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ABSTRACT

DERIVATION OF THE DYNAMICS EQUATIONS

FOR RECEIVER AIRCRAFT

IN AERIAL REFUELING

Publication No.

Jayme Waishek, M.S.

The University of Texas at Arlington, 2007

Supervising Professor: Atilla Dogan

This thesis describes the derivation of a new set of nonlinear, 6–DOF equations of

motion of a receiver aircraft undergoing an aerial refueling, including the effect of time-

varying mass and inertia properties associated with the fuel transfer and the tanker’s

vortex induced wind effect. Since the center of mass of the receiver is time–varying during

the fuel transfer, the equations are written in a reference frame that is geometrically

fixed in the aircraft. Due to the fact that aerial refueling simulation and control deal

with the position and orientation of the receiver relative to the tanker, the equations of

motion are derived in terms of the translational and rotational position and velocity with

respect to the tanker. Further, for the derivation, Newton’s law is applied to the system,

which consists of the receiver aircraft and the fuel before and after being transferred into

the receiver. The new receiver equations of motion are implemented in an integrated

simulation environment with a feedback controller for receiver station-keeping as well as

v



the full set of nonlinear, 6–DOF equations of motion of the tanker aircraft and a feedback

controller to fly the tanker on a U-turn maneuver.
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CHAPTER 1

INTRODUCTION

In aerial refueling operations, fuel is transferred from one aircraft (the tanker) to

another (the receiver), both of them being airborne. This operation might be needed to

sustain/complete some critical flight missions that require an endurance or range beyond

what the aircraft, either military or commercial [1], was designed for. The important

modeling and control problems studied in the context of aerial refueling [2, 3, 4, 5, 6, 7]

include models of the tanker-receiver interference, stability of the receiver aircraft and

design of an autonomous refueling controller. There has been a great interest in the

research community [7] to develop an autonomous and efficient control algorithm that

would enable a successful aerial refueling, with least disturbance effect on the receiver

aircraft during the whole operation. In the design, development and validation of such

a control algorithm, a mathematical model and computer simulation of the receiver

dynamics during the refueling is essential. In order to generate authentic results from

the simulation, it is critical to model the receiver aircraft with sufficient accuracy, taking

into account all major factors that influence its dynamics. Specifically, this work derives

equations of motion for the receiver to model (i) the relative motion of the receiver aircraft

with respect to the tanker aircraft, (ii) time-varying mass and inertia properties during

fuel transfer, and (iii) exposure to nonuniform wind induced by the tanker’s wake vortex.

In the problem of aircraft formation flight, various methods are used for formulat-

ing relative motion. Some papers [8, 9, 10, 11, 12, 13] consider only relative position.

Others [14, 15, 16, 17, 18] partially consider orientation in formulating relative position.

Further, the problem of relative motion is studied in other applications such as spacecraft

1
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formation [19, 20, 21, 22, 23] and aircraft landing on a ship [24, 25, 26]. A common ap-

proach among the work reported above is to quantify relative motion through kinematic

relations after the equations of motion are derived for each aircraft separately. In this

work, the equations of motion are derived in terms of relative position and orientation. A

benefit of this approach is that the motion of the tanker aircraft is explicitly formulated

as disturbance on the relative motion of the receiver aircraft [27, 28].

Mass properties of a system will vary when mass transfer into or out of the system

occurs or mass distribution within the system changes. Variable mass systems are studied

extensively in the area of space flight [29, 30, 31, 32, 33, 34, 35, 36, 37], which show the

significance of the mass transfer effect on vehicle dynamics. The system of rotorcraft with

external load [38] and the Concorde supersonic airline with weight distribution changed

by moving fuel [39, 40, 41] are examples of systems in which mass changes location. Other

examples are space and underwater vehicles [42, 43, 44] where shape change actuation or

moving internal masses are used for control. In the case of aerial refueling, fuel transferred

to the receiver aircraft brings in momentum and changes its inertia properties. Previous

works [45, 7, 46, 47, 48, 49, 50, 51, 1, 52] in aerial refueling either ignore the effect of

mass transfer or treat it as disturbance causing parametric uncertainty [7]. In this work,

the equations of motion for the receiver are derived considering the system of the receiver

aircraft and the fuel before and after being transferred into the receiver. This yields a

generic mathematical model that includes the dynamic effect of fuel transfer.

The dynamic effect of nonuniform wind is another factor considered in this work.

In aerial refueling operation, like any other close formation flight, the follower aircraft

(receiver in this case) is subject to the nonuniform wind induced by the wake vortex of

the lead aircraft (tanker in this case). The vortex induced wind can be detrimental to the

control of the receiver aircraft [52, 53]. To model the dynamic effect of nonuniform wind,

various techniques such as strip theory, averaging, and look-up tables are used [54, 55, 56].
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Such techniques (i) are limited to a certain operating condition, (ii) are computationally

intensive, and (iii) require large aerodynamic databases. Another approach is to avoid

modeling of nonuniform wind or treat it as unknown/stochastic disturbance. In this work,

the equations of motion are derived such that wind terms are explicitly formulated. This

enables the implementation of a novel vortex effect modeling technique [57, 58] in the

aerial refueling problem. With this technique, the modeling of nonuniform wind effect is

more direct and computationally efficient. Further, there is no restriction on the relative

position/orientation or sizes of the aircraft.

The remainder of this thesis is organized as follows. Equations for translational

kinematics and dynamics are derived in Chapter 3. Similarly, Chapter 4 presents the

derivation of the equations for the rotational motion. In Chapter 5, the vector equations

of motion are converted into matrix form. Chapter 7 summarizes Ref. [58], which

introduced the procedure for approximating the non–uniform wind field induced by wake

vortices as uniform wind field. Chapter 8 explains how the physical design parameters of

the receiver aircraft and its fuel tanks are incorporated into the equations of motion, and

additionally presents simulation results. Finally, Chapter 9 presents conclusions based

on the simulation results and proposes additional application of the concepts herein

addressed.



CHAPTER 2

MATHEMATICAL CONCEPTS

2.1 Vectrix Formalism

To write a vector in matrix form, vectrix formalism [57] is employed. This facilitates

(i) the expression of a vector in terms of its representation in a frame and the unit vectors

of the frame and (ii) transforming the representation of a vector to another frame using

the corresponding rotation matrix. The vectrix of X-frame is defined to be the array of

the unit vectors of its axes and is denoted by

[X̂] =













ı̂X

̂
X

k̂X













(2.1)

Hence, vector a can be written as

a = [X̂]T a (2.2)

where a is the representation of vector a in X-frame. Note that the relationship between

the vectrices of the two frames are defined by the rotation matrix between the two frames,

namely

[X̂] = RXY[Ŷ ] (2.3)

where RXY is the rotation matrix from Y-frame to X-frame. Note that all matrices

in this thesis are written in bold font. Note also that rotation matrix is used to find

the representation of a vector in a frame using the representation of the same vector in

4
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another frame. For example, let aY be the representation of vector a in Y -frame. Then,

the representation of vector a in X-frame is

a = RXYaY (2.4)

where a and aY are (3 × 1) arrays.

Figure 2.1. Intermediate reference frames: Tanker and Receiver’s body frame.

2.2 Tanker’s body frame

This frame is fixed to the tanker’s body at a reference point which could be its

center of mass (CM) or any geometric reference point, and moving and rotating with

the tanker. From this point on, this frame will be referred to as the “Tanker’s Body

frame” or “BT -frame”. Its vectrix is denoted by [B̂T ]. Since during the refueling, the
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position and orientation of the receiver need to be controlled relative to the tanker, the

translational positions and angular orientations are defined with respect to BT -frame.

2.3 Receiver’s body frame

This frame is fixed to the receiver aircraft’s body at a geometrically fixed reference

point, P , and is called the “Receiver’s Body frame” whose vectrix is denoted by [B̂R]. For

the dynamic model developed in this thesis, the reference point P on the receiver aircraft

is considered to be the CM of the empty receiver and stays fixed at that position even

though the CM would move during the refueling. This frame is chosen as the body frame

of the receiver to accommodate the fact that the CM will be moving during fuel transfer.

This frame is hereafter denoted as BR-frame. Fig. 2.1 depicts the spatial relation of three

reference frames: (i) Inertial, (ii) Tanker’s body (BT -frame), and (iii) Receiver’s body

(BR-frame).

2.4 Rotation matrices

W
T

B
T

I

B
R

W
R

Inertial Frame

Tanker’s Body 
Frame

Tanker’s Wind Frame

Receiver’s Body 
Frame

Receiver’s Wind Frame

R BR BT

R BR BT

R BR WR

R BT I

R BT WT

R BT I

Figure 2.2. Various reference frames and the rotation matrices between them.
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In the development of the equations of motion in this thesis, there are five frames

involved: (i) inertial frame, (ii) BT -frame, (iii) tanker’s wind frame, (iv) BR-frame and

(v) receiver’s wind frame (WR-frame) (Fig. 2.2). Since the focus is on the dynamics of

the receiver aircraft relative to the tanker, the nonlinear 6-DOF equations of motion of

the receiver are written in BR-frame. However, the vectors used in the derivation will be

initially written in the respective most convenient frame. For example, the gravitational

force vector will be written in the inertial frame while the velocity of the receiver relative

to the air will be written in WR-frame. To transform all the vectors and their repre-

sentations written in the most convenient frames to the frame in which the equations of

motion are written, the rotation matrices defined between the vectrices of each pair of

the frames will be used as shown in Fig. 2.2.

For example, the relationship between the vectrices of the inertial frame and BT -

frame is

[B̂T ] = RBTI[Î] (2.5)

where RBTI is the rotation matrix from the inertial frame to BT -frame. By the orthonor-

mality of rotation matrices, the transformation from BT -frame to the inertial frame is

obtained simply by taking transpose of RBTI. Thus,

[Î] = RT

BTI
[B̂T ] (2.6)

When the rotation matrix from the inertial frame to the receiver’s body frame is needed,

as Fig. 2.2 implies, in this thesis, it is written through BT -frame, i.e.

RBRI = RBRBT
RBTI (2.7)

which means a transformation from the inertial frame to BT -frame and then from there to

BR-frame. The reason for not using the rotation matrix from the inertial frame directly
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to BR-frame is because, in aerial refueling, the focus is on the motion of the receiver

relative to the tanker. Thus,

[B̂R] = RBRBT
RBTI[Î] (2.8)

or

[Î] = RT

BTI
RT

BRBT
[B̂R] (2.9)

Similarly, the relation between the vectrices of WR-frame and BR-frame is

[B̂R] = RBRWR
[Ŵ R] (2.10)

where RBRWR
is the rotation matrix from WR-frame to BR-frame.

2.5 Matrix and Vector Properties

This section presents for easy referencing the matrix and vector properties used in

the derivation of the equations of motion. Further, proofs are provided for some of the

facts presented. For the expression and proof of the facts, the following notation is used.

There are two reference frames with vectrices [1̂] and [2̂]. The rotation matrix

from the first frame to the second is defined to be R21. There are three vectors, a,

b, and c, with corresonding representations a, b, and c. The representations are 3-by-1

column matrices constructed by the components of the vector in the corresponding frame.

Vector products are denoted by × while · refers to scalar product of vectors. Superscript

T denotes the transpose of a matrix.

Fact 1: The triple product identity

a × (b × c) = (a · c) b − (a · b) c, ∀ a, b, c (2.11)

Fact 2: Scalar product of vectors through their representations

a · b = aT b, ∀ a , b , (2.12)
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Fact 3: Relation between representation of vectors

aT b c = c aT b, ∀ a , b , c , (2.13)

Fact 4: Quadruple product of vectors

a × [b × (c × d)] = (b · d) a × c − (b · c) a × d, ∀ a, b, c, d (2.14)

Proof: By extension of Eq. (2.11).

Fact 5: Vector product of vectors through their representations

a × b = [1̂]T a × [2̂]T b

= −[1̂]TS(a)b (2.15)

where a and b are representations of a and b, respectively, in the frame having vectrix

[1̂]. Note that S(a) is a skew-symmetric matrix constructed with representation a such

that

S(a) =













0 a3 −a2

−a3 0 a1

a2 −a1 0













(2.16)

for vector a with representation [a1 a2 a3]
T in the frame having vectrix [1̂].

