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ABSTRACT

EUKASIMBIOSYS: A STOCHASTIC DISCRETE EVENT-BASED

SIMULATION SOFTWARE FOR IN-SILICO STUDY OF

INSULIN SIGNALING AND METABOLISM

IN CARDIAC MYOCYTES

AMIN REZA MAZLOOM, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professor: Sajal K. Das

The advent of human genome annotation in the early years of third millennium

has enabled the scientist to interlink the processes of life at the molecular level. The

coincidence of this breakthrough along with advances in computational technology and

high-throughput experimental techniques has promoted the emergence of numerous

-omics data resources. Although for years before such discovery, scientist believed that

cellular processes are the product of interaction between genes and gene products; How-

ever, any effort to exploit a comprehensive picture of cellular processes had been obscured

due to the knowledge gap that avoided to correlate the cellular processes at the lowest

level. Having the organisms blueprint in hand has encouraged many researchers to study

a biological process as a part of a whole rather than in isolation. From an engineering

point of view, the biologists interests now revolve around comprehending the system level

behavior of a biological process in a complex biological network.
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Studying biological systems demands for modeling and simulation tools that can

capture the dynamics of these systems in time and space. Many variant of these tools

have been proposed elsewhere which all try to approximate the Chemical Master Equation

(CME). These modeling and simulation tools are broadly classified into deterministic and

stochastic based on their temporal evolutions. In the former class, the tools that project

a biological system into a set of Ordinary Differential Equations (ODE) are the most

prevalent. However, it has been shown elsewhere that these models can not capture

the nonlinearity and the deviant effects that exist in the biological processes, due to

the inherent random environment of the cell. In latter class, majority of tools comprise

strains of Gillespie algorithm, where the system is mapped into sets of chemical kinetic

equations which evolves in Monte Carlo steps. The main problem that deteriorates the

utilization of these simulation tools is their temporal complexity. A common drawback

for both Gillespie and ODE based approaches is their oversimplification in abstracting

the physiology of a process that is represented by an equation along with a single kinetic

rate constant.

In this dissertation we first elucidate how the Stochastic Discrete Event Simula-

tion (SDES) could be applied in capturing the behavior of biological processes as sets of

biological events (bioevents) with random holding times. Then we introduce the archi-

tecture of ‘eukaSimBioSys’ which is designed for system-wide simulation of a eukaryotic

cell. The model repository is one of the essential components of our proposed architec-

ture, which comprises reusable modules of parametric models. Each of these parametric

models once coupled with a proper parameter set is then applied to capture the holding

time of a specific bioevent.

These models are physicochemical models that attempt to abstract bimolecular

interactions (i.e. modifications, associations, translocations, localizations, etc.) into a

parametric probability distribution function of time. Typical interactions include: reac-
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tion, receptor-ligand binding, protein-protein binding, chromatin remodeling, transcrip-

tion, translation, splicing, etc. The previous researchers have already started building

this model library and in this work we add four new models (i) ligand-receptor binding,

(ii) DNA fluctuations, (ii) chromatin remodeling, and (iii) splicing. For the first one we

have developed both the eukaryotic and prokaryotic variants of the model, where as the

rest are specific to eukaryotes. These models have been validated with the published

experimental data where empirical results were available.

Cell activity is the product of an intricate interaction among three main cellular net-

works: Signal Transduction Network (STN), Transcription Regulatory Network (TRN),

and Metabolic Network (MTN). Each cellular function composed of one or more edges

within or across these networks. Hence, system-wide study of a cell requires clear and ex-

plicit definition of these networks. We have incorporated the semantic of these networks

in ‘eukaSimBioSys’ by designing an object-oriented database to hold the layout of these

three networks along with their inter-relationships. We have populated these databases

for ‘human BCell’ and ‘human cardiac myocyte’ from data available in literature and

other databases.

Despite the advances in health science, and discovery of new drugs, still heart

disease is the most life threatening disease in both industrial and developing countries.

Cardiac myocytes are the main players of the perpetual heart contraction function and

are among the most energy consuming tissues in the body. Any changes in their normal

metabolism can lead to severe consequences for an individual. Glucose and fatty acids

comprise the major sources of energy for the myocardial cells, the interplay between these

two sources is predominantly controlled by insulin. As the ultimate goal of this disserta-

tion we have incorporated all the models developed in this dissertation and elsewhere into

‘eukaSimBioSys’ and utilized that to conduct unique in-silico experiments for studying

the effects of insulin on metabolism of heart muscles.
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We exploit the features and capacities of our software by conducting six in-silico

experiments where we proved its outstanding potentials in regenerating the experiential

data and performing hypothesis testings by applying the experimental conditions in-

silico. The biological facts that we validated in-silico briefly include: plasticity of cardiac

myocytes, contributions of exogenous glucose and fatty acid in myocardial energetics,

transcription regulation of insulin, and the effect of genetic null-mutations on metabolic

pathways.

One of the unique features of ‘eukaSimBioSys’ that was demonstrated throughout

an in-silico experiment was the ability of the software to perform the system-wide sim-

ulation of myocardial cellular networks for a prolonged time (48 hours). To construct

the SRN, TRN, and MTB for the experiment we incorporated the information from

three major databases (i.e. KEGG, BiGG, HumanCyc) along with data from exhaustive

literature searches.

‘eukaSimBioSys’ features variety of promising applications in the biology and

health science. It could be applied to suggest the more promising experimental condition

for the experimentalist or help investigating new pathways and regulatory mechanisms.

Another very important application of this software is in rebuilding the disease scenarios

such as hyperglycemia, diabetes, hypertension, ischemia, etc. In-silico investigation on

the effects and side-effects of a new drug is another potential application of this emerging

software. Note that utilizing ‘eukaSimBioSys’ for the above purposes might subject to

certain case based enhancements to the current version of the software.
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CHAPTER 1

INTRODUCTION

When the blue print of human came out of the laboratories less than half a decade

ago, the start of another renaissance in bioscience was clicked. However the mission was

yet to be accomplished, since thousands of questions could be answered only when the

multi-billion base pairs is precisely deciphered, linked, and processed at multiple levels.

According to the Genome News Network [3] the genome of more than 180 organisms

have been sequenced and many yet are in the pipe line. The coincidence of genome an-

notation, advances in high-throughput experiment techniques and availability of powerful

computational tools has given an exponential rise to the -omics data resources for various

biological objects in the post genomic era. These data resources characterize a biological

object in one or more of their aspects which the natural selection has attributed to them

in the course of evolution, e.g. structure, function, interaction, localization, pathogenesis

and etc. Although these data are invaluable to the science however their real contribu-

tion to the community would not be illuminated unless the invisible world in these data

is revealed. Discovering this hidden intelligence is beyond intuition and requires a new

realm of quantitative tools and computational techniques along with new sets of bench

experiments and protocols. Computational systems biology which was coined for the first

time in 2002 by Hiroaki Kitano [4] is a subsidiary branch of systems biology that has

mainly focused in establishing new computational tools and techniques in response to the

demand just mentioned. Lately this interdisciplinary field has been welcomed by many

biologists, biochemists, mathematicians and computer scientists from different schools of

thoughts as the base of common work-bench. This scientific alliance has awarded the
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systems biology with an incredibly faster moving pace which subsequently resulted an

everyday growing number of more efficient and precise tools for experimentalists and

exciting research and work opportunities for the computational scientists.

Rigorous annotation of the DNA and precise definition of molecular interactions

underlaying the biological functions are the precursors of a through in-silico experiment of

the cell. In-silico experiment is a buzzword that the bio-community has been exposed to

in passed few years. To give a concrete definition for in-silico experiment one can literally

call that: having the experimental environment simulated in a computer and generate the

same results as an empirical observation would result, should the wet lab experimental

conditions is provided. However, this is a complicated task that demands for effective

utilization of all aspects of -omics data, interlinking the processing of different biological

systems for creating the complex process along with proper mathematical formalism

and processing power that all together describe and mimic the experimental condition

in biologically relevant and timely manner. Both the bioresearch and health science

community will benefit from this practice in ways raging from recommending the most

promising parameters setup for a wet lab experiment, looking at null mutations effects

on homeostasis and fate of a cell, identifying and testing a drug target, helping to find

an efficient therapeutic drug dosage, to do the measurements or experiments that would

otherwise be impossible due to variety of reasons including of lack technology, impractical

experimental condition and legal or ethical restrictions.

The envisioned road-map demands for characterizing the functionality of cellular

components, which composed of all structural and molecular assets of a cell (e.g. proteins,

DNA, mitochondria, lysosome, peroxisome, nucleus etc.). Also it is well understood that

any function in the cell is accomplished through delicate interplay among many of the

cell components. Hence, studying the dynamics of a cell is only possible by characterizing

the functionality of these components as a whole not individually and in the context of
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the cell’s condition in time, not in isolation. This indicates that we must look in to the

cell as a system in order to provide a precise picture of its functionality in-silico.

1.1 System-level view of a cell

In a broad sense a system is a subset of a world whose interactions with the rest

of the world or another subset is properly defined. An organism could be viewed as a

system or collection of systems at different hierarchical level based on the boundary of

the system components which could range from organ to tissue, cell, molecule, and to

atoms. The degree of complexity between levels grows exponentially from top to bottom.

In the current study a cell draws the system boundary and molecules are the interacting

components of this system. In order to mimic the interaction of a cell with the rest of

the world the interaction of the underlying components must be properly characterized

in time and space.

In an effort to create a system-wide abstract for a cell, a comparison is done by

Brent and Bruck [5] between a living cell and von Neumann’s stored-program computer

architecture. To seek for homologies among the components, DNA is viewed as the

executable program code that needs to be processed and run by the cell processing

unit which is a composite network of Signal Transduction Network (STN), Transcription

Regulatory Network (TRN), and Metabolic Network (MTN) . Each of these networks

operates and cross-talks through a set-of cellular processes. The cellular processes are

handled by the interaction of proteins which themselves are the output of DNA execution.

The inputs to this bio-architecture are the endogenous and exogenous signals, where the

output is a change in metabolism, development, proliferation and/or phenotype of the

cell. An external signal is imported into the cell and then ripples in one or more route

down to the nucleus and finally to the genome through cascades of complex functions.

The respond of genome to the signal, spreads through the cell and/or at the higher level
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outside the cell through another set of cellular functions, that might possibly overlap

with the input set. It is noteworthy to mention that not all signals would necessarily

result a genome level effect.

1.1.1 Signal transduction network

For a cell, an exogenous signal is composed of bacteria, ligand molecule, ions or

atomic particles (virus, sugar, Fatty Acid, hormone, Ca, etc.) in the extracellular envi-

ronment that binds to a cell membrane surface or receptor or enters through a membrane

gate. Although, current definition of the signal does not cover cell-cell signaling which

incorporates other mechanisms (e.g. notch signaling) but will serve our purposes. A

cascade of physiological phenomena that coordinates the signal perception and propaga-

tion is refereed to as signaling network. The underlying biological phenomena include:

protein complex formation, post transcriptional modification, diffusion, co-activation, co-

repression, budding, binding of transcription factor to the DNA, etc. In biochemistry

most of these phenomena is abstracted in the form of a biochemical reaction. A set of

reactions that pertain to the signal transduction in a cell is referred to as a signaling

pathway and set of all signaling pathways in a cell is referred to as signal transduc-

tion network of that cell (STN). It should be emphasized that the downstream effect of

a signal is nothing more that an actitvated/deactivated transcription factor or protein

complex or change the membrane conditions or generate an electric signal. An altered

transcription factor might positively or negatively affects the expression profile of certain

genes. Where, the affected genes could be determined through the transcriptional regu-

latory network of the cell. A protein or protein complex might trigger another signaling

pathway or possibly alters the metabolic network of the cell. The major databases on

Homosapiens signaling pathways include: KEGG [6], Reactome [7] and TransPath [8].
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1.1.2 Transcription regulatory network

A typical eukaryotic gene is regulated at multiple levels: sequence , chromatin

and nuclear [9]. The first level of regulation include the activation or inhibition of the

promoter of a certain gene. The basal and upstream promoters are located ∼40 and ∼
200 base pairs upstream of the open reading frame (ORF) that could be activated through

the binding of transcription factors, i.e. proteins or protein complex. In eukaryotes the

regulatory mechanism is very complex which is not completely understood; however, it

has been shown that more distant regions upstream/downstram of the main regulatory

region can have effect on expression profile [10] of the target gene. Multiple genes might

be regulated though the same regulatory region, these set of genes are referred to as

operon. A transcription factor might be activated by another protein or small molecule

binding to its activation domain this process is referred to as trans-activation and the

second party is called trans-activator. The opposite form of the event is also valid for

co-repression where an active transcription factor is deactivated by a co-repressor.

In eukaryotes the DNA is wrapped around beads of protein referred to as nucleo-

some core particle. Nucleosomes contribute to the second level of regulation by confining

the cell transcription machinery access to the regions of DNA trapped in nucleosome.

The eukaryotic cells are equipped with certain mechanisms to overcome the repressive

effect of nucleosomes. The third level of the regulation is the nuclear level, which in-

volves the 3D folding of chromatin fiber in the nucleus and is controlled by the epigenetic

regulatory mechanism.

The group of transcription factors that directly interact with DNA belong to the

first level of regulation hierarchy. These proteins along with their target genes form a

bipartite graph which we refer to as tier one transcription regulatory network (TRN).

By including the feed forward of other protein on the tier one transcription factors, tier

two TRN could be reconstructed and this recursive process could be applied for higher
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tiers. These multi-tire transcription regulatory network along with feed back of the gene

products to different layers of TRN can further reveal the genome wide effect of the TRN.

The transcription factors at the highest level of an organisms TRN, if exist at all, are

referred to as global transcription factors. Building a comprehensive TRN for a target

cell is subjected to complete genome annotation of the organism and precise information

for all the protein-protein interactions within a the cell. To the date, availability of

transcription regulatory network for eukaryotic cells is very limited. There are very

few databases for transcription factors (TFs) where one can query for the genes that

are activated by a certain TF: TransFac [11] and bZip [12]. Rebuilding the transcription

regulatory network for any of Homo-sapiens cell as well as other eukaryotes is impractical

from the available databases. The sole integrated piece of data that we found which could

be used to rebuild a human cell TRN is reported by Tucany et al. [13] on human BCell.

Hence, rebuilding any cell specific TRN demands an exhaustive search in literature for

discrete published records on a gene regulation and its TFs for a specific cell type.

1.1.3 Metabolic network

Metabolic network of a cell is composed of sets of pathways that produce the en-

ergy substrates and precursors for all activities of the cell. Based on the chemical family,

metabolites (carbohydrates, vitamins, lipids, amino acid, nucleotides, etc.) are separated

into different classes. Each class is further divided into subclasses based on precursor

metabolite molecule and ultimates product(carbohydrates: glycolysis/gluconeogenesis,

citrate cycle, pentose phosphate, Fructose and mannose metabolism etc.). These clas-

sification is not standardized but their variations are subtle among popular databases.

Each metabolic pathway is composed of one or more reactions that convert one or more

reactant molecules to one or more products. Metabolic reactions are normally catalyzed

by one or more metabolic enzymes. These enzymes are composed of one or more proteins
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Figure 1.1. An abstract representation of STN, TRN and MTB in a eukaryotic cell.

which are gene products. Major databases for Homo-sapiens metabolic pathways include

KEGG database [6], Reactome database [7], BiGG database, and HumanCyc [14] data

base.

1.1.4 Interaction of the three networks

The interaction of the above networks is depicted in the graph of Fig. 1.1 where

each network node corresponds to molecular body and each arc represents a physiological

activity within the cell. A sequence of such activities represents a cell process. We have

designed a database that stores the above networks as well as their interrelationship.

This database could be queried on every node and arc of the graph and their properties.

To properly characterize the spatiotemporal dynamics of the above networks having

such database on hand is necessary but not sufficient. An edge of this graph is the

manifestation of the physiology of a cellular activity that governs the rules of change in

dynamics of a cell activity. Therefore, to gain a system-wide understanding of a cell each
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of these individual physicochemical activities should be rigorously studied and relevantly

abstracted by a quantitative formalism.

1.2 Systematic modeling of biological process

In 1930’s the Hungarian mathematician John von Neumann made his famous quote

’Truth is too much complicated to allow anything but approximation’. His word is the

essence of any modeling effort irrespective of the knowledge domain that the model

could belong to. In biology a model is often referred to a cartoon representation or verbal

description of a mechanism underlying a biological activity or process, these models are

known as qualitative models [15]. Mathematicians and computer scientists’ version of

model is a mathematical formalism or an algorithm that could reproduce the real world

data, given the initial parameters and input to the algorithm. A systematic modeling of a

bio-process requires both discipline along with relevant empirical data. The former is used

to understand the mechanism underlaying the process, and the latter is applied to map

the mechanism into a systematic and logical language. The experimental data is used

to validate and optimize the model in an iterative process. Possible knowledge gaps in

the mechanism of a bio-process process is filled by incorporating fair assumptions. These

assumptions might further be revised during validation and optimization phases of the

model design. In a modeling task should some details be unimportant to the objective

of the project, or the modeling task becomes impractical due to excessive complexity

imposed by the details, valid simplification assumptions will replace the unnecessary

details.

1.2.1 Chemical kinetics based modeling of biological processes

Mathematical models have been particularly successful for modeling complex bio-

chemical reaction networks, using deterministic chemical kinetics [16, 17]. In chemical
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kinetic based modeling every biological process is considered as a set of reactions. The

temporal progress of such reactions is governed by an empirical rate constant. These

biochemical reactions are categorized in to fast and slow reactions. A fast reaction (e.g.

metabolic, kinase, dimerization) happens in the order of nano to mili seconds and a slow

reaction often happens in the order of seconds and minutes. With this approach, every

interaction between molecules is considered as a reaction and a pathway is represented

as a sequence of reversible or nonreversible reactions. Each reaction is associated with

four data sets: reactants, products, stoichiometry values and the forward and backward

kinetic rate constants of the reaction. This information is used to form set of Ordinary

Differential Equation (ODE) corresponding to the biochemical reactions. Therefore, each

pathway is modeled by a set of ODEs, which will be solved analytically or numerically

to determine the temporal dynamics of that pathway. Most often analytical solution to

the set of ODEs is impractical and numerical methods will be applied (e.g. Euler, Mid-

point, Runge-Kutta,etc.) to approximate the solution. Many variants of ODE solvers

is available, where amongst these tools Matlab ODE solvers developed by Matworks�

Inc. are quite well known. List of Matlab ODE solvers is given in Table 3.1. The

precursor assumption common to all ODE based models is the steady state of reactions.

This assumption implies that all the reactions in a pathway are in their average dynamics

and obviously undermines any deviation from the average. Intuitively such assumption

should stay valid for the cases where the concentrations are high with respect to reac-

tion buffer. However, Arkin and Samiolov (2006) have shown that non-classical behavior

of biological networks cause their dynamics to substantially diverge from their averages

[18]. In such networks Classical Chemical Kinetics (CCK) based dynamics correspond

to the mode of the reactions rather than their averages. Also they have identified the

potential failure patterns of CCK models even for high reactants concentrations. An ex-

ample of such patterns is the condition when divergence of a reactant concentration from
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Table 1.1. Matalab ODE Solvers

Solver Name Specifications

Ode45
Applied for non-stiff problems, one step solver, best
to apply as a first try for most problems ,based on
explicit Runge-Kutta4th/5th-order method

Ode23
Applied for non-stiff problems, one step solver,
Often quicker but less accurate than ode45, based
on explicit Runge-Kutta2nd/3rd-order method

Ode113 Multi-step solver for non-stiff problems

Ode15s
Multi-step solver for stiff problems, Uses a variable
order method, advised to be applied in case of
Ode45 failure

Ode23s
One step solver for stiff problems that could not be
solved by Ode15s

Ode23t For moderately stiff problems
Ode23tb For stiff problems and is more efficient that Ode15

its average hits zero, obviously lack of reactant resource will stop the progression of the

reaction, where such event is not captured through CCK models. Another failure point

of such models is their inability to capture the non-linearity of irreversible reactions such

as transcription or translation. The fact that immature transcription leads to nascent

transcript (i.e. not all nucleus synthesized mRNAs would be successfully transported in

to cytosol, or not every cytosolic mRNA results production of protein) are the bursty-

ness in of protein synthesis [19] are the manifestations of such non-linearity and thus,

nonclassical effects.

Such deviant effects characterize a stochastic behavior for biological networks and

suggest a random environment for the cell. Therefore, deterministic modeling does not

have the capacity to properly characterize the behavior of a cellular system that has a

random nature.

Also deterministic approaches assume infinite volume to map the discrete spatial

distribution of molecules to a homogenous continuous variable, i.e. concentration. How-

ever, many intracellular reactions occur in small volumes, hence this assumption could
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be significant to the accuracy of the model. Furthermore, the homogeneity of cell en-

vironment, assumed by the deterministic modeling approach is usually violated by the

cellular processes.

1.2.2 Stochastic modeling of biological processes

The inherent randomness associated with cell environment is due to the stochastic

resonance [20]. Such stochasticity causes random (stochastic) interactions and collisions

between the discrete molecular entities (predominantly proteins and protein complexes).

Chemical Master Equation (CME) [21] is used to stochastically determine the species

molecular counts, in homogeneous environment within a cell. Species molecular counts

describe the internal cell states and biochemical reactions governed by deterministic

’rate law’ account for transitions among the internal states of the cell. Each species

corresponds to one dimension in the state space, hence number of states follows an ex-

ponential growth as the number of chemical species increases in the model. Numerous

stochastic approximation algorithms to CME have been proposed, some of which have

been more practical include: Gillespie [22], Arkin and Rao [23], Burrage et al.[24], Gibb-

son and Bruck [25], Le Novre and Shimizu [26], Salis and Kaznessis [27], Haseltine and

Rawlings[28], Alfonai et al. [29], and Gadgil et al. [30]. The application of these algo-

rithm is well suited for environments with low copy number molecules and small system

environment.

These modeling techniques have provided an in-silico framework to study the dy-

namics of cellular processes. However, much of their success are limited to specific bi-

ological systems and suitable under certain conditions. Applying such frameworks for

system-wide study of cellular behavior faces major pitfalls including combinatorial ex-

plosion of large number of molecular species involved in a cell, time-scale of difference

between different types of reactions in a cell, importance of spatial localization, etc. Par-
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ticularly, the complexity of signaling, regulatory and metabolic pathways, cross-talks and

noise between the pathways and knowledge gap in different parts of the pathways (e.g.

undiscovered reaction, unidentified enzyme, unmeasured kinetic rate, etc) together with

the differences in time-scale between gene regulatory and metabolic pathways make the

system-level study of their interaction dynamics an even more challenging computational

problem [31].

Stochastic models for approximating CME are largely base on Gillespie algorithm

[32, 33]. The original Gillespie algorithm is considerably slow, because numerous amount

of random numbers need to be generated to specify the reactions that take place in

each Monte Carlo step of the simulation. Stochsim is a stochastic simulation tool devel-

oped based on the Gillespie algorithm [26]. Some variants of Gillespie based tools that

have applied approximation techniques like tau-leaping to overcome the computational

complexity and enhance their efficiency could be found in [34, 31, 22].

Although reaction based stochastic modeling is trying to capture the random behav-

ior of cellular processes, however every action in the cell is still mapped into a biochemical

reaction by this class of models. This naive mapping strategy could be hazardous to the

accuracy and efficiency of system-wide in-silico analysis of cellular processes in two folds.

Firstly, by over simplification that results ignoring the important factors in a process

that has a complex physiology (i.e. transcription/translation): the entire dynamics of

any reaction-mapped biological process is captured through a rate constant in this class

of stochastic modeling. Secondly, by imposing computational complexity for simpler

processes such as metabolic reactions.

In this dissertation we introduce a new approach in molding biological processes

which is stochastic in nature and has mesoscopic scale. In our approach every cellular

process or interaction is viewed as an event whose temporal dynamics follows a random

distribution with a known mean and variance. In each modeling effort, first we study the
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qualitative model that characterize the physiology of the objective cellular process. Sub-

sequently, try to use all possible mathematical, physical and mechanical tools, theorem

and laws along with experimental data to map the qualitative model into the stochas-

tic information domain. In the light of current modeling approach, any cellular process

(e.g. signaling pathway, metabolite uptake, protein synthesis, etc) could be presented as

sequence of one or more events whose temporal behaviors are govern by the appropriate

models associated with each event.

1.2.2.1 Example 1: Stochastic modeling of human MAPK signaling pathway

As an example we model a process (pathway) through which an erogenous signal

is propagated down to the nucleus. One of the well known signaling pathways in human

signal transduction network is the MAPK signaling pathway which is predominantly en-

gaged in the proliferation and differentiation cellular functions. The simplified version

of the temporal evolution of signal propagation through this pathway modeled by a se-

quence of events is depicted in Fig. 1.2. The rectangles represent proteins and arrows are

the events, next to each event is the event-type associated to the event. Each of these

events characterize a stochastic temporal behavior which form one of the ti realizations.

The inputs to each event are the molecular counts participate in that event along with

the parameters specific to the model. The outputs for each event are the changes in

the molecular counts of those molecules that were effected by that event. Hence, the

probability distribution function (PDF) for the time to get an exogenous signal propa-
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Figure 1.2. Simplified representation of the temporal evolution of MAPK signal propaga-
tion to nucleus. All tis are the stochastic times generated by the event model associated
with it.

gated down to the nucleus through the human MAPK pathway is the convolution of the

random tis PDFs, whose realizations is given by:

T =

14∑
i=7

ti +

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t1 + t4

t2 + t5

t3 + t6

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Every ti is an independent stochastic time generated by the associated stochastic model.

The trifurcation in the total time taken for the signal transduction is the due to of variety

of exogenous signals transduced through this pathway. It should re-emphasized that the

given pathway is simplified for the sake of understandability.
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Figure 1.3. The event diagram of a eukaryotic gene expression.

1.2.2.2 Example 2: Stochastic model for inter-arrival time of mRNA in
eukaryotes cytosol

In eukaryotes, translation takes place in cytosol which requires the messenger RNA

(mRNA) to be available in cytosol to be translated to protein by the ribosomes. For

eukaryotes, transcription which precedes the mRNA synthesis happens in nucleus and is

a complex process with many of its details, yet remained to be understood. Eukaryotic

genome is located in nucleus and is wrapped around histone protein cores ubiquitous

across the genome. The DNA-histone complex is referred to as nucleosome that modu-

lates the access to DNA. If a part of a gene or its regulatory regions are blocked by one

or more nucleosomes, prior to its transcription the blocking histones should be displaced.

Another level of complexity is the distant cis regulatory regions upstream and down

stream the ORF which is not considered in this work. After clearing the critical regions

from histone cores, the promoter of the target gene needs to be activated by the proper

transcription factors. Then the RNA-Polymerase II (RNA PII) holoenzyme will bind to

the transcription start site and initiates the transcription. The output of a gene tran-

scription is the pre-mRNA of the target gene which is a nucleotide sequence of protein

coding regions(exons) interleaved with non-coding regions (introns). A splicing process is

needed to convert the pre-mRNA to a messenger (mRNA) by removing the introns. The

intron free mRNA should be transported the cytosol to initiate the protein synthesis. We

abstracted the above scenario as a sequence of stochastic events as depicted in Fig. 1.3,

Table1.2 shows the stochastic model proposed for each events.
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Table 1.2. Models Corresponding to the Events Preceding mRNA Translation

Event Name Model
Chromatin
Remodeling

Chromatin remodeling model (chapter 5)

TF-DNA
binding

Protein-DNA binding model [35]

RNAPII
elongation

Transcription model [36]

Splicing Constitutive Splicing model (chapter 6)
mRNA
transport

Diffusion [37]

Obviously the process in the second example has much more complicated physiology

than the one in first example but such complexity is vanished with the state of arts of

stochastic event base modeling approach. However, the models underlying each event in

the second example are more complex and developing those models demands significant

effort.

One of the strongest features of this modeling approach is its mesoscopic scale

property which allows to every granular molecular detail of the actual physiology of

the process to be included into the model. At the same time, it allows to scale up

and eliminates any unnecessary detail from the model with the cost of accuracy, at the

designer’s will. For instance in the second example the entire set of events encompassed by

the red rectangle could be abstracted into a single macro-transcription event. Oppositely,

one can bring further details in by breaking down the elongation of RNAP II on the DNA

into a sequence of more granular events.

To exploit the stochastic event base approach in designing a framework to conduct

system-wide in-silico experiments for eukaryotes cells, we endeavored to design several

models that stochastically quantify the temporal dynamics of such events. We have

developed a stochastic event based facilitated diffusion model which could be used for

any membranae receptor binding event for both eukaryotes and prokaryote with different
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paramors sets. The validation results is primarily shown for glucose uptake in E.Coli in

chapter 2. The same model is used for insulin receptor binding in the in-silico experiment

of mammalian cardiac myocyte. A variant of the same model is also applied to model

fatty acid uptake in cardiac myocytes in chapter 6 and 7. To estimate the temporal

dynamics of constitutive pre-mRNA splicing we developed a stochastic model that will

be discussed in chapter 6.

Also we conducted a comprehensive study on chromatin dynamics and proposed

stochastic discrete event based models for passive DNA access, DNA thermal fluctuations

and chromatin remodeling in later chapters of this dissertation.

System-wide modeling of complex biological networks such as a cardiac myocyte

cellular network requires execution of assortment sets of events pertaining to different

molecular processes. Each event should be executed in a consistent order and timely

manner meanwhile proper input resources should be supplied to the event being executed.

Such capability is attributed to our work by designing and utilizing a Stochastic Discrete-

Event Simulation engine.

1.2.3 Stochastic discrete-event based simulation

Stochastic Discrete Event-Based Simulation (SDES) has been successful in cap-

turing the dynamic behavior of complex systems like internet traffic engineering and

manufacturing systems. From there we were inspired to borrow the same concept to

abstract the behavior of the complex system of a eukaryotic cell. In SDES the tempo-

ral evolution of the system between the state variables is govern by set of events with

stochastic holding time. The holding time for an event is the duration of stay at current

state, or more formally is the inter-arrival time between two events.

System engineering endeavors to abstract the complexity of a system in a set of

discrete spacial and temporal variables [38] that can capture the behavior of system in
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time. In a cell the entire system is a collection of interacting genes, gene products and

small molecules distributed across compartments. The temporal behavior of these inter-

actions that are inherently random in time and space is capture trough the events. We

have designed a stochastic discrete event-based simulator architecture that can capture

the dynamics of a eukaryotic cell functions at the system level by utilizing a class of

stochastic models, such as those discussed earlier.

1.2.4 Modeling the human cardiac myocyte in-silico

Cardiac myocytes are essential in the perpetual blood pumping function of the heart

and any damage to these cells could have sever consequences for the person. Hundreds

of millions of people are suffering from chromic hear disease across the world, and Heart

Failure (HF) mortality rate is still the highest in our time among all disease, despite the

lack of ultimate cure for major chronic disease such as cancer and AIDS. Therefore having

a heart cell in-silico which could used to conduct rigorous pathological and therapeutical

in-silico experiments would indeed be advantageous for health science community as

well as pharmaceutical industry. Hence, towards the horizon of an in-silico heart, in this

dissertation by designing a novel software based on our simulation approach, we strive

to bring the myocardial insulin signaling pathway and its metabolic effects in-silico.

Cardiac myocyte is among the most energy consuming cell types across the body.

They are capable to exploit different molecular sources to meet energy requirements for

their cellular functions. The two major sources of energy for these cells are Fatty Acid

(FA) and Glucose. Amongst these two, glucose comes from normal diet of carbohy-

drate containing meals and the fatty acid is predominantly released to the blood from

adipocytes and partially from the intracellular storage of triglyceride. Cardiac myocyte

demonstrates a delicate interplay between these two sources of energy during exercise,

normal and fasting condition. The intake of glucose to the cell is mainly controlled by
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insulin, which is a hormone that secretes from the pancreas in the endocrine system.

Insulin and its signaling pathway is a well studied topics in biochemistry, biology and

medicine. Hence, to demonstrate the promising capacities of our simulation software

in modeling the complex biological networks, following the design of the software we

will conduct several in-silico on cardiac myocytes. Some of these in-silico experiments

include: contributions of energy substrates to the myocardial energetics, plasticity of

cardiac myocytes, the transcription effect of insulin signaling, and analysis of metabolic

gene nullifications on production of energy precursors.

1.3 Motivation and Research Challenges

1.3.1 Motivation

The motivation for this research can be summarized as follows:

• Applying the network of connected components from network theory, along with

abstraction concepts in system engineering to complex biological networks in eu-

karyotes to provide a system-wide picture of interacting processes in the biological

networks.

• To Establish a platform that can realistically define the interaction between genes

and genes products in the evolution of biological processes and easy to understand

by biologists and medical professionals

• Often the physiology of bio-processes is too complex to be captured through a single

rate constant. To properly mimic a the physiology of a cellular process a model

should incorporate the inherent stochastically of biological process. Therefore, We

need parametric stochastic model which is defined in the context of the cell not

just as an isolated physical process. Developing biologically relevant models that
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are modular (reusable) and would be applicable in system-level analysis of the cell

in utmost desirable.

• Two major draw backs in current stochastic and deterministic simulation tools

for biological networks include: (i) lack of their ability to overcome the stiffness

problem that arises from several orders of magnitude deference among the temporal

dynamics of cellular processes, and (ii) failure to capture the non-linear property

of the cellular processes. Solving these two issues is essential for simulating the

cellular functions at system-wide.

• Most important is to integrate the SDES models and its simulation algorithm into

a software platform that could be unutilized for conducting in-silico experiments

whose results could be validated with the equivalent empirical data.

1.3.2 Research challenges

Following is the list of major challenges we confronted in this research:

• Many knowledge gaps that exist in understanding of the physiology of a biological

process or the molecular part pertaining to a process.

• Designing parametric models that can capture the stochastic behavior of cellular

processes usually come across solving complex mathematical problems that de-

mands significant efforts.

• The transcription regulatory network is different from cell in one tissue to the other

tissue. Identifying the cell specific genes expression profiles and their transcription

factors is formidable task and demand for extensive literature search.

• In eukaryotes the cellular processes are distributed among compartments, incorpo-

rating multiple compartments into system-level abstraction is a complex task.
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• Lack of empirical data at the molecular level due to the technology and protocol

limitations add another fold of complexity both for model validation as well as

in-silico experiment verifications.

• The level of complexity that exits in and between the STN, TRN and MTN of

the myocardial cell makes the mapping of the process to the SDES a particularly

challenging task.

1.4 Contributions of this dissertation

The contributions of this dissertation could briefly short listed as follows:

• We devised a stochastic model for binding of exogenous molecule to the cellular

membrane receptor that could be applied for both eukaryotes and prokaryotes.

• We have conducted a detailed study on nucleosome dynamics and provided prob-

abilistic model for find the target DNA site genome wide. This model also incor-

porates the thermal fluctuation of DNA and its affect in gene regulation into the

picture.

• We developed a Stochastic event based model for chromatin remodeling and com-

bined that with the binding reaction model that is presented elsewhere. This com-

bined model is utilized in the gene expression process of eukaryotic cell.

• A stochastic model is proposed for estimating the temporal behavior of the consti-

tutive splicing.

• We designed an event based model for function of protein synthesis function in

eukaryotes.

• An object-oriented database is proposed that stores the objects from the layouts

of Signal Transduction Network, Transcription Regulatory Network and Metabolic

Network for a typical eukaryotic cell.
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• We have designed the eukaSimBioSys : a software that integrates our models, the

database and the SDES simulation engine that could by utilized to study the dy-

namics of the biological networks in the cardiac myocytes.

• An objective based transcription regulatory network for the cardiac myocytes has

been constructed by studying the insulin signaling pathway in human and rat car-

diac myocytes from literature. The metabolic network of human obtained from an

external database and was hand-curated to exclude unnecessary nodes and edges.

The insulin and fatty acid signaling pathways in the cardiac myocytes are mapped

into the event diagram and the event table for these pathways has been constructed.

• We have designed six in-silico experiments and utilized eukaSimBioSys to conduct

these experiments. Five of these in-silico results have been validated with data

published from wet lab experiments.

