has witnessed significant development in permanent magnetic 

materials, particularly in the progress of maximum energy product. During the past 

century, the maximum energy product has been improved exponentially, doubling every 

12 years. Although further improvement of maximum energy product is expected, the 

task of keeping this trend of growth is not easy since it is not simple to find a single-

phase permanent magnet with high maximum energy product. In 1991, Kneller and 

Hawig [1] proposed the so called exchange-coupled nanocomposite magnets or 

exchange-spring magnets consisting of exchange-coupled hard and soft magnetic 

phases as an alternative approach to achieve high maximum energy product. The idea of 

the exchange-coupled nanocomposite magnets is to combine high saturation 
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magnetization of soft phase and large coercivity of hard phase so the maximum energy 

product of the nanocomposite material is expected to be higher than the single-phase 

constituent hard or soft magnetic materials.  

Since Kneller and Hawig’s seminal work, extensive research has been carried 

out in exchange-coupled nanocomposite magnets. Limited success has been achieved in 

obtaining high maximum energy product until 2002, Zeng et al. [2] reported that the 

maximum energy product of 20.1 MGOe was achieved in exchange-coupled isotropic 

FePt/Fe3Pt nanocomposite, which is 50% higher than the theoretical value from a 

single-phase isotropic FePt. This shows a great promise for attaining potential high 

maximum energy product in exchange-coupled nanocomposite magnets. 

As progresses made in the experimental aspect in the exchange-coupled 

nanocomposite magnets, although challenges still remain in synthesis and processing of 

the nanocomposite, theoretical understanding also advanced. For example, shortly after 

Kneller and Hawig’s work, Skomski and Coey [3, 4] predicted, using micromagnetic 

simulations, that a giant energy product of 120 MGOe might be achieved by exploiting 

the exchange-spring mechanism in oriented nanostructured magnets. According to their 

simulations, the grain size of soft phase material should not be larger than twice the 

domain-wall thickness of hard phase material for effective exchange coupling. However, 

the advances in theoretical understanding are far behind the advances in experiments. 

There are still many unsolved fundamental issues in the understanding of hard/soft 

exchange-coupled nanocomposite magnets need to be addressed. For example, the 

dependence of the exchange coupling between soft and hard phases on the effects of the 
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soft phase properties and interface conditions are not clear. This incomplete theoretical 

understanding of these atomic-scale effects has partly hindered the development of the 

exchange-coupled nanocomposite magnets. 

To study these atomic-scale effects we must solve the quantum mechanical 

many-body problem which presents a great challenge that can only be partly mastered 

using approximations. Since its establishment in the 1960’s, Density Functional Theory 

(DFT) with local (spin) density functional approximation (L(S)DA) [5, 6] has become 

one of the most important approximations of this kind and has demonstrated its power 

in the study of the ground state properties of real materials. In this dissertation, first-

principles study based on density functional theory is performed to investigate the soft 

phase effects and interface effects on the inter-phase exchange coupling between soft 

and hard phases. In a prototype model system, we use SmCo5 as hard phase material 

and Co or FeCo alloys as soft phase material. On the soft phase effects, we have 

investigated the structural, electronic and magnetic properties of FeCo alloys. It is found 

that the alloys are only stable in bcc structures and prefer chemically non-cubic 

geometries in a wide composition range. Due to this non-cubic preference, appreciable 

uniaxial magnetic anisotropy energies have been produced, which consequently 

facilitates the inter-phase magnetic interaction and enhances the overall magnetization 

in exchange-coupled nanocomposite systems. On the interface effects, we have 

constructed a SmCo5/Co multilayer model system with optimized atomic structure. The 

non-collinear magnetic structures were calculated to explore the exchange coupling 

dependence on the variation of the atomic composition across the interface. It is found 
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that the inter-phase exchange coupling is strongly dependent on the interfacial 

conditions between the hard and soft phases. 

The remainder of this dissertation is organized as follows. Chapter 2 is devoted 

to a brief introduction to magnetism and magnetic materials which are the major topic 

in this study. In Chapter 3, I will describe the methodology we used in the study. The 

density functional theory, on which our calculations are based, necessary 

approximations and the methods we used are provided in this chapter. Then I focus on 

the enhancements of magnetic properties of soft phase material in Chapter 4. The results 

of the structural and magnetic properties of FeCo alloys are presented. In Chapter 5, the 

interface effects are discussed. We show in detail of the dependence of inter-phase 

exchange coupling between hard and soft phases on the interfacial conditions. In 

chapter 6, we explored the possibility of FeCo nanowires as potential permanent 

magnets with high maximum energy product or as soft phase component in an 

anisotropic assembled nanocomposite system. We presented our study of the electronic 

structure and magnetic properties of FeCo nanowires. Finally, we will summarize the 

conclusions of this work with potential future work for deeper understanding of the 

exchange coupling in Chapter 7.   
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CHAPTER 2 

MAGNETISM AND MAGNETIC MATERIALS 

 

Magnetism and magnetic materials have been known to mankind since ancient 

times. From magnetite (Fe3O4), the first magnetic material ever known to mankind, to 

elementary magnetic metals Fe, Co and Ni, to more complex magnetic compounds and 

alloys, magnetic materials have been widely used in our daily life and in industry for a 

long time. Nowadays they are still in the forefront of materials research since many 

important technologies depend on advances in magnetic materials and their 

manipulations. In this chapter, I will present a short introduction to magnetism and 

magnetic materials, including the classification of magnetism and magnetic materials, 

certain important concepts needed in the following chapters and properties of 

ferromagnetic materials. In addition, I will also explain why we are interested in SmCo5 

as hard phase material and FeCo alloys as soft phase materials in our study. Most of the 

introduction is based on references [7-10]. 

 

2.1 Classification of Magnetism and Magnetic Materials 

Macroscopically, magnetism is a phenomenon by which materials assert an 

attractive or repulsive force on other materials. Microscopically, magnetism in materials 

originates from the electrons’ spin motion and their orbital motion around the nucleus. 



 

 6

These motions produce the spin magnetic moment and the orbital magnetic moment of 

an electron, respectively. The total magnetic moment of an atom is the resultant 

magnetic moments from these two contributions together with a small contribution from 

the nucleus, taking into account the magnetic moments cancellations due to the 

electrons being grouped in pairs.  

Magnetic moments of atoms in materials couple to each other, parallel, 

antiparallel, or not at all. The individual atomic magnetic moments may be randomly 

oriented if they do not interact with each other. This provides us a way of classifying 

materials. The five types of magnetism based on this criterion are: diamagnetism, 

paramagnetism, ferromagnetism, antiferromagnetism and ferrimagnetism.  

Diamagnetism is a very weak form of magnetism. All materials are diamagnetic 

to some extent although this behavior may be superseded by a more dominant effect, 

such as ferromagnetism. In diamagnetic substances, the atoms have no net magnetic 

moments when there is no external applied field. When an external magnetic field is 

applied, a magnetization in the opposite direction to that of the applied field will be 

produced. When the applied field increases, the magnetization also increases in the 

opposite direction. In terms of the concept of susceptibility, which is defined as the 

variation in magnetization M of a material with applied magnetic field H, diamagnetic 

materials have small and negative susceptibilities. The value of susceptibility is 

independent of temperature. Examples of diamagnetic materials are Cu, He, Au.  

In paramagnetic materials, the atoms have net magnetic moments. However, 

these magnetic moments are only weakly coupled to each other, and so thermal energy 
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causes random alignment of the magnetic moments. Therefore, overall the paramagnetic 

material has no net magnetic moments without an applied magnetic field. When an 

external magnetic field is applied, the magnetic moments start to align to the same 

direction of the applied magnetic field, but only a small fraction is aligned for all 

practical field strengths because thermal energy is large relative to the magnetic energy. 

Thus the susceptibilities of paramagnetic materials are small and positive. In addition, 

the susceptibility is temperature dependent because as the temperature increases, the 

thermal agitation will also increase and so the atomic magnetic moments will become 

harder to align to the direction of the applied magnetic field. Some examples of 

paramagnetic materials are Na, Al and Mn.  

Ferromagnetism is one of the strongest forms of magnetism. In ferromagnetic 

materials, the atoms are arranged in a lattice and the atomic magnetic moments coupled 

to align parallel to each other even in the absence of an applied magnetic field. In 

quantum mechanics, the Heisenberg model of ferromagnetism describes the parallel 

alignment of magnetic moments in terms of an exchange interaction between 

neighboring moments. This parallel alignment of the atomic magnetic moments in 

ferromagnetic materials results in a strong permanent internal magnetic field within the 

material. The susceptibilities of ferromagnetic materials are positive and large, as high 

as 106. Common ferromagnetic materials include Fe, Co and Ni.  

Antiferromagnetic materials are very similar to ferromagnetic materials but the 

exchange interaction between neighboring atoms results in antiparallel alignment of the 

atomic magnetic moments. The magnetic moments of opposing directions cancel each 
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other leading to zero net magnetization of the materials and the material appears to 

behave in the same way as a paramagnetic material. They also have small and positive 

susceptibilities. The paramagnetic and antiferromagnetic substances can be 

distinguished from on another by magnetic measurement only if the measurements 

extend over a range of temperature. Examples of antiferromagnetic materials are Cr, 

MnO and FeO. 

Ferrimagnetism is another type of magnetic ordering and is only observed in 

compounds.  In ferrimagnetic materials, the exchange interactions also cause the 

magnetic moments of adjacent atoms in antiparallel alignment like those in 

antiferromagnetic materials. However, these antiparallel aligned magnetic moments do 

not cancel out so there are net magnetic moments in the materials. Therefore, 

ferrimagnetic materials behave very much like ferromagnetic materials, except that they 

usually have much lower susceptibility. The ferrimagnetic and ferromagnetic substances 

can be distinguished from on another by magnetic measurement only if the 

measurements extend over a range of temperature. A famous example of ferrimagnetic 

materials is magnetite Fe3O4. MnZn and NiZn are also ferrimagnetic materials. 

Because of the ordering in magnetic moments of atoms, ferromagnetic materials, 

antiferromagnetic materials and ferrimagnetic materials are called magnetically ordered. 

Both diamagnetic and paramagnetic materials are considered to be nonmagnetic 

because they have no ordering in magnetic moments and only exhibit magnetization in 

the presence of an external magnetic field.  
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The orderings of magnetic moments and M-H relations for these five types of 

materials are illustrated in Figure 2.1.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Ordering of magnetic moments of atoms and M-H relation in (a) 
Diamagnetism; (b) Paramagnetism; (c) Ferromagnetism; (d) Antiferromagnetism; and 
(e) Ferrimagnetism. 

 

2.2 Some Properties and Concepts of Ferromagnetic Materials 

Among all kinds of magnetic materials, ferromagnetic materials are the most 

widely used. Some related concepts and their properties are introduced in the following. 
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2.2.1 Domain, Hysteresis, Saturation Magnetization, and Coercivity 

As we discussed above, the exchange interactions align adjacent atomic 

magnetic moments parallel in ferromagnetic materials, causing an internal magnetic 

field even in the absence of an applied field. This brings up another question from our 

practical experience: if ferromagnetic materials, for example iron, have internal 

magnetic fields, how can we explain that usually we obtain a piece of iron in the 

demagnetized condition? This is because a ferromagnetic material in the demagnetized 

is divided into domains, which are small regions in ferromagnetic materials within 

which all the atomic magnetic moments are aligned parallel to each other. The 

boundaries between neighboring domains are called domain walls, across which the 

direction of magnetization changes gradually. Figure 2.2 shows a simplified picture of 

magnetic domains in an iron crystal with the spatial variation of the atomic moments 

within the domain wall shown in an expanded view. When a ferromagnetic material is 

in its demagnetized state, the magnetizations in different domains have such different 

orientations that the ferromagnetic material as a whole has no net magnetization. 

Although a single domain would minimize the exchange contribution to the total energy, 

there are a number of other contributions to the total magnetic energy. These include 

magnetostatic energy, magnetocrystalline energy and magnetostrictive energy. The 

formation of domains allows a ferromagnetic material to minimize its total magnetic 

energy, of which the exchange energy is just one component. 
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Figure 2.2 Simplified picture of magnetic domains in an iron crystal. The spatial 
variation of the atomic moments within the domain wall is shown in an expanded view. 
Copied from Ref. [9]. 
 

Another phenomenon about ferromagnetic materials is hysteresis, which 

describes the magnetic behavior of a ferromagnetic material when applied with a 

magnetic field, as shown in Figure 2.3. It is evident that ferromagnetic materials have 

nonlinear magnetization curves and show hysteresis and the magnetization does not 

return to zero after the applied filed returns to zero.  

 

 

 

 

 

 

 

 

 

Figure 2.3 A typical hysteresis loop for a ferromagnetic material. Adapted from Ref. 
[11]. 
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In the initial demagnetized state, the domains are arranged randomly so there is 

no net magnetization as we just discussed. When an external magnetic field is applied, 

the domain whose magnetization is closest to the direction of the applied field starts to 

grow through domain wall motion, at the expense of shrinking of other domains that are 

unfavorably oriented. Usually the moving domain walls will encounter imperfections 

such as defects or dislocations in the ferromagnetic crystal. When a domain boundary 

intersects the imperfection, the magnetostatic energy associated with the imperfection 

will be eliminated. The intersection of the domain boundary with the imperfection is a 

local energy minimum. As a result the domain boundary will tend to stay pinned at the 

imperfection, and energy is required to move it past the imperfection. The external 

applied magnetic field provides this energy. Eventually, all domain walls in the 

ferromagnetic material are eliminated with sufficient high applied field. This leads to a 

single domain, with its magnetization pointing to the easy axis oriented most closely to 

the external magnetic field. Further increase of the applied field will rotates the 

magnetization of the single domain from the easy axis to the direction of the applied 

field. At this stage the magnetization can be increased no more with increasing applied 

field and the saturation is reached. This magnetization is called saturation magnetization, 

Ms. It measures the maximum amount of field that a ferromagnetic material can 

generate. Based on what we have discussed, it will depend on the values of the 

magnetic moments of the atoms that make up the material and how densely these atoms 

are packed together. 
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When the applied field is reduced, the magnetization first rotates back to the 

easy axis. Next reverse magnetic domains grow to allow the material to be partially 

demagnetized, initiated by the demagnetizing field inside the ferromagnetic material. 

However, the domain walls are unable to fully reverse their motion back to their 

original positions. This is because the demagnetizing field, not the applied magnetic 

field, drives the demagnetization process, and the demagnetizing field is not strong 

enough to overcome the energy barriers encountered when the domain walls intersect 

the imperfections. As a result, a hysteresis effect is produced and some magnetization, 

called remnant magnetization Mr, remains in the ferromagnetic material even when the 

field is completely removed. The coercivity Hc is defined as the reverse field applied to 

reduce the magnetization to zero.  It is closely related to the ferromagnetic material’s 

magnetic anisotropy, as we will introduce in the section 2.2.3.  

 

2.2.2 Curie Temperature: Tc 

Curie temperature is the temperature above which a ferromagnetic material 

loses magnetization. Below its Curie temperature, a ferromagnetic material is ordered in 

atomic scale. With rising temperature, thermal energy increases, counteracting the 

exchange interactions between the atoms and resulting in a decrease in the saturation 

magnetization of the materials. When the temperature reaches the Curie temperature, 

the increasing thermal energy eventually overcomes the exchange interactions and 

randomizes the directions of the aligned magnetic moments due to exchange interaction, 

resulting in zero saturation magnetization. So above the Curie temperature, the 
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ferromagnetic material becomes paramagnetic with randomly oriented atomic magnetic 

moments. 

 

2.2.3 Magnetic Anisotropy 

Magnetic anisotropy simply means that the magnetic properties of 

ferromagnetic materials depend on the direction in which they are measured. The 

magnetization tends to align along certain preferred directions, which are called easy 

axes since it is easier to magnetize a demagnetized ferromagnetic material to saturation 

if the external magnetic field is applied along a preferred direction. The energy 

difference between magnetizations along the easy and hard axes is called magnetic 

anisotropy energy.  

There are several kinds of magnetic anisotropy, including magnetocrystalline 

anisotropy, shape anisotropy, stress anisotropy, exchange anisotropy and anisotropy 

induced by material processing. Only magnetocrystalline anisotropy is intrinsic to the 

ferromagnetic material and all the others are extrinsic. The magnitude and type of 

magnetic anisotropy affect magnetization and hysteresis loop in ferromagnetic 

properties. In this section, I will only introduce magnetocrystalline anisotropy and shape 

anisotropy since these are the properties we will investigate in our study. 

Magnetocrystalline anisotropy is the tendency of the magnetization to align 

itself along the easy axis. The origin of magnetocrystalline anisotropy mainly comes 

from the spin-orbit coupling, which is the interaction between the spin and the orbital 

motion of an electron. When an external applied field tries to reorient the spin of an 
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electron, the orbit of that electron also tends to be reoriented because of this spin-orbital 

coupling. However, the orbit is strongly coupled to the crystal lattice and therefore 

resists the attempt to rotate the spin axis. The energy required to rotate the spin system 

of a domain away from the easy axis to the hard axis, which is defined as 

magnetocrystalline anisotropy energy, is actually just the energy required to overcome 

the spin-orbit coupling.  