Fact 6: Order of vectors in vector product

S(a)b = −S(b)a (2.17)

Proof: This follows from Eq. (2.15) and the fact that a × b = −b × a.

Fact 7:

(aT b)S(a) = −S(b)aaT ∀a, b (2.18)

Proof: Note from Eqs. (2.12) and (2.15) that

(a · b) a × b = −[1̂]T (aT b)S(a) b (2.19)
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Further note that changing the order of a vector product results in the negative of the

original product. This can be expressed as

(a · b) a × b = −(a · b) b × a

= [1̂]T (aT b)S(b) a (2.20)

by again using Eqs. (2.12) and (2.15). Because aT b is a scalar, Eq. (2.20) can be rear-

ranged to be

(a · b) a × b = [1̂]TS(b) aaT b (2.21)

The comparison of Eqs. (2.19) and (2.21) leads to Eq. (2.18).

Fact 8:

S(R21a) = R21S(a)RT

21
(2.22)

Proof: As stated previously, let a and b be the representations of a and b, re-

spectively, in the frame having vectrix [1̂], namely a = [1̂]T a and b = [1̂]T b. Note that

[2̂] = R21[1̂] since R21 is the rotation matrix from the frame with vectrix [1̂] to that with

[2̂]. Thus, vectors a and b can be expressed in terms of [2̂] as

a = [2̂]TR21a

b = [2̂]TR21b (2.23)

The vector product of vectors a and b using Eq. (2.15) yields

a × b = −[1̂]T S(a)b (2.24)

The same vector product performed on a and b as written in Eq. (2.23) results in

a × b = −[2̂]TS(R21a)R21b (2.25)

Note further that [2̂]T = [1̂]TRT

21
. Thus, Eq. (2.25) becomes

a × b = −[1̂]TRT

21
S(R21a)R21b (2.26)

The comparison of Eqs. (2.24) and (2.26) leads to Eq. (2.22).



CHAPTER 3

TRANSLATIONAL MOTION

Since, in aerial refueling, the position of the receiver should be controlled relative to

the tanker and not relative to the ground, the translational kinematics should be written

in terms of the position vector of the receiver with respect to the tanker. The vectorial

relation of the origins of the reference frames ( Fig. 2.1) yields

rBR
= rBT

+ ξ (3.1)

Further, the effect of the wind is incorporated into the kinematics as

ṙBR
= U + W (3.2)

where U is the velocity vector of the receiver relative to the surrounding air and W is

the wind velocity vector, i.e. the velocity of the air relative to the inertial frame. The

time derivative of Eq. (3.1) along with Eq. (3.2) yields

ξ̇ = U + W − ṙBT
(3.3)

which is the translational kinematic equation in terms of the position of the receiver

relative to the tanker.

The next step is to derive the translational dynamic equations. The derivation

is intended to yield equations with explicit terms to represent dynamics effect of fuel

transfer and wind exposure. Due to fuel transfer in refueling, the receiver aircraft is a

system of varying mass. Thus, Newton’s Second Law, which states that force is equal

to the time rate of change of momentum, is not directly applicable. However, it can

be applied to a system of varying mass by examining the same mass for the change in

momentum at two instances of time [33].

11
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This approach is used in this thesis by defining a system of constant mass consisting

of the receiver aircraft and the fuel that joins the receiver through a refueling receptacle

in a given time interval. Then, the momenta of this system of constant mass before

and after fuel joins the receiver are formulated to determine the time rate of change of

momentum while refueling.

Figure 3.1. Receiver-Fuel System of Constant Mass.

To facilitate the derivation of the dynamics equations including the effect of fuel

transfer, the receiver aircraft is considered to comprise two parts (Fig. 3.1). The first

part is represented by ‘n’ points at fixed positions, ρi, in BR-frame with constant masses

Mi (i = 1, ..., n). With the rigid body assumption, masses Mi are defined to consitute

the body of the receiver aircraft excluding the fuel. Additional ‘k’ points represent the

second part of the receiver. These points are different from the first group in that they
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move and thus their position vectors in BR-frame, ρmj
(j = 1, ..., k), are time-varying.

Further, these points represent the various locations of fuel mass after being transferred

into the receiver aircraft. The amount of fuel mass, mj , assumed to be concentrated at

each point, ρmj
, might be time-varying during refueling. With the concentrated mass

assumption, position ρmj
represents the center of total fuel mass in each fuel tank.

Consider the receiver-fuel system of constant mass depicted in Fig. 3.1, in the time

interval t−∆t to t. Assume that, in this time interval, the fuel ∆m entering the receiver

through the receptacle at ρ
R

splits into ‘k’ portions, ∆mj , and each ∆mj joins mj by

the time t. The linear momentum of the system at time t − ∆t is

P 1 =

n
∑

i=1

Miṙi +

k
∑

j=1

mj ṙmj
+ ∆mV 0 (3.4)

where V 0 is the velocity of ∆m relative to the inertial frame, and ri and rmj
are the

position vectors of Mi and mj , respectively (Fig. 3.1). At time t, the linear momentum

of the system is

P 2 =
n
∑

i=1

Mi(ṙi + ∆ṙi) +
k
∑

j=1

(mj + ∆mj)(ṙmj
+ ∆ṙmj

) (3.5)

The difference between the total momenta before and after ∆m joins the receiver aircraft

is found by subtracting Eq. (3.4) from Eq. (3.5) and is calculated to be

∆P =
n
∑

i=1

Mi∆ṙi +
k
∑

j=1

mj∆ṙmj
+

k
∑

j=1

∆mj ṙmj
+

k
∑

j=1

∆mj∆ṙmj
− ∆mV 0 (3.6)
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The time rate of change of the linear momentum at time t is calculated by dividing

Eq. (3.6) by ∆t and taking the limit as ∆t approaches 0. Specifically,

lim
∆t→0

∆P

∆t
= Ṗ

lim
∆t→0

Mi

∆ṙi

∆t
= Mir̈i

lim
∆t→0

mj∆ṙmj

∆t
= mj r̈mj

lim
∆t→0

∆mj

∆t
ṙmj

= ṁj ṙmj

lim
∆t→0

∆mj∆ṙmj

∆t
= 0 (3.7)

Using these relations, Eq. (3.6) becomes

Ṗ =

n
∑

i=1

Mir̈i +

k
∑

j=1

mj r̈mj
+

k
∑

j=1

ṁj ṙmj
− ṁV 0 (3.8)

By Newton’s Second Law, this is equal to the total force acting on the system at time t.

This can be rewritten using the facts that Mr̈BR
replaces

∑n

i=1 Mir̈i because
∑n

i=1 Mi =

M and the origin of BR-frame is at the CM of the receiver aircraft before the fuel transfer.

Therefore, the total external force vector acting on the receiver aircraft is determined to

be

F = Mr̈BR
+

k
∑

j=1

(

ṁj ṙmj
+ mj r̈mj

)

− ṁV 0 (3.9)

where F is the vectorial sum of all external forces.

Equation (3.9) is the translational dynamic equation of the receiver. However, there

are three main drawbacks with this form of the equation. First, masses mj (j = 1, ..., k)

will be used to represent the fuel transfer in the fuel tanks located in the receiver aircraft.

In that case, the velocity and acceleration of the mj masses will be easier to formulate

in BR-frame than in the inertial frame. Thus, rmj
in the second and third terms should
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be written in terms of the position vectors with respect to BR-frame. From Fig. 3.1, it

is seen that

rmj
= rBR

+ ρ
mj

(3.10)

Second, it is easier to express the fuel flow velocity relative to the tanker. It is therefore

necessary to separate V 0 into the components associated with the velocity of the tanker,

itself, and the velocity of the fuel with respect to the tanker. Thus, the fuel flow velocity

(V 0) is written as

V 0 = ṙBT
+ V ṁ (3.11)

where ṙBT
is the velocity of the tanker relative to the inertial frame and V ṁ is the velocity

of the fuel relative to the tanker. Substituting Eqs. (3.10) and (3.11) into Eq. (3.9) and

rearranging yields

(M + m)r̈BR
= F − ṁ(ṙBR

− ṙBT
+ V ṁ) −

k
∑

j=1

(ṁj ρ̇mj
+ mjρ̈mj

) (3.12)

where
k
∑

j=1

mj r̈BR
has been replaced with m r̈BR

and
k
∑

j=1

ṁj ṙBR
has been replaced by

ṁ ṙBR
because r̈BR

and ṙBR
are independent of j, and

k
∑

j=1

mj = m.

As a special case, ṁ = ṁj = 0 when the fuel transfer is completed. Then, Eq. (3.12)

becomes

(M + m)r̈BR
= F −

k
∑

j=1

mj ρ̈mj
(3.13)

where the second term is due to the fact that the CM of the receiver is no longer at point

P , the origin of BR-frame. Further, when the fuel tanks are positioned in such a way

that the CM of the fuel is at point P ,

k
∑

j=1

mjρmj
= 0, which implies that

k
∑

j=1

mj ρ̈mj
= 0

since mj (j = 1, ..., k) are constant in this special case. Thus, the translational dynamics

as represented in Eq. (3.12) is reduced to

(M + m)r̈BR
= F (3.14)
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which is as expected because point P is now at the CM of the system of constant mass,

(M + m).

Third, the effect of the wind will be formulated by writing ṙBR
and r̈BR

in terms

of the airspeed of the receiver and the wind acting on it. In order to do this, Eq. (3.2) is

differentiated to get

r̈BR
= U̇ + Ẇ (3.15)

Equations (3.2) and (3.15) are substituted into Eq. (3.12) and the result is rearranged to

have U̇ on the left hand side. This results in the general translational dynamics equation:

U̇ =
1

(M + m)

[

F − ṁ
(

U + W − ṙBT
− V ṁ

)

−

k
∑

j=1

(

ṁj ρ̇mj
+ mj ρ̈mj

)

]

− Ẇ (3.16)

The resultant force acting on the receiver in Eq. (3.16), F , is considered to be the sum of

the gravity force vector MR, the aerodynamic force vector AR and the propulsive force

vector PR.

There are several significant remarks based on the derivation of Eq. (3.16). First,

note that the terms containing ṁj and ṁ represent the effect of time-varying mass on

the translational dynamics of the receiver aircraft. For the aerial refueling scenario,

as an example, ṁj , the rate of mass change can be approximated as equal to the fuel

transfer rate into the jth fuel tank. This modular formulation facilitates the simulation

of asymmetric fuel loading conditions. Furthermore, both ṁ and ṁj can be time-varying

functions, thereby enabling the simulation of the effects of any combination of unsteady

and asymmetric fuel transfer. In practice, the values of ṁj , ρ
mj

, ρ̇
mj

and ρ̈
mj

depend

on the shape, size and location of the fuel tanks on the receiver aircraft and also the

individual rates of fuel flow into each fuel tank on the receiver.



CHAPTER 4

ROTATIONAL MOTION

For the derivation of the rotational dynamics, the definitions of the receiver-fuel

system of constant mass and the reference frames, introduced for translational dynamics,

are used. Then, it can be stated that the external moment is equal to the time rate of

change of momentum since the momentum of a definite mass is examined for its rate of

change [33].

