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Abstract 

 

Estimation of Variance in Bivariate Normal Distribution After  

Preliminary Test of Homogeneity 

 

Juan Manuel Romero Padilla, PhD  

The University of Texas at Arlington, 2014 

 

Supervising Professor: Chien Pai Han 

 

A preliminary test estimator of variance in the bivariate normal 

distribution is proposed after Pitman-Morgan test of homogeneity of two 

variances. We propose one estimator of   
  after preliminary test of two tails and 

another one for one tail test. The biases and mean square errors of both estimators 

are derived. The relative efficiency (RE) of the preliminary test estimator is 

studied. Computations and 3D graphs of RE for different parameters are analyzed. 

In order to get the maximum RE, recommendations of the significance level for 

the preliminary test are given for various sample sizes by using the max-min 

criterion. 
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Chapter 1  

Introduction 

1.1 Introduction 

Comparing the variances of random variables arises in a variety of 

situations and in some procedures, the homogeneity of variances is frequently 

assumed. If we have two independent samples available for estimating the 

variance and we do not know whether the two samples are from populations with 

the same variance, then usually a preliminary test of the equality of two 

population variances is carried out. When the test is not significant the samples 

are pooled to obtain a pooled estimator, otherwise the individual sample variance 

is used. When the variables are independent Bancroft (1944) studied the 

estimation for the variance after a preliminary test, additional discussion are given 

by Bancroft and Han (1983) and Toyoda and Wallace (1975). We will consider 

the correlated case. In chapter 3 a preliminary test estimator of variance in the 

bivariate normal distribution is proposed after Pitman-Morgan test of 

homogeneity of two variances. We propose one estimator of   
  after preliminary 

test of two tails and another one for one tail test. The biases and mean square 

errors (MSE) of both estimators are derived 

In order to obtain the variance and MSE we use a nice theorem to get the 

product moments of an arbitrary order for the Wishart distribution that was 

derived by Joarder (2006). The theorem given by Joarder involves an infinite 
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series that does not include an important term. With the missing term, the theorem 

does not work for some product moments. In Chapter 2 we made the necessary 

adjustment to find a more general result that allows us to get the moments of any 

order, including fractions. Using the corrected theorem, we derive the biases and 

MSEs of the preliminary test estimators in Chapter 3 

In Chapter 4 we discuss the relative efficiency and recommendation of 

significance level for the preliminary test for the estimator proposed in the present 

work. Finally in Chapter 5 some conclusions are stated 

 

1.2 Literature Review 

Statistical inference procedure incorporating preliminary tests was first 

considered by Bancroft (1944). Estimations of mean after preliminary test of 

significance, have been studied by Mosteller (1948), Bennet (1952) and Han and 

Bancroft (1968). Johnson et al (1977) provide a pooling methodology for 

regression in prediction. Han (1978) studied preliminary test estimators of 

variance components. 

When samples are independent, estimation of the variance after 

preliminary test, have been studied by Bancroft (1944), Srivatava (1966) and 

Sisodia and Rai (1991). The relative efficiency and significance level of the 

preliminary test estimator was studied by Bancroft and Han (1983) and Toyota 

and Wallace (1975). 



 

3 

The estimation following a preliminary test of hypothesis are widely used 

in practice to improve efficiency of estimators. A closely related procedure is the 

interval estimation following a rejection of a preliminary test. Meeks and 

D’agostino (1983) proposed a method to find the conditional confidence interval 

(CCI) for the mean in the normal distribution. Chiou and Han (1994, 1995) got a 

conditional interval for the location and scale parameter for the exponential 

distribution, Mahdi (2003,2004) got a CCI for the shape and scale parameters for 

the Weibull distribution, further information could be seen in Madhi (2000)  and 

Chiou and Han (1998). 

Saleh (2006) provide a balanced description of the theory of preliminary 

test, he start with the two sample problem of pooling means in a general set up 

then raise the level of discussion form chapter to chapter in his book. He also 

states that the preliminary test estimators are the precursor of the Stein-type 

estimators and a careful look at the preliminary test estimator reveals that a simple 

replacement of the indicator function by a multiple of the reciprocal of the test-

statistics, define the Stein-type estimators. This procedure was called in his book 

as the preliminary test approach to shrinkage estimators or quasi-empirical Bayes 

approach.  

Furthermore, many authors have proposed test for homogeneity of 

variances when the variables are correlated. The most important one was 

proposed by Pitman (1939) and Morgan (1939). They made a transformation to 
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the original variables to get two new variables and the test of equality of two 

variances is equivalent to test independence of the new variables. In the normal 

multivariate case, to test homogeneity of variances, Han (1968) proposed four 

tests, Harris (1985) proposed four methods for large sample size and Cohen 

(1986) applied Pitman-Morgan method for each pair of variances 

We now give some examples to show the importance of estimation of 

variance. In the estimations of component of variance, one method that provides a 

technique to estimate the variance of random factors is the ANOVA method (e.g. 

