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ABSTRACT

THE IMPACT OF VACCINATION AND MULTIPLE TYPES OF

HPV ON CERVICAL CANCER

BRITNEE A CRAWFORD, M.S.

The University of Texas at Arlington, 2008

Supervising Professor: Christopher Kribs Zaleta

Understanding the relationship between multiple strains of human papillomavirus

and cervical cancer may play a key role in vaccination strategies for the virus. In this

article we formulate a model with two strains of infection and vaccination for one

of the strains in order to investigate how multiple strains of HPV and vaccination

may affect the number of cervical cancer cases and deaths due to infections with both

types of HPV. We calculate the basic reproductive number for both strains indepen-

dently as well as the basic reproductive number for the system based on R1 and R2.

We also compute the invasion reproductive number R̃i for strain i when strain j is at

equilibrium (i 6= j). We show that the disease-free equilibrium is locally stable when

R0 = max{R1, R2} < 1 and each single strain endemic equilibrium Ei exists when

Ri > 1. We determine stability of the single strain equilibrium using the invasion

reproductive numbers. The R1, R2 parameter space is partitioned into 4 regions by

the curves R1 = 1, R2 = 1, R̃1 = 1, and R̃2 = 1. In each region a different equilibrium

is dominant. The presence of strain 2 can increase strain 1 related cancer deaths by

more than 100 percent, but can be reduced by more than 90 percent with 50 percent

v



vaccination coverage. Under certain conditions, we show that vaccination against

strain 1 can actually eradicate strain 2.
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CHAPTER 1

INTRODUCTION

1.1 Background of HPV and Vaccination

Human papillomavirus (HPV) is recognized to be one of the most prevalent

sexually transmitted infections. In the National Health and Nutrition Examination

Survey in 2003, Dunne et al. estimated the population prevalence of HPV for U.S.

females to be approximately 26.8%[17]. There have been over 100 HPV types identi-

fied, of which approximately 40 infect the anogenital tract. Of these 40 types, 15 are

considered oncogenic or high-risk[20]. Persistent infection with oncogenic HPV types

is the primary cause of cervical cancer and its precursor lesions[1]. HPV has been

identified in 99.7 percent of all cervical cancers. Thus, we see that persistent infection

with high-risk types such as HPV 16, 18, 31, 33, and 45 is considered a necessary

step for the development of cervical cancer[7].

Recently, Merck & Co., Inc. introduced the FDA approved quadrivalent vaccine

Gardasil to the female population. The vaccine protects against HPV 6, 11, 16, and

18. The first two types listed are considered low-risk and the last two are high-risk,

causing almost 90 percent of all cervical cancers. Gardasil is currently approved

for use for females ages 9–26, given in three separate injections over a period of six

months[6]. Certain legislatures have attempted to implement mandatory vaccination

policies for Gardasil for young women, but few have been successful. Currently,

vaccination campaigns are underway through television commercials and in print.

Because of the immediate availability of Gardasil, recent interest in coinfections

with multiple HPV types has been heightened. It has been observed that 20-30 per-
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cent of women with cervical infections have more than one type of HPV[2]. We note

that some of these multi-strain infections are not covered by the vaccine. Coinfec-

tion can be described as either concurrent or sequential. In this study we consider

sequential coinfection where the subject contracts one strain of HPV, then contracts

a second strain at a later time. We acknowledge that a female may contract multi-

ple strains of HPV at once, but in this study we focus on sequential acquisition of

multiple HPV types.

1.2 Literature review of coinfection studies

There are essentially two ways in which strains of infections may interact with

one another. Strains may exhibit interdependence or may act completely indepen-

dently of one another. In broad strokes these interactions may be classified as either

competition or mutualism.

In the realm of epidemiology, interdependence among viruses has motivated

many mathematical studies. We review several of these studies and describe the

ways in which the strains studied interact as well as results obtained.

In a study on dynamics of two viral infections in a population, cross-immunity

and coinfection are considered[9]. The model is an SI model where individuals can be

infected with one of the two viruses or infected with both viruses. This study allows

for potential cross-immunity in both directions. The results show that both diseases

can be maintained in the population simultaneously, and if immunity is low enough

then coinfection is possible.

Another study describes effects of two competing flu strains characterized by

cross-immunity[22]. Nuño focuses on whether or not strain 2 can successfully invade

an established strain 1 in the presence of cross-immunity. Again, results are obtained

that coexistence is possible when cross-immunity is low.
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We investigate several studies on vaccination and HPV. We first mention a

study on a single strain of HPV where vaccination strategies are in effect[18]. This

study considers two vaccination strategies: mass vaccination and public education

campaigns encouraging voluntary vaccination. Existence of the disease-free equilib-

rium as well as the endemic equilibrium are established. We also mention a second

paper involving vaccination against multiple types of HPV. Two strains are present,

and infection with one or both strains is possible[20]. Also, vaccination against either

type 1 or type 2 is considered, but not vaccination for both strains. The paper estab-

lishes an SIR relationship for each strain as well as the possibility for cross-immunity.

This model allows for coinfection, where the interaction between the two strains is

incorporated by a multiplier that represents cross-immunity or cross-vulnerability.

This paper examines the effects of mass vaccination on multiple strains of HPV in

the population, examining the scenarios where the strains are competing or syner-

gistic. Results conclude that if mass vaccination is present for one strain, then due

to competition the second strain will take the place of strain 1 in the population.

Thus, vaccination may not have an overall positive effect on reducing the prevalence

of HPV if strains are competing. The second scenario considers that the strains are

not competing, but rather the strains are mutualistic. The results show that if mass

vaccination is in effect for strain 1, then due to the synergistic relationship between

the strains, the vaccine may indirectly reduce the prevalence of strain 2.

We also wish to discuss the clinical issues of recovery versus recurrence (latency)

for HPV infections. At this point it is unclear whether a woman actually clears an

HPV infection or it becomes latent. In clinical studies, it is still unclear if reappear-

ance of a particular strain of HPV is actually a new infection or a recurrence of the

strain from a latent state[2]. Another clinical issue is type-specific immunity. If a

woman clears an HPV infection , can she be reinfected with that same strain? This is
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still a question that remains unanswered. Trottier, H. and Franco, E.L. review stud-

ies in which the type-specific immunity of HPV is addressed.[8]. We see that certain

studies observe an age-related decline in prevalence of HPV. One explanation for this

is that as women age, they develop type-specific immunity for certain strains which

prevent against future infection. Other studies observe a peak in HPV prevalence

among women younger than 25 followed by a decline in prevalence until the age of

45 where a second peak in prevalence occurs[19]. This scenario suggests that women

may develop an immunity, but it is not lifelong. Thus the second peak in the curve

suggests the possibility of reinfection. In our study, we consider these possibilities,

but assume that reinfection with the same type can occur.

1.3 Motivation for the study

In a study to determine whether HPV infection modifies the risk of acquiring

HPV infection with another type, Méndez concludes that subjects with HPV-16 or

HPV-18 had 5-7 times higher odds of acquiring a subsequent infection with HPV-58

than subjects who did not have HPV-16 or HPV-18 [16]. From these results and

others [4, 3, 5], we conclude that HPV strains are not competing but rather exhibit

mutualism.

There are two kinds of reasons why certain women are more likely to contract

multiple types of HPV infection. Some women might be predisposed to infections

in general, because of lifestyle or lesions. An analysis of a study on a group of

Brazilian women suggests that a woman with a history of condyloma may have a

greater vulnerability to concurrent infection with multiple strains of HPV [3]. Thus

certain women are a priori more vulnerable to being infected with any type of HPV.

In this situation, infection with multiple strains of HPV would not be uncommon. It

has been well established that the most common risk factors for infection with any
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HPV are age and number of sexual partners. Many studies have attempted to adjust

their findings to account for these factors. In this study, we acknowledge these factors

but are considering other causes for a person to have coinfection with multiple strains

of HPV.

A second mode for which a woman may become infected with multiple strains

of HPV is through the effects of an initial infection. A person who is infected with

a particular strain of HPV may actually become more susceptible to infection with

other strains of HPV. This vulnerability could be due to something the virus actually

does to the body or immune system, thereby increasing a person’s susceptibility to

other infections. In a study involving a cohort of Brazilian women, the highest preva-

lence of coinfection was among women with LSIL (low-grade squamous intraepithelial

lesion)[4]. In our study we focus on the second reason rather than the first.

Research has shown that women infected with multiple strains of HPV who

contract cervical cancer are less likely to recover from cervical cancer[13]. The re-

searchers concluded that the presence of multiple HPV types is associated with poor

prognosis in patients with locally advanced cervical cancer. In this study, 7 of the 8

women who did not respond to treatment with radiotherapy had multiple HPV infec-

tions. If women infected with multiple strains of HPV are less likely to recover, then

an appropriate vaccination coverage may lessen the fatal effects of cervical cancer due

to multiple strains of HPV.

In this paper we wish to answer two questions. In the presence of an oncogenic

strain of HPV, what effect does a second strain-coinfection with which prevents re-

covery from cancer have on the number of cervical cancer cases and deaths among

U.S. women? Also, what net effect does vaccination have on the number of cervi-

cal cancer cases and deaths in this same population? We begin with a description

of the model and underlying assumptions in section 2. In section 3, we establish
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existence and local stability of single strain equilibria through invasion reproductive

numbers. We also establish existence of the single strain equilibrium. Section 4 gives

the parameter estimation as well as numerical results obtained through simulations,

followed by conclusions and discussion in section 5.