In a manner which parallels the translational dynamics derivation, the angular

momenta of the system right before and after fuel ∆m joins the receiver are used to

formulate the time rate of change of the angular momentum. At time t−∆t, the angular

momentum of the system around the origin of the inertial frame is

H1 =

n
∑

i=1

ri × Miṙi +

k
∑

j=1

rmj
× ṙmj

+ rR × ∆mV 0 (4.1)

where each term represents the moment of the corresponding linear momentum term in

Eq. (3.4) about the origin of the inertial frame. Note that Eq. (4.1) introduces the vector

rR, which is the position of the receiver fuel port relative to the inertial frame. At time

t after ∆m joins the receiver, the angular momentum of the system is determined to be

H2 =
n
∑

i=1

(ri +∆ri)×Mi(ṙi +∆ṙi)+
k
∑

j=1

(rmj
+∆rmj

)× (mj +∆mj)(ṙmj
+∆ṙmj

) (4.2)

where each term represents the moment of the corresponding linear momentum term of

Eq. (3.5) about the inertial frame. All the vectors in Eqs. (4.1) and (4.2) are written

relative to the inertial frame and the time derivatives are also taken with respect to the

inertial frame. The difference between the total angular momenta before and after ∆m

17
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joins the receiver aircraft is found by subtracting Eq. (4.1) from Eq. (4.2). This is then

calculated to be

∆H =
n
∑

i=1

ri × Mi∆ṙi +
n
∑

i=1

∆ri × Miṙi +
k
∑

j=1

rmj
× ∆mj ṙmj

+
k
∑

j=1

rmj
× mj∆ṙmj

+
k
∑

j=1

∆rmj
× mj ṙmj

− rR × ∆mV 0 (4.3)

where the higher-order terms are ignored since they will become zero during the following

step. The total external moment vector acting on the receiver aircraft about the origin

of the inertial frame is equal to the time rate of change of the angular momentum, which

is calculated by dividing Eq. (4.3) by ∆t and taking the limit as ∆t approaches 0 using

the relations presented in Eq. (3.7). This results in an expression for the total external

moment about the origin of the inertial frame at time t as

M 0 =

n
∑

i=1

ri × Mir̈i +

k
∑

j=1

rmj
× ṁj ṙmj

+

k
∑

j=1

rmj
× mj r̈mj

− rR × ṁV 0 (4.4)

Further note that

MBR
= M 0 − rBR

× F (4.5)

where MBR
is the total external moment about the origin of BR-frame. The second term

on the right-hand side can be calculated directly as

rBR
× F = rBR

×

[

Mr̈BR
+

k
∑

j=1

(

ṁj ṙmj
+ mj r̈mj

)

− ṁV 0

]

= rBR
× Mr̈BR

+ rBR
×

k
∑

j=1

(

ṁj ṙmj
+ mj r̈mj

)

− rBR
× ṁV 0 (4.6)

where F is substituted from Eq. (3.9). To facilitate the subtraction in Eq. (4.5), Eq. (4.4)

can be rewritten by replacing the vectors ri, rmj
, and rR with their expansions as (rBR

+
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ρ
i
), (rBR

+ ρ
mj

), and (rBR
+ ρ

R
), respectively (Fig. 3.1). This results in a moment

equation of the form

M0 =
n
∑

i=1

(rBR
+ ρ

i
) × Mir̈i +

k
∑

j=1

(rBR
+ ρ

mj
) ×

(

ṁj ṙmj
+ mj r̈mj

)

−(rBR
+ ρ

R
) × ṁV 0 (4.7)

By substituting Eqs. (4.6), (4.7), and the V 0 expression from Eq. (3.11) into Eq. (4.5),

while additionally using the fact that
∑n

i=1 Mir̈i = Mr̈BR
, the rotational dynamics equa-

tion in terms of the moment of the external forces about the origin of the receiver’s body

frame is obtained as

MBR
=

n
∑

i=1

ρ
i
× Mi(r̈BR

+ ρ̈
i
)

+
k
∑

j=1

ρ
mj

×
[

ṁj(ṙBR
+ ρ̇

mj
) + mj(r̈BR

+ ρ̈
mj

)
]

− ρ
R
× ṁ(ṙBT

+ V ṁ) (4.8)

Note that position vectors are written in terms of the vectorial sum of rBR
and the

respective position vector relative to BR-frame. In this form of the rotational dynamic

equation, the position vectors of ‘n’ and ‘k’ points and the receptacle are all relative to

BR-frame (see Fig. 3.1). Further, substituting ṙBR
and r̈BR

from Eqs. (3.2) and (3.15),

respectively, into Eq. (4.8) yields the rotational dynamics with explicit wind terms as

MBR
=

n
∑

i=1

ρ
i
× Mi(U̇ + Ẇ + ρ̈

i
)

+

k
∑

j=1

ρ
mj

×
[

ṁj(U + W + ρ̇
mj

) + mj(U̇ + Ẇ + ρ̈
mj

)
]

− ρ
R
× ṁ(ṙBT

+ V ṁ) (4.9)

Note that in the special case when ṁ = ṁj = 0, both types of masses at ‘n’ points

and ‘k’ points have the same effect in the rotational dynamics and the equation becomes

the rotational dynamics of a system of n + k concentrated masses.
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Recall that the external force acting on the receiver is due to the sources of (i)

gravity, (ii) aerodynamics, and (iii) propulsion. The total moment of the external forces

about the origin of BR-frame can be written as

MBR
= MG + MA + MP (4.10)

where MG, MA, and MP are the moment vectors due to gravity, aerodynamics, and

propulsion, respectively. Note that the moment due to gravity is not zero since the origin

of BR-frame is not necessarily at the CM of the receiver. However, the CM of the rigid

body particles is, by definition, the origin of BR-frame. Therefore, the gravitational

moment is only due to the masses concentrated at ‘k’ points, such that

MG =

k
∑

j=1

ρ
mj

× mjG (4.11)

where G is the vector of the gravitational acceleration. The aerodynamic moment con-

tains the aerodynamic rolling, pitching, and yawing moments, respectively, in the stan-

dard sense. The moment due to propulsion is

MP = ρ
E
× P R (4.12)

where ρ
E

is the position vector of the application point of thrust relative to the origin of

BR-frame and PR is the thrust vector.



CHAPTER 5

DERIVATION OF THE EQUATIONS IN MATRIX FORM

In the preceding chapter, the translational and rotational equations of motion are

derived in vector form. In this chapter, these equations are converted into state-space

form, i.e. the first order matrix differential equations. Matrix equations are more suitable

for implementation in simulation software such as MATLAB/Simulink. Further, state-

space representation is the preferred form of system equations in control theory. The

matrix form of the equations make use of vector representations in a specified frame

instead of vectors. Since there are multiple reference frames, a given vector is chosen

to be represented in the most convenient frame. Thus, the representations of vectors in

various frames are used in the matrix form.

5.1 Translational Kinematics

Translational kinematics is derived in vector form in Eq. (3.3) as

ξ̇ = U + W − ṙBT

Since ξ is the position of the receiver relative to the tanker and the motion of the receiver

relative to the tanker can be expressed easily in BT -frame, vector ξ is expressed in BT -

frame, namely ξ = [B̂T ]T ξ. Note that the time derivative of ξ in Eq. (3.3) is with respect

to the inertial frame. Thus,

ξ̇ = [ξ̇]BT
+ ωBT

× ξ (5.1)

21
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where [ξ̇]BT
is the derivative of ξ with respect to BT -frame and ωBT

is the angular velocity

vector of BT -frame with respect to the inertial frame. Then, using the property of vector

product introduced in Eq. (2.15),

ξ̇ = [B̂T ]T ξ̇ − [B̂T ]TS(ωBT
)ξ (5.2)

where ωBT
is the representation of ωBT

in BT -frame. For the three velocity vectors on the

right hand side of Eq. (3.3), three different frames are used to define the representations.

The representation of U in WR-frame is used, i.e. U = [Ŵ R]T U . The wind vector, W ,

is expressed in BR-frame as W = [B̂R]T W . The velocity vector of the tanker, ṙBT
, is

expressed in the inertial frame as ṙBT
= [Î]T ṙBT

. Then, substituting ξ̇ from Eq. (5.2),

Eq. (3.3) is rewritten as

[B̂T ]T
[

ξ̇ − S(ωBT
)ξ
]

= [Ŵ R]T U + [B̂R]T W − [Î]T ṙBT
(5.3)

This equation will yield the matrix form of the translational dynamic equation once the

vectrices are eliminated. To do this, all the terms should be written in terms of the same

vectrix. Note that [B̂R] = RBRBT
[B̂T ], [B̂T ] = RT

BRBT
RBRWR

[Ŵ R], and [B̂T ] = RBTI[Î].

Equation (5.3) now becomes

[B̂T ]T
[

ξ̇ − S(ωBT
)ξ
]

= [B̂T ]TRT

BRBT
RBRWR

U +[B̂T ]TRT

BRBT
W − [B̂T ]TRBTIṙBT

(5.4)

which, after canceling the common vectrices, leads to the matrix form of the translational

dynamics as

ξ̇ = RT

BRBT
RBRWR

U + RT

BRBT
W −RBTI ṙBT

+ S(ωBT
)ξ (5.5)
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5.2 Rotational Kinematics

As in the case of translational motion, the rotational motion of the receiver aircraft

is formulated relative to the tanker aircraft. Thus, the rotational kinematics in the form

of Poisson’s equation is

ṘBRBT
= S(ωBRBT

)RBRBT
(5.6)

where note that both orientation and angular velocity of the receiver are relative to

the tanker. Specifically, RBRBT
is the orientation of the receiver relative to the tanker.

Further, ωBRBT
is the representation in BR-frame of ωBRBT

, which is the angular velocity

vector of the receiver relative to the tanker.

The angular velocity of the receiver relative to the inertial frame can be vectorially

expanded as

ωBR
= ωBRBT

+ ωBT
(5.7)

where ωBT
is the angular velocity vector of the tanker relative to the inertial frame. The

matrix form of this equation is derived as

ωBR
= ωBRBT

+ RBRBT
ωBT

(5.8)

where ωBR
and ωBRBT

are the representations of the respective vectors in BR-frame and

ωBT
is the representation of ωBT

in BT -frame. Note that Eq. (5.6) is the standard form

for the rotational kinematics equation. However, the rotation matrix and the angular

velocity vector are not relative to a non-rotating and non-accelerating inertial frame.

Appendix A proves that the equation still holds even in the case of a rotating and

accelerating reference frame, while additionally deriving the expression for ω̇BR
as

ω̇BR
= ω̇BRBT

+ S(ωBRBT
)RBRBT

ωBT
+ RBRBT

ω̇BT
(5.9)
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5.3 Translational Dynamics

The translational kinematic equation is written in Eq. (5.5) in terms of U and

RBRWR
. Note that U is the representation of the translational velocity of the receiver

relative to the air in WR-frame. Thus,

U =













VR

0

0













(5.10)

where VR is the airspeed of the receiver. This is because the x-axis of WR-frame, by

definition, is along the velocity of the receiver relative to the air. Note further that

RBRWR
is the rotation matrix from WR-frame to BR-frame and parameterized by the

angle of attack, αR, and sideslip angle, βR, of the receiver. In this section, the matrix

form of the translational dynamic equation of Eq. (3.16) is written in terms of the triad

(VR, βR, αR), which defines the column matrix, XR, as

XR = [VR βR αR]T (5.11)

To derive the matrix form of the translational dynamics, every vector in Eq. (3.16)

is written in terms of its representation using the vectrix formalism. All vectors will be

expressed with the vectrix of the inertial frame, [Î]T , to enable the elimination of the

vectrices from the equation. Recall that U = [Ŵ R]T U and can be expressed as

U = [Î]TRT

BTI
RT

BRBT
RBRWR

U (5.12)

Then, since [Î]T is fixed, the derivative of U is found using chain rule to be

U̇ = [Î]T
(

ṘT

BTI
RT

BRBT
RBRWR

U + RT

BTI
ṘT

BRBT
RBRWR

U + RT

BTI
RT

BRBT
ṘBRWR

U

+RT

BTI
RT

BRBT
RBRWR

U̇
)

(5.13)
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Matrix ER is now defined such that

ṘBRWR
U + RBRWR

U̇ =
d

dt
(RBRwR

U) =
d

dt













VR cos βR cos αR

VR sin βR

VR cos βR sin αR













= ER ẊR (5.14)

where

ER =













cos βR cos αR −VR sin βR cos αR −VR cos βR sin αR

sin βR VR cos βR 0

cos βR sin αR −VR sin βR sin αR VR cos βR cos αR













(5.15)

Further note, from Poisson’s equation for the rotational kinematics of the tanker, that

ṘBTI = S(ωBT
)RT

BTI
(5.16)

Using Eqs. (5.6), (5.14), and (5.16) in Eq. (5.13) yields

U̇ = [Î]T RT

BTI

{

−
[

RT

BRBT
S(ωBRBT

) + S(ωBT
)RT

BRBT

]

RBRWR
U + RT

BRBT
ER ẊR

}

(5.17)

Next, wind vector W and its derivative are expressed in the inertial frame. Recall

that W = [B̂R]T W and can therefore be written as

W = [Î]TRT

BTI
RT

BRBT
W (5.18)

Taking the derivative of Eq. (5.18) using chain rule yields

Ẇ = [Î]T
(

ṘT

BTI
RT

BRBT
W + RT

BTI
ṘT

BRBT
W + RT

BTI
RT

BRBT
Ẇ
)