Henderson, 1953; Rash and Masata, 2006). Another example is the estimation of 

risk of extinction or decline of a population that requires estimation of variability 

of vital rates such as survival and fecundity (Akcakaya, 2002). In quantitative 

genetics the heritability is defined as the ratio of genetic variance over 

environmental variance (Falconer and Mackey 1996, Ch 10). As a final example, 

estimations of inflation are important in economic, uncertainty in tomorrow’s 

price impairs the efficiency of today’s allocations decisions, It is mentioned 

(Engle, 1983), that higher rates of inflation are generally associated with higher 

variability of inflation. In general improve the estimation of variance is important, 

we need to do our analysis with the best estimator available. 
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Chapter 2  

Product Moments of Wishart Distribution 

2.1 Wishart Distribution 

Let         be iid         where   is positive defined, the Wishart 

matrix     is                    
   , A is said to have a Wishart 

distribution with parameters p, n=N-1 and       ,          , if the probability 

density function (pdf) is given by (e.g. Anderson 2003) 

      
   

       
      

 

 
       

 
  
  

      
    

 
   

 
   

 
 

 
        

    (2.1) 

with n > p and A positive definite. 

For p=2 we have the bivariate case with  

     
      
      

   

where        
 ,        
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   (2.2) 

 

2.2 Product Moments 

We use the joint distribution of   
 ,   

  and r given by (see Joarder 2006) 
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The product moments,     
    

     , for any a, b, c are given by 
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To obtain the first two integrals of equation (2.4) we use the property  
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To obtain the last two integrals of equation (2.4) we use the incomplete 

beta function for the two cases,     and    . When     we have 
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When     we notice that  
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Therefore we define 
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The product moments are given by the expression 
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The difference with respect to the result obtained by Joarder (2006) is the term  

     
 

 
           

The generalized hypergeometric function is given by (e.g. Bailey, 1964)  
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Next we will use the following results  

      ;                             
      

    
 

   
 

 
    

         

           
 

       

     
 

and redefine      to express     
    

      in terms of hypergeometric function 

as, from (2.5) 
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Next we rewrite the Theorem 3.1 of Joarder (2006) which needs 

adjustment too; the change is given in the expression       defined below. 

Define 
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and 

       
 

 
         

    

  
  

   

 
   

   

 
 , n>0, k>0 

Then let 

              
 

 
        

 

  

we have 

i)         
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ii)          
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iii)            
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v)            
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vi)          
 
                               (2.12) 

vii)          
 
                     (2.13) 

viii)          
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where 
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The proofs are the same as that of Joarder (2006), we note that  
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Joarder (2006) got several cases of product moments, in all the cases he 

use integers for a and b, that is the reason why all the results that he got are 

correct, but in the cases where a and b are fractions, there are no closed form, we 

need the expression given in (2.6). We show some examples 
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As an exercise we wrote a program in R version 2.15.1 to get the values of 

the above expectations for some parameters, the results are given in Table 2.1. 

 

Table 2.1 Values for some expectation, r is positive in all the cases, different 

values for of n,   
 ,   

   and     are considered 

  

  
   ,   

     , 

       

  
   ,   

     ,     

       

  
   ,   

     , 

       

 

n=10 n=40 n=10 n=20 n=10 n=20 

         3.162603 3.162278 1.493336 1.339566 5.118579 4.110479 

      
    40.4784 35.41751 7.845511 6.324694 100.2661 73.43899 

    
    

   9.237892 8.438663 1.747181 1.147746 10.47631 5.747624 
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Chapter 3  

Estimation of Variance After Preliminary Test 

3.1 Estimator of   
  After Preliminary Test of Homogeneity 

Let us consider the bivariate normal distribution of X and Y with 

   
  
  
 ,          

  
    

     
  ,        

   

    
 

The usual estimators for   and   are given by 

    
  
  
 ,           

  
    

     
  ,             

   

    
 

where 
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   ,              

 

 
                
    

We are interested in estimating   
 . It is known that when   

    
  the pooled 

estimator is   
  

 

 
   

    
  . In some practical situations the experimenter may 

not know whether   
    

 , in such cases he/she can use a preliminary test to 

resolve the uncertainty. The preliminary test is      
    

  VS      
    

  

Since X and Y are correlated we can use Pitman-Morgan test, see Pitman 

(1939) and Morgan (1939). Let       and      , testing    is 

equivalent to test independence between U and V and use the test statistic 

      
       

      
 

     (3.1) 

where 
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     (3.2) 

Under    T has a t-student distribution with (n-2) df. 