CHAPTER 2

MODEL

The population in our model is assumed to be U.S. females age 15-59. We

choose the lower bound of the age range as 15 because we assume this is the average

age for females entering the sexually active population. We consider the following

groups in our study: susceptible females at-risk for infection with strain 1 or strain 2,

females vaccinated for strain 1 and not infected, females vaccinated for strain 1, but

infected with strain 2, females infected with only one strain (strain 1 or strain 2) or

infected with both strains, and females with cancer from strain 1 or cancer from strain

1 and 2. We exclude males in this study because we are most interested in the HPV

related disease cervical cancer. Because we are interested in the effects of vaccination

and coinfection on the cancer cases caused by one of the vaccine-targeted strains,

we exclude here all cancer cases caused by strains other than strain 1, including any

caused by strain 2.

A person can enter the vaccinated V class in two different ways. A person

may enter the population directly into the vaccinated class, due to a vaccination

policy in effect, or a person can move from the susceptible class S to the vaccinated

class due to voluntary vaccination. For our model, we assume that a proportion p

of the population will enter into the vaccinated class perhaps due to a mandatory

vaccination policy in effect for girls entering our population at age 15. This class

consists of women who are vaccinated for infection 1, but may still contract strain

2. From the vaccinated class, a person may then move to the V2 class. The women

in the V2 class have strain 2, but cannot contract strain 1. The rate φ is the per

7
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capita transition rate from the S class to the V class. We consider this transition

due to voluntary vaccination. A woman can choose to get vaccinated at any age

recommended by the vaccine in effect. The decision can be due to public education

campaigns or recommendation by a doctor.

The remaining portion 1−p enter into the susceptible class. From the S class, a

woman can become infected with either strain 1 or strain 2. We assume that a person

can then recover from that infection at a rate of γ1 for strain 1 or γ2 for strain 2. Thus

a woman infected with one strain can then either clear (recover from) that strain, or

become infected with the other strain (we assume no simultaneous infections by both

strains), or else remain in that state until natural death or sexual inactivity. Women

infected with strain 1 are assumed to be k times as vulnerable to infection by strain 2

as uninfected women, where k ≥ 1. Once a woman is infected with strain 1, she may

develop cervical cancer due to persistence of the strain, thus moving to C1, or she

may become infected with strain 2(as well as the first), thus moving to I12. From this

coinfection class, a woman may then clear either one or both infections, or progress

to cervical cancer, or remain in this class until natural mortality. We further note

that progression to cervical cancer from I12 is due to strain 1.

For our model, we consider strain 2 to be HPV type 58 or 33. We consider

both types for several reasons. We consider HPV-58 as the secondary infection to

HPV-16 due to results provided by Méndez et al. Subjects in this study with incident

infections of HPV-16 or HPV-18 had 5-7 times higher odds of acquiring HPV-58 [16].

We may also consider HPV-33 as the secondary infection to HPV-16. According to

results from a study conducted by Bachtiary et al., HPV-33 was the most common

type found in a patient infected with multiple strains of HPV. In fact, the most

commonly found coinfection with two HPV types was HPV-16 in combination with

HPV-33 [13]. Although we focus on effects on cancer caused by strain 1, we further
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assume that women with both strains will have a greater fatality rate from cervical

cancer.

We also assume that persons who have cervical cancer due to HPV infection may

enter treatment. We assume that in some cases, the treatment will be successful, and

the person will enter into remission from the cancer. However, the person may still

have presence of HPV DNA in/on the cervix. In this situation, we see the transition

from C1 back to I1. We also assume that a woman infected with both strains who gets

cervical cancer will not recover from the cancer. Thus, we do not have a transition

from C12 back to I12.

Based on our model description and assumptions, we establish the following

equations. We note that the population N is not constant. We therefore derive (2.9)

as the sum of (2.1)–(2.8).

S ′ = (1 − p)Λ − φS −
β2Ĩ2S

N
−

β1Ĩ1S

N
+ γ1I1 + γ2I2 − µS (2.1)

V ′ = pΛ + φS −
β2Ĩ2V

N
+ γ2V2 − µV (2.2)

V ′

2 =
β2Ĩ2V

N
− (µ + γ2)V2 (2.3)

I ′

1 =
β1Ĩ1S

N
− k

β2Ĩ2I1

N
− (ω + µ + γ1)I1 + αC1 + γ2I12 (2.4)

I ′

2 =
β2Ĩ2S

N
−

β1Ĩ1I2

N
− (µ + γ2)I2 + γ1I12 (2.5)

I ′

12 =
kβ2Ĩ2I1

N
+

β1Ĩ1I2

N
− (µ + ω + γ1 + γ2)I12 (2.6)

C ′

1 = ωI1 − (α + µ + δ)C1 (2.7)

C ′

12 = ωI12 − (µ + δ)C12 (2.8)

N ′ = Λ − µN − δ(C1 + C12) (2.9)

where Ĩ1 = I1 + I12 Ĩ2 = I2 + V2 + I12. Figure 2.1 gives a graphical interpretation of

equations (2.1)–(2.8).
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CHAPTER 3

ANALYSIS

3.1 DFE and R0

The disease-free equilibrium corresponds to the state of the population when

no infection is present. The disease-free equilibrium in proportionalized form is E0 =

N∗(s∗, v∗, 0, 0, 0, 0, 0, 0), given by

Λ

µ

(

(1 − p)µ

φ + µ
,
pµ + φ

φ + µ
, 0, 0, 0, 0, 0, 0

)

.

We note that proportionalized form is obtained by dividing through by the

population equilibrium, N ∗. So, for example s∗ = S∗/N∗. We observe that the

population dynamics at the DFE consist of two types of flows: the demographic

renewal flow and the vaccination flow. The demographic renewal flow is measured

by µ. Of this flow, we have a proportion p bringing people into the V class and the

remaining proportion 1− p bringing people into the S class. The φ flow sends people

into V .

To determine under what conditions infection with strain 1 or strain 2 can

persist in the population, we determine the basic reproductive numbers for each

infection. The basic reproductive number is a threshold condition defined to be the

average number of secondary infections caused by an infected individual. We compute

R1 for strain 1, R2 for strain 2, and R0 for the presence of any infection with either

strain.

11
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The method used to determine the various reproductive numbers of the diseases

in the model is the next-generation operator[10, 13]. Calculations for R0 are given in

Appendix 1. We find R0 =max{R1, R2}, where

R1 =
β1

µ + γ1 + µ+δ

α+µ+δ
ω

(

(1 − p)µ

φ + µ

)

, R2 =
β2

µ + γ2

.

We see that R1 consists of two parts. The first fraction is essentially the rate

into the I1 class versus the rate out of the I1 class. We note the fraction in the third

term of the denominator is a only a proportion of the ω flow. Recall that ω is the

rate at which people move from I1 to C1. Thus, the third term in the denominator

considers only a proportion of those leaving I1 to C1 because the remaining proportion

return to I1 by the α flow. We consider the second term of R1. The effect of the

second term is to reduce R1 by the proportion of the population actually susceptible

to infection in the S class.

R2 can clearly be interpreted as the rate into I2 divided by the rate out of I2.

Result 1. The disease-free equilibrium E0 is locally asymptotically stable if

R0 < 1 and unstable if R0 > 1.

This result is implied by the construction of R0 using the next generation op-

erator method.

3.2 Endemic Equilibria

Another equilibrium can be found when I∗

2 = 0. In this case, there is no infection

with strain 2. This equilibrium, in proportionalized form, is E1 = N∗(s∗, v∗, 0, i∗1, 0, 0,

c∗1, 0), where

s∗ = (1−p)
1

R1

µ

µ + φ
, v∗ = p+(1−p)

1

R1

φ

µ + φ
+(1−p)

(

1 −
1

R1

)

(

pδ

α+µ+δ

)

ω

µ +
(

µ+pδ

α+µ+δ

)

ω
,
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i∗1 = (1 − p)

(

1 −
1

R1

)

µ

µ +
(

µ+pδ

α+µ+δ

)

ω
, c∗1 = (1 − p)

(

1 −
1

R1

)

(

µ

α+µ+δ

)

ω

µ +
(

µ+pδ

α+µ+δ

)

ω
,

N∗ =
Λ

µ + δc1
∗
.

Note that this equilibrium makes biological sense only when R1 > 1. We see

that the equilibrium E1 breaks the population into three parts. The population can

be broken into proportions p and 1−p. The susceptible proportion 1−p can further be

broken into two parts: 1
R1

uninfected and 1− 1
R1

infected. The uninfected population

can be broken into 2 parts. The infected population is then further subdivided three

ways. In i∗1, we observe the µ term which can be interpreted as staying in the I1

class until death. We then examine the term µ

α+µ+δ
ω. We interpret this term as the

proportion of those women who move to C1 who die from natural causes. Essentially,

this can be seen as the proportion of those who stay in C1 until death by natural

causes or aging out of the population. The term p δ
α+µ+ω

ω can be interpreted the

following way. We observe first the δ term. We interpret this term as those who are

taken out of C1 early, essentially leaving C1 instead of staying until natural death.

The p term represents those who enter back into the system into the V class. The

equilibrium E1 is made of these six parts.