(5.19)

and using Eqs. (5.6) and (5.16) yields

Ẇ = [Î]T RT

BTI

{

−
[

RT

BRBT
S(ωBRBT

) + S(ωBT
)RT

BRBT

]

W + RT

BRBT
Ẇ
}

(5.20)

Two other vectors in the right hand side of Eq. (3.16), F and ṙBT
, are expressed

in the inertial frame, i.e. F = [Î]T F and ṙBT
= [Î]T ṙBT

. For V ṁ, the most convenient
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frame is BT -frame, i.e. V ṁ = [B̂T ]T Vṁ, which is expressed in the inertial frame as

V ṁ = [Î]TRT

BTI
Vṁ. The most convenient frame to express position vector ρ

mj
is obviously

BR-frame; thus, ρ
mj

= [B̂R]T ρmj
. Then, the first derivative of ρ

mj
can be written as

ρ̇
mj

= [ρ̇
mj

]BR
+ ωBR

× ρ
mj

(5.21)

where [ρ̇
mj

]BR
and is the time derivative of ρ

mj
with respect to BR-frame. It can be

shown that, in vectrix formalism, Eq. (5.21) is rewritten as

ρ̇
mj

= [Î]TRT

BTI
RT

BRBT

[

ρ̇mj
− S(ωBRBT

)ρmj
− RBRBT

S(ωBT
)RT

BRBT
ρmj

]

(5.22)

By taking the derivative of Eq. (5.21) using chain rule, the second derivative of ρ
mj

can

be written as

ρ̈
mj

= [ρ̈
mj

]BR
+ ωBR

× [ρ̇
mj

]BR
+ ω̇BR

× ρ
mj

+ ωBR
×
(

[ρ̇
mj

]BR
+ ωBR

× ρ
mj

)

= [ρ̈
mj

]BR
+ 2ωBR

× [ρ̇
mj

]BR
+ ω̇BR

× ρ
mj

+ ωBR
× (ωBR

× ρ
mj

) (5.23)

where [ρ̈
mj

]BR
is the second derivative of ρ

mj
with respect to BR-frame. It can be shown

that, in vectrix formalism, Eq. (5.23) is rewritten as

ρ̈
mj

= [Î]T RT

BTI

{

RT

BRBT
ρ̈mj

+ RT

BRBT
S(ωBRBT

)
[

S(ωBRBT
)ρmj

− 2ρ̇mj

]

+ 2S(ωBT
)RT

BRBT

[

S(ωBRBT
)ρmj

− ρ̇mj

]

+
[

S2(ωBT
) − S(ω̇BT

)
]

RT

BRBT
ρmj

+ RT

BRBT
S(ρmj

)ω̇BRBT

}

(5.24)

The details of the procedure to write ρ̇
mj

and ρ̈
mj

in matrix form are given in App. B.



27

Substituting all vectors written in vectrix form in Eq. (3.16) yields

[Î]TRT

BTI

{

−
[

RT

BRBT
S(ωBRBT

) + S(ωBT
)RT

BRBT

]

RBRWR
U + RT

BRBT
ER ẊR

}

=
1

(M + m)

[

[Î]T F − ṁ

(

[Î]TRT

BTI
RT

BRBT
RBRWR

U + [Î]T RT

BTI
RT

BRBT
W

−[Î]T ṙBT
− [Î]TRT

BTI
Vṁ

)]

−
1

(M + m)

k
∑

j=1

ṁj

(

[Î]TRT

BTI
RT

BRBT

[

ρ̇mj
− S(ωBRBT

)ρmj

−RBRBT
S(ωBT

)RT

BRBT
ρmj

]

)

+mj

(

[Î]TRT

BTI

{

RT

BRBT
ρ̈mj

+ RT

BRBT
S(ωBRBT

)
[

S(ωBRBT
)ρmj

− 2ρ̇mj

]

+2S(ωBT
)RT

BRBT

[

S(ωBRBT
)ρmj

− ρ̇mj

]

+
[

S2(ωBT
) − S(ω̇BT

)
]

RT

BRBT
ρmj

+ RT

BRBT
S(ρmj

)ω̇BRBT

})

− [Î]TRT

BTI

{

−
[

RT

BRBT
S(ωBRBT

) + S(ωBT
)RT

BRBT

]

W + RT

BRBT
Ẇ
}

(5.25)

Canceling the common vectrix [Î], pre-multiplying the entire equation by RBRBT
RBTI,

and using the identity in Eq. (2.22) results in

{

− [S(ωBRBT
) + S(RBRBT

ωBT
)]RBRWR

U + ER ẊR

}

=
1

(M + m)

[

RBRBT
RBTI (F + ṁ ṙBT

) − ṁ (RBRWR
U + W − RBRBT

Vṁ)
]

−
1

(M + m)

k
∑

j=1

(

ṁj

{

ρ̇mj
− [S(ωBRBT

) + S(RBRBT
ωBT

)] ρmj

}

+ mj

{

ρ̈mj
+ S(ωBRBT

)
[

S(ωBRBT
)ρmj

− 2ρ̇mj

]

+ 2S(RBRBT
ωBT

)
[

S(ωBRBT
)ρmj

− ρ̇mj

]

+
[

S2(RBRBT
ωBT

) − S(RBRBT
ω̇BT

)
]

ρmj
+ S(ρmj

)ω̇BRBT

})

+ [S(ωBRBT
) + S(RBRBT

ωBT
)]W − Ẇ (5.26)
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Rearranging to have ẊR on the left side and pre-multiplying by E−1

R
, the final form of

the translational dynamics equation becomes

ẊR = E−1

R
[S(ωBRBT

) + S(RBRBT
ωBT

)] (RBRWR
U + W ) − E−1

R
Ẇ

+
1

(M + m)
E−1

R

[

RBRBT
RBTI (F + ṁ ṙBT

) − ṁ (RBRWR
U + W −RBRBT

Vṁ)
]

−
1

(M + m)
E−1

R

k
∑

j=1

(

ṁj

{

ρ̇mj
− [S(ωBRBT

) + S(RBRBT
ωBT

)] ρmj

}

+ mj

{

ρ̈mj
+ S(ωBRBT

)
[

S(ωBRBT
)ρmj

− 2ρ̇mj

]

+ 2S(RBRBT
ωBT

)
[

S(ωBRBT
)ρmj

− ρ̇mj

]

+
[

S2(RBRBT
ωBT

) − S(RBRBT
ω̇BT

)
]

ρmj
+ S(ρmj

)ω̇BRBT

})

(5.27)

When regarded in this form, two additional observations may be made about the

translational dynamics equation. First, the explicit dependency of the translational mo-

tion of the receiver aircraft on its rotational dynamics states and their time derivatives

can be seen through the terms containing ωBRBT
and ω̇BRBT

. Secondly, the information

about the motion of the tanker aircraft - both translational and rotational - are passed

as exogenous inputs to the receiver aircraft. The variables included in this category are

ṙBT
, RBTI, ωBT

and ω̇BT
.

5.4 Rotational Dynamics

Note that the rotational dynamic equation in Eq. (4.9) has the derivatives of ρ
i

and ρ
mj

. Recall that the first and second derivatives of ρ
mj

are given in Eqs. (5.21) and
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(5.23) in the previous section. Knowing that the ρ
i
vectors are fixed in BR-frame, Eqs.

(5.21) and (5.23) may be extended to ρ
i
as

ρ̇
i

= ωBR
× ρ

i
(5.28)

ρ̈
i

= ω̇BR
× ρ

i
+ ωBR

× ρ̇
i

= ω̇BR
× ρ

i
+ ωBR

× (ωBR
× ρ

i
) (5.29)

Once the derivatives of ρ
mj

and ρ
i
are substituted from Eqs. (5.21), (5.23), (5.28), and

(5.29), Eq. (4.9) becomes

MBR
=

n
∑

i=1

{

ρ
i
× Mi[U̇ + Ẇ + ω̇BR

× ρ
i
+ ωBR

× (ωBR
× ρ

i
)]
}

+

k
∑

j=1

ρ
mj

×

{

ṁj

(

U + W + [ρ̇
mj

]BR
+ ω × ρ

mj

)

+mj

[

U̇ + Ẇ + [ρ̈
mj

]BR
+ 2ωBR

× [ρ̇
mj

]BR
+ ω̇BR

× ρ
mj

+ωBR
× (ωBR

× ρ
mj

)

]}

− ρ
R
× ṁ

(

ṙBT
+ V ṁ

)

(5.30)

As done in the translational dynamics, the vectors in the above equation will be

expressed in terms of vectrices to eventually derive the matrix form of the rotational

dynamics. In doing so, each line of Eq. (5.30) is processed separately. The first line of

Eq. (5.30) can be expanded as

n
∑

i=1

{

ρ
i
× Mi(U̇ + Ẇ ) + Miρi

× (ω̇BR
× ρ

i
) + Miρi

× [ωBR
× (ωBR

× ρ
i
)]
}

(5.31)

It can be seen that the first term of this line is equal to zero after moving (U̇ +Ẇ ) outside

the summation due to its independence of subscript i as follows:

n
∑

i=1

ρ
i
× Mi(U̇ + Ẇ ) =

(

n
∑

i=1

ρ
i
Mi

)

× (U̇ + Ẇ ) (5.32)
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where
∑n

i=1 ρ
i
Mi = 0 because the origin of BR-frame is, by definition, at the CM of the

constant masses Mi at positions ρ
i
. Using the identities in Eqs. (2.11), (2.12), and (2.13),

the second term of the expression in Eq. (5.31) can be simplified as

Miρi
× (ω̇BR

× ρ
i
) = Mi[(ρi

· ρ
i
) ω̇BR

− (ρ
i
· ω̇BR

)ρ
i
]

= [B̂R]T
{

Mi[(ρ
T
i ρi)I3×3 − (ρiρ

T
i )] ω̇BR

}

(5.33)

where I3×3 is an identity matrix included to ensure matrix dimension consistency. More-

over, the third term in Eq. (5.31) can be simplified using Eqs. (2.12) and (2.14)

Miρi
× [ωBR

× (ωBR
× ρ

i
)] = Mi

[

(ωBR
· ρ

i
)ρ

i
× ωBR

− (ωBR
· ωBR

)ρ
i
× ρ

i

]

= Mi(ω
T
BR

ρi)ρi
× ωBR

(5.34)

since ρ
i
×ρ

i
= 0. After rearranging this expression as Mi(ρ

T
i ωBR

)ρ
i
×ωBR

, the result can

be further rewritten using the identity of Eq. (2.15) as

Mi(ρ
T
i ωBR

)ρ
i
× ωBR

= −[B̂R]T Mi(ρ
T
i ωBR

)S(ρi)ωBR
(5.35)

which, when using the identity of Eq. (2.18), finally becomes

[B̂R]T MiS(ωBR
)
(

ρiρ
T
i

)

ωBR
(5.36)

By adding and subtracting
(

ρT
i ρi

)

ωBR
and rearranging, Eq. (5.36) is further rewritten as

−[B̂R]TS(ωBR
)

{

Mi

[(

ρT
i ρi

)

I3×3 − ρiρ
T
i

]

ωBR
− Mi

(

ρT
i ρi

)

ωBR

}

(5.37)

where the second term is zero because Mi

(

ρT
i ρi

)

is scalar and S(ωBR
)ωBR

is zero by

Eq. (2.15). By substituting Eqs. (5.33) and (5.37) into Eq. (5.31), the first line can be

rewritten as

[B̂R]T

{

n
∑

i=1

Mi[(ρ
T
i ρi)I3×3 − (ρiρ

T
i )] ω̇BR

− S(ωBR
)

n
∑

i=1

Mi

[(

ρT
i ρi

)

I3×3 − ρiρ
T
i

]

ωBR

}

(5.38)
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In both terms of this expression, the inertia matrix of the masses at ρ
i
positions can be

identified. Thus, the inertia matrix of the receiver, excluding fuel transferred, is defined

as

I
M

=

n
∑

i=1

Mi[(ρ
T
i ρi)I3×3 − (ρiρ

T
i )] (5.39)

By substituting in Eq. (5.39), the first line of Eq. (5.30) can be further simplified to

[B̂R]T
[

I
M

ω̇BR
− S(ωBR

)I
M

ωBR

]