Also to test    we can test        
    vs       

     and we know that 

   
  has a beta-distribution   

 

 
 
 

 
      under    

The estimator of   
  after preliminary test is defined as 

    
   

 

 
   

    
                   

                 
 

  

  
                                  

                 
 

  

    (3.3) 

Where   is a Beta value corresponding to an  - level of significance for 

the preliminary test,        
 

 
 
 

 
    . When        

    
 , which is the 

never pool estimator, when        
    

  
 

 
   

    
  , which is the always-

pool estimator 

 

3.2 Bias and Mean Square Error 

Following Bancroft (1944) 
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          (3.6) 

       
          

         
     

         (3.7) 

From the definition of u and v we have the following relationships 
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In order to get the different expectation we will need the join distribution 

of   
 ,   

  and     that is given by the Wishart distribution 
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Joarder (2006) made a transformation and got 
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that comes from the duplication formula 
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We obtain the product moments     
    

     
      

     for a finite a, b, c 

as follows. We are using the fact    
    implies           . 
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To obtain the first two integrals of equation (3.14) we use the property  
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To obtain the last two integrals of equation (3.14) we use the incomplete beta 

function for the two cases,     positive and negative. When       we have 
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 where         is the cdf of the Beta distribution and        is the Beta 

function. When       we notice that 
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Therefore we define 
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The product moments are given by the expression 

    
    

     
     

     
 

     
    

          
    

 
 

    
 

 
     

  
    

      (3.15) 

     
 

 
         

     

  

 
     

   

 
     

   

 
    

      
     

 
     

     

 
    

     

 
 
   

 
  

In the same way we can find     
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From Eq. (3.15) we have 

      
    

     
      

         
    

     
       

    
     

      
     

Choosing different values of a, b and c we obtain 
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Let     
       

  
 
 

    
 

 
  

;        
 

 
         

     

  
  

   

 
     

   

 
   and  

    
 

 
         

     

  
  

     

 
   

   

 
  

Note the following two results (see Joarder, 2006) 

       
   

   

 
  
  

     
   

   
     

 
  
   

  

With the previous equations we get 
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So the bias of    
  is 

            
        

     
     (3.19) 

The MSE of    
  is 
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        (3.20) 

 

3.3 Estimator of   
  After Preliminary One-tailed Test 

If it is known that   
    

   then we can concentrate on the one-tailed test 

and the hypothesis for the preliminary test become 

      
    

  VS      
    

  

Under this new scenario,      . In the case of independence of the two 

samples, one estimator of   
  after preliminary test was developed by Bancroft 

(1944), he proposed the following estimator, when the sample sizes are equal 
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Where    is the value on the F-distribution with (n-1, n-1) degrees of 

freedom corresponding to some assigned significance level  . 

When the samples are equal, the Bancroft equations for the expectation, 

variance, bias and MSE become  
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where    
  

  
 

  
    

  

We define now an estimator of   
  after one-tailed preliminary test, for 

dependence samples, as 

     
    

 

 
   

    
                                       

     

  
                                                      

     

   (3.22) 

 where    is the           percentage point of the beta distribution 

         
 

 
 
 

 
     

Note that in a two-tailed test we reject      
    

  if, using the 

distribution of    , we have             
 

 
  or               

 

 
. This is 

equivalent to      
       where    

    
 

 
 
 

 
    . In the one-tailed case, 

we reject    if             
 

 
, which is equivalent to      

       . 

The expectation and variance for    
   are obtained in a similar way as the 

two-tailed test, in the procedure we only consider the rejection region,          . 
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where     
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The preliminary test estimator given by Bancroft (1944) is based on the F 

distribution, meanwhile the preliminary test that we proposed is based on a Beta 

distribution, in section 3.4, Table 3.3, we will see that when the samples are 

independent,    , the values that we get from both methods are similar 

 

3.4 Discussion and Numerical Example 

The value of   is a function of   and n. In Figure 3.1, we can see that 

when n goes to infinity the value of   goes to zero for any value of  , that is we 

never pool. 
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Figure 3.1 Graph of         for different values of n. 

 

If we always pool then    , expressions for      
   and        

   become 
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On the other hand, if we always pool then     

      
   

 

 
   

    
     

 

 
   

    
    

       
   

   

   
   

    
   

     

  
  
   

   
 

 
   

    
   

 

  

   
 

  
  

   

 
  
    

    
   

 
  
    

     
     

 
  
   

    
   

    

   
 

  
       

         
          

   
    

       
 

 
   

    
    

In both cases the results are consistent. If we let    , the expectation 

and variance of    
  become the expectation and variance of the pooled estimator. 

If we let    , the expectation and variance of    
  become the expectation and 

variance of the never pooled estimator. 

In the expressions for      
   and        

   we have an infinite sum, the 

terms in the infinite sum approach to zero quickly as k increase. In Table 3.1, 

values of      
   and        

   for different values of k are given, in each case the 

infinite series is truncated at k. When the difference between   
  and   

  are small 

then the infinite series stabilized quickly, but if the difference is big then the 
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infinite series do not stabilized and we have a computational limitation. We 

realized that in general when     
  
 

  
   ,            and n < 50, the infinite 

series stabilized quickly and we have good approximations if we truncate the 

infinite series at k=150 

 

Table 3.1Values of      
   and        

   for different values of k in the infinite 

serie 

  Case 1   Case 2   Case 3   Case 4   

k      
          

        
          

        
          

        
          

   