1.5 Organization of the dissertation

The rest of this dissertation is organized as follows: In chapter 2 we describe the

architecture of our software and the stochastic discrete event simulation algorithm for

a eukaryotic cell along with brief overview on the available simulation tools. Chapter

3 describes a stochastic model for the signal sensing on the membrane and facilitated

molecule uptake (ligand-receptor docking). In chapter 4, first we give a detail descrip-

tion of nucleosome dynamics and outline its mechanism in regulation of gene expression

from an event-based perspective. Then, a probabilistic model for target site access across

a eukaryotic genome is derived. Finally a stochastic model for the effect of thermal fluc-

tuations of DNA on functional DNA sites access is proposed. Throughout chapter 5 we

propose a stochastic event based model for in-cis chromatin remodeling. We further uti-

lize the proposed model to show that probability distribution function of the chromatin

remodeling time follow a gaussian distribution. Chapter 6 contains a divers assortment
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of materials required for preparing the in-silico experiment setup. These materials briefly

include: the eventology of insulin signaling pathway, glucose and fatty acid uptake pro-

cesses, a stochastic model for constitutive splicing, the eventology of protein synthesis,

designing the event-table and event-diagram for eukaSimBioSys, and persistent signaling

reaction model. Chapter 7 discusses six in-silico experiments that we conducted to study

the effect of insulin on metabolism in cardiac myocytes using eukaSimBioSys software.

We close the dissertation in chapter 8 by concluding our work and highlighting some of

the future directions of this research.



CHAPTER 2

THE ARCHITECTURE OF THE STOCHASTIC DISCRETE-EVENT
SIMULATION SOFTWARE FOR A EUKARYOTIC CELL

(eukaSimBioSys)

2.1 Introduction

To comprehend the behavior of a complex biological system one must study them as

a collection of interacting entities with interdependent regulatory control with feedback

rather than isolated physicochemical objects. Such a system-wide view to a biological sys-

tem could only become possible through simulation tools and techniques that indeed are

capable to preserve such entity’s collectivity and integrality throughout the spatiotempo-

ral evolution of the system. With the speed and sophistication of computational devices,

in-silico modeling and simulation techniques have become a powerful tools for biologists

that are challenged with understanding system complexity of biological processes. The

everyday knowledge being extracted from the genome and biological pathways by ap-

plying network and/or graph theory concepts could be coupled with mechanistic model

to devise new simulation platforms. Discussions on hierarchy and taxonomy of differ-

ent simulation and modeling techniques of complex biological systems could be found in

[?, 39, 40, 41] and have been reviewed in [42].

2.1.1 Biological systems in-Silico

In recent years, the field of systems biology has been flourished with a wide spec-

trum of in-silico modeling and simulation methodologies to pursue the system-wide study

of biological processes. Specifically physicochemical models based on equations from

physical and chemical properties that describe the biochemical transformations such as

24
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covalent modification, intermolecular association, intracellular transformation, etc. [43].

In [44] a nice categorization of these models and simulations have been proposed based

on properties of four key parameters :

• Time: The temporal domain of the system can either be continuous (C) or discrete

(D).

• Space: The state space of the system can be continuous or discrete.

• System Evolution: The evolution of the system can be considered in terms of being

deterministic (D) or stochastic (S).

• Physical Scale: The model can abstract the system at a microscopic scale as in

molecular dynamic simulations, macroscopic scale such as classical chemical kinetics

base systems, or mesoscopic scale where individual molecules bodies are represented

as in the current approach.

Most prevalent models of molecular networks including metabolic pathways, gene reg-

ulatory and protein-protein interaction networks, subscribed to the above paradigm.

Such models consider the system as a set of coupled ordinary differential equations

(ODE network) and use numerical approximation methods to capture the system dy-

namics deterministically in continuous time and space. A large number of computa-

tional tools, which provide a software platform for building, storing, parameterizing

and solving sets of biochemical reactions using numerical techniques are available, like

CyberCell [45](2006) ,Gepasi [46](2005) ,Promot/DIVA [47](2001), STODE [48](2001),

Jarnac [25](2000). These kinetic rate based simulation tools have been widely applied to

study gene expression and other molecular reaction systems [49]. Other non-kinetic rate

based mathematical frameworks used for building computational models and simulation

tools include stochastic Petri nets [50], stochastic process algebra PEPA[51], stochastic

pi-calculus [52][53]. Agent based and object oriented simulation [54] is also used for

simulation of biological systems. Agent Cell in [55] is a tool that complies agent based
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simulation technique. A detail list of prominent modeling and simulation tools developed

for studying the dynamics of complex biological systems along with their specifications

is provided in Table 2.1.

Table 2.1. Comparative List of Biological Modeling and Simulation Softwares

Tool
Modeling
Technique

Spatial
Representation

Temporal
Evolution

Underlaying
Model

Agent Cell
Agent based
simulation of
biological systems

Not explicitly
defined

Time-step driven
Agents model
molecular
behavior

Cellerator

Mathematical
package for
automatic equation
generation and
simulation for
network of cells

Not explicitly
defined

Continuous time CCK

CyberCell

Atomistic modeling
of biological
processes with
dynamic membrane
geometry

Off lattice
Interparticle
collisions

MD based

Dizzy
Stochastic simulation
package

Compartmental
Supports CCK as
well as SSA

CCK, CME

E-Cell

Object-oriented
software suite for
modeling, simulation,
and analysis of large
scale complex
systems

Compartmental Supports CCK as
well as SSA

CCK, CME

FURM

Functional unit
representation of
biological processes

Not explicitly
defined

Continuous time
Functional
modeling

iSimBioSys Stochastic modeling
of discrete events

Compartmental
Event driven
discrete time steps

Based on
CME, explicit
models of
reaction time

JARNAC ODE based
Not explicitly
defined

Continuous time CCK

M-Cell

Mont Carlo
simulator of cellular
micro physiology

Off lattice Time-step driven At surfaces,
CME

MesoRD Stochastic domain
Compartments, sub
volumes

Event- driven CME

Promot/
DIVA

Object-oriented
paradigm

Not explicitly
defined

Continuous time CCK

SimBiology
Primarily ODE
based simulation
package

Not explicitly
defined

Supports CCK as
well as SSA

CCK, CME
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Table 2.1 - continued

Smoldyn

Atomistic modeling
of biological
processes with
dynamic membrane
geometry

Off lattice
Interparticle
collisions

MD based

Statecharts
& DEVS

Discrete event
system specification

Distinction between
system and
environment

Continuous/discrete
time step

Atomic models
(state
transitions)
and coupled
models
(component
interactions)

Stochastic
Π calculus

Abstract model of
system based on
DEVs

Cellular
compartments

Continuous/discrete
time steps

Processes
model
molecules and
domain, com-
munications
model
reactions

Stochastic
Petrinets

Stochastic model of
molecular interactive
networks

Compartments
Continuous/discrete
time steps

Graphical
model

V-Cell Continuous domain
Compartments, sub
volumes

Continuous time
CCK, Mass
action

2.2 Stochastic Discrete Event-based Simulation (SDES)

One of the powerful tools used extensively in abstracting system behavior for com-

plex systems like traffic engineering and router design, complex social agent interaction

behavior simulation, etc. is Stochastic Discrete Event based simulations (DES) [56]. In

this approach the key notion is to abstract the complexity of the system as a set of

discrete time and space random variables, which capture the behavior of the system in

time. The entire system is a collection of functional blocks or modules, which are driven

by a set of events.

Event : An event defines state transitions between a set of state variables accomplished

within the event execution time. The system behavior evolves in time through the dy-

namic interaction of these discrete events, which change the system state (i.e. the random

variables associated with them) based on the probability distribution of their execution

times, more detail on SDES is could be found in [56]. The event paradigm provides the

flexibility to the modeler to abstract the system at different levels of granularity based
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on available data and the focus of investigation. A stochastic model associated with each

event determines the holding time of that event based on the parametric probability

distribution function encompassed by the model.

Holding time: For an event the holding time is a random delay whose distribution is

govern by the associated model of that event (e.g. diffusion, , splicing, remodeling,

reaction, protein conformation change, etc.), which represents the duration that system

stays at the current state. On the other hand, the holding time of an event is the execution

time of that event.

2.2.1 Bioevent identification and definition

Observations confirm that at the molecular level the cellular behavior arises from

the stochastic interaction between molecular parts. Such observation in the intracellular

environment is the key motivation in applying stochastic discrete event simulation in

capturing the dynamics of a cellular function. Hence, identifying molecular functions and

mapping those into sets of discrete events is a fundamental step to apply this approach

to study the complex biological systems. In our simulation platform we refer to these

events as bioevents and each bioevent has three attributes:

• The parametric stochastic model of the underlying physiological process associated

with the bioevent. This model captures the physicochemical properties of the event

through mathematical parameters and characterizes the holding time, defined ear-

lier.

• The molecular resources associated with the bioevent, i.e the input to the model

and the output from the model.

• The comparment(s) within which the event in being executed. i.e. cytosol, nucleus,

peroxiosome, mitochondria, etc., one event might be executed across multiple com-

partments, e.g. diffusion.
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Sensing signal S at the plasma membrane is a biological function through which

the external signal is being transferred into the cell. Such a function could be used as an

illustrative example of a bioevent. To identify this event we first identify the parametric

model that can capture the holding time of this bioevent, which is the membrane receptor

ligand ducking. The parameters for this model are the cell size, protein size, ratio of active

receptors, etc. Input resources to this bioevent are counts of ligand (S) and receptor

molecules (R). The output of the model will be the holding time and the change in

the number of active receptors. This holding time will be randomly changing as the

system states (counts of molecular entities involved) change and will accurately reflect

the stochasticity of the cellular function. At the end of the holding time, the activated

receptor molecule can trigger the subsequent event to cascade the signal further down into

the cell. As the simulation proceeds at an event level, the resources states are determined

in terms of the molecular counts of the various resources within individual compartment

that has been affected by the executed event. For example, after the successful completion

of the signal sensing, the count of extra cellular ligand and the free receptor in the system

is decreased by one while that of activated membrane receptor is increased by one, one S

molecule is utilized and one activated membrane receptor molecule (Ra) is created. This

scenario shows how basic biological molecules and their events are identified, modeled

and interlinked in a discrete event simulation framework.

2.2.2 Modularity and module reuse

The wide variability and complexity of cellular functions, resources, and possible

sets of bioevents in the biological systems exacerbates the complication of the problem.

However, there exists a core set of basic cellular functions that are redundant across

wide variety of biological processes. Identification and modeling of these functions can

greatly facilitate the study of complex processes of life and forms an integral part of the
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computational effort. Some of the basic biomolecular functions, which are associated

with key biological functions in eukaryotes, include:

• Reaction

• Diffusion

• DNA protein binding

• Transcription

• Splicing

• Chromatin Remodeling

• Receptor ligand binding

• Translation

• Transport

• Protein decay

• Protein folding

These set of functions could be used as functional modules to express the biological pro-

cesses as sequence of reusable modules. Identifying the proper ’modularity’ of biological

processes and characterizing their associated biomolecular events is a key in the SDES

in-silico study of a cellular process and can speed up the in-silico experiment set up

many folds.

2.2.3 Temporal evolution of SDES and extraction of intelligence

In discrete event simulation, simulation time is the representation of the physical

time of the system being modeled. Each event is associated a time-stamp indicating

when that event occurs in the physical system being simulated. The event time-stamp is

computed from the knowledge of the previous event that has triggered the current event,

together with the event holding time which is a realization of the random number char-

acterize the event dynamics. The dynamics of resource utilizations with progression in
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time unveil the complete internal picture of a complex biological process at the molecular

level. The check-list for characterizing the system parameters is performed as follows:

• Identify the list of discrete events that can be included in the model based on the

available knowledge of the system.

• Identify the resources of interest for the execution of the event function which are

being used by the biological process for each discrete event.

• Compute the time taken to complete this biological discrete event, i.e. the holding

time of the discrete event. For this purpose, it is important to mathematically

relate all the event parameters which affect the interaction of the resources in a

particular biological function. The event execution time is a random number drawn

from a probability distribution identified by its two significant moments (mean and

variance) only.

• Identify the next biological event or set of biological discrete events initiated on the

completion of an event. If multiple discrete events are possible after completion

of an event, the next event can be chosen probabilistically, based on the biological

pathway of the process that is being modeled. This probability calculations depends

on the event set and the properties of the events in the set.

Once the above check list is satisfied the discrete event simulator scheduler which is a

time prioritized event queue pops individual events from the queue and system proceeds.

As each event is executed, it updates the molecular resources of the system, updates the

system time and populates new events into the event queue from its next- events list.

In this manner, as the execution of events evolves across time and the temporal changes

in cell characteristics associated with the biological process is extracted. The temporal

evolution of the events is shown in Fig. 2.1 where it depicts the order in which the event

arrive to head of the queue being executed. The algorithm of the simulation is depicted

in Fig. 2.2.
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Figure 2.1. Temporal evolution of a typical system in SDES.

This algorithm briefly functions as follows: Takes the event from the head of the

queue, identifies its resources, associated parametric models for their holding times and

the list of next triggered events. If all the resources associated with current event were

available then it executes the event which consists of updating the molecular resources

of the system, updates the system time and populates new events into the event queue

from its ’next events list’. Then the algorithm checks current simulation for the total

simulation time and on the failure repeats the above cycle. This algorithm forms the

heart of the eukaSimBioSys and is integrated in the simulator engine whose architecture

is depicted in Fig. 2.3.

2.2.4 Incorporating compartmentalization in SDES

In eukaryotes distribution of processes within or across compartments adds an-

other level of complexity to the SDES of cellular processes. In a compartmentalized

environment there will be two superclass of events apart from their original types, the

local event (eL) and cross compartment event (e(ci,cj)), where (ci, cj) are the source and

destination compartment across which the event is being executed. Hence the execution
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Figure 2.2. The SDES algorithm utilized by eukaSimBioSim.

of a local event will effect only a single table within the resource data base, where a cross

compartment event will affect multiple resource tables.

For metabolic reaction event we follow the lumped metabolic event which is based

on flux balance analysis and will be discussed on chapter 6. Applying such strategy de-

mands to keep all the metabolic events local to the participating compartments. Keeping

all metabolic events local will cause metabolite explosion in some compartment (e.g. mi-

tochondria) and metabolite starvation in the others (e.g. cytosol). To overcome this com-
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Figure 2.3. Architecture of eukaSimBioSim engine.

plexity we define a new cross compartment event called metabolite squad event (Metab-

Squad) which avoids metabolite explosion or starvation. The MetabSquad event will be

executed regularly every τ squad unit of time and redistribute the metabolite across pairs

of neighbor compartments with a defined ratio Ω(ci, cj) ≤ 1, ∀i, j : i �= j where ci and

cj are neighbor compartments. We should clarify that any pair of cellular compartments

that can have direct molecular transport between themselves are called neighbor com-

partments. In the current version of the software the above distribution is manipulated

manually in an iterative try and error fashion.

2.3 Architecture of the eukaSimBioSys

The architecture of the current simulation software for biological systems in eu-

karyotic cell, eukaSimBioSys, This architecture is has a common base with iSimBioSys

[57] which was originally developed for prokaryotic cells. Some of the new features that

are added to the architecture of eukaSimBioSys include:

• Extended simulation engine that can handle significantly more complex event net-

works.
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Figure 2.4. The architecture of eukasimBioSys.

• Ability for the engine to use dynamic model parameters (change the parameters on

fly) based on the given event table.

• Enhanced model repository to handle the eukaryotic cell processes by adding new

evetologies1 for complex processes and approximation mechanism.

• Approximation techniques included to avoid stiffness and enhance the simulation

efficiency.

• Implementation of the compartmentalization in the simulation engine.

• SBML enabled connectivity with external databases.

The architecture of the eukaSimBioSys is depicted in Fig. 2.4.

In this architecture the information which includes the layout of the signal transduc-

tion, transcription regulatory and metabolic networks along with genes, substrates, pro-

tein, compartments, etc. and their attributes would store in an object oriented database.

There is a data processing module that enables the system to directly access the Excel

1We define ’evetology’ as the process of identifying and executing the sequence of explicit and dynamic
events for a biological function which will be described in chapter 6.
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sheets and parse the information from the SBML files or export the current database into

SBML files. The model repository stores all the stochastic physicochemical models along

with their parameter sets and grants the engine to access them to manipulate the events’

holding times. There is a separate database that stores all system logs including event

execution log, the resource consumption log, etc. The user interface provides a unfriendly

environment for the user along with realtime reports and graph on the simulation and

system status. Static tools are collection of Matlab� scripts that could be utilized to

provide statistical analysis on output data.

2.4 Summary

we started the chapter by giving an overview on in-silico simulation of biological

system. Then a comparative list of prevalent simulation tools and techniques was pre-

sented. Later we introduced the concept of stochastic discrete event simulation (SDES)

for biological systems along with key terms and components. The mapping of a biolog-

ical process into an event based formalism applicable in SDES is further discussed and

the algorithm of the SDES was also presented. The modularity advantage of SDES ap-

proach in addition to the complexity that compartmentalization imposed to the system

was discussed in details. The variant of stochastic discrete event simulation algorithm

that could be applied in studying the complex biological system was introduced. Finally

we proposed the architecture of eukaSimBioSys which is a software tool designed based

on discrete event simulation paradigm for in-silico study of the dynamics of a eukaryotic

cellular functions.



CHAPTER 3

STOCHASTIC MODEL FOR LIGAND DOCKING TO THE
MEMBRANE-RECEPTOR

3.1 Introduction

Mathematical modeling provides a systematic formalism for capturing molecular

details in a physiological context. These models could further be stored in dynamic

repositories and applied in computational studies for uncovering biological insights. In a

challenge to construct a model which is biologically relevant and computationally efficient,

in this chapter we endeavor to devise a stochastic model to characterize the temporal

behavior of membrane receptors and bring about new aspects of the bio-process. Tradi-

tionally these aspects has been shadowed by the kinetic rate law based approach by using

a single rate constant parameter. In this work we first we present a novel random-walk

approach to detect the temporal behavior of docking an exogenous ligand to a mem-

brane receptor. Then we further elaborate this model to determine the flux of facilitated

molecule uptake (e.g. glucose, mannose, Ca, Mg, etc.). Such a model could be applied

for capturing the behavior of variety of cellular functions including: sensing a hormone

signal, agonist ,antagonist, metabolite uptake, etc. The model that we propose here, is

receptor limited stochastic discrete event based model and aimed to capture the temporal

behavior for process of the ligand docking to the receptor in the membrane of the cell.

Two variants of this model will be proposed for eukaryotic and prokaryotic cells.

37
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3.2 Physiology of the process

The fate of a cell in any organism dependents highly on its communication with

extracellular environment. For a multicellular organism this communication comprises

the exchange of signals between organs, cells, and even between organelles inside the cell

is of vital importance. An exogenous signal to cell might include: olfactory, gustatory

signals, food substances, antigens, toxins, drugs, change of temperature, ions, pressure,

etc. [58].

Majority of membrane receptors are transmembrane domain receptors, which in-

dicates that such receptors can have a molecule docked to one domain (cytoplasm or

extra cellular) and triggers a response on the other domain. Such a response could re-

sult a conformation change, autokinesis, phosphorylation, etc. Also the ligand and the

membrane protein may form an ion pore and once the ligand binds to the membrane

receptor the ion channel becomes accessible to the ions. The polypeptide chain of the

transmembrane receptors might cross the membrane lipid-bilayer one or multiple times

like G-protein coupled receptors (GPCR). One consequence of such structure is the in-

crease in surface of membrane-domain for the receptor, thus higher sensitivity to the

signal would be expected.

Should the transmembrane receptor be used to transport external species across

the plasma membrane, such transport could be classified into (i) passive which does not

require further energy for the transport, and (ii) active transport where the transport

process require extra energy resource, therefore it is coupled with hydrolysis of ATP

molecules. In the current model we assumed that all the transports are of the passive

form.
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3.3 Model overview

In a typical receptor ligand binding, the particle in extra cellular environment will

need to come to the vicinity of the cell and passes through the interphases and their

intermediate environments to reach the organism. Each of these environment(s) and

interphase(s) that segregate them characterize a distinct interaction with the particle.

Therefore we need to define a cell abstract that addresses these environments and their

interphases. For this purpose we employ variants of a cell abstraction as proposed in [59]

for eukaryotes and prokaryotes, as follows:

eukaryotic cell abstract:consists of following interphase and environment

1. diffusion-layer (environment)

2. plasma membrane (interphase)

3. cytoplasm (environment)

4. nuclear envelope (interphase)

5. nucleus (environment)

prokaryotic cell abstract:consists of following interphase and environment

1. diffusion-layer (environment)

2. bilayer membrane (interphase)

3. periplasmic region (environment)

4. plasma membrane (interphase)

5. cytoplasm (environment)

We establish our model based on the above cell abstractions throughout the chapter.

Diffusion layer (radius) is a sub-region of the medium around the cell in which the

particles will effectively participate in the process of diffusion. A quantitative definition

for this region could be the average distance that a substrate travels to reach the plasma

membrane or periplasmic region; we will refer to this stage of diffusion as the medium

phase. On the plasma membrane the ligand will need to bind to the receptor, possibly
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activated in advance, to conduct the signal or be transported to the cytoplasm. This

step of the process is articulated in the plasma phase modeling step. Notice that for

the prokaryotic cell prior to reach the plasma membrane in narrow periplasmic region

the substrate will float down the concentration gradient to reach the plasma membrane.

A sequence of cytoplasmic reactions (e.g. kinesis) change the state of a receptor from

inactive to active and in our model is abstracted by the cytoplasmic phase.

In the course of modeling, the first two phases form two microevents for which we

come up with individual equations that characterize their temporal behavior. The effect

of the third stage will be captured through a parametric constrain function, which will

be integrated to its preceding micro-event as a limiting factor. Ultimately, by integrating

these parts we form the total time equation for the entire process. Also to better embark

the idea and avoid ambiguity, meanwhile molding the process we do not follow the above

phase order in establishing the model.

Without loss of generality we make following initial assumptions for the modeling

purpose: 1-Spherical shape for particle and the cell 2-Flat circular receptor cite for

membrane bounded protein. 3-Uniform distribution of receptors across the membrane

surface. Also any other assumption will be addressed in the respective models place.

3.3.1 Random-walk of the particle

A particle in an aqueous environment will constantly step in different directions

enormous number of times per second. The probability of a particle to move x unit(s) in

one direction will follow the Gaussian distribution [60]. If p = q = 1/2 be the probability

of fluctuating back and forth in the same direction î, we will have:

P (x, t)dx =
1

(4πDt)1/2
e−x2/4Dtdx (3.1)
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from (3.1) we can find the expected movement of particle in time t in any euclidian

direction î, giving:

x̄t =

∫ ∞

0

x

(4πDt)1/2
e−x2/4Dtdx =

√
Dt

π
(3.2)

from (3.2) and simple rules of geometry for a motion in 3D space we can write:

r̄2 = x̄2 + ȳ2 + z̄2 =
3Dt

π
⇒ t =

πr̄2

3D
� r̄2

D
(3.3)

3.3.2 Medium phase

3.3.2.1 Eukaryotic cell

The ligand substrate would float in vicinity of the cell prior to reaching the mem-

brane surface and binding to the receptor. We envision a motion pattern for the particle

as the onein Fig. 3.1. The presented floating-dome is a hypothetical cone volume to

represent the motion space of the transport mechanism for a molecule. In our analysis,

we are considering a single molecule traversing through the space in random-walk. The

floating particle will move in this environment and maintain a constrained random-walk

with monotonically decreasing distance from the surface of plasma membrane. With this

assumption, the landing area of the particle will be the outer surface of a spherical cap

[61]. This area is bounded between the two tangents from the initial starting point of

the moving molecule. We also assume that the molecule has uniform probability to hit

the collision surface of the cell spherical cap. If x be the vertical distance of the particle
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Figure 3.1. Floating-dome: the hypothetical cone which includes the ultimate floating
pattern that a substrate might follow in the vicinity of cell before reaching the plasma
membrane.

from the plasma membrane, hence considering Fig. 3.1 and spherical cap properties we

can infer that:

y2 = x2 + 2xhmax + 2Rhmax

y2 = (R + x)2 − R2

⇒ hmax =
Rx

R + x
(3.4)

To find the average time for touching down on the membrane we consider and infinitesi-

mally small segment of the spherical cap (from a ring formed by rx ≤ y) having equidis-

tant from point x, then we get:

rx =

∫
r

rxp(r)dr (3.5)



43

Also the probability of each path r will depend on their share of the relative segment

area in the entire sphere cap, so:

p(r)dr =
2πRdh

2πRhmax
=

dh

hmax
(3.6)

By substituting the above expression in Eqn.3.5, integrating the expression and applying

the boundary condition: hε[0, Rx
R+x

], we will have:

r̄x =
(x2 + 2Rx)3/2 − x3)

3Rx
(3.7)

Eqn.3.7 gives the mean distance for only one realization of the x, if we integrate Eqn.3.7

over x, divide by Rp, and apply the boundary condition xε[0, rp − rl], then we get the

expression for general case r. Now if rN be the width of the diffusion layer around the cell

and rL be the ligand radius; since rL << rN we can neglect that in calculation, therefore:

r̄ =

∫
x

r̄xp(r̄x)dr̄x =
R

18δ
×
(

3ln(1 + δ +
√

δ(2 + δ) − 2δ3) +

√
δ(2 + δ)(3 + 7δ + 2δ2)

)
(3.8)

In Eqn.3.8 δ is the ratio of diffusion layer to the cytoplasm radius R. Using U to abstract

the coefficient of R in Eqn.3.8 and substituting that in Eqn.3.3 we get:

τp =
πU2R2

3D
(3.9)

In the above expression τp is the mean travel time of the molecule to the plasma mem-

brane, e.g. mean time a substrate molecule requires to reach the plasma membrane

surface.
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3.3.2.2 Prokaryotic cell

For prokaryotic cell the plasma membrane is a periplasmic interphase between the

cell wall and the plasma membrane therefore a particle needs to diffuse to the cell wall

through pores and float down the periplasmic region to reach the plasma membrane,

therefore for the periplasmic region we can still use Eqn.3.8 by replacing δ with ratio of

periplasmic region to cytoplasm radius.

3.3.3 Plasma phase

This section could be applied for both eukaryotes and prokaryote with appropriate

parameter for each case. On the plasma membrane, random motion of the metabolite

forms a two dimensional random-walk. This random-walk is projected on a hypothetical

flat grid that covers the entire membrane, the flatness is due to significant size difference

between the particle and the cell. The area of each grid element is equal to one swept

during the Brownian motion in Δt. This schema is shown in Fig. 3.2. Since the Brownian

motion has a thermal character, each grid area S ∝ f(T )Δt, where f(T ) is the Maxuell-

Boltzmann molecular velocity at temperature T and Δt(� 10−13) is a single Brownian

motion time step. Our objective is to find τr, the average time for a metabolite to find

an active receptor. If p be the probability of gird element (site) be an active receptor,

therefore, the site access time τr will be:

τr =
∞∑
i

∞∑
j

(i + j)p(1 − p)i+j−1Δt

⇒ =
2Δt

p2
(3.10)
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Also τ 2
r the second moment of site access time can be obtained from:

τ 2
r =

∞∑
i

∞∑
j

(i + j)2p(1 − p)i+j−1Δt

⇒ =
(3(2 − p) − p2)Δ2t

p2
(3.11)

In Eqns.(9,10) i and j are the number of steps in x and y coordinates respectively. The
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Figure 3.2. Two dimensional random-walk of the particle on the plasma membrane grid,
a receptor might span over more that one grid element, where either an active or silent
receptor.

probability of a site being an active receptor is a composite stochastic p = ρ · ϕ, where

ρ is the ratio of area that is swept by the cross section of substrate on membrane to the

over all surface area of the membrane occupied by [Ce], receptor concentration. Next

parameter is ϕ, which is the probability of a site being active depends on cytoplasmic

parameters that will be discussed in the next section.

f(U, T )du = 4π(
m

2πkbT
)3/2U2e

−mU2

2kbT du (3.12)
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Following the Maxuell-Boltzmann distribution of molecular velocity U in Eqn.3.12, for a

particle of mass m at temperature T , the average velocity will be as follow:

f(T ) =

∫ ∞

0

4π(
m

2πkbT
)3/2U2e

−mU2

2kbT dU

⇒ =

√
8kbT

πm
(3.13)

The mapping of substrate motion on the membrane during arbitrary time t will resemble

a pattern shown in a Fig. 3.3. This pattern in an infinitesimally snap shut of Δt could

roughly approximated by the area of the rectangle whose sides are f(T ) ·Δt and 2(Re +

RL), in which Re and RL are the radiuses of the receptor and substrate, respectively. Now

if Rcyt represents the cytoplasmic radius we can write the expression for ρ as following:

ρ =
2000

3

√
8kbT

πmL

NACe(RL + Re)RLΔt (3.14)
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Figure 3.3. Projection of random motion pattern of the metabolite on the plasma mem-
brane, in a dt could be approximated by a rectangle area.
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3.3.4 Cytoplasmic Phase

The cytoplasmic domain of the membrane receptor might be subjected to one

or more reactions (e.g. kinase, phosphatase, etc.) prior to extracellular domain of a

membrane receptor becomes sensitive to a ligand or metabolic substrate. To better

advise the modeling approach we give an abstract definition to this manifold as follow:

A n-ligands activated receptor site, is an individual receptor that must have n ligand

molecules docked to their sites on protein structure to switch the designated receptor

’ON ’ for performing a objective task. From the biochemical perspective, n reaction of

the type in expression 3.15 must take place in the cytoplasm prior to the activation of

a target site. We assume that the activating reactions can happen in arbitrary order.

Therefore, we can write:

� � � ��� ��� �

�����	

	�	���


���	��

	�	���


Ri + E−Lj
−−⇀↽−− Ri−Lj−E −−⇀↽−− Ri+1 + E (3.15)

In the above reaction Ri is the receptor with i ligands already docked to its structure,

E is catalyzing enzyme and Lj is the ligand of type j. Our objective is to find ϕ the

ratio of sites activated by ligands. For this purpose we use a linear state diagram in

which node i is the concentration of the receptors with i ligands already docked. Also

each intermediate product will be considered as a separate node, therefore for a n-ligands

activated site we will have 2n states. Since the states n-1 and n are the only states
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that have all the ligands docked to the receptor; Hence, if Ce(i) be the concentration of

receptor e in state i then:

ϕ =
Ce(n)Ce(n − 1)

Ce
(3.16)

Values for Ce(i) will be taken form the corresponding experimental results. Also we can

find the average number of active receptors from:

ne = 103CeVcytNAϕ (3.17)

Now from Eqns.(3.8,3.16) we can get the expression for p and complete the τr equation.

Notice that for the class of receptors that does not require cytoplasmic activation we

always need to set p = 1.

3.4 Bulk diffusion and flux

So far all the temporal quantities that we have calculated consider only a single

metabolite substrate uptake; however, in a real scenario the uptake happens in bulk and

this will significantly affect the time equations that we derived earlier. Since our model

follows an enzyme (receptor) limited approach, at any time multiple substrate will target

one receptor. This ratio could be calculated from:

κ =
CmtbNA4/3π((Rp + Rcyt)

3 − R3
cyt)

ϕCeNA4/3πR3
cyt

⇒ =
Cmtb((δ + 1)3 − 1)

ϕCe
(3.18)

Having κ multiple substrate molecules present simultaneously at each phase per receptor

can reduce the time corresponding to that phase by the same factor. Earlier we calculated
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τr for a single ligand but usually κ � 1. Here we need to revise the τr such that

it can incorporate both the one-to-one and one-to-many substrate-receptor matchings.

We break down the problem into κ = 1 and κ > 1 and offer a model for the former

and then generalize that to solve the latter. In the case where κ = 1 we have [Ce]

simultaneous receptor finding events in Δt. To circumvent this parallelism, we project

the n parallel matching (receptor finding) events into n serialized atomic matching events

(microevents), with this projection we would have different matching time for each atomic

event. Since number of receptors for each later microevent would be lessened by one form

immediate earlier one therefore we can write:

τr,1 =
neτr

ne

< τr,2 =
neτr

ne − 1
< . . .

. . . < τr,i =
neτr

ne − i + 1
< . . . < τr,n = neτr

since we assumed that n events are atomic event, therefore no new receptor will be

added in the meantime. Generalizing this fact we can infer the average time required for

κ substrate to one receptor as:

τr,κ =
1

κne

(
neτr

ne

+
neτr

ne − 1
+ . . . +

neτr

2
+ neτr)

⇒ =
H(ne)τr

κ
(3.19)

From Eqn.3.19 we can find tγ , the cumulative diffusion bulk time for the floating and

plasma phase as follows:

tγ = τp,κ +
τp

κ
(3.20)
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Now if we assemble all the manipulated times for different stages and incorporate the

affecting bulk parameter we can write the expression for flux of the signal transport or

metabolite uptake to the cytoplasm for a cell as following:

J =
neκ

κτr,κ + τp + l2D−1
(3.21)

3.4.1 Estimating the width of diffusion layer

A substrate in the extra-cellular environment travels a random distance to approach

the cell. Due to the homogenous distribution of substrate in the medium, for higher

concentrations of substrate lesser time is required since there are sufficient number of

substrate available in the vicinity of the cell. By increasing the receptor concentration

cell becomes more aggressive in absorbing the substrate; however, as the ratio of the

extra cellular substrate to the receptor decreases, the effect of the diffusion layer as a

constraining factor becomes more significant. In order to capture this behavior we uti-

lized the well-known capillary diffusion model [62] for particle diffusing form an aqueous

environment to the vicinity of the plasma membrane (eukaryotic cell), or to periplasmic

region (prokaryotic cell). Considering tm the time for particle at distance l to diffuse to

the cell we can have:

tm =
l2

D
(3.22)

In the above, l is the capillary length (diffusion radius) and D is the diffusion constant.

To find the diffusion radius we define W (
, D, tγ, ε) as a training function to train the

value for diffusion radius from the real experimental data set 
, diffusion constant D and

tγ . Here tγ is the cumulative bulk model time for the plasma phase. Also, ε denotes the
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acceptable root mean square of error (RMSE) for the trained value. Now if we have s

sets of (
(i), tγ(i)) tuples by using the following function one can train the value of l:

W (
, D, tγ, ε) =

√∑s
i=1(

l2

Dκ
+ tγ(i) − 
(i))2

s
< ε (3.23)

3.5 Model validation and results

The validation of the model for the prokaryotic case will be for E. Coli which is

a Gram-negative bacteria. The eukaryotic validation will be addressed along with the

results of in-silico experiments in chapter 7.

In Gram-negative bacteria for any salute or particle to reach the cytoplasm must

pass trough a lipid bilayer (outer membrane), the cell wall (periplasmic space) and the

plasma membrane. The former maintains the shape and protects the organism from in-

vasions and osmoticlysis [58]. Periplasmic space in the Gram-negative bacteria maintains

the free enzymes that work as components of transport system; these receptor proteins

will move specific molecules down a concentration gradient trough the membrane [58].

The receptor proteins are spanned over the surface of plasma membrane where these

receptor proteins receive the substrate from the medium, couple them to a chemical con-

version and release them in the cytoplasm, referred to as passive metabolite transport

[63]. Most often this mechanism in an organism is used for number of different substrate

transport with the different receptor proteins, for this reason they are also referred to as

group transporters. E.Coli’s phosphoenolpyruvate transferase system (PTS) is among

the most well-known group transporters. The PTS pathway is shown in Fig. 3.4 where

the details for the pathway is available in [64, 65]. We will use the pathway in Fig. 3.4

along with glucose as the substrate to validate our model.
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pep + Hpr
E I−−⇀↽−− P−Hpr + Pr

pep + Cys
E I−−⇀↽−− P−Cys + Pr

P−Hpr + IIA −−⇀↽−− Hpr + P−IIA
P−Cys + IIB −−⇀↽−− Cys + P−IIA
P−IIA + IIC −−⇀↽−− P−IIC + IIA
P−IIC + Sout −−⇀↽−− 6P−Sin + IIC

Figure 3.4. (a) and (b) denote two different phosphoenolpyruvate PTS pathways in E.coli ;
Enzyme II is substrate specific which follows the capability of PTS in group transferase.