The second single-strain equilibrium is found when I∗

1 = 0, where there is no

infection with strain 1. The equilibrium value is E2 = N∗(s∗, v∗, v∗

2, 0, i
∗

2, 0, 0, 0), where

s∗ =
1

R2

(1 − p)R2µ

R2µ + φ
, v∗ =

1

R2

pR2µ + φ

R2µ + φ
,

i∗2 =

(

1 −
1

R2

)

(1 − p)R2µ

R2µ + φ
, v∗

2 =

(

1 −
1

R2

)

pR2µ + φ

R2µ + φ
.
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We note that the total population at E2 is

N∗ =
Λ

µ
,

as at E0. This equilibrium makes biological sense only when R2 > 1.

We observe that E2 breaks the population into two parts, 1
R2

uninfected and

1 − 1
R2

infected with strain 2. Of these parts, the population is further broken down

into a proportion p of the demographic renewal flow µ to the vaccinated portion of

the population as well as all of the φ flow. Thus, we see in the non-vaccinated classes

the remaining proportion 1 − p of the µ flow.

We also mention the possibility of one or more endemic equilibria E3. In the end

of section 3.3, we will determine existence and stability of this equilibrium numerically

in various regions of the parameter space using our parameter estimates from section

4.1.

3.3 Stability Analysis

We wish to determine the local stability of each equilibrium E1, E2, E3. A

method to determine stability of equilibrium values is to use the Jacobian evaluated

at the specific equilibrium value. However, because of the complexity of the Jacobian

matrix for this system, we utilize another method using the invasion reproductive

number. We do note that the stability for the endemic equilibria are investigated

numerically in section 4 using the Jacobian.

The invasion reproductive number has mostly been used in studies where com-

petitive exclusion exists between multiple strains[15, 14]. This quantity represents the

average number of secondary infections caused by introducing a person infected with

one strain into an environment where a different strain is endemic[14]. The invasion

reproductive number measures the ability of a strain to invade while another strain
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is present and at equilibrium[15, 14]. In these studies we see that if strain 2 were

introduced into a system where strain 1 has attained its equilibrium, strain 2 can

persist and invade the population if the invasion reproductive number is greater than

1. But, since our study does not consider competitive exclusion or cross-immunity,

we do not see the diminished capacity for invasion of the second strain. However,

we are still able to establish the invasion criterion which will allow us to determine

local stability of the various single-strain endemic equilibria using the invasion repro-

ductive number. We define the invasion reproductive number R̃1 to be the average

number of secondary strain 1 infections caused by an infected individual introduced

into a population at E2. Thus, E2 may be considered the disease free equilibrium for

the reduced system without the presence strain 2. R̃2 is defined similarly.

R̃1 can be found via the next generation operator method at E2, where we

determine the dominant eigenvalue of the matrix M1D
−1
1 [10]. This method assumes

R2 > 1 implicitly.

Denote M1D
−1
1 =









β1s−kβ2

(

1− 1
R2

)

µ+γ1+
µ+δ

α+µ+δ
ω

β1s+γ2
µ+ω+γ1+γ2

kβ2

(

1− 1
R2

)

+β1i2

µ+γ1+
µ+δ

α+µ+δ
ω

β1i2
µ+ω+γ1+γ2









=







a b

c d






.

Then

R̃1 =
1

2

[

a + d +
√

(a + d)2 + 4bc
]

, (3.1)

where
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a = R1
µ + φ

R2µ + φ

µ + γ1 + µ+δ

α+µ+δ
ω

µ + γ1 + µ+δ

α+µ+δ
ω + kβ2(1 − 1

R2
)
,

b = R1
µ + φ

R2µ + φ

µ + γ1 + µ+δ

α+µ+δ
ω

µ + γ1 + γ2 + ω
+

γ2

µ + ω + γ1 + γ2

,

c = R1
µ + φ

R2µ + φ

µ + γ1 + µ+δ

α+µ+δ
ω

µ + γ1 + µ+δ

α+µ+δ
ω + kβ2(1 − 1

R2
)

(R2 − 1)

+
kβ2(1 − 1

R2
)

µ + γ1 + µ+δ

α+µ+δ
ω + kβ2(1 − 1

R2
)
,

d = R1
µ + φ

R2µ + φ

µ + γ1 + µ+δ

α+µ+δ
ω

µ + γ1 + γ2 + ω
(R2 − 1).

Because R̃1 > a + d, we wish to interpret a + d. We see that a represents the

flow into I1 from S where d represents the flow into I12 from I2.

Thus, by construction of R̃1 using the next generation operator, we observe the

following result.

Result 2. The E2 equilibrium, which exists when R2 > 1, is locally asymptoti-

cally stable if R̃1 < 1 and unstable if R̃1 > 1.

We also consider the invasion reproductive number R̃2. R̃2 represents the abil-

ity of strain 2 to invade a susceptible population at E1. Again utilizing the next

generation operator method, we compute the dominant eigenvalue of the following

matrix:

M2D
−1
2 =













R2v
∗ R2v

∗ β2v∗

µ+ω+γ1+γ2

R2s
∗ R2s

∗ +
β1i∗1
µ+γ2

β2s∗+γ1

µ+ω+γ1+γ2

kR2i
∗

1 kR2i
∗

1 +
β1i∗1
µ+γ2

kβ2i∗1
(µ+ω+γ1+γ2)













.

Because of the complexity of the previous matrix, we compute R̃2 numerically

using our estimates for the parameters. However, since R̃2 is constructed using the

next generation operator, we can establish the following result.
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Figure 3.1. Division of the β1, β2 parameter space using R1, R2, R̃1, R̃2.

Result 3. The equilibrium E1, which exists when R1 > 1, is locally asymptoti-

cally stable if R̃2 < 1 and unstable if R̃2 > 1.

We wish to see how the invasion reproductive numbers R̃1 and R̃2 interact with

the basic reproductive numbers R1 and R2. We use these numbers to separate the

β1 and β2 parameter space into four regions where E0, E1, E2 and E3 exist and are

stable, noting that E3 is the coinfection equilibrium. The graph is given in Figure

3.1.

We see from the figure that the four regions are separated by the lines R1 =

1, R2 = 1, R̃1 = 1 and R̃1 = 1 as β1 and β2 vary. We conclude that in the lower left

hand region, the disease-free equilibrium E0 is stable. In the upper left region E2 is

stable. In the upper right region, E3 is stable, and in the lower right region, E1 is

stable.

The graph in Figure 3.1 was generated with p, phi = 0. For, φ ≥ 0, the R̃1 = 1

curve actually curves to the left. As a result of the construction of the model, we see

that those in I2 do not get vaccinated. Thus, as β2 → ∞, more women are moved
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from S into I2 faster than women are moved from S to V , thereby increasing the

region of coinfection when φ ≥ 0. This, we acknowledge is an aspect of the model,

and in further work a vaccination flow from I2 to V2 will be considered.

From Result 2 in section 3.2 we conclude that E2 exists when R2 > 1 and is

locally stable when R̃1 < 1. We note that when R1 < 1, either E0 exists and it

stable, or E2 exists and is stable. So, when R2, R1 < 1, E0 exists and is stable, and

when R2 > 1, R̃1 < 1, E2 exists and is stable. Because the strain 1 infection rate

is independent of strain 2 infection, we can conclude that R1 = 1 is equivalent to

R̃1 = 1. However, the curves R2 = 1 and R̃2 = 1 are not equivalent. It is possible

that R2 < 1 and strain 2 can still persist in the population alongside strain 1 (E3)

because of the increased vulnerability of women infected with strain 1. The boundary

for E1 and E3 is not the same as the boundary for E0 and E2. When R1 > 1, strain 1

is endemic which advantages transmission of strain 2. The threshold for persistence

of strain 2 is lower then when strain 1 is not endemic. We conclude that there is a

range of values for R2 for which it is possible that vaccination of strain 1 could also

cause extinction of strain 2.
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Table 3.1. Jacobian matrices used in stability analysis

In order to see the full Jacobian on a single page, we make the following substitutions.
W = N − S, X = N − V , Y = N − Ĩ2, Z = N − Ĩ1, y = N − I2, z = N − I1. The full Jacobian is given by

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

−(φ + µ) −
β2 Ĩ2W

N2
−

β1 Ĩ1W

N2
0 −

β2SY

N2
−

β1SY

N2
+ γ1 −

β2SY

N2
+ γ2 −

β2SY

N2
−

β1SZ

N2
0 0

φ −
β2 Ĩ2X

N2
− µ −

β2V Y

N2
+ γ2 0 −

β2V Y

N2
−

β2V Y

N2
0 0

0
β2 Ĩ2X

N2

β2V Y

N2
− (µ + γ2) 0

β2V Y

N2

β2V Y

N2
0 0

β1 Ĩ1W

N2
0 −

kβ2I1Y

N2

β1SZ

N2
−

kβ2 Ĩ2z

N2
− (ω + µ + γ1) −

kβ2I1Y

N2

β1SZ

N2
−

kβ2I1Y

N2
+ γ2 α 0

β2 Ĩ2W

N2
0

β2SY

N2
−

β1I2Z

N2

β2SY

N2
−

β1 Ĩ1y

N2
− (µ + γ2)

β2SY

N2
−

β1 Ĩ1y

N2
+ γ1 0 0

0 0
kβ2I1Y

N2

kβ2 Ĩ2z

N2
+

β1I2Z

N2

kβ2I1Y

N2
+

β1 Ĩ1y

N2

kβ2I1Y

N2
+

β1I2Z

N2
− (µ + ω + γ1 + γ2) 0 0

0 0 0 ω 0 0 −(α + µ + δ) 0

0 0 0 0 0 ω 0 −(µ + δ)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

We can eliminate V2, I2, I12, and C12 to obtain the reduced 4th order system.
The proportionalized Jacobian J(E1), given by this system where i∗2 = 0:

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

−(φ + µ) − β1i1(1 − s) 0 −β2s −β1s(1 − i1) + γ1 −β2s + γ2 −β2s − β1s(1 − i1) 0 0

φ −µ −β2v + γ2 0 −β2v −β2v 0 0

0 0 β2v + γ2 0 β2v β2v 0 0

−β1i1(1 − s) 0 −kβ2i1 β1s(1 − i1) − (ω + µ + γ1) −kβ2i1 β1s(1 − i1) − kβ2i1 + γ2 α 0

0 0 β2s 0 β2s − β1i1 − (µ + γ2) β2s + γ1 0 0

0 0 kβ2i1 0 i1(kβ2 + β1) kβ2i1 − (µ + ω + γ1 + γ2) 0 0

0 0 0 ω 0 0 −(α + µ + δ) 0

0 0 0 0 0 ω 0 −(µ + δ)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.
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Table 3.2. Jacobian matrices used in stability analysis

The proportionalized Jacobian J(E2), where i∗1 = 0, is given below; we make the substitution x2 = i2 + v2.
0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

−(φ + µ) − β2x2(1 − s) 0 −β2s(1 − x2) −β1s + γ1 −β2s(1 − x2) + γ2 −β2s(1 − x2) − β1s 0 0

φ −β2x2(1 − v) − µ −β2v(1 − x2) + γ2 0 −β2v(1 − x2) −β2v(1 − x2) 0 0

0 β2x2(1 − v) β2v(1 − x2) − (µ + γ2) 0 β2v(1 − x2) β2v(1 − x2) 0 0

0 0 0 β1s − kβ2x2 − (ω + µ + γ1) 0 β1s − γ2 α 0

β2x2(1 − s) 0 β2s(1 − x2) β1x2 β2s(1 − x2) − (µ + γ2) β2s(1 − x2) − β1i2 + γ1 0 0

0 0 0 kβ2x2 − β1i2 0 β2i2 − (µ + ω + γ1 + γ2) 0 0

0 0 0 ω 0 0 −(α + µ + δ) 0

0 0 0 0 0 ω 0 −(µ + δ)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

−(φ + µ) − β2(1 −
1

R2
)(1 − s) 0 −β2s( 1

R2
)) −β1s + γ1 −β2s( 1

R2
) + γ2 −β2s( 1

R2
)) − β1s 0 0

φ −β2(1 −
1

R2
)(1 − v) − µ −β2v( 1

R2
) + γ2 0 −β2v( 1

R2
) −β2v( 1

R2
)) 0 0

0 β2(1 −
1

R2
)(1 − v) β2v( 1

R2
) − (µ + γ2) 0 β2v( 1

R2
)) β2v( 1

R2
)) 0 0

0 0 0 β1s − kβ2(1 −
1

R2
) − (ω + µ + γ1) 0 β1s − γ2 α 0

β2(1 −
1

R2
)(1 − s) 0 β2s( 1

R2
) β1(1 −

1

R2
) β2s( 1

R2
)) − (µ + γ2) β2s( 1

R2
) − β1i2 + γ1 0 0

0 0 0 kβ2(i2 + v2) − β1i2 0 β2i2 − (µ + ω + γ1 + γ2) 0 0

0 0 0 ω 0 0 −(α + µ + δ) 0

0 0 0 0 0 ω 0 −(µ + δ)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.



CHAPTER 4

NUMERICAL APPROXIMATIONS

4.1 Parameters

In this section we estimate the parameters used in our model in order to provide

numerical results. All parameter estimates are given in Table 4.1. We assume all rates

are per capita unless stated otherwise. We consider first Λ, the constant recruitment

rate. According to the Population Division of the U.S. Census Bureau, the total

population of females age 15-59 in July 1, 2006 was 100,609,815[12]. Dividing this

total population by the difference in age for our model, we have a recruitment rate of

2,235,773 females between the age 15-59 in the United States per year. The natural

death rate µ for the given population is 1/45yr−1. We consider another possible

rate of removal from the population, δ, the rate of death due to cervical cancer. To

determine δ we consider results from a paper given by Bachtiary et al.[13]. We will

use the formula: (number of cervical cancer cases due to HPV-16) × (median survival

time) = (woman-months), where this is an estimate of the average woman-months of

survival after diagnosis with cervical cancer due to HPV-16. We then compute the

number of deaths divided by the number of woman-months to obtain the rate of death

due to cervical cancer. Thus using the appropriate numbers from the study, we obtain

69cases × 54months = 3726woman − months. 31deaths/3726woman − months =

0.0998yr−1 = δ.

To estimate β1, the infection rate for infection 1, we consider infection 1 to

be HPV-16 (the primary infection). Thus, we estimate the infection rate for HPV-

16. Several studies have been conducted to determine incidence rates for HPV-16
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among other types. Results given by these studies vary in nature. We use results

given by Barnabas where a transmission probability of 0.6 per sexual partnership is

determined[23]. We further assume the population considered will have an average of

2 sexual partners per year resulting in β1 = 1.2yr−1.

We estimate β2 using the estimation for β1. According to a study on multiple

strains of HPV in a cohort of Columbian women, the incidence rate of HPV-58 was

0.7 of HPV-16[19]. Thus, we conclude that β2 = 0.7β1.2

The recovery rates for strain 1 and strain 2 are γ1 and γ2, respectively. Several

studies have been conducted to determine average duration of HPV infection. We

use results from a study given by Muñoz, where durations of several HPV strains

were determined [19]. Durations of HPV-16 and HPV-58 were 13.7 and 14.8 months

respectively. We then convert to the appropriate units, obtain rates of γ1 = 0.876yr−1

and γ2 = 0.811yr−1.

Because we assume that infection with strain 1 affects vulnerability to infection

with strain 2, we use a dimensionless parameter k to describe the factor by which the

infection rate for strain 2 increases for individuals infected with strain 1. In particular,

since infection with HPV-16 appears to predispose individuals to infection with HPV-

58, we take k > 1. We utilize a study where results concluded women infected with

HPV-16 or-18 were 6 times more likely to contract a secondary infection[10]. Thus,

for our study, we estimate k = 6.

We estimate ω, rate of developing cancer due to strain 1 infection. According

to an article by Khan et al.published in the Journal of the National Cancer Institute,

the rate of developing cervical cancer due to HPV16 over a 10-year period was 17.2

percent[25]. Thus, we estimate ω = 17.2/10yr = 0.0172yr−1.

The rate α is the cervical cancer remission rate for women with strain 1 only.

We will estimate this rate indirectly using the ratio α
α+µ+δ

. We consider the proportion
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of women who go into remission from cervical cancer, and use this to solve for α in

the previous expression. According to the American Cancer Society, 72 percent of

women with cervical cancer will survive at least 5 years [20]. We assume this to be the

proportion of women who go into remission from cervical cancer. If a woman survives

for at least 5 years after being diagnosed with cervical cancer, we assume that she

has gone into remission. Thus solving α
α+µ+δ

= 72 for α, we obtain α = 0.315yr−1.

We consider that a proportion p of females enter the population directly into the

vaccinated class. But, we also consider ongoing vaccination due to public education

campaigns or influence by doctors or the medical community. In this situation, we

estimate φ, the ongoing rate of vaccination. We estimate φ by setting up a ratio

φ

φ+µ
. We see that this is the proportion of females who get vaccinated voluntarily.

According to the CDC, the influenza vaccination coverage for high-risk persons ages

18-49 was 26 percent[24]. Because the human papilloma virus vaccine has been on

the market for a short time, we do not have information for current coverage for this

vaccine. Thus we estimate the percentage of women who voluntarily get vaccinated

for HPV to be the same as the percentage of people who voluntarily get vaccinated

for influenza. Setting the ratio above equal to .26 and solving for φ, we obtain

φ = .007yr−1.

4.2 Numerical Simulations

We run numerical simulations using our parameter estimates. The simulations

were done using Matlab and Mathematica. See the code in Appendix B. In doing

these simulations, we wish to examine several scenarios. What effect does the presence

of strain 2 in our population have on the number of cervical cancer cases and deaths?

Also, if we introduce vaccination into the population, what effect then will this have

on the number of cervical cancer cases and deaths? To better answer these questions,
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Table 4.1. Model Parameters and Their Values

Parm. Description Value Units Ref.
p Proportion of women who enter the popu-

lation into the vaccinated class
0.5 -

Λ Constant recruitment rate 2, 235, 773 people/yr [12]
µ Natural death rate 1/44 1

year

δ Death rate due to cervical cancer 0.0998 1/yr [13]
β1 Infection rate for infection 1 1.2 1/yr [23]
β2 Infection rate for infection 2 7

10
(1.2) 1/yr [19]

γ1 Recovery rate from infection 1 0.876 1/yr [19]
γ2 Recovery rate from infection 2 0.811 1/yr [19]
α Cervical cancer remission rate for women

with strain 1 only
0.315 1/yr [20]

ω Rate of developing cancer due to strain 1
infection

0.0172 1/yr [25]

φ Rate of ongoing vaccination 0.007 1/yr [24]
k Amplification factor 6 – [16]

we set up several scenarios. We first consider the population without strain 2. We

run a simulation without vaccination, where the reproductive number for strain 1

will be greater than 1, and then a simulation with vaccination which reduces the

reproductive number for strain 1 below 1. We then determine the cumulative number

of cancer cases and deaths after a time period of 100 years.