0 3.90904 2.59311 4.16742 0.84041 12.50000 61.94500 10.00000 34.86250 

1 3.90904 2.59311 4.16742 0.84041 12.50000 61.94500 10.00000 34.86250 

2 3.92984 2.67101 4.17213 0.85329 12.50000 61.94500 10.00000 34.86250 

4 3.93082 2.67653 4.17220 0.85353 12.50000 61.94500 10.00000 34.86250 

6 3.93085 2.67673 4.17220 0.85353 12.50000 61.94500 10.00000 34.86250 

8 3.93085 2.67673 4.17220 0.85353 12.50000 61.94500 10.00000 34.86250 

10 3.93085 2.67673 4.17220 0.85353 12.50000 61.94500 10.00000 34.86250 

20 3.93085 2.67673 4.17220 0.85353 12.49999 61.94501 10.00000 34.86239 

25 3.93085 2.67673 4.17220 0.85353 12.49991 61.94502 10.00001 34.86213 

50 3.93085 2.67673 4.17220 0.85353 12.46170 61.87192 10.00225 34.81283 

100 3.93085 2.67673 4.17220 0.85353 9.19725 42.72293 10.17059 31.98959 

150 3.93085 2.67673 4.17220 0.85353 5.36552 6.17148 11.12305 21.20019 

154 3.93085 2.67673 4.17220 0.85353 5.27790 5.03658 11.23821 20.22346 

Case 1:   
   ,   

     ,      , n=10,       

Case 2:   
     ,   

   ,      , n=30,        

Case 3:   
   ,   

    ,        , n=50,        

Case 4:   
    ,   

   ,        , n=20,        

 

A simulation was performed using Monte Carlo method. A random 

sample of size n from the bivariate random distribution was generated for the 

specified parameter, then and estimation of    
  was gotten, if the estimation for 
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  was less than   we pool otherwise we use the estimation for the variance of 

the sample for x, we did the process 10,000 times and we got the mean square 

error form the 10,000 values. 

Values of        
   for different values of n and   in three scenarios are 

given in Table 3.2. In the approximations we truncate the infinite series at k=150. 

The computations for the tables were performed using programs written in R 

version 2.15.1. The data of the simulation are in line with those of the equations 

that we got. 

In the case of the one-tailed preliminary test we compute values for 

       
    and        

    , that are given in Table 3.3. Again when the samples 

are independent,    , the values that we get are similar to those of Bancroft 

(1944). We can say that, with a particular case of the preliminary test given in 

3.20, samples sizes equal and    , we can get similar values of those gotten 

with Bancroft equations 
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Table 3.2 Values of        
   for different values of n and  , for the equation that 

we got and for a simulation 

    case 1   case 2   case 3   

n alpha Equation Simulation Equation Simulation Equation Simulation 

10 0.05 2.5533144 2.911120 2.394272 2.7064590 3.1821721 3.509223 

10 0.1 2.6767311 3.0143865 2.642882 2.8811301 3.6559338 3.925595 

10 0.2 2.8571791 3.2379324 3.031702 3.2622289 4.4057203 4.396387 

10 0.3 2.9820949 3.4044709 3.318479 3.5227358 4.9653973 4.949612 

10 0.5 3.1316896 3.5886548 3.685264 3.7855203 5.6915728 5.534832 

20 0.05 1.3180163 1.4391192 1.226799 1.3029027 1.6407944 1.688116 

20 0.1 1.3744933 1.4501049 1.34478 1.4357759 1.8732247 1.911863 

20 0.2 1.4444464 1.5060883 1.511789 1.6157959 2.2109313 2.179347 

20 0.3 1.4858448 1.6126757 1.625205 1.7218582 2.4466554 2.372776 

20 0.5 1.5270103 1.6449276 1.759088 1.8211920 2.7349696 2.508156 

30 0.05 0.8989703 0.9419439 0.824650 0.8705788 1.1011387 1.131195 

30 0.1 0.9336375 0.9782433 0.899396 0.9479946 1.2519441 1.243935 

30 0.2 0.9723144 1.0404832 1.001002 1.0431716 1.4650806 1.427387 

30 0.3 0.9925231 1.0552206 1.067436 1.1006743 1.6104255 1.545268 

30 0.5 1.0088253 1.1046119 1.142460 1.1695195 1.7841129 1.661979 

50 0.05 0.5609575 0.5844762 0.499923 0.5187593 0.6626018 0.678982 

50 0.1 0.5788562 0.5973554 0.541664 0.5654707 0.7498874 0.728851 

50 0.2 0.5954322 0.6206048 0.595768 0.6139027 0.8703457 0.868053 

50 0.3 0.6018261 0.6294167 0.629439 0.6882561 0.9507437 0.925180 

50 0.5 0.6034024 0.6450123 0.665016 0.6919349 1.0445668 0.970123 

100 0.05 0.3040210 0.3120257 0.255583 0.2579829 0.3310965 0.326093 

100 0.1 0.3095092 0.3238052 0.274290 0.2854258 0.3727815 0.386592 

100 0.2 0.3116961 0.3174539 0.296758 0.3150369 0.4290758 0.433176 

100 0.3 0.3103489 0.3267571 0.309536 0.3316886 0.4658524 0.440745 

100 0.5 0.3054034 0.3207741 0.321188 0.3381699 0.5076396 0.490568 

Case 1:   
   ,   

     ,      . 