Table 3.1. Parameters Value

quantity value unit
intra cellular volume 2.5 μliter/mg
enzyme m 1 63.652 kDalton
glucose m 0.1822 kDalton
glucose r 2 5 Å

enzyme r 50 Å
cytoplasm r 0.543 μm
periplasmic width 15.0 nm
D 6.7−6 cm2/s
T 300 kelvin

3.5.1 Results

In this section we show numerical calculation for validation of our model with

comparison to some of the available kinetic models and in-vivo assays. Note that Ki-

netic models are not closed form parametric expressions and thus not suitable for fast

computation. The numerical calculations is done for the E.Coli, the cell physical and

biochemical specifications are based on data reported in Ecocyc [65] and CCDB [66].

Other parameters used in the calculations are listed in Table 3.1 and are taken from

literature.

Fig. 3.5.(a) shows that for a single molecule τr follows the shape of an exponential

decay function. Also, since the standard deviation of time is very close its mean τr,

thus, we can approximate the probability distribution function of τr, average time to
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find an active receptor single molecule model, with a negative exponential distribution

of function as follows:

p(τ) = e10−9[Ce]τ (3.24)
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Figure 3.5. (a) average time along with its standard deviation to find an active receptor in
the single metabolite molecule mode for various enzyme concentrations; (b) periplasmic
float time versus log(κ) which is the metabolite per enzyme ratio.
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Fig. 3.5.(b) depicts the predicted time for the metabolite in the periplasmic region

to follow the conical hypothetical path in the bulk model with respect to the log ratio

of metabolite to the receptor counts. This result indicates that the sensitivity of the

periplasmic time to the log ratio is significantly decreased after κ = 12, where that lays

in the region reported from experimental observations in [67]. The reported experimental

data in [67] is obtained at equilibrium which confirms that the model has captured

the equilibrium condition by demonstrating a low sensitivity in inducing the metabolite

concentration.

RJ
qi

=

(
∂|J |
∂qi

)
qn

× qi

J
=

(
∂ln|J |
∂lnqi

)
qn

(3.25)

Fig. 3.6.(a) demonstrates the sensitivity of the flux and flux response coefficient

(FRC) with respect to the enzyme variations. Flux response coefficient is calculated

form the Eqn.3.25, where qi is the modulated parameter and pn represents all other

parameters that remain constant. We can observe that these two quantities are inversely

proportional. This observation follows the same behavior as reported in [68]. This fact is

intuitively true as well, since due to the effect of diffusion radius and constant metabolite

concentration in a closed system addition of a small amount of receptor enzyme as the

system reaches its maximum flux capacity will lose its perturbational effect to the system.
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Figure 3.6. (a) the solid line on the left-axis shows the flux and the dotted line on
the right-axis is the FRC; (b) comparison between the glucose flux for current model,
available kinetic rate-base approach and experimental data.
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Fig. 3.6.(b) is a cross comparison between the stochastic model, kinetic rate-based

model and the experimental data, as illustrated our model has well performed and cap-

tured the nature of the flux fairly better than the kinetic model. Also as its observed

for higher receptor concentrations our model performs fairly better estimation of the

experimental results than the kinetic rate-based approach.

Fig. 3.7.(a) compares RJ
IICB flux response coefficient (FRC) between the current

and kinetic model. Although the differences between these models in very low concen-

tration is significant; however the trends in both models follow the same behavior also

at the experimental threshold both models are very close although the stochastic model

performs slightly better. Two results for the models tend to become closer as the enzyme

concentration further increases.

Training of the diffusion radius is shown in Fig. 3.7.(b) where the resultant diffusion

radius for the E.coli is 8.5μm; this value is very close to the bacterial diffusion layer

10μm ≤ l ≤ 100μm that is reported in [59].
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Figure 3.7. (a) comparison of the RJ
IICB from kinetic and the stochastic model; (b) shows

the training steps for finding the diffusion radius, the number above each line indicates
the applied diffusion radius.
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Figure 3.8. The effect of the model parameters on the flux of the metabolite to the cell.

In the last chart (Fig. 3.8) we have depicted the sensitivity of the of flux to cyto-

plasmic phase in various enzyme concentration, and as one can observe the sensitivity to

the phosphorylation is more prominent at low concentration. Also after some threshold

for concentration the phospho-factor looses its influence on the flux. For instance for

[Ce] = 10μmol this threshold is around 0.6 which is in agreement with the equivalent

empirical reported values in [68, 67].

3.6 Summary

In this chapter, first we briefly introduced the process of ligand-receptor binding

and outlined some of its contribution to cellular process in both eukaryotes and prokary-

otes. Two abstraction variants for eukaryotic and prokaryotic cells were introduced which
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founded the base of our modeling effort. Then the process of ligand docking to recep-

tor was abstracted as two consecutive microevents along with the boundary condition

function. For each micro-event we proposed a stochastic model to capture the tempo-

ral behavior of that microevent. The differences for application of each micro-event in

eukaryotes and prokaryotes was pointed out where it was applicable. Also we used the

proposed model to estimate temporal effect of the signal transduction and metabolite flux

into the cytoplasm. Finally we used the E.coli phosphoenolpyruvate transferase pathway

as a case study to validate our results for the prokaryotic case. The validation for the

eukaryotic variant of the model was postponed to chapter 7.



CHAPTER 4

STOCHASTIC MODELS FOR PASSIVE DNA ACCESS AND
THERMAL FLUCTUATIONS OF DNA IN EUKARYOTES

4.1 Introduction

DNA access is the key to cell protein synthesis machinery both in prokaryotes

and eukaryotes. The long DNA chain of the eukaryotes use a systematic hierarchical

compression. In the lowest compaction level the genetic material comprises arrays of

coiled DNA around globular octamer of cationic nucleus proteins (histone) [58]. Each of

these array elements is referred to as nucleosome and the chain of the ∼1.65 left-handed

superhelical turn is known as chromatin [69] [70].

A nucleosome component consists of ∼ 200 base-pairs (∼ 147 nucleosomal-DNA

base-pairs), ∼ 153 linker-DNA base-pairs) in euchromatin which is the most permissible

chromatin conformation in gene expression [58]. Higher order DNA structures are also

available in the form of 30nm chromatin fiber [71] and heterochromatin [72], all of which

encapsulate the multi-billion base pairs of higher organism in the nano-metric volume

of nucleus. Extensive research in the past thirty years on the chromatin structure and

dynamics has revolutionized our knowledge on chromatin and its dynamics, yet much

of the actual mechanistic is still not completely understood. Although many qualitative

models have been proposed for the chromatin remodeling where the in-vivo and in-vitro

assays have proven their accuracy with great deal of confidence, yet they are speculative

in details of the process.

In this domain the experimental data have played an important role in the success of

biologists and biochemists in one or more of following aspects: (a) explaining the nature

61
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of the nucleosome related bio-processes, (b) proposing rational speculations where no

explicit indication of actual mechanism could be observed, or (c) providing some useful

empirical data in different domains (time, concentration , gene expression level, etc.)

that would help further discoveries and validations. Having these crucial data on hand,

the collaborative effort of bio-scientist along with physicist and mathematician have led

to the development of growing number models that could address some of processes that

govern the nucleosome dynamics.

In this chapter we use the same stochastic event based modeling approach as out-

lined in the earlier chapters to develop parametric understanding of nucleosome dynamics

specifically the passive mechanism of accessing DNA sites.

The dynamics of nucleosome establishes certain pathways for accessing the hindered

portions of nucleosomal DNA (nDNA). From the energetic point of view, a mechanism

that requires energy for its progression is called an ‘active mechanism’ and if it is spon-

taneous, is referred to as a ‘passive mechanism’. For the latter which is the focus of this

chapter we incorporate spontaneous unwrapping and rewrapping and also nucleosome

sliding mechanism. We model two variants of the nucleosome sliding mechanism: twist-

-defect [73] and planar-bulge inchworm [74]. In this work, we first find the probabilities

of finding a motif of length n across the genome. Second, we propose a stochastic model

for unwrapping and rewrapping and come up with a closed form solution. Thirdly, for

twist-defect and planar-bulge inchworm mechanisms we propose two stochastic models,

where the first model is sequence specific.

4.2 Nucleosome dynamics

Nucleosome is not a monolithic static assembly. In literature the dynamics of nu-

cleosome is segregated into three categories; however there is a belief that conformational

fluctuation is the forth category. Therefore, a nucleosome exhibits at least four dynamics:
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1. compositional alternation

2. covalent modification

3. translational repositioning

4. conformational fluctuation

Compositional alternation is done by some remodeling enzymes to promote gene ac-

tivation [75]. For example, although canonical nucleosomes are deposited during cell

replication, H2A variant H2A.Z are highly enriched in promoter area which is deposited

by SWR1 chromatin-remodeling complex [76]. Post translational modifications including

acetylation, methylation, phosphorylation and ubiquitination [77] are among the cova-

lent modifications that can destabilize the histone cores and exploit DNA access to the

biological processes. ATP-dependant remodelers use energy derived form ATP hydrolysis

to loosen the contacts between the coiled DNA and the histone core. All these remod-

elers have at least one ATPase domain that supplies the energy necessary to alter the

nucleosome conformation. For instance, it takes less than one second for SWI/SNF to

remodel a nucleosome1. A nucleosome remodeling mechanism is the hallmark of a chro-

matin remodeling complex. The remodeling protein complexes classified into different

families and each family share many similarities in the mechanisms they implement in

remodeling the core component.

The variants of chromatin remodeling mechanism (excluding covalent modifica-

tions) that is implemented by the remodeling complexes include: (1) creation of trans-

lational repositioning of histone octamer, (2)ejection and spacing of nucleosomes, (3)

histone octamer transfer, (4) creation of remodeled di-nucleosome species (altosome for-

mation), and (5) altered restriction enzyme access [78]. In translational repositioning

the base-pair position of the core particle in the genome is altered to enhance the target

site access. This process could happen both intrinsically or by the aid of remodelers.

1The mechanisms implemented by this remodeler is presented and modeled in chapter 5
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Conformational fluctuation is a minor change to the conformation of a canonical nucle-

osome that happens periodically at the room temperature. This alternation could make

an otherwise occluded DNA site temporarily available to the transcription factors. The

mechanism underlying this thermal fluctuation will be discussed in proceeding sections.

Not all the times remodeling is necessary to access nucleosomal DNA. In-vitro as-

says in physiological salt concentration has strongly suggested nucleosomes are in an

equilibrium fluctuation between the fully wrapped and semi-unwrapped states in-vivo,

unless otherwise enforced [70]. The interval between two wrapped states gives a chance

to the regulatory factor in the close vicinity of DNA to bind to the motif that would

otherwise be inaccessible. Another spontaneous process of this category is the nondisso-

ciative nucleosome mobilization where histone core fluctuate between neighboring sites

[74]. All these fluctuations are driven by thermal forces in physiologically relevant con-

ditions [79, 80].

4.3 Event based pathway for target site access

Coiled structure of DNA in nucleosome confines the accessibility of the portion of

DNA where the minor groove of helical turn faces the histone core. In euchromatin,

passive and active varmints of mechanism for chromatin remodeling that makes a buried

DNA site accessible, could be classified into three nucleosome conformation alterna-

tor categories: (1) Thermal spontaneous conformational fluctuations [70, 74], (2) ATP-

dependent chromatin remodeling [81], and (3) covalent nucleosome modifications [78].

Each of these categories themselves might have different classes and implement distinct

mechanisms. Furthermore they could work individually or in a concerted fashion. In the

latter, they expedite each others’ functions, hence allowing multiple options to be con-

sidered during the evolution of a specific mechanism for an individual motif access. The
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Figure 4.1. nDNA access event pathway; each pathway starts with one trigger event; HA-
mechanism nucleosome alternation block represents the mechanism implemented by his-
tone acetylation; R-mechanism nucleosome conformation alternation and R-mechanism
nucleosome transposition depicts two classes of remodeling mechanism that derive the
remodeling process.

eventual goal is to have a properly structured template with all compulsive transcription

initiation complexes, available in a timely manner.

4.3.1 Event pathway model

In eukaryotes assembly of transcription apparatus and associated basal transcrip-

tion factors comprises the access of promoter and several other functional target sites.

Every access pathway is distinguished based on the mechanism that the pathway em-

ploys. Each of these pathways could further be broken into several protein complex

specific pathways. Fig.4.1 depicts a set of plausible mechanism level motif access event

pathways, only part this set is the focus of our investigation. In this chapter we only

concentrate on passive pathways that is colored in light green in Fig.4.1.

Each block in a pathway is an event with a stochastic holding time. The collabo-

rative effect of these stochastic events in a concerted fashion will led the target sites to

be come accessible to the transcription factors. Therefore, we abstract each pathway as
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a series of uncorrelated random events in the time and space and estimate a probability

distribution for them.

4.4 Assumptions and stochastic components

In order to manipulate the temporal behavior of the pathways in Fig.4.1, we need

to have execution time of individual components (event) and the respective probability

distribution of each event. For that purpose we need to make certain rational assumptions

without losing the generality. We also assume the properties of the set of abstract bodies

that can represent physical topology of the individual participant of the remodeling

process. The abstract bodies that participate in the modeling process are as follows:

4.4.1 DNA

The DNA model that we are using is the rod-like model from [82]. Such a DNA

model is formed from beads that are inter-connected by harmonic spring in a spatially

harmonic fashion. This model defines three dynamics for the DNA: longitudinal, rota-

tional and bending. These dynamics are usually used in the mechanical models.

4.4.2 Nucleosome

Nucleosome consists of two components, the histone core and nDNA. Throughout

this chapter, histone core is assumed to be a rigid cylinder with no structural alternation.

The nDNA is attached to the histone core at 7 absorption points per super-helical turn,

starting from the dyad [83] axis down to the end of core cylinder. These contact points

are perpendicular to the super helix axis of nucleosome. In [84] the nucleosomal DNA is

mapped into Frenkel-Kontorova chain and the total energy of the canonical nucleosome

in equilibrium is manipulated based on three energy components: elasticity energy (El),
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docking point energy (Ed), and sequence energy (Es). We follow the same energy concept

for manipulating the energy barriers in our model, where applicable.

4.4.3 Proteins

In biological functions, proteins appear in two forms: (a) single protein which is one

polypeptide of amino acids molecule within its proper tertiary structure ,or (b) protein

complex that is made of number of protein molecules in their quaternary structure prior

to binding to the target site. RNAP II holoenzyme and SWI/SNF remodeling complex

are the typical examples of a protein complex. In either case we abstract the molecules

with a spherical body. For the former case we approximate the diameter of the sphere

by the average width of the protein, where for latter this is done by averaging over width

of the complex.

4.4.4 Chromatin wide collision

For any binding to happen first the has to be a collision between the parties, for

our work we follow the collision theory approach by considering an infinitesimally small

time Δt between successive collisions. We assume that the continuous nucleosome chain

inside the nucleus is not repositioning. Also since the nucleosome array are available in the

form of continuous chain, therefore their population density is non-uniformly distributed

and is directly proportional to the density of the chain . For this purpose, we divide

the nucleus into s equal volume partitions νs = ν/s where each partition will have

ρi = Ni/νi nucleosome density, Ni being the number of nucleosomes in partition i and νi

as the respective partition volume. We further assume that the second colliding party,

is uniformly distributed inside the nucleus. Hence, one can find probability of collision



68

between a protein (e.g transcription factor) and any nucleosome component in partition

i during Δt , by applying the same approach as discussed in [85] as follows:

pi
col = π(rp + 1/2(rnuc + r�))

2
√

π8kBTΔt[pr]m−1/2
p νs (4.1)

In Eqn.(4.1), rnuc and r� are the nucleosome and linker DNA (lDNA) radiuses, rp and

mp are protein radius and mass, kB is the Botzmann constant, T is kelvin temperature,

and [pr] is the protein concentration.

In the partition borders, the structure of chromatin chain enforces a close cor-

relation among the nucleosome population distribution in the neighboring partitions.

Hence, choosing the distribution form either one of the neighboring partitions would not

significantly effect the final results. Considering Eqn.(4.1), in order to get the collision

probability anywhere in the nucleus we can use, pν
col = 1/s

∑
i ρip

i
col. Also, the probability

to collide with a specific nucleosome is:

pN
col =

pν
colvnuc

ν
=

pν
colr

2
nucLnuc�G/200�

1/2(rnuc + r�)2(lnuc + l�)
(4.2)

In the above expression, lnuc is the nucleosome length where l� is the lDNA length and

G is the base-pair length of genome.

Each complete helical turn (360◦) consists of ∼10.2 base-pairs [74] in the nucleosome

ground state, where for our calculation we round this number to 10 base-pairs per helical

turn. The outer face of each symmetric half of the helical turn forms 6 DNA histone core

association points, which along with an additional contacts between the N terminal of

αN − helix and the N termini of histone H3 tail is referred as Super-Helical- Locations

(SHL) [74],(see Fig.4.2). Therefore, in each nucleosome we have 14 association points.

This fashion in DNA packaging inhibits the access to those base-pairs that face the
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histone octamer where the minor groove of DNA contacts the core particle, at SHLs, this

structural conformation is further elucidated in [83]. Having these in mind, we derive

few useful probabilities. Probability that a motif i (i � 10) base-pairs lays within one

helical turn ,ph, is:

ph =
14(10 − i + 1) × L

(L − 147 + 1)(147 − �)
(4.3)

In the above expression, L is the length of DNA in base-pairs and � is the average linker

DNA length. In each helical turn supercoiled around the canonical nucleosome only half

of the base pairs are accessible; therefore, the probability that a motif of length i, (i � 5)

to be directly accessible could be written as:

pi
m = ph

5 − i + 1

10 − i + 1
(4.4)

Seemingly the probability of having the motif of length i, (i ≤ 147) in one nucleosome,

pi
n will be: pi

n = L(147−i+1)
(147−�)(L−i+1)

and if L 
 i then,

pi
n ≈ 147 − i + 1

147 − �
(4.5)

To continue with modeling, we make another rational assumption for the structure of

the suppercoiled DNA around the histone octamer: DNA helical turn on entry and exit

points of nucleosome has 180◦ phase difference. On the other hand, if we assume that on

entry point DNA enters with major groove and leaves the nucleosome with minor groove,

therefor the leading flanking tail of the nDNA is always accessible where the lagging one

always remains trapped. Also we assume all of the motifs that we are working with in

this chapter would not span over more than one super-helical turn. Hence, this avoids

trapping the motif nucleosome in a DNA knot [86]. This assumption enforces a maximum

motif length imax = 147/2 ≈ 73. Another useful probability isthe probability of accessing
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Figure 4.2. Left side: The upper image shows the site buried in the nucleosome,and
the lower one shows site access made possible through translational repositioning; Right
side: The upper shows the dynamics that might lead to translational repositioning of
nucleosome, and the lower image plots the partially uncoiled nDNA that made the DNA
site accessible.

a motif of length i on the linker DNA. For the average length of � ≈ 53 base-pairs per

linker DNA and the accessible length of g = 3.5 base-pairs for lagging flanking nDNA, the

maximum length of motif on the linker DNA that could be accessed without displacing

the nucleosome is:

i� = � + 5 + g ≈ 62 (4.6)

Furthermore, the probability of finding a motif of length i ≤ 63 in the linker DNA could

be written as:

p�m =
(�j + 9 − i + 1) × (N − 1)

L − i + 1
=

�j + 10 − i

147 − �
(4.7)

in Eqn. 4.7, �j is the lDNA between nucleosome j and j + 1.

4.5 Spontaneous remodeling mechanisms for DNA access

The spontaneous mechanisms that alternate the nucleosome are slow phenomena

driven by the thermal molecular energy that happen in the room temperature. In this

chapter, we try to use the discrete event simulation approach to model three widely
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(a) (b)

Figure 4.3. (a) Projection of the partial unwrapping to a renewal process; (b) Process
life/residual life concept : process life lays between the two states arrival time, where the
residual life is the interval between present time and the arrival moment of next state.

accepted mechanisms of this kind including: (1) partial unwrapping/rewrapping of nu-

cleosomal DNA, (2) twist-defect nucleosome shifting, and (3) planar- bulge inchworm

sliding of nucleosome.

4.5.1 Partial Unwrapping/Rewrapping of nucleosomal DNA

The propensity of nucleosomal DNA (nDNA) to partially unwrap on either end,

can give temporary access to a DNA sequence whose access was originally blocked in

the canonical conformation. This scaffold is mediated by the thermal force in a periodic

manner [70, 81].

As reported in [70], nDNA remains fully wrapped for ∼250 ms then spontaneously

becomes partially unwrapped, it remains in that state for ∼10−50 ms and then rewraps

again. In the latter state, if any of the protein machinery transcription factors find their

target sites on the DNA , which was originaly hindered, binding becomes highly probable.

For instance if RNAP II reaches the nucleosome before it becomes fully wrapped

the sheer size of polymerase would avoid further rewrapping and the process of RNAP

II elongation would continue more rapidly. This rate could even get close to the linker

DNA rate of elongation which is ∼ 23 base-pairs s−1, which otherwise would be ∼ 6-7

base-pairs, [70]. The outlined scaffold manifests a behavior of renewal processes [87],
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where the active service time of the process is the period in which process reside in state

2 of Fig.4.3. We assume this service time follows a negative exponential distribution,

p(τ1) = e−μτ1 . Therefore, based on the data in [70] one can say: μ ∈ [20, 100] and λ ≈ 4.

Considering a general distribution for the arrival rate of the binding species, in order to

receive service (binding) it must arrive meanwhile the process is in state 2 and τ2 > 0,

where τ2 is the residual life of state 2. Using the M/G/1 queue service model and hippie

arrival concept as in [87], we find

p(τ2) =
μ + e−μτ2 − 1

μ2
(4.8)

however, we need to have τ2 > 0, thus:

p(τ2 > 0) = 1 − p(τ2 = 0) = μ−2(μ2 − μ + 1) (4.9)

From Eqn.(4.9) and p2 = μ/(λ+μ), the probability of state 2, we can find the probability

for species catching the unwrapped nDNA, puw, in time τ from:

puw =
μ2 − μ + 1

μ(λ + μ)
(4.10)

As we see the puw has an stationary probability because the two integrations, one in

calculating the laplace transform of residual life, and other the implicit integration in

Eqn.(4.9) have averaged over the time.

4.5.2 Nucleosome sliding through Twist-Defect

Imposing an anomaly into the super-helix conformation of nucleosomal DNA is an

alternative mechanism to translocate the nucleosome. The concerted translational and

rotational motion of DNA that has high torsional flexibility, leads to injection of this
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Figure 4.4. Markovian random-walk chain with absorbing states: The absorbing states
guaranties two conditions: (a) there will be no re-enter for each walker, and (b) access
to the two exit points are mutually exclusive to every walker.

anomaly to the nDNA. Since this phenomena is impelled by thermal energy at the room

temperature, it is only limited to the very efficient torsions. Considering the DNA with

10 base-pairs per helical turn would result ∼36◦/pb for nDNA in ground state. Therefore,

twisting or unwinding the DNA double helix by 36◦ would add or remove one base-pair

to or from the 360◦ helical turn which is docked to the histone core between two SHLs

[74]. The torsion introduced at the entry or exit point of a nucleosome has to successfully

travel all 147 base-pairs around the nucleosome to result a once pase-pair shift for the

nucleosome. Also, since the manipulations for over-twist and unwound are fairly similar

we limit our discussion to the former case.

The fluctuation of the twist between each pair of docking points forms a mono-

dimensional random-walk (RW). To model this random-walk, we define 13 states that

resemble the location of the twist between each pair of 14 docking points at arbitrary

time t. Our approach is different from the one proposed in [84] in following aspects: (i)

We have used an-isotropic RW where they have isotropic RW (ii) our Markovian step

process has two absorbing state at both ends but they did not include any absorbtion

(iii) our model is fully stochastic where as they started with a stochastic process and

then switched to deterministic domain (iv) we end up with a stochastic process rather

than diffusion constant.
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In order to move in either direction, twist will require to overcome docking energy

(Ed), elastic (El) energy, and sequence energy (Es) barriers. The first two energy barriers

are already included in the defect potential energy cost expression that is provided in [84]

which is based on the Peierls-Nabarro (PN) potential energy concept [88]. By assembling

all parts of twist PN equation and integrating the expression given in [88] the average

energy of a twist could be written as:

ΔUtwist =
1

6
C +

9

10
U0 (4.11)

Where in this expression C ≈ (84 − 120)kbT is the effective Frenkel-Kontorova (FK)

combined twist and stretch constant, and U0 ≈ 6kbT is the SHL docking energy. In

ΔUtwist the an-isotropic bendability of DNA is not included. This propensity of DNA is

sequence dependant and the respective energy cost could be calculated from the following

equation which is obtained from [84] after proper substitutions:

Es(k) =
10∑
i=1

−αs
i+10(k−1)cos(iπ/5) + βs

i+10(k−1) (4.12)

Eqn.(4.12) defines a 10 base-pairs periodic energy field around the histone and linearly

assigns two bending energy charges to each dinucleotide, isotropic (βs
i ) and an-isotropic

(αs
i ). Here 1 � k � 13 represents the state of defect in Fig.4.4, (states 0 and 14 are

the absorbing states). The two approximate bending energy charges per dinucleotide

variants is reflected in Table 4.1 where of energy is in kbT unit.

The defect follows a one dimensional random-walk on the nucleosome to exit from

either end. If the defect that is inserted at one end (entry point) leaves the nucleosome

from the other end (exit point) , this would result a one base-pair sliding of the nucle-
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Table 4.1. Dinucleotide Bending Charges

Dinucleotide α kbT β kbT

A/T -43 -1.5
G/C 48 10
other 0 3.5

osome. We use Mean First Passage time (MFPT) to get the defect leaving time from

entry point (ten) or exit point (tex).

Using the splitting probability concept given in [21] we can find probability of reach-

ing one site before being absorbed by the other. Therefore, we will have the probability

to exit from entry point (pen), and probability to exit from the exit point (pex) as follows:

pex =

(
1 +

13∑
i=1

u(i)

)−1

where uj(i) =

⎧⎨
⎩ μiu(i − 1), for i > j

μi, i=j

⎫⎬
⎭

pen =
1 +

∑13
i=2 v(i)

1 +
∑13

i=1 v(i)
where vj(i) =

⎧⎨
⎩ μ−1

i v(i + 1), for i < j

μi, i=j

⎫⎬
⎭

In Eqns.(4.13,4.13) μi = pi/qi, where pi and qi are probabilities of the defect to

move one step to the right or to the left of state i in the unit of time, respectively.

Considering the energy barrier, Es, we can define pi and qi as:

pi =
e−Es(i+1)ωi

e−Es(i−1)ωi + e−Es(i+1)ωi
qi =

e−Es(i−1)ωi

e−Es(i−1)ωi + e−Es(i+1)ωi
(4.13)

ωi = (|Es(i+1)|+|Es(i−1)|)−1 is the projection coefficient that project the energy barrier

to [−1, 1], thus, minimizes the effect of exp(·) function on the fate of the probability.

Now we apply the concept of Mean First Passage Time (MFPT) for one dimensional

random-walk on a random lattice form [89]. By applying this approach, the pair of exit
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times, ten and tex which denote the MFPT from exit and entry points, respectively, could

be expressed as follows:

tex = ΣN−1
k=1 p−1

k + ΣN−2
k=1 ΣN−1

i=k+1Π
i
j=1qip

−1
j τs (4.14)

ten = ΣN−1
k=1 p−1

k Πk
i=1μiτs (4.15)

Here τs is one RW step. Also since

ps
i =

i−1∏
k=0

qk

pk+1
ps

1

is the stationary probability of non-absorbing state i, therefore:

ps
0 = q1

(
N−1∑
i=1

(
i−1∏
k=1

qk

pk+1

)
+ q1 +

N−2∏
k=1

qk

pk+1

pN−1

)−1

(4.16)

Arrival rate of the defect, λd is confined to: (a) our original assumption that at most one

defect could exist in the nucleosome at any moment which is satisfied by p0 and (b) the

energy dependant probability of a twist formation which is given by Boltzmann factor,

p(ΔU) = e−ΔU/kbT . Another implicit indication of (a) is λd < μd where,

μd = (pextex + penten)−1 (4.17)

μd is the export rate of defect from either end of the nucleosome. Having μd, Eqns.(4.13,4.13)

and considering (a) and (b), we can give the following upper bound for nucleosome sliding

rate to the right (5
′
to 3

′
):

λd � (p0 + pN) · pex · μde
−ΔUtwist/kbT (4.18)
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So far we elucidated the forward sliding (5
′
to 3

′
with respect to DNA) of the nucleosome,

likewise approach could also be applied to the reverse sliding ( 3
′
to 5

′
with respect to

DNA).

Since we have considered an-isotropic random-walk and directly included the effect

of sequence-depended energy in the random-walk, our model is more accurate than the

one proposed in [84] where the authors ignored both of these facts. Also the diffusion con-

stant was originally reported from their model was not consistent with the experimentally

observed values. Hence, they decided to bring the sequence energy factor,Es, through

the modified Bessel function to exponentially reduce the diffusion constant. However,

that still would not compensate for the effect of the absorbtion states that they did not

include in their model. Switching to deterministic domain in the mean term of modeling

process has induced the approximation overhead and consequently less accuracy to their

model.

4.5.3 Planner-bulge Inchworm Nucleosome Sliding

Formation of bulge is a prominent feature of the nDNA that is cognate with the

high DNA curvature. If during the final interphase of state 1 (partial unwrap) in section

4.5.1 a more distal sequence of DNA would be pulled in to the nucleosome and adsorbed

to the entry SHL then a bugle would be formed. There are two types of bugle: planar

and topological bulge. In the planar bulge the entire bulge falls in a same plane, while

the topological bulge has a more complex structure where the DNA crosses over itself and

creates a twist [83]. In the current work we just consider the small planar bugle since in

the passive paradigm it is highly unlikely to have topological bulge. Small planar bulges

are 10 or 20 base-pairs in length, where the rationale for having a multiply of 10 base-

pairs in their length is to encompass an even number of 360◦ helical turns. Because a
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different number base-pairs in their length would impose a phase shift to the nucleosomal

DNA which energetically is very costly [74].

In this mechanism sliding of histone octamer is the result of sequential formation

and annihilation of bulge along the nDNA. This resembles the motion of an inchworm

creeper around the nucleosome. To model the fluctuation of the bulge we use a random-

walk but with some distinctions from the one we applied earlier for twist defect. A major

difference between is the isotropy of the steps in the current random-walk; therefore, in

the step process diagram of Fig. 4.4 for all steps the probabilities pi = qi = 1/2 and Es

would not have any effect in fluctuation of the bulge. Adopting the energy barrier model

from [90] and applying proper substitutions, the energy cost ΔU for a bulge with the

base-pair length of l will be:

ΔUbulge =
(
20π4R4

NE5
aσkbT

)1/6
(

3.4lÅ

RN

)1/3

(4.19)

In Eqn.4.19 RN is the nucleosome radius, Ea is the docking energy per unit of

length, kb is the Boltzmann constant, T is the absolute temperature, and σ is persistence

length of DNA. Persistence length of DNA is the limit beyond which DNA will lose its

physical properties as a pure elastic rod. DNA bend persistence length is ∼150 base-pairs

(51 nm).

By applying the same random-walk algorithms, while pi = qi = 1/2, ∀iε[1, 13],

we can find the tex and ten from the same approach as for twist defect. Again the export

rate of the bulge is μb = (pextex + penten)−1. For calculation of arrival rate of bulge λb is

very similar to the one for twist: λb � (p0 + pN) · pex · μbe
−ΔUbulge/kbT × l . The factor l

on the left side of expression is the base-pair length of the bulge. The argument that we

made earlier for direction of nucleosome sliding as a result of twist-defect random-walk

remains valid for the bulge as well.
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4.6 Results

In this section we briefly present the numerical results that was derived by ap-

plying the proposed models to study and predict the nucleosome translocations. For

nucleosome sliding as the result twist-defect, we used two sequences: PSEN1 base-pair

position ε [−700,−200] (human gene responsible for producing precenilin-1 protein),

and AHI1 base-pair position ε [+181, +681] (gene responsible for Jouberin protein in

human). Fig.4.5.(a) shows the variation of nucleosome sliding rate for different base-

pair in the sequences. As we observe the PSEN1 sequence has larger variation do-

main. This biologically implies that the sequence has more an-isotropic segments (more

populated with A/T and G/C di-nucleotides), hence predicting a lower sliding rate for

the nucleosome. In both sequences the high picks could imply a rotational trap in the

DNA where ATP-dependent remodeling might be required and intrinsic sliding possi-

bly halts. Due to the granularity of the measurement, finding the experimentally con-

firmed values sliding rates is a challenging task. Although we could not find any ex-

plicit sliding rate for twist defect, we could infer some thresholds form assays in [79];

These thresholds are depicted by dashed lines. The sole theoretical model that we could

find to the date of this reported, is a diffusion based deterministic model that reported

two diffusion constant: D = 580 base − pairs/s2 → λd ≈ 0.79 base − pairs/s and

D = 10−6 base − pairs2/s → λd ≈ 1.2 × 10−8 base − pairs/s for isotropic and an-

isotropic sequences, respectively. These diffusion constants are several fold skewed from

experimentally reported range.

Fig.4.5.(b) depicts the time required for nucleosome to slide on same section of

PSEN1 in forward (5
′
to 3

′
) or reverse (3

′
to 5

′
) direction. The net relative displacement

of nucleosome with respect to the reference base-pair at (-700) position is also depicted

in the same figure (plotted in green color).
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For the bulge inchworm model we got λb = 2.14 × 10−7 for l = 10 base-pairs and

λb = 4.56 × 10−9 for a bulge length of 20 base-pairs. This sliding rate results indicate

that within one hour epoch almost no sliding happened. We concluded that nucleosome

sliding through bulge mechanism is a very rare event. We were not able to find any

experimental data for the bulge model. We used time step , τs = 10−6 throughout our

calculations.

4.7 Summary

In the current chapter we created a systematic view of the pathways which com-

prises the synergy of events that effect nucleosome dynamics and procures nDNA access

to transcription machinery proteins. We further elucidated three of such pathways all

of which were passive and tried to model by applying a stochastic discrete event based

approach. We also used the collision theory to estimate probability of finding the target

nucleosome component genome wide. We used the renewal process along with hippie

arrival concept to model the spontaneous unwrapping pathway for DNA thermal fluctua-

tions. For nucleosome sliding by twist-defect we used an-istorpic random-walk that takes

the DNA sequence curvature energy barrier into the account to find the MFPT in state

diagram of the process and ultimately the sliding rate of the nucleosome. Bulge-inchworm

is another mechanism for intrinsic nucleosome sliding that we investigated in this chapter

and proposed a stochastic model to capture its temporal dynamics. Also, we discussed

that our proposed models are more realistic and closer to actual prices compared to the

available diffusion constant based models. Finally we validated our models with available

experimental data and made a predication on spontaneous translocation of nucleosome

for one of the human genes.
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Figure 4.5. The twist-defect mechanism used for manipulations in both graph; (a) The red
line depicts the forward displacement relative to position -700 in PSEN1 gene versus time;
The blue line shows the amount of reverse displacement relative to same reference position
across time; Green line shows the net displacement of nucleosome, where a negative
value indicates the intrinsic sliding of nucleosome tends to slide in reverse direction in
this sequence. (b) shows the forward sliding rates of the nucleosome for PSEN1 HUMAN
and AHl1 HUMAN sequences, the reported experimental thresholds are shown in dashed-
lines.



CHAPTER 5

AN EVENT BASED STOCHASTIC MODELS FOR
CHROMATIN REMODELING

5.1 Introduction

Coiled structure of DNA in nucleosome confines the access to the portions of nu-

cleosome DNA, where the minor groove of the helical turn faces the octamer. Certain

complexes impede the DNA access which would be temporally exhaustive and biologi-

cally irrelevant, should the process be driven by thermal energy, as we showed in previous

chapter. These complexes and their underlaying mechanisms could work individually or

in a concerted fashion, to establish a modified nucleosome structure that concedes the

access to nucleosomal DNA, [78]. Generation of local chromatin topology conducive to

gene transcription pertains to one following classes of chromatin modifications based on

their mode of action: ATP-dependent chromatin remodeling and covalent histone modi-

fication. The former class, has been classified into five families (SWI/SNF, ISWI, INO80,

NURD /Mi-2/CHD, SWR1) based on their protein complex subunits. Among these re-

Figure 5.1. The green arrows show the typical base-pairs whose access is confined in
canonical nucleosome structure.