We then introduce strain 2 back into the population. The presence of strain

2 will change the dynamics of the population greatly. Strain 2 causes more of the

cancer cases to be fatal. We again run the simulation without vaccination and then

with vaccination to obtain the number of cervical cancer cases and deaths after the

predetermined time period. The results of the simulations can be seen in Table 4.2.

Although the proportions in the table are reasonable, all of the results are

higher than expected. There are several reasons why this occurs. Because this is an

exponential distribution of lifetimes, we see an overestimate. Since µ is 1
45

, people
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Table 4.2. Effects of the presence of strain 2 and/or vaccination (p = 0.5,φ =
0.007yr−1) on the severity of the strain 1 epidemic and associated cancer over a
100 year period.

Cumulative No. of Cumulative No. Cumulative No.
Scenario Strain 1 Infectives Cancer Cases Cancer Deaths
Without Strain 2
No Vaccination 2,023,500,000 46,502,362 10,314,710
With Vaccination 16,394,633 3,863,766 881,325

With Strain 2
No Vaccination 1,855,800,000 42,240,709 23,970,206
With Vaccination 18,378,027 4,308,887 2,019,381

should be removed from the population after 45 years, but in this case some of them

are still in the system, thus producing higher final numbers. A second reason for

the higher than expected final numbers is that the model allows for people to get

reinfected over and over again. We note that this is not unrealistic. The official CDC

data count infections differently than we do in this study. Because of the transient

nature of HPV and different detection methods, it is difficult to determine whether a

person has actually cleared and been reinfected. This overestimate could potentially

be avoided by having people recover to a separate R class rather than moving back and

forth from the susceptible to infectious classes. Because we are interested in the effect

of strain 2’s presence in the population and vaccination present in the population, we

use proportional comparisons.

We notice in the results that without vaccination present, the number of cervical

cancer cases actually decreases when strain two is introduced into the population.

This is because that when strain one is alone in the population, women can develop

cervical cancer, but can then recover from that cancer at which point they could

conceivably develop it again. Since the model cannot distinguish among individuals
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in the same class, this would count as an additional case. However, when strain two

is in the population, we have another route to developing cervical cancer. Women

can develop cervical cancer from the I12 class, but because the cancer is from a

multiple infection with HPV, the cancer cannot be cleared. Thus when strain two is

introduced we see that women who enter the C12 class cannot return back into the

population. Thus, there are fewer women to get reinfected over time. So, we focus

more on the cervical cancer deaths in this situation rather than the number of cases.

It is expected that when strain two is in the population (with or without vaccination)

cervical cancer deaths will be greater. But, when comparing the scenarios when strain

2 is present without vaccination versus strain 2 present with vaccination we will see

cervical cancer cases and deaths reduced by a drastic amount.

Using results found in Table 4.2, we observe the following. First, we examine

the results without strain 2. Without a second strain in our system, we see a 92

percent decrease in number of cervical cancer cases when vaccination is introduced

into the system. We observe a 92 percent decrease in number of cervical cancer deaths

as well. When strain 2 is present in the system, we observe that there is a significant

decrease in the number of cervical cancer cases and deaths after 100 years. After

100 years, we see that there is an 88 percent decrease in number of cervical cancer

cases if vaccination is present at 50 percent. Also, we observe a 92 percent decrease

in number of cervical cancer deaths after this time.

When comparing the effects of the second strain on the system, we observe that

without vaccination, there is a 122 percent increase in cervical cancer deaths when

strain 2 is entered into the system. If vaccination is present at 50 percent, we see that

there is a 129 percent increase in cervical cancer deaths.

We also wish to observe the effect of the vaccination parameters p and φ on

cases of strain 1. We view a graph of p and φ versus the number of strain 1 infectives
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at the end of 100 years. We solve the system of differential equations over time as

p and φ vary. The graph is given in Figure 4.1. We see that the number of strain 1

infectives is essentially zero for most vaccination levels. We see that for values of p

and φ as low as 0.2, strain 1 will still be eradicated.
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0.0
0.5

1.0
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Figure 4.1. Vaccination Parameters vs. Ĩ1.

We recall that in our model, vaccination is not a possibility for strain 2. How-

ever, strain 1 increases a woman’s vulnerability of contracting strain 2. We thus wish

to examine what effect vaccination for strain 1 will have on strain 2. We examine

the graph of the vaccination parameters versus Ĩ2 in Figure 4.2. In the graph we see

that Ĩ2 is sustained at the E2 equilibrium except for values of p and φ near zero. We

see from the graph that when R1 < 1, strain 2 prevalence remains at 0.8 percent

while the prevalence for strain 2 jumps significantly for R1 > 1. Because strain 1

contributes so much to the prevalence of strain 2 through secondary infections, for

our given parameter estimates vaccination for strain 1 will not eradicate strain 2, but

will reduce its prevalence significantly.
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CHAPTER 5

CONCLUSIONS

The current vaccine Gardasil targets HPV 6, 11, 16, 18, of which the first two ac-

count for over 90 percent of all genital warts and the latter two account for 70 percent

of all cervical cancers. If there is a mutualistic relationship between HPV as certain

studies suggest, then the vaccine may indirectly protect against types not targeted,

thereby reducing the prevalence of HPV not targeted in the vaccine. Furthermore,

as we have seen women who develop cervical cancer due to persistent multiple HPV

infections are less likely to recover from the cancer. If so, then since the vaccine may

indirectly protect against types in multiple infections, thus protecting against cervical

cancer caused by those infections.

Recall the goal of the study was to investigate the effect of multiple strains of

human papillomavirus and vaccination on the number of cervical cancer deaths of

female U.S. women. Thus, we construct our model with classes to highlight these

effects. We note that in our model the presence of strain one will increase infectivity

of strain two. We also recall that women who develop cervical cancer from infection

with both strains will not recover from the cancer.

We computed the basic reproductive numbers R1 and R2 as well as the invasion

reproductive numbers R̃1 and R̃2. Together these quantities determine existence and

stability for the disease-free and endemic equilibria. Strain 1 persists alone when

R1 > 1, R̃2 < 1, and strain 2 persists alone when R2 > 1, R̃1 < 1. We observe that

the reproductive number R1 will be greater than one with the existing estimates we

have for the parameters in the absence of vaccination. With a sufficient vaccination
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coverage, R1 can be reduced to less than one so that strain one will eventually be

eradicated. However, R2 > 1 for all values of the vaccination parameters p and

φ. Thus, under the conditions given in this study, strain 2 will not be completely

eradicated from the population, but its prevalence can be reduced as seen in section 4.

We generated a graph to see how the vaccination parameters reduce the prevalence of

strain 2 although the vaccine does not directly protect against strain 2. In fact, there

are certain scenarios in which R2 < 1 < k̂R2 = R̃2. In this case, we see that strain 1

vaccination could actually eradicate strain 2 by reducing the average vulnerability to

infection by strain 2.

Two questions were posed in this study. We wish to determine what effect

multiple strains of HPV have on the number of cervical cancer cases and deaths. It

has been determined that the introduction of a second strain to the system will cause

an increase in cervical cancer deaths by more than 100 percent. The second goal

was to determine the effects of vaccination for one strain of HPV in a system where

infection with multiple strains is possible. Vaccination coverage at approximately 25

percent or greater will result in eradication of strain 1 and eventually the associated

cervical cancer cases. Results showed a 92 percent decrease in cervical cancer deaths

with vaccination coverage at 50 percent over a period of 100 years.

In the study done by Elbasha and Galvani [20], vaccination against multiple

types of HPV was the focus. However, HPV related disease such as cervical cancer

were not addressed. In our study we investigated the impacts vaccination have on

multiple strains of HPV, but more importantly on cervical cancer cases and deaths

caused by infection with HPV. In our study, we also consider more than one vacci-

nation strategy, whereas Elbasha and Galvani consider mass vaccination (vaccination

upon entry into the population) only. We discuss how mass vaccination as well as

voluntary vaccination play a role in prevalence of both strains. As the decision to
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implement mass vaccination is being considered after the release of Gardasil, we ac-

knowledge that this may not be the ultimate direction legislatures may take. For this

reason, we consider that voluntary or ongoing vaccination is important to include in

the study of HPV infection and cervical cancer.

It is important to mention the uncertainty of the disease cycle of human pa-

pillomavirus. Certain studies suggest that once a woman contracts a strain of HPV,

once cleared she has lifelong immunity[20]. Other studies may consider that once a

strain of HPV is contracted, it cannot be cleared and may become latent but yet still

infectious[18]. Because it still is not known whether a woman actually clears an HPV

virus or it becomes latent, different studies may choose which scenario provides the

most evidence and validity. Thus, we choose to consider that women may contract an

HPV virus, it may clear, and they may become reinfected. Many studies previously

cited in this paper consider this to be the case.

Our model was created based on the focus of cervical cancer cases and deaths.

Thus we did not include a male population in the construction of the model. We

also mention that if a vaccine for HPV becomes available for men, then studies could

be done to see what effect vaccinating both males and females would have on the

prevalence of HPV in general as well as cervical cancer deaths for women. We also

mention that we do not have a transition from the I2 class to the V2 class. In a further

study, a flow from I2 to V2 could be considered. Few mathematical studies have been

devoted to the study of human papillomavirus and its related diseases. Many more

studies need to be done regarding the nature of HPV transmission, persistence, and

clearance. Since few studies on HPV involve males, we see this as an area that needs

more investigation. In many cases HPV infections in men are symptomless. We realize

that the lack of epidemiological information on HPV infections in men is largely due

to the fact that mortality related to HPV infection in men is far less common than
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in women. However, since the main mode of transmission of genital HPV is through

sexual contact, it is necessary to begin to address the disease cycle of HPV in the male

population. Due to the uncertainty of several aspects and characteristics of HPV, we

realize the difficulty in finding estimates for certain parameters in this study. Specific

parameters difficult to estimate are ω and α. Thus, more studies should be done on

the development of cervical cancer due to persistent HPV as well as the treatment

and recovery rates of cervical cancer.