(5.40)

As done in the first line of Eq. (5.30), the other lines can be rewritten as follows

by using identities in Eqs. (2.11), (2.12), (2.13), and (2.14). The second line can be

expanded as

k
∑

j=1

ρ
mj

× ṁj(U + W ) + ρ
mj

× ṁj [ρ̇mj
]BR

+ ρ
mj

× ṁj(ω × ρ
mj

) (5.41)

the third term of which can be expanded using the identities in Eqs. (2.11), (2.12), and

(2.13) similarly to Eq. (5.33) as

ρ
mj

× ṁj(ω × ρ
mj

) = ṁj [(ρmj
· ρ

mj
) ω̇BR

− (ρ
mj

· ω̇BR
)ρ

mj
]

= [B̂R]T
{

ṁj [(ρ
T
mj

ρmj
)I3×3 − (ρmj

ρT
mj

)] ω̇BR

}

(5.42)

Substituting this expression into the second line and writing the other terms in vectrix

notation results in the second line being rewritten as

k
∑

j=1

{

[B̂R]T ρmj
× ṁj

(

[ŴR]T U + [B̂R]T W
)

+ [B̂R]T ρmj
× ṁj[B̂R]T ρ̇mj

+ṁj [B̂R]T
[

(ρT
mj

ρmj
)I3×3 − (ρmj

ρT
mj

)
]

ωBR

}

(5.43)

Further, using rotation matrices to write all vectors in BR-frame results in

k
∑

j=1

{

[B̂R]T ρmj
× ṁj

(

[B̂R]TRBRWR
U + [B̂R]T W

)

+ [B̂R]T ρmj
× ṁj [B̂R]T ρ̇mj

+ṁj [B̂R]T
[

(ρT
mj

ρmj
)I3×3 − (ρmj

ρT
mj

)
]

ωBR

}

(5.44)
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The third and fourth lines are processed by first expanding them to

k
∑

j=1

ρ
mj

× mj

[

U̇ + Ẇ + [ρ̈
mj

]BR
+ 2ωBR

× [ρ̇
mj

]BR
+ ω̇BR

× ρ
mj

+ωBR
× (ωBR

× ρ
mj

)

]

=

k
∑

j=1

ρ
mj

× mj(U̇ + Ẇ ) + ρ
mj

× mj[ρ̈mj
]BR

+ ρ
mj

× mj(2ωBR
× [ρ̇

mj
]BR

)

+ρ
mj

× mj(ω̇BR
× ρ

mj
) + ρ

mj
× mj [ωBR

× (ωBR
× ρ

mj
)] (5.45)

The first line of this expansion can be rewritten by using the expressions that have already

been developed for U̇ and Ẇ in the translational dynamics matrix form derivation. Recall

from Eqs. (5.17) and (5.20) that

U̇ = [Î]T RT

BTI

{

−
[

RT

BRBT
S(ωBRBT

) + S(ωBT
)RT

BRBT

]

RBRWR
U + RT

BRBT
ER ẊR

}

and

Ẇ = [Î]TRT

BTI

{

−
[

RT

BRBT
S(ωBRBT

) + S(ωBT
)RT

BRBT

]

W + RT

BRBT
Ẇ
}

Both of these derivatives may be written in BR-frame by using the frame relations and

rotation matrices. From the relation [Î] = RT

BTI
RT

BRBT
[B̂R], it follows that

[Î]T = [B̂R]TRBRBT
RBTI (5.46)

By substitution of Eq. (5.46) and using the identity of Eq. (2.22), Eqs. (5.17) and (5.20)

become

U̇ = [B̂R]T
{

− [S(ωBRBT
) + S(RBRBT

ωBT
)]RBRWR

U + ER ẊR

}

(5.47)

and

Ẇ = [B̂R]T
{

− [S(ωBRBT
) + S(RBRBT

ωBT
)] W + Ẇ

}

(5.48)



33

Making use of Eqs. (5.47) and (5.48), the first term of the expression in Eq. (5.45) may

be written as

k
∑

j=1

ρ
mj

× mj(U̇ + Ẇ )

=
k
∑

j=1

ρ
mj

× mj

(

[B̂R]T
{

− [S(ωBRBT
) + S(RBRBT

ωBT
)]RBRWR

U + ER ẊR

}

+[B̂R]T
{

− [S(ωBRBT
) + S(RBRBT

ωBT
)] W + Ẇ

}

)

=

k
∑

j=1

ρ
mj

× mj

(

[B̂R]T
{

− [S(ωBRBT
) + S(RBRBT

ωBT
)] (RBRWR

U + W ) + ER ẊR

+Ẇ

})

(5.49)

The third and fourth terms of the expansion in Eq. (5.45) can be rewritten using

the identities of Eqs. (2.11), (2.12), and (2.13) as

ρ
mj

× mj(2ωBR
× [ρ̇

mj
]BR

) = mj [(2ρmj
· ρ̇

mj
) ωBR

− (2ρ
mj

· ωBR
)ρ̇

mj
]

= [B̂R]T
{

ṁj [(2ρ
T
mj

ρ̇mj
)I3×3 − (2ρ̇mj

ρT
mj

)] ωBR

}

(5.50)

ρ
mj

× mj(ω̇BR
× ρ

mj
) = mj [(ρmj

· ρ
mj

) ω̇BR
− (ρ

mj
· ω̇BR

)ρ
mj

]

= [B̂R]T
{

mj[(ρ
T
mj

ρmj
)I3×3 − (ρmj

ρT
mj

)] ω̇BR

}

(5.51)

The fifth term of the expression in Eq. (5.45) may be rewritten using Eqs. (2.12)

and (2.14) as

ρ
mj

× mj [ωBR
× (ωBR

× ρ
mj

)] = mj

[

(ωBR
· ρ

mj
)ρ

mj
× ωBR

− (ωBR
· ωBR

)ρ
mj

× ρ
mj

]

= mj(ω
T
BR

ρmj
)ρ

mj
× ωBR

(5.52)



34

since ρ
mj

× ρ
mj

= 0. When these term expansions are substituted back into Eq. (5.45)

and all vectors are written in vectrix notation, the third and fourth lines become

k
∑

j=1

{

[B̂R]T ρmj
× mj

(

[B̂R]T
{

− [S(ωBRBT
) + S(RBRBT

ωBT
)] (RBRWR

U + W )

+ER ẊR + Ẇ

})

+ [B̂R]T ρmj
× mj[B̂R]T ρ̈mj

+mj[B̂R]T
[

(2ρT
mj

ρ̇mj
)I3×3 − (2ρ̇mj

ρT
mj

)
]

ωBR

+mj[B̂R]T
[

(ρT
mj

ρmj
)I3×3 − (ρmj

ρT
mj

)
]

ω̇BR

+mj(ω
T
BR

ρmj
)[B̂R]T ρmj

× [B̂R]T ωBR

}

(5.53)

The fifth line of Eq. (5.30) may be rewritten by first writing all vectors in vectrix

notation and then using rotation matrices to write all vectors in BR-frame. This results

in

ρ
R
× ṁ

(

ṙBT
+ V ṁ

)

= −[B̂R]T ρR × ṁ([Î]T ṙBT
+ [B̂T ]T Vṁ)

= −[B̂R]T
{

ρR × ṁ (RBRBT
RBTIṙBT

+ RBRBT
Vṁ)

}

(5.54)

By additionally using the skew-symmetric operation of Eq. (2.15), each of the

second, third/fourth, and fifth lines of Eq. (5.30) are further rewritten as follows:

Second line expressed in Eq. (5.44) becomes:

[B̂R]T
k
∑

j=1

{

− ṁjS(ρmj
) (RBRWR

U + W ) − ṁjS(ρmj
)ρ̇mj

+ṁj

[

(ρT
mj

ρmj
)I3×3 − (ρmj

ρT
mj

)
]

ωBR

}

(5.55)
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Third and fourth lines expressed in Eq. (5.53) become:

[B̂R]T
k
∑

j=1

{

− mjS(ρmj
)

(

− [S(ωBRBT
) + S(RBRBT

ωBT
)] (RBRWR

U + W )

+ER ẊR + Ẇ

)

− mjS(ρmj
)ρ̈mj

+mj

[

(2ρT
mj

ρ̇mj
)I3×3 − (2ρ̇mj

ρT
mj

)
]

ωBR

+mj

[

(ρT
mj

ρmj
)I3×3 − (ρmj

ρT
mj

)
]

ω̇BR

−mj(ω
T
BR

ρmj
)S(ρmj

)ωBR

}

(5.56)

Fifth line expressed in Eq.(5.54) becomes:

[B̂R]T ṁS(ρR) (RBRBT
RBTIṙBT

+ RBRBT
Vṁ) (5.57)

When Eqs. (5.40), (5.55), (5.56), and (5.57) are substituted back into Eq. (5.30),

the result is written as

MBR
= [B̂R]T

[

I
M

ω̇BR
+

k
∑

j=1

mj

[

(ρT
mj

ρmj
)I3×3 − (ρmj

ρT
mj

)
]

ω̇BR
− S(ωBR

)I
M

ωBR

]

+ [B̂R]T
k
∑

j=1

{

− ṁjS(ρmj
) (RBRWR

U + W ) − ṁjS(ρmj
)ρ̇mj

+ṁj

[

(ρT
mj

ρmj
)I3×3 − (ρmj

ρT
mj

)
]

ωBR

}

+ [B̂R]T
k
∑

j=1

{

− mjS(ρmj
)

(

− [S(ωBRBT
) + S(RBRBT

ωBT
)] (RBRWR

U + W )

+ER ẊR + Ẇ

)

− mjS(ρmj
)ρ̈mj

+mj

[

(2ρT
mj

ρ̇mj
)I3×3 − (2ρ̇mj

ρT
mj

)
]

ωBR

−mj(ω
T
BR

ρmj
)S(ρmj

)ωBR

}

+ [B̂R]T ṁS(ρR) (RBRBT
RBTIṙBT

+ RBRBT
Vṁ) (5.58)
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where the fourth line of Eq. (5.56) is moved to the first line of Eq. (5.58). It is now useful

to define the total inertia matrix of the entire system at a given time in BR-frame as

I
t

△

=

{

I
M

+

k
∑

j=1

mj

[(

ρT
mj

ρmj

)

I3×3 − ρmj
ρT

mj

]

}

(5.59)

which is always non-singular as I
M

is a mass property and ρT
mj

ρmj
as well as ρmj

ρT
mj

are

positive definite terms. When Eq. (5.59) is substituted in Eq. (5.58), this yields

MBR
= [B̂R]T

[

I
t
ω̇BR

− S(ωBR
)I

M
ωBR

]

+ [B̂R]T
k
∑

j=1

{

− ṁjS(ρmj
) (RBRWR

U + W ) − ṁjS(ρmj
)ρ̇mj

+ṁj

[

(ρT
mj

ρmj
)I3×3 − (ρmj

ρT
mj

)
]

ωBR

}

+ [B̂R]T
k
∑

j=1

{

− mjS(ρmj
)

(

− [S(ωBRBT
) + S(RBRBT

ωBT
)] (RBRWR

U + W )

+ER ẊR + Ẇ

)

− mjS(ρmj
)ρ̈mj

+mj

[

(2ρT
mj

ρ̇mj
)I3×3 − (2ρ̇mj

ρT
mj

)
]

ωBR

−mj(ω
T
BR

ρmj
)S(ρmj

)ωBR

}

+ [B̂R]T ṁS(ρR) (RBRBT
RBTIṙBT

+ RBRBT
Vṁ) (5.60)
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Further substituting ωBR
and ω̇BR

from Eqs. (5.8) and (5.9) and combining terms results

in

MBR
= [B̂R]T

{

I
t
[ω̇BRBT

+ S(ωBRBT
)RBRBT

ωBT
+ RBRBT

ω̇BT
]

−S(ωBRBT
+ RBRBT

ωBT
)I

M
(ωBRBT

+ RBRBT
ωBT

)

}

+ [B̂R]T
k
∑

j=1

ṁj

{

− S(ρmj
) (RBRWR

U + W ) − S(ρmj
)ρ̇mj

+
[

(ρT
mj

ρmj
)I3×3 − (ρmj

ρT
mj

)
]

(ωBRBT
+ RBRBT

ωBT
)