82
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modeling families SWI/SNF has been more intensively studied for two reasons: Firstly,

because of the biochemical characterization of SWI/SNF with 8 to 11 subunits (varies

among different species), [91], enables this remodeler to employ diverse mechanisms to

alter the chromatin conformation, [92]. Secondly, SWI/SNF shares the same highly con-

served ATPase domain (SWI2/SNF2) with remodelers of over thirty other organism, [1].

Also all eukaryotes contain all five families of chromatin remodelers, [93]. Furthermore

no sequence specificity has been reported for SWI/SNF complex, [94]. These and many

more evidences reported elsewhere strongly suggest that similar mechanisms might pos-

sibly be employed by many other species. The collection of above reasonings was enough

convincing for us to choose this family of chromatin remodeler as the next target of our

modeling effort.

Reported in-vitro data suggests that SIW/SNF perturbs the nucleosome positions

in a phased array of nucleosome, [93]. The nucleosome position rearrangement is archived

through two primary pathways: histone sliding in-cis and histone displacement in-trans.

The former which is the main focus of this paper does not change the local nucleosome

occupancy (LNO) of the DNA , [95]. The latter will reduce the LNO, hence more naked

DNA would be available to the cell protein synthesis machinery complexes.

cis pathway is the most prevalent chromatin remodeling pathway and was first re-

ported by [80] from the observation of the simian virus 40 minichromosome in the DNA

fragment. Two variants of cis pathway are available to the remodelers: a memoryless

pathway where the continuous hydrolysis of the ATP required for continuation of remod-

eling, and with-memory variant in which a dimer of neighboring nucleosome is formed

and exposes portions of the nucleosomal DNA of intermediate structure which referred

to as altosomes, [96]. The altosome would still keep its conformation for some time even

in absence of ATP hydrolysis. In the current study we will only consider the memoryless

pathway.
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Having a comprehensive picture of the chromatin, its metabolism and modification

is essential for comprehending of many other cell level process in eukaryotes. Also, since

the chromatin is not a monolithic ensemble per se individual models are required to

capture its dynamics. These models should be parametric and integrative such that

ultimately a systematic view of the whole process that can represent different states of

the ensemble could be provided. In the previous chapter we devised individual models for

passive variants of chromatin remodeling mechanism. To the date of this dissertation no

single parametric model is propped for ATP-dependant chromatin that is in the context

of the cell and has a systematic view of the process.

Kulic and Schissel [86] did a detail study on the nucleosome loop formation. They

proposed an estimation for nucleosome loop energy; however they did not a provide

a concise and biologically relevant formalism for the remodeling process in their work.

In [2] a deterministic model is proposed for nucleosome repositioning that ends with

a diffusion constant. Although the model is physically complex; however they did not

incorporated any of physicochemical properties of the remodeler and it’s subunits. The

bulge step-size was ignored in nucleosome translocation, and most important they did

not bring the stochastic nature of the process in the picture. Their reported data is

several time skewed according to the experimental data in [1, 97], and the error in results

aggravates as the loop size grows larger. Wang et. al [98] provided a Brownian dynamics

simulation of the DNA loop traversal around the nucleosome. To describe the system they

used Langevian equation with Morse potential and random force. They applied Runge-

Kuta algorithm to numerically solve the equation and determine the system states in the

course of simulation. There two major drawbacks to their model: Firstly their simulation

is purely a non-parametric physical model simulation, therefore is not possible to couple

their simulation with a systematic modeling approach of a biological process. Secondly,

their model is computationally intensive. In summary, the common problem of the above
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approaches is that they are not biologically very significant and could not be embedded

in systematic modeling project.

In this chapter we will devise a de-novo parametric model that can capture the

dynamics of the nucleosome remodeling through the memoryless version of SWI/SNF

in-cis pathway. The proposed model takes into account both the sequence curvature of

the DNA and ATPase domain of the remodeling complex in the nucleosome remodeling

process. With the loop formation any transcription factor would have two opportunities

of binding to the otherwise occluded DNA site:(i) catch the loop, i.e. the excess length

of DNA between two histone docking points or sits on tail, or (ii) wait until the target

site leaves the nucleosome by as the consequence of histone core translocation.

5.2 Approach

Straining a super helical torsion on the nucleosome DNA is the hallmark of swi2/snf2,

a member of SF2 superfamily of helicase like proteins , [99]. Experimental assays use

number of diverse methods to detect the accessible DNA loops and histone translational

repositioning resulted from catalyzed remodeling. Most of these methods benefit from

one or both following properties: nucleosome DNA cleavage by micrococcal endonucle-

ase of the remodeled nucleosome that would otherwise be buried in the nucleosome, and

electrophoretic mobility shift-assays that prevail the discrepancies between the canonical

and remodeled mobility patterns, [97, 100]. In a more recent in-vitro assay, Bustamanate

et al.[1] used optical tweezers to measure the real time response of the nucleosome and

loop formation under stress. Based on in-vivo and in-vitro observations and biological

principles, authors in [93] proposed a qualitative model that describes the mechanism of

DNA translocation around the nucleosome by the aid of remodeler. This model which

is referred to as ’wave-rachet-wave’, forms the physiological base of our modeling effort

and is depicted in Fig5.2.
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Figure 5.2. The physiology of the nucleosome translocation in-cis is abstracted in four
states:(A) a canonical nucleosome which has limited the access to a motif, (B) SWI/SNF
remodeling complex bound to the nucleosome component close to the dyad axis, (C)
remodeling complex uses the ATP hydrolysis to pull extra base-pairs into the nucleosome
from linker DNA (bulge formation), (D) the tracking sub-domain of remodeling complex
tracks the bulge around the nucleosome until it exists from the distal entry point. At the
end of tracking the nucleosome is repositioned equal to the bulge size. The repositioned
nucleosome can undergo another remodeling to state (C) or the remodeling complex gets
detached from the core component as shown in (E).

Traces of the random behavior in the dynamics of chromatin remodeling could be

observed in the uncertainty within the reported data on quality of the remodeling process

by SWI/SNF, ISWI and RSC family of remodelers in [100, 1, 97, 101, 102].

As a corollary to this randomness we characterize each step in 5.2 by one or more

microevents that are stochastic in time and space and offer a probability distribution for

them. The convolution of these stochastic events can provide an appropriate picture of

the remodeling process dynamics.
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The key to translocation of nucleosome in the outlined model is conversion of the

ATP hydrolysis energy to the mechanical force that can alter the nucleosome conforma-

tion. Torsion and tracking sub-domains are the two sub-domains of remodelers translo-

case. The tracking sub-domain pulls the proximal linker DNA into the nucleosome, traps

the extra base-pairs in the fissure between the two sub-domains. The ATP hydrolysis

then would enforce a conformation change to the tracking sub-domain and drive the loop

on the unidirectional path around core particle to the distal linker by taking the bases

from the leading end and adding to lagging side. The locality of engagement of the

SWI/SNF to dyad axis of the nucleosome would be a an important factor in the quality

of the remodeling. We initially loosen the constrains suggested by [101] and [102] and

allow the remodeling complex to be attached at any super helical location (SHL) in the

vicinity to the dyad axis on the proximal linker DNA side (SLHi, 2 < i < 8). Also the

fissure size between the sub-domains can vary in our model from entry point (SLH1)

of the nucleosome to SLH(i−1). These additional degrees of freedom is granted for two

reasons: firstly because the definitive proof of these constrains is still missing in experi-

mental observations elsewhere, secondly the energy-translocation plane for each scenario

that will be provided by the model could provide further evidence for the efficiency of

the structural preference. Since the evolutionary lineage of a bio-process favors efficiency,

therefore the results could argue in-favor-of or against the available hypothesis.

5.3 Modeling the histone core translocation in-cis

As outlined earlier, the qualitative model for SWI/SNF remodeling suggests three

stages for remodeling including: remodeler-Nucleosome binding, bulge formation (torsion

strain), and intra-nucleosome bulge tracking. To abstract these stages we map them

from the qualitative domain to probabilistic information domain by defining one or more

microevents corresponding for each stage. The sequence of microevents that drive the
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remodeling process is serialized, i.e. no two microevents would have temporal overlap.

We define three class of microevents: (a) Binding, (b) Bulge Formation, (c) Tracking.

The execution order of these micro-event classes is deterministic as depicted in Fig5.3.(b).

However, the holding time of each microevent is a stochastic process govern by sub-model

that is associated with each class of microevents. We define Nucleosome Coordinate

(NC), x, as the position of base-pair on the nucleosome where: 1 � x � 147. Now we

introduce state of the remodeling process with following parameters: The availability

of remodeler on the nucleosome (b), leading nucleosome coordinate of the bulge (xs),

the lagging nucleosome coordinate of the bulge (xe), number base-pairs pulled into the

nucleosome (n). Therefore, at any time the state of the process could be presented by

the (xs, xe, n, b), where at any time, except the last element which has boolean value the

other three have non-negative integer values. The state diagram is a random graph as

depicted in Fig. 5.3.(a). Transition between each pair of adjacent states is driven by a

microevent that has a stochastic holding time. For each microevent the holding time is

the execution time of that microevent. A proper sequence of such stochastic microevents

forms one realization of in-cis translocation of the core particle. The canonical

nucleosome structure that we incorporate along this study is assumed to have 147 base-

pairs in the ground state. The transition form the state (0,0,0,0) to (0,0,0,1) is barely and

protein-DNA binding event, we assume that once a remodeling complex associated with

nucleosome, it commits to conduct at least one translocation step. Therefore, the binding

event would merely characterize a signaling event to the process, though it would not

affect its progress. Hence, we would not consider the time for binding in our probability

distribution function manipulation. Our next assumption for the model is the tracking

size across one iteration of the remodeling remains constant.
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(a)

(b)

Figure 5.3. (a) State diagram of the remodeling process forms a random graph, edges are
the microevents that moves the process from one state to the next, the state quadrable
should be read from top-left in clockwise order; (b) Event diagram of the remodeling
process, each microevent has a random holding time with mean and variance.

5.3.1 Bulge formation analysis

In order to provide a rigorous analysis of the bulge formation we need to look in

to zoology of the bulge and their energy profile. Loops that are formed from the excess

length of a rod like object are classified into three structural categories:

• Simple loop: no self contact point within the loop.

• Crossed loop: there is a single self contact point between within the loop.

• Entropic loop: where are is more than one self contact point within the loop.

These geometry of these loops is depicted in Fig. 5.4. In [86] researchers proposed ap-

proximations for the energy profiles of these loops, however biological feasibility of the
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Figure 5.4. Three structural loop conformations on the nucleosome:(a) simple loop, (b)
crossed loop, (c) entropic loop. Entropic loop conformation is not limited to the one
shown in (c).

formation for each class of loops in the nucleosome context was not studied. One can

argue that, since tracking mechanism of the bulge is archived by removing the base-

pairs from lagging end and adding them to the leading end (the side with hight SHL),

a remodelers tracking sub-domain task, should the bulge has an entropic structure this

mechanism fails due to writhe induced on the DNA. Therefore, we make a fair assumption

that a nucleosome bulge has either simple or crossed structure. To study the formation

feasibility of such loops we use the nucleosome angle ϑ which is the min angle between

the y axis and the tangent point of the DNA on the histone core. Using ϑ and expanding

the geometry that is provided in [86] along with comparison to the experimental data we

propose the boundary condition on the structure and length of the DNA loop.

Intrinsic curvature and bendability of stacks of nucleotides adds another complexity

to the dynamics of energy profile of the loop formation. To reflect this complexity in

the bulge formation energy we used the Eqn. 5.1 from [103] to manipulate the expected

Young’s modulus for the bulge of n base-pairs length.

Eb =

∑n−2
1 e−1

i

n − 2
(5.1)
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In the above expression ei is trinucleotide sequence stack Young’s modulus based on the

Table 1 in the [103]. Now we can find the bending rigidity of an arbitrary DNA sequence

of length n, Bn from:

Bn =
π

16
EbR

4
DNA × 1030 (5.2)

Noteworthy, that in Eqn. 5.2 Bn is in kBT ·nm, RDNA in meter, and Eb in N/m2. Then,

we replace our terms in the simple bulge energy, US, and crossed bulge energy, UX ,

approximation expressions adopted from [86] an rewrite them as follows:

US(ϑ, n) = 2ϑ

(
Bn

ω

2RNω − n′ · bp + RNεads

)
(5.3)

UX(ϑ, n) = 2ϑBn

(
π + ω

n′ − 2RNω)
+ RNεads

)
+ Bn

2RDNAtan−1(4RDNARN tanϑ
κ

)

κ
(5.4)

In the above expressions εads = 0.7kBT/nm is DNA-histone interaction density , ω =

tanϑ − ϑ , bp is singe DNA base pair length and

n′ = n − 88.90ϑ

π

is the number of extra base-pairs inserted into the nucleosome. Also in Eqn. 5.4, κ =

R2
N tan2 ϑ − 4R2

DNA.

5.3.1.1 Constrain analysis of ϑ and n boundary conditions

A lower bound for the bulge size is inferred from Eqn. 5.5 where we need to have

n′ > 0, analytical graph is provided in supplementary section. For simple bulge the

binding location of the remodeler will impose and upper bound, since the SWI/SNF

binds 2 SHLs from nucleosome dyad [101] and [102]. Hence, ϑ < 3.1π×4
13×2

≈ π
2

. Also to
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have a valid Us from 5.3 procures 2RN(tanϑ−ϑ)−n′bp > 0. Obviously the new boundary

condition dominates the former one.

In Fig. 5.4, d can be manipulated as follows:

tanϑ = x/Rb, tanϑ = (d − x)/RN

⇒ x = Rbd/(Rn + Rb) ⇒ d = tanϑ(R + Rb) (5.5)

also the bulge radius Rb is:

Rb =
nbp − 2RN tanϑ

2(π − ϑ + tanϑ)
(5.6)

Having the above expressions we can apply the Rb > 0 boundary condition for the crossed

which from 5.6 this would lead to ϑ < π/2, also we need to satisfy following condition:

n′ · bp > 2RN tan ϑ ∼ ⇒ n > 29.417(tanϑ + ϑ) (5.7)

The recent condition on n (Fig. 5.5) should be considered in conjunction with the global

boundary condition for n′ (see 5.3.1.2). Also to avoid extreme the deformation of the

bulge condition [84] proved that RN tanϑ > RDNA which results ϑmin ≈ 14◦.

5.3.1.2 Global boundary condition for n′

Apart from the structure of bulge, (n, ϑ) characterizes the nucleosome bulge. The

size of a bulge should always be larger than the number of base-pairs across the same

nucleosome angle in the canonical nucleosome, therefore for the following preposition

should always stay valid:

{(n, ϑ)|∀n, ϑ : ln(n) − ln(ϑ) > 3.365} (5.8)
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Fig. 5.6 depicts this condition by intersecting the two plane. All points above the critical

plane fits into the Eqn5.5 and could be a potential bulge parameter tuple.

5.3.1.3 Effect of DNA sequence and length on the its energy profile

In order analyze the effect of DNA sequence range for the relevant nucleosome

angle we generated 105 individual sequence and manipulated the average bulge energy
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along with standard deviation deviation for range of 10 to 200 base-pairs bulges, this

manipulation is done using three curvature models of the DNA sequences in [103]:

• Isotropic model : DNA is equality bendable in all four planar geometric direction.

• Anisotropic symmetric model : DNA is equally bendable in major and minor groove

direction and 10 time more rigid in the other two directions.

• Anisotropic asymmetric model : DNA is more bendable in the direction of major

groove and 10 times more rigid in all other directions.

In Fig. 5.7 the bending rigidity for three different models is depicted. As one can observe

the energy difference for sequences with < 50 base-pairs in length, could vary up to

10 times among them (as in isotropic model). However, the rigidity tends to converge

to the mean as the sequence length increases. Therefore, the energy profile of in-cis

translocation process is more sensitive to small bulges than larger ones. Furthermore,

although three bending model characterize the same behavior; However there is still a

noticeable difference among three, e.g. for the 269 base-pairs sequence the bending energy

density isotropic rigidity could be as high as 73.66 kbT · nm where the asymmetrical

anisotropic rigidity could be as low as 19.37. These observations indicate that DNA

sequence effect should be incorporated only in sliding whose average bulge is < 50.

As a conclusion we can say that as the sequence length increases the deviation in the

bulge energy significantly decrease and this observation is intuitive, firstly because for

very small DNA sequence bending will average only few base-pairs and this will vary

significantly due to the Eb for the small sequence. For a large sequence especially where

no short repeat pattern exists the bending energy will averages over larger number of

base-pairs with more diverse trinucleotide sequence stack. Also the difference between the

energy level among the three bending models is noticeable for small bulges however for

the medium and large bulges these differences are negligible. Therefore choosing any of
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Figure 5.7. Sensitivity of the DNA curvature energy with respect to the length and
sequence for three differed bending models. 105 random sequences is plotted for each
model where each sequence length has an upper bound of 357 instances. Red, blue
and black plot depicts the data for isotropic model, anisotropic symmetric model, and
anisotropic asymmetric model, respectively.

the three models would not skew the final result. We will use the anisotropic asymmetric

model for the rest of the manipulations in this study.

5.3.1.4 Drag force

The sedimentation of the complex molecules in a viscus environment such as nucleus

and cytoplasm impinges a viscus drag force which is approximately proportional to the

motion velocity of the macromolecule. Since the sedimentation of the linker DNA is in

the order of nm/s, we can use the Gabriel Stokes approximation for drag force, by using
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the equivalent spherical object moving in the nucleus viscus environment. Therefore, the

required drag force in bulge formation with n′ extra base-pairs will be:

f(n′) = 3
√

2πη (RDNA(RDNA + n′ · bp)) v (5.9)

in the above expression η is the fluid viscosity and 1 ≤ v ≤ 6 nm/s is the velocity at

which the molecule displaces in the environment, [2]. The drag force energy factor for a

known v and n′ could be maximized when the required displacement is maximized, such

drag energy factor is obtain from:

Uf(n
′) = f(n′) · n′ · bp (5.10)

Fig. 5.8 shows the drag energy factor for three nucleosome angles, v = 6 nm/s and

nucleus viscosity is considered 6.6 cp, [104]. As we can see this energy factor is in the

order of of mkBT , which is negligible compare to the other energy factors. Therefore, we

will exclude the drag force energy from our calculations.

5.3.2 Model for bulge transition

Following the bulge formation by torsion sub-domain, the tracking sub-domain

uses ATP hydrolysis energy to track the bulge around the nucleosome toward the distal

entry point on a unidirectional path. To the date of this report no in-vitro or in-vivo

observation has been found to address the step-size and the quality of the bulge tracking,

therefore we propose a model to abstract the bulge tracking phase. For this purpose

we make an assumption that at least one ATP molecule is required for each tracking

step. Hence, based on this hypothesis should a hydrolysis reaction releases more energy

than demand, it would be either consumed for protein conformations or dissipated from
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Figure 5.8. The force impinged on the DNA by the torsion sub-domain of remodeler in
the order of pN [1], this force should ultimately keep the nucleosome displacement pace
with motion of RNAP on the DNA, hence we have chosen v = 6nm/s which according
to the same article and [2] is a legitimate upper bound. In this figure red line shows
drag energy factor for the small ϑ = π/8.39, blue is for ϑ = π/3 and black one has a
large nucleosome angle of ϑ = 4π/8.39. The coefficient is proportional to the velocity
and square root of excessive DNA length.

the system. Noteworthy, the last tracking step for both models is a relaxing step where

the nucleosome returns to the ground state. On the other hand, the relaxing step of

a tracking microevent requires the energy just to disrupt the remaining DNA-histone

interactions.

5.3.2.1 Energy profile of the tracking phase

following the earlier assumptions and definitions, for all the tracking steps bulge

coordinates should follow:

∀xs, xs : xs < xe, xsε[1..136], xeε[2..137]



98

The number of steps can still be calculated from:

kϑ
f,i = �3.1π − 2ϑ

β(i)
� (5.11)

where β(i) = 2πi
88.9

· bp |iε{1, 2, ..., n}. Remaking that β(imax) = min( nπ
88.9

, 3.1π − 2ϑ).

Therefore, total number hydrolysis reaction required for the bulge of size n for the all

tracking steps in one instance of remodeling is:

Nϑ
n,i = �U(ϑ, n) + URlx

�ATP
� + kϑ

i �
β(i)U(ϑ, n)

2ϑ�ATP
� (5.12)

In Eqn. 5.12 to choose the conformation with lower energy barrier (to increase the entropy

of the ensemble) we set U(ϑ, n) = min{US(ϑ, n), UX(ϑ, n)}, and �ATP is the potential

energy of the phosphate bond of a single adenosine triphosphate (ATP) molecule.

It should be emphasized that hydrolysis reaction of SWI/SNF is very fast reaction

since it is an enzymic reaction, this claim could be observed from kinetics rate constants

(Km , kcat , Vmax) that are experimentally measured in [97]. Therefore, the main factor

that would effects the time between two successive hydrolysis reaction is the arrival rate

of the fuel molecules, ATP. It is very common to assume inter-arrival times, which is

the inter-arrival of two successive hydrolysis reaction, follows an exponential distribution

[105]. Considering such distribution with the mean time t̄ = 1
λ
, where the λ is the rate,

each remolding process is a sequence of Nϑ
n exponential inter-arrival time of hydrolysis

reaction. The distribution of these cumulative inter-arrival times will follow an erlangian

distribution:

q(Nϑ
n , t|λ) =

λ(λt)Nϑ
n−1

(Nϑ
n − 1)!

e−λt (5.13)
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5.3.2.2 Bugle size distribution

The other component that would affect the remodeling process is the bulge size. In

[1] researchers used optical tweezers on ySWI/SNF and yRSC to conduct their experi-

ments and collected the sample data on the SWI/SNF and RSC bulge size. We were able

to roughly fit their data into Generalized Extreme Value (GEV) distribution , g(x|μ, σ, ξ).

The estimated parameter and their respective standard error for this distribution are as

follows: location parameter μ: (59.6917, 2.47457), shape parameter σ: (32.3734, 2.33),

and scale parameter ξ:(0.485177, 0.0719). In order to find the probability mass function

of the bulge size n, we discrete the GEV probability distribution GX , on the vicinity of

n as follows:

j(n) ≈

GX(n + 1
2
|μ, σ, ξ) − GX(n − 1

2
|μ, σ, ξ)∑∞

i=1

[
GX(i + 1

2
|μ, σ, ξ) − GX(i − 1

2
|μ, σ, ξ)

]
⇒ =

GX(n + 1
2
) − GX(n − 1

2
)

GX(1 + 1
2
) − GX(1 − 1

2
) + GX(2 + 1

2
) − GX(2 − 1

2
) + . . .

⇒ =
GX(n + 1

2
) − GX(n − 1

2
)

1 − GX(1
2
)

(5.14)

For the estimated parameters Gx(
1
2
, μ, σ, ξ) << 1, therefore, the denominator will

be roughly equal to unity and will be eliminated from the expression. Hence the estimated

probability distribution for bulge size of length n would be as follows:

j(n) ≈ exp
[
−(1 + ξz)

−1
ξ

]
− exp

[
−(1 + ξź)

−1
ξ

]
(5.15)
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In the Eqn. 5.14, GX is the cumulative distribution function of GEV, z = x+0.5−mu
σ

,

and ź = x−0.5−mu
σ

. Now from Eqns. (5.14, 5.13) we can write the expression for probability

distribution function (PDF) of n base-pairs transposition in time t as following:

P (n, t|ϑ, λ) = j(n) · q(Nϑ
n , t) (5.16)

From 5.16 one can manipulate T (ϑ), the average time required for a remodeling with

mean bulge length whose probability distribution functions follows the Eqn. 5.14 from:

T (ϑ) =
Nϑ

M

λ
where M = �μ +

σ

ξ
(Γ(1 − ξ) − 1)� (5.17)

The only missing part of the Eqn. 5.17 is ϑ. To the day of this report there no

published data is available on angle and its distribution. Hence, in Eqn. 5.17 for each

constant nucleosome angel ϑ and mean ATP arrival rate λ we will have an instance of

probability distribution function. The boundary condition derived earlier in addition to

the experimental data on micrococcal DNA cleavage of nucleosome DNA will be used in

the result section to find the proper nucleosome angle.

5.3.3 SWI/SNF binding time

To estimate the time for binding of the SWI/SNF complex to the target nucleosome

we adopted the collision theory based stochastic reaction model proposed by [85] and

manipulated the reaction rate as follows:

ρ = CSWI/SNF (rSWI/SNF + rN)2NA

√
8kBT (mSWI/SNF + mC)

mSWI/SNF · mC

e
−Eact

kBT (5.18)

In above expression parameters are as follows: CSWI/SNF concentration of the remodeling

complex, rSWI/SNF radius of remodeling complex, rN nucleosome radius, NA Avogadro
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number, mSWI/SNF remodeling complex mass, mC is the cumulative mass of nucleosome

and DNA sequence, and Eact is the activation energy of the reaction.

5.3.4 Estimating the tension

The tension which is applied on the nucleosome by the remodeler to induce the

DNA loops of size n in each remodeling cycle, estimated as follows:

w(n) = fn · d

⇒ Erem4.11 × 10−21 = f × n0.34 × 10−9

⇒ fn = 12.88 × Eremn (5.19)

In Eqn. 5.19 the force fn is in pico-Newton and remodeling energy Erem in kBT . The

remodeling energy is proportional to the number of hydrolysis reactions (Erem ∝ Nϑ
n )

from Eqn. 5.12. Hence, we can write the following relation for the tension:

fn = 12.88 × CeffnΔATP (5.20)

In this equation Ceff < 1 is the energy efficiency coefficient of the system and ΔATP is

manipulated based on the 29 kcal/mol of ATP.

5.4 Results

This section first we provide a quantitative analysis on the model and then validate

our result with experimental data.
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5.4.1 Analysis of the remodeling ATP profile

To analyze the ATP profile of one remodeling cycle we manipulated the energy

profile for selected paths from the random graph 5.3. While selecting these paths we

tried to choose those that could represent the diversity of the energy profile that exists

within graph paths.

In Fig. 5.9 we initially chose 12 bulge formation state: (1,12,L,1), (1,15,L,1),(1,

22,L,1),(1,42,L,1) with L=20, 50, 150. Then we manipulated the ATP profiles from all

possible tracking paths descended from the 12 initial paths. Hence, Fig. 5.9 comprises

ATP analysis of 960 paths of the entire remodeling state space. The fluctuation observed

on individual ATP profiles demonstrated in Fig5.9 is due to the elimination of the last

tracking step and replacement of that with a relaxation step which energetically is less

costly. Such circumstance is possible when addition of one base-pair to the step size can

convert the last state to a relaxation step(is favorable for the process), or impose fewer but

accumulatively more expensive tracking phase to the remodeling process. Small bulges

with acute angle are energetically very expensive therefore addition of one step could

be significant. For bending rigidity of DNA sequence we used the third bending model

outlined earlier and 1/2(emax + emin) from a pool of 350 randomly generated sequences

with the target length given by the distribution in Eqn. 5.6

5.4.2 Sensitivity analysis of the remodeling PDF

Bulge size , n, and time, t, are the two stochastic components of the model whose

joint PDF was derived in 5.16 their effect of the remodeling PDF is sketch in Fig. 5.10.(a)

for a constant nucleosome angle. In the probability distribution function of the re-

modeling cycle, nucleosome angle ϑ works concurrently as shift and scaling parameters.

Fig. 5.10.(b) shows this concurrent effect for a fixed n = 100, and as one can observe

such effect is not liner. This none linearity could be predicated as well as justified from
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Figure 5.9. The nonlinear dependency of the remodeling ATP profile of a remodeling
cycle on the bulge size, corresponding nucleosome angle, and the tracking step size;(a)
small size bulge size of 20 pbs, (b) medium size bulge of 100 bps, (c) large bulge of 150
bps. The topology of the bulge is chosen based on minimum energy profile of the bulge.
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the impression of nucleosome angle on the energy profile of process which were analyzed

earlier.

5.4.3 Analysis of sliding rate versus λ

We have simulated a period of 700 seconds of back to back remodeling cycles.

During first 200 seconds of simulation the stochastic nature of bulge size led counter

intuitive remodeling of higher rate for smaller λ, in Fig. 5.11.(a) where the end of initial

phase is depicted by a vertical dashed line. We simulated the sliding process for different

values of λ out of which three instances are shown in Fig5.11.(a). To further analyze

the fluctuation of sliding rate we magnified the results for a 100 seconds time frame of

Fig. 5.11.(a) (specified by the dotted rectangle) in Fig5.11.(b), where the contribution of

the large and small size bulges to the sliding rate is clearly observable. As Fig. 5.11.(b)

shows the formation of bulges with extreme sizes is a rare phenomena, this fact is endorsed

by observations in [1, 102]. Fig. 5.12 shows the rate of octamer in-cis translocation

versus ATP arrival rate λ. As we can observe sliding rate and ATP arrival rate have a

linear dependency.

5.4.4 Sensitivity of reaction time to the Eact

Fig. 5.13 shows the valid range of the activation energy for biological reactions,

reported in [85], versus reaction time for three different molecular collision times, δt.

5.4.5 Validation of the model

To investigate the nucleosome translocation, experimentalist use endonuclease re-

striction enzyme to cleave the binding sites that are normally restricted by the nucleo-

some. One of the most prevalent practical approach is to use the synthesized mononu-

cleomsome such as 343 base-pair DNA fragment with 601 nucleosome positioning at the
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center of the DNA. In Fig. 5.14 this mononucleosome is demonstrated and each arrow

points to the site sensitive to a particular restriction enzyme indicated by a label on base

of the arrow. The general method for such assays briefly include mixing a known concen-

tration of the mononucleosome, remodeling complex, and restriction enzyme in a reaction

buffer and monitor the percent of DNA cut over time. The position of the site along with

the percentage of DNA cut over time could be used to estimate the translocation rate of

the histone core. We also used the event diagram of Fig. 5.3 to mimic the same process

in-silico. For every in-silico experiment we conducted 10 different realization of the ex-

periment with individual seeds. However, such strategy will add DNA nuclease event to

the process whose temporal behavior should to be quantified. To quantify the nuclease

event we reviewed different experimental assay of this kind in [97, 101, 102, 100, 92] and

noticed that in all assays the concentration of the restriction enzymes were significantly

higher than the mononucleosome concentrations. The concentration of restriction en-

zyme in these assays are in the order of tens of restriction enzyme units (U). Each U is

the amount of restriction enzyme that is needed to completely digest one microgram of

DNA in hour in 50 μl of reaction volume. This indicates a DNA weight of 0.02g per liter,

having this amount of DNA completely digested in 1 hour will result an approximate

net rate of 1.825 × 1018 base − pairs/hour/U or < 1fsec/base − pairs/s/U . As it is

observed this time is infinitesimal and could be ignored in our calculations.

5.4.5.1 Validation scenario 1

For this in-silico experiment we used the wet lab experiment in [97] as the reference

for validation. Based on that we used Hhal restriction enzyme, therefore the required

displacement is +75 or -79 base-pairs. The sign of the displacement distinguishes the

direction of repositioning with respect to the position of the target DNA site on the

nucleosome. We used the same concentration of mononucleosome and SWI/SNF as
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Table 5.1. Experiment 1 Parameters

Parameter Value
Nucleosome 5 nM
SWI/SNF 0.5 nM
ATP 1mM
Temperature 300 K
mass
SWI/SNF 2M Dalton
DNA length 343 bps
Eact 11 kBT

ϑ 86◦

reported on page 5886 of the same paper, all the simulation parameters are reflected in

and reflected in Table5.1.

To calibrate the simulation we had to plug in different values for λ, our results

best matched the experimental data where λ = 10.53. More interesting outcome of this

in-silico experiment is that we learned that our objective ATP arrival rate agrees with

kcat/60 which is reported in the same paper. Fig. 5.15 shows the comparison between

the in-silico result and data from wet lab experiments. In Fig. 5.19 we have shown the

same measurements as in Fig. 5.15 but from the reverse angle, which is the time versus

percent of DNAsed nucleosomes.

5.4.5.2 Validation scenario 2

For this in-silico experiment we used the assay in [1] as reference for validation,

where the researchers used the optical tweezers to mimic the SWI/SNF tension strained

on the nucleosome during the remodeling and measure the force threshold for creating a

nucleosomal bulge. They also estimated the sliding rate of the nucleosome under certatin

ATP and SWI/SNF concentrations. We used the same concentrations for the SWI/SNF

and ATP and applied our model and discrete event simulation to estimate both the
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Table 5.2. Experiment 2 Parameters

Parameter Value
Nucleosome 5 nm
SWI/SNF 0.5 nM
ATP 1mM
Temperature 300 K
mass
SWI/SNF 2M Dalton
DNA length 3M bps
Eact 11 kBT

dt 10−8 s

induced force by SWI/SNF from Eqn. 5.20 and sliding rate of the histone core. The

molecular concentrations and model parameters for this experiment are listed in Table

5.2.
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Figure 5.11. (a) 700 seconds simulation of a remodeling cycles burst for three different λ
values with nucleosome angle ϑ = 86◦;(b) shows the magnification for (a) where 350 ≤
t ≤ 450 sec.
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Figure 5.14. Synthesized mononucleomsome with 601 sequence nucleosome positioning.
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applied tension on the nucleosome for λ = 5.25.



114

Fig. 5.17.(a) is the realtime slide rate of the nucleosome for the given experimental

parameter and ATP arrival rate of 10.53. The deviation observed on the image is due

to the randomized bulge size. Fig. 5.17.(b) is the projection of (a) on the force field. As

we can observe all the reported forces are well above the minimum of 7pN which is the

required force threshold for remodeling reported in [1]. The average magnitudes of the

tension is 39.86 is twice greater than the reported experimental results. Fig. 5.18.(a,b) are

the same as Fig. 5.17.(a,b) but for ATP rate of 5.25. There is no experimental reported

data for this arrival rate; however the interesting observation is the linear dependency of

the sliding rate of nucleosome to the λ which is more obvious in chart of Fig. 5.18.(a).

Also in Fig. 5.18.(b) as we can see the mean of the force is roughly remained the same

only the number of higher picks have remarkably dropped. This is physically relevant,

because the magnitude of force that is required to unbind the DNA from nucleosome

should not change; however, its should span over a longer time epoch that leads to lower

number of high pick and hence slower sliding rate.

5.4.5.3 Validation scenario 3

For the third in-silico experiment we refer to a Nature Structural and Molecular

Biology published article by Wang et. al [98], where the authors endeavored to probe

the catalytic efficiency (Km/Kcat) of the SWI/SNF. For this purpose they investigated

and reported the temporal dynamics of nucleosome in-cis translocation. As advised by

the authors we used a 774 base-pairs DNA segment with 601 nucleosome positioned

at 400 base-pairs from the beginning. In this experiment we monitor number of the

nucleosomes that had any displacement (remodeled) over 15 minutes of reaction time.

The concentration of species and model parameters are listed in Table 5.3.

Fig. 5.19 shows the fraction of the nucleosome remodeled for 15 minutes of the

experimental reaction time as well as the simulation time. For in-silico results we stayed
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Table 5.3. Experiment 3 Parameters

Parameter Value
Nucleosome 5 nm
SWI/SNF 0.5 nM
ATP 1mM
Temperature 300 K
Mass
SWI/SNF 2M Dalton

DNA length
774
base-pairs

Eact 11 kBT
dt 10−8 s

consistent with the perviously validated λ = 10.54. The characteristic displacement (CD)

is a parameter that is introduced by the reference article which is the average displacement

of the remodeled nucleosome over 1 minute of reaction time per reaction event. The

reported experimental CD = 66.5±5.3 base-pairs, and the in-silico CD = 132.36±90.41.

The in-silico CD is about twice larger that the experimental counterpart because in this

assay the average bulge size for SWI/SNF was not consistent with ≈ 100 base-pairs

reported in many other experimental data elsewhere. To modify the average bulge size

a new set of data samples for fitting the distribution curve is required necessary.

5.4.5.4 Model Verification

After validating the model with experimental data we have used the model to

predict the time which is required for the SWI/SNF to make an occluded region of a

genome accessible to the other proteins and complexes. This region may include the an

upstream promoter region or a Open Reading Frame (ORF) of a target gene. To continue

with our estimation we need to know ‘nucleosome occupancy’ [106] of the target region

or the average ‘global nucleosome occupancy’ across the genome. Nucleosome occupancy
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Figure 5.19. Fraction of nucleosomes remodel versus time; the blue line with circle mark-
ers are the in-silico results and the black line with triangle markers are the experimental
results.

defines the probability that a base pair in a target section of a genome is covered by a

nucleosome.