Although this model was developed specifically for HPV in the female popu-

lation, we see that the results could extend to other viruses. The model predictions

and results could apply to other multi-strain infections exhibiting mutualism in the

population.
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A.1 Appendix

A.1.1 DFE and R0

We compute the disease-free equilibrium by solving the right hand sides of

S ′ = 0 and V ′ = 0, obtaining
(

(1 − p)Λ

φ + µ
,
Λ

µ

(pµ + φ)

(φ + µ)
, 0, 0, 0, 0, 0, 0

)

To determine R0, we use the next generation operator. We divide the classes into

three groups, uninfected, infected but not infectious, and infectious. The uninfected

classes are X = {S, V }, infected but not infectious classes Y = {C1, C12}, and the

infected classes Z = {V2, I1, I2, I12}. We first note that

C∗

1 =
ωI∗

1

α + µ + δ
, C∗

12 =
ωI12

µ + δ
.

Computing the Jacobian of Z at the DFE, we obtain the eigenvalues for

M0D
−1
0 =



















βV ∗

N

(

1
µ+γ2

)

0 βS∗

N

(

1
µ+γ2

)

0

0
(

βS∗

N
− µ+δ

α+µ+δ
ω
)(

1
µ+γ1

)

0 0

βV ∗

N

(

1
µ+γ2

)

0 βS∗

N

(

1
µ+γ2

)

0

βV ∗

N

(

1
µ+γ2

)

(

βS∗

N
+ γ2

)

(

1
µ+γ1

)

(

βS∗

N
+ γ1

)

(

1
µ+γ2

)

γ1

µ+γ2+ω



















.

The eigenvalues for the corresponding matrix will be {0, 0, R1, R2}. Because R0 is

determined to be the dominant eigenvalue found using the next-generation operator,

R0 =max{R1, R2},

R1 =
β1

µ + γ1 + µ+δ

α+µ+δ
ω

(

(1 − p)µ

φ + µ

)

, R2 =
β2

µ + γ2

.

A.1.2 Single Strain Equilibria

Substituting c∗1 and s∗ into v∗ for E1 gives

v∗ =

(

1

µ

)

p

[

µ + δ

(

µω

µ(α + µ + δ) + ω(µ + pδ)

)]

+ φ

[

µ + γ1 + µ+δ

α+µ+δ
ω

β1

]

.
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Distributing and simplifying, the following is obtained:

v∗ = p +
pδω

µ(α + µ + δ) + ω(µ + pδ)
+

φ

µ

[

µ + γ1 + µ+δ

α+µ+δ
ω

β1

]

,

This v∗ found in section 3.2 is simplified and in terms of R1.

We find s∗ by setting the right hand side of S∗/N∗ = 0, obtaining

(1 − p)

(

µ + δ
ω

α + µ + δ

)

i∗1 − φs∗ − β1i
∗

1s
∗ + γ1i

∗

1 − µs∗ = 0.

Simplifying, we obtain

(1 − p)µ − (µ + φ)s∗ =

(

β1s
∗ − γ1 − (1 − p)ω

δ

α + µ + δ

)

i∗1.

Simplifying and putting in terms of R1, we obtain the s∗ and i∗1 from section

3.2. Also, c∗1 = C∗

1/N
∗ is found by solving the right hand side of C∗

1 = 0, obtaining

c∗1 =
ωi∗1

α + µ + δ
.

Substituting i∗1 into the numerator, we obtain c∗1 in section 3.2.

To find the equilibrium E2, we use the following equations,

S ′ + V ′|I1=0 = Λ − β2Ĩ2

(

S + V

N

)

+ γ2 (I2 + V2) − µ (S + V )

and

I ′

2 + V ′

2 |I1=0 = β2Ĩ2

(

S + V

N

)

− (µ + γ2) (I2 + V2) .

Setting the right hand sides of each equation to zero and dividing by N ∗, we

obtain the proportionalized E2 = s∗, v∗, v∗

2, 0, i
∗

2, 0, 0, 0 below.

s∗ =
1

R2

(1 − p)R2µ

R2µ + φ
, v∗ =

1

R2

pR2µ + φ

R2µ + φ
,

i∗2 =

(

1 −
1

R2

)

(1 − p)R2µ

R2µ + φ
, v∗

2 =

(

1 −
1

R2

)

pR2µ + φ

R2µ + φ
.
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A.1.3 Stability Analysis

The full Jacobian matrix for the system, and the full proportionalized Jacobians

at the two single-strain equilibria E1 and E2, are given in Table 3.1 and 3.2.

The reduced proportionalized Jacobian for stability/instability of E1:


















−(φ + µ) − β1i1(1 − s) 0 −β1s(1 − i1) + γ1 0

φ −µ 0 0

−β1i1(1 − s) 0 β1s(1 − i1) − (ω + µ + γ1) α

0 0 ω −(α + µ + δ)



















The reduced proportionalized Jacobian for stability/instability of E2 is given below.

We make the substitution x2 = i2 + v2 in order for the matrix to fit on one page.


















−(φ + µ) − β2x2(1 − s) 0 −β2s(1 − x2) −β2s(1 − x2) + γ2

φ −β2x2(1 − v) − µ −β2v(1 − x2) + γ2 −β2v(1 − x2)

0 β2x2(1 − v) β2v(1 − x2) − β2

(

1

R2

)

β2v(1 − x2)

β2x2(1 − s) 0 β2s(1 − x2) β2s(1 − x2) − β2

(

1

R2

)



















Substituting (i∗2 + v∗

2) = 1− 1/R2 and 1− (i∗2 + v∗

2) = 1/R2 into the above matrix, we

obtain:


















−(φ + µ) − β2(1 − 1

R2

)(1 − s) 0 −β2s(
1

R2

) −β2s(
1

R2

) + γ2

φ −β2(1 − 1

R2

)(1 − v) − µ −β2v( 1

R2

) + γ2 −β2v( 1

R2

)

0 β2(1 − 1

R2

)(1 − v) β2v( 1

R2

) − β2

(

1

R2

)

β2v( 1

R2

)

β2(1 − 1

R2

)(1 − s) 0 β2s(
1

R2

) β2s(
1

R2

) − β2

(

1

R2

)



















We utilize the next generation operator method in computing the invasion re-

productive number R̃1, where E2 is considered the disease-free equilibrium. We sep-

arate the population into 3 groups. The first group will be the infectious classes

Z = {I1, I12}, the infected but noninfectious classes Y = {C1, C12}, and the unin-

fected classes X = {S, V, V2, I2}.

We solve the Y classes in terms of the infected classes Z to obtain

C1 =
ωI1

α + µ + δ
C12 =

ωI12

µ + δ
.
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We next compute the proportionalized Jacobian for Z, obtaining

J = M1 − D1

=







β1s − kβ2

(

1 − 1
R2

)

β1s + γ2

kβ2

(

1 − 1
R2

)

+ β1i2 β1i2






−







µ + γ1 + µ+δ

α+µ+δ
ω 0

0 µ + ω + γ1 + γ2






,

M1D
−1
1 =









β1s−kβ2

“

1− 1
R2

”

µ+γ1+ µ+δ
α+µ+δ

ω

β1s+γ2

µ+ω+γ1+γ2

kβ2

“

1− 1
R2

”

+β1i2

µ+γ1+ µ+δ
α+µ+δ

ω

β1i2
µ+ω+γ1+γ2









.

The dominant eigenvalue then is given in (3.1).

We now consider E1 as the disease-free equilibrium for our system. We will use

the next-generation operator method to determine the invasion reproductive number

R̃2 for the system. The infectious classes are Z = {V2, I2, I12}, infected but not

infectious class Y = {C12}, and the uninfected classes X = {S, V, I1, C1}. We first

solve for C12 in terms of the infected classes Z∗:

C12 =
ωI12

µ + δ
.

We then compute the proportionalized Jacobian of Z at the disease-free equilibrium

i1, obtaining












β2v − (µ + γ2) β2v β2v

β2s β2s − (µ + γ2) + β1i1 β2s + γ1

kβ2i1 kβ2i1 + β1i1 −(µ + ω + γ1 + γ2)













.

Next we split the Jacobian into 2 parts, J = M2 − D2 where M2 consists of the

nonnegative terms, and D2 consists of the negative terms along the diagonal.

J =













β2v β2v β2v

β2s β2s + β1i1 β2s + γ1

kβ2i1 kβ2i1 + β1i1 kβ2i1













−













(µ + γ2) 0 0

0 (µ + γ2) 0

0 0 (µ + ω + γ1 + γ2)













.
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Thus, the invasion reproductive number at E1 will be ρ(M2D
−1
2 ), where ρ is the

dominant eigenvalue of the matrix M2D
−1
2 . We have

M2D
−1
2 =













β2v

µ+γ2

β2v

µ+γ2

β2v

µ+ω+γ1+γ2

β2s

µ+γ2

β2s+β1i1
µ+γ2

β2s+γ1

µ+ω+γ1+γ2

kβ2i1
µ+γ2

kβ2i1+β1i1
µ+γ2

kβ2i1
(µ+ω+γ1+γ2)













.