Shape anisotropy is another kind of magnetic anisotropy which origins in the 

non-spherical shape of a ferromagnetic sample. If it is spherical in shape, the same 

applied magnetic field will magnetize it to the same extent in every direction. However 

if it is not spherical, it will be easier to magnetize it along a long axis than along a short 

axis because the demagnetizing field along a short axis is stronger than along a long 

axis. The applied field along a short axis then has to be stronger to produce the same 

magnitude of magnetization inside the sample.  

Figure 2.4 (a) shows schematic magnetization curves for a ferromagnetic 

material with the external field applied along the easy and hard axes. In both cases the 

same saturation magnetization is achieved, but a much larger applied field is required to 

reach saturation along the hard axis than along the easy axis. Figure 2.4 (b) 

demonstrates the easy, medium and hard directions of magnetization in a unit cell of 

bcc iron. In this case the easy axis is along one of the (100) crystal directions. A large 

magnetic field is required to saturate the magnetization along the (111) direction, the 

hard axis of magnetization. In fcc Ni the easy and hard axes of magnetization are the 

(111) and (110) directions, respectively. For hcp Co the easy axis of magnetization is 
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along the c (0001) direction while the hard axis lies in the basal plane of the 

conventional hcp unit cell. 

                         

Figure 2.4 (a) Schematic magnetization curves for a ferromagnetic material with the 
applied field oriented along the hard and easy directions; (b) Easy, medium and hard 
directions of magnetization in a unit cell of bcc iron. Copied from Ref. [8]. 

 

2.2.4 Maximum Energy Product (BH)max 

The maximum energy product (BH)max is one of a few measures of quality of a 

ferromagnetic material, representing the energy required to demagnetize the material. It 

is defined as the maximum value of the product of B and H, corresponding to the area of 

the largest rectangular that can be constructed in the second quadrant of the B-H loop. 

The value of the maximum energy product increases with increasing both coercivity and 

saturation magnetization. However, for materials with sufficiently high coercivity, there 

is a theoretical upper limit of 2
0 / 4sMμ , which is obtained from an ideal rectangular B-

H loop. Figure 2.5 [12] shows the growth history of maximum energy product of 

permanent magnets in the 20th century.  

(a) (b) 
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Figure 2.5. The development of permanent magnets in the 20th century. (BH)max has 
improved exponentially, doubling every 12 years. Copied from Ref. [12]. 

 

2.3 Hard and Soft Magnetic Materials 

In terms of their magnetic properties and uses, ferromagnetic materials can be 

classified into soft magnetic materials and hard or permanent magnetic materials.  

Soft magnetic materials can be easily magnetized and demagnetized by low 

magnetic field. Expressed in the hysteresis loop, as shown in Figure 2.6 (a), they have 

high saturation magnetization but low coercive field. When the applied external 

magnetic field is removed, soft magnetic materials will return to a state of low residual 

magnetization. Soft magnetic materials are used in electromagnets and transformer 

cores, where they must be able to reverse their direction of magnetization rapidly. 

Hard magnetic materials are very hard to be demagnetized. Expressed in the 

hysteresis loop, they have large coercivity but low saturation magnetization, as 

illustrated in Figure 2.6 (b). After the applied external magnetic field is removed, hard 
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magnetic materials can still retain very high magnetization, and are hard to demagnetize 

them. Hard magnetic materials find very wide applications in industry and in our 

everyday life. They are used almost everywhere: in computer hard drives, in ipods, in 

MRI machines, in motors, in generators, and in magnetic levitation trains.  

                          

Figure 2.6 Hysteresis loops for (a) soft magnetic materials; and (b) hard magnetic 
materials. 

 

2.4 Exchange-Coupled Nanocomposite Magnets 

We have seen from Figure 2.5 that the maximum energy product of permanent 

magnets has improved exponentially, doubling every 12 years, during the last century. 

A natural question is: can we keep this trend of the growth of maximum energy product 

to make more powerful permanent magnets? Researchers in the field of permanent 

magnets have been competing for new record of the value of maximum energy product. 

However, it seems that it is not easy to find single-phase permanent magnets with 

higher maximum energy product. Thus, exchange-coupled nanocomposite magnets 

were proposed as a possible approach to enhance the maximum energy product. In these 

exchange-coupled nanocomposite magnets, the soft phase material provides the high 

magnetization and the hard phase material provides the high coercivity and stabilizes 

the soft phase against demagnetization via exchange coupling between the two phases, 

(a) (b) 
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as schematically shown in Figure 2.7. If the soft phase and hard phase are magnetically 

exchange coupled with each other, the nanocomposite material is expected to behave 

like a single-phase permanent magnet with both high coercivity and high saturation 

magnetization and thus increased maximum energy product. The strength of the 

exchange coupling between the hard and soft phases is affected not only by the soft and 

hard phase materials, but also by their dimensions and the interfacial condition between 

them. 

 

Figure 2.7 Illustration of the idea of nanocomposite magnet, which combines the high 
saturation magnetization from the soft phase magnet and large coercivity from the hard 
phase magnet.  

 

2.5 Why FeCo Alloys and SmCo5? 

In searching for specific hard and soft magnetic materials as constituents of the 

nanocomposite magnet for our study, we have three considerations. 
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Firstly, as discussed in the last section, the potential hard magnetic material 

should have high coercivity, which usually related to a large magnetic anisotropy. In the 

meantime, the potential soft magnetic material should have high saturation 

magnetization, as well as appreciable magnetic anisotropy. As reported in previous 

research work [13-16], magnetic anisotropy in the soft phase material is also an 

important factor in affecting the exchange coupling between the hard and soft phases. 

Secondly, both the hard and soft magnetic materials need to have high Curie 

temperatures. As a result, the nanocomposite magnet will potentially have high Curie 

temperature so it can retain its magnetic strength and resist demagnetization in the 

temperature range of application. Nowadays, many applications require the working 

temperature of permanent magnetic higher than 400 ℃. 

The last consideration is the lattice match between the soft and hard magnetic 

materials. In general, lattice mismatch at the interface will induce defects during growth 

of materials and thus affect the quality and characteristics of the grown materials. 

Lattice match is also important for our theoretical study since we may need to use much 

larger unit cell in our model calculations if the lattice constants mismatch is big.  

Having these three considerations in mind, and looking at the magnetic 

properties of the commonly used ferromagnetic materials as compile in Table 2.1 [7, 9, 

10], we come up with the first model with SmCo5 as hard phase material, and hcp Co as 

soft phase material. SmCo5 has highest anisotropy and high Curie temperature, whereas 

Co has high saturation magnetization and highest Curie temperature. The lattice 

mismatch between them along (1010)  direction is only 0.2% from our calculations as 
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we will report later. The other possible model is to use Sm2Co17 as hard phase material 

and bcc Fe as soft phase material since they also satisfy our three considerations. We 

have done some research work on this model but they will not be reported here since it 

is not in the scope of this dissertation. It is worth noting that although Nd2Fe14B has 

relatively high saturation magnetization and high coercivity and potentially highest 

maximum energy product, it is not chosen in our study because it has low Curie 

temperature. 

 

Table 2.1 Magnetic properties of some commonly used ferromagnetic materials. The 
data are compiled from References [7, 9, 10].  
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CHAPTER 3 

METHODOLOGY 

 

First-principles calculations refer to quantum mechanical calculations without 

any external parameters except the atomic numbers of the atoms involved in the 

calculations. In this chapter, the theoretical background of density functional theory, 

necessary approximations needed for practical calculations, and various methods 

implemented based on density functional theory are described. 

 

3.1 The Born-Oppenheimer Approximation 

When dealing with a solid consisting of nuclei and electrons, we are dealing 

with a quantum, many-body problem. In principle this problem is covered by the time-

dependent Schrödinger equation  

 ( , , )ˆ ( , , ) ,∂Ψ
Ψ =

∂
R r tH R r t i
t

 (3.1) 

where Ĥ is the Hamiltonian operator corresponding to the total energy of the system,  

( , , )R r tΨ  is the wavefunction, a function of all the self-variants of the system, 

including the nuclear positions R , electron positions and spins r and time t . 
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Suppose there are no external fields, the Hamiltonian of a system consisting of 

M nuclei (each with charge Zα and mass mα ) and N electrons, in atomic units 

( 1, 1, 1em e= = = ), is given by 

 ˆ ˆ ˆH T V,= +  (3.2) 

where  

 2 21 1ˆ
2 2

M N

ii
T

m ααα

= − ∑ − ∑∇ ∇   (3.3) 

representing the kinetic energies of the nuclei and electrons respectively, and 

 1ˆ
M M M N N N

i i j ii i j

Z Z ZV
R rR R r r

α β α

α β α α αα β> >

= − +
−− −

∑ ∑ ∑∑ ∑∑  (3.4) 

describing the Coulomb interactions between nuclei and other nuclei, between electrons 

and nuclei, and between electrons and other electrons, respectively.  

Since the Hamiltonian above is independent of time, using the technique of 

separation of variables the solution of the Schrödinger equation can be written as  

 ( , , ) ( , ) ( )R r t R r f tΨ = Ψ . (3.5) 

By substituting this equation back to Equation (3.1), the time-dependent 

Schrödinger Equation is reduced to a time-independent Schrödinger Equation 

 Ψ=Ψ EĤ  (3.6) 

and  

 ( , , ) ( , ) exp( / )R r t R r iEtΨ = Ψ − . (3.7) 
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This equation shows that if the potential is independent of time and the system is 

in a state of energy E, all that is required to construct the time-dependent wavefunction 

from the time-independent wavefunction is multiplication by )/exp( iEt− , which is 

simply a modulation of its phase. 

While theoretically the Schrödinger equation describes the many-body problem, 

it is out of the question to solve this equation exactly in practice. It is too complicated to 

be solved for all except the simplest systems. To overcome this difficulty, we will need 

to make approximations to find acceptable approximate eigenstates. The first level of 

approximation is the Born-Oppenheimer Approximation [17, 18]. 

In the Born-Oppenheimer Approximation, the electrons and the ions in a real 

system are treated separately because of the large mass difference between them. The 

forces on both electrons and nuclei due to their electric charge are of the same order of 

magnitude, and so the changes which occur in their momenta as a result of these forces 

must also be the same. One might therefore assume that the actual momenta of the 

electrons and nuclei were of similar magnitude. In this case, since the nuclei are so 

much more massive than the electrons, they must accordingly have much smaller 

velocities and move much slower. Thus it is plausible that on the typical time scale of 

the nuclear motion, the electrons will very rapidly relax to the instantaneous ground 

state configuration. So that in solving the time independent Schrödinger equation 

resulting from the Hamiltonian in equation, we can assume that the nuclei are stationary 

at fixed positions and the electrons are in instantaneous equilibrium with them. After 

applying this approximation, we are left with a collection of electrons moving in an 
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external potential produced by the nuclei. So instead of solving the original Schrödinger 

equation (3.6), we solve for the electronic ground state first and then calculate the 

energy of the system in that configuration and solve for the nuclear motion. In 

mathematical terms, the ionic wavefunction (R)ξ  is independent of the electronic 

wavefunction and the total wavefunction of the system can be approximately written as 

the product of ionic and electronic terms 

 RΨ(R, r) (R) (r),= ξ ψ  (3.8) 

where the notation of the electronic wavefunction (r)ψR  implies that it only depends 

parametrically on the ionic positions R.  

As a consequence of the Born-Oppenheimer approximation, the first term in 

equation (3.3), i.e. the kinetic energy of nuclei, is zero. The first term in equation (3.4), 

i.e. the potential energies due to the nuclear-nuclear interactions, reduces to a constant. 

Therefore, we are left with three terms. If we write the external Coulomb potential 

produced by the nuclei as )(rVext   

 ( )
| |ext i

i

ZV r
R r

α

α α

= −
−∑ , (3.9) 

and define 

 ˆ ( ) ( )ext ext i
i

V r V r= ∑ , (3.10) 

and 

 2

1

1 1ˆ ( ) ,
2

N N N

i
i i j i i j

F
r r= >

= − − ∇ +
−

∑ ∑∑  (3.11) 
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then the electronic Hamiltonian after applying the Born-Oppenheimer approximation 

can be written as 

 ˆ ˆ ˆ
extH V F= + . (3.12) 

It is worth noting that F̂  is universal for all N-electron systems, independent of 

the particular kind of many-electron system. The Hamiltonian and hence the ground 

state wave function 0ψ  will be completely determined by N  and êxtV . Therefore, the 

ground state wave function 0ψ  and electronic charge density 0 ( )rρ  are both 

functionals of the number of electrons N  and the external potential ( )extV r . The ground 

state electronic charge density in terms of 0ψ  is 

 
2

0 1 0 2( ) Nr N dr drρ ψ= ∫ . (3.13) 

 

3.2 Density Functional Theory 

Separate treatment of electronic and ionic movements in the Born-Oppenheimer 

approximation simplifies the original many-body problem and allows us to treat the ions 

in a classical formalism. However, because of the mutual interactions between electrons, 

the electronic problem is still a far too complicated many-body quantum problem to be 

solved exactly in practical computations. Owing to this difficulty, further developments 

are required to convert a many-body problem into many one-body problems for real 

materials. Density Functional Theory provides a framework for these developments. 

Density Functional Theory, based on two theorems first proved by Hohenberg 

and Kohn [5] in the 1960’s, makes it possible to describe the ground state properties of 
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a real system in terms of its ground state charge density instead of the far more 

complicated wavefunction. This theory allows us to find the ground state properties of a 

system in terms of the ground state charge density without explicit recourse to many-

particle wavefunctions. Since the electronic charge density depends only on four 

variables (three Cartesian variables and electron spin), the original 4M (where M is the 

number of electrons) variables problem involving the complicated wavefunctions is 

reduced to a much simpler problem in which only four variables are needed to define 

the charge density at a point. Thus the computational efforts will be drastically reduced 

and the problem will be feasible to be solved computationally. 

 

3.2.1 The Hohenberg-Kohn Theorems 

The two Hohenberg-Kohn theorems state that: 

Theorem I: For any system of interacting particles in an external potential 

( )extV r , the potential ( )extV r  is determined uniquely, except for a constant, by the 

ground state electronic charge density 0 ( )rρ . 

Theorem II: A universal functional for the energy in terms of the density ( )rρ  

can be defined, valid for any external potential ( )extV r . For any particular ( )extV r , the 

exact ground state energy of the system is the global minimum value of this functional, 

and the density ( )rρ  that minimizes the functional is the exact ground state density 

0 ( )rρ . 

A schematic representation of these two theorems is shown in Figure 3.1. 
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The proofs of the Hohenberg-Kohn theorems are disarmingly simple. To prove 

Theorem I, we use the method of reductio ad absurdum: suppose that there was a 

second different external potential ( )extV r′  which differs from  ( )extV r by more than a 

constant. These two external potentials give rise to the same ground state density 0 ( )rρ  

but lead to two different Hamiltonians, Ĥ  and Ĥ ′ , which have two different non-

degenerate ground state wavefunctions, ψ  and ψ ′ . Since ψ ′  is not the ground state 

wavefunction of Ĥ , it follows that 

 
0

0

3
0

ˆ ˆ ˆ ˆ ˆ

( ) ( ) ( ),

′ ′ ′ ′ ′ ′ ′ ′= < = + −

⎡ ⎤′′= + −
⎣ ⎦∫ ext ext

E H H H H H

E d r V r V r r

ψ ψ ψ ψ ψ ψ ψ ψ

ρ
 (3.14) 

where 0E  and 0E′  are the ground state energies for Ĥ  and Ĥ ′ , respectively. Similarly, 

if we consider 0E′  in exactly the same way, we have an equation 

 
0

0

3
0

ˆ ˆ ˆ ˆ ˆ

( ) ( ) ( ).ext ext

E H H H H H

E d r V r V r r

ψ ψ ψ ψ ψ ψ ψ ψ

ρ−

′ ′ ′ ′ ′ ′= < = + −

⎡ ⎤′= −
⎣ ⎦∫

 (3.15) 

Adding these two equations, we would obtain the contradictory inequality 

 0 0 0 0 ,E E E E′ ′+ < +  (3.16) 

which is absurd. This shows that there cannot be two different external potentials 

differing by more than a constant which give the same ground state charge density.  
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The charge density uniquely determines N  and the external potential ( )extV r  

within a constant. Because the external potential and number of electrons N determine 

all the ground state properties of the system since the Hamiltonian and ground state 

wave function are determined by them. Hence all properties of the ground state, for 

example the kinetic energy [ ]T ρ , the potential energy [ ]V ρ  and the total energy [ ]E ρ , 

are uniquely determined by the charge density ( )rρ . Then we have, for the total energy 

 [ ] [ ] [ ] [ ] [ ]( ) ( ) ,= + + = +∫ne eeE T V V r V r dr Fρ ρ ρ ρ ρ ρ   (3.17) 

where 

 [ ] [ ] [ ]eeF T Vρ ρ ρ= +  (3.18) 

is an introduced functional as defined above. 