For this experiment we used the following parameters: a reaction volume of human

cell nucleus V = 4 × 10−15m3 , [SWI/SNF] = 250 molecules based on the data in [94],

the other parameters are same as Table 5.11. For this predication we make the following

assumptions:

• minimum length of each linker DNA is 53 base-pairs.

• nucleosomes are uniformly distributed across the genome.

• a bound SWI/SNF does not disassociate from a nucleosome until the sliding is

completed.

• SWI/SNF has an equal chance to binds to the 3’ and 5’ DNA strand.

If we denote the nucleosome occupancy with O, the number of nucleosome over a L

base-pair genome section will be �L×O
200

�, and the adjacent nucleosome base-pair distance

s = � (1−O)×L
k

�. Therefore, the cardinality of the tranlocase events can be obtained from :

|tranlocase events| = �1

2
L · (k + 1) · (1 − O)� (5.21)
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Also we set the simulator such that the size of all any bulge would not exceed s.

Fig. 5.20.(a) shows average realization of time required to open a genome region ranging

from 1 base-pairs up to 3 kilo base-pairs length for three different nucleosome occupancy.

The result are counter intuitive since we expect that lower occupancy takes lower time.

However, in most data points all three cases shows the same temporal behavior, because

of the parallelism that existed in the remodeling events. Since we had 250 copies of the

remodeling complex so there were an upper bound 250 parallel remodeling that could

happen simultaneously. Also as we can observe for the sequence with 0.3 occupancy

there are few case where the process takes remarkably longer time than the heavier occu-

pied equivalent length sequence. By rigorously looking into the data and the monitoring

the process we found out that this counter intuitive phenomena happens because the

remodelers in the lesser occupied sequence have a larger range of bulge size to pick from.

Also since the arrival process of ATP follows and poisson process the once a very large

size bulge is selected the cumulative time grows remarkably faster. In an attempt to

avoid this problem we forced the simulator to avoid bulges larger that 250 base-pairs.

The smoothed results is shown in Fig. 5.20.(b). Another observation from this experi-

ment is the time for opening the occupied sequence grows linearly with sequence length

irrespective of the occupancy ratio.

5.5 Discussion

In this work we aimed to capture the dynamics of nucleosome translocation in-

cis in the presence of SWI/SNF which is an ATP dependent 3́ → 5́ remodeler. In

the proposed model ϑ, n, λ, are the three critical parameters. Should these parame-

ters set properly one can leverage model to other classes of remodelers that implement

the same mechanism. ISWI family has a remodeling mechanism that is very similar to

SWI/SNF,[101, 93], their main difference is the smaller size of bulges for ISWI. RSC,
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another close relative of SWI/SNF that implements the same mechanism, [101], but pos-

sibly with different bulge size distribution. Hence, given the quantitative data regarding

the bulge size the model could be adopted accordingly. ATP arrival rate, λ, is directly

proportional to the concentration of the ATP where is in the range mili-M for cytoplasm

and hundreds of micro-M for the nucleus. Due to the sensitivity of the model to λ precise

adoption of this value for the mimicking the experimental condition is crucial.

Also in our model we focused on the most well-known structure of the nucleosome

that accommodate ∼147 base-pairs. However, it is a trivial task to use this model for

a nucleosome with different base-pair density. One just needs to replace the density of

base-pairs and use the corresponding adsorption energy density, ε.

Structural conformation of SWI/SNF avoids the reverse loops, [107], consequently

no intermediate jumps to the death state is not considered in the state space. Further-

more, the relative direction of nucleosome depends on the tracking strand. The tracking

strand of DNA is determined by the binding side of nucleosome to the protein complex.

Hence, this fact would not bring any limitation to our model. It should emphasized that

all known remodelers that follow the wave-rachet-wave mechanism slide the nucleosome

from 3́ → 5́ across the tracking strand. There is no sequence preference in our model,

which is supported by the evidence that SWI/SNF has no sequence specificity, [94].

One of the challenges in our modeling process was the to find the experimental data

at the molecular level. With a countable exception, [93, 102], all other available wet lab

studies reported the data in batch. Specifically in chromatin remodeling the analysis of

remodeling process is based on the quality of cutting of restriction enzyme activity, e.g.

Endo VII, HhaI, PmlI, etc., on often synthesized DNA sequence with mononucleosome.

Although such results will show the evolution of the process over time though reaching

an explicit value is not possible all the times.
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One of the interesting features of our model which stays through for all models

with mesoscopic scale is that one can alternate abstraction elevation based on the desired

degree of accuracy. In our model the entire bulge formation and tracking could be fitted

with a negative exponential distribution with an average rate equal to the mean of the

simulation results. The other way around is to increase the accuracy by not using the

average step size, but to devise an other distribution and incorporate that for the step

size.

5.5.1 Claims

I. in-cis Translocation rate of nucleosome follows a Gamma distribu-

tion.

We collected the SWI/SNF induced sliding rates of nucleosome, analyzed their

distribution and were able to fit a Gamma distribution into the sliding rate of these

in-silico experiments with mean μ = 11.70 which is ≈ λ, shape parameter α = 2.6± 0.17

and scale parameter β = 4.67±0.35. The distribution and curve fit is shown in Fig. 5.21.

II. SWI/SNF mediated chromatin remodeling manifests a bizarre en-

ergy efficiency.

We measured the Ceff from Eqn. 5.20 and observed that remolding process has a

an average energy efficiency of %35 ± 20 which is quiet low. Fig. 5.22 shows the Ceff

for experiments where λ = 10.53. We hypothesized three possibilities for such a weak

energy utilization as follows:(i) the rest or part of ATPase energy coupled with remodeler

conformation changes, (ii) energy dissipated from the system, (iii) unknown mechanism

involved in the remodeling which our model does not account for that.
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5.5.2 Model limitations

There are certain limitations to our model we could be listed as follows:

• Hinderance effect: The hinderance effect of the neighboring nucleosome does not

taken in to consideration.

• Out-of-phase nucleosome effect: An explicit assumption in our model is that the

target nucleosome is not out-of-phase with itself (i.e. the minor grooves of the

histone core stay at the right place). Impeding some bulge sizes or at certain

nucleosomes positions (i.e. xe) might push the nucleosome out-of-phase . This

phenomena would effect the energy profile of the nucleosome for the next remodeling

event. This fact is not captured by our model.

• Elliptical bulge: We have not considered bulges with elliptical geometry in our

model, [74] because: Firstly, no experimental observation of any kind is reported

on such bulge geometry. Secondly, the available approximation to the energy profile

of does not have enough accuracy,[74].

5.6 Summary

In this chapter first we gave a brief introduction on SWI/SNF and ISWI remod-

eling complexes and their subunits. Then the wave-rachet-wave qualitative model was

reviewed. Following the description of the qualitative model, we defined the state of

nucleosome based on the nucleosome loop size and loop coordinates. We abstracted a

state space of the remodeling process as random graph where each state (graph node)

was represented by a quadruple and transition between two states (graph edge) was han-

dled by a microevent. Nucleosome translocation in-cis is the consequence of execution

of a sequence of valid microevents in a proper order. We applied three variants of avail-

able biophysical models to analyze the curvature of the DNA. An energy profile for the
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DNA loops was adopted and coupled with the state diagram to propose the probability

distribution function for temporal evolution of the remodeling process. The remodeling

process is initiated by binding of remodeling complex to nucleosome and evolves by a

loop formation event and a sequence of loop tracking event. The stochasticity of the

model is on the loop size, tracking step and inter-arrival time of ATP molecules. We

also showed that the sedimentation drag force has a negligible effect on the remodeling

process. We conducted three in-silico experiments to mimic the wet lab reported results

and successfully validated our simulation results. Finally we showed that translocation

rate of nucleosome follows a gamma distribution. We demonstrated that based on our

model, SWI/SNF induced chromatin remodeling has a low efficiency in utilizing ATP

energy. At the end we browsed through the pros and cons of the proposed model.



CHAPTER 6

SETTING UP In-silico EXPERIMENT WITH eukaSimBioSys

6.1 Introduction

In previous chapters we covered our proposed methodology for in-silico simulation

of a eukaryotic cell along with some of the physicochemical models apt to the same

approach. We also described the architecture of eukaSimBioSys software tool which is

developed based on our methodology for simulating biological systems. However, in order

to bring the in-silico simulation of a eukaryotic cell from the workshop to the show case

a detailed and clear picture of the underlying biological system should be provided. Also

the are many fine grain pieces of assumptions, abstractions and models that needed to

be put together with the body of main system to fill in the gaps. Some of these pieces

of information could potentially be regarded as primitive model for a complex biological

process which with future enhancement could let us have an even more comprehensive

and accurate simulation as an integral part of the eukaSimBioSys.

In this chapter we intend to discuss the remaining concepts which are necessary

for getting the eukaSimBioSys to run and mimic the experimental conditions. These

concepts fall in divers domains including physiology of the insulin signal transduction

network, estimating metabolic reaction flux, pre-mRNA splicing model, eventology of

biological function, eukaSimBioSys design issues, etc. Although we promise to keep the

flow of materials in the best consistent manner; however, due to the interdisciplinary

nature of the work anticipating heterogeneous discussions is inventible.

124
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Table 6.1. Substrates Contributions to the Heart Energy

Energy
substrate

Energy
share(%) Preference situation

Major pathway controllers/points of
regulation

Fatty acids 60–90 High energy needs FAT/CD36; CPT1; Malonyl-CoA

Glucose 10–40
HF; ischemia; DM;
cardio hypertrophy,
Exercise

GLUT-1,4; PFK1; PDH

Ketone
bodies

<1-40 Starvation β-OH-Butyrate dehydrogenase

Lactate <1–40 Exercise LDH
Amino acids <1-5 Protein breakdown Aminotransferases
Ethanol <1-5 Never Acetyl-CoA synthase

6.2 Substrate metabolism in cardiac myocytes

Cardiac myocytes have diverse sources of energy substrates, however there prefer-

ence to this metabolites is very skewed as pointed out in Table 6.1, data is taken from

[108]. As its illustrated in the table fatty acid and glucose are the main energy sub-

strates of cardiac tissues. Hence, in this work we only consider these two substrates for

the following reasons: 1) their dominant share in energy provision for the cell, 2) to avoid

excessive complexity in the underlying system. Following this section we briefly describe

the physiology of fatty acid and glucose uptake, biochemistry of their metabolism and

elaborate their abstraction in our in-silico experiments.

6.2.1 Glucose source

6.2.1.1 Glucose uptake

Glucose is taken into the cell mainly by glucose transporter 1 (Glut1) and glu-

cose transporter 4 (Glut4) [109], the former is dominant during the fetal and its activity

replaced gradually replaced by latter after birth. In an adult heart Glut1 normally partic-

ipates in keeping the glucose at its basal level. Insulin signal stimulates the glucose uptake

through a complex mechanism where the details of whole mechanism is not completely
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understood. However it has been widely accepted that insulin promotes the Glut4 mem-

brane transport through two parallel merging pathways. The tasks of two pathway which

both originates from the IRS protein activation are complementary in mediating the glu-

cose uptake. Phosphorylated aPKCλ/ξ is a down stream product of a phosphorylation

signaling cascade from the first pathway which enables the Glut4 vesicle transporters

(GSV) to move to the vicinity of the membrane [110]. The trafficking of Glut4 between

the cytoplasmic compartments (tubulovesicular and vesicular) and the plasma membrane

forms a recycling type of process for this glucose transporters, more detail in the mech-

anism of this transport is available in [111, 112] . The second signal also originates from

the same insulin receptor INSR activated protein, INSR phospho-activates the APS pro-

tein. Activation of APS initiates a sequence of activations and interactions that involve

Cbl,CAP, Crk, C3G, CIP4, Exo70, TC10 proteins [111]. Through a sequence of complex

interactions the Glut4 which at the time is present in vicinity of the plasma membrane

is first docked then tethered and ultimately fussed into the membrane [112].

Figure 6.1. The event diagram for glucose uptake process.

6.2.1.2 In-silico abstraction of the process

In our in-silico experiment we abstract the outlined process into three events. These

three event includes GSV activation event, GSV transport event, and Glut4 tether events.

Fig. 6.1 shows the discrete even representation of the glucose uptake and Table 6.2 shows
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Table 6.2. Glucose Uptake Event List

Event Input output model
GSV activation aPKC, Glut4.C Glut4-a.C Reaction
GLUT4 Transport Glut4-a.C Glut4-a-t.C Diffusion
GLUT4 Tether Glut4-a-t.C Glut4 Reaction
Glucose Uptake Glut4, Glucose D-Glucose, Glut4.C Glucose Uptake

these events along with their associated models. To account for the glucose uptake

holding time, with the n number of Glut4 fussed into the membrane we make a subtle

modification to model described in chapter 3 and use that to manipulate the respective

holding time. The modification includes adding a capacity to each Glut4 which adopts

the original model to work for group uptake. We assumed a capacity g for each Glut4,

hence each Glut4 will be able to intake a group of g glucose molecules. Notice that

this capacity will not effect rate of finding and binding to the membrane receptor for

metabolite; however, it assumes that sugar molecules bind to the receptors in bundle of

g molecules. Also since details of docking, tethering and fussing is unimportant to our

investigations we consider all three as sequential microevents where their aggregate effect

could be formulated as one reaction event.

6.2.2 Glycolysis

Upon the glucose uptake it will be converted to D-Glucose-6Phosphate through

non-reversible reaction catalyzed by Hexokinase I and II. Each product molecule can

enter one of the three pathways 1)Glycolysis, 2)Pentose-phosphate pathway or 3)Glyco-

genesis. In this work we focus on genesis of ATP from exogenous metabolites, hence we

include the glycolysis pathway and first phase of fructose-mannose metabolism pathway

but will not cover the Glycogenesis and Pentose Phosphate pathways. The reason for

partial incorporation of fructose-mannose pathway is mainly because of an interesting
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experimental data which is available that we will use in the next chapter to validate

our in-silico experiment, and also to show the metabolite flux division across multiple

metabolic pathways.

The product of hexokinase reaction increase the flux across glycolysis pathway

which consists of 10 reactions as well as flux across phosphofructo-2-kinase/fructose-

2,6-biphosphatase reaction from fructose-mannose pathway. We consider the aerobic

respiration where along the glycolysis pathway, 6 ATP molecules is produced from each

glucose molecule and the final product of the pathway which is pyruvate. Pyruvate

could be converted to lactate by lactate dehydrogenase(LDH) (reversible reaction) or

transported to the mitochondrial by pyruvate dehydrogenase (PDH) which is available

on the mitochondrial matrix. In this work we do not incorporate the contribution of LDH

in the metabolic network of cardiac myocyte. Fig. 6.2 shows the glycolysis pathway and a

portion of fructose-mannose metabolism pathway. The oxidation of each pyruvate feeds

one AcetylCoA to the tricarboxylic acid cycle (TCA) which will be used to produce GTP,

NADH and FADH2. Each NADH and FADH2 leads to production of 3 and 2 ATP

molecules in electron transport chain within the mitochondrial membrane, respectively.

6.2.2.1 In-silico abstraction of the Glycolysis reactions

As discussed in chapter 2 all metabolic reactions including Glycolysis reactions

are handled in batch during the execution of the metabolic event whose details will be

discussed in this chapter.

6.2.3 TCA cycle

TCA (Tricarboxylic acid cycle) produces citrate in one or two steps from pyruvate

or in one step from AcetyleCoA. The oxidation of each pyruvate feeds one AcetylCoA
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Figure 6.2. The Glycolysis I pathway along with EC:3.1.3.46 and EC:2.7.1.105 (6-
phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 ) reactions from fructose and man-
nose metabolism pathway.

to the which will be used to produce GTP, NADH and FADH2 where the latter two

leads to production ATP molecules in electron transport chain within the mitochondrial

membrane. Although pyruvate oxidation supply AcetylCoA to the TCA cycle, though

the main source of AcetylCoA for this pathway is β-Fattyacid oxidation pathway. The

net effect of ATP production for each glucose molecule could be up to a factor of 36

which come from 6 ATP molecules through aerobic oxidation, 2 molecules from anaerobic

oxidation, and 15 ATPs per pyruvate molecules supplied to TCA cycle. We only consider

the aerobic net share of ATP contribution which is 36 molecules. The TCA cycle pathway

is depicted in Fig. 6.3.
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Figure 6.3. TCA (Tricarboxylic acid cycle) cycle pathway.

6.2.3.1 In-silico shift of pyruvate localization

PDH (pyruvate dehydrogenase) is available on the mitochondrial matrix, in our

abstraction any substrate that is available on the mitochondrial matrix is considered to

be a part of mitochondria. Pyruvate is the product of glycolysis which takes palace in

cytosol, thus the shift in localization of pyruvate is a prerequisite to participate in the

PDH reaction. We seek to make this adjustment with Metabolic Squad event that was

described in chapter 2. Also the underlying reactions are incorporated as a part of the

metabolic event.

6.2.4 Fatty acid source

There are two main sources of fatty acids for energetics of body cells, the exogenous

fatty acids which are stored in from of fat in adipocyte (fat tissues) and endogenous fatty

acid which comes from the intracellular storage of triglyceride. In this dissertation we

only consider the latter source during our investigations.
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6.2.4.1 Fatty acid uptake

The mechanism of Fatty Acid (FA) uptake in cardiac myocyte is not fully un-

derstood yet. Scientist postulate three main mechanism for fatty acid transport across

cardiac myocyte membrane:

• Passive diffusion: diffusion through the membrane and subsequent deposition to the

cytoplasm, this mechanism could be implemented by the Free Fatty Acids (FFA)

which have very low abundance in blood (< %1). Hence the contribution of this

mechanism to the cytoplasmic FA is negligible [113].

• Albumin receptor mediated transport: in which the albumin-bound FA gets an

anchor point to the cell membrane, subsequently the fatty acid could be released

in the vicinity of on the membrane. This mechanism promotes a rich pool of free

fatty acid across the membrane that could be eventually deposited to cytoplasm.

• FA mediated transport system: In this mechanism which still is not completely

carried out of the theoretical workshop, three proteins interacts through a not well

characterized mechanism. The three proteins include: Fatty Acid Binding Pro-

tein (FABP) which has membrane and cytoplasmic isoforms, Fatty Acid Transport

Protein (FATP) and Fatty Acid translocase (FAT/36).

The plasma isoforms of FATBP and FAT/36 both advocate for passive diffusion

by increasing the dissociation rate of albumin, and facilitated transport by interacting

with FATP and importing the FA into cytoplasm [114, 115]. This system adjusts the

rate of FA uptake with mitochondrial demand to avoid accumulation of FA in cyto-

plasm which could be hazardous for the cell. Once the FA entered the cytoplasm, it

then binds to cytoplasmic isoform of FATBP and will be transported to the vicinity

of the mitochondrial outer membrane. Acyl-CoA Synthase (ACS) converts the Long

Chain Fatty Acid (LCFA)to LC acyl-CoA. To participate in the β-Fatty Acid oxidation
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LC acyl-CoA should be transported into the mitochondria. To cross the impermeable

mitochondria membrane the fatty acid transport pathway utilizes the Carnitine palymi-

toyltransferase (CPT) system. CPT composed of L−carnitine, acylcarnitnie translocase

(ACT) and two transfer proteins i.e. CPT1 and CPT2 [116]. Carnitine palymitoyl-

transferase 1 is the transmembrane protein that is localized on the outer membrane of

mitochondria and delivers the LC acyl-CoA to carnitine to form LC acylcarnitine. ACT

hands the LC acyl-CoA over to CPT2 through the intermembrane space. The second

transfer protein replaces the carnitine group of LC acylcarnitine with CoA and releases

the LC acyl-CoA in the mitochondria to participate in the β-fatty acid oxidation path-

way [116, 117]. CPT1 is sensitive to Malonyl CoA which is the product of Acetly CoA

carboxylation in cytoplasm this reaction is catalyzed by Acetyl CoA Carboxylase (ACC).

Hence Malonyl CoA is a negative regulator of β-fatty acid oxidation.

Figure 6.4. Fatty acid uptake event diagram.

6.2.4.2 In-silico abstraction of FA uptake and mitochondrial transport lo-

calization

To model the fatty acid uptake we map the physiology into the events listed in

Table 6.3. These events form the event network for fatty acid uptake as demonstrated

in Fig. 6.4. In the FA mitochondrial transport we have modeled the process by breaking
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Table 6.3. Fatty Acid Uptake Event List

Event Input Output Model

FA Uptake LCFA CD36/FAT LCFA-t CD36/FAT
Fatty Acid
Uptake

FA Transport LCFA-t Fatp.C LCFA.C Fatp.C Fast Reaction
FA Mitochondrial
Transport

FA carnitine
Cpt1.C

FA.M Cpt1.C Fast Reaction

the transport between the metabolic network and signaling network. More precisely the

binding FA to CPT1 is handled by the signaling network as one bimolecular reaction,

the shuttle of LC acylcarnitine to the CPT2 is handled by a metabolic reaction which

is catalyzed by EC:2.3.1.21. Release of LCFA in the mitochondria is handle by another

signaling event. The reason for breaking the event between metabolic and signaling

network originates from the set of metabolic reactions that we used in populating the

data base. Our metabolic reaction set is consistent with BiGG database [118, 119].

Therefore, any metabolic reaction which is included in that database will be used by

our simulation. This causes the fragmentation of the reactions that are not explicitly

available in BiGG database but are among the precursor reactions to other metabolic

reactions.

6.2.4.3 β-Fattyacid oxidation pathway

Fatty acids are carboxylic acids that are often categorized based on two properties :

1) Existence of double bonds in their carbon-backbone categorizes them to saturated and

unsaturated fatty acids, 2) Length of their carbon back bone chain, most of natural fatty

acids have even number of carbons in their backbone. Short Chain Fatty Acids (LCFA)

have < 8 carbons, Medium Chain Fatty Acids (MCFA) have 8 to 14 carbons, Long Chain

Fatty Acids (LCFA) have > 15 carbons. Table 6.4 lists some of the well-known fatty
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acids along with their length and saturated property, detail discussion about the FA and

their structures is beyond the scope of this dissertation and interested readers are referred

to [120, 121] for further details. Our focus in this work is the metabolism of exogenous

FA, hence we assume that no triglyceride is available in the cell and the entire fuel of FA

oxidation pathway is provided from FA uptake. The FA residues are available in the form

of CoA thioesters within the cell [122]. On the average the oxidation of FA comprises

%60 to %90 of heart cell heart energy requirements during fasting, normal, and exercise

conditions [123]. On each FA molecule oxidation onset these residues undergo up to

seven serial oxidation reactions sets, based on their length during their post mitochondria

import. For each set of reaction one H2O molecule is consumed and a set of NADH ,

FADH2, and AcetylCoA is produced. As outlined earlier NADH and FADH2 will

further be used to produce ATP in mitochondria and AcetylCoA would fuel the TCA

cycle. Each reaction set composed of following ordered reactions: FAD+ dependent acyl-

CoA dehydrogenase, a 2,3-enoyl-CoA hydratase, NAD+ dependent 3-hydroxyacyl-CoA

dehydrogenase ,and the thiolase cleavage reaction [123]. Fig. 6.5 depicts the β-Fatty

acid oxidation pathway.

6.2.4.4 In-silico abstraction of the FA reactions

The same metabolic event that accounts for glycolytic and TCA reactions also

includes the reactions for current pathway.

6.3 Metabolic Event

As pointed out in chapter 2 we issue the metabolic events in a periodic time order.

The output of each Metabolic event in fact is a set of reaction fluxes that happen during

the inter-arrival period of successive metabolic events.



135

Table 6.4. List of Well-known Fatty Acids

FA name IUPAC name Chemical structure Abbr. Saturated
Butyric Butanoic acid CH3(CH2)2COOH C4:0 Yes
Caproic Hexanoic acid CH3(CH2)4COOH C6:0 No
Caprylic Octanoic acid CH3(CH2)6COOH C8:0 Yes

Capric Decanoic acid CH3(CH2)8COOH
C10:0

Yes

Lauric Dodecanoic acid CH3(CH2)10COOH
C12:0

Yes

Myristic Tetradecanoic acid CH3(CH2)12COOH
C14:0

Yes

Palmitic Hexadecanoic acid CH3(CH2)14COOH
C16:0

Yes

Stearic Octadecanoic acid CH3(CH2)16COOH
C18:0

Yes

Arachidic Eicosanoic acid CH3(CH2)18COOH
C20:0

No

Behenic Docosanoic acid CH3(CH2)20COOH
C22:0

No

Figure 6.5. β-Fatty Acid oxidation pathway.
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6.3.1 Metabolic events and metabolic reaction fluxes

We employ the a Flux Balance Analysis (FBA) [124, 125] approach to determine

the flux across the metabolic reactions. From a flux we can determine the change in

cardinality of specific a metabolite in the entire set of metabolic reactions over a time

epoch, given the steady state condition. The essence of the FBA for a metabolic reaction

founded on the assumption that the cell tends to maximize the biomass yield in the steady

state condition. The emerging problem is then mapped into a linear optimization problem

where the solution to this problem are optimum fluxes across sets of metabolic reactions

given: the reactants, products, and enzymes concentrations. rFBA [126, 127, 128, 129]

variants of FBA are enhanced version of the original FBA that takes into account the

effect regulatory constrains on the metabolic fluxes. Furthermore, rFBA benefits from

a dynamic search space on each instances of the search. The dynamics of the search

space is driven by the gene expression profile of metabolic that possibly imposes new set

constrains to the problem. One of the premium advantages of these approaches is their

temporal efficiency in merging heterogenous networks i.e. metabolic and gene regulatory

networks. By applying the rFBA we manipulate the metabolic flux in six steps. Before

we get to these steps we introduce our we nomenclature for metabolic reaction Ri which

is an ordered set of (r1, ..., rm, p1, ..., pm, g1..., gz, Keq). In this ordered set {rj}, {pk},
and {gt} are sets of reactant consumed, products yielded and enzyme Ei proteins that

catalyzes the reaction, respectively. The Keq is the equilibrium constant of the reaction.

Let

M = ∀Ri : {rj}
⋃

{pk}

and OEi
be the turnover number of the enzyme Ei and u(x) be the unit step function.

Now we manipulate the flux for Ri during in time epoch t, which is denoted by F t
Ri

from

the steps below:
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Step-I determine active status: ∀ Ri if (Ei = min(|gt|)) > 0 then reaction is active.

Step-II reaction direction: if
∑

pk∑
rk

< Keq then di = 1 and reaction has forward

direction and di = −1 otherwise, where the reaction has a reverse direction.

Step-III build the STM = R × M which is the global stoichiometry matrix of all

reactions such that if the j is substrate and |j| is the stoichiometry of j in

reaction i then: STMi,j = |j| × di if j a reactant and STMi,j = −|j| × di

otherwise.

Step-IV manipulate the weight of reaction Ri for metabolite Mj as follows:

wi,j =
�OEi

× STMi,j × |Mj |�∑
i(|Ei| × OEi

× STMi,j × u(STMi,j))
× u(STMi,j) (6.1)

Notice that if the denominator in the above expression is zero then wi,j = 0.

Step-V apply the metabolite constrains: qi = min(min{|ri|}, min{wi,j∀j}).
Step-VI determine the flux: F t

Ri
= min(qi, Ei × OEi

) × t.

In the last step above, t is the inter-arrival time of the metabolite events. The

estimated flux is inversely proportional to t, where as efficiency of the simulation has

direct proportionality to that. In this work we have 109 metabolic reactions which are

imported from BiGG database. Each of these reactions is identified by a unique reaction

ID borrowed from the original record in the BiGG. List of these reaction IDs along with

their associated enzymes is given in Table 6.5.

6.4 A computational model for pre-mRNA splicing

To chicaneries the dynamics of pre-mRNA splicing which is an integral step of

protein synthesis process in eukaryotes we have abstracted the process into a stochastic

discrete event based model.
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Table 6.5. List of Metabolic Reactions

Reaction ID Enzyme Reaction ID Enzyme Reaction ID Enzyme

1 R PCm 6.4.1.1 38 R FAOXC200180m 1.3.99.3 75 R ACONTm 4.2.1.3

2 R SUCOAS1m 6.2.1.4 39 R FAOXC11 1.3.99.3 76 R ACONT 4.2.1.3

3 R LDH L 1.1.1.27 40 R GCC2cm 1.8.1.4 77 R PGI 5.3.1.9

4 R MDH 1.1.1.37 41 R C226CPT1 2.3.1.21 78 R PGM 5.4.2.1

5 R ME1m 1.1.1.38 42 R DMHPTCRNCPT1 2.3.1.21 79 R PGMT 5.4.2.2

6 R ME2m 1.1.1.40 43 R DLNLCGCPT1 2.3.1.21 80 R GlyMtas 5.4.2.4

7 R ICDHxm 1.1.1.41 44 R DCSPTN1CPT1 2.3.1.21 81 R FACOAL246 1 6.2.1.3

8 R ICDHyrm 1.1.1.42 45 R C204CPT1 2.3.1.21 82 R FACOAL191 6.2.1.3

9 R ICDHy 1.1.1.42 46 R C180CPT1 2.3.1.21 83 R FACOAL226 6.2.1.3

10 R GAPD 1.2.1.12 47 R HPDCACRNCPT1 2.3.1.21 84 R FACOAL224 6.2.1.3

11 R PDHm 1.2.4.1 48 R LNLNCGCPT1 2.3.1.21 85 R FACOAL140i 6.2.1.3

12 R AKGDm 1.2.4.2 49 R C161CPT22 2.3.1.21 86 R FACOAL170 6.2.1.3

13 R SUCD1m 1.3.5.1 50 R LNLCCPT1 2.3.1.21 87 R FACOAL1821 6.2.1.3

14 R FAOXC1811602m 1.3.99.3 51 R LNELDCCPT1 2.3.1.21 88 R FACOAL1822 6.2.1.3

15 R FAOXC18480m 1.3.99.3 52 R C161CPT12 2.3.1.21 89 R FACOAL240 6.2.1.3

16 R FAOXC140 1.3.99.3 53 R TTDCPT1 2.3.1.21 90 R FACOAL226i 6.2.1.3

17 R FAOXC204 1.3.99.3 54 R TMNDNCCPT1 2.3.1.21 91 R FACOAL1832 6.2.1.3

18 R FAOXC1811601m 1.3.99.3 55 R ADRNCPT1 2.3.1.21 92 R FACOAL184 6.2.1.3

19 R FAOXC226205m 1.3.99.3 56 R VACCCPT1 2.3.1.21 93 R FACOAL1831 6.2.1.3

20 R FAOXC16180m 1.3.99.3 57 R STRDNCCPT1 2.3.1.21 94 R FACOAL241 6.2.1.3

21 R FAOXC16080m 1.3.99.3 58 R C161CPT1 2.3.1.21 95 R FACOAL205 6.2.1.3

22 R FAOXC80 1.3.99.3 59 R ARACHCPT1 2.3.1.21 96 R FACOAL206 6.2.1.3

23 R FAOXC2242046m 1.3.99.3 60 R PTDCACRNCPT1 2.3.1.21 97 R FACOAL200 6.2.1.3

24 R FAOXC2251836m 1.3.99.3 61 R CSm 2.3.3.1 98 R FACOAL203 6.2.1.3

25 R FAOXC180 1.3.99.3 62 R ACITL 2.3.3.8 99 R FACOAL204 6.2.1.3

26 R FAOXC182806m 1.3.99.3 63 R HEX1 2.7.1.1 81 R FACOAL161 6.2.1.3

27 R FAOXC183806m 1.3.99.3 64 R FBPK26 2.7.1.105 101 R FACOAL180i 6.2.1.3

28 R FAOXC2051843m 1.3.99.3 65 R PFK 2.7.1.11 102 R FACOAL260 6.2.1.3

29 R FAOXC161802m 1.3.99.3 66 R PYK 2.7.1.40 103 R FACOAL1812 6.2.1.3

30 R FAOXC18280m 1.3.99.3 67 R PGK 2.7.2.3 104 R FACOAL160i 6.2.1.3

31 R FAOXC2031836m 1.3.99.3 68 R DPGase 3.1.3.13 105 R FACOAL1813 6.2.1.3

32 R FAOXC2252053m 1.3.99.3 69 R FBPP26 3.1.3.46 106 R FACOAL2251 6.2.1.3

33 R FAOXC183803m 1.3.99.3 70 R FBP 3.1.3.11 107 R FACOAL2252 6.2.1.3

34 R FAOXC160 1.3.99.3 71 R PEPCK 4.1.1.32 108 R SUCOASm 6.2.1.5

35 R FAOXC170m 1.3.99.3 72 R FBA 4.1.2.13 109 R ACCOAC 6.4.1.2

36 R FAOXC226 1.3.99.3 73 R ENO 4.2.1.11

37 R FAOXC150m 1.3.99.3 74 R FUMm 4.2.1.2
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6.4.1 An overview of splicing

In eukaryotic the central dogma includes an additional preprocessing step prior to

have a mature transcript of the gene. This preprocessing concatenates the exons which

are the protein coding units of a gene, by removing the interleaved introns that do not

convey any code for protein. The splicing pathway that converts the pre-mRNA to mRNA

was first revealed in mid 80s [130, 131, 132]. The protein machinery that impalements

the splicing is referred to as spliceosome and in [133] researchers have shown that > 300

proteins intentionally involve in the splicing process. The splicing can happen cortran-

scriptionally [134] and based on the class of introns can implement different mechanism.

There are several classes of introns including: 1)tRNA introns [135], 2)group I and II

introns that could be found in protozoan rRNAs [136], mitochondria and chloroplasts of

fungi and plants,and 3) spliceosomal introns that form the largest class and exclusively

available across eukaryotic genomes. In this work our attention is focused on the last

group and detail discussion regarding the rest is beyond the scope of this dissertation.

In eukaryotes splicing has two variants for intron excision from a premature tran-

script, known as constitutive splicing and alternative splicing both of which occur in-cis

[137]. Former is the primitive mechanism where the objective is accomplished by remov-

ing the intron sequence flanking an exon and pasting the two successive exons. The latter

augments the coding capacity of a single gene by reordering and/or cleaving the original

exons [138, 137]. In passed decade extensive amount of research have been devoted to

proteins that catalyze the splicing or signaling pathways that affect the alternative splic-

ing pattern, etc. whose detail discussion is beyond the scope of our work an could be

studied elsewhere. For our simulation purpose we seek to find a computationally efficient

model that can estimate the temporal dynamics of splicing. Therefore, at this time we

prefer to draw our attention to the constitutive splicing and leave the alternative variant

for the future works.
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6.4.2 Mechanism of constitutive splicing

The core spliceosome composed of five small nuclear ribonucleoprotein particles

(snRNPs), [137], listed here: U1, U2, U4, U5 and U6 . The spliceosome assembly happens

in an orchestrated fashion which leads a bistep splicing pathway [139] as follows:

Step 1: Cleavage of pre-mRNA at the 5́ splice site which forms the two splicing interme-

diates: the linear first exon mRNA and intron-second exon lariat. Lariat configuration

forms the 2́ → 5́ phosphodiester bond between the Guanosine at the 5́ splice site and

the T-hydroxyol of an Adenosine in the vicinity of the intron 5́ end.

Step 2: Ligation of the two exons by cleavage of the 3́ splicing site which results a

uninterrupted exons and spliced intron in a lariat configuration. The evolution of these

bistep pathway subjects to organized assembly/disassebly of the spliceosome components

in a timely manner which forms the foundation of the splicing process.

6.4.2.1 Spliceosome assembly pathway

The objective of spliceosome assembly pathway is to make the mRNA branching

possible by bringing the 5́ branch site to the proximity of branching point. For this pur-

pose the small nuclear ribonucleoproteins (snRNP) and pre-mRNA forms the backbone

of the process. These snRNPs interact with one another and with RNA and under go

conformational change to develop the process. Other non-snRNP factors (e.g. auxiliary

factor U2AF) also participate in these delicate interactions and catalyze the process. We

do not bring them the picture since they have a marginal role in over all evolution of

process. The spliceosome assembly pathway could be segregated into four stages as follow

[139]:

Stage-I U1 snRNPb binds to the 5 splice site referred to as commitment complex

formation. This is the only none ATP dependent stage in splicing.
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Stage-II Splicing complex A: pre-mature spliceosome recruits U2 snRNP that binds

to the branching point which most often is about 18-38 nucleotides upstream

the 3́ splice site [140]. At this point the commitment of complex to splicing

becomes irreversible where this is the first ATP dependent stage in splicing. It

should be mentioned that binding of U2AF stabilizes the U2 binding. Also,

formation of U1 pre-spliceosome is required for U2 biding since it helps to

juxtapose the 3́ and 5́ splicing sites.