Simplifying,

M2D
−1
2 =













R2v R2v
β2v

µ+ω+γ1+γ2

R2s R2s + β1i1
µ+γ2

β2s+γ1

µ+ω+γ1+γ2

kR2i1 kR2i1 + β1i1
µ+γ2

kβ2i1
(µ+ω+γ1+γ2)













.

Again, we can simplify by letting b1 = β1

β2
, thus β1i1

µ+γ2
= b1R2i1 and h = µ+γ2

µ+γ2+γ1+ω
< 1.

Thus, the matrix in simplified form is,

M2D
−1
2 = R2













v v v h

s s + b1i1 s h + γ1

R2

ki1 ki1 + b1i1 k h i1
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Definition of Parameters

p=0;

Lambda=2235773;

mu=1/45;

delta=.0998;

g1=.876;

g2=.811;

alpha=.315;

omega=.0172;

phi=.007;

k=6;

Reproductive Numbers and Equilibria

R1[b1 ]:=b1/(mu+g1+((mu+delta)/(alpha+mu+delta))*omega)

(1-p)*mu)/(phi+mu)

R2[b2 ]:=b2/(mu+g2)

thematrix[b1 ,b2 ]:={{R2[b2]*v1[b1],R2[b2]*v1[b1],(b2*v1[b1])/

(mu+omega+g1+g2)}, {R2[b2]*s1[b1],R2[b2]*s1[b1]+(b1*i1[b1])/(mu+g2),

(b2*s1[b1]+g1)/(mu+omega+g1+g2)},{k*R2[b2]*i1[b1],k*R2[b2]*i1[b1]+

(b1*i1[b1])/ (mu+g2),(k*b2*i1[b1])/(mu+omega+g1+g2)}}

d[b1 ,b2 ]:=Max[Re[Eigenvalues[thematrix[b1,b2]]]]

R2tilde[b1 ,b2 ]:=d[b1,b2]

theothermatrix[b1 ,b2 ]:=

{{(b1*s2[b2]-k*b2*(1-1/R2[b2]))/(mu+g1+((mu+delta))/(alpha+mu+delta))*omega,

(b1*s2[b2]+g2)/(mu+omega+g1+g2)},{(k*b2*(1-1/R2[b2])+b1*i2[b2])/(mu+g1+

((mu+delta)/(alpha+mu+delta))*omega), (b1*i2[b2])/(mu+omega+g1+g2)}}

num:=mu+g1+((mu+delta)/(alpha+mu+delta)) omega
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den:=mu+g1+g2+omega

theothermatrix2[b1 ,b2 ]:={{R1[b1] ((mu+phi)/(R2[b2] mu+phi))( num/

(num+k b2 (1-1/R2[b2]))),R1[b1] ((mu+phi)/(R2[b2] mu+phi)) (num/den)+g2/den},

{R1[b1] ((mu+phi)/(R2[b2] mu+phi)) (num/(num+k b2 (1-1/R2[b2]))) (R2[b2]-1)+(k b2

(1-1/R2[b2]))/(num+k b2 (1-1/R2[b2])), R1[b1] ((mu+phi)/(R2[b2] mu+phi)) (num/den)

(R2[b2]-1)}}

e[b1 ,b2 ]:=Max[Re[Eigenvalues[theothermatrix[b1,b2]]]]

f[b1 ,b2 ]:=Max[Re[Eigenvalues[theothermatrix2[b1,b2]]]]

R1tilde[b1 ,b2 ]:=e[b1,b2]

R1tilde2[b1 ,b2 ]:=f[b1,b2]

s1[b1 ] := (((1 - p)*mu)/(mu + phi))*(1/R1[b1])

v1[b1 ] := p+(1-p) (1/R1[b1])(phi/(phi+mu))+(1-p) (1-1/R1[b1])

((omega*p delta)/(alpha+mu+delta))/((mu+(mu+p delta)

omega)/(alpha+mu+delta)

i1[b1 ] := (1-p) (1-1/R1[b1]) (mu/(mu+((mu+p delta) omega)/(alpha+mu+

delta)))

c1[b1 ] := (1-p)(1-1/R1[b1])*((omega mu)/(alpha+mu+delta))/

(mu+((mu+p delta) omega)/(alpha+mu+delta))

NNstar1[b1 ] := Lambda/(mu+delta c1[b1])

E1[b1 ]={s1[b1],v1[b1],0,i1[b1],0,0,c1[b1],0}

s2[b2 ]:=(1/R2[b2])*((1-p)*R2[b2]*mu)/(R2[b2]*mu+phi)

v2[b2 ]:=(1/R2[b2])*(p*R2[b2]*mu+phi)/(R2[b2]*mu+phi)

i2[b2 ]:=(1-1/R2[b2])*((1-p)*R2[b2]*mu)/(R2[b2]*mu+phi)

v22[b2 ]:=(1-1/R2[b2])*(p*R2[b2]*mu+phi)/(R2[b2]*mu+phi)

NNstar2:=Lambda/mu
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E3[b1 ,b2 ]:=NSolve[{nn==S+V+V2+I1+I2+I12+C1+C12,(1-p)*Lambda-

(phi+mu)*S-(b2*(I2+I12+V2)*S)/nn-(b1*(I1+I12)*S)/nn+g1*I1+g2*I2==0,

p*Lambda+phi*S-(b2*(I2+I12+V2)*V)/nn+g2*V2-mu*V==0,

(b2*(I2+V2+I12)*V)/nn-(mu+g2)*V2==0,

(b1*(I1+I12)*S)/nn-(k*b2*(I2+I12+V2)*I1)/nn-(omega+mu+g1)*I1+alpha*

C1+g2*I12==0,

(b2*(I2+I12+V2)*S)/nn-(b1*(I1+I12)*I2)/nn-(mu+g2)*I2+g1*I12==0,

(k*b2*(I2+V2+I12)*I1)/nn+(b1*(I1+I12)*I2)/nn-(mu+omega+g1+g2)*I12==0,

omega*I1-(alpha+mu+delta)*C1==0,

omega*I12-(mu+delta)*C12==0},{S,V,V2,I1,I2,I12,C1,C12,nn}];

posE3[b1 ,b2 ]:=Select[{S,V,V2,I1,I2,I12,C1,C12,nn}/.E3[b1,b2],

(Im[#[[1]]]==0.&&Im[#[[2]]]==0.&&Im[#[[3]]]==0.&&Im[#[[4]]]==0.&&

Im[#[[5]]]==0.&&Im[#[[6]]]==0.&&Im[#[[7]]]==0.&&Im[#[[8]]]==0.&&

Im[#[[9]]]==0.&&Re[#[[1]]]≥ 0.&&Re[#[[2]]]≥ 0.&&Re[#[[3]]]≥ 0.&&

Re[#[[4]]]≥ 0.&&Re[#[[5]]]≥ 0.&&Re[#[[6]]]≥ 0.&&Re[#[[7]]]≥ 0.&&

Re[#[[8]]]≥ 0.&&Re[#[[9]]]≥ 0.&)]

E2[b2 ]:={s2[b2],v2[b2],v22[b2],0,i2[b2],0,0,0}

The General Jacobian

genJac[seq ,veq ,v2eq ,i1eq ,i2eq ,i12eq ,c1eq ,c12eq ,b1 ,b2 ]:=

{{-(phi+mu)-(b2*(i2eq+i12eq+

v2eq)*(1-seq))-(b1*(i1eq+i12eq)*(1-seq)), 0, -(b2*seq*(1-(i2eq+v2eq+i12eq))),

-(b1*seq*(1-(i1eq+i12eq)))+g1,

-(b2*seq*(1-(i2eq+v2eq+i12eq)))+g2,

-(b2*seq*(1-(i2eq+i12eq+v2eq)))-(b1*

seq*(1-(i1eq+i12eq))), 0, 0},

{phi, -(b2*(i2eq+i12eq+v2eq)*(1-veq))-mu, -(b2*veq*(1-(i1eq+i12eq+v2eq)))
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+g2, 0, -(b2*veq*(1-(i2eq+v2eq+i12eq))), -(b2*veq*(1-(i2eq+v2eq+i12eq))), 0,

0},

{0, b2*(i2eq+i12eq+v2eq)*(1-veq), b2*veq*(1-(i2eq+i12eq+v2eq))-(mu+g2), 0,

b2*veq*(1-(i2eq+i12eq+v2eq)), b2*veq*(1-(i2eq+i12eq+v2eq)), 0, 0},

{b1*(i1eq+i12eq)*(1-seq), 0, -(k*b2*i1eq*(1-(i2eq+i12eq+v2eq))), b1*seq*(1-

(i1eq+i12eq))-(k*b2*(i2eq+i12eq+v2eq)*(1-i1eq))-(omega+mu+g1), -(k*b2*

i1eq*(1-(i2eq+v2eq+i12eq))), b1*seq*(1-(i1eq+i12eq+v2eq))-

(k*b2*i1eq*(1-(i2eq+ v2eq+i12eq)))+g2, alpha, 0},

{b2*(i2eq+v2eq+i12eq)*(1-seq), 0, b2*seq*(1- (i2eq+i12eq+v2eq)),

-(b1*i2eq*(1-(i1eq+i12eq))), b2*seq*(1-(i2eq+i12eq+v2eq))-

(b1*(i1eq+i12eq)*(1-i2eq))-(mu+g2), b2*seq*(1-(i2eq+i12eq+v2eq))-(b1*

i2eq*(1-(i1eq+i12eq)))+g1, 0, 0},

{0,0, k*b2*i1eq*

(1-(i2eq+v2eq+i12eq)), k*b2*(i2eq+v2eq+i12eq)*(1-i1eq)+(b1*i2eq*

(1-(i1eq+i12eq))), k*b2*i1eq*

(1-(i2eq+v2eq+i12eq))+(b1*(i1eq+i12eq)*(1-i2eq)),

k*b2*i1eq*(1-(i2eq+v2eq+i12eq))+b1*i2eq*(1-(i1eq+i12eq))-(mu+omega+

g1+g2),

0,0},

{0, 0, 0, omega, 0, 0, -(alpha+mu+delta), 0},{0, 0, 0, 0, 0, omega, 0, -(mu+delta)}}