}

+ [B̂R]T
k
∑

j=1

mj

{

− S(ρmj
)

(

− [S(ωBRBT
) + S(RBRBT

ωBT
)] (RBRWR

U + W )

+ER ẊR + Ẇ

)

− S(ρmj
)ρ̈mj

+
[

(2ρT
mj

ρ̇mj
)I3×3 − (2ρ̇mj

ρT
mj

)
]

(ωBRBT
+ RBRBT

ωBT
)

−(ωT
BRBT

+ ωT
BT

RT

BRBT
)ρmj

S(ρmj
)(ωBRBT

+ RBRBT
ωBT

)

}

+ [B̂R]T ṁS(ρR) (RBRBT
RBTIṙBT

+ RBRBT
Vṁ) (5.61)

where vector MBR
can be expressed in terms of its representation in BR-frame as MBR

=

[B̂R]T MBR
. Also note that (ωT

BRBT
+ ωT

BT
RT

BRBT
)ρmj

in the second line from the end is

a scalar and therefore can be moved after S(ρmj
).
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Canceling the common vectrices and further combining similar terms results in

MBR
= −S(ωBRBT

+ RBRBT
ωBT

)I
M

(ωBRBT
+ RBRBT

ωBT
)

−

k
∑

j=1

S(ρmj
)
[

mj

(

ωT
BRBT

+ ωT
BT

RT

BRBT

)

ρmj
(ωBRBT

+ RBRBT
ωBT

)

+mj ρ̈mj
+ ṁj ρ̇mj

]

−

[

k
∑

j=1

S(ρmj
) mj

]

{

− [S(ωBRBT
) + S(RBRBT

ωBT
)] (RBRWR

U + W )

+ER ẊR + Ẇ
}

−

[

k
∑

j=1

S(ρmj
) ṁj

]

(RBRwR
U + W )

+ 2

k
∑

j=1

mj

[(

ρT
mj

ρ̇mj

)

I3×3 − ρ̇mj
ρT

mj

]

(ωBRBT
+ RBRBT

ωBT
)

+

k
∑

j=1

ṁj

[(

ρT
mj

ρmj

)

I3×3 − ρmj
ρT

mj

]

(ωBRBT
+ RBRBT

ωBT
)

+ I
t
[ω̇BRBT

+ S(ωBRBT
)RBRBT

ωBT
+ RBRBT

ω̇BT
]

+ ṁS(ρR) (RBRBT
RBTIṙBT

+ RBRBT
Vṁ) (5.62)

When Eq. (5.62) is rearranged to have ω̇BRBT
on the left side, the final form of the

rotational dynamics equation is written as
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ω̇BRBT
= I−1

t
MBR

+ I−1

t
S(ωBRBT

+ RBRBT
ωBT

)I
M

(ωBRBT
+ RBRBT

ωBT
)

+ I−1

t

k
∑

j=1

S(ρmj
)
[

mj

(

ωT
BRBT

+ ωT
BT

RT

BRBT

)

ρmj
(ωBRBT

+ RBRBT
ωBT

)

+mj ρ̈mj
+ ṁj ρ̇mj

]

+ I−1

t

[

k
∑

j=1

S(ρmj
) mj

]

{

− [S(ωBRBT
) + S(RBRBT

ωBT
)] (RBRWR

U + W )

+ER ẊR + Ẇ
}

+ I−1

t

[

k
∑

j=1

S(ρmj
) ṁj

]

(RBRwR
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In this equation, all the variables are with respect to the body frame of the receiver

or the body frame of the tanker with the exception of ṙBT
, which is the velocity of the

tanker relative to the inertial frame. When the rotational dynamics is represented in the

above form, it seems quite complicated. However, it is very suitable for the application

of aerial refueling. Angular velocity and the orientation as well as the translational

velocity and position of the receiver are defined with respect to BT -frame. The inertia

and mass properties of the receiver before the aerial refueling can be directly used in

the equation. Effect of the refueling on the rotational dynamics is represented by the

concentrated fuel mass and its CM location in each fuel tank. In the case of multiple fuel

tanks, the effect of fuel flow into each tank can be taken into account separately. Since

the equation is written with respect to a point fixed geometrically in the body of the



40

receiver, change of the CM during the refueling is already incorporated in the equation.

Another advantage of writing the equation with respect to a geometrically fixed frame

in the body is seen when the aerodynamic variables such as airspeed, angle of attack

and side-slip angle and aerodynamic stability derivatives need to be used. Since these

variables and derivatives are determined by the geometric shape of the aircraft, not its

mass properties, the standard definitions can be directly used without any modification

or re-interpretation.



CHAPTER 6

STATE–SPACE FORM OF THE DYNAMICS EQUATIONS

The most general forms of the dynamics equations from Eqs. (5.27) and (5.63) are

ẊR = f1 ω̇BRBT
+ c1 (6.1)

ω̇BRBT
= f2 ẊR + c2 (6.2)

where

f1 = −
1

(M + m)
E−1

R

[

k
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mj S(ρmj
)

]

(6.3)
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(6.4)

f2 = I−1

t

[
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∑
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S(ρmj
) mj

]

ER (6.5)
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and
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Note that the above set of equations, Eqs. (6.1) and (6.2) are not in the standard

state–space form, which is the most convenient for numerical simulation. After some

manipulation, these equations become

ẊR = (I3×3 − f1 f2)
−1 (f1c2 + c1) , (6.7)

ω̇BRBT
= f2 (I3×3 − f1 f2)

−1 (f1c2 + c1) + c2 (6.8)

which are the dynamics equations written in the state-space form and to be used in

computer simulations.



CHAPTER 7

MODELING THE VORTEX AND ITS EFFECT

It is to be noted that the wind effect terms constituting the elements W , Ẇ in the

receiver’s equations of motion derived earlier are considered to be based on the uniform

wind distribution acting at the receiver’s CM, expressed in its body frame. But, the

vortex-induced wind field acting on the receiver aircraft is non-uniform in nature. There-

fore, to be able to use the aircraft equations of motion without doing any modifications,

there is a need to approximate the non-uniform induced wind components and gradi-

ents by equivalent uniform wind and gradients. Once a fairly reasonable approximation

can be achieved, the implementation of aerodynamic coupling between the tanker and

the receiver becomes far more direct and computationally efficient than the conventional

procedure which involves first the calculation of induced forces and moments from the

wind distribution, and then inserting these forces and moments in the aircraft dynamics

equations.

In the dynamic model of this thesis for aerial refueling, the tanker is represented

by two sets of vortices each consisting of one bound and two tip (trailing) vortices, with

one set for the wing and the other for the horizontal tail. These six vortex filaments

induce additional wind velocities on the body of the receiver aircraft, which, in turn,

cause changes in the forces and moments experienced by the receiver. However, instead of

attempting to estimate the induced forces and moments on the follower, the induced wind

velocities and wind gradients are computed. The induced wind velocities are written as a

function of the relative separation as well as the relative orientation between the tanker

and the receiver using a modified horseshoe vortex model based on the Helmholtz profile.
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Since the induced wind and wind gradients are non-uniform along the body dimensions

of the receiver aircraft, an averaging technique is implemented to compute the effective

wind and wind gradient as uniform approximations. The effective wind components and

gradients are introduced into the nonlinear aircraft equations that include the components

of wind and the temporal variation of wind in the body frame to determine the effect on

the receiver’s dynamics. The effect of vortex decay over time is also included in our model.

Special care has been taken to accommodate different geometrical dimensions for the

tanker and the receiver aircraft and also to include many useful geometrical parameters

of the aircraft like the wing sweep angle, the dihedral angle and the relative distance

between the CM of the UAV and the aerodynamic center of the wing, in estimating the

vortex-effect experienced during aerial refueling. For further details of the actual vortex

model and the averaging technique used to estimate the vortex-effect on the receiver, see

Ref.[58]. Note that bound vortices were not considered in this reference, but its overall

approach is followed herein.



CHAPTER 8

APPLICATION

This section explains how the physical parameters of the receiver aircraft and its

fuel tanks are incorporated as mathematical quantities that are included in the derivation

of the equations of motion. It further presents some results of the simulation that incor-

porates the equations of motion developed herein as the model of the receiver aircraft

dynamics during aerial refueling. The simulation also includes the full 6-DOF nonlin-

ear dynamics of the tanker aircraft. In the simulation, the position and orientation of

the receiver relative to the tanker are controlled by a gain-scheduling linear controller

while the tanker flies in a racetrack maneuver. The simulation contains the ICE (Innova-

tive Control Effectors) unmanned aircraft as the receiver being refueled from a KC-135

tanker aircraft. For details of the tanker or receiver being simulated or the controller

being employed, see Refs. [28] or [59].

8.1 Fuel Tank Configuration

First, the overall fuel flow rate (ṁ), which may be time-varying, from the tanker

to the receiver is considered to be specified as an external input. Further, the part of

the total fuel flow that is sent to each individual fuel tank is specified. For example,

Fig. 8.1 shows the sketch of the ICE aircraft containing four fuel tanks in it. In

normal circumstances, the refueling begins with the forward tanks with the total fuel

flow distribution being such that

ṁ1 = ṁ2 = 0.5ṁ
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Figure 8.1. Receiver aircraft with its fuel tanks.

where the combined fuel capacity of tanks 1 and 2 totals 35% of the total aircraft fuel.

After tanks 1 and 2 are full, the aft tanks begin refueling such that the total fuel flow

distribution is described as

ṁ3 = ṁ4 = 0.5ṁ

where the combined fuel capacity of tanks 3 and 4 totals 65% of the total aircraft fuel.

The actual mass contained in the jth fuel tank at any instant of time can be computed

using the formula

mj(t) =

∫ t

0

ṁj(τ)dτ (8.1)

where t represents the time elapsed since the refueling operation had begun. If there

is any residual fuel in the tank before the start of refueling, that can be considered as

part of the receiver aircraft. Therefore, without any loss of generality, it is assumed that

mj(0) = 0.
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The next variable to be determined is ρ
mj

which is the position vector of the fuel

mass concentrated at the jth point, expressed in BR-frame. Recall the assumption that

fuel in each fuel tank is concentrated at its CM. In general, the initial location ρ
mj

(0)

is considered to be the mid-point of the base of the jth fuel tank or the surface of the

remaining fuel (Fig. 8.2). As the fuel flows into the fuel tank, the vector ρ
mj

(t) should

always point at the CM of the fuel (Fig. 8.3).

xB
R

yB
R

z B
R

ρ
mj

j   fuel tankth

Figure 8.2. Initial condition for lumped mass position vector.

For example, consider the two-view diagram of fuel tank 1 as shown in Fig. 8.3.

Initially,

ρ
m1

(0) = [B̂R]T













x1(0)

y1(0)

z1(0)













(8.2)

During the refueling, x1(t) and y1(t) will be constants and equal to their initial values.

This follows from the assumptions that the fuel tanks are rectangular and the fuel stays

level within each tank. However, since the level of the fuel is rising, z1(t) will be time-

varying. From Eq. (8.1), if ṁ1(t) is the fuel flow rate into tank 1, the amount of fuel

mass in the tank increases as

m1(t) =

∫ t

0

ṁ1(τ)dτ (8.3)
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Figure 8.3. Two-view diagram of fuel tank 1.

With the assumptions stated above, while fuel is flowing in, the height of the CM of the

fuel from the base of the tank can be expressed as

h1(t) =
m1(t)

ρfuela1b1

(8.4)

where a1 and b1 denote the length and breadth of fuel tank 1 (Fig. 8.3), and ρfuel is the

density of the fuel being transferred. Thus, the time-varying position vector of fuel tank

1 is obtained as

ρ
m1

(t) = [B̂R]T













x1(0)

y1(0)

z1(0) − h1(t)
2













(8.5)

The ρ-vector as a function of time for the other fuel tanks can be formulated similarly.

Then, the position vectors along with their time derivatives for all the fuel tanks are used

in the receiver’s equations of motion.
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Figure 8.4. Receiver fuel tank failure cases: (a) Right-hand tanks do not fill and (b)
Right-hand forward and left-hand aft tanks do not fill.