Stage-III Splicing complex B: formation of mature spliceosome by joining of U4/U5/U6

multi-snRNP to the complex A. The U4/U5/U6 is formed prior to the binding

to splicing complex A.

Stage-IV Splicing complex C: U4/U6 undergo a conformational change prior to

cleavage at splice site. This conformation change leads to instability and loss

of U4 snRNP which forms the splicing complex C.

Following the assembly of spliceosome complex C the splicing starts using the ATPase

energy to form the branch (2́ → 5́ phosphodiester bond). Subsequently the 3́ site is

cleaved meanwhile the two exons legation occurs. The spliceosome that remains bound

the intron facilitates the intron degradation and itself gets recycled for the further splicing.

Fig. 6.6 depicts the spliceosome assembly stages and intron excision process.

6.4.2.2 Event based abstraction of splicing

In order to capture the temporal dynamics of splicing event, we abstracted the

spliceosome four stage assembly pathway and its post assembly interactions (branching

and ligations) as a sequence of microevents. Due to the uncertainty that exists in the

cell environment [18] these microevents render an inherent stochastic behavior in time

an space. We try to provide parametric mathematical expressions that can estimate

the temporal stochasticity of each microevent. The convolution of these stochastic ex-
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Figure 6.6. Constitutive Splicing: the branch point(BP) is in the vicinity of 3́ splicing
site(SS), binding U1 forms the commitment complex 1 (CC1), joining the U2 to the
commitment complex 2 (CC2) forms the pre-spliceosome, spliceosome becomes mature
once the U4/U5/U6 complex binds to the pre-spliceosome. Each red triangle distinguishes
an identified microevent.

pressions can represent an estimation of one stochastic splicing event. If we number

the microevent based on Fig. 6.6, hence we will have 3 protein-RNA binding miscreants

(1,3,4), one protein conformation change (5), one loop formation microevent (2), and

the ligation microevent (6). As it is outlined earlier all the microevent except the first

protein-RNA binding couple ATP hydrolysis energy for their progress. Therefore, for all

but one of the microevents the ATP inter-arrival time will also be an effective factor. We

make the following assumption prior to modeling the microevents: ATP molecules have

poisson arrival process [105], the tri-snRNP complex is always available in the reaction

environment, any protein requires one ATP molecule for its conformation change.

protein-RNA binding micro-event: To estimate the time for this microevent we follow the
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approach proposed in [35] where they showed that temporal dynamics for protein-DNA

binding follows an exponential distribution with respect to the number of binding sites.

We use the same approach to find rate for protein-RNA binding as follows: In [35] they

showed that probability of an abundant protein to binds to it’s functional site s on DNA

(pD(B, s)). Considering the case where the set of binding sites has a unit cardinality

(|s| = 1), then the modified pD(B, s) could be written as:

pD(B, s) =
4Δt(rD + rp)(ns · bp + 2B · bp + 2rp)(ns + 2B)aam

πV · aap · nD

√
8kbT

πm
e
−Eact

kBT (6.2)

in Eqn. 6.2 B is the number of nucleotides that protein slides over on RNA surface

prior to binding to a functional site and m = mp·mR

mp+mR
is the reduced mass. List of other

parameters could be found in Table 6.6. If |s| > 1 then the probability to access site j is:

pD(B, sj) = pD(B, sj)
∏

i=1,i�=j

(1 − pi) (6.3)

pD = pD(B, sj) + p(0, sj) − 2pD(0, sj)pD(B, sj) (6.4)

Eqn. 6.3 only counts for the case when 1D diffusion on RNA surface precedes binding.

Eqn. 6.4 averages over both cases, binding with/without sliding. Now we can write the

average binding time as follows:

1

γ
=

pnrΔt + (1 − pnr)(Δt + τ1d)

pD
(6.5)

pnr is the probability for no random-walk on the RNA surface by protein, and τ1d is the

1-D diffusion time (due to the random-walk) of the biding protein on the RNA surface,

this diffusion time has been estimated for DNA in [141], we use the same approximation

for RNA since the force fields remains roughly the same. Table 6.6 lists the values for
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Table 6.6. List of Parameters for Protein-RNA Binding

Parameter Description Value
λ ATP arrival Rate
V Volume 4 × 10−18 m3

nR bps Length of RNA

nm
bps Length of sn-RNP binding
site

50 base-pairs

aap
Length of protein amino acid
chain

339 base-pairs
aam Length of protein motif 154 base-pairs
rp Average radius of the protein 5−9 m
rD Radius of DNA 10−9 m
mp RNA weight nD ×330 Da
mD Protein weight 37698 Da

Δt Inter-collision time 10−8 sec
Eact Activation energy 1 kBT

bp RNA nucleotide length 0.34 × 10−9 m

kbT Boltzmann constant
1.3806503 ×
10−23 kg m−2 s−2 K−1

ΔATP ATP hydrolysis energy 29 kcal/mol

parameters we used in our simulation to estimates Protein-RNA binding time.

Branching microevent: To estimate the required energy for branching we apply the same

approach as in chapter 5 for DNA bulge formation. Considering the intron with n

nucleotide length, form [103] the bending rigidity of the intron Bn could be written as:

Eb =

∑n−2i e−1
i

n − 2
⇒ Bn =

π

16
EbR

4
RNA × 1030 (6.6)

in the above expressions ei is Young modulus of the nucleotide triplet from the Table 1

in [103]. If the resultant branch has a radius r = n0.34×10−9

π
, then we can approximate

the required energy from:

U = Bn
α

r
(6.7)
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Subsequently required number of ATP molecule to supply the energy for this branch will

be:

a = � U

ΔATP
� (6.8)

In Eqn. ΔATP = 11.558kBT . As mentioned earlier only the first stage of splicing is ATP

independent, hence considering a + 4 will be the lower bound for the required number

ATP during the spicing process. Considering our assumption for the ATP arrival process

with mean rate λ and Eqns. (6.5,6.4.2.2) the probability distribution function for splicing

an intron could be written as:

pspl(t) =
λ(λt)a+3+b

a + 3 + b
e−λt × e−γt (6.9)

In Eqn. 6.9 b is the tuning parameter for that counts for ATPs above the lower bound

required for one instance of splicing. Now if the pre-mRNA consists of m introns, and

l ≤ m splicing happen simultaneously then then �m/l� fold convolution of Eqn. 6.9 will

be form the probability distribution function of the one pre-mRNA splicing event.

Since the solution to the probability distribution function of the splicing event

becomes intractable, therefore we use the discrete event simulation to calibrate the pa-

rameters such the rate of pre-mRNA event comes to a close vicinity of the experimental

average (p < 0.01). Although the reported experimental time for pre-mRNA ranges from

several minutes to a couple of hours [142, 143, 144], yet in-vivo observation shows for

mammalian that have an average intern length ∼ 3kilo-bases splicing takes place in the

time order of < 10 minutes [145]. For the in-silico experiments we have calibrated our

model to have an average splicing time of 5 minutes.
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6.5 Event based model for protein synthesis

Protein synthesis is the core process of life which involves a very complex and not

completely known regulatory mechanism. Although, we might still need years to come

for a comprehensive and detailed quantitative model of protein synthesis; however, with

the state of art of event based abstraction and the fundamentals of central dogma as will

be demonstrated shortly we are able to model this process to serve our purpose.

6.5.1 An overview to qualitative model of the process

Protein synthesis in eukaryotes compromise an orchestrated sequence of events

including: chromatin remodeling, gene transcription, pre-mRNA splicing, mRNA nuclear

transport and mRNA translation. Any one of these events involves complex evolution and

regulatory mechanisms and undoubtedly, they have been topics for excessive research over

passed quarter century and considerable amount of online and published resources are

available on them. Comprehensive discussion over these topics will be beyond scope and

capacity of this dissertation, hence we briefly browse through the major concepts that will

contribute to our modeling effort. Transcription and translation in eukaryotes involve

sophisticated evolution and regulation mechanisms, and much of their details yet not

understood properly. General mechanism of transcription and translation is discussed in

[146] and elsewhere. In [147] general concepts involved in mammalian gene transcription

is detailed and a qualitative model for their assembly is proposed. Transcription and RNA

II-TFIIB are structurally analyzed in [148, 149] and mechanism of RNA II elongation is

discussed in [150]. Binding of TATA Box Proteins (TBP) is essential for gene expression,

in [151] regulation of gene expression by TBP is elucidated. In a recent work kinetic

analysis of gene transcription is provided in [152]. As outlined earlier following the gene

expression the pre-mRNA will be spliced to generate messenger mRNA. Each mRNA

should be transported to cytoplasm and translated by the ribosomal proteins (tRNA) to
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give birth to protein that it encodes. The process of transporting the mRNA to cytoplasm

is referred to as nuclear transport which it self has divers and complex mechanisms

[153, 154, 155]. Also the kinetics of mRNA nuclear transport is studied in [145, 144].

Following the export of mRNA to the cytoplasm ribosomal protein (tRNA) will translate

the codons in mRNA to the proper amino acids and click the protein synthesis. The

mechanism of translation initiation is given in [156, 157] while the molecular mechanism

of translation is described in [158]. In order to have a dependable translation, authors in

[159] discussed that eukaryotic translation machinery applies a surveillance mechanism

to ensure the correct reading and translating of mRNA codons. Also it has been shown

that protein synthesis is non-linear and has a bursty dynamic [160], furthermore protein

synthesis could also be regulated at the ribosome level [161, 162].

6.5.2 Eventology of the process

Nevertheless, the details of gene expression and its regulatory mechanism is far

more complicated than described above, we have abstracted the protein synthesis pro-

cess as a network of events. These events could be categorized into two classes of explicit

and implicit events based on the mechanism of their initiation. Former, includes those

events whose trigger is explicitly indicated in the qualitative models such as transcription

event, splicing event, etc. The latter class includes those events that will be executed

although they are not explicitly included in the qualitative models, examples of those

include: protein decay, mRNA decay, transcription termination, etc. The protein syn-

thesis is the product of collaboration between the transcription regulatory and signaling

networks. Therefore, to inspire a clear event view (’eventology’ ) of the whole process

we seek to extrapolate into a step of signaling prior to the gene expression. Suppose an

external signal in its downstream activates the transcription factor α, upon activation α

is transported into the nucleus. The effect of α on gene expression is interpreted by the
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Figure 6.7. Event diagram of protein synthesis in eukaryotes.

gene regulatory network, our abstracted mechanism of gene regulation will be discussed

later in this chapter. Back to our model, further assume that as result of transcription

regulation gene β will be expressed. Ultimately β − mRNA will be transported to cy-

toplasm and translated to protein B. Fig. 6.7 shows the event diagram of this model

where the red arrows point to the implicit events and black arrows point to the explicit

events. As observed in the diagram an interesting feature of the events is than an event

could belong to both categories and the only segregating check point is the mechanism

for triggering an event with respect to qualitative model.

6.5.2.1 Temporal dynamics of the events

The dynamics of the events are captured by their associated stochastic discrete

event based models. For chromatin remodeling event we applied the model outlined

in chapter 5 with the nucleosome occupancy of 0.3 for the promoter region. For the

transcription event we used the model proposed in [36]. This model uses a birth and death

markov chain to determine the rate of the transcript production. They have modeled

the process based on number of RNA PII that binds to the gene and the elongation

rate of RNA PII. We have adapted and calibrated the model to become consistent for
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eukaryotic based on the parameters given in [144, 143] (e.g. basal RNA PII elongation

rate (40 bases/s), etc.). The splicing event rate is estimated based on the model discussed

earlier in this chapter. For the pre-mRNA and mRNA decay events we applied the

exponential decay processes with a rates according to to half life of these species reported

in [163, 164, 160]. We used a simple stochastic diffusion model proposed in [37] to estimate

temporal dynamics of mRNA nuclear transport based on kinetics reported in [155, 165].

For estimation of translation event time, we applied the same markov model in [36] that

was used for transcription and calibrate the parameters based on experimental data in

[143, 145, 160]. The protein decay event is an exponential decay event with rate reported

in [166]. The transcription termination event has a constant time which could be used

as a further calibrating point in the simulator.

6.6 Eventology of the insulin signaling in the cardiac myocyte

6.6.1 An overview of insulin signal

Heart pumps the blood at basal rate of 5-6 liter/min and can rise up to 20-30

liter/min during the workload and exercise [167]. Such pumping capacity requires un-

interrupted contractile activity and hence, a perpetual level of energy demand. The

fulfilment of such energy demand is almost entirely relayed on substrate oxidative path-

ways in mitochondria and cytoplasm discussed earlier in this chapter. Therefore, cardiac

myocytes that are the key tissues of heart contractile activity should have a flexibility

in their fuel selection. Although metabolic flux modulation could be regulated at many

levels, two of the promising flux modulation in cardiac myocytes are through the control

of metabolite uptake and gene expression level [168]. Insulin which is an essential peptide

hormone of endocrine system that secretes from β-cells in pancreas is predominantly in-

volved in the fuel selection at both levels. Although the propagation of the insulin signal
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Figure 6.8. The hierarchy of insulin signal propagation in the cell.

within the cell will influence divers cellular functions such as mitogenic, cell growth, etc.

however, in this dissertation we focus on the signaling information that culminates on

the two modulatory effects. The effect of insulin on the metabolites uptake was discussed

earlier therefore, here we draw our attention to the regulation of the metabolic enzyme

synthesis.

The insulin signal is sensed by binding the insulin to insulin receptors located on

the membrane of cardiac myocytes and belong to the family of ligand-activated tyrosine

kinase (RTK) receptors [169]. The information of the insulin signal is propagated within

the cell through a non-linear signaling network. The hierarchy of insulin signaling network

is depicted in Fig. 6.8
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The description regarding the details of insulin signal transduction hierarchy and

the function of individual substrate components is available in [170, 169]. Although the

effect of an external signal on the fate of a cell could be best analyzed when it is exposed

to complex sets of signals in the context of a cell; however, the flip side of the coin in such

analysis is to cope with emerging complexity of system. The inherent robustness is the

de-facto rule of survival for biological systems subjected to natural section. Therefore,

most of these systems are robust to the large set of stresses and demonstrate the butterfly

effect to substantially smaller sets. Setting this fact vis-a-vis the complexity of system

we can reduce the complexity by two strategies: i) either by eliminating the components

or aggregating their detail to a higher level where it is proven or speculated to have lesser

impact on the objective system, ii) exclude a subset of the system from the analysis with

the assumption that the rest of the system is in the equilibrium interaction with that

subset. With this strategy we have abstracted the insulin signal transduction hierarchy

from excessive details and included those components where a consensus exists on their

impact on the cell metabolism [167, 168, 171, 108].

The insulin signal transduction network (STN) that has the above property could be

found in KEGG pathway database [6]. We imported their STN and modified the original

version based on data published elsewhere to include some of missing components that

were necessary for our work as well as excluded the excessive details. The insulin STN

that we stored in the database and is used for our simulation is depicted in Fig. 6.9.

There are situations where we need to modify the layout of this STN based on some

hypothesis or special experimental condition that will be discussed in place.

6.6.2 Event diagram

The event diagram of Fig. 6.9 is depicted on Fig. 6.10, The color code is used

to represent the events with similar physicochemical (e.g phosphorylation, activation,
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Figure 6.9. The insulin signal transduction network diagram. The information from
exogenous signal propagates through a non-liner network.

transport) class. The physicochemical class of the event were explored from the wet lab

data available in the literature. An event whose physicochemical class was unidentified

is assigned to a biochemical reaction class. We should bring this point into attention

of the readers that, since signal transduction and transcription regulatory networks are

interrelated we have included a subset TRN that is affected by the insulin in the event

diagram. Also Fig. 6.10 does not include the events that pertain to the fatty acid signal

which is partially depicted in right corner of Fig. 6.9.

Applying graph therapy analysis on the STN event diagram along with the gene

regulatory network (GRN) of a biological system could possibly provide a new realm

of results on properties of the system, however we postpone these type analysis for our

future works.
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Figure 6.10. The event diagram for insulin signal transduction network in Fig. 6.9. Events
with purple color code belong to TRN.

6.7 Transcription regulatory network and in-silico regulatory model

More than 150 genes have been identified that are positively or negatively regulated

by the insulin [172]. Amongst genes affected by insulin < 50 genes have been reported,

as myocardial genes [167]. Since we are working with two signals i.e. insulin and fatty

acid, therefore those gene that are regulated by either of these is keen to our interest in

this work.

6.7.1 Regulated genes

Insulin affected genes: We sought to collect as many genes that has been reported

and is regulated by insulin signal in the heart muscle cell. Our main sources for tran-
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scription regulatory data gathering include but not limited to [173, 13, 170, 172] articles

and KEGG [6], HumanCyc [14], and Reactome [7] databases.

Fatty acid affected genes: The regulation of genes by fatty acid is mostly through the ac-

tivation of peroxisome proliferator-activate receptors (PPAR) [108]. These nuclear recep-

tors are available in three forms: PPARα, PPARγ and PPARδ. Fatty acid binds to all

three type as ligand and activates them, the activated PPAR then forms an obligate het-

erodimer with retroid X factor receptor (RXR). The PPAR/RXR is then transported to

the nucleolus and binds to the peroxisome proliferator receptor binding element (PPRE)

which is located on the promoter site of the genes induced by this transcription factor

complex. Details of PPAR/RXR regulatory mechanism is reported in [174, 108]. The set

of transcription factors (TFs) and their target genes separated by the type of regulation

(up/down) which we included in our in-silico simulation is listed in Fig. 6.11.

6.7.2 In-silico Regulatory Model

To abstract the expression and inhibition of the target gene ’X’, we attribute the

gene with a status flag and a time stamp. The status flag can have any of following

three states: being expressed(BE), already inhibited (AI), or no activity (NA). The time

stamp indicates the time for the last change in the status flag of the target gene.

6.7.2.1 Gene status transition

Transition of the target gene status from NA to either BE or AI is triggered by

the transcription events. To handle the transition form BE or AI to NA a specific Gene

Status Check (GSC) event is predicted that is executed periodically and compare the

target gene time stamp with current time. If the difference between the two times is

greater that a GENE HOLD STATUS constant then it shifts the status of the gene to

NA. Based on current model there is no direct shift between BE and AI states.
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Figure 6.11. The transcription factors (TFs) and their target genes that we included in
the database as the TRN for our in-silico experiments with eukaSimBioSys.

6.7.2.2 Selecting target gene ’X’

The input to the transcription event is a transcription factor ’T’. Execution of

a transcription event indicates that resource for ’T’ is available. If the non-empty set

g includes all the genes that are up/down regulated by transcription factor ’T’, upon

execution of a transcription event one of these genes will be selected for the status change

with probability p = 1
|g| . Based on wether the selected gene ’X’ belongs to up-regulated

or down-regulated subset of g, its flag would change accordingly.
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6.8 Skim through the eukaSimBioSys design issues

The design of the software has a tremendous impact on its functionality and per-

formance. Following we briefly discuss some of the design specifications of the eukaSim-

BioSys.

6.8.1 Persistent Reaction Model

The strategy that we took in projecting the biological function into sequence of

event can impose some glitches to system that needs to be resolved. As discussed in

chapter 2 each event upon execution reduces the count of each input resource by one and

adds one unit to the count of each output resources. Now lets consider a phosphorylation

event of protein B which of course is a reaction event. The input resources to this event

are Phosphokinase K, Phosphate, and protein B. If we keep up with the simple reaction

event after execution of this event the resource count of Phosphokinase K will be reduced

by one, however we know that a Phosphokinase enzyme can potentially participate in

many number of reaction during its half life. To cope with this problem we introduce a

Persistent Reaction Model (PRN) whose length is close to active life of an enzyme. The

holding time of this event is first manipulated based on the simple reaction model [85],

and then dilated over the active half life of the enzyme. Upon the execution of this event

the count of enzyme or protein is reduced by one where the count of other input and

output resources is altered based on the average number reaction that enzyme (protein)

participated in, during its active half life. It should be mentioned that active half life of

the Persistent Reaction Model is a calibrating point of the reaction.

6.8.2 Fast Reaction Model

The reaction events whose activation energy is quite low (< 13 kBT ) occurs very

frequently, such occurrence exacerbates during the abundance of reactants. Since the
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event queue of the eukaSimBioSys forms a heterogenous pool of event types with a broad

domain for execution frequency. Therefore, a significant frequency difference among the

events time might lead to simulation stiffness, to avoid such undesirable situation we pose

a new event that can handle a batch of homogenous reactions. To manipulate the holding

time we apply the original reaction model [85], with the difference that the reaction rate

will be multiplied by batch size. Also on the resource update the count of input and

output resource should be updated according to the batch or the least available resource

in the target reaction. There is a trade-off between the batch size and accuracy of the

results, to obtain the pseudo-optimum batch size we did an iterative local search process

to push the results in vicinity of the experimental data. We observed that for batch size

of 1000 reaction the in-silico were in an acceptable agreement with the reported data.

6.8.3 Diffusion and Reaction Bundles

In an effort to increase both the memory and temporal efficiency of the simulator

we experimented and observed that if we bundle the reaction of diffusion events into

small batches (< 20) the results accuracy remains very similar to before; however, the

temporal and memory efficiency of the simulation increase several folds. Hence, we

decided to create reaction and diffusion bundles where their current sizes are set to 10

for both bundles.

6.8.4 The remaining models

The protein conformation change and Glut4 Vesicle Transport model are the two

models that we use in our event diagrams for which we have not developed any physic-

ochemical models as yet , their design will be a part of our future work plan. During

in-silico experiments to estimate the holding-time by the two models we use the negative

exponential distribution where their rates are potential calibration points of simulation.
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6.8.5 The in-silico Experiment Protocol Package (IEPP)

For each in-silico experiment the experiment designer should provide an in-silico

experiments protocol package (IEPP). This package compose of three pieces of infor-

mation which defines the framework of that in-silico experiment, and is mandatory for

running any experiment with eukaSimBioSys. The three data sets include: event-table,

event-map, and molecular resources. Event-table defines the set of signals that exist in

each experiment and for each signal lists the events along with their associated inputs,

outputs, and stochastic model. Event-map defines the ordered sequences of events trig-

gered in an experiment. On the other hand, event-map describes the event network of the

experiment in a machine readable format. The last data set lists the molecular counts of

molecular species in the experiment. In current version the IEPP composed of six text

files out of which four files are the molecular resources. Fig. 6.12 shows a sample in-silico

experiment protocol package.

6.9 eukaSimBioSys Implementation Overview

In this section we briefly describe selected specifications and implementation fea-

tures of eukaSimBioSys. The simulator is entirely implemented in JAVA. The total

project has 9228 lines of code and consists of 150 classes. This version of software imple-

ments 33 different types of events and includes 17 implementations of different physic-

ochemical models. The software has the ability to directly import the data both from

Excel 2003 spread sheets and from SBML level 2 version 2 files.

6.9.1 Database

For data repository and database transactions eukaSimBioSys makes use of Caché

for windows version 5.2.3 (evaluation edition) which is an object-oriented database by

InterSystems�[175].
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Figure 6.12. Sample in-silico experiment protocol package (IEPP).

6.9.2 eukaSimBioSys outputs

eukaSimBioSys has three types of out files:

• Log file: logs the execution detail of every events.

• The molecular resource output file: which reports the count of a specific molecule

every treport seconds.

• Systems resource file: reports the utilizations of a predefined set of a system re-

sources every treport seconds.

The current version of eukaSimBioSys has a general text based interface. Prior to every

in-silico experiment the general data files which supply the information for the objective

metabolic, transcription regulatory, and protein-protein interaction networks must be

loaded into the eukaSimBioSys database.
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6.10 Summary

In this chapter we tried to wrap up our discussion on preparing and conducing

in-silico experiment of a eukaryotic cell by covering a wide range of remaining concepts.

The substrate metabolism in heart was described with emphasize on glycolysis and β-

Fatty acid oxidation pathways. For either pathways an event based abstraction of the

physiology was introduce that could be executed and analyzed in the context of discrete

even simulation paradigm. We also elucidate the utilization of the flux balance analysis

in estimating the metabolic reaction flux by the metabolic event.

A stochastic discrete event model of constitutive splicing was also proposed and

proceeded by the eventolgoy of gene expression and protein synthesis in a eukaryotic

cell. An abstracted mechanism for the transcription regulatory network and a strategy

in regulating the genes underlaying a transcription factor was also discussed. Next we

introduced one of the emerging problems due to an event based view on the signal trans-

duction network and proposed the persistent reaction model to solve that. Stiffness and

efficiency of the eukaSimBioSys was briefly discussed and few strategies were proposed

to avoid the former and enhance the latter. Finally we closed our discussion by giving a

brief overview on eukaSimBioSys implementation.



CHAPTER 7

IN-SILICO EXPERIMENTS AND RESULTS

Now the pieces of the leggo that has been built and painted should be properly

assembled to bring about the objective into practice. In this chapter we selected six

different reported bench work experiments and tried to utilize the eukaSimBioSys to

reproduce their empirical results in-silico by mimicking their experimental conditions in

the abstract context of stochastic discrete event simulation. The criteria behind choosing

these experiments was to demonstrate a unique feature and capacity of our software in

simulating the eukaryotic intracellular networks with each experiment. For the reasons

discussed earlier, we have selected the insulin signaling and its metabolic effects in cardiac

myocytes as the focus of our experiments. Maintaining a coherent focus across the

sequence of experiments that we conduct will help the readers to better comprehend the

state of art of our approach in modeling biological systems.

In previous chapters we highlighted that, the scale of our modeling and simulation

is at the molecular level, where as the biological, biochemical, and physiological experi-

ments are often conducted at tissue or organ level. This scale discrepancy poses another

milestone in the road map toward validating our results. We briefly describe our solution

to this emerging problem in the proceeding section.

7.1 Re-scaling the results

To eliminate the scale discrepancy among the in-silico and wet lab result we have

to re-scale either one of these results. This re-scaling could be done both ways (i.e.

161
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up-scale or down-scale), however there are certain limitations to this approach. The

experimentalist normally conduct their experiments at one of following levels:

I. Molecular level (rarely)

II. Cell level

III. Tissue level

IV. Organ level

Despite conducting the experiment at one level it is frequently observed that results have

been reported at another level. The first two level of experiments scale are the most

desirable and we can simply compare the results. On the case that experimental data

is reported at tissue level we can convert the results to the cell level and ultimately the

molecular level, should we have a rough approximation on the cell and substrates masses

of as well as their dimensions, etc. The most undesirable scenario is once the reported

data is at the organ level, normally it is not possible to deduce an approximation for result

in cellular or molecular level merely by applying some factors along with conventional

mathematical conversions. Therefore, we have avoided to use the experiments whose

results subject to the last category.

Following is a list of values for selected parameters we used in our estimations and

approximations: Average myocardial cell volume = 40× 10−15 m3 reported in [176, 177],

nucleus volume is ∼ %10 of the cell volume [58], myocardial cell mitochondria occupies

∼ %30 of the cell volume to supply the energy for perpetual contractile function of the

myocardium [178], there are ∼ 4660 cardiac myocytes per 1mg wet cells (varies among the

samples). To convert any molecular counts in heart muscle to nano-Molar concentration

we divided the counts by 240.88 × 102. The weight per amino acid is considered 0.11

KDa and an average weight of a eukaryotic cell is ∼ 10−9 grams.
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7.2 Experiment 1: Effect of insulin signal on flux across 6-Phosphofructo-
2-kinase reaction

This experiment aimed to measure the effect of the insulin signal on the uptake

rate of glucose and, hence the activity of the 6-Phosphofructo-2-kinase(PFK-2) enzyme

in the Wister rat cardiac myocyte. The signaling, metabolic and transcription regulatory

networks that involved in this experiment is depicted in Fig. 7.1. The bench work for

this experiment was conducted by Hue et. al (1996) and we used their published data

for validation of our in-silico experiment. Beside the insulin dependent glucose uptake

by GLUT4 transporter, there is a diffusion based mechanism for glucose uptake in the

this experiment which works independent of insulin and keeps the glucose content of the

cell at the of basal level of < 2 pM. The experiments is done for 0.1 μM of insulin, 0.5

mM of glucose. The concentrations of signaling proteins and unregulated enzymes were

set to 2.07 nM and 4 pM, respectively, to be consistent with data reported in [179]. For

the number of insulin receptor sites per cell we set 22K sites pre-cell which is consistent

with the data reported in [180, 181].

The simulation was set to run for 30 minutes of simulation time which is equiv-

alent to duration of the medium perfusion in the corresponding wet lab experiments.

Fig. 7.2 depicts the fold change in glucose uptake rate in presence (solid line) and ab-

sence (dotted line) of insulin signal for in-silico (blue) and wet lab (black) experiments.

As the diagram in Fig. 7.1 indelicates the increase in cellular content of glucose should

pump up the flux across the Glycolysis I and fructose-mannose metabolism pathways.

Also downstream the insulin signal, positively regulates the PFKFB2 gene and, hence,

results the increase in the concentration of PFK-2. Richer intercellular glucose and

PFK-2 resources lead to flux increase across PFK-2 reaction which yields more Fructose

2,6-biphosphate (Fru2, 6P2) product. Fig. 7.3 shows the endogenous concentration of

Fructose 2,6-biphosphate versus time in presence and absence of the insulin signal. The
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Figure 7.1. Cellular networks involved in experiment 1. The dynamics of reaction colored
in red is investigated in experiment 1.
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Figure 7.2. Effect of insulin on the rate of D − Glucose in the cardiac myocyte.

fluctuation observed on the in-silico result in the presence of the signal, is due to the in-

terval arrival time of the metabolic events (600 secs). Should the metabolic events occur

more frequently this fluctuation will be vanished, with the const of simulation efficiency.

The initial positive slope observed in the in-silico concentration of Fru2, 6P2 in absence

of insulin is due to the initial Glut4 vesicles on the membrane.

As observable both measurements asserts the agreement between the in-silico re-

sults and the reported experimental data. Increase in the uptake rate of glucose requires

rapid presence of GLUT4 transporter on the membrane of the cell. We have measured

the membrane GLUT4 and the D-Glucose-6P concentrations during the evolution of the

in-silico experiment. The membrane GLUT4 activity is directly proportional to the cellu-

lar concentration of D-Glucose-6P, such dependency is properly demonstrated in Fig. 7.4.

The slow decline in picks of membrane GLUT4 concentration is the consequence of the

gradual decrease in insulin concentration which leads to decline in signal strength.
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Figure 7.3. Effect of insulin on cellular content of Fru2, 6P2.

7.3 Experiment 2: A hypothesis testing on the effect of glucose phosphory-
lation on the insulin-dependent mTOR signaling in the cardiac myocytes

This experiment targets two objectives: i) how a hypothesis testing experiment

could be conducted in-silico, ii) the capability of our software to capture the dynamics

of a cross talk between signal transduction and metabolic networks.

An evolutionary conserved kinase which is crucial for nutriment depended regula-

tion of cell growth is the target of rapamycin (TOR). Taegtmeyer and his colleagues in

[182] has postulated that metabolism of glucose positively regulated the mTOR signaling

in the cardiac myocytes.

In order to test this hypothesis in-silico we first added the hypothetical interaction

edge between the D-Glucose-6P and the mTOR. This edge represents a phosphorylation

reaction event, on the other hand the availability of the phosphorylated glucose induces

the phosphorylation of the mTOR. The signaling and metabolic pathways involved in

this experiment is shown in Fig. 7.5
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Figure 7.4. In-silico measurements of membrane GLUT4 and D-Glucose-6P concentra-
tions in the presence of insulin .

Figure 7.5. The insulin signaling pathways including: target of rapmaycin kinase
(mTOR) and downstream effectors: P70s6k and 4ebp1 proteins. The hypothetical cross
talk between metabolic and signaling networks is depicted in red.
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Figure 7.6. The amount of phosphorylated P70s6k with insulin as the control.

Molecular resources for this experiment include: 5mM glucose , 0.1μ insulin, 0.9 nM

of each signaling proteins, and 4 pM of each metabolic enzymes. We use the insulin as the

control and first run the simulation with no insulin for 30 minutes and then in presence

of insulin for the same period. The basal level for phosphorylated P70s6k which is a

downstream effector of insulin signal is set to be %18. Fig. 7.6 shows the phosphorylated

P70s6k after 30 minutes of simulation alongside the experimental data. As we would

expect presence of insulin signal strongly induces P70s6k phosphorylation and the results

are also consistent with the published experimental data. For further validation of our

results we measured the ratio of the phosphorylated Akt (p-Akt). Fig. 7.7 shows these

ratio for the simulation an wet lab reported data.

To assess the effect of the hypothetical edge, D-Glucose-6P enhanced mTOR signal-

ing, we simulated the experiment for both the existing and non-existing edge scenarios

and compared the ratio of phosphorylated mTOR and P70s6k in each case. Fig. 7.9

shows that D-Glucose-6P has markedly enhanced both the signal propagation (rate of
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phosphorylation) and also strength of the signal (quantity of phosphorylated species).

This claim is experimentally confirmed but not quantified in [182].
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Figure 7.7. Ratio of phosphorylated Akt with insulin as the control.

To have a better picture of the interaction of D-Glucose-6P and current signaling

pathway, in Fig. 7.8 we have provided the average flux across all glycolysis I pathways

reactions during the course of this in-silico experiment.

In another effort to asses the contribution of the D-Glucose-6P on mTOR signal-

ing, researchers in [182] inhibited the glycolysis pathway by mutating the Glyceraldehyde

3-phosphate dehydrogenase (GAPDH) with 10 nM of enzyme modulator iodoacetate. The

authors did not report any quantified results on their experiment, although they have

qualitatively (shown on electrophoresis gel images) confirmed the increase on the phos-

phorylated mTOR as expected . We conducted the in-silico experiment for this mutation

and measured the effects. We set the in-silico experiment such that the mutation started

after 10 minutes of simulation.
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Figure 7.8. Reported flux across glycolysis I pathway reactions during 30 minutes of
in-silico experiment.
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The green line in Fig. 7.10.(a) shows the concentration of wild-type enzyme. As

shown in Figs. 7.10(a,b) the inhibition of the glycolysis pathway induces the cellular

content of metabolite intermediates upstream the mutation point while diminishes the

content of downstream ones. As expected such induction should positively effect the

mTOR signaling. Figs. 7.11(a,b) show this effect, the vertical black line in chart specifies

the point where the effect of pathway inhibition on the signaling becomes significant

(p < 0.1).

7.4 Experiment 3: Quantifying the effect of feedback loops on insulin sig-
naling pathways in cardiac myocytes

This experiment intended to pursue two objectives: Firstly, to demonstrate the

capability of the software to implement and capture the dynamics of negative and positive

feedback loops in biological pathways. Secondly, to compare stochastic discrete event

based approach with the ordinary differential equation based framework in modeling

biological pathways.

Qoun et. al (2002) proposed a mathematical model for studying the insulin sig-

naling pathways in cardiac myocytes [183]. In their model they identified all interaction

in the insulin signaling pathways of a myocardial cell as biochemical reactions. Then

applied the general ordinary differential equation (ODE) method to quantify the system

dynamics as follows: i) deferential equations corresponding to the biochemical reactions

in the signaling pathway were formed, ii) numerically solved the set of equations to cap-

ture the dynamics of the system. We first slightly modified the original insulin signaling

diagram to be consistent with the pathways in this experiment. The modified pathway

is shown in Fig. 7.12

In the current experiment the insulin receptors (INSR) are considered to have

three states: 1) non ligand bound INSR , 2) Single ligand bound INSR, and 3)bi-ligand
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bound INSR. Also the phosphorylation of the IRS protein could happen on serine or

tyrosine sites. The phosphorylation on the former site is mediated by aPKC isoforms

and leads to inhibition of IRS, where as phosphorylation on latter activates IRS and is

INSR dependent [183].