Case 2:   
     ,   

   ,      . 

Case 3:   
      ,   

   ,       
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Table 3.3 Computation of        
    and        

     for different values of  n and 

  

Case n alpha        
           

     

  10 0.05 1.925520 2.002319 

  10 0.1 2.199892 2.265530 

  10 0.2 2.517807 2.549530 

  20 0.05 1.020834 1.036401 

  20 0.1 1.141644 1.153503 

1 20 0.2 1.261998 1.266878 

  50 0.05 0.446506 0.448529 

  50 0.1 0.485764 0.487057 

  50 0.2 0.516336 0.516701 

  10 0.05 2.118077 2.196695 

  10 0.1 2.406708 2.477641 

  10 0.2 2.763990 2.801367 

  20 0.05 1.092560 1.108616 

2 20 0.1 1.222677 1.235996 

  20 0.2 1.366805 1.373137 

  50 0.05 0.451022 0.453216 

  50 0.1 0.497209 0.498873 

  50 0.2 0.542688 0.543374 

  10 0.05 3.069182 3.175031 

  10 0.1 3.465581 3.564854 

  10 0.2 3.979782 4.035333 

  20 0.05 1.561619 1.583126 

3 20 0.1 1.741288 1.760203 

  20 0.2 1.954906 1.964766 

  50 0.05 0.627204 0.630133 

  50 0.1 0.692082 0.694541 

  50 0.2 0.764635 0.765841 

Case 1:   
   ,   

     ,      . 

Case 2:   
     ,   

   ,        

Case 3:   
      ,   

   ,       
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Chapter 4  

Relative Efficiency 

4.1 Relative Efficiency for Preliminary Test on Pooling Variances 

The relative efficiency (RE) of    
  to   

  is defined as (Bancroft and Han, 1983) 

      
         

  

        
  
 

   
 

        
  

     (4.1) 

The MSE of    
  is given by using equations (3.17) and (3.18) 
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where   is the           point of the beta distribution corresponding to an  - 

level of significance for the preliminary test 
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Using the following 
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We can express    
  in terms of   and    
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  (4.3) 

Our final expression for      is 
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For given n, RE is a function of      
 , and  . Some special cases are 

given as follows 
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i) If     and    
    then RE=1. 

ii) If n goes to infinite then   goes to cero and        
         

    so 

RE=1. 

iii) If     , then       and the infinite series take values only when 

k=0 
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In the last equation RE is function of n,   and    
  . If furthermore       

then 



 

34 

        
 

 
   

 

 
 
   

 
   

 

  
 

 
 
 

 
  
         

   

 
    (4.6) 

The difference of      when       minus      when       is 

    
 

 
   

 

 
 
   

 
    

  
 

 
 
         

   

 
  

   
 

 
 
 

 
 

          
  

 

    (4.7) 

Note that the difference is positive when n is big or   is not big (  not 

small). From the graph in figure 4.1 we found that the difference is always 

positive when       . On the scenario mentioned before, for    , RE at 

      is greater than RE at      , so there is a maximum of RE at      , 

   .  

       

       

Figure 4.1 Graph of Dif, Eq 4.7 for two values of   
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4.2 Computations of RE and Recommendations of Significant Level 

The quantity   is a parameter that is beyond the control of the 

experimenter. As mentioned by Bancroft and Han (1983), we need to find an 

appropriate   level such that the relative efficiency of    
  to   

  should be high. 

We want to choose an estimator for estimating   
  and we would like an estimator 

with the smallest MSE since the bias is part of MSE, so it is reasonable consider 

only the MSE or the relative efficiency. 

There are computational limitations when we evaluate the infinite series of 

equation (4.4) for some values, particularly when               and 

          . For the other cases if we truncate the infinite series at k=150 we got 

good approximations. 

The mathematical way to get the maximum of RE with respect to   and 

    is not easy, instead we use software (R. ver. 2.15.1) to get the maximum for 

different parameters values.  

The experimenter would choose the estimator with largest relative 

efficiency. In order to have a criterion for selecting the estimator, or equivalently 

the   level of the preliminary test we use the criterion proposed by Han and 

Bancroft (1968). If the experimenter does not know the size of   and is willing to 

accept and estimator which has a relative efficiency of no less than    , then 

among the set of estimators with    , where                      



 

36 

              , the estimator is chosen to maximize             over all     

and    . Since Maximum of RE occurs when       he selects the     (say 

   , which maximizes           (say     . This criterion will guarantee that 

the relative efficiency of the chosen estimator is at least     and it may become 

as large as    . This criterion is called the max-min criterion. 

In Table 4.1 we can find values of            , the corresponding   to 

use and the maximum relative efficiency            . For given n, one may 

select from Tale 4.1, the        which has the smallest relative efficiency he 

wishes to accept. For example if n=10 and the experimenter wants to have an 

estimator which has a relative efficiency no less than 0.8, then he would use 

      and the maximum relative efficiency he can obtain is 1.3297 

The behavior of the maximum RE is as follows. As n and   increase the 

maximum RE decrease. The maximum RE is reached when   was between 0.75 

and 1.1 and     is zero. The interval for  , such that RE > 1, is shorter as n 

increase. Table 4.1, show an interval for   such that the value of RE is greater 

than 1.  