( )i rψ  
0 ( )rψ

( )extV r HK
0 ( )rρ

Figure 3.1 Schematic representation of Hohenberg-Kohn theorems. The single arrows 
denote the usual solution of the Schrödinger equation where the potential ( )extV r  
determines all states of the system ( )i rψ , including the ground state 0 ( )rψ  and ground 
density 0 ( )rρ . The double arrow labeled “HK” denotes the Hohenberg-Kohn theorems, 
which completes the cycle. Adapted from Ref. [19]. 
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The second Theorem can be easily proved by using the variational principle: by 

the first Theorem, a given electronic charge density ( )rρ  determines its own external 

potential ( )extV r  and ground state wavefunction [ ]0ψ ρ . If this wavefunction is used as 

a trial function for the Hamiltonian having external potential ( )V r , then 

 
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

0 0 0 0 0 0

0 0 0 0 0 0

ˆ ˆ ˆ

ˆ( ) ( ) .V V

H F V

F r V r dr E E E H

ψ ρ ψ ρ ψ ρ ψ ρ ψ ρ ψ ρ

ρ ρ ρ ρ ψ ρ ψ ρ

= +

= + = ≥ = =∫
 (3.19) 

For non-degenerate ground states, the equality holds only if 

 [ ] [ ]0 0 0 ,ψ ρ ψ ρ=  (3.20) 

and therefore 

 0.ρ ρ=  (3.21) 

This shows that the ground state density is indeed the density that minimizes the 

functional. 

The inequality follows from Rayleigh–Ritz’s variational principle for the wave 

function, but applied to the electronic density. Assuming differentiability of [ ]E ρ , the 

variational principle requires that the ground state density satisfy  

 { }0[ ] ( ) 0,⎡ ⎤− − =⎣ ⎦∫E r dr Nδ ρ μ ρ  (3.22) 

which gives the Euler-Lagrange equation of the form 

 [ ] [ ]0 0

0 0

( ) ,
( ) ( )

= = +
E F

V r
r r

δ ρ δ ρ
μ

δρ δρ
 (3.23) 

Where μ  is the Lagrange multiplier corresponding to the chemical potential associated 

with the constraint 
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 0 ( ) .r dr Nρ =∫  (3.24) 

Equation (3.23) is the basic working equation of density functional theory. 

The above proofs assumed the non-degeneracy of the ground states. It has been 

shown that this condition can be lifted by the so-called “constrained search formulation” 

proposed by Levy [20-22] and Lieb [23-25] and therefore the density functional 

formalism can be generalized to deal with both non-degenerate and degenerate ground 

states.  

[ ]F ρ  of equation (3.18) is a universal functional of ( )rρ  in a sense that [ ]F ρ  

is defined independently of the external potential ( )V r . If we knew the exact 

functional [ ]F ρ , the equation (3.22) would be an exact equation for the ground state 

electron density. Therefore, once we have an explicit form for [ ]F ρ , we can apply this 

method to any system. However, accurate implementations of the density functional 

theory are far from easy to achieve because of the unfortunate fact that the functional 

[ ]F ρ  is hard to come by in explicit form. 

 

3.2.2 The Kohn-Sham Method 

Density functional theory is the most widely used method today for electronic 

structure calculations because of the approach proposed by Kohn and Sham in 1965 [6] 

to replace the original many-body problem by an auxiliary independent-particle 

problem. This is an ansatz that, in principle, leads to exact calculations of properties of 

many-body systems using independent-particle methods; in practice, it has made 
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possible approximate formulations that have proved to be remarkably successful. As a 

self-consistent method, the Kohn-Sham approach involves independent particles but an 

interacting density, an appreciation of which clarifies the way the method is used. 

The Kohn-Sham ansatz assumes that the exact ground state density 0 ( )rρ  can 

be represented by the ground sate density ( )rρ  of an auxiliary system of non-

interacting particles as illustrated in Figure 3.2. Although there are no rigorous proofs 

for real systems of interest, it is assumed this equivalent non-interacting system does 

exist.  

The auxiliary Hamiltonian is chosen to have the usual kinetic operator and an 

effective local potential ( )effV r acting on an electron but have no electron-electron 

repulsion terms. Using the atomic units, this Hamiltonian is written as 

 

Figure 3.2 A cartoon representing the relationship between the real many body system 
(left hand side) and the auxiliary non-interacting system of Kohn-Sham method. 

 

21ˆ ( ).
2

⎛ ⎞= ∇ +⎜ ⎟
⎝ ⎠

∑ ∑
N N

s i eff i
i i

H V r  (3.25) 

There will be an exact determinantal ground state wavefunction for this system, 

,E ρ
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  [ ]1 2
1 det ... ,

!
=s NN

ψ ϕ ϕ ϕ  (3.26) 

where the iϕ  are called KS orbitals corresponding to the N  lowest eigenstates of the 

one-electron Hamiltonian ŝh : 

 21ˆ ( ) .
2

⎡ ⎤= − ∇ + =⎢ ⎥⎣ ⎦
s i eff i i ih V rϕ ϕ ε ϕ  (3.27) 

The electronic charge density will be given as 

 2

1
( ) ( )

N

i
i

r rρ ϕ
=

= ∑  (3.28) 

and the kinetic term is 

 
[ ] 2

1

2

1

1( )
2

1 .
2

=

=

= − ∇

= − ∇

∑

∑

N

s s i s
i

N

i i
i

T ρ ψ ψ

ϕ ϕ
 (3.29) 

Using this kinetic energy form, the universal functional [ ]F ρ  in equation (3.18) can be 

rewritten as 

 

[ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]{ }
[ ] [ ] [ ],

= +

= + + − + −

= + +

ee

s s ee

s xc
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T J E
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ρ ρ ρ ρ ρ ρ

ρ ρ ρ

 (3.30) 

where [ ]J ρ  is the classical electrostatic interaction energy corresponding to a charge 

distribution ( )rρ , 

 [ ] 1 ( ) ( ) .
2

′
′=

′−∫
r rJ drdr
r r

ρ ρρ  (3.31) 
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Equation (3.30) also defines the exchange-correlation energy as a functional of 

density 

 [ ] [ ] [ ] [ ] [ ].= − + −xc s eeE T T V Jρ ρ ρ ρ ρ  (3.32) 

From this definition, we can see clearly that the exchange-correlation energy 

[ ]xcE ρ includes two parts of contributions: the non-classical electron-electron 

interaction energy and the difference between the two kinetic energies [ ]T ρ  and [ ]sT ρ . 

Upon substitution of the expression of [ ]F ρ  in equation (3.17), the total energy 

functional can be rewritten as 

 [ ] [ ] [ ] [ ] ( ) ( )s xcE T J E r V r drρ ρ ρ ρ ρ= + + + ∫  (3.33) 

and the Euler-Lagrange equation now becomes 

 [ ]( ) ,
( )

= + s
eff

T
V r

r
δ ρ

μ
δρ

 (3.34) 

where the Kohn-Sham effective potential is defined by 

 

[ ] [ ]( ) ( )
( ) ( )
( )( ) ( ),

= + +

′
′= + +

′−∫

xc
eff

xc

J E
V r V r

r r
rV r dr V r

r r

δ ρ δ ρ
δρ δρ

ρ
 (3.35) 

with the exchange-correlation potential 

 [ ]( ) .
( )

= xc
xc

E
V r

r
δ ρ

δρ
 (3.36) 

In summary, the KS orbitals satisfy the well-known self-consistent Kohn-Sham 

equations 
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 21 ( ) ,
2

⎡ ⎤− ∇ + =⎢ ⎥⎣ ⎦
eff i i iV r ϕ ε ϕ  (3.37) 

and the electronic charge density is constructed using the KS orbitals 

 2

1
( ) ( ) .

=

= ∑
N

i
i

r rρ ϕ  (3.38) 

Comparing with the single Euler-Lagrange equation (3.34), we see that, by 

introducing the N KS orbitals, the Kohn-Sham equations handle [ ]sT ρ , the dominant 

part of the true kinetic energy [ ]T ρ , indirectly but exactly. This is a major advance 

over the Hohenberg-Kohn theorems: the major part of the unknown functional [ ]F ρ  is 

known exactly; only a residual part [ ]xcE ρ is unknown now. The relationship between 

the Hohenberg-Kohn theorems and the Kohn-Sham method is schematically 

represented in Figure 3.3. 

Figure 3.3 Schematic representation of Kohn-Sham method. The notation HK0 denotes 
the Hohenberg-Kohn theorems applied to the non-interacting problem. The arrow 
labeled KS provides the connection in both directions between the many-body and 
single-particle systems. Therefore, in principle, solution of the single-particle Kohn-
Sham problem determines all properties of the many-body system. Adapted from Ref. 
[19]. 
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3.2.3 Spin Density Functional Theory 

The density functional theory as it has been discussed up to this point only use 

the total density ( )rρ  as the fundamental variable. However, this is not the widely used 

density functional theory in practical applications. Much common is the spin density 

functional theory which works with two fundamental variables, i.e., the up and down 

spin densities ( )rαρ  and ( )rβρ . They are defined as  

 ( )
2

1
( )

N

i
i

r r
σ

σ σρ ϕ
=

= ∑   ( , ),=σ α β  (3.39) 

with the interpretation that 3( )r d rσρ  is the probability of finding an electron of spin 

σ in 3d r  around r . These two fundamental variables then can be used to calculate the 

particle charge density ( )rρ  and spin-magnetization density ( )m r  from  

 ( ) ( ) ( ),= +r r rα βρ ρ ρ  (3.40) 

and 

 ( ) ( ( ) ( )),= −Bm r r rα βμ ρ ρ  (3.41) 

where 2B eeh m cμ =  is the Bohr magneton. Then the Hohenberg-Kohn Theorems can 

be proved, showing that the ground state wavefunction and all ground state observables 

are unique functionals of ( )rρ and ( )m r  or, equivalently, ( )rαρ  and ( )rβρ . Similarly, 

the Kohn-Sham equations can be developed with spin-dependent effective potentials 

, ( )effV rσ  as follows, 
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where 
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i.e. , ,

,,

( ) ( )( )( ) .
( )( )

eff xc

xceff

V r V rrV r dr
V rV r r r

α α

ββ

ρ⎧ ⎫ ⎧ ⎫′⎪ ⎪ ⎪ ⎪′= + +⎨ ⎬ ⎨ ⎬′− ⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭
∫  (3.44) 

Spin density functional theory is essential in the theory of atoms and molecules 

with net spins, as well as solids with magnetic order. In fact, all modern density 

functional calculations are spin density functional calculations. 

 

3.3 Approximations of [ ]ρxcE : L(S)DA and GGA 

The density functional theory as it has been discussed up to this point is exact 

and no approximation has been introduced into this theory. However, the exchange 

correlation energy functional [ ]xcE ρ , though well defined and exact in principle, is not 

known exactly. Therefore, to make the density functional theory a practical tool for 

electronic calculations, we have to introduce approximation to express explicitly the 

exchange correlation energy functional [ ]xcE ρ . 
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The simplest approximation of the exchange correlation energy is the local (spin) 

density approximation (L(S)DA) proposed by Kohn and Sham in 1965 [6]. The main 

idea of LSDA is that the real inhomogeneous electronic systems can often be regarded 

as locally homogeneous as the homogeneous electron gas having the same density.  

Thus, the exchange correlation energy is simply an integral over all space with the 

exchange correlation energy density h
xcε at each point, 

 
3

3

, ( ) ( ( ), ( ))

( ) ( ( ), ( )) ( ( ), ( )) .

⎡ ⎤ =⎣ ⎦
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∫
∫

LSDA h
xc xc

h h
x c

E r r r d r

r r r r r d r

α β α β

α β α β

ρ ρ ρ ε ρ ρ

ρ ε ρ ρ ε ρ ρ
 (3.45) 

In the second step h
xcε  has been divided into two parts: an exchange part h

xε  and a 

correlation part h
cε  

 ( ( ), ( )) ( ( ), ( )) ( ( ), ( )).= +h h h
xc x cr r r r r rα β α β α βε ρ ρ ε ρ ρ ε ρ ρ  (3.46) 

Since the exchange energy of the homogeneous gas has a simple analytical form 

and the correlation energy has been calculated to great accuracy using the Quantum 

Monte Carlo methods, we can obtain an explicit form for the exchange correlation 

energy based on this approximation and then we can solve the Kohn-Sham equations. 

Although it is simple, the LSDA is a very successful approximation for many 

systems of interest, not only for those where the electronic density is quite 

homogeneous (these are the systems that the approximation was designed to work with), 

but also for less uniform systems where the electronic density is rapidly varying. 

However, there are also a number of problems with the LSDA [26-29]. For instance, it 
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usually overestimates the bonding energies but underestimates the energy band gap in 

insulate crystals. 

To overcome these and other problems of LSDA, it is natural to improve the 

exchange correlation energy functional in LSDA by introducing a dependence on the 

gradient of the electron density, which is call the General Gradient Approximation 

(GGA) [30-35]. The GGA expression for the exchange correlation energy functional 

looks like 

 , ( ) , , , , ,⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + ∇ ∇⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫GGA
xc xc xcE r dr F drα β α β α β α βρ ρ ρ ε ρ ρ ρ ρ ρ ρ  (3.47) 

where the functional xcF is constructed under guidance of wave vector analysis of the 

exchange correlation energy  to satisfy certain formal conditions, such as the sum rule, 

the physical asymptotic behaviors and so on. Several expressions of the exchange 

correlation energy density have been described in different formulations of the GGA 

functionals. 

GGA did improve the descriptions of some systems over LSDA. One of the 

famous examples is that GGA has predicted the correct ground state of bulk Fe to be 

ferromagnetic body-centered cubic structure [36], while the LSDA has predicted a 

wrong non-ferromagnetic face-centered cubic structure [37-40]. GGA also reproduces 

the binding energies, atomic energies and bond lengths better than LSDA. Nevertheless, 

there still exist some systems which cannot be properly described by GGA because of 

its semi-local nature. What is worse is that no systematic way has been developed to 

improve the functionals for exchange and correlation. The problems are most severe in 
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materials in which the electrons tend to be localized and strongly interacting, such as 

transition metal oxides and rare earth elements and compounds. 

 

3.4 Solving the Kohn-Sham Equations 

At this point, we can consider solving the Kohn-Sham equations to obtain the 

quantities we want. However, it is still a formidable task to handle an infinite number of 

non-interacting electrons moving in the static potential of an infinite number of nuclei 

or ions in solids. There exist two difficulties: a wavefunction must be calculated for 

each of the infinite number of electrons in the system, and since each electronic 

wavefunction extends over the entire solid, the basis set required to expand each 

wavefunction is infinite. To overcome these problems, we must invoke some theories 

and approximations to reduce the infinite systems to finite ones. 

 

3.4.1 Bloch’s Theorem and k Point Sampling 

Although the pure crystal is infinite in principle, the constituent ions are 

supposed to be at rest in their equilibrium positions and form a periodically repeated 

structure.  In this case the electrons can be considered to move in a static potential 

( )V r  , which may be the Kohn-Sham effective potential. Because of the periodicity of 

the crystal structure, this potential is also periodic. In mathematic words, the potential 

satisfies 

 ( ) ( )V L r V r+ =  (3.55) 

for all Bravais lattice vectors L .  
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The Bloch’s theorem [41, 42] states that the one-electron wavefunctions of 

electrons moving in this type of potential can be chosen to have the form of plane wave 

times a function with the periodicity of the Bravais lattice: 

 ( ) ( ),⋅= ik r
nk nkr e u rϕ  (3.56) 

where k  is the wave vector related to the translational properties and n  is the band 

index labeling different eigenstates corresponding to the same k , and 

 ( ) ( )nk nku L r u r+ =   (3.57) 

for all L  in the Bravais lattice.  

Combining the above two equations we obtain 

 ( ) ( ).ik L
nk nkr L e rϕ ϕ⋅+ =  (3.58) 

From this equation, we see that the Bloch’s theorem have changed the problem of 

calculating an infinite number of electronic wavefunctions to one of calculating a finite 

number of electronic wavefunctions at an infinite number of k  points.  

On the other hand, the wave vector k  can always be confined to the first 

Brillouin zone or to any other convenient primitive cell of the reciprocal lattice. This is 

because any k ′  not in the first Brillouin zone can be written as 

 ,′ = +k k G  (3.59) 

where k  does lie in the first Brillouin zone and G  is a reciprocal lattice vector defined 

by 

 2G L mπ⋅ =    ( m is an integer) (3.60) 
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for all lattice vectors L . Thus we can restrict our attention to those k vectors which lie 

within the first Brillouin zone.  