The PTP1B is a protein tyrosine phosphatase (PTPase) that negatively regulates

the insulin receptor and IRS. However, it has been identified that this PTPase is the

substrate for kinase activity of down stream effector Akt. Taking into account the effect

of successive negative edges, the ensemble will a the positive feed to the insulin signaling

pathway. Both of the feedback loops described are depicted in Fig. 7.13.

To simulate this pathway we considered each reverse reaction as a separate reaction

event, the activation energy of the reverse reactions were subject to calibration as well.

Also the binding of the second ligand to insulin receptor is also modeled with reaction

event. The concentration of species are as follows: 1μM of insulin, 1mM of glucose,

0.9 nM of each signaling proteins, and 4 pM of each metabolic enzymes. We set the

simulator such that the insulin signal stoped after 15 minutes of simulation time. We

run the simulator for 60 minutes of simulation time once for the pathway including both

feedback loops and next for pathway excluding both.

Figs. 7.14 and 7.15 compare the results between ODE approach and our simulation

method for the temporal dynamics in activation of aPKC and PIP3, respectively, by

insulin signaling pathway including and excluding feedbacks. In both charts one obvious

difference is the lag difference between the maximal activated substrate predicted by

two models. One justification for this difference could be that ODE based models can

not capture the delays in the biological system due to their modeling nature. However

there are possible solutions to this gap (e.g. dummy delay equation) which was not

included in model by the authors in [183]. The response to the lack of signal after

15 minutes is immediate in the ODE based model however in our simulation response
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appears later. This is also due to the signal propagation delay that is captured by our

approach where the general ODE models are insensitive to the delays. A side from

difference both approach shows the similar maximal substrate activation ratio in either

feedback scenarios.

Fig. 7.16.(a) shows the ratio of the GLUT4 on the membrane for both approaches

and feedback scenarios. The main difference in the results are the decay rates of mem-

brane GLUT4, which our simulation shows a significantly higher rate. Also as it is ob-

served in blue plot the reduction in the membrane glucose transporters happened event

before the signal removal (15 min), this because once the signal clicks in a considerable

number of GLUT4 move to the membrane and subsequently many of them dissociate

from the membrane in a close lag. Considering this with cellular content of GLUT4

and stochasticity of cell environment will gives a sinusoidal nature to the membrane

GLUT4 -time curve. Hence, should signal persist in this experiment we would be able

to detect this behavior. Furthermore, to exhibit the stochasticity of process captured by

our simulation we have shown the log ratio of membrane infused GLUT4 in Fig. 7.16.(b).

In Fig. 7.17 we have plotted the concentration of insulin receptors that were bound

with a single or double insulin ligand. As it is observed the abundance of mono-insulin-

bound receptors are one order of magnitude higher than the bi-insulin-bound counterpart.

Also the dissociation of ligands from the receptors shows slow decay rate where as the

ODE results (not shown) has an exponential decay curve of ligand dissociation. The

exponential decay curve in ODE approach results from solution to first orderer differential

equation which is a negative exponential function. Also, there is one order of magnitude

difference in the abundance of activated receptors between the two approaches.
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For the same pathway we conducted the dose-response analysis experiment for the

insulin signaling. 1 This analysis is for insulin concentration range of 10−12M to 10−6M.

Figs. 7.18 (a) and (b) show the dose-response percentage curves for activated-INSR

and membrane-GLUT4, respectively. The comparison between experimental data, ODE

results, and current simulation results reveals that ODE stays in a good agreement with

experimental data; however, current simulation demonstrated an acceptable agreement

with experimental results for high concentrations of insulin (¿10−7M) but looses its sen-

sitivity for lower concentrations. We did a rigorous study to pin point the root of this

sensitivity decline for lower ligand concentration in our simulation. It became appar-

ent that the membrane protein-ligand docking model (from chapter 3) that we used to

estimate the time for insulin receptor binding does not provide a precise binding time

estimation for ligand concentrations less than 10−6M. Hence, the model proposed in chap-

ter 5 needs a revision and enhancement to provide a more precise estimation for binding

time for the low ligand abundance.

In order to characterize the effect of the positive feedback loop on phosphorylation

of IRS1 protein, we have plotted the cellular content of tyrosine phosphorylated IRS1

with respect to the concentration of phospho-activated downstream effector p-Akt in

Fig. 7.19 . The concentration of tyrosine phosphorylated IRS1 exponentially increases

with respect to p-Akt. However, this exponential increase is the joint effect of positive

feedback loop and persisting insulin signal.

Fig. 7.20 shows the bifurcation dynamics of activated aPKC and PI3K. These bi-

furcations are the consequence of insulin signal state change. In the presence of signal the

concentration of both substrates characterize a pseudo-monotonic increase and once the

1The dose-response is defined as amount of substrate ’x’ that is produced after time t of applying
signal ’s’ with magnitude of concentration c.
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signal diminished the concentration of both substrates decline monotonically, although

with different rates.

Feedback loops affect the GLUT4 transport activity, hence it affects the rate of

exogenous glucose uptake. Fig. 7.21 shows the cell content of D-Glucose in either feedback

scenarios. Although the initial effect of feedbacks on uptake rate is not significant,

however this effect becomes significant in the long run. The rationale for the saw edge

shape of the chart as discussed in the earlier experiments, is related to the inter-arrival

time of the metabolic events.

One of the major drawbacks of the ODE based modeling approach is there inability

to simultaneously incorporate the reactions whose difference in their evolution rates is

significant . For instance most of the reactions involved in a signaling network are several

orders slower than metabolic network reactions. Therefore, joint analysis of signaling

transduction and metabolic networks seems to be a tough nut for ODE modelers. In

Fig. 7.22 charts we present the dynamics of fluxes across typical reactions in glucolysis I

pathway which is the result of concurrent simulation of signal transduction and metabolic

networks in recent experiment. Each flux is for one minute slot time which is manipulated

from difference between cell content of the substrate in two successive minutes.

The average flux for reaction R at time t where the metabolic event slot s = � t
600

�,
could be obtained from:

F̄ R(s) =

∑(s+1)×600
t=s×600+1 F R(t)

600
(7.1)

7.5 Experiment 4

In this experiment we try to simulate the energetics of the cardiac myocytes. This

experiment quantifies the contribution of exogenous glucose and fatty acid in the ATP

production of the cardiac myocyte in the aerobic respiration. We also analyze the regu-

latory effect of Acetyl-Coenzyme Carboxylase ACC which is a key regulatory enzymes
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in fatty acid oxidation pathway. ACC is biotin containing enzyme that catalyzes the

carboxylation of cytoplasmic (Acety-CoA) to form the Malonyl-CoA. This product is the

potential inhibitor of carnitine palmytoyltranferase 1 (CPT-1) which is the member of

the carnitine palmytoyl transport system (CPTS), which is responsible for translocating

the fatty acid to mitochondria. CPT-1 is located on the outer membrane of mitochon-

dria. There have been other pivotal role suggested for Malonyl-CoA which is not the

target of this study.

This experiment also shows the concurrent effects of insulin and fatty acid signals.

An interesting regulatory effect of these signals include the negative regulation of ACC

by insulin and positive regulation by fatty acid. Fatty acid signal will also positively

regulate the pyruvate dehydrogenase kinase PDK enzyme which inhibits the pyruvate-

dehydrogenase (PDH) localized on the internal membrane of mitochondria. Pyruvate-

dehydrogenase is the first component of pyruvate-dehydrogenase-complex (PDC ) which

transforms the pyruvate to Acety-CoA through decarboxylation and fuels the citrate acid

cycle. Fatty acid also induces the expression of fatty acid ligase FACL and mitochondrial

precursor for acyl-CoA dehydrogenase (ACADM) which participate in fatty acid synthesis

and fatty acid oxidation pathways, respectively. Fig. 7.23 shows the details of signaling

and metabolic pathways involved in this experiment.
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Figure 7.11. Inhibition of Glycolysis I and its affect on mTOR signaling; (a) shows the
effect of pathway inhibition on p-mTOR and (b) shows the same effect on p-P70s6k. The
wt-GAPDH and m-GAPDH in the legends refer to the mutated and wild-type enzymes,
respectively.
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Figure 7.12. Insulin signaling pathway with feedback loops.

Figure 7.13. The positive and negative feedback loops.
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Figure 7.14. Dynamics of aPKC activation for in the insulin signaling pathway with
feedback (solid line) and without feedback(dotted lines) captured by ODE (red plot)
approach and eukaSimBioSys (blue plot) simulation.
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Figure 7.15. Dynamics of PIP3 activation for in the insulin signaling pathway with
feedback (solid line) and without feedback(dotted lines) captured by ODE (red plot)
approach and eukaSimBioSys (blue plot) simulation.
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Figure 7.16. Membrane GLUT4 : (a) Ratio of GLUT4 tethered to the membrane me-
diated by the insulin signaling pathway with feedback (solid line) and without feed-
back(dotted lines) captured by ODE (red plot) approach and eukaSimBioSys (blue plot)
simulation, (b) Stochasticity in the log ratio of membrane GLUT4 captured by current
simulation of insulin signaling pathway.
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Figure 7.18. Percentage of dose-response (PDR): experimental data curve in green, ODE
in magenta, and current simulation is plotted in blue. Solid and empty markers denote
the variants of pathway for including feedbacks and excluding feedbacks, respectively.
(a) insulin receptor PDR,(b) GLUT4 PDR.



184

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

+p Akt (nM)

T
hy

ro
si

ne
 +

p 
IR

S
 (

nM
)

Figure 7.19. Effect of positive feedback loop on phospho-activation of IRS1.
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Figure 7.22. (a) D-glucose flux when signaling pathway has no feedback loop, (b) D-
glucose feedback while the feedback loops are present, (c) D-glucose-6P flux for both
variants of signaling pathway (blue: no feedback loop, magenta feedback loops exist).



187

For the in-silico experiment we used 11 mM of the Octadecaontate (n-18:0) which

is a saturated stearic fatty acid as the exogenous fatty acid resource. The same con-

centration of glucose was also available to the cell where the concentration of the other

signaling substrates and metabolic enzyme were 0.4 nM, and 4 pM, respectively. The

bench experiment was conduct by Lupaschuk et. al (1993) [184] at the organ level on

Spare-Wawley rat heart and the results reported at the tissue level. We approximated

the results to the cell level values with method mentioned earlier in the chapter. Also

the authors used hexadecanoic which is a palmitic (16:0) saturated fatty acid as the ex-

ogenous fatty acid substrate. The choice of the stearic or palmitic fatty acid would not

skew the results since the stearic acid will be converted to a palmitic acid by metabolic

reaction R FAOXC180 which is an oxidation-reduction reaction in β-fatty acid oxidation

pathway. We constructed the event table and event diagram for this experiment and run

the eukaSimBioSys for one hour of simulation time.

7.5.1 ATP Manipulation

The aerobic glucose oxidation produces eight ATP molecules but is also consumes

two. Also each pyruvate molecule resulted from glycolysis will be used by TCA cycle

to produce three NADH, one FADH2 and one GTP meanwhile uses one ATP to con-

vert pyruvate to Acetyl-CoA. Furthermore NADH and FADH2 will use electron trans-

port chain on the mitochondria membrane to produce three and two ATPs, respectively.

Therefore, the net ATP produced from oxidation of a single glucose molecule would be

six ATP molecules. Noting that the complete oxidation of one glucose molecule including

the aerobic and anaerobic pathway and pyruvic acid metabolism in TCA cycle will result

36 total ATP molecules.



188

Figure 7.23. This diagram shows insulin and fatty acid fatty acid signaling pathways
along with Glycolysis I, Citrate acid cycle, pyruvate metabolism and β-fatty acid oxida-
tion metabolic pathways. Selected genes from transcription regulatory network effected
by the downstream signal effectors are depicted in yellow.
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Per stearic acid oxidation twenty seven NADH2s and nine FADHs would be pro-

duces meanwhile two GTPs would consume, hence the net production would be ninety

seven ATP molecules.

29%

71%

Exogenous FA

Glucose

88%

5%

7%

Exogenous FA

Glucose

Endogenous FA

Figure 7.24. The share in ATP production between glycose and fatty acid sources in
myocardial cell: in-silico result without endogenous fatty acid resource (left), data from
wet lab experiment (right).

7.5.2 Results on cardiac cell energetics

Taking into the account that we had no endogenous fatty acid resources for the

in-silico version, the contributions of glucose and fatty acid to the ATP provision in a

cardiac myocyte is shown in Fig. 7.24 for in-silico and wet lab experiments.

We also have measured the oxidation rate of both glucose and fatty acid. The rate

for fatty acid was about six fold higher than the glucose counter part (Fig. 7.25). These

results which is endorsed by the experimental data indicates that our model for fatty

acid uptake, transport and oxidation works fairly well.
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Figure 7.25. Fatty Acid and Glucose oxidation rates; we have up-scaled our results from
cell level to the tissue level.

7.5.3 Analysis of the Malonyl-CoA regulatory effect

To measure the inhibitory effect of Malonyl-CoA on CPT1, we redesigned the above

simulation this time by adding different initial concentration for Malonyl-CoA and peri-

odically measured the Stearoylcarnitine which is the fatty acid containing complex traf-

ficked across mitochondrial membrane by carnitine palmytolyl transport system (CPTS).

Fig. 7.26.(a) shows the abundance of Malonyl-CoA significantly reduces the activity of

CPTS and consequently inhibits the mitochondrial pathway for fatty acid oxidation. The

same chart also compares our in-silico results and the empirical data reported in [184].

Fig. 7.26.(b) depicts the effect of Malonyl-CoA concentration on CPT1 inhibition rate.

7.5.4 Analysis of Pyruvate Dehydrogenase Kinase (PDK) activity

As mentioned earlier fatty acid impinges its transcription regulatory effect by ac-

tivating the proxisome proliferator-activated receptors (PPARs) [171]. The PDK is

amongst genes up-regulated by PPARS transcription factor and phosphos-deactivates

the PDH, which results in flux reduction across R PDHm reaction in mitochondria. To

quantify this effect we redesigned the experiment 4 with two scenarios: i) mutating the
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Figure 7.26. (a) Effect of the Malonyl-CoA on formation of Stearoylcarnitine complex,
for in-silico and wet lab experiments;(b) Dynamics of CPT1 inhibition rate with respect
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192

PDK enzyme so no PDH phospho-inhibition could happen, ii) with wild-type PDK and

initial PDK=0. The evolution of the simulation was continued uninterruptedly until we

could observe a noticeable effect of PDK on the mitochondrial metabolic reaction for

pyruvate decarboxylation.

Fig. 7.27.(a) shows the concentrations of PDH transcript and Pdh linearly in-

crease with time due to the transcriptional activation effect of fatty acid. The effect of

pyruvate-dehydrogenase-kinase on the mitochondrial metabolic flux was observed after

approximately one hour of simulation (Fig. 7.27.(b)). The decline of flux on pyruvate

decarboxylation reaction (R PDHm) which is due to paralyzed PDC would lead to re-

duction in mitochondrial Acetyl-CoA and citrate concatenations (TCA cycle precursor

substrate and intermediate product) compared to the case where PDH is mutated and

could no longer inhibit the PDC (Fig. 7.28).

7.6 Experiment 5: Metabolic plasticity of the cardiac myocyte

In this experiment we intend to validate the eukaSimBioSys in modeling and sim-

ulation of the metabolic plasticity of the cardiac myocyte. Metabolic plasticity is the

capacity of a cell to adopt to the available metabolic substrate as the source for its en-

ergy. The track of plasticity is best observed by looking into the expression profile of

genes contributing a specific substrate metabolism. On the other hand, upon the abun-

dance of a specific metabolic resource the availability of its transport proteins as well as

enzymes for its metabolism should be promising. Hence, a higher gene expression profile

and consequently transcript concentration is expected for the underlaying genes. Van

Bilsen and his colleagues [185] conducted such experiment for the rat heart and identi-

fied the expression patterns for some of the genes contributing for glucose and fatty acid

oxidations in the rat heart.
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Figure 7.28. Effect of PDH on the mitochondrial production of Acetyl-CoA and Citrate.

In such experiment the cardiac myocytes will be forced to subscribe to metabolism

of a certain metabolic substrate i.e. glucose and fatty acid. The former is the result of

feeding the model animal with glucose rich food and the latter is by letting the species

starve (fasting) for 40 hours. The starvation will force the body to release the fat stored

in adipocytes into the blood. This, would let the other cells (e.g. cardiac myocyte) to

uptake and oxidize the fatty acids for their functions which obligates activating the fatty

acids-dependent uptake and oxidation pathways.

Conducting this experiment demonstrates the unique capacity of eukaSimBioSys

in simulating the dynamics of a eukaryotic cell at the system level for 48 hours. To

date of this dissertation no in-silico simulation tool with such capacity has been reported

elsewhere.

To design the experiment we supplied 1.4 nM of each signaling proteins, 1.4 nM

of each metabolic enzymes, and a basal level of transcript for each of the genes listed in

Table 6.11. We simulated two scenarios for the myocyte: normal and fasting. For the
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Figure 7.29. Change in the expression profile of selected myocardial genes for Normal
feeding (after 8 hours) and Fasting cells after 48 hours. In-silico result and empirical
data are shown in blues and greens, respectively.

former, cell is supplied with resources such that in the course of experiment [Glucose]

>> [Fatty acid] and also sufficient source for insulin was available where in the latter

case [Fatty acid] >> [Glucose] throughout the experiment.

The fold change in concentration of the transcript for those gene whose data could

be validated with published data is depicted in Fig. 7.29. These measurement is after

8 and 48 hours of simulation (blue color domain) and bench data (green color domain).

As it is observed the CPT1 which a member of CPTS is increased during the fasting

and ACADL which is Long-chain specific acyl-CoA dehydrogenase is also induced in the

fasting period. The in-silico results shows that HK2 (hexokinase 2) which is a glycolysis

pathway metabolic enzyme remains constant during fasting where as the empirical data

suggested reduction by half fold for the same period. This can suggest a possible in-

hibitory regulation which is non-included in our simulation. Also although both results

agree on the increase for Fatty acid-binding protein (FABP) during fasting, however in-

silico results show a significantly higher fold in the increase which demands for further
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regulatory mechanism not properly handled by the simulation. This proposition stays

valid for ATP-citrate synthase (ACLY ) too, but this time during the normal feeding.

To further observe the plasticity of myocardial cell we conducted another scenario

where an 8 hours period of normal feeding followed by 40 hours of fasting. In this

in-silico experiment in addition to the gene expression profile we further looked into

the metabolic flux, ATP synthesis and some substrates concentration profile during the

course of experiment. The concentration of glucose was set such that would last for

∼ 8 hours, also the concentration of fatty acid was not unlimited and would gradually

decrease.

Fig. 7.30.(a) shows that at beginning both exogenous substrate and fatty acid were

highly utilized in energy production of the cell and ATP concentration grows exponen-

tially. The decay rate of D-Glucose-6P follows an exponential decay which indicates a

very high utilization of glucose in cell. After initial raise in the concentration of metabo-

lite substrates which is the result of initial signal impinge on the cell for the hours between

6 to 20 we observe a decline in the slope of Stearoyl-CoA(18:0CoA) decay. This smoother

slope is the result of negative regulation of CPT1 by Malonyl-CoA as well as marginal

inhibitory effect of insulin signal on Fatty acid transport system [184] which we have

incorporated in the event network as a slow reaction event on FAT/CD36. Once the

cellular content of Malonyl-CoA reduces, the activity of CPT1 increases and one can see

the increase in rate of fatty acid oxidation after the first day (24 hrs).

In Fig. 7.30.(b) we have shown the transcription regulatory effect of current feeding

scenario. The genes that induced by FOXO1 have exponential increase in the expression

profile after 5 hours of simulation because the insulin signal which negatively regulates

theses genes gradually ceased to exist; although the increase in their expression level was

expected where level-fold of their increase subject to further validation with empirical

data. Many of the genes involved in fatty acid transport and oxidation pathway show
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Figure 7.30. Effect of 8 hours period of normal feeding followed by 40 hours of fasting
on:(a)concentration of D-Glucose-6P(red), Stearoyl-CoA(18:0CoA) (gray), and ATP in
blue. (b) gene expression profile for all the genes in transcription regulatory network
underlaying the current in-silico experiment.



198

0 5 10 15 20 25 30
0

5

10

15

20

25

R
ea

ct
io

n 
in

de
x

Time (hr)

1:  R_PCm
2:  R_ICDHxm
3:  R_ICDHyrm
4:  R_GAPD
5:  R_AKGDm
6:  R_FAOXC16080m
7:  R_FAOXC80
8:  R_FAOXC180
9:  R_FAOXC160
10: R_C180CPT1
11: R_CSm
12: R_HEX1
13: R_FBPK26
14: R_PFK
15: R_PYK
16: R_PGK
17: R_FBPP26
18: R_FBP
19: R_FBA
20: R_ENO
21: R_ACONTm
22: R_PGI
23: R_PGM
24: R_FACOAL180i
25: R_ACCOAC
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log value of the flux per reaction, numbers on the y axis correspond to the reaction
indices on the list to right of the chart.

a one to two folds increase which is in agreement with the experimental data reported

elsewhere. Since the data on negative regulatory effect of transcription factors was very

limited, hence we were not successful to show negative regulatory effect on the gene

expression profiles.

In Fig. 7.31 shows the flux across all active metabolic reaction in Glycolysis I, TCA

cycle, pyruvate metabolism, and β-fatty acid oxidation pathways during the course of

this experiment. The radius of circles are log(flux) for the every 45 minutes, x and y

axis are the time and reaction index, respectively. From here we can conclude that the

were no flux across glycolysis pathways after 5 hours, where as the flux across fatty acid

reactions fluxes sustained during for the entire length of experiment.
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7.7 Experiment 6: Null mutation experiment on HK2 and GAPDH genes

This experiment is only conducted in-silico to demonstrate the capability of the

eukaSimBioSys in conducting gene null-mutation experiment. For this purpose we de-

signed the experiment such that only the insulin signal and exogenous glucose source

exist. The molecular resources supplied are briefly listed as follows: 1.4 nM of each

signaling proteins, 1.4 nM of each metabolic enzymes except Hexokinase 2 (HK2 ) and

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH ) that were set to 0, the initial tran-

script resources were 0 for all proteins except for GAPDH=100, glucose concentration

is kept at 5 mM at all times. The experiment was conducted with three different gene

regulatory networks (GRN): i)both HK2 and GAPDH genes were included in the GRN

, ii) HK2 was removed (nullified) from the GRN, and iii) GAPDH gene was removed

(nullified) from the GRN.

Removing a gene from GRN avoids that to become the target of any transcription

factor, therefore the gene would never be expressed. Furthermore, since we have no initial

content for the enzymes encoded by these genes, therefore failure in their expression would

halt the glycolytic flux across the reaction catalyzed by that enzyme. We monitored the

cellular content of D-Glucose-6P, Glyceraldehyde, and Glycerate − 1, 3P2 during the 2

hours of the simulation with three different GRNs to learn the gene nullification effect

on the metabolic fluxes.

Insulin signal activates the Srbp1 and Arnt which induce the expression of HK2 and

GAPDH genes, respectively. The three sub-charts in Fig. 7.32.(a) show the concentra-

tions of HK2-mRNA, GAPDH-mRNA, Hk2 protein, and Gapdh protein versus time. The

basal level of Gapdh transcript led to faster growth in the cellular content of the enzyme.

In Fig. 7.32.(b) we have depicted the cumulative flux for reactions catalyzed by Hexoki-

nase 2 (HK2), Phosphoglucose isomerase (PGI ), 6-phosphofructo-2-kinase/fructose-2,6-



200

(a)

0 20 40 60 80 100 120
0

1

2
x 10

−8

0 20 40 60 80 100 120
0

2

4
x 10

−7

0 20 40 60 80 100 120
0

2

4

x 10
−8

0 20 40 60 80 100 120
0

1

2
x 10

−6

co
nc

en
tr

at
io

n 
(f

m
ol

/c
el

l)

 

 

HK2 Transcript

GAPDH Transcript

HK2 Enzyme

GAPDH Enzyme

(b)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time(min)

C
um

ul
at

iv
e 

R
ea

ct
io

n 
C

ou
nt

s

 

 

2.7.1.1 (Hk2)
5.3.1.9 (PGI)
2.7.1.11 (FBPK)
2.7.1.105 (PFK)
1.2.1.12 (GAPDH)

Figure 7.32. (a) Insulin dependent increase in concentrations of HK2 and GAPDH
transcripts and proteins,(b) metabolic flux across selected reactions from Glycolysis I
pathway with no mutations.



201

biphosphatase (PFKFB1 ), Phosphofructokinase (PFK ) and Glyceraldehyde-3-phosphate

dehydrogenase (GAPDH ).

To observed the effects of gene nullification, first HK2 was removed from the GRN

and then GAPDH, in each case we have monitored the concentrations of the three product

substrates of the above three reactions during individual simulation runs. Fig. 7.33 shows

the cellular content for three substrates, the name of the gene that was null-mutated is

given next to its metabolic reaction product substrate, if the null-mutation occurred. The

delay that observed for initial flux across Hexokinase 2 reactions in Figs. 7.32.(b) and 7.33

were due to time required for insulin signal-dependent protein synthesis to produce the

enzyme. As expected when the HK2 mutated none of the three product were produced,

where as once the GAPDH got mutated only the portion of the pathway downstream

the point of mutation got halted.

7.8 Summary

In this chapter we initially described the approach that we used for re-scaling the

experimental results and listed some the cellular dimensions we used in our manipula-

tions. The reset of the chapter was dedicated to the in-silico experiments for validating

the software results with experimental data and also demonstrate its capacity for sim-

ulating complex biological networks of a eukaryotic cell. The first experiment showed

the metabolic effect of insulin signal on inducting the flux across a metabolic reaction

by both increasing the rate of glucose uptake and up-regulating the genes pertaining to

its metabolism. In the second experiment a hypothesis testing for the positive role of

glucose phosphorylation on the insulin-dependent mTOR signaling in the cardiac my-

ocytes was assessed. Implementation of the feedback loops in a biological system with

eukaSimBioSys and also a comparison between the results from our modeling approach

and ODE based modeling was studied in experiment four. The fifth experiment focused
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on contributions of glucose and fatty acid in myocardial energetics. The plasticity of

cardiac myocytes along with the transcriptional regulatory effects of insulin was stud-

ied in experiment six. Meanwhile we also showed the unique capacity of our software

in simulating the cardiac myocytes biological networks for a prolong period of time (48

hours). Finally in experiment six we showed how eukaSimBioSys could be utilized for

the null-mutation studies in biological systems. For the first five experiment in each case

we validated the in-silico results with the published empirical data.



CHAPTER 8

CONCLUSION AND FUTURE DIRECTIONS

Discrete event simulation is a well-known discipline in modeling and simulation

of complex systems and has been extensively applied in numerous modeling and sim-

ulation projects from manufacturing systems, tactical battlefield management, internet

traffic engineering, bulk handling supply chains and many more. In this dissertation we

endeavored to design a software tool based on this methodology that could be applied

in simulating the interactions among biological networks within a eukaryotic cell. The

evolution of such platform is stochastic in time and space and is capable to capture the

dynamics of a eukaryotic cell at the molecular level. Also since the heart diseases are

still ranked number one among all fatal disease worldwide we chose to focus our work

on cardiac myocytes. The heart muscles are most promising component in perpetual

contracting function of the heart and specifically very well studied tissues. Furthermore,

we decided to focus on insulin signaling pathway, since it is critical to metabolism of

cardiac myocytes.

For this purpose in chapter 1 we projected all the intracellular interactions into a

framework that composed of three interacting networks: Signal Transduction Network,

Transcription Regulatory Network and Metabolic Network. We discussed that a cell per-

forms it’s functions through the collaboration among one or more of the pathways within

theses networks. Each of the cellular pathways handle one or more cellular processes. We

identified these cellular processes as bioevents with random execution times. For each

bioevent type a physicochemical model is required that can estimate the holding-time

(execution) of the underling bioevent. A proper sequence of these events could form a

203
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cellular function. Furthermore, the convolution of holding-times for bioevents pertaining

to a cellular function along with changes to underlaying molecular resources counts would

picture the dynamics of the cellular function. In the same chapter we reviewed some of

the prevalent modeling and simulation techniques in studying biological pathways. We

argued that the main reason for their failure in simulating the biological networks at

system level is the several orders of difference that exists among the holding-times for

various biological processes.

The evolution of the discrete event simulation is made possible through the exe-

cution of the individual event. Hence, proper identification of the events is crucial for

functionality of the system. In chapter 2 we described the approach for identifying the

events in biological network. We proposed the architecture for the eukaSimBioSys and

discussed the details for stochastic discrete event simulation algorithm which works as

the engine of the software. The important concept of compartmentalization and its de-

sign issues such as Metabolic Squad Event was also discussed in details. We also listed

the physicochemical models that were essential for the functionality of eukaSimBioSys.

In chapter 3 we focused on building a stochastic parametric model for estimating

the temporal behavior of ligand docking to the receptors on the membrane of the cell,

the proposed model could be used for both eukaryotic and prokaryotic cells, should the

model coupled with the proper parameters set. The proposed model is one of the essential

models for eukaSimBioSys. This model was used in later chapters to estimate the insulin

signal timing or manipulate the glucose and fatty acid uptake rates.

In eukaryotes nucleosomes modulate the access to DNA functional sites. Binding

the transcription factors to these sites is precursor to gene expression which is one of

the core models of our simulation framework. To model the access to an occluded DNA

sites we studied the dynamics of the nucleosome in chapter 4 and proposed a model for

accessing the DNA through passive pathway and showed that is an exhaustive process.
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A biologically piratical pathway to accesses a nucleosome-blocked DNA site is through

the chromatin remodeling process, for which we have proposed a stochastic model in

chapter 5. In the same chapter we showed the probability distribution function of the

time for chromatin remodeling process follows a gaussian curve. These model were all

incorporated as an integral part of eukaSimBioSys model repository.

In chapter 6 we covered the remaining materials necessary for completing eukaSim-

BioSys and setting up in-silico experiments. The ’eventology’ of protein synthesis which

is composed of serval sub-models including chromatin remodeling, splicing, transcription,

translation and nuclear transport was discussed in detail in chapter 6. In this chapter

we also abstracted the constitutive splicing as sequence of stochastic miscreants and pro-

posed a mathematical model for its temporal behavior. Also we proposed an abstract

mechanism for the set of genes regulated by the same transcription factor, this mech-

anism gives an even chance to all the genes in underlaying gene-set of a transcription

factor to be regulated at each onset of transcription for a fixed period of time.

To determine the dynamics of metabolic reactions and their influences on the molec-

ular resources we adpoted a flux balance analysis approach that captures these dynamics

under the umbrella of metabolic event. The insulin signaling pathways and fatty acid

signaling pathways were discussed and their ’eventology’ was addressed. The metabolic

pathways that involved in this study including glycolysis I, tricarboxylic acid cycle, β-

fatty acid oxidation, fructose and mannose metabolism were reviewed in chapter 6. To

avoid the stiffness we suggested several design strategies . Persistent reaction model was

designed to overcome the resource inconsistency problems that would emerge due to event

based view on the signaling networks. Lastly in chapter 6, we described an important

step that involved in designing an in-silico experiment with eukaSimBioSys and that was

defining the event-table, event-map and molecular resources of the experiment based on

the equivalent experiment conducted in wet lab.
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Validation of the results generated by eukaSimBioSys is a vital step for both proof-

ing of our concept in modeling the biological networks as well as the usefulness of the

software. We conducted 5 in-silico experiments including: energetics of cardiac myocytes,

hypothesis testing for the effect of glucose on mTOR insulin-dependent signaling, cardiac

myocyte placticty, analysis of feedback loops within insulin signaling pathways. In all

of these experiment we showed that our results stayed in a good agreement with the

published data. During one of these experiment we successfully simulated the indicated

set cardiac myocytes for 48 hours. A sperate in-silico experiment was conducted to

demonstrate the utilization of eukaSimBioSys in null-mutation analysis of the genes in

the cardiac myocyte.

8.1 Future direction of the research

The interdisciplinary nature of the current research envisions multiple dementiaes

for potential extensions in the future. Possible extensions to the current software include,

but not limited to, the following topics:

8.1.1 Developing new physicochemical models

Since the physicochemical models of physiological processes form the brain of this

framework, therefore having precise efficient models in the model library would guarantee

better results. Also in order to utilize this software to simulate the other cellular functions

such as cell growth, cell differentiation, cell apotheosis, etc. we need to develop new

stochastic event based models that can capture the temporal behavior of the processes

involved in these cellular functions.
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8.1.2 Genome-scale simulation

Current software has the potential to be upgraded for a genome-scale simulation.

However, to have a genome-scale simulation we need a far better and comprehensive

regulatory mechanism abstraction that include a reach set of transcription regulation

parameters such as upstream/downstream regulator of the genes, loci, chromosomes,

second and third level transcription regulatory networks, etc. all of which demands for

substantial amount of effort.

8.1.3 Distributed computing capability

Biological networks are highly complex, therefore as the simulation domain grows

the computation complexity and memory demands of the software would not necessarily

follow a linear growth function. Therefore, it is not only desirable but also necessary to

have the simulation run on a grid of processors and benefit form a large pool of memory.

This requirement demand for an enhancement to current architecture that grants the

above features to the software and promises a high efficiency for the simulation all the

times.

8.1.4 High-Throughput and interactive database

eukaSimBioSys has a very high rate of database transactions, therefore an efficient

database design along with a high-throughput database engine can significantly improve

the performance of the software. Also the underlaying database should have an interactive

interface with other databases elsewhere in the world to update its knowledge base with

most recent scientific findings that could potentially increase its accuracy.



REFERENCES

[1] C. Bustamanate, C. L. Peterson, B. R. Cairns, S. B. Smith, S. Mihardja, S. W.

Grill, A. Saha, C. L. Smith, and Y. Zhang, “Dna transclocation and loop formation

mechanism of charomatin remodeling by swi/snf and rsc,” Mol. Cell, vol. 24, pp.

559–568, 2006.

[2] F. Mohammad-Rafiee, I. M., and H. K. Schiessel, “Theory of nucleosome corkscrew

sliding in the presence of synthetic dna ligands,” J. Mol. Biol., vol. 344, pp. 47–58,

2004.

[3] (2007) List of sequenced genomes in genome news network. [Online]. Available:

http://www.genomenewsnetwork.org/resources/sequenced genomes/

[4] H. Kitano, “Computational systems biology,” Nature, vol. 420, pp. 206–210, Nov.

2002.

[5] R. Brent and J. Bruck, “Can computer help to explain biology,” Nature, vol. 440,

pp. 416–417, Mar. 2006.

[6] M. Kanehisa, “Kegg data base,” Novartis found Sym., vol. 247. [Online]. Available:

http://www.genome.ad.jp/kegg/

[7] L. .Matthews, P. D’Eustachio, M. Gillespie, D. Croft, B. de Bono, G. Gopinath,

B. Jassal, S. Lewis, E. Schmidt, I. Vastrik, G. Wu, E. Birney, and L. Stein, “An

introduction to the reactome knowledgebase of human biological pathways and

processes,” Bioinformatics Primer, NCI/Nature Pathway Interaction Database,

vol. doi:10.1038/pid.2007.3. [Online]. Available: http://www.reactome.org/

[8] M. .Krull, S. Pistor, N. Voss, A. Kel, I. Reuter, D. Kronenberg, H. Michael,

K. Schwarzer, A. Potapov, C. Choi, O. Kel-Margoulis, and E. Wingender,

208



209

“Transpath: An information resource for storing and visualizing signaling path-

ways and their pathological aberrations,” Nucleic Acid Reseach, vol. 34.

[9] P. F. F. R. Driel and P. J. Verschure, “The eukaryotic genome: a system regulated

at different hierarchical levels,” Cell Science, vol. 116, pp. 4067–4075, Sept. 2003.

[10] A. J. Griffiths, W. M. Gelbart, R. C. Lewontin, and J. H. Miller, Modern Genetic

Analysis: Integrating Genes and Genomes. W. H. Freeman.

[11] V. Matys, O. Kel-Margoulis, E. Fricke, I. Liebich, S. Land, A. Barre-Dirrie,

I. Reuter, D. Chekmenev, M. Krull, K. Hornischer, N. Voss, P. Stegmaier,

B. Lewicki-Potapov, H. Saxel, A. Kel, and E. Wingender, “Transfac and its module

transcompel: transcriptional gene regulation in eukaryotes,” Nucleic Acid Reseach,

vol. 34.