Code used to generate the graph in Figure 3.1

b1crit=b1/.Solve[R1[b1]==1,b1][[1]]

b2crit=b2/.Solve[R2[b2]==1,b2][[1]]

R1is1=Plot[b2crit,b1,0,b1crit,PlotStyle Dashing[{0.01,0.01}],

AxesLabel {b1,b2}]
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R2is1=ParametricPlot[{b1crit,b2},{b2,0,b2crit},PlotStyle->

Dashing[{0.01,0.01}], AxesLabel {b1,b2}]

R2tildeis1=Plot[(mu+g2)/(s1[b1]+v1[b1]+k i1[b1]),{b1,b1crit,2}]

R1tildeis1=ContourPlot[R1tilde2[b1,b2],{b1,0.0000001,2.5},{b2,b2crit,5},

ContourShading False,Contours {1},PlotPoints20]

NiceGraph=Show[R1is1,R2is1,R2tildeis1,R1tildeis1,ASYMP,

ASYMP2,PlotRange {{0,2},{0,2}}]

The ODEs

odes:={S’[t]==(1-p) Lambda-phi S[t]-(B2 (I2[t]+V2[t]+I12[t]) S[t])/NN[t]-(B1

(I1[t]+I12[t]) S[t])/NN[t]+g1 I1[t]+g2 I2[t]-mu S[t],

V’[t]==p Lambda+phi S[t]-(B2 (I2[t]+V2[t]+I12[t]) V[t])/NN[t]+g2 V2[t]-mu V[t],

V2’[t]==(B2 (I2[t]+V2[t]+I12[t]) V[t])/NN[t]-(mu+g2) V2[t],

I1’[t]==(B1 (I1[t]+I12[t]) S[t])/NN[t]-(k B2 (I2[t]+V2[t]+I12[t]) I1[t])/NN[t]-(omega+

mu+g1) I1[t]+alpha C1[t]+g2 I12[t],

I2’[t]==(B2 (I2[t]+V2[t]+I12[t]) S[t])/NN[t]-(B1 (I1[t]+I12[t]) I2[t])/NN[t]-(mu+g2)

I2[t]+g1 I12[t],I12’[t]==(k B2 (I2[t]+V2[t]+I12[t]) I1[t])/NN[t]+(B1 (I1[t]+I12[t])

I2[t])/NN[t]-(mu+omega+g1+g2) I12[t],

C1’[t]==omega I1[t]-(alpha+mu+delta) C1[t],

C12’[t]==omega I12[t]-(mu+delta) C12[t],

NN’[t]==Lambda-mu NN[t]-delta (C1[t]+C12[t]),S[0]==S0,V[0]==V0,V2[0]==V20,

I1[0]==I10,I2[0]==I20,I12[0]==I120,C1[0]==C10,C12[0]==C120,NN[0]==NN0}

Clear[p]

Clear[phi]

phitop=1/2;

phistep=.1;

pstep=.1;
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I1tilde=ConstantArray[0,{Round[phitop/phistep+1],Round[1/pstep+1]}]

Clear[p]

Clear[phi]

phitop=1/4;

phistep=.05;

pstep=.1;

pcountmax=Round[1/pstep];

phicountmax=Round[phitop/phistep];

I1tilde2=ConstantArray[0,{(pcountmax+1)*(phicountmax+1),3}];

For[phicount=0, phicount≤ phicountmax,phicount++,

For[pcount=0,pcount≤ pcountmax,pcount++,phi=phicount*phistep;

p=pcount*pstep;

ans=NDSolve[odes,{S,V,V2,I1,I2,I12,C1,C12,NN},{t,0,100}];

i1=(((I1[v]+I12[v])/.ans)/.{v→99});

I1tilde2[[phicount*(pcountmax+1)+pcount+1]]={phi,p,i1[[1]]};];];

ListPlot3D[I1tilde2,PlotRange→ All,AxesLabel→ {phi,p,I1tilde2}]

MATLAB Code

Simulations Run Without Strain 2

% No strain 2⇒x(3),x(5),x(6),x(8) do not exist

function dx=HPV2(t,x)

%S in system is x(1)

%V in system is x(2)

%V2 in system is x(3)

%I1 in system is x(4)
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%I2 insystem is x(5)

%I12 in systemis x(6)

%C1 in system isx(7)

%C12 in system is x(8)

global p Lambda beta1 beta2 gamma1 gamma2 phi alpha omega k mu delta

N=x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7)+x(8); x(3)=0; x(5)=0; x(6)=0; x(8)=0;

dx=[(1-p)*Lambda-(phi+mu)*x(1)-(beta2*(x(3)+x(5)+x(6))*x(1))/N-(beta1*

(x(4)+x(6))*x(1))/N+gamma1*x(4)+gamma2*x(5);

p*Lambda+phi*x(1)-(beta2*(x(3)+x(5)+x(6))*x(2))/N+gamma2*x(3)-mu*x(2);

(beta2*(x(3)+x(5)+x(6))*x(2))/N-(mu+gamma2)*x(3);

(beta1*(x(4)+x(6))*x(1))/N-k*(beta2*(x(3)+x(5)+x(6))*x(4))/N-(omega+mu+

gamma1)*x(4)+alpha*x(7)+ gamma2*x(6);

(beta2*(x(3)+x(5)+x(6))*x(1))/N-(beta1*(x(4)+x(6))*x(5))/N-(mu+gamma2)*x(5)

+gamma1*x(6);

(k*beta2*(x(3)+x(5)+x(6))*x(4))/N+(beta1*(x(4)+x(6))*x(5))/N-(mu+omega+

gamma1+gamma2)*x(6);

omega*x(4)-(alpha+mu+delta)*x(7);

omega*x(6)-(mu+delta)*x(8);

omega*(x(4)+x(6));

delta*(x(7)+x(8)); beta1*(x(4)+x(6))*(x(1)+x(5))/N];

Simulations Run With Strain 2

function dx=HPV2(t,x)

%S in system is x(1)

% V in system is x(2)

%V2 in system is x(3)



47

%I1 in system is x(4)

%I2 insystem is x(5)

%I12 in systemis x(6)

%C1 in system isx(7)

%C12 in system is x(8)

global p Lambda beta1 beta2 gamma1 gamma2 phi alpha omega k mu delta

N=x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7)+x(8);

dx=[(1-p)*Lambda-(phi+mu)*x(1)-(beta2*(x(3)+x(5)+x(6))*x(1))/N-(beta1*

(x(4)+x(6))*x(1))/N+gamma1*x(4)+gamma2*x(5);

p*Lambda+phi*x(1)-(beta2*(x(3)+x(5)+x(6))*x(2))/N+gamma2*x(3)-mu*x(2);

(beta2*(x(3)+x(5)+x(6))*x(2))/N-(mu+gamma2)*x(3);

(beta1*(x(4)+x(6))*x(1))/N-k*(beta2*(x(3)+x(5)+x(6))*x(4))/N-(omega+mu+

gamma1)*x(4)+alpha*x(7)+ gamma2*x(6);

(beta2*(x(3)+x(5)+x(6))*x(1))/N-(beta1*(x(4)+x(6))*x(5))/N-(mu+gamma2)*x(5)

+gamma1*x(6);

(k*beta2*(x(3)+x(5)+x(6))*x(4))/N+(beta1*(x(4)+x(6))*x(5))/N-(mu+omega+

gamma1+gamma2)*x(6);

omega*x(4)-(alpha+mu+delta)*x(7);

omega*x(6)-(mu+delta)*x(8);

omega*(x(4)+x(6));

delta*(x(7)+x(8)); beta1*(x(4)+x(6))*(x(1)+x(5))/N];

ODE Solver Using Parameter Estimates

The parameter estimates can be changed to consider no vaccination, or 50

percent vaccination coverage as stated in the numerical simulation section.

tf = 100; p = .5; Lambda = 2235773; mu = 1/44; beta1 = 1.2; beta2 = (11/14)*beta1;

gamma1=.709; gamma2=.816; alpha = .315; omega = .0172; phi = 007; k = 6; delta
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= .0998;

R1 =beta1/(mu+gamma1+((mu+delta)/(alpha+mu+delta))*omega)*((1-p)*mu)/

(phi+mu)

R2 = beta2/(mu+gamma2)

tspan = [0,tf];% y0 = [50304907;0;0;1509146;0;500000;0;0;0;0;0]

%choose initial condition for I1 based on study where currently 1.5% of

population is infected with HPV16

[t,z]=ode45(’HPV2’,tspan,y0);

plot(t,z(:,4)+z(:,6),’y’,t,z(:,5)+z(:,6),’b’,t,z(:,7),’g’,t,z(:,8),’r’)
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