The k  points required in the electronic states calculations can be further 

reduced by the use of a small special set of k  points in the first Brillouin zone, which is 

based on the fact that the electronic wavefunctions and other properties at k  points that 

are very close together will be almost identical. Different methods [43-45] have been 

devised to choose the special points for obtaining very accurate approximation to the 

electronic potential and the total energy. The magnitude of any error due to the selection 

of special k  points can always be reduced by choosing a denser set of k  points. 

 

3.4.2 Plane Wave Basis Sets and Pseudopotential Approximation 

Solving the Kohn-Sham equations is an integral-differential problem, which is 

hard to attack in practical calculations. Therefore, it is necessary to transform this 

problem into an easier one. This can be achieved by expanding the electronic 

wavefunctions with a basis set. The plane wave basis set [46] seems a natural choice 

since the Bloch’s theorem states that the electronic wavefunctions at each k point can 

be expanded in terms of a discrete plane wave basis set. In addition, plane wave basis 

sets offer many advantages in density functional calculations for solids, including 

completeness, an unbiased representation (parameter free), arbitrarily good convergence 

accuracy and the ability to use the Fast Fourier Transform (FFT) to move back and forth 

between real and reciprocal spaces.  
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In principle, to obtain exact expansions of the electronic wavefunctions, an 

infinite plane wave set is required. But in practice, it is impossible because we can only 

handle a finite number of plane waves. Thus the plane wave set is usually truncated to 

include only plane waves that have kinetic energies less than some particular cutoff 

energy cutE : 

 
2

2 .
2 cutk G E

m
+ ≤  (3.61) 

In this way, a finite plane wave basis set is produced. The truncation of the plane wave 

basis set at a finite cutoff energy will certainly lead to the accuracy concerns in the 

computed results. But it is possible to reach the accuracies we want by increasing the 

value of the cutoff energy until the calculated results have converged.  

However it is still computationally too difficult in the real calculations even after 

the above methods and approximations are introduced. This is because a large number 

of plane waves are required to model accurately the core wavefunctions which oscillate 

rapidly with many nodes. A possible way to overcome this difficulty is the 

pseudopotential approximation [47-54] which is based on the fact that most physical 

properties of solids are dependent on the valence electrons to a much greater extent than 

on the core electrons. The pseudopotential method removes the core electrons and 

replaces them and the strong Coulomb potential by a much smoother pseudopotential 

and replaces the valence electron wavefunctions with a set of pseudo, smoothly varying 

wavefunctions which have no radial nodes in the core region. By doing so, the number 

of plane waves needed to expand the electronic wavefunctions is reduced significantly 
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and fewer electronic wavefunctions have to be calculated because of the removal of the 

core electrons.  

The pseudopotential approximation, especially the Vanderbilt’s ultrasoft 

pseudopotential [54] approach is now widely used in the electronic structure 

calculations [55-59]. But the success of the method is partly hampered by the rather 

difficult generation of the pseudopotentials. It is also reported that the pseudopotentials 

fail in spin-polarized calculations for materials with a large magnetic moment [60]. The 

three methods described in the following sections are alternatives to the pseudopotential 

approach. 

 

3.4.3 The Full Potential Linearized Augmented Plane Wave (FLAPW) Method 

The FLAPW method [61-63] is an all-electron method developed within density 

functional theory, universally applicable to all atoms of the periodic table and to 

systems with compact as well as open structures and widely considered to be the most 

precise electronic structure method in solid state physics. It is a generalization of the 

LAPW (Linearized Augmented Plane Wave) [64-66] method in that it removes the 

shape approximation to the potential inside the atomic spheres. Unlike the 

pseudopotential method which uses plane waves as basis set, the FLAPW method 

employs the augmented plane wave basis set as its predecessors, the APW (Augmented 

Plane Wave) method [67-69] and the LAPW method, did.  

Similar to the motivation of the introduction of the pseudopotential method, the 

idea leading to APW method is that near an atomic nucleus the potential and 
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wavefunctions are similar to those in an isolated atom – they are strongly varying but 

nearly spherical. The electrons in this region can be described more efficiently by 

atomic like functions. However, in the interstitial space between the atoms both the 

potential and wavefunctions are smoother. The electrons in this region behave more or 

less as free electrons, and thus can be described by plane waves. Naturally, space is 

accordingly partitioned into two regions as shown in Figure 3.4: atom-centered spheres 

with radius Rα , called muffin-tin sphere region (S), and the interstitial region (I). The 

muffin-tin spheres do not overlap and they are typically chosen such that they nearly fill 

the maximal possible space. The wavefunction is expanded as 

 

  (3.62) 

 

where ϕ  is a wave function, Ω is the cell volume, lu  is the regular solution of radial 

part of the Schrödinger’s equation in the sphere 

 
2

2 2

( 1)[ ( ) )] ( ) 0.l l
d l l V r E ru r
dr r

+
− + + − =  (3.63) 

Here Gc  and lmA  are expansion coefficients, lE  is an energy parameter and V is the 

spherical component of the potential in the sphere. lmA  is determined from the 

requirement that the wavefunctions are continuous (in value but in slope)  at the 

boundary of the muffin-tin spheres in order for the kinetic energy to be well-defined. 
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Figure 3.4  Division of the unit cell into muffin-tin regions (S) and the interstitial region 
(I), for a case with two atoms.  
 

There are several difficulties connected with the APW method. For example, 

The augmented plane waves are solutions of the Schrödinger's equation inside the 

spheres, but only at the energy lE . If lE  kept fixed, it turns out that the APW basis does 

not offer enough variational freedom. An accurate description can only be achieved if 

the energies are set to the corresponding band energies. Accordingly the Hamiltonian 

energy dependent and the energy bands at a fixed k-point cannot be obtained from a 

single diagonalization as in pseudopotential method. This makes the APW method 

inherently much slower than the pseudopotential method. 

To circumvent these difficulties with the APW method, several modifications 

were proposed. One of them is the LAPW method. In the LAPW method, the basis 

functions inside the spheres are linear combinations of radial functions ˆ( ) ( )l lmu r Y r  and 

their derivatives with respect to the parameters, lE . The energy derivative ˆ( ) ( )l lmu r Y r  

satisfies 
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+
− + + − =  (3.64) 
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These functions are matched to the values and derivatives of the planewaves on the 

muffin-tin sphere boundaries. The wavefunctions in terms of the LAPW basis are, 

 
1/ 2 ( )

ˆ[ ( ) ( )] ( ) ,( ) {
i G k r

G G

lm lm l lm l lm

c e r I
A u r B u r Y r r Srϕ

− + ⋅Ω Σ ∈
Σ + ∈=  (3.65) 

where the lmB  are coefficients for the energy derivative, and determined by the 

requirement that the first derivatives of wavefunctions are continuous at muffin-tin 

boundary.  

As in the APW method, the LAPWs are planewaves in the interstitial region, but 

inside the spheres the LAPWs have more variational freedom than APWs. This is 

because a linear combination will reproduce the APW radial function constructed at the 

band energy ε  if lE  differs slightly from the band energy.  

 2( , ) ( , ) ( ) ( , ) (( ) ).l l l l l lu r u E r E u r O Eε ε ε ε= + − + −  (3.66) 

The last term in Eq. (3.66) denotes errors that are quadratic in this energy difference. 

The APW method will yield exactly the correction wavefunction for a converged, 

infinite planewave set and a muffin-tin potential. For the LAPW method, it will 

introduce errors of order 2( )lEε −  in the wavefunction and errors of order 4( )lEε −  in 

the band energy according to the variational principle. Because of this high order of 

error, the LAPWs form a good basis set over a relatively large energy region, so that all 

valence bands may typically be treated with a single set of lE . Therefore, in the LAPW 

method accurate energy bands at a given k-point can be obtained with a single 

diagonization, an enormous simplification over the APW method. 
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In the LAPW method, the full potential and charge density are treated 

everywhere in space except inside the muffin tin sphere, where a spherical-shape 

approximation is used. While calculations employing the LAPW method yielded 

accurate results for close-packed metal systems, the spherical-shape approximation 

cannot be justified for open structures such as semiconductors and reduced symmetry 

solids, e.g., films and interfaces, and the localization inherent in molecules on solid 

surfaces.  

The FLAPW method was developed to remove this spherical-shape 

approximation and obtain the Coulomb potential for a general periodic charge 

distribution. The method is based on the fact that the potential outside the muffin tin 

spheres does not depend on the actual shape of the charge density inside the spheres but 

only on the multipole moments of the charge. Hence the true rapidly varying charge 

inside the muffin tin spheres can be replaced by another smoother pseudo charge 

density with the correct multipole moments without changing the potential outside the 

spheres. The potential inside the spheres then can be obtained by solving the boundary 

value problem using the true charge density in the region.  

 

3.4.4 The Projector Augmented Wave (PAW) Method 

Some of the disadvantages of the pseudopotential method can be avoided in the 

all electron projector augmented wave (PAW) method [60, 70-71] proposed by Blöchl. 

This method combines the ideas of the pseudopotential [47-54] and linearized 

augmented plane wave (LAPW) [61-66] methods. In the PAW method, the all-electron 
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(AE) wavefunction is constructed from a pseudo (PS) wavefunction and atom-like 

functions localized near the nuclei. The PS wavefunction ϕ  coincides with the AE 

wavefunction ϕ  in the interstitial region, i.e., outside the atomic regions. Inside the 

atomic region, or called augmentation region, the wavefunction is almost atom-like 

because the effect of the surrounding crystal is small. Therefore, a natural choice is to 

use solutions φΛ  of Schrödinger equation for the isolated atom, the so-called AE 

partial waves, as a basis set for the augmentation region. Here { }, , ,t n l mΛ =  is a global 

index for the atom t  , the angular momentum l  , the magnetic quantum number m  , 

and the index n , the energy for which Schrödinger equation is solved. Then the AE 

wavefunction is related to the PS wavefunction through a linear transformation: 

 ( )n n npϕ ϕ φ φ ϕΛ Λ Λ
Λ

= + −∑  (3.67) 

where φΛ  is introduced PS partial wavefunctions which are centered on the atom. 

They are equivalent to the AE partial waves φΛ  outside their augmentation regions 

and match continuous onto φΛ  inside the augmentation regions. The projector 

functions pΛ  are dual to the PS partial waves: 

 .p φ δ′ ′Λ Λ ΛΛ=  (3.68) 

The first term in equation (3.68) represents the PS wavefunction defined over the entire 

space, which is equal to the AE wavefunction in the interstitial region, and which is 

expanded in plane waves. The second term is the AE partial wave expansions, which 
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describes the correct nodal behavior of the wavefunction in the augmentation region. 

The third term eliminates the spurious contribution of the PS wavefunction in the 

augmentation region. 

From equation (3.68), the AE charge density can be obtained: 

 1 1( ) ( ) ( ) ( )r r r rρ ρ ρ ρ= + −  (3.69) 

where ( )rρ  is the pseudo charge density related directly to the PS wavefunctions nϕ   

 ( ) n n n
n

r f r rρ ϕ ϕ= ∑  (3.70) 

with nf  defined as orbital occupation numbers for the nth state. The onsite charge 

densities 1( )rρ  and 1( )rρ  are only defined inside the augmentation regions of each 

atom.  They are defined as 

 1
,

( , )
( ) ,PAWr P r rρ φ φ′ ′Λ Λ Λ Λ

′Λ Λ

= ∑  (3.71) 

and 

 1
,

( , )
( ) .PAWr P r rρ φ φ′ ′Λ Λ Λ Λ

′Λ Λ

= ∑  (3.72) 

The matrix ,
PAWP ′Λ Λ  describes the occupancies of each augmentation channel ( , )′Λ Λ  and 

is calculated from the PS wavefunctions applying the projector functions: 

 , .PAW
n n n

n
P f p pϕ ϕ′ ′Λ Λ Λ Λ= ∑  (3.73) 

Generally speaking, the PAW potentials are more accurate than the 

pseudopotentials. This is because that firstly the radial cutoffs (core radii) are smaller 

than the radii used for the pseudopotentials. Thus the required energy cutoffs and basis 
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sets are somewhat larger. Secondly, the PAW potentials reconstruct the exact valence 

wavefunctions with all nodes in the core region through the cut-and-paste way as given 

by equation (3.68). 

 

3.4.5 The Linearized Muffin-tin Orbitals (LMTO) Method 

As in the LAPW method, the space in the LMTO method [64, 72-73] is also 

divided into muffin-tin spheres and interstitial region (Fig 3.4). In open systems such as 

the diamond structure, additional empty spheres are added to the large empty spaces. 

The difference between the LAPW method and the LMTO method is that different 

mathematical functions are used to describe the one-electron wavefunctions. In the 

LAPW method, Bessel function is involved in the expansion coefficients, whereas in 

the LMTO method, we use Hankel function. In our calculations, the atomic-spheres 

approximation (ASA) is also employed. This approximation assumes that the potential 

is spherically symmetric around each atom and constant between the atoms: 

 

 (3.74) 

 

where V  is the approximated atomic potential.  

The wavefunctions can be written as 
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Where lh  is a Hankel function and 0= −k E V  is a constant wave number and other 

symbols have the same meanings as explained previously. As in the (F)LAPW method, 

the LMTOs constructed as such are energy-independent.  

 

3.4.6 The Self-Consistent Procedure 

The solution of Kohn-Sham equations has to be obtained by an iterative, self-

consistent procedure. The reason is that the effective potential ( )effV r  depends on the 

charge density ( )rρ  , which we are solving for. This procedure begins with initially 

guessed charge densities ( )rαρ  and ( )rβρ  , constructs the KS effective potentials from 

equation (3.43), and then finds the new output charge densities from equations (3.42) 

and (3.39) to begin another loop until the input and output charge densities are self-

consistent. Then the interested quantities can be computed from the self-consistent 

charge densities or wavefunctions. 

This self-consistent loop is shown schematically in Figure 3.5. 
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Figure 3.5 Schematic representation of the self-consistent loop to solve the Kohn-
Sham equations. Adapted from [19]. 
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CHAPTER 4 

STRUCTURAL AND MAGNETIC PROPERTIES OF  
SOFT PHASE MATERIALS 

 

As a component of the nanocomposite magnets, soft phase materials certainly 

will affect the performance and properties of the nanocomposite magnets. It is known 

that the critical size of soft phase strongly depends on various bulk-like parameters such 

as saturated magnetization, interatomic exchange interaction and magnetic anisotropy 

[13-16]. Appropriate soft magnetic materials for the synthesis of exchange coupled 

soft/hard magnets should have both high magnetization and high magnetocrystalline 

anisotropy energy. To this end, FeCo alloys are particularly attractive because of their 

peculiar properties. For instance, stoichiometric FeCo alloys show the largest magnetic 

permeability of any material and the magnetic anisotropy coefficient, K1, is vanishingly 

small. Depending on temperature and composition, FeCo may adopt either ordered or 

disordered phases in bcc, fcc or hcp Bravais lattice. For the manipulation of their 

physical properties, one needs to understand the key factors that govern the phase 

stability, magnetization and magnetic anisotropy of these systems. In this chapter, I 

focus on the stability and magnetic properties of soft phase FeCo alloys from our 

systematic density functional studies. Specifically, we have found that while the bcc-

type FeCo alloys are stable, the fcc- or hcp-type FeCo alloys are not. For the stable bcc-

type FeCo alloys, non-cubic geometries are preferred in a wide range of composition. 
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Accordingly this produces appreciable uniaxial magnetic anisotropy, which facilitates 

the magnetic interaction between the hard and soft phases and eventually enhancing the 

maximum energy product of the exchange-coupled nanocomposite systems [74].  

 

4.1 Stability and Structure of FeCo Alloys 

The structural stability of FeCo alloys is quantitatively characterized through 

their formation energies defined as 

  b m n tot m n Co FeE (Co Fe ) = E (Co Fe ) - m  -n ,μ μ  (4.1) 

where tot m nE (Co Fe )  is the total energy of the structurally optimized ComFen alloy with 

m Co atoms and n Fe atoms in the unit cell. Coμ  and Feμ  represent chemical potentials, 

or practically total energies per atom, of pure Co and Fe source metals, respectively. As 

usual, alloys with negative Eb are stable while those with positive Eb tend to segregate 

apart into elemental Fe and Co metals.  

To compute the total energies and the chemical potentials, we used the VASP 

package [60, 75-78]. The projector augmented wave (PAW) method [60, 70-71] 

implemented in VASP was used to describe the electron-ion interactions. The PAW 

potentials for Fe and Co were generated from the atomic configuration of [Ar]3d74s1 

and [Ar] 3d84s1, respectively. The 3d and 4s electrons were treated as valence electrons. 