8.2 Simulation Results

In the simulation, the tanker aircraft flies at the nominal altitude of 7010 meters

at a speed of 190 m/s in a racetrack maneuver. However, note that this is the nominal

flight condition and that small deviations from the nominal conditions occur as the

tanker transitions between the legs of the racetrack maneuver. While the tanker flies in

the racetrack manuever, the receiver aircraft needs to maintain the contact position of

(-25.33, 0, 6.46) meters relative to the body frame of the tanker. Maintaining the contact

position enables the tanker’s refueling boom to deliver 0.04416 cubic meters of JP-4 fuel

per second (700gal/min) at the speed of 5.45 m/s. It is assumed that the refueling boom

is situated at an incline of 30 degrees downward from the negative x-axis of the tanker’s

body frame during the fuel transfer. The following is a presentation of the results from

the simulation of refueling while the tanker is at (i) straight-level flight and (ii) constant-

altitude, constant-speed turn. The configuration of fuel tanks in the receiver aircraft and

the scheduling of the tanks are given in the previous section.

Figures 8.5 through 8.10 depict the results of the simulations when executed for a

straight level flight condition for three different cases, as labeled in the figure legends.
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Case 1 is a normal refuel scenario where the refueling begins at 25 seconds. In Case 1,

both forward tanks fill first, each receiving half of the maximum tanker boom fuel flow

rate until filled to their commanded capacity, after which both aft fuel tanks receive half

of the maximum tanker boom fuel flow rate until filled to their commanded capacity.

Case 2 is a refuel failure scenario where neither of the right-hand fuel tanks (labeled

Tank 2 and Tank 4 in Fig. 8.1) receive fuel, but the left-hand forward tank still fills

first, followed by the left-hand aft; this failure scenario is depicted in Fig. 8.4(a). Case

3 is a refuel failure scenario where the right-hand forward and left-hand aft tanks do

not fill, which is depicted in Fig. 8.4(b). It should be noted that, in order to allow for

more accurate comparisons of the normal case to the failure cases, the fuel tanks in the

normal case are commanded to fill only to half of their capacities so that the transition

from refueling the forward tanks to the aft tanks occurs at the same time in all three

cases. This measure additionally ensures that the post-refuel total aircraft weight for the

normal case matches that for the failure cases.

To be able to maintain the nominal refueling contact position, the deviation from

the refueling position as well as the deviation in relative orientation should be minimal.

To analyze the performance of the aircraft in terms of these important requirements,

phase portraits of position and orientation are presented in Figs. 8.5 and 8.6, respectively.

Note that the y-deviation extends up to 0.3 and -0.2 meters with Case 3 resulting in

deviations significantly greater than those of the other cases. It is interesting to note

that, while Cases 2 and 3 have, as expected, the same y-deviations in the negative x- and

y-quadrant while Tank 1 is filled, their y-deviations in the positive x- and y-quadrant are

in opposite directions due to the fact that opposite-side aft tanks are being filled in these

cases (Tank 3 in Case 2 and Tank 4 in Case 3). The x-deviation is between -0.2 and 0.2

meters in all three cases and z-deviation is between -0.1 and 0.15 meters. The deviations
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Figure 8.5. Deviation of the receiver position from the refueling position in straight level
flight.

are smallest for Case 1, which results in zero y-deviation as expected based on the fuel

tank symmetry.

Figure 8.6 shows the phase portraits of Euler angles to illustrate the deviation

of the receiver orientation from the tanker orientation. The pitch angle variation is

approximately the same (below 1.5 deg) for all cases while Case 3 causes a greater range

of deviation of both yaw and bank angles. As with the y-deviation of Fig. 8.5, it is

interesting to note the portion of the Case 3 yaw deviation which is opposite of the Case

2 yaw deviation due to the asymmetric tank refueling.

Fig. 8.7 illustrates the x- , y- and z- components of the receiver’s position relative

to the tanker in the time domain. Correlations can be drawn between Figs. 8.7 and 8.5,

such as the magnitude of the y-position spikes resulting from the Case 3 scenario. The

first such spike at 25 seconds is the same for both Cases 2 and 3 due to the fact that both

cases begin by refueling the left-hand forward tank, but Case 3 second spike around 70



52

−5 0 5

0.5

1

1.5

Straight Level

P
itc

h 
[d

eg
]

Yaw [deg]
−0.4 −0.2 0 0.2 0.4

0.5

1

1.5

Bank [deg]

 

 

case−1
case−2
case−3

Figure 8.6. Receiver deviation in relative orientation in straight level flight.

seconds is the result of the cessation of Tank 1 refueling and the commencement of (right-

hand aft) Tank 4 refueling, and it is this second larger spike which correlates to the largest

y-deviation depicted in the phase portrait. Similarly, the opposite-direction y-position

spikes at about 140 seconds are the result of refuel completion and the reorientation of

the aircraft into an appropriate trim condition after being refueled in opposite-side aft

tanks, which correlates to the opposite-direction y-deviation spikes seen in the phase

portrait. This behavior is mathematically represented by the third term of Eq. (5.27),

which illustrate the contribution of the individual fuel tank masses and their derivatives,

along with the fuel CM locations and their derivatives, to the receiver’s translational

dynamics.

Fig. 8.8 shows how the orientation of the receiver changes in terms of Euler angles

relative to the tanker’s body frame in the time domain during straight level flight in the

three cases. As in the case with the position plots, correlations can be drawn between

Figs. 8.8 and 8.6, such as the opposite-direction tendencies of the yaw and bank angles
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Figure 8.7. Time history of the deviation of the receiver position from the refueling
position in straight level flight.

immediately following the Case 3 transition from the forward to diagonal aft fuel tank

when compared to the same-side forward to aft tank transition of Case 2. These moments

are largely due to the contribution of the second, third, fourth, fifth, sixth, and eighth

terms of Eq. (5.63), which express the relationship between the derivatives of the individ-

ual fuel tank masses and center-of-gravity locations to the receiver’s rotational dynamics.

It is also interesting to note that, after refuel completion, the yaw trim angle is different

for Cases 2 and 3, where the Case 2 results in a slightly positive yaw trim angle and Case

3 results in a very slightly negative yaw trim angle. Note also that there is, albeit very

small, a nonzero steady-state bank angle in Cases 2 and 3. This demonstrates the effect

of the asymmetric mass distribution on the steady-state trim condition.

Figures 8.9 and 8.10 illustrate the values of the control variables in all three cases

of straight level flight. Figure 8.9 illustrates the deflections of the three control effectors:

elevon, pitch flap, and clamshell. In all three cases, very small deflections (compared
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flight.

to the saturation deflections) in all the three effectors are used to maintain the refuel

contact position throughout the simulation. Both the elevon and clamshell deflections

can be compared with the roll and yaw angle histories in Fig. 8.8 to show how these

effectors reacted to the refueling in the failure cases and how their steady-state positions

corresponded to the receiver’s steady-state Euler angles. It can be seen that, when the

refueling of Case 3 transitioned from the forward to the diagonal aft tank, both the elevon

and clamshell reacted immediately to compensate for the opposite-side tank refueling,

and it is interesting to note how the elevon and pitch flap angle magnitudes change

steadily throughout the refueling to account for the steadily growing fuel tank masses.

This phenomenon is accounted for by the contribution of the gravitational moment caused

by the fuel masses as presented in Eq. (4.11) to the total moment of the external forces

about the origin of BR-frame as presented in Eq. (4.10). Figure 8.10 illustrates the level
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Figure 8.9. Time history of receiver control surface deflections in straight level flight.

of throttle in the three cases, which prove to be very similar. As expected, the throttle

tends to grow as the refueling occurs (beginning at 25 seconds) to keep the receiver at

the commanded velocity while experiencing mass increase, and the steady-state throttle

value is somewhat higher than initially due to the higher post-refuel aircraft weight.

Figures 8.11 through 8.16 depict the results of the simulation when executed for a

U-turn maneuver scenario which involves the tanker beginning to turn 25 seconds into

the simulation with a specified yaw rate until the yaw angle change reaches 180 degrees.

The commanded yaw rate for the tanker in a racetrack maneuver is generated from a 1.7

deg/sec step response of fourth order linear filter with time constants of 10, 10, 10 and

1 seconds. In these figures, Case 1 involves the turn maneuver only with no refueling,

included as a reference to determine how much of the receiver’s response is due solely to

the refueling. Case 2 is the same normal refuel scenario introduced in the straight level

flight case, with refueling beginning with the forward tanks at 25 seconds and continuing
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Figure 8.10. Time history of receiver throttle setting in straight level flight.

with the aft tanks after the forward tanks are filled to commanded capacity. Case 3 is

the refuel failure scenario where the right-hand forward and left-hand aft tanks do not

fill, which is depicted in Fig. 8.4(b). Once again, the fuel tanks in the normal case are

commanded to fill only to half of their capacities so that the transition from refueling the

forward tanks to the aft tanks occurs at the same time in Cases 2 and 3 while ensuring

that the post-refuel total aircraft weight for the normal case matches that for the failure

case.

As in the straight level flight case, the deviation from the refueling position as well

as the deviation in relative orientation should be minimal. To analyze the performance

of the aircraft in terms of these important requirements, phase portraits of position and

orientation are presented in Figs. 8.11 and 8.12, respectively. When compared with

deviations in the straight level cases, Case 1 herein shows that the additional deviations

are mostly due to the response of the receiver to the tanker turn. However, Figs. 8.11 and

8.12 show the additional deviations due to the symmetric and asymmetric fuel transfer.
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Figure 8.11. Deviation of the receiver position from the refueling position during turn.

The effects of the refueling are somewhat more pronounced in the Euler angle phase

portrait of Fig. 8.12, where both refueling cases, especially the failure of Case 3 about the

yaw axis, create orientation deviations significantly in excess of the orientation deviations

due only to the turn.

Figure 8.13 illustrates the x- , y- and z- components of the receiver’s position relative

to the tanker in the time domain. Once again, correlations can be drawn between Figs.

8.13 and 8.11, such as the magnitude of the y-position displacement around 45 seconds

resulting from the Case 3 forward-to-aft tank transition. Fig. 8.14 presents results

comparable to the Euler angle phase portrait, where the yaw deviations due to Case 3

and the fuel tank transition thereof are quite apparent. It is also apparent in this plot

that, when compared to the no-refueling Case 1, the steady-state pitch angle of Cases 2

and 3 is approximately one degree higher to account for the increased aircraft weight at

the end of the refueling exercise.
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Figure 8.12. Receiver deviation in relative orientation during turn.
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Figure 8.13. Time history of the deviation of the receiver position from the refueling
position during turn.
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Figure 8.14. Time history of the receiver relative orientation deviation during turn.

Figures 8.15 and 8.16 illustrate the magnitudes of the control variables in all three

turn maneuver cases. Figure 8.15 illustrates the deflections of the three control effectors

and it is obvious that the tenancies of especially the elevon and clamshell follow those of

the straight level flight case presented in Fig. 8.9. The differences between the effector

deflections required for turning with and without refueling are also illustrated here, with

the steady-state trim deflections being somewhat different both with and without fuel,

and with and without asymmetric mass distribution. Figure 8.16 illustrates the level of

throttle in the three cases, with Cases 2 and 3 having almost identical throttle require-

ments. Note that the throttle setting is higher in Cases 2 and 3 than in Case 1 during

the turn as well as during steady-state after the turn and refueling are both completed.

This is due to the mass transfer during the refueling and due to the higher post-refuel

aircraft weight in steady-state.
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Figure 8.15. Time history of receiver control surface deflections during turn.
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Figure 8.17. Time history of receiver in straight level flight becoming fully refueled.
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Figure 8.19. Receiver deviation in relative orientation during turn for observation of
vortex and refueling effects.

For the purposes of comparison, Fig. 8.17 depicts the receiver behavior in a straight

level flight scenario with refueling beginning at 25 seconds as before, but the tanks are

now commanded to fill to their full capacities instead of only halfway as previously done.

This simulation case is presented to show the response of the receiver in the case of the

full-capacity normal refueling scenario. It can be seen that all deviations and control

variable variations are larger in magnitude than in the previous scenario to account for

the additional mass being transferred into the aircraft.

Finally, Figs. 8.18 and 8.19 are presented as a means of comparing the effect of the

vortex on the receiver position and orientation deviations to the effect of the refueling in

the turn scenario. In these figures, Case 1 is a simulation involving neither the vortex

nor the refueling, and is included as a reference for the other two cases. In Case 2, the

vortex is included without any refueling, while Case 3 includes refueling at 25 seconds

as before, but with no vortex. From these figures in which the vortex and refueling
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effects are isolated from one another, it is apparent that the vortex and refueling actually

contribute extremely similarly to the receiver deviations. From these results, it can be

reasonably concluded that the effect of the refueling is as significant to the performance

of the receiver as the effect of the vortex-induced wind field.