In Figure 4.1 and 4.2, we can see the 3D graphs of RE as a function of   

(phi) and     (rho) for different values of   and n (for graphs of other values see 

Appendix B). In the graphs and Table 4.1, we can see that the maximum take 

place when       for all values of   and  . 
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Table 4.1 Maximum and minimum relative efficiency for different values of   

and n on the interval          

    Minimum   Maximum   Interval for   

                where RE >1 

 n         Min RE       Max RE “A” “B” 

6 0.01 3 0 0.182586 0.75 0 2.216875 0.25 1.45 

6 0.05 3 0 0.237209 0.8 0 1.944299 0.3 1.45 

6 0.1 3 0 0.298054 1.0001 0 1.731745 0.35 1.45 

6 0.2 3 0 0.432787 1.0001 0 1.567841 0.4 1.5 

6 0.3 3 0 0.580347 1.0001 0 1.476133 0.4 1.6 

6 0.4 3 0 0.730338 1.0001 0 1.428314 0.35 1.75 

10 0.01 3 0 0.163757 0.85 0 2.067694 0.4 1.4 

10 0.05 3 0 0.245429 0.85 0 1.766577 0.45 1.4 

10 0.1 3 0 0.335943 1.0001 0 1.617651 0.5 1.4 

10 0.2 3 0 0.50864 1.0001 0 1.455161 0.5 1.45 

10 0.3 3 0 0.666917 1.0001 0 1.371893 0.5 1.5 

10 0.4 3 0 0.801385 1.02 0 1.329681 0.45 1.65 

15 0.01 3 0 0.154986 0.9 0 1.991582 0.5 1.35 

15 0.05 3 0 0.270731 1.0001 0 1.708694 0.55 1.35 

15 0.1 3 0 0.389173 1.0001 0 1.558836 0.6 1.35 

15 0.2 2.7 0 0.582202 1.0001 0 1.396958 0.6 1.35 

15 0.3 2.55 0 0.730312 1.02 0 1.316258 0.55 1.45 

15 0.4 2.55 0 0.845438 1.05 0 1.282605 0.55 1.6 

20 0.01 3 0 0.160292 0.9 0 1.949785 0.55 1.3 

20 0.05 2.85 0 0.31017 1.0001 0 1.681045 0.6 1.3 

20 0.1 2.55 0 0.438315 1.0001 0 1.527942 0.65 1.3 

20 0.2 2.35 0 0.624007 1.0001 0 1.365753 0.65 1.35 

20 0.3 2.25 0 0.761452 1.03 0 1.289551 0.25 1.4 

20 0.4 2.25 0 0.865911 1.05 0 1.259216 0.25 1.5 

30 0.01 2.75 0 0.195337 0.95 0 1.916409 0.25 1.25 

30 0.05 2.3 0 0.365674 1.0001 0 1.651568 0.25 1.25 

30 0.1 2.15 0 0.492274 1.0001 0 1.494913 0.25 1.25 

30 0.2 2 0 0.667448 1.01 0 1.333481 0.25 1.25 

30 0.3 1.95 0 0.792776 1.04 0 1.263734 0.25 1.35 

30 0.4 1.95 0 0.885851 1.1 0 1.236624 0.25 1.4 
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Figure 4.2 Graphs for RE as a function of   (phi) and     (rho) for 

       and n=10 
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Figure 4.3 Graphs for RE as a function of   (phi) and     (rho) for        and 

n=30 



 

40 

Chapter 5  

Conclusions 

 

By making the necessary adjustment of a theorem derived by Joarder 

(2006), in Chapter 2, we obtained a general result to get any product moments of 

the variances and correlation coefficient in a bivariate normal sample. The final 

expression is given in terms of the hypergeometric function which is a well 

known function and there exists computational routines to be evaluated. 

In Chapter 3, we proposed two estimations for the variance after 

preliminary test of homogeneity of variance; one for two-tailed preliminary test 

and another one for one-tailed preliminary test. The mean, variance and MSE of 

the estimators were derived. Partial checks for the cases of never and always pool 

estimators are made. 

Finally in Chapter 4, we have discussed the relative efficiency for 

estimator of variance after preliminary test, we got and expression for RE in terms 

of the ratio of two variances ( ) and the correlation (   ). Computations of RE 

for different parameters were given and 3D graphs were analyzed. It was found 

that for a subset of parameter space    the value of RE is greater than one, for 

each value of    . The maximum RE is obtained that occurred when       and 

  is around 1. We found that when n and   increase the maximum RE decrease. 