The spin-polarized generalized gradient approximation (GGA) was adopted for the 

description of exchange-correlation interactions among electrons. At the level of the 

LSDA, the exchange-correlation functional proposed by Perdew and Zunger [94] based 

on the quantum Monte Carlo calculations of Ceperley and Alder [95] was used.  
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In the total energy calculations, the integrations over the irreducible first 

Brillouin zone were carried out by using an 8×8×8 k-point set generated according to 

the Γ centered Monkhorst-Pack scheme [45]. The plane wave energy cutoff was set at 

335 eV (24.62 Ry) to ensure the convergence of the calculations. The systems under 

investigation were initially set with a certain structure (bcc, hcp or fcc, hereafter we call 

these systems accordingly bcc-, hcp- or fcc-type alloys), then all atomic degrees of 

freedom, i.e., the unit cell axis, as well as the position of the atoms, were optimized to 

find the lowest total energy of a given system. For the bcc- and hcp-type systems, there 

are 16 atoms totally in the supercell, whereas in the fcc-type systems, there are only 8 

atoms in the supercell.  

We have considered all non-equivalent configurations for every specific system 

with certain atomic composition. For example, in the bcc-type alloys, there are 12 

different configurations for Fe11Co5 system and there are 7 different configurations for 

Fe12Co4 system. Figure 4.1 shows the 12 possible configurations of bcc-type Fe11Co5 

system. We optimized all these configurations for each system and compared their total 

energies and then chose the configuration with the lowest total energy as our optimized 

structure for the system. We found that the optimized structures for most of the systems 

are not in cubic geometry anymore even though we initially started their structures as 

cubic. For instance, Fe12Co4 has a tetragonal structure with a=b=5.69 Å and c=5.67 Å 

after full relaxation and optimization. We also noticed that the atoms with minor 

composition tends to separate apart in these alloys, which is in agreement with the 

conclusion reported previously [79]. In a recent density functional calculation, Fu et al. 
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found the site-exchange energy in the stoichiometric B2 FeCo alloy is 0.34 eV, which 

gives an excellent order-disorder transition temperature, 987 K [80]. In addition, there is 

no energy barrier between fcc and bcc lattice for the stoichiometric B2. Our VASP 

calculations for stoichiometric FeCo with a well-separated antisite pair give 0.26 eV for 

the site-exchange energy, slightly smaller than the value of Fu et al obtained from the 

all electron FLAPW calculations. 

 

Figure 4.1 Twelve (all) possible configurations for the bcc-type Fe11Co5. For every 
specific system with certain atomic composition, all non-equivalent configurations have 
been considered in the calculations. Then the configuration with the lowest total energy 
was chosen as the optimized structure for the system. 

To obtain the chemical potentials of Fe and Co, separate calculations were 

performed to get the total energies of metallic Fe and metallic Co. A 16×16×16 k-point 

set generated by the Monkhorst-Pack scheme is used in these calculations. The 
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optimized lattice constants from our calculations for Fe and Co are 2.83 Å and 2.49 Å, 

c/a=1.617, respectively. They are in good agreement with the experimental values of 

2.87 Å for Fe and 2.51 Å, c/a=1.622 for Co [81]. The calculated magnetic moments per 

atom for Fe (2.16 μB) and Co (1.56 μB) from our study are also in very good agreement 

with experimental values [7].  

The computed formation energies for these FeCo alloys are shown below in 

Table 4.1. As we can see from the table, the formation energies for the bcc-type FeCo 

alloys (m>n) are negative whereas for the hcp- or fcc-type alloys, the formation 

energies are positive. This means that the bcc-type FeCo alloys are stable but the hcp- 

and fcc-type alloys are not, which is in good accordance with previous studies [80, 82, 

83]. Specifically, the formation energies for the Fe-rich bcc-type alloys are all negative 

except for Fe15Co1, which has a very small positive formation energy. Generally, the 

Fe-rich bcc-type alloys have larger (in absolute value) formation energies with 

increasing Co concentration. This indicates that the Fe-rich bcc-type FeCo alloys 

become more stable when the Co concentration increases. For the Co-rich hcp-type 

FeCo alloys, the formation energies become larger and larger with increasing Fe 

concentration. However, because they all have positive formation energies, these hcp-

type alloys thus become less and less stable when the Fe concentration increases. 

Strikingly, Eb for the hcp Co8Fe8 becomes as large as 1.73 eV, indicating that Fe-Co 

bonds are rather directional and the alloy rather form separated Fe and Co phases. For 

the fcc-type alloys, the positive formation energies generally increase with increasing 
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Fe concentration and decreasing Co concentration. Therefore, these fcc-type FeCo 

alloys become less stable when Fe concentration increases. 

Table 4.1 Formation energies for FeCo alloys as defined in Eq. (4.1). The systems were 
initially set in bcc, fcc or hcp structures and then fully relaxed, including the cell shape 
and volume. A negative value implies a stable alloy versus the two segregative Fe and 
Co metals. 

System Formation 
energy (eV) System Formation 

energy (eV) System Formation 
energy (eV)

Fe8Co8 -0.51 Co8Fe8 1.73 Fe1Co7 0.15 

Fe9Co7 -0.50 Co9Fe7 0.38 Fe2Co6 0.17 

Fe10Co6 -0.55 Co10Fe6 0.46 Fe3Co5 0.37 

Fe11Co5 -0.49 Co11Fe5 0.51 Fe4Co4 0.56 

Fe12Co4 -0.36 Co12Fe4 0.70 Fe5Co3 0.76 

Fe13Co3 -0.23 Co13Fe3 0.51 Fe6Co2 0.87 

Fe14Co2 -0.11 Co14Fe2 0.25 Fe7Co1 0.74 

bcc 

Fe15Co1 0.03 

hcp

Co15Fe1 0.10 

fcc

    
 

Another important finding from our study is that chemically non-cubic 

geometries are preferred in a wide composition range, in agreement with previous 

studies [82-83]. As illustrated in the first row of Figure 4.2, Fe11Co5, Fe12Co4, and 

Fe13Co3 can be arranged with the cubic symmetry. However, according to our 

calculations, these cubic structures appear to be the least stable one among all possible 

geometries as long as there are no Co atoms as first neighbor. For Fe12Co4 (or 

equivalently Fe3Co), the L60 structure is more stable than the cubic DO3 structure by 60 

meV/cell through VASP calculations or 70 meV/cell through more precise FLAPW 

calculation. Since the phase transition can be achieved by swapping only one Co-Fe pair 
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in the cell along either the (100) or (110) direction, it should be easy to occur if the 

sample is annealed. For Fe11Co5 and Fe13Co3, the non-cubic geometries as shown in the 

second row in Figure 4.2 are also more stable than their corresponding cubic geometries, 

by 30 meV/cell and 21 meV/cell respectively, from our VASP calculations.  

 

Figure 4.2  Atomic configurations for the cubic (in the top row) and ground state (in the 
bottom row) structures of Fe11Co5, Fe12Co4, and Fe13Co3 alloys. Fe and Co atoms are 
represented by yellow and red circles, respectively. The numbers in between the two 
rows indicate the energy gains after the tetragonal distortion for each corresponding 
system.  
 

To explain this phenomenon, we plotted the density of states (DOS) for Fe12Co4 

in both L60 and DO3 structures as shown in Figure 4.3. In the plot, solid and dashed 

curves represent the DOS for the L60 and DO3 structures, respectively, and their 

corresponding thinner lines represent contributions from the Co atoms. The DOS for the 

majority and minority spins are plotted in positive and negative regions along the 



 

 61

vertical axis, respectively. The Fermi level is set at zero energy. Obviously, the major 

difference occurs in -1.8~-1.0 eV and +1.5~+2.0 eV, mostly on the Co sites. 

Corresponding to the large magnetic moments, the majority spin bands are fully 

occupied for both Co and Fe. The difference in DOS around the Fermi level is very 

small. However, the blip in the minority spin channel for the DO3 structure appears to 

be higher than that of the L60 structure, which might be a cause for the slight instability 

of the former phase.  

 

Figure 4.3  The calculated density of states (DOS) of the Fe12Co4 in the L60 (solid lines) 
and DO3 (dashed lines) structures. Contributions from the Co atoms are represented by 
thin lines. Positive and negative regions along the vertical axis are for the majority and 
minority spins, respectively. Zero energy is the position of the Fermi level.  

In contrast with the non-cubic geometry preference of Fe11Co5, Fe12Co4 and 

Fe13Co3, Fe8Co8 and Fe15Co1 remain in cubic structure, while other stable Fe-rich bcc-
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type systems under investigation also possess non-cubic structures. As we will see in 

the next section, the non-cubic geometry preference has a very important consequence, 

i.e., appreciable magnetocrystalline anisotropy energies will be produced in these non-

cubic systems. 

 

4.2 Magnetic Properties of Stable bcc-type FeCo Alloys 

Magnetic anisotropy energy is one of the most important quantities for the 

integration of hard and soft magnets. In general, FeCo forms disordered alloys and 

therefore there is no distinction between x, y and z-axes. However, uniaxial magnetic 

anisotropy for a finite grain might be induced by non-uniform local atomic 

arrangements and also by lattice distortion (magnetostriction). To estimate the strength 

of the first effect, we calculate the magnetocrystalline anisotropy energies for FemCon 

alloys in the bcc lattice with a 16-atom unit cell. These calculations are done in FLAPW 

using the optimized structures of the systems obtained in VASP. In these calculations, 

no shape approximation is assumed for charge, potential and wave function expansions. 

The core electrons are treated fully relativistically, while the spin-orbit coupling (SOC) 

term was invoked second variationally for the valence states. The energy cutoff for the 

basis functions in the interstitial region is 16 eV. In the muffin-tin (MT) region 

(RFe=1.22 Å and RCo=1.22 Å), the basis functions were expanded in terms of spherical 

harmonics with a maximum angular momentum of lmax=8. The convergence of 

electronic and magnetic properties against the choice of number of k-points and wave 

function expansion were carefully monitored. The self-consistence was assumed when 
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the root-mean-square differences between the input output charge and spin densities are 

less than 3.0×10-5 e/(a.u.)3. 

As proposed by van Vleck [99] more than 70 years ago, the magnetocrystalline 

anisotropy originates mainly from the spin-orbit coupling (SOC) interaction between 

spin magnetic moment and orbit magnetic moment. The SOC Hamiltonian, 

SOCH L= ξσ⋅  (here σ  and L  are spin and orbital angular momentum operators, 

respectively), however, is very weak compared to the crystal-field effects. Thus, it has 

been very difficult to determine the magnetocrystalline anisotropy from first-principles 

calculations, which usually require a large number of k-points and accurate band 

structure. Pioneering first-principles calculations of magnetocrystalline anisotropy were 

carried out by Gay et al. for ferromagnetic Fe, Co, Ni and V monolayers, and thicker Fe 

slabs and Fe/Ag(001) [100, 101] by incorporating SOCH  as a perturbation. In most of 

first-principles calculations, the magnetocrystalline anisotropy energy EMCA is obtained 

from force theorem [84-86] as 

 ( ) ( ) ( ) ( ),
′ ′′

= → − ↑ = → − ↑∑ ∑MCA i i
occ occ

E E E ε ε  (4.2) 

where ( )→E  and ( )↑E are the total energies with the magnetization along the 

directions perpendicular and parallel to the c axis, respectively and iε  stands for the 

band energy of the ith state. A positive EMCA means that the easy axis of the magnetic 

anisotropy is parallel to the c axis, while a negative EMCA indicates that the easy axis of 

the magnetic anisotropy is perpendicular to the c axis. Strong numerical uncertainties 

are inherent in this approach because the sets of occupied states, i.e., {occ }′  and {occ }′′ , 



 

 64

were determined through the Fermi filling scheme which relies on the very limited 

information from the eigenvalues iε . Using this approach, one has to use a huge 

number of k points for sampling, which is very computationally expensive, to obtain 

reliable EMCA values.  

In our calculations, we chose to use the torque method proposed by Wang et al. 

[87-88] to obtain the magnetocrystalline anisotropy energies of the stable FeCo alloys. 

To demonstrate the torque method, we note that the total energy of a uniaxial system 

can be well approximated as  

 2 4
0 2 4( ) sin ( ) sin ( ),E E K Kθ θ θ= + +  (4.3) 

where θ is the angle between the magnetization and the c axis. K2 and K4 are anisotropy 

constants. The torque, ( )T θ , is defined as the angular derivative of the total energy 

 2
2 4

( )( ) sin(2 ) 2 sin(2 )sin ( ).dET K K
d

θθ θ θ θ
θ

≡ = +  (4.4) 

Combing equations (4.2)-(4.4), it is easy to show that  

 
2 4

( 90 ) ( 0 )

( 45 ).
MCAE E E

K K T

θ θ

θ

≡ = − =

= + = =
 (4.5) 

Thus, instead of calculated as a very small difference between two large total energy 

values, the EMCA can be evaluated very efficiently through calculating the torque at 

45θ = .  

To calculate the torque, we then apply the Feynman-Hellman theorem 

 ' '( ) ,
SOC

i i
occ

HT ∂
=

∂∑θ ψ ψ
θ

 (4.6) 
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where SOCH  is the spin-orbit coupling Hamiltonian, the only θ -dependent term in the 

system Hamiltonian,  and '
iψ  is the ith perturbed wavefunction.  

The advantage of the torque method is obvious since EMCA is expressed as the 

expectation value of the angular derivative of spin-orbit coupling Hamiltonian socH  and 

thus it is much more insensitive to distortions of the Fermi surface and only one Fermi 

surface needs to be determined. Therefore, compared to the force theorem approach, the 

numerical uncertainties in the torque approach are greatly reduced and much less k 

points are needed to obtain stable results of EMCA. It has been shown [88] that the torque 

method is indeed efficient and reliable for the determination of uniaxial and high order 

magnetic anisotropy energies. 

The calculated magnetic moments for bcc-type FemCon alloys in the bcc lattice 

are listed in Table 4.2. It is interesting that the average magnetic moment is insensitive 

to the change in composition. Nevertheless, the magnetic moment appears to maximize 

at a ratio m/n=3/1 to 4/1. More explicitly for Fe12Co4 in the L60 structure, the magnetic 

moment in Co is 1.80 μB, while those for two types of Fe atoms are 2.38 μB (coplanar to 

Co) and 2.63 μB (in the pure Fe plane). Obviously, the reduction in magnetization by the 

presence of Co is excessively compensated by the strong enhancement of Fe magnetic 

moments. In addition, Fe and Co also contribute orbital magnetic moments in the size of 

0.21~0.22 μB /cell. For the B2 Fe8Co8 alloy, the calculated magnetic moments are 2.80 

μB for Fe and 1.80 μB for Co, respectively. Compared with pure Fe, which has a 

magnetic moment of 2.2 μB, the magnetic moments of Fe in alloys show significant 

enhancement. The magnetic moments of the Co atoms remain roughly constant 
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compared to those of pure Co atoms. As a result, the average magnetization of the B2 

Fe8Co8 alloy is much larger than that of the constituent elements. This is in excellent 

agreement with the results from neutron diffraction experiments [102, 103], and the 

enhancement of the magnetic moments of Fe atoms can be explained in terms of the 

spin-flips of d electrons and most of the spin-flip in the Fe atoms occurs on the t2g 

electrons [104]. 

Table 4.2 Magnetocrystalline anisotropy energies (EMCA) for the bcc-type FeCo alloys. 
The average magnetic moment per atom, which is proportional to the saturation 
magnetization, is also listed. 

Composition 
Magnetic moment 

(μB/atom) 

EMCA 

(μeV/supercell) 

Fe8Co8 (B2) 2.21 0.00 

Fe9Co7 2.26 0.45 

Fe10Co6 2.28 0.13 

Fe11Co5 2.29 36.00 

Fe12Co4 2.29 -196.00 

Fe13Co3 2.31 8.00 

Fe14Co2 2.28 -0.85 

Fe15Co1 2.22 0.00 

 

The calculated magnetocrystalline anisotropy energies of these alloys are also 

listed in Table 4.2. As a consequence of the preference of non-cubic structures, the 

magnetocrystalline anisotropy energies for Fe11Co5, Fe12Co4, and Fe13Co3 are 

extraordinarily large compared to those of other systems, which possess more 

symmetrical structures. For Fe8Co8 and Fe15Co1, the uniaxial magnetocrystalline 
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anisotropy energies are essentially zero since these two systems have cubic structures. 

In contrary, the ground-state non-cubic Fe12Co4, Fe11Co5 and Fe13Co3 have large 

magnetocrystalline anisotropy energies. For example, Fe12Co4 with L60 structure (see 

Fig. 4.2) has a magnetocrystalline anisotropy energy of value up to -196 μeV/cell. For 

Fe11Co5 and Fe13Co3 with non-cubic structures, the magnetocrystalline anisotropy 

energies are smaller than that of Fe12Co4 with L60 structure, but they are still relatively 

very large against those of other systems. It is worth noting that most of the bcc-type 

alloys under investigation have positive magnetocrystalline anisotropy energies, 

suggesting their easy axes of the magnetic anisotropy are parallel to c axis. However, 

the magnetocrystalline anisotropy of Fe12Co4 and Fe14Co2 is perpendicular to c axis, 

since they have negative magnetocrystalline anisotropy energies. 