CHAPTER 9

CONCLUSION

In this thesis, a new set of equations of motion of an aircraft is derived to account

for (i) time-varying inertia properties due to fuel transfer, (ii) exposure to wind induced

by the wake vortex of a lead aircraft, and (iii) position and orientation relative to an

accelerating and rotating reference frame.

A system of receiver aircraft and the fuel that will join the aircraft is defined. The

expressions for the time rates of change of linear and angular momenta of this sytem of

constant mass are derived by formulating the momenta before and after the fuel joins

the receiver and moves into the fuel tanks. This allows the application of Newton’s

Law, which is valid for a system of constant mass. Since the fuel before joining the

receiver aircraft is considered in the formulation of the linear and angular momentum

variation, the speed and direction of fuel flow into the receiver, as well as the location of

the receptacle in the receiver, are included in the equations of motion. The fuel that is

transferred into the receiver is modeled as point masses concentrated at the center of mass

of fuel within each fuel tank. This alows the formulation of time-varying fuel quantity

and center of mass for each fuel tank individually. Further, it allows the specification of

fuel tank location, shape, and size in the equations of motion. Additionally, since the

fuel flow rate into each fuel tank is individually accounted for in the equations of motion,

asymmetric fuel loading and unstead fuel transfer conditions can easily be simulated.

A geometrically fixed body reference frame is chosen for the receiver to address the

fact that the center of mass of the system may change during the fuel transfer. The origin

of this body frame is chosen to be at the center of mass of the receiver before the fuel
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transfer. This enables the mass and inertia matrix of the receiver aircraft without fuel to

be identified in the derivation of the equations. Thus, the mass and the inertia matrix of

the receiver excluding the transferred fuel can be used directly in the equations. Another

advantage of writing the equations with respect to a geometrically fixed frame manifests

itself when the aerodynamic varibles such as airspeed angle of attack, side slip angle, and

stability derivatives are used. Since such variables and derivatives are determined by the

shape of the aircraft rather than its mass properties, the standard definitions can be used

directly without any modification or re-interpretation.

To derive the equations of motion that include the dynamic effect of wind exposure,

the velocity and acceleration of the receiver are expressed as the sum of the velocity

and acceleration of the aircraft relative to the the surrounding air, and the velocity

and acceleration of the air relative to the inertial frame. This results in equations of

motion with explicit wind terms, which facilitiates the incoporation of the wind effect

in the aircraft dynamics and kinematics. It should be noted that this approach uses an

assumption of uniform wind and wind gradient acting at the origin of the receiver body

frame. An averaging technique, which was developed for close-proximity formation flight,

is used to approximate the nonuniform wind field induced by the tanker’s wake vortex

by uniform wind velocity and wind rotation. This enables easy dynamic modeling of the

receiver aircraft flying in the wake of the tanker aircraft.

Another novelty in the derivation of the equations is that they are expressed in

terms of the position and orientation of the receiver relative to the tanker, rather than

relative to the inertial frame. This offers a very suitable set of equations for the aerial

refueling problem since aerial refuling requires control of the receiver relative to the

tanker. Further, in the final form of the equations, the effects of the tanker’s motion on

the relative motion of the receiver are clearly shown. This also allows the translational
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and rotational states of the tanker aircraft to be passed into the receiver dynamics as

exogenous inputs.

The equations of motion are first derived in vector form. Then, vectrix formalism

and rotation matrices are used to convert the equations into state-space matrix form.

The matrix form enables the equations of motion to be dirctly implemented in numeri-

cal simulation tools such as MATLAB/Simulink. Further, state-space form is preferred

for model based control design. Another advantage of the matrix form is that the cou-

plings between rotational and translational dynamics can be easily identified through the

appearance of the rotational variables in the translational equations and vice versa.

Application of the derived equations in aerial refueling simulation has demonstrated

the ease of implementation and the versatility of the equations in terms of analyzing

various types of flight conditions and refueling scenarios. It should be noted that the

generic nature of the equations enables the simulation of any type of aircraft at any

flight condition with mass transfer of any sort. Analysis of the simulation results has

also shown the level and detail of insight that can be gained by the implementation of the

equations. In future work, the equations will be utilized in more effective control system

development as well as analysis of other systems having time-varying mass properties.
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Rotational kinematics of the receiver relative to the inertial frame in the form of

Poisson’s equation is

RBRIṘ
T

BRI
= −S(ωBR

) (A.1)

where ωBR
is the representation of the angular velocity of BR-frame with respect to the

inertial frame and most conveniently defined in BR-frame. Similarly for the rotational

kinematics of the tanker,

RBTIṘ
T

BTI
= −S(ωBT

) (A.2)

where ωBT
is the representation in BT -frame of the angular velocity of BT -frame.

It is obvious that the angular velocity of the receiver with respect to the inertial

frame can be written as the sum of its angular velocity with respect to the tanker and

the tanker’s angular velocity with respect to the inertial frame. Thus,

ωBR
= ωBRBT

+ ωBT
(A.3)

where ωBR
is the angular velocity vector of the receiver relative to the inertial frame,

ωBRBT
is the angular velocity vector of the receiver relative to the tanker, and ωBT

is the

angular velocity vector of the tanker relative to the inertial frame. Eq. (A.3) implies

ωBRBT
= ωBR

−RBRBT
ωBT

(A.4)

where ωBRBT
and ωBR

are the representations of the respective vectors in BR-frame while

ωBT
is the representation of the corresponding vector in BT -frame, and recall Eq. (2.7)

as

RBRBT
= RBRIR

T

BTI

Differentiating and transposing Eq. (2.7), we obtain

ṘT

BRBT
= RBTIṘ

T

BRI
+ ṘBTIR

T

BRI
(A.5)
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From Eq. (2.7) and Eq. (A.5), we have

RBRBT
ṘT

BRBT
= RBRIR

T

BTI

(

RBTIṘ
T

BRI
+ ṘBTIR

T

BRI

)

= RBRIṘ
T

BRI
+ RBRIR

T

BTI
ṘBTIR

T

BRI
(A.6)

In the above equation, the first term on the right hand side can be replaced by

−S(ωBR
) owing to Eq. (A.1). The second term can be simplified as shown below. The

time derivative of RT

BTI
RBTI = I, where I is a (3 × 3) identity matrix, implies

RT

BTI
ṘBTI = −ṘT

BTI
RBTI (A.7)

which is used for the second term in Eq. (A.6) to get

RBRIR
T

BTI
ṘBTIR

T

BRI
= −RBRIṘ

T

BTI
RBTIR

T

BRI
(A.8)

= −RBRIR
T

BTI
RBTIṘ

T

BTI
RBTIR

T

BRI
(A.9)

where the product RT

BTI
RBTI (which is equal to identity matrix) has been inserted into

the right hand side of Eq. (A.8). Grouping terms using Eqs. (A.2) and (2.7) yields

RBRIR
T

BTI
RBTIṘ

T

BTI
RBTIR

T

BRI
= −RBRBT

S(ωBT
)RT

BRBT
(A.10)

Now, using the property that the cross product is preserved after the transformation by

a rotation matrix, it can be shown that

RBRBT
S(ωBT

)RT

BRBT
= S(RBRBT

ωBT
) (A.11)

which gives the simplification for the second term on the right hand side of Eq. (A.6) to

be

RBRIR
T

BTI
ṘBTIR

T

BRI
= S(RBRBT

ωBT
) (A.12)
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Thus, using Eqs. (A.1), (A.4) and (A.12), along with the property of linearity for

S(·) operations in Eq. (A.6), Eq. (5.6) is proven as

RBRBT
ṘT

BRBT
= −S(ωBR

) + S(RBRBT
ωBT

)

= −S(ωBR
− RBRBT

ωBT
)

= −S(ωBRBT
) (A.13)

By rearranging Eq. (A.4), it is shown that ωBR
= ωBRBT

+RBRBT
ωBT

. Taking the

derivative of this expression yields

ω̇BR
= ω̇BRBT

+ ṘBRBT
ωBT

+ RBRBT
ω̇BT

(A.14)

If Eq. (A.13) is rearranged such that ṘT

BRBT
= −RT

BRBT
S(ωBRBT

), then it follows that

ṘBRBT
= S(ωBRBT

)RBRBT
(A.15)

By substituting Eq. (A.15) into Eq. (A.14), an expression for ω̇BR
is arrived at as

ω̇BR
= ω̇BRBT

+ S(ωBRBT
)RBRBT

ωBT
+ RBRBT

ω̇BT

thus completing the proof of Eq. (5.9).
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Recall from Eq. (5.21) that

ρ̇
mj

= [ρ̇
mj

]BR
+ ωBR

× ρ
mj

Substituting ωBR
from Eq. (5.7) gives

ρ̇
mj

= [ρ̇
mj

]BR
+ ωBRBT

× ρ
mj

+ ωBT
× ρmj

(B.1)

Recall that ρ
mj

= [B̂R]T ρmj
, ωBRBT

= [B̂R]T ωBRBT
, ωBT

= [B̂T ]T ωBT
, and [B̂R] =

RBRBT
[B̂T ]. Thus, Eq. (B.1) becomes

ρ̇
mj

= [B̂R]T ρ̇mj
+ [B̂R]T ωBRBT

× [B̂R]T ρmj
+ [B̂R]TRBRBT

ωBT
× [B̂R]T ρmj

(B.2)

Using the vector product property in Eq. (2.15) yields

ρ̇
mj

= [B̂R]T
[

ρ̇mj
− S(ωBRBT

)ρmj
− S(RBRBT

ωBT
)ρmj

]

(B.3)

Note that ρ̇
mj

can be expressed in the inertial frame using [B̂R]T = [Î]TRT

BTI
RT

BRBT
,

which yields Eq. (5.22).

Recall Eq. (5.23) as being

ρ̈
mj

= [ρ̈
mj

]BR
+ 2ωBR

× [ρ̇
mj

]BR
+ ω̇BR

× ρ
mj

+ ωBR
× (ωBR

× ρ
mj

)

After substituting ωBR
from Eq. (5.7) and rearranging, the above equation becomes

ρ̈
mj

= [ρ̈
mj

]BR
+ 2ωBRBT

× [ρ̇
mj

]BR
+ 2ωBT

× [ρ̇
mj

]BR
+ ω̇BRBT

× ρ
mj

+ ω̇BT
× ρ

mj
+ ωBRBT

× (ωBRBT
× ρ

mj
) + ωBRBT

× (ωBT
× ρ

mj
)

+ ωBT
× (ωBRBT

× ρ
mj

) + ωBT
× (ωBT

× ρ
mj

) (B.4)

where note that ω̇BRBT
= [ω̇BRBT

]BR
+ ωBT

× ωBRBT
. After ω̇BRBT

is substituted in and

the identity of Eq. (2.11) is used, it can be shown that

(ωBT
×ωBRBT

)×ρ
mj

+ωBRBT
×(ωBT

×ρ
mj

)+ωBT
×(ωBRBT

×ρ
mj

) = 2ωBT
×(ωBRBT

×ρ
mj

)

(B.5)
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Substituting this back into Eq. (B.4) in place of the three terms, using the vector product

property of Eq. (2.15), and rearranging, Eq. (B.4) becomes

ρ̈
mj

= [B̂R]T
[

ρ̈mj
− 2S(ωBRBT

)ρ̇mj
− 2S(RBRBT

ωBT
)ρ̇mj

+ S(ρmj
)ω̇BRBT

+ 2S(RBRBT
ωBT

)S(ωBRBT
)ρmj

− S(RBRBT
ω̇BT

)ρmj

+ S2(ωBRBT
)ρmj

+ S2(RBRBT
ωBT

)ρmj

]

(B.6)

Note that in rearranging Eq. (B.4) to get Eq. (B.6), the skew-symmetric matrix properties

of Eqs. (2.22) and (2.17) are used. Similarly to ρ̇
mj

, Eq. (5.24) is obtained once ρ̈
mj

in

Eq. (B.6) is expressed in the inertial frame.
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