As a recommendation one may select the   level for the preliminary test by using 
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the max-min criterion, ie, by specifying a minimum RE and select the   level to 

achieve the maximum RE. The behavior of RE of pooling two variances is similar 

when the samples are correlated or not, as mentioned by Bancroft and Han 

(1983), if the significance level of the preliminary test is carefully selected, the 

preliminary test estimator can be used when the experimenter is uncertain whether 

the variances are equal and the sample size is not big. 
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Appendix A 

R Program Code  
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############### Program ################################### 

############ Product Moments of Wishart Distribution ############ 

library(hypergeo) 

# Some variable definitions 

n<-10 

a<-1 

b<-1/2 

c<-2 

var1<-16 

var2<-1 

cov12<-1 

sd1<-sqrt(var1) 

sd2<-sqrt(var2) 

r<-cov12/(sd1*sd2) 

r2<-r^2 

U1<-(n/2)+a 

U2<-(n/2)+b 

U3<-(c+1)/2 

L1<-(n+c)/2 

L2<-1/2 

F<-genhypergeo(U=c(U1,U2,U3), L=c(L1,L2),z=r2) 

A<-(2^(a+b))*(1-r2)^((2+n)/2)/(pi^(1/2)*gamma(n/2)*n^(a+b)) 

G<-

((sd1^(2*a))*(sd1^(2*b))*gamma(U1)*gamma(U2)*gamma(U3))/gamma(L1) 

Eabc<-A*G*F 

Eabc 
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############### Program ######################################### 

### Function to get the expectation and MSE, Eq 3.17 and Eq. 3.20 ######### 

 EqMSE<-function(n, alpha, varx, vary, covxy){ 

  varu<-varx+vary+(2*covxy) 

  varv<-varx+vary-(2*covxy) 

  covuv<-varx-vary 

  sdu<-varu^(1/2) 

  sdv<-varv^(1/2) 

  ruv<-covuv/(sdu*sdv) 

  ruv2<-ruv^2 

  #Expectation of the variance 

  lambda<-qbeta(1-(alpha),0.5,(0.5*n)-1) 

  A1<-((1-ruv2)^((2+n)/2))/(pi^(1/2)*gamma(n/2)*n) 

  cA1<-(2*(1-ruv2))/n 

  sv1<-0 

  sv2<-0 

  sv3<-0 

  for (k in 0:150) { 

  B0<-(n-1)/2 

  B1<-(k+1)/2 

  B2<-(k+2)/2 

  B3<-(k+3)/2 

  v1<-

((2*ruv)^k*gamma((k+n+1)/2)*gamma((k+2)/2)/factorial(k))*(1-

pbeta(lambda,B2,B0))*((k+n+1)/2)*A1*cA1*(((-1)^k)+1) 

  v2<-

((2*ruv)^k*gamma((k+n+2)/2)*gamma((k+1)/2)/factorial(k))*(1-

pbeta(lambda,B3,B0))*((k+1)/2)*A1*cA1*(((-1)^k)+1) 
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  v3<-

((2*ruv)^k*gamma((k+n+1)/2)*gamma((k+2)/2)/factorial(k))*(1-

pbeta(lambda,B2,B0))*A1*(((-1)^k)+1) 

  sv1<-sv1+v1 

  sv2<-sv2+v2 

  sv3<-sv3+v3 

   } 

  var0<-(sdu^4+sdv^4)*(n+2)/(16*n)+(sdu^2*sdv^2)*(2*ruv2+n)/(8*n)  

  var1<-((sdu^3*sdv+sdu*sdv^3)/4)*sv1 

  var2<-((sdu^2*sdv^2)/4)*sv2 

  E<-((sdu^2+sdv^2)/4)+(1/2)*sdu*sdv*sv3 

  Var<-var0+var1+var2-E^2 

  MSE<-Var+(E-varx)^2 

  RE<-(2*varx^2)/(n*MSE) 

  return(c(varx,vary,covxy,n,alpha,E,Var,MSE,RE)) 

 } 

### Computations of Mean and MSE for different values of n and alpha ### 

 varx<-5.03 

 vary<-5 

 covxy<-1 

 vn<-c(10,20,30,50,100)   ##Different values of n 

 valpha<-c(0.05,0.1,0.2,0.3,0.5)  ##Different values of alpha 

 MSE<-matrix(1,nrow=1,ncol=9)  ##Matrix to add the computations 

 for (j in 1:5) {     ##Number of different values of n  

  n<-vn[j] 

 for (k in 1:5) { 

  alpha<-valpha[k] 

  MSE1<-EqMSE(n, alpha, varx, vary, covxy) 
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  MSE<-rbind(MSE,MSE1)  ##Add a matrix to a previous matrix, 

to keep the information 

 } 

 } 

 MSEnames<-c("varx","vary","covxy","n","alpha","E","Var","MSE","RE") 

 MSEnames 

 MSE 

 

############### Program ################################### 

##########   Bancroft Equations for Mean and MSE ############## 

#Some variable definitions 

n<-50 

varx<-5.03 

vary<-5 

covxy<-0 

ratio<-vary/varx 

alpha<-0.05 

lambda<-qf(1-alpha,n,n) 

x0<-lambda/((1/ratio)+lambda) 