The results in Table 4.2 indicate that the magnetic anisotropy energy can be 

increased by several orders of magnitude even only two atoms in the supercell cell are 

placed differently (c.f., the difference between the cubic and non-cubic geometries in 

Fig. 4.2). Clearly, sizeable magnetocrystalline anisotropy energy can be attained in 

small grains or thin films that comprise pure non-cubic phases of Fe11Co5, Fe12Co4, and 

Fe13Co3. In turn, this will facilitate inter-phase magnetic interaction and enhances the 

overall magnetization in exchange coupled nanocomposite systems. Therefore, they are 

good candidates for the soft magnetic materials in the exchange coupled nanocomposite 

magnetic systems.  

In summary, the structural, electronic, and magnetic properties of FeCo alloys 

have been studied by first-principles calculations. It is found that only the bcc-type 
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alloys are stable. These alloys prefer chemically non-cubic geometries in a wide 

composition range. This produces appreciable uniaxial magnetocrystalline anisotropy, 

which facilitates inter-phase magnetic exchange coupling between soft phase and hard 

phase magnetic materials and enhances the overall magnetization in exchange coupled 

nanocomposite systems. Based on our calculations, it is found that non-cubic phases of 

Fe11Co5, Fe12Co4, and Fe13Co3 are good candidates for soft magnetic materials in 

exchange coupled nanocomposite magnets since they have large magnetization as well 

as large uniaxial magnetocrystalline anisotropy compared to other systems. 
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CHAPTER 5 

INTERFACE EFFECTS 

 

As mentioned previously, the idea of exchange-coupled nanocomposite magnets 

is to achieve high maximum energy product values by combining high saturation 

magnetization of a soft phase and large anisotropy of a hard phase. In this regard, the 

hard magnetic materials such as Sm-Co and the soft magnetic materials such as Fe-Co 

are particularly attractive because of their peculiar properties. Among the commonly 

used magnetic materials, for instance, SmCo5 has the largest anisotropy energy (1.7×107 

J/m3) with high Curie temperature, while Co, Fe and their alloys have very high Curie 

temperatures with large saturation magnetizations [10]. Indeed, high maximum energy 

product values have been reported [96] recently in exchange-coupled systems with 

SmCo5 as hard phase and Fe as soft phase. According to early models by Kneller and 

Hawig [1], an ideal hard/soft phase multilayer achieves maximum energy product at the 

optimum thickness of the soft phase which is equal to two domain wall thickness in the 

hard phase (it is about 7nm for SmCo5). However, many recent experimental and 

theoretical studies show the important effect of the soft phase parameters and interface 

conditions [14-16, 97-98]. Thus it is important to understand the influence of these 

factors in the inter-phase exchange coupling, in order to achieve better energy products. 

In this chapter, I will focus on the effects of interface conditions and present our results 
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of dependence of exchange coupling on the interfacial conditions between the hard 

phase SmCo5 and soft phase Co or CoFe alloys. By comparing the exchange coupling 

strengths in different interface conditions, and verified by calculating the site-to-site 

exchange parameters across the interface, we found that the inter-phase exchange 

coupling strength is indeed strongly dependent on the interface condition between the 

hard and soft phases [89]. 

 

5.1 Computational Details 

The superlattice model is adopted to construct the structure for our simulation. 

Our original model is a supercell consists of one formula unit of SmCo5 and 5 layers of 

Co stacking along (1010)  direction as shown in Figure 5.1 (a). SmCo5 and hcp Co 

lattice constants have a mismatch of only 0.2% along this direction. Considering Fe 

doping in both soft phase and hard phase, we have constructed five other model systems, 

representing five different interface conditions. They are also shown in Figure 5.1: (b) 

SmCo5/CoFe: Co atoms in one sublattice in soft phase replaced by Fe; (c) in 

SmCo5/CoFe: Fe atoms diffused into and substituted a Co atom in the 1st layer of the 

hard phase; (d) in SmCo5/CoFe: Fe atoms diffused into the 2nd layer of the hard phase; 

(e) Fe substitution in the 1st layer in hard phase, pure Co as soft phase; and (f) Fe 

substitution in the 2nd layer in the hard phase, pure Co as the soft phase. There are 

totally 18 atoms in a supercell in all these model systems.  
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Figure 5.1 Atomic configurations of the two-phase model systems. Soft and hard phases 
are aligned along (1010)  direction. The green, blue and orange balls represent Sm, Co 
and Fe atoms, respectively. (a) The “original” system SmCo5/Co: SmCo5 as hard phase 
and pure hcp Co as soft phase; (b) SmCo5/CoFe: Co atoms in one sublattice in soft 
phase replaced by Fe; (c) SmCo5/CoFe: Fe atoms diffused into 1st layer hard phase; (d) 
SmCo5/CoFe: Fe atoms diffused into 2nd layer hard phase; (e) Fe substitution in 1st layer 
in hard phase, pure Co as soft phase; and (f) Fe substitution in 2nd layer in hard phase, 
pure Co as soft phase. The label on top of each panel indicates the planes parallel to the 
interface. The periodic boundary condition has been used in the graph. 

 

In the study we consider the nanocomposite exchange-spring multilayer with the 

sizes of the hard and soft layer smaller than the thickness of a usual domain wall, so that 

the exchange-coupling between the two phases will be in effect. A single domain case is 

considered for both the hard and the soft phase in the present modeling interface. The 

(a) 

(c) (d) 

(e) (f) 

(b) 
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self-consistent spin-polarized electronic structure calculations were performed using 

both the Vienna ab initio simulation package (VASP) [60, 75-78] and the linear-muffin-

tin-orbital (LMTO) method [64, 72] in atomic sphere approximation and in near 

orthogonal representation generalized to treat noncollinear magnetic configurations [90].  

In the VASP calculations, which are performed to optimize the structure of the 

system, the projector augmented wave (PAW) method [60, 70-71] implemented in 

VASP was used describe the electron-ion interactions. The PAW potentials for Sm, Co 

and Fe were generated from the atomic configuration of [Xe]5s25p65d16s2, [Ar]3d84s1 

and [Ar]3d74s1, respectively. Using these PAW potentials were justified by reproducing 

excellently the lattice constants of crystal SmCo5, Co and Fe. The lattice constants for 

SmCo5 are a=4.970 Å, c/a=0.797 from our calculations. The calculated lattice constants 

for Fe and Co are reported in Chapter 4. They are all in good agreement with 

experimental values. Integrations in the reciprocal space were evaluated as summations 

over an 8×8×8 k-point set in the irreducible first Brillouin zone generated according to 

the Γ centered Monkhorst-Pack scheme [45]. The plane wave energy cutoff was set at 

335 eV (24.6 Ry) to ensure the convergence of the calculations. Because of the two-

phase structure, the coordinates of atoms as well as the alignment and spacing between 

the hard and soft phases are all needed to be optimized. These are done according to the 

energy minimization procedures guided by atomic forces. The optimized spacing 

between the soft and the hard phases is 2.5 Å according to our calculations. As an 

example, Figure 5.2 shows the structures of system (a) before and after relaxations.  
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Figure 5.2 Comparisons of the structures of SmCo5/Co system (a) before relaxation; and 
(b) after relaxation. The green and blue balls represent Sm and Co atoms, respectively. 
 

After the optimized structure was obtained, the structural parameters are used as 

inputs to do LMTO magnetic ground state and noncollinear calculations in the LMTO 

package. Our model mimics a domain wall which forms in the demagnetization process. 

In these calculations, the ratio of the Wigner-Seitz radii of Sm, Fe and Co in the 

composite systems was set to be 1.4: 1.04: 1.00, as the ratio of their corresponding 

atomic radii. An 8×3×10 k-point set were used in the 1st Brillouin zone. The number of 

k-points chosen was assured by monitoring the convergence of electronic and magnetic 

properties of the systems. The self-consistence was assumed when the root-mean-square 

differences between the input and output charges and spin densities are less than 

1.0×10-8 e/(a.u.)3. In the noncollinear calculations, which is adopted to simulate the 

demagnetizing process of the magnetic system, the directions of the magnetic moments 

of the atoms in the hard phase were fixed to the easy magnetization axis direction (c 

(a) (b) 
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direction in our case, θ=0°) as shown in Figure 5.3. The magnetic moments of the atoms 

of the middle layer in the soft phase are also fixed at a given angle θ relative to the 

direction of the magnetic moments of the hard phase, but the magnetic moments of 

other atoms in the soft phase are free to relax. Upon the convergence of the calculation 

is reached, the total energy is obtained for each initial angle θ . It is worth noting that by 

setting the magnetic moments in this way, we do not take account of the effects of 4f 

electrons in Sm atoms on the exchange coupling. The very localized 4f electrons are 

still a challenge to handle within the framework of local density approximation (LDA) 

and generalized gradient approximation (GGA). The 4f electrons of Sm are frozen in the 

core potential in our LMTO calculations. 

 

Figure 5.3 A schematic view of noncollinear magnetic orderings in the two-phase 
systems. The arrows represent the directions of magnetic moments of the atoms in each 
layer. θ is the angle between the directions of magnetic moments of the atoms in the 
hard phase and in the middle layer of the soft phase, which are fixed. 

 

θ
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Besides from the noncollinear magnetic structure calculations, the exchange 

coupling strength is also described complementarily in our study by calculating the site-

to-site exchange parameters across interface using a perturbative method. The 

expression for the site-to-site exchange parameters Jij in a Heisenberg Hamiltonian is 

given in Ref. 91 by perturbation theory: 

' ' '
'

1 Im ( ) ( ) ( ) ( ).
4

↑ ↓

−∞

= Δ Δ∑ ∫
F

i ij j ij
i j l LL l LL

LL
J d T T

ε

ε ε ε ε ε
π

 (5.1) 

Here ' ( )ij
LLT σ ε  is the scattering path operator in the site (i, j) representation for different 

spin projections ( ,σ =↑ ↓ ), and 1 1( )i
l i it tε − −

↑ ↓Δ = −  is the difference of the inverse single-

site scattering matrices. Since Jij decreases fairly rapidly as a function of the distance, 

the calculation is limited to the few nearest neighboring pairs only. 

 

5.2 The Original SmCo5/Co System 

We first focus on the original model systems (a), SmCo5/Co where SmCo5 

serves as hard phase and pure hcp Co serves as soft phase. Upon the convergence of the 

calculations is reached, the total energy is obtained for each given angle θ. The range of 

the initial finite angle θ in our calculation is from 0  to 67.5 . The total energy 

difference for the system, ( ) ( ) ( 0 )= − = °E E Eδ θ θ θ  , as a function of the turning angle 

θ as well as its fitting to to a quadratic curve are shown in Figure 5.4. We find that 

( )Eδ θ  can be perfectly fitted as a quadratic function of θ, manifesting the spring 

behavior and the exchange coupling between the soft and hard phases in this system. If 



 

 76

there is no exchange coupling between the soft and hard phases in this system, ( )Eδ θ  

vs. θ  will not be well fitted with a quadratic function and the curve will be as smooth as 

shown in Figure 5.4.  

 

Figure 5.4 The calculated total energy differences, ( ) ( ) ( 0 )E E E= − =δ θ θ θ  (the marks) 
and their fitting to a quadratic curve for systems (a) as illustrated in Fig 5.1. 

 

The layer resolved angle of rotations of atomic moment across the soft phase Co 

with θ  set at 20°  is shown in Figure 5.5. With θ  set with other finite angles, we 

observe similar curves (not shown). Clearly, this also demonstrates that the hard phase 

and soft phase are exchange coupled. Because of this exchange coupling, the closer the 

soft phase layers to the hard phase, the closer the directions of their magnetic moments 

orient to that of  the hard phase due to the exchange coupling between the two phases. If 

no exchange coupling exists between the soft and hard phases, the atomic magnetic 

moments that can freely relax in the soft phase would orient to the direction of the 
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magnetic moments of the middle layer atoms in the soft phase, which is fixed at 20°  in 

this case.  

 

Figure 5.5 The angle distributions of magnetic moments for the soft phase atomic layers 
parallel to the interface plane (refer to Fig. 5.1(a)). Layer 0 and layer 6 are the fixed 
hard phase layers in the superlattice model. Layer 3 is the middle layer of the soft phase, 
whose atomic magnetic moments are turned at a fixed value (20o here) away from those 
in the hard phase layers. All the atomic magnetic moment orientation in layers 1, 2, 4, 
and 5 are obtained self-consistently. 

 

5.3 Comparison between SmCo5/Co and SmCo5/CoFe 

We now discuss the effects by introducing Fe into the soft phase as illustrated in 

model system (b), SmCo5/CoFe where the hard phase is still SmCo5 but Co atoms in 

one hcp sublattice in soft phase replaced by Fe atoms. Again the total energy is obtained 

for each given angle θ upon the convergence of the calculations. The total energy 

difference for the system, ( ) ( ) ( 0 )= − = °E E Eδ θ θ θ  , as a function of the turning angle 

θ is shown in Figure 5.6. We find that ( )Eδ θ  also behaves as a quadratic function of θ, 

indicating the soft and hard phases in this system are also exchange coupled. We 
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compare results in the case of soft phase made of pure hcp Co (model system (a)) and 

the Fe-doped Co soft phase (model system (b)). The iron doping is expected to 

strengthen the exchange coupling because FeCo alloy have stronger exchange than a 

pure Co phase, and, at the same time, an increased magnetization. Furthermore, an iron 

doping can produce more gradual variation of anisotropy across interface. 

 

Figure 5.6 The calculated total energy differences, ( ) ( ) ( 0)E E Eδ θ θ θ= − =  (the marks) 
and their fitting to a quadratic curve for systems (a) and (b) as depicted in Fig 5.1. 

 

The structure of the interface shows a substantial change in the local 

coordination of Co atoms when going from SmCo5 to hcp Co phase. Co atoms near the 

interface lack some of their nearest neighbors as can be seen from Fig. 5.1. Thus, we 

can expect that the exchange coupling near the interface should be different from the 

one in either phase. Because of the reduction of number of nearest neighbors across the 
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interface, the interface exchange coupling is reduced. It can be seen from the variation 

of the layer resolved angle of rotations of atomic moment across the soft phase as 

shown in Figure 5.7. The middle-layer angle is fixed at 15= °θ  in this example but the 

phenomenon is similar with other fixed angles (see Fig 5.8). Two other layers have their 

relaxed angles at 10 and 11.5 degrees which is indication that coupling is the strongest 

between first and second layer, but weakest across the interface. In the system with 

uniform exchange coupling these angles are expected to be close to 5 and 10 degrees, 

respectively. Thus, the exchange coupling oscillates in the soft phase as function of 

distance from the interface. Using one dimensional Heisenberg model we fit the inter-

phase exchange coupling parameter per cross-section of the unit cell to be about 16 

meV and 25 meV in case of hcp Co, and FeCo alloy, respectively. The exchange 

between Co plane at the interface and next layer of Co in the soft phase is order of 

magnitude larger. Such large difference is due to a large increase in number of bonds 

across planes (by factor of 6) and the increase in the pair exchange parameters (by 

factor of 1.5). 

We find that the effect of doping on the exchange coupling is significant. Fig. 

5.1(b) illustrates our model where Co atoms in the hcp-Co film are replaced by Fe 

atoms in the second layer. By introducing Fe atom in this extreme model, Fe atoms 

were counted as 40% in the soft phase. In this system, as mentioned, ( )Eδ θ  is also a 

quadratic function of θ (Fig. 5.6). However, the curve of this system is much steeper 

than that of pure Co, indicating that the exchange coupling in system with Fe-doped soft 

phase is stronger than the exchange coupling in system with pure Co as soft phase. 
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According to micromagnetics, the exchange energy density is equal to exchange 

stiffness constant multiplied by a function of the gradient of magnetization in the 

materials. If we assume the same function of the gradient for both interface models, 

since we have the same lattice structure and the same angle rotated at the central layer 

in the soft phase side, then the energy ratio should equal to the ratio of their exchange 

stiffness constant. From Fig.5.6, this ratio is evaluated between 2.2 (for larger θ’s) to 

3.6 (for smaller θ’s). Therefore, the enhancement to the exchange-coupling for the 

system (b) with FeCo alloy as soft phase is a factor of two. Comparing the layer 

resolved relaxed angles of atomic magnetic moments for both systems, we observe a 

smaller angle of rotation in the interface layer for system (b) (Figs 5.7 and 5.8, solid 

line). This also indicates that the inter-phase exchange coupling between the hard and 

soft phases is stronger in system (b). Because of this stronger exchange coupling 

interaction between the soft and hard phases, the directions of the magnetic moments of 

soft phase atoms orient closer to those of the hard phase, which is fixed to zero degree. 