[12] T. Ryu, J. Jung, S. Lee, H. J. Nam, S. W. Hong, J. W. Yoo, D. ki Lee,

and D. Lee, “bzipdb : A database of regulatory information for human bzip

transcription factors,” BMC Genomics, vol. 8, May 2007. [Online]. Available:

http://creativecommons.org/licenses/by/2.0

[13] K. Tuncay, L. E. amd A. A. Haidar, F. Stanley, M. Trelinski, and

P. Ortoleva, “Transcriptional regulatory networks via gene ontology and

expression data,” in-silico Biology, vol. 7, Dec. 2006. [Online]. Available:

systemsbiology.indiana.edu/trndresults

[14] P. Romero, J. Wagg, M. L. Green, D. Kaiser, M. Krummenacker, and

P. D. Karp, “Computational prediction of human metabolic pathways from

the complete human genome,” Genome Biology, vol. 6:R2. [Online]. Available:

http://humancyc.org/

[15] B. D. Ventura, C. Lemerle, K. Michalodimitrakis, and L. Serrano, “From in vivo

to in silico biology and back,” Nature Reviews, vol. 433, pp. 527–533, Oct. 2006.



210

[16] P. Mendes, “Gepasi: A software package for modeling the dynamics, steady states

and control of biochemical and other systems,” Comput. Applic. Biosci, vol. 9.

[17] H. M. Sauro, “Jarnac: a system for interactive metabolic analysis. animating

the cellular map,” 9th International BioThermoKinetics Meeting (eds: J. H. S.

Hofmeyr , J. M. Rohwer, J. L. Snoep) Stellenbosch University Press, vol. 9.

[18] M. S. Samoilov and A. P. Arkin, “Deviant effects in mulecular reaction,” Nature

Computational Biology, vol. 24, pp. 1235–1240, Oct. 2006.

[19] D. Longo and J. Hasty, “Imaging gene expression: tiny signals make a big noise,”

Nat. Chem. Biol., vol. 2(4), pp. 181–182, 2006.

[20] K. Wiesenfeld and F. Jaramillo, “Minireview of stochastic c resonance,” Chaos,

vol. 8.

[21] N. G. van Kampen, Stochastic Processes in Physics and Chemistry. Amersterdam:

North Holland, 2nd edition, 1992.

[22] D. T. Gillespie, “Efficient exact stochastic simulation of chemical systems with

many species and many channels,” J. Chem. Phys., vol. 115(4).

[23] C. V. Rao and A. P. Arkin, “Stochastic chemical kinetics and the quasi-steadystate

assumption: Application to the gillespie algorithm,” J. Chem. Phys., vol. 118(11).

[24] K. Burrage, T. Tian, and P. Burrage, “A multi-scaled approach for simulating

chemical reaction systems,” Progress in Biophysics and Molecular Biology, vol. 85.

[25] M. A. Gibson and J. Bruck, “Efficient exact stochastic simulation of chemical

systems with many species and many channels,” J. Phys. Chem., vol. 104.

[26] N. L. Novre and T. S. Shimizu, “Stochsim: modeling of stochastic biomolecular

processes,” Bioinformatics, vol. 17.

[27] H. Salis and Y. Kaznessis, “Accurate hybrid simulation of a system of coupled

chemical or biochemical reactions,” J. Chem. Phys., vol. 122.



211

[28] E. L. Haseltine and J. B. Rawlings, “Approximate simulation of coupled fast and

slow reactions for stochastic chemical kinetics,” J. Chem. Phys., vol. 117(15).

[29] E. C. A. Alfonsi, G. Turinici, B. D. Ventura, and W. Huisinga, “Adaptive simulation

of hybrid stochastic and deterministic models for biochemical systems,” ESAIM

Proceeding, vol. 14.

[30] C. Gadgil, C. H. Lee, and H. G. Othmer, “A stochastic analysis of first-order

reaction networks,” Bull. Math. Biol., vol. 67.

[31] T. Tian and K. Burrage, “Binomial leap methods for simulating stochastic chemical

kinetics,” J. Chem. Phys., vol. 121.

[32] D. T. Gillespie, “A general method for numerically simulating the stochastic time

evolution of coupled chemical reactions,” J. Comput. Phys., vol. 22.

[33] ——, “Concerning the validity of the stochastic approach of chemical kinetics,” J.

Stat. Phys., vol. 16.

[34] A. Chatterjee, K. Mayawala, J. Edwards, and D. G. Vlachos, “Time accelerated

monte carlo simulations of biological networks using the binomial tau-leap method,”

Bioinformatics, vol. 21(9).

[35] P. Ghosh, S. Ghosh, K. Basu, and S. Das, “Parametric modeling of protein-dna

binding kinetics: A discrete event based simulation approach,” Elsevier Journal on

Discrete Applied Mathematics (DAM), 2007.

[36] S. Ghosh, P. Ghosh, K. Basu, and S. Das, “Modeling the stochastic dynamics of

gene expression in single cells: a birth and death markov chain analysis,” IEEE

International Conference on Bioinformatics and Biomedicine (BIBM), pp. 308–

316, 2007.

[37] P. Ghosh, S. Ghosh, K. Basu, and S. Das, “A diffusion model to estimate the inter-

arrival time of charged molecules in stochastic event based modeling of complex

biological networks,” IEEE Comp. Systems Biol. Conf, 2005.



212

[38] B. Gains, “General systems research: Quo vadis?” General Systems Yearbook,

vol. 24.

[39] B. Palsson, Systems biology: properties of reconstructed networks. Cambridge

University Press, 2006.

[40] A. Guffanti, “Modeling molecular networks: a systems biology approach to gene

function,” Genome Biology, vol. 3(10), p. 4031.14031.3, 2002.

[41] N. Price and I. Shmulevich, “Biochemical and statistical network models for sys-

tems biology,” Curr. Opin. Biotechnol, vol. 18(4), p. 365370, 2007.

[42] R. Schwartz, Biological modeling and simulation: a survey of practical models,

algorithms, and numerical methods. MIT Press, 2008.

[43] S. Ramsey, D. Orell, and H. Bolouri, “Dizzy: Stochastic simulation of large scale

genetic regulatory networks,” J. Comput. Biol., vol. 3(2), pp. 415–36, Apr. 2005.

[44] C. M. Firth, Stochastic Simulation of Cell Signalling Pathways. PhD thesis, Uni-

versity of Cambridge.

[45] D. Ridgway, G. Broderick, and M. J. Ellison, “Accommodating space, time and

randomness in network simulation,” Curr. Opin. Biotech., vol. 17(5), pp. 493–498,

Oct. 2005.

[46] S. Efroni, D. Harel, and I. Cohen, “Efroni, s., d. harel, and i. cohen. 2005. reac-

tive animation: Realistic modeling of complex dynamic systems,” IEEE Computer

magazine, vol. 38(1).

[47] M. Ginkel, A. Kremling, T. Nutsch, R. Rehner, and E. D. Gilles, “Modular model-

ing of cellular systems with promot/diva,” Bioinformatics, vol. 19, pp. 1169–1176,

Oct. 2003.

[48] C. van Gend and U. Kummer, “Stode automatic stochastic simulation of systems

described by differential equations,” Int. Conf. Sys. Biol.



213

[49] H. de Jong, “Modeling and simulation of genetic regulatory systems: A literature

review,” J. Comp. Biol., vol. 9(1), pp. 67–103, Oct. 2002.

[50] P. J. Goss and J. Peccoud, “Quantitative modeling of stochastic systems in molec-

ular biology by using stochastic petri nets,” Proc. Natl. Acad. Sci., vol. 95(12), pp.

6750–6755, Oct. 1998.

[51] M. Calder, S. Gilmore, and J. Hillston, “Modelling the influence of rkip on the erk

signalling pathway using the stochastic process algebra pepa,” Trans. Comp. Sys.

Biol., vol. 4230, pp. 1–23, 2006.

[52] C. Kuttler, “Simulating bacterial transcription and translation in a stochastic pi

calculus,” Trans. Comp. Sys. Biol., vol. 4220, pp. 113–149, 2006.

[53] A. M. Uhrmacher and C. Priami, “Discrete event systems specification in systems

biology - a discussion of stochastic pi calculus and devs,” Proc. Winter Sim. Conf.

[54] ——, “Concepts of object and agent oriented simulation,” Trans. on SCS, vol.

14(2), pp. 59–67, 1997.

[55] T. Emonet, C. Macal, M. North, C. Wickersham, and P. Cluzel, “Agentcell: A

digital single-cell assay for bacterial chemotaxis,” bioinformatics, vol. 21(11), pp.

2714–2721, 2005.

[56] B. P. Zeigler, T. G. Kim, and H. Praehofer, Theory of Modeling and Simulation.

Academic Press, 2nd Ed.

[57] S. Ghosh, K. Basu, S. Daefler, and S. Das, “isimbiosys: A discrete event simulation

platform for ’in silico’ study of biological systems,” Proc. 39th IEEE Ann. Symp.

on Sim., pp. 204–213, 2006.

[58] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular

Biology of the Cell. US: Garland Publishing Inc; 4Rev Ed edition, 2002.

[59] H. P. Leeuwen and W. Koster, Physicochemical Kinetics and Transport at Bioin-

formatics. England: John Wiley, 2004.



214

[60] H. C. Berg, Random Walks in Biology. NJ: Princeton Univ. Press, 1983.

[61] (2004) From mathworld–a wolfram web resource,. [Online]. Available:

http://mathworld.wolfram.com/SphericalCap.html

[62] C. Fall, E. Marland, J. Wagner, and J. Tyson, Interdisciplinary Applied Mathemat-

ics. NY: Springer Verlag, 2002.

[63] G. Gottschalk, Bacterial Metabolism Second Edition. NY: Springer Verlag, 1986.

[64] F. C. Neidhart, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E.

Umbargar, Escherichia Coli and Salmonella Tyhpimutium Cellular and Molecular

Biology Vol. I. DC: American Socienty of Mirobiology, 1987.

[65] P. D. Karp, M. Riley, S. M. Paley, and M. K. A. Pellegrini-Toole, “Ecocyc:

Encyclopedia of escherichia coli genes and metabolism,” Nucliec Acids Res.,

vol. 26, pp. 50–55, 2006. [Online]. Available: http://ecocyc.org/

[66] S. Sundararaj, A. Guo, B. Habibi-Nazhad, M. Rouani, P. Stothard, M. Ellison, and

D. S. Wishart, “The cybercell database (ccdb): a comprehensive, self-updating,

relational database to coordinate and facilitate in silico modeling of escherichia

coli,” Nucleic Acids Res., vol. 32, pp. 293–295, Jan. 2004. [Online]. Available:

http://redpoll.pharmacy.ualberta.ca/CCDB/

[67] A. H. Romano, S. J. Eberhard, S. L. Dingle, and T. D. McDowell, “Distribu-

tion of the phosphoenolpyruvate: Glucose phosphotransferase system in bacteria,”

Biotechnology, vol. 104, pp. 808–813, Nov. 1970.

[68] J. M. Rohwer, N. D. Meadowi, S. Rosemani, H. V. Westerhoff, and P. W. Postma,

“Understanding glucose transport by the bacterial phosphoenolpyruvate: Glycose

phosphotransferase system on the basis of kinetic measurements in-vitro,” Biol.

Chemistry, vol. 275(45), p. 3490934921, Nov. 2000.

[69] T. Richmond and C. A. Davey, “The structure of dna in nucleosome core,” Nature,

vol. 423, pp. 145–150, 2003.



215

[70] G. Li, M. Levitus, C. Bustamante, and J. Widom, “Rapid spontaneous accessibility

of nucleosomal dna,” Nature Stru. & Mol. Biol., vol. 12, pp. 46–53, 2005.

[71] D. A. Beard and T. Schlick, “Computational modeling predicts the structure and

dynamics of chromatin fiber,” Elsevier J. Strcu., vol. 9, pp. 105–114, 2001.

[72] B. Levin, Genes VIII. NJ: Pearson Prentice Hall, 2004.

[73] K. Luger, A. W. Mader, , R. K. Richmond, D. F. Sargent, and T. J. Richmond,

“Crystal structure of the nucleosome core particle at 2.8 resolution,” Nature, vol.

389, pp. 251–260, 1997.

[74] A. Flaus and T. Owen-Hughes, “Mechanism for nucleosome mobilization,” J.

Biopolymers, vol. 66, pp. 563–578, 2003.

[75] M. Kobor, S. Venkatasubrahmanyam, M. D. Meneghini, J. W. Gin, J. L. Jen-

nings, A. J. Link, H. D. Madhani, and J. Rine, “A protein complex containing

the conserved swi2/snf2-related atpase swr1p deposits histone variant h2a.z into

euchromatin,” PLoS Biol., vol. 2E131, pp. 597–599, 2004.

[76] A. Saha, J. Wittmeyer, and B. R. Cairns, “Cairns chromatin remodelling: the

industrial revolution of dna around histones,” Nature Rev. Mol. Cell Biol., vol. 7,

pp. 437–447, 2004.

[77] X. Guo, K. Tatsuoka, and A. R. Liu, “Histone acetylation and transcriptional

regulation in the genome of saccharomyces cerevisiae,” Bioinformatics, vol. 22, pp.

392–399, 2006.

[78] G. J. Narlikar, H. Fan, and R. E. Kingston, “Cooperation between complexes that

regulate chromatin structure and transcription,” Cell, vol. 108, pp. 475–487, 2002.

[79] S. Pennings, G. Meersseman, and E. M. Bradbury, “Mobility of positioned nucleo-

somes on 5 s rdna,” J. Mol. Biol., vol. 220(1), pp. 101–110, 1991.

[80] P. Beard, “Mobility of histones on the chromosome of simian virus 40,” Cell, vol.

15(3), pp. 955–967, 1978.



216

[81] J. Mellor, “The dynamics of chromatin remodeling at promoters,” J. Molecular

Cell, vol. 19, pp. 147–157, 2005.

[82] L. V. Yakushevich, Nonlinear Physics of DNA. Germany: Wiley-VCH, 2004.

[83] H. Schiessel, “The physics of chromatin,” Max-Planck-Institut fur Polymer-

forschung, Theory Group, 2003.

[84] I. Kulic and H. Schiessel, “Chromatin dynamics: nucleosome go mobile through

twist defects,” Phy. rev. lett., vol. 91(14), 2003.

[85] P. Ghosh, S. Ghosh, K. Basu, and S. K. Das, “Holding time estimation for reac-

tions in stochastic event-based simulation of complex biological systems,” Elsevier

Simulation Modelling Practice and Theory.

[86] I. Kulic and H. Schiessel, “Nucleosome repositioning via loop formation,” J. Bio-

phys., vol. 84, pp. 3197–3211, 2003.

[87] L. Kleinrock, Queueing Systems, Vol. I: Theory. NY: Wiley, 1975.

[88] Y. S. Kivshar, O. M. Braun, and J. S. Kivsar, The Frenkel-Kontorova Model:

Concepts, Methods, and Applications. Springer, 2004.

[89] K. Murthy and K. W. Kehr, “Mean first-passage time of random walks on a random

lattice,” Phys. rev. A., vol. 40, p. 2082, 1989.

[90] H. Schiessel, J. Widom, R. F. Bruinsma, and W. M. Gelbart, “Polymer reptation

and nucleosome repositioning,” Phy. rev. lett., vol. 86(19), pp. 4414–4417, 2001.

[91] S. Aoyagi, G. J. Narlikar, C. Zheng, S. Sif, R. E. Kingston, and J. J. J. J. Hayes,

“Nucleosome remodeling by humans swi/snf complex requires transient global dis-

ruption of histone-dna interaction,” Mol. Cell Biol., vol. 22, pp. 3653–3662, 2002.

[92] T. Oven-Haghes, D. M. J. Lilley, P. A. Wade, R. E. Kingston, M. Phelan, and

K. Havas, “Generation of superhelical torsion by atp-dependent chromatin remod-

eling activities,” Cell, vol. 103, pp. 1133–1142, 2000.



217

[93] A. Saha, J. Wittmeyer, and B. Cairns, “Chomatin remodeling the industrial revo-

lution of dna arround histones,” Nature Rew. Mol. Cell Biol., vol. 7, pp. 437–447,

2006.

[94] J. L. Workman, K. E. Neely, A. H. Hassan, and M. Vignali, “Atp-dependent

chromatin-remodeling complexes,” Mol. and Cell Biol., vol. 20, pp. 1899–1910,

2000.

[95] E. Segal, Y. Fondufe-Mittendorf, L. Chen, A. Thastrom, Y. Field, I. K. Moore,

J. P. Wang, and J. Widom, “A genomic code for nucleosome positioning,” Nature,

vol. 442, pp. 772–778, 2006.

[96] G. R. Schenitzeler and N. P. N. P. Ulyanova, “Human swi/snf generates abundant,

structuraly altered dinucleosome on poly nucleosomal templates,” Mol. and Cell

Biol., vol. 25, pp. 11 156–11 170, 2005.

[97] C. L. Peterson and C. L. C. L. Smith, “A conserved swi2/snf2 atpase motif couples

atp hydrolysis to chromatin remodeling,” Mol. and cell Biol., vol. 25, pp. 5880–

5892, 2005.

[98] P. Wang, L. Wei, S. Dou, and P. Xie, “Brownian dynamics simulation of direc-

tional sliding of histone octamers caused by dna bending,” Phys. Rev., vol. 73, pp.

051 909:1–7, 2006.

[99] A. E. Gorbalenya and E. V. Koonin, “Helicase: amin acid sequence comparisons

and structure-function relationships,” Curr. Opin. Struct. Biol., vol. 3, pp. 419–

429, 1993.

[100] B. Bartholomew, S. R. Kassabov, B. Zheng, and J. Persinger, “Swi/snf unwraps,

slides and rewraps the nucleosome,” Moll Cell, vol. 11, pp. 391–403, 2003.

[101] A. Saha, J. Wittmeyer, and B. Cairns, “Chromatin remodeling through directional

dna translocation from an internal nucleosomal site,” Nature Struc. and Mol. Biol.,

vol. 12, pp. 744–757, 2005.



218

[102] B. Bartholomew, S. R. Kassabov, B. Zheng, J. Persinger, and M. Zofall, “Chro-

matin remodeling by iswi2 and swi/snf requires dna translocation inside the nucle-

osome,” Nature Struc. and Mol. biol., vol. 13(4), pp. 339–346, 2006.

[103] M. M. Grohima, M. G. Munteanu, A. Garielian, and S. Pongor, “Anisotropic elastic

bending model of dna,” J. Biol. Phys, vol. 22, pp. 227–243, 1996.

[104] H. Schott and H. Eckstein, “Studies on interactions between immobilized lysine

residues and oligomers of thymidylic and deoxyadenylic acids,” Eur. J. Biochem.,

vol. 104, pp. 79–84, 1980.

[105] D. J. Wilkinson, Stochastic Modeling for Systems Biology. NY: Chapman and

Hall/CRC, 2006.

[106] B. Bernstein, C. Liu, E. Humphrey, E. Perlstein, and S. Schreiber, “Global nucle-

osome occupancy in yeast,” Genome biology, vol. 5(9), pp. 62.1–62.11, Aug. 2004.

[107] S. L. Smith, “Functional and structural analysis of the yeast swi/snf complex,”

Ph.D. Dissertation, Univ. of Mass. Med. School, 2004.

[108] I. Kodde, J. van der Stok, R. Smolenski, and J. de Jong, “Metabolic and genetic

regulation of cardiac energy substrate preference,” Comparative Biochemistary and

Physiology, vol. 146, pp. 26–39, Oct. 2006.

[109] G. Gould and G. Holman, “The glucose transporter family: structure, function and

tissue specific expression,” Biochemistry, vol. 295(2), pp. 329–341, 1993.

[110] A. He, X. Liu, L. Liu, Y. Chang, and F. Fang, “How many signals impinge on glut4

activation by insulin,” Cellular Signalling, vol. 19, pp. 1–7, June 2007.

[111] L. Chang, S. Chiang, and A. Saltiel, “Insulin signaling the regulation of glucose

transport,” Molecular Medicine, vol. 10, pp. 7–12, July 2004.

[112] R. Watson and J. Pessin, “Glut4 translocation: The last 200 nanomters,” Cellular

Signalling, vol. 19, pp. 2209–2217, July 2007.



219

[113] G. Richieri, A. Anel, and A. Kleinfeld, “Interaction of long chian fatty acids and

albumin: determination of free fatty acid levels using the fluorescent probe adifab,”

Biochemistry, vol. 329, pp. 7574–7580, 1993.

[114] D. Koonen, J. Glatz, A. Bonen, and J. Luiken, “Long chain fatty acid uptake and

fat/cd36 trasnlocation in heart and skeletal muscle,” Biochim Biophys Acta., vol.

1736(3), pp. 163–180, October 2005.

[115] G. van der Vusse, M. van Bilsen, J. Glatz, D. Hasselbaink, and J. Luiken, “Critical

steps in fatty acid uptake and utilization,” Mol. Cell. Biochem., vol. 254, pp. 311–

318, 2002.

[116] J. Bonnefont, F. Demaugre, C. Prip-Buus, J. Saudubray, M. Brevit, N. Abadi,

and L. Thuillier, “Carnitine palmitoyltransferase deficiencies,” Mol. Genet. Metab.,

vol. 68, pp. 424–440, 1999.

[117] V. Zammit, “Carnitine acyltransferase functional signifigance of subcellular distri-

bution and membrane topology,” Prog. Lipid Res., vol. 38, pp. 199–224, 1999.

[118] (2007) The bigg database. [Online]. Available: http://bigg.ucsd.edu

[119] N. Duarte, S. Becker, N. Jamshidi, I. Thiele, M. Mo, T. Vo, R. Srivas, and B. Pals-

son, “Global reconstruction of the human metabolic network based on genomic and

bibliomic data,” Proc. Natl. Acad. Sci. U.S.A., vol. 104(6), pp. 1777–1782, 2007.

[120] F. Gunstone, The lipid hand book. CRC 3rd edition.

[121] ——, Fatty Acid and Lipid Chemistry. Springer Verlag.

[122] H. Schulz, “Regulation of fatty acid oxidation in heart,” Nutrition, pp. 165–171,

1994.

[123] P. Rinaldo and D. Matern, “Fatty acid oxidation disorders,” Annu. Rev. Physiol.,

vol. 64, p. 477502, 2002.

[124] K. Kauffman, P. Prakash, and J. Edwards, “Advances in flux balance analysis,”

Elsevier J. Biochemical Engineering, vol. 14, pp. 491–496, 2003.



220

[125] M. Covert, C. Schilling, and B. Palsson, “Regulation of gene expression in flux

balance models of metabolism,” Theoritical Biology, vol. 213, pp. 73–88, 2001.

[126] M. Covert and B. Palsson, “Transcriptional regulation in constraints-based

metabolic models of escherichia coli,” Biological Chemistry, vol. 277, pp. 28 058–

28 064, May 2002.

[127] ——, “Constraints-based models: regulation of gene expression reduces the steady-

state solution space,” Theoritical Biology, vol. 221, pp. 309–325, 2003.

[128] T. Shlomi, O. Berkman, and E. Ruppin, “Regulatory on/off minimization of

metabolic flux changes after genetic perturbations,” Proc. Natl. Acad. Sci. U.S.A.,

vol. 102, pp. 7695–7700, 2003.

[129] M. Covert and B. Palsson, “Integrating high-throughput and computational data

elucidates bacterial networks,” Nature, vol. 429, pp. 92–96, 2004.

[130] N. Hernandez and W. Keller, “Splicing of in vitro synthesized messenger rna pre-

cursors in hela cell extracts,” Cell, vol. 35, pp. 89–99, 1983.

[131] A. Krainer, T. Maniatis, B. Ruskin, and M. Green, “Normal and mutant human

β-globin pre-mrnas are faithfully and efficiently spliced in vitro,” Cell, vol. 36, pp.

993–1005, 1984.

[132] R. Lin, A. Newman, S. Cheng, and J. Abelson, “Yeast mrnasp licing in vitro,”

Biological Chemistry, vol. 260, pp. 14 780–14 792, 1985.

[133] M. Jurica and M. Moore, “Pre-mrna splicing: awash in a sea of proteins,” Biological

Chemistry, vol. 12(1), pp. 5–14, 2003.

[134] K. Neugebauer, “On the importance of being co-transcriptional,” Cell, vol. 115,

pp. 3865–3871, 2002.

[135] P. Lopez and B. Sraphin, “Yidb: the yeast intron database,” Nucleic Acids Re-

search, vol. 28(1), pp. 85–86, 2000.



221

[136] A. Zaug, P. Grabowski, and T. Cech, “Autocatalytic cyclization of an excised

intervening sequence rna is a cleavage-ligation reaction,” Nature, vol. 301, pp. 578–

583, 1983.

[137] J. Sanford and J. Caceres, “Pre-mrna splicing: life at the centre of the central

dogma,” J. Cell Science, vol. 117, pp. 6261–6263, 2004.

[138] B. Modrek and C. Lee, “A genomic view of alternative splicing,” Nature Gentics,

vol. 30, pp. 13–19, 2002.

[139] M. Green, “Biochemical mechanisms of constitutive and regulated pre-mrna splic-

ing,” Annu. Rev. Cell Biol., vol. 7, pp. 559–599, 1991.

[140] ——, “pre-mrna splicing,” Annu. Rev. Genetics, vol. 20, pp. 671–708, 1986.

[141] M. Slutsky and L. Mirny, “Kinetics of protein-dna interaction: Facilitated target

location in sequence-dependent potential,” Biophys. J., vol. 87, pp. 4021–4035,

2004.

[142] S. Mohr, M. Matsuura, P. Perlman, and A. Lambowitz, “A dead-box protein alone

promotes group ii intron splicing and reverse splicing by acting as an rna chaper-

one,” Proc. Natl. Acad. Sci. U.S.A., vol. 23(10), p. 35693574, 2006.

[143] H. Kim and J. Yin, “Effects of rna splicing and post-transcriptional regulation on

hiv-1 growth: a quantitative and integrated perspective,” IEE Proc. Syst. Biol.,

vol. 152(3), pp. 138–152, 2005.

[144] S. Singh, H. Yang, M. Chena, and S. Yu, “A kinetic-dynamic model for regulatory

rna processing,” Journal of Biotechnology, vol. 127, pp. 488–495, 2006.

[145] A. Audibert, D. Weil, and F. Dautry, “In vivo kinetics of mrna splicing and trans-

port in mammalian cells,” Molc. and Cell. Biol., vol. 22(19), p. 67066718, 2002.

[146] B. Alberts, D. B. J. Lewis, K. R. M. Raff, and J. D. Watson, Molecular biology of

the Cell third edition. New York: Garland Publishing Inc, 1994.



222

[147] O. Flores, H. Lu, and D. Reinberg, “Factors involved in specific transcription by

mammalian rna polymerase ii,” Biol. Chemistry, vol. 267(4), pp. 2786–2793, 1992.

[148] D. Bushnell, K. Westover, R. Davis, and R. Kornberg, “Structural basis of tran-

scription: an rna polymerase ii-tfiib cocrystal at 4.5 angstroms,” Science, vol. 303,

pp. 983–988, 2004.

[149] H. Boeger, D. Bushnell, R. Davis, J. Griesenbeck, Y. Lorch, J. Strattan, K. West-

over, and R. Kornberg, “Structural basis of eukaryotic gene transcription,” FEBS

Letters, vol. 579, pp. 899–903, 2005.

[150] R. J. S. III, R. Belotserkovskaya, and D. Reinberg, “Elongation by rna polymerase

ii:the short and long of it,” Genes & Dev., vol. 18, pp. 2437–2468, 2004.

[151] T. Lee and R. Young, “Regulation of gene expression by tbp-associated proteins,”

Genes & Dev., vol. 12, pp. 1398–1408, 1998.

[152] J. Perez-Ortin, P. Alepuz, and J. Moreno, “Genomics and gene transcription ki-

netics in yeast,” TRENDS in Genetics, vol. 23(5), pp. 250–257, 2007.

[153] A. Jarmolowski, W. Boelens, E. Izaurralde, and I. Mattaj, “Nuclear export of

different classes of rna is mediated by specific factors,” Cell Biology, vol. 124, pp.

627–635, 1994.

[154] C. Zhang, K. Zobeck, and Z. Burton, “Human rna polymerase ii elongation in slow

motion: role of the tfiif rap74α1 helix in nucleoside triphosphate-driven transloca-

tion,” Molec. and Cell. Biology, vol. 25(9), pp. 3583–3595, 2005.

[155] U. Kubitscheck, D. Grnwald, A. Hoekstra, D. Rohleder, T. Kues, J. Siebrasse, and

R. Peters, “Nuclear transport of single molecules: dwell times at the nuclear pore

complex,” Cell Biology, vol. 168(2), pp. 233–243, 2005.

[156] R. Jackson, “Alternative mechanisms of initiating translation of mammalian mr-

nas,” Biochemical Society Lectures, pp. 1231–1241, 2005.



223

[157] T. V. Pestova, V. Kolupaeva, I. Lomakin, E. Pilipenko, I. Shatsky, V. Agol, and

C. Hellen, “Molecular mechanisms of translation initiation in eukaryotes,” Proc.

Natl. Acad. Sci. U.S.A., vol. 98(13), pp. 7029–7036, 2001.

[158] C. Hellen and T. V. Pestova, “Translation initiation: Molecular mechanisms in

eukaryotes,” Encyclopedia of Life Sciences, 2006.

[159] P. Hilleren and R. Parker, “mrna surveillance in eukaryotes: kinetic proofreading

of proper translation termination as assessed by mrnp domain organization,” RNA

Journal, vol. 5, pp. 711–719, 1999.

[160] J. Lorsch and D. Herschlag, “Kinetic dissection of fundamental processes of eukary-

otic translation initiation in vitro,” The EMBO Journal, vol. 18(23), pp. 6705–6717,

1999.

[161] J. Fernandez, I.Yaman, C. Huang, H. Liu, A. Lopez, A. Komar, M. Caprara,

W. Merrick, M. Snider, R. Kaufman, W. Lamers, and M. Hatzoglou, “Ribosome

stalling regulates ires-mediated translation in eukaryotes, a parallel to prokaryotic

attenuation,” Molecular Cell, vol. 17, pp. 405–416, 2005.

[162] P. Muller and H. Trachsel, “Translation and regulation of translation in the yeast

saccharomyces cerevisiae,” Eur. J. Biochem, vol. 191, pp. 257–261, 1990.

[163] D. Elliott and M. Rosbash, “Yeast pre-mrna is composed of two populations with

distinct kinetic properties,” Eeperimental cell Research, vol. 229, pp. 181–188, 1996.

[164] D. Cao and R. Parker, “Kinetic dissection of fundamental processes of eukaryotic

translation initiation in vitro,” RNA Jpurnal, vol. 7, p. 11921212, 2001.

[165] N. Shulga, P. Roberts, Z. Gu, L. Spitz, M. Tabb, M. Nomura, and D. Goldfarb,

“In vivo nuclear transport kinetics in saccharomyces cerevisiae: a role for heat

shock protein 70 during targeting and translocation,” Cell Biology, vol. 135(2), pp.

329–339, 1996.



224

[166] A. Belle, A. Tanay, L. Bitincka, R. Shamir, , and E. OShea, “Quantification of

protein half-lives in the budding yeast proteome,” Proc. Natl. Acad. Sci. U.S.A.,

vol. 103(35), p. 1300413009, 2006.

[167] R. Brownsey, A. Boone, and M. Allard, “Action of insulin on mammalian heart:

metabolism, pathology and biochemical mechanism,” Cardiovascular Research,

vol. 34, p. 324, 1997.

[168] J. Huss and D. Kelly, “Nuclear receptor signaling and cardiac energetics,” Circu-

lation Research, vol. 95, pp. 568–578, 2004.

[169] F. Nystrom and M. Quon, “Insulin signaling: metabolic pathways and mechanisms

for specificity,” Cell Signal, vol. 11(8), pp. 563–574, 1999.

[170] A. Saltiel and R. Kahn, “Insulin signaling and the regulation of glucose and lipid

metabolism,” Nature, vol. 414, pp. 799–806, 2001.

[171] W. Stanley, F. Recchia, and G. Lopaschuk, “Mycardial substrate metabolism in

the normal and failing heart,” Physio. Rev., vol. 85, pp. 1093–1129, 2005.

[172] C. Mounier and B. Poser, “Transcriptional regulation by insulin: from receptor to

the gene,” Physiol. Pharmacol, vol. 84, pp. 713–724, 2006.

[173] C. Montessuit, N. Rosenblatt-Velin, I. Papageorgious, L. Campos, C. Pellieux,

T. Palma, and R. Lerch, “Regulation fo glucose transporter expression in cardiac

myocytes: p38 mapk is strong inducer of glut4,” Cardiovascular Research, vol. 64,

pp. 94–104, 2004.

[174] B. Desvergne, L. Michalik, and W. Wahli, “Transcriptional regulation of

metabolism,” Physiol. Rev, vol. 86, pp. 465–514, 2006.

[175] The intersystem website. [Online]. Available:

http://www.intersystems.com/cache/index.html

[176] B. Maisch, “Enrichment of vital adult cardiac muscle cells by continuous silica sol

gradient centrifugation,” Basic Res. Cardiol., vol. 76, pp. 622–629, 1981.



225

[177] B. Oviatt, “Cardiac muscle cells in man and certain other mammals,” Proc. of the

American Society of Microscopists, vol. 76, pp. 283–298, 1887.

[178] A. Drake-Holland and M. Noble, Cardiac metabolism. New York: John Wiley and

Sons, 1983.

[179] H. Miranda, A. Ferreira, A. Quintas, and C. Cordeiro, “Measuring intracellular en-

zyme concentrations,” Biochemistry and Molecullar Biology Education, vol. 36(2),

pp. 135–138, 2007.

[180] R. Bar, P. Gorden, J. Roth, R. Kahn, and P. D. Meyts, “Fluctuation in the affinity

and concentration of insulin receptors on circulating monocytes of obese patients:

Effect of starvation, refeeding, and dieting,” Clinical Investigation, vol. 58, pp.

1123–1135, 1976.

[181] A. Thorsson and R. Hintz, “Insulin receptors in the newborn: Increase in receptor

affinity and number,” New England Journal of Medicine, vol. 297(17), pp. 908–912,

1977.

[182] S. Sharma, P. Guthrie, S. Chan, S. Haq, and H. Taegtmeyer, “Glucose phospho-

rylation is required for insulin-dependent mtor signalling in heart,” Cardiovascular

Research, vol. 76, pp. 71–80, 2007.

[183] A. Sedaghat, A. Sherman, and M. Quon, “A mathematical model of metabolic

insulin signaling pathways,” Physiol. Endocrinal Metab, vol. 283, pp. E1084–E1101,

2002.

[184] M. Saddik, J. Gamble, L. Witter, and G. Lopaschuk, “Acetyl-coa carboxylase resu-

lation of fatty acid oxidation in the heart,” J. of Biological Chemistry, vol. 268(34),

pp. 25 836–25 845, 1993.

[185] K. V. der Lee, P. Willemsen, S. Samec, J. Seydoux, A. Sulloo, M. Pelsers, J. Glatz,

G. V. der Vusse, and M. V. Bilsen, “Fasting-induced changes in the expression



226

of genes controling metabolism in rat heart,” J. of Lipid Research, vol. 42, pp.

1752–1758, 2001.



BIOGRAPHICAL STATEMENT

Amin was born in 1975 in Shiraz, Iran. In 1998 he received his B.S. degree from

the Azad University of Tehran, Iran, in Computer Software Engineering. In 2003 he

received his M.S. in Computer Science and Engineering from University of Texas at Ar-

lington, USA. During his Master he joined the Center for Research in Wireless Mobility

and Networking (CReWMaN) in computer science and engineering department at UTA.

His master research was on multimedia streaming over wireless networks and data trans-

port and switching in core optical networks. For his doctoral research he was inspired

by his mentor to switch gear and move to the interdisciplinary area of Systems Biol-

ogy. He received his Ph.D. in Computer Science and Engineering from the University of

Texas at Arlington in August 2008. His current research interests focus on modeling and

simulation of complex biological networks in eukaryotic cells.

227