Therefore, comparing to system (a), the atomic magnetic moments in the soft phase of 

system (b) have smaller angles of rotation. 
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Figure 5.7 The angle distributions for the soft phase atomic layers parallel to the 
interface plane (refer to Figs. 5.1(a) and 5.1(b)). Layer 0 and layer 6 are the fixed hard 
phase layers in the superlattice model. Layer 3 is the middle layer of the soft phase, 
whose atomic magnetic moments are turned at a fixed value (15o here) away from those 
in the hard phase layers. All the atomic magnetic moment orientation in layers 1, 2, 4, 
and 5 are obtained self-consistently. 
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Figure 5.8 The angle distributions for the soft phase atomic layers parallel to the 
interface plane (refer to Figs. 5.1(a) and 5.1(b)). Layer 0 and layer 6 are the fixed hard 
phase layers in the superlattice model. Layer 3 is the middle layer of the soft phase, 
whose atomic magnetic moments are turned at a fixed value (1)5o; (2)22.5o; (3)45o; and 
(4)67.5o away from those in the hard phase layers. All the atomic magnetic moment 
orientation in layers 1, 2, 4, and 5 are obtained self-consistently. 

The calculated site-to-site exchange parameters Jij as given by Eq. (5.1), 

averaged over the atomic pairs between the layers for model systems (a) and (b) are 

listed in Table 5.1. The minus sign of Jij ensures that the systems are in the 

ferromagnetic state. It is clear that the site-to-site exchange parameters of the interface 

atomic pairs in system (b) are larger (absolute values) than those of the corresponding 

pairs in system (a). This also supports that the inter-phase exchange coupling in system 
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(b) is stronger than that in system (a), in agreement with the present noncollinear 

magnetic ordering simulation as discussed above. 

 
Table 5.1 The atomic site-to-site exchange parameters averaged within the layers at the 
interface for systems (a) and (b) as shown in Fig 5.1.  

Interface models Pair of layers (cf. Fig.5.1) Averaged Jij (meV) 

0 - 1 -3.23 
(a) 

6 - 5 -14.30 

0 - 1 -34.30 
(b) 

6 - 5 -28.90 
 

 

5.4 Comparison among Systems with the Same Hard Phase 

As discussed in last section, when the hard phase is pure SmCo5, the 

introduction of Fe atoms to the soft phase will enhance the exchange coupling between 

the hard and soft phases. Besides this pair of systems, (a) and (b), which have the same 

hard phase pure SmCo5, there are two other pairs of systems with the same hard phase 

materials, i.e., systems (c) and (e), and systems (d) and (f). 

In systems (c) and (e), the same hard phase is SmCo5 with Co atom in first layer 

from the interface substituted by Fe atom. The soft phase material in system (c) is CoFe, 

while in system (e), the soft phase materials is pure Co. Figure 5.9 shows ( )Eδ θ  vs. θ  

for these two systems. Obviously the soft phase and the hard phase are exchange 

coupled in both systems, as evidenced by the well fitted curves with quadratic functions. 

Comparing the two curves, we can see that the exchange coupling in system (c), in 
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which the soft phase is CoFe, is stronger than that in system (e), in which the soft phase 

is pure Co, since the curve for system (c) is steeper than the curve for system (e). 

 

Figure 5.9 The calculated total energy differences, ( ) ( ) ( 0)E E Eδ θ θ θ= − =  (the marks) 
and their fittings to a quadratic curve for systems (c) and (e) as depicted in Fig 5.1. 
These two systems have the same hard phase material but different soft phase materials.  
 

Systems (d) and (f) also have the same hard phase, which is SmCo5 with Co 

atom on second layer from the interface substituted by Fe atom. The difference between 

them is their soft phase materials. In system (d), the soft phase material is CoFe, 

whereas the soft phase in system (f) is pure Co. As shown in Figure 5.10, ( )Eδ θ  can be 

fitted very well as a quadratic function of θ  for both systems. This means that the 

exchange coupling interactions between the soft phase and the hard phase are strong in 
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these systems. Because the curve for system (d) is steeper than that for system (f), the 

exchange coupling between the soft and hard phases is stronger in system (d). 

 

Figure 5.10 The calculated total energy differences, ( ) ( ) ( 0)E E Eδ θ θ θ= − =  (the marks) 
and their fittings to a quadratic curve for systems (d) and (f) as depicted in Fig 5.1. 
These two systems have the same hard phase material but different soft phase materials. 

 

By comparing the three pairs of systems, (a) and (b), (c) and (e), and (d) and (f), 

where the hard phase is the same for each pair, we can conclude that with the same hard 

phase, doping of Fe in soft phase will improve the exchange coupling between the hard 

phase and the soft phase. As discussed above, the three systems with CoFe as soft phase 

have steeper ( )Eδ θ  vs. θ  curves than their corresponding systems with the same hard 

phase material but with pure Co as soft phase. 
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5.5 Comparison among Systems with the Same Soft Phase 

In the six systems as illustrated in Fig. 5.1, systems (a), (e) and (f) have the 

same soft phase materials, which is pure Co. In system (a), the hard phase is pure 

SmCo5. In systems (e) and (f), Co atoms of hard phase in first and second layer from the 

interface are substituted by Fe atoms, respectively. As shown in Figure 5.11, with the 

pure Co as soft phase, both Fe doping to the first and second layer of the hard phase will 

strengthen the exchange coupling since the two corresponding curves are above the 

curve for system (a). In addition, system (f), in which Fe is in the second layer of the 

hard phase, has a stronger exchange coupling than that of system (e), where Fe is in the 

first layer of the hard phase. 

 

Figure 5.11 The calculated total energy differences, ( ) ( ) ( 0)E E Eδ θ θ θ= − =  (the marks) 
and their fitting to a quadratic curve for systems (a), (e) and (f) as depicted in Fig 5.1. 
These three systems have the same soft phase material but different hard phase 
materials. 
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Systems (b), (c) and (d) also have the same soft phase material CoFe. The 

difference between them is also on their hard phase materials. The hard phase in system 

(b) is pure SmCo5. Co atoms of hard phase in first and second layer from the interface 

are substituted by Fe atoms in systems (c) and (d), respectively. Figure 5.12 shows 

( )Eδ θ  vs. θ  for these three systems. Unlike the effects we just discussed among 

systems (a), (e) and (f), for CoFe as the soft phase material, an Fe in the second layer 

and in the first layer in the hard phase causes degradation of the exchange coupling, 

showing by the curves for systems (c) and (d) lying right below the curve for system (b). 

Comparing the curves for system (c) and (d), it is found the curve for system (d) is 

steeper than that for system (c). This means that the degradation of the exchange 

coupling is less in system (d), where Fe substitution is in second layer of the hard phase, 

than in system (c), where Fe substitution is in first layer of the hard phase.  
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Figure 5.12 The calculated total energy differences, ( ) ( ) ( 0)E E Eδ θ θ θ= − =  (the marks) 
and their fitting to a quadratic curve for systems (b), (c) and (d) as depicted in Fig 5.1. 
These three systems have the same soft phase material but different hard phase 
materials. 
 

Overall, as shown in Figure 5.13, in which we plotted δE(θ) vs θ curves of all 

the systems from the noncollinear magnetic ordering calculations, the hard phase and 

the soft phase in all these systems are exchange coupled, as evidenced by the smooth 

fittings by quadratic functions. It is clear that the curve of SmCo5/CoFe model (system 

(b)) serves as upper bound while the SmCo5/Co model (system (a)) serves as the lower 

bound. Therefore, among all the systems we considered, system (b), in which SmCo5 is 

the hard phase and Fe doped Co is the soft phase, has the strongest exchange coupling. 

And system (a), in which SmCo5 is the hard phase and pure Co is the soft phase, has the 
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weakest exchange coupling. The strengths of inter-phase exchange coupling in other 

systems are between those of these two systems. The order of the strengths of exchange 

coupling in all these systems, from strong to weak, is (b), (d), (c), (f), (e) and (a).  

Table 5.2 The atomic site-to-site exchange parameters averaged within the layers at the 
interface for all the systems as shown in Fig 5.1.  

Interface models Pair of layers (cf. Fig.5.1) Averaged Jij (meV) 

0 - 1 -3.23 
(a) 

6 - 5 -14.30 

0 - 1 -34.30 
(b) 

6 - 5 -28.90 

0 - 1 -24.01 
(c) 

6 - 5 -21.30 

0 - 1 -32.68 
(d) 

6 - 5 -27.93 

0 - 1 -15.09 
(e) 

6 - 5 -18.72 

0 - 1 -17.27 
(f) 

6 - 5 -19.58 

 

The calculated site-to-site exchange parameters Jij averaged over the atomic 

pairs between the layers for all the model systems are listed in Table 5.2, with the data 

for systems (a) and (b) shown again for comparison purpose. As mentioned earlier, the 

minus sign of Jij indicates that the systems are in the ferromagnetic state. Obviously, the 
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site-to-site exchange parameters of the interface atomic pairs in these systems have the 

order (in absolute values) of (b), (d), (c), (f), (e) and (a). This is in agreement with the 

conclusion from the noncollinear magnetic ordering simulations. 

 

Figure 5.13 The calculated total energy differences, ( ) ( ) ( 0)= − =E E Eδ θ θ θ  (the 
marks), together with their fittings for the systems illustrated in Fig 5.1. It is clear that 
the curve for system (b) serves as the upper bound and the curve for system (a) is the 
lower bound among all the systems.  
 

In summary, we have performed first-principles calculations to study the inter-

phase exchange coupling in hard/soft SmCo5/Co(Fe) multilayer model systems. We 

have considered six different models, representing six different interfacial conditions. 

Using both the noncollinear magnetic ordering simulation and the calculation of the 
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site-to-site exchange parameters across the interface, we found that the inter-phase 

exchange coupling is strongly dependent on the variation of the atomic composition 

across the interface. It is found in our study that the exchange coupling in SmCo5/Co is 

enhanced by introducing Fe in the soft phase. However, the introduction of Fe atom into 

the hard phase, SmCo5, will have different effects, depending on the soft phase 

composition. For a pure hcp Co as soft phase, it enhances the exchange coupling. But 

for CoFe as soft phase, it leads to the degradation of the exchange coupling. 

Nevertheless, in both soft phase cases, the system with Fe in the second layer of the 

hard phase has a stronger exchange coupling than that of the system with Fe in the first 

layer of the hard phase. The findings were further confirmed by the calculated site-to-

site exchange parameters across the interface. 
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CHAPTER 6 

FeCo NANOWIRES 

 

Ferromagnetic nanowires have been widely investigated for decades for 

magnetic applications [105-110] because of their inherent high shape anisotropy, which 

provides a high intrinsic coercivity to the material. Among numerous magnetic 

nanowires, FeCo nanowires provide a potential way to produce high-performance 

nanocomposite permanent magnets due to their high Curie temperature, large saturation 

magnetization and inherent large shape anisotropy and appreciable magnetocrystalline 

anisotropy. In this chapter, I present the results of our first-principles study of FeCo 

nanowires. We investigated the geometric structure, stability and magnetic properties of 

these nanowires and conclude that the FeCo nanowires under our investigation indeed 

could be used as potential permanent magnets with high maximum energy product or as 

soft phase component in an anisotropic assembled nanocomposite system [92]. 

 

6.1 Structures of Nanowires 

Nanowires made of pure B2 FeCo alloy in (001) direction are considered. In the 

calculations, we used two supercells as shown in Figure 6.1: one consists of 2×2×1 B2 

FeCo unit cell (Fig 6.1(a)) plus vacuum and the other one consists of 3×3×1 B2 FeCo 

unit cell (Fig 6.1(b)) plus vacuum. The vacuum is between wires in a periodic boundary 
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condition, in x- and y-directions in the calculations. There are 13 and 25 atoms in total 

in the two supercells respectively. Considering that the positions of Fe and Co atoms 

can be exchanged, we have initially 4 structures, namely Fe9Co4, Fe4Co9, Fe16Co9 and 

Fe9Co16. In addition, we have used pure bcc Fe nanowires in the same modeling 

arrangement, denoted by Fe13 and Fe25, respectively, as reference systems.  

 

                               

Figure 6.1 Geometric structures before relaxation: (a) Fe9Co4/Fe4Co9; (b) 
Fe16Co9/Fe9Co16. If all the atoms are Fe, we will have our reference systems, bcc Fe 
nanowires. 

 

The structures of Fe-Co nanowires were optimized by PAW method [60, 70-71] 

implemented in VASP [60, 75-78]. We found that compared to the bulk B2 FeCo alloy 

(a=b=c=2.83 Å), the lattice constants of these nanowires all shrink slightly along the 

wire direction as shown in Table 6.1. Specifically, the lattice constants along the wire 

direction (i.e., lattice c) are 2.64 Å, 2.66 Å, 2.73 Å, and 2.74 Å for Fe9Co4, Fe4Co9, 

Fe16Co9 and Fe9Co16, respectively. For the pure Fe nanowires, the lattice constants 

along the wire direction also shrink slightly. The optimized lattice constants along the 

wire direction are 2.74 Å and 2.78 Å for Fe13 and Fe25, respectively, while c=2.83 Å in 

(a) (b) 
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bulk bcc Fe metal. We also found that after full relaxations the cross sections of these 

nanowires become slightly rounder, whereas the cross sections before relaxations are all 

square. Figure 6.2 shows an example of the cross sections of Co4Fe9 before and after 

relaxations.  

Table 6.1 Lattice constants along the wire direction of the FeCo nanowires. For 
comparison, the lattice constants of bulk B2 FeCo alloy and bcc Fe are also listed. 

System Length of c (Å) 

Fe4Co9 2.66 

Fe9Co4 2.64 

Fe13 2.73 

Fe9Co16 2.74 

Fe16Co9 2.73 

Fe25 2.78 

Bulk B2 FeCo 2.83 

Bulk bcc Fe 2.83 

 

After the structures of these nanowires are optimized, we used FLAPW method 

[61-63] to calculate the electronic structure and magnetic properties such as saturation 

magnetization and magnetocrystalline anisotropy energies. The details of these 

calculations are similar to those described in Chapter 4. 
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Figure 6.2 The cross sections of the Co4Fe9: (a) before relaxation; and (b) after 
optimization. The green and dark blue balls represent Co atoms and Fe atoms, 
respectively. 

 

Figure 6.3 Top-down views of the 2×2×1 (left) and 3×3×1 (right) FeCo nanowires. 
Different colors indicate different layers of the atoms and the numbers inside the atoms 
represent different types of local symmetry. 

 
From the perspective of local symmetry, the atoms in a supercell can be 

categorized into four types in systems Fe4Co9, Fe9Co4 and Fe13, and six types in systems 

Fe9Co16, Fe16Co9 and Fe25, as shown in Figure 6.3, where the atoms with different 

colors represent the atoms in different layers from a top-down view along z axis. The 

numbers inside the atoms represent different types of local symmetry. Later on, we shall 

3 2 3

2 

3 

1 2

2 
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4 4 

3

vacuum

vacuum

(a) (b) 
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find that the magnetic moments of atoms are highly dependent on where they reside and 

their local symmetry. 

 

6.2 Stability 

To check if the FeCo nanowires are stable, we calculated their cohesive energies 

and formation energies. The cohesive energy cohE  and formation energy forE  are 

defined as 

( ) /( )= − − +
m n

isolated isolated
coh Fe Co Fe CoE E mE nE m n  (6.1) 

and  

( ) /( ),= − − +
m nfor Fe Co Fe CoE E m n m nμ μ  (6.2) 

respectively. Here 
m nFe CoE  is the total energy of structurally optimized nanowire 

m nFe Co with m Fe atoms and n Co atoms. isolated
FeE  and isolated

CoE  are the energies of an 

isolated Fe atom and an isolated Co atom from our calculations and Coμ  and Feμ  

represent chemical potentials of pure Co and Fe metals, respectively, as mentioned in 

Chapter 4. The value of the cohesive energy determines if the nanowires are stable 

against isolated Fe and Co atoms while the value of the formation energy reflects if the 

nanowires are stable against pure Fe or Co metals. A negative value means the 

nanowire is stable, otherwise it is unstable.  

Our calculated cohesive energies and formation energies of these nanowires are 

shown in Table 6.2. We can see that all the FeCo nanowires under investigation are 

stable against isolated atoms because they all have negative cohesive energies. But they 
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are unstable compared to the bulk iron or cobalt metals since they have positive 

formation energies. Nevertheless, it is still feasible that these nanowires can be 

synthesized by some experimental techniques [111-113] at a non-equilibrium 

environment, considering their small positive formation energies. Figure 6.4 shows the 

TEM image of FeCo nanowires synthesized by our collaborating experimental group 

[114]. At high temperatures, however, the nanowires may segregate into pure metals or 

alloys. On the other hand, the nanowires with larger diameters are more stable than the 

nanowires with smaller diameters, as evidenced by the smaller cohesive energies and 

formation energies of the thinner nanowires. 

Table 6.2 Cohesive energies and formation energies of FeCo nanowires. 

System 
Cohesive Energy 

(eV/atom) 
Formation Energy 

(eV/atom) 

Fe9Co4 -6.85 0.96 

Co9Fe4 -6.40 0.96 

Fe13 -7.18 1.00 

Fe16Co9 -7.06 0.69 

Co16Fe9 -6.73 0.69 

Fe25 -7.45 0.73 
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Figure 6.4 TEM image of FeCo nanowires. Reference [114]. 

 

6.3 Magnetic Moments 

It is found that the magnetic moments of atoms are highly dependent on where 

they reside in the wire as shown in Tables 6.3 and 6.4. Generally, for the same type of 

atoms, the magnetic moments become smaller if they are closer to the center of the wire. 

For example, for system Fe9Co4, the Fe atom sitting in the center of the wire has 

magnetic moment of 2.64 μB, much smaller than the magnetic moments in the outer part 

of the wire. This is reasonable since the behavior of the atoms in the inner part of the 

wire should be closer to the atoms in bulk materials (magnetic moments of Fe and Co 

atoms in bulk are 2.16 μB and 1.56 μB, respectively from our previous calculations). 
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Table 6.3 Magnetic moments of atoms in different symmetric positions for systems 
Fe4Co9, Fe9Co4 and Fe13. Numbers 1-4 represent different symmetric positions as 
shown in the left plot in Fig. 6.3. 

Atomic magnetic moments (μB) 
System 

1 2 3 4 

Fe4Co9 1.69 1.86 1.94 2.52 

Fe9Co4 2.63 2.88 2.90 1.62 

Fe13 2.02 2.93 2.85 2.16 

 

Table 6.4 Magnetic moments of atoms in different symmetric positions for systems 
Fe9Co16, Fe16Co9 and Fe25. Numbers 1-6 represent different symmetric positions as 
shown in the right plot in Fig. 6.3. 

Atomic magnetic moments (μB) 
System 

1 2 3 4 5 6 

Fe9Co16 2.79 2.73 2.62 1.87 2.08 2.20 

Fe16Co9 1.74 1.71 1.68 2.75 2.96 2.97 

Fe25 2.17 2.64 2.34 2.65 3.18 3.16 

 

Compared to bulk materials, the average magnetic moment per atom of the 

same specie in these systems is larger due to the symmetry broken by introducing 

surface area. For instance, the average magnetic moment of Fe atom in Fe16Co9 is 2.91 

μB, significantly larger than the magnetic moment of Fe atom in bulk bcc iron, 2.16 μB. 

This is also true for the two reference systems, Fe13 and Fe25. 
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6.4 Magnetocrystalline Anisotropy Energies 

The magnetocrystalline anisotropy energies of these FeCo nanowires are 

calculated with the torque method [87] described in Chapter 4 using the optimized 

geometric structures obtained by VASP calculations.  

Table 6.5 Magnetocrystalline anisotropy energies of FeCo nanowires. 

System 
Magnetocrystalline anisotropy 

Energy (meV/cell) 

Fe9Co4 0.81 

Co9Fe4 1.67 

Fe13 -0.58 

Fe16Co9 -0.60 

Co16Fe9 -0.41 

Fe25 -0.44 

 

Table 6.5 shows the results of our calculation. We can see from this table that 

except for Fe9Co4 and Co9Fe4, the easy axis of the magnetocrystalline anisotropy for 

these nanowires is actually perpendicular to the wire direction, since they have negative 

magnetocrystalline anisotropy energies. Comparing Fe9Co4 and Fe16Co9, we can see 

that when the radius of the nanowires increases, the easy axis changes from the wire 

direction (z-axis in our calculations) to the direction perpendicular to the wire (x-axis in 

our calculations). This is also true for Co9Fe4 and Co16Fe9 but not the case for Fe13 and 

Fe25, where increasing dimension does not change the easy axis of magnetization. 

Comparing the 2×2×1 systems with 3×3×1 systems, we can also conclude that with 
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increasing radius of the nanowires, the magnetocrystalline anisotropy energies actually 

decrease. If we take into account the volumes of the nanowires, this effect is more 

evident. Compared to the magnetocrystalline anisotropy energies of the bulk FeCo 

alloys as we discussed in Chapter 4, the magnetocrystalline anisotropy energies of the 

FeCo nanowires are significantly larger. Of course, when the radius of a wire becomes 

larger and larger, it should converge to the bulk value. 

Considering that the nanowires may grow on different substrates, it is expected 

that their lattice constant along certain direction will vary to reduce the stress produced 

by the lattice mismatch between the nanowires and the substrates. We also expect the 

magnetocrystalline anisotropy energy of the nanowires will change because of the 

lattice change. To simulate the effects of substrates on the magnetocrystalline 

anisotropy, we have calculated the magnetocrystalline anisotropy energies of Co4Fe9 

nanowires with different lattice constant along the wire. The nanowire structures are 

again optimized with pre-set lattice constants along the wire axis before the 

magnetocrystalline anisotropy energies are calculated. Table 6.6 shows the results of the 

magnetocrystalline anisotropy energies from our calculations.  

It is interesting that when the lattice constant along wire direction is shortened 

or elongated, the magnetocrystalline anisotropy easy axis of Co4Fe9 nanowire changed 

from parallel to the wire axis to perpendicular to the wire. This change may have 

important consequences: when combined with the shape anisotropy of the nanowires, as 

we will discuss in the following section, the total magnetic anisotropy will be either 

strengthened or compromised, depending on the directions of these two anisotropies.  
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Table 6.6 Magnetocrystalline anisotropy energies of Co4Fe9 nanowires with different 
lattice constant along the wire direction (z axis in our calculation). The percentage of 
change of lattice constant compared to our optimized lattice constant is listed in the 
parentheses. 

lattice length (Å) Magnetocrystalline anisotropy 
Energy (meV/cell) 

4.69 (-6%) -0.991 
4.84 (-3%) -0.936 
4.99 (0%) 0.810 

5.14 (+3%) -0.695 
5.29 (+6%) -2.849 
5.44 (+9%) -3.059 

We can also see from the table that the magnetocrystalline anisotropy energy 

varies with varying lattice constant along the wire axis. For example, the value of the 

magnetocrystalline anisotropy energy of the nanowire with 9% increased lattice 

constant c will be about four times larger than that of the structurally optimized 

nanowire.  

Based on our results, we can deduce that it is possible that both the direction and 

the value of the magnetocrystalline anisotropy energy of these FeCo nanowires can be 

engineered by varying the substrate during the growth of the nanowires. Their magnetic 

anisotropy can be further engineered by combining the magnetocrystalline anisotropy 

and the shape anisotropy. 

 

6.5 Shape Anisotropy Energies 

Shape anisotropy is another source of magnetic anisotropy which origins in the 

non-spherical shape of a ferromagnetic sample, associated with the magnetostatic 
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energy. For a non-spherical sample, it will be easier to magnetize it along a long axis 

than along a short axis because the demagnetizing field along a short axis is stronger 

than along a long axis. The shape anisotropy energy, i.e. the energy difference along 

these axes, can be calculated from the magnetostatic energies along these two 

magnetization directions. 

We computed the shape anisotropy energies of the FeCo nanowires with two 

different methods. The first method is a theoretical approach we derived from the 

classical electromagnetic theory. The second method approximates the nanowires as 

prolate spheroids and uses empirical formula to calculate their shape anisotropy energy. 

To derive the formula to calculate the shape anisotropy energy in the first, 

theoretical method, we note that the magnetostatic energy u  associated with a 

permanent magnetic moment in an external magnetic field can be expressed as [93] 

 ,u m B= − ⋅  (6.3) 

where m  is magnetic moment and B  is magnetic induction. Therefore, the 

magnetostatic energy of the nanowires per supercell is just the summation of the 

magnetostatic energies associated with all the magnetic moments inside the nanowires, 

i.e.,  

 
1 1

,
q

i j
i j

j i

U u a m B
∞

= =
≠

= = − ⋅∑ ∑∑  (6.4) 

where q is the number of the atoms inside the supercell and a  is a constant introduced 

to avoid double counting inside the supercell. So 1 2a =  if atom j  is inside the 



 

 104

supercell and 1a =  otherwise. The magnetic induction jB  originating from magnetic 

moment jm  is evaluated as 

 0
3

3 ( )
( ) .

4
j j

j

n n m m
B r

r

⎡ ⎤⋅ −μ
= ⎢ ⎥

π ⎢ ⎥⎣ ⎦
 (6.5) 

Here n  is a unit vector in the direction r  ( n r r= ). Therefore equation (6.4) becomes

 0
3

1 1

( )( )3 .
4 | |

q
ij i ij j

i j ij
j i

n m n m
U a

r

∞

= =
≠

⋅ ⋅μ
= −

π ∑∑  (6.6) 

And the shape anisotropy energy can be written as 

 
_

2 2
0

5
1 1

( ) ( )

( )3 ,
4 | |

ani shape

q
i j ij ij

i j ij
j i

E U U

m m x z
a

r

∞

= =
≠

= → − ↑

−μ
= −

π ∑∑  (6.7) 

where ( )U →  and ( )U ↑  are the magnetostatic energies when all the magnetic moments 

are aligned perpendicular to the wire ((100) direction) and parallel to the wire ((001) 

direction), respectively. ij i jx x x= −  and ij i jz z z= −  are the differences of the x  

coordinates and z  coordinates, respectively, of atom i  and atom j  in the Cartesian 

coordinate system. 

In the second, empirical method, the magnetostatic energy ED (in erg/cm3) 

associated with a particular magnetization direction can be expressed as [7] 

 21
2D d sE N M=    erg/cm3,  (6.8) 
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where Nd is the demagnetization factor along the magnetization direction and Ms is the 

saturation magnetization of the nanowire in unit of emu/cm3. 

 
Figure 6.5 An illustration of a prolate spheroid 

 

The nanowires can be approximated as prolate spheroids (as shown above in 

Figure 6.5, the demagnetization factor can only be calculated exactly for an ellipsoid, of 

which prolate spheroid is one type) with high aspect ratio c/a. In this case, the 

demagnetization factor along the hard axis, perpendicular to the wire axis, is equal to 2

π, and the demagnetization factor along the easy axis, parallel to the wire axis, is 0. 

The exact solutions for the demagnetization factors for a prolate spheroid, suppose c/a=r,  

are provided as follows: 

 2
2 2

4 [ ln( 1) 1]
( 1) 1

c
rN r r

r r
π

= + − −
− −

; (6.9) 

 4
2

c
a b

NN N π −
= = . (6.10) 

Based on these equations, the shape anisotropy energy of these nanowires can be 

written as 

 2 21 ( )
2shape a c s sE N N M Mπ= − =  erg/cm3. (6.11) 



 

 106

Notice that the calculation of shape anisotropy with this method is approximate. The 

result becomes closer to the theoretical value with higher c/a value. 

Table 6.7 Shape anisotropy energies for the FeCo nanowires. As comparison, the 
magnetocrystalline anisotropy energies are also listed with the same units.  

Shape anisotropy energy 
(106 J/m3) System 

Theoretical Empirical 

Magnetocrystalline 
anisotropy energy (106 J/m3) 

Fe9Co4 4.39 4.06 1.53 

Co9Fe4 3.04 2.65 3.14 

Fe13 4.34 4.25 -1.06 

Fe16Co9 3.76 2.81 -0.49 

Co16Fe9 2.87 1.80 -0.33 

Fe25 3.90 2.80 -0.19 

 

The results of our calculations are shown in Table 6.7. To compare them with 

our calculated magnetocrystalline anisotropy energies, we converted both types of 

magnetic anisotropy energies to the same SI unit, i.e., J/m3. Comparing the results of the 

shape anisotropy energies calculated from both methods, we can see that the empirical 

method is accurate for approximately evaluating the shape anisotropy energy of 

nanowires with small diameters. For nanowires with larger diameters such as the 3×3

×1 systems under our consideration, they are less accurate and have an error of 

calculation around 30% compared to our calculated theoretical values. The reason of the 

error originates from our approximation, in which high c/a ratio is an assumption. In our 
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study, the c/a values of 2×2×1 systems are larger than those of 3×3×1 systems. 

Thus the approximation is more accurate in the 2×2×1 systems. Nevertheless, the 

shape anisotropy energies from the empirical method are in the same magnitude with 

those calculated from the theoretical method. 

It is obvious that for these FeCo nanowires, shape anisotropy is the dominant 

magnetic anisotropy compared with the magnetocrystalline anisotropy. As we 

mentioned earlier, the easy axes of magnetocrystalline anisotropy for these nanowires 

except Fe9Co4 and Co9Fe4 are actually perpendicular to the wire direction. As a result, 

when both types of anisotropies are present together, the direction of the easy 

magnetization of these nanowires is along the wire axis. For systems Fe9Co4 and Co9Fe4, 

the shape anisotropy will be reinforced by the magnetocrystalline anisotropy, producing 

a larger total magnetic anisotropy. For other systems, because of the perpendicular 

directions of the shape anisotropy and magnetocrystalline anisotropy, the shape 

anisotropy will be compromised by the magnetocrystalline anisotropy. 

In summary, we have performed first-principles calculations to study the 

structural, electronic and magnetic properties of FeCo nanowires. FeCo nanowires with 

larger diameters are more stable than those with smaller diameters. It is found that the 

average magnetic moment per atom of the same specie in FeCo nanowires is larger 

compared to bulk materials due to the symmetry broken by introducing surface area. By 

calculating the magnetocrystalline anisotropy energies and shape anisotropy energies of 

these FeCo nanowires, we found that shape anisotropy is the dominant magnetic 

anisotropy in these nanowires. Our study implies that both the direction and the value of 
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the magnetocrystalline anisotropy energy of these FeCo nanowires can be engineered 

by varying the substrate during the growth of the nanowires. Their magnetic anisotropy 

can be further engineered by combining the magnetocrystalline anisotropy and the 

shape anisotropy. 
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CHAPTER 7 

SUMMARY 

 

In this dissertation, density-functional-theory based first-principles study has 

been performed on the hard/soft nanocomposite magnetic SmCo5/Co(Fe) systems. The 

PAW method implemented in VASP, the FLAPW method and the LMTO method have 

been employed in our calculations. We have investigated the effects of soft phase 

properties and interfacial conditions on the strength of the exchange coupling between 

soft and hard phase materials. Calculations to study the FeCo nanowires as potential 

high performance permanent magnets or as potential soft phase materials in a 

nanocomposite magnetic system have also been carried out. 

In the study of soft phase effects, the structural, electronic and magnetic 

properties of FeCo alloys have been investigated. The FeCo alloys were initially set 

with bcc-, hcp-, or fcc-type structures and then fully relaxed to find their lowest total 

energies and corresponding ground state structures. For the systems having two or more 

configurations, we have considered all possible non-equivalent configurations and 

identified the configuration with lowest total energy as the ground state structure for the 

system. We found that only bcc-type FeCo alloys are stable, whereas fcc- and hcp-type 

alloys are not. For the stable bcc-type alloys, it is found that they prefer non-cubic 

geometries in a wide composition range. This produces appreciable uniaxial magnetic 
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anisotropy, according to our calculations, and facilitates inter-phase magnetic 

interaction and enhances the overall magnetization in exchange coupled hard/soft 

nanocomposite systems. Specifically, we found that Fe11Co5, Fe12Co4 and Fe13Co3 

alloys have sizable magnetocrystalline anisotropy energies with high magnetizations 

and they may be used as target soft phase materials in the nanocomposite system. 

On the effects of interfacial conditions on the exchange coupling, we have used 

layered SmCo5/Co(Fe) as a prototype system to study the exchange coupling strength 

between the soft phase material Co or FeCo alloys and hard phase material SmCo5. The 

exchange coupling strength is described in two complimentary ways. In the first method, 

we performed noncollinear magnetic structure calculations to simulate the 

demagnetization process of the magnetic system. In the second method, we directly 

calculated the site-to-site exchange parameters across the hard/soft interface. Through 

both methods, we found that the exchange coupling in SmCo5/Co is enhanced by 

introducing Fe atom in the soft phase. However, the introduction of Fe atom into hard 

phase SmCo5 will have different effects, depending on the soft phase composition. For a 

pure hcp Co soft phase, it enhances the exchange coupling. But for the FeCo alloys as 

soft phase, it leads to the degradation of the exchange coupling. 

On the exploration of FeCo nanowires as potential high performance permanent 

magnets or potential soft phase material in a nanocomposite magnetic system, we 

studied their stability, the electronic and magnetic properties. It is found that the 

nanowires with larger diameters are more stable than the nanowires with smaller 

diameters. We also calculated the magnetocrystalline anisotropy energies and shape 
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anisotropy energies of these FeCo nanowires and found that shape anisotropy is the 

dominant magnetic anisotropy in these nanowires. Depending on the relations of the 

axes of shape anisotropy and magnetocrystalline anisotropy, the total magnetic 

anisotropy will be either enhanced or compromised.  

As discussed in this dissertation, our research work completed so far has 

provided guidance on the effects of the soft phase material properties and interfacial 

conditions on the exchange coupling between soft and hard phases. On the other hand, 

there still remain many important areas for future research. In this study, we only 

considered Fe doping. The effects of doping by other materials on the exchange 

coupling should also be studied in detail. Apart from the layered and abrupt interface 

structures, other interface structures such as a gradient interface or core-shell structures 

will also be interesting topics. Furthermore, the more realistic Sm2Co17/Fe model will 

be investigated as we mentioned in the beginning.  
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