B0<-n/2 

B2<-(n+2)/2 

B4<-(n+4)/2 

Ex05<-varx*(1+(1/2)*(pbeta(x0,B0,B2)*ratio-pbeta(x0,B2,B0))) 

v105<-(1/4+1/(2*n))*(pbeta(x0,B4,B0)*varx^2+pbeta(x0,B0,B4)*vary^2) 

v205<-(1/2)*(pbeta(x0,B2,B2)*varx*vary)+((n+2)/n)*(1-

pbeta(x0,B4,B0))*varx^2 

v305<-varx^2*(1+(1/2)*pbeta(x0,B0,B2)*ratio-(1/2)*pbeta(x0,B2,B0))^2 

v05<-v105+v205-v305 
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MSE05<-v05+(Ex05-varx)^2 

x0 

Ex05 

MSE05 

 

######## Program ################################### 

###### Function to get the Mean and MSE, One Tail Test #### 

 EqMSE<-function(n, alpha, varx, vary, covxy){ 

  varu<-varx+vary+(2*covxy) 

  varv<-varx+vary-(2*covxy) 

  covuv<-varx-vary 

  sdu<-varu^(1/2) 

  sdv<-varv^(1/2) 

  ruv<-covuv/(sdu*sdv) 

  ruv2<-ruv^2 

  #Expectation of the variance 

  lambda<-qbeta(1-(2*alpha),0.5,(0.5*n)-1) 

  A1<-((1-ruv2)^((2+n)/2))/(pi^(1/2)*gamma(n/2)*n) 

  cA1<-(2*(1-ruv2))/n 

  sv1<-0 

  sv2<-0 

  sv3<-0 

  for (k in 0:150) { 

  B0<-(n-1)/2 

  B1<-(k+1)/2 

  B2<-(k+2)/2 

  B3<-(k+3)/2 
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  v1<-

((2*ruv)^k*gamma((k+n+1)/2)*gamma((k+2)/2)/factorial(k))*(1-

pbeta(lambda,B2,B0))*((k+n+1)/2)*A1*cA1 

  v2<-

((2*ruv)^k*gamma((k+n+2)/2)*gamma((k+1)/2)/factorial(k))*(1-

pbeta(lambda,B3,B0))*((k+1)/2)*A1*cA1 

  v3<-

((2*ruv)^k*gamma((k+n+1)/2)*gamma((k+2)/2)/factorial(k))*(1-

pbeta(lambda,B2,B0))*A1 

  sv1<-sv1+v1 

  sv2<-sv2+v2 

  sv3<-sv3+v3 

   } 

  var0<-(sdu^4+sdv^4)*(n+2)/(16*n)+(sdu^2*sdv^2)*(2*ruv2+n)/(8*n)  

  var1<-((sdu^3*sdv+sdu*sdv^3)/4)*sv1 

  var2<-((sdu^2*sdv^2)/4)*sv2 

  E<-((sdu^2+sdv^2)/4)+(1/2)*sdu*sdv*sv3 

  Var<-var0+var1+var2-E^2 

  MSE<-Var+(E-varx)^2 

  RE<-(2*varx^2)/(n*MSE) 

  return(c(varx,vary,covxy,n,alpha,E,Var,MSE,RE)) 

 } 

 

###### Computations of Mean and MSE, One tail test, for different values of n 

and alpha ################# 

 varx<-4.2 

 vary<-4 

 covxy<-0 
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 vn<-c(10,20,50)    ##Diferent values of n 

 valpha<-c(0.05,0.1,0.2)   ##Diferent values of alpha 

 MSE<-matrix(1,nrow=1,ncol=9)  ##Matrix to add the computations 

 for (j in 1:3) {     ##Number of diferent values of n  

  n<-vn[j] 

 for (k in 1:3) { 

  alpha<-valpha[k] 

  MSEb<-EqMSE(n, alpha, varx, vary, covxy) 

  MSE<-rbind(MSE,MSEb)  ##Add a matrix to a previous matrix, 

to keep the information 

 } 

 } 

 MSEnames<-c("varx","vary","covxy","n","alpha","E","Var","MSE","RE") 

 MSEnames 

 MSE 

 

############### Program ################################### 

############### Simulation  ################################ 

library(mvtnorm) 

## Simulation function 

simulation<-function(n, alpha, sigx, sigy, covxy){ 

 lambda<-qbeta(1-(alpha),0.5,0.5*n-1) 

 ns<-10000 

 mu<-c(0,0)    #mean vector 

 sig<-matrix(c(sigx,covxy,covxy,sigy),ncol=2) #variance matrix 

 vec<-seq(1,ns,by=1) 

 vect<-seq(1,ns,by=1) 

 vecSx<-seq(1,ns,by=1) 
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 for (k in 1:ns) { 

  data<-rmvnorm(n,mean=mu,sigma=sig) #generate a sample 

  x<-data[,1] 

  y<-data[,2] 

  u<-x+y 

  v<-x-y 

  Sx<-var(x) 

  vecSx[k]<-Sx 

  Sxy<-(var(x)+var(y))/2 

  r2<-cov(u,v)^2/(var(u)*var(v)) 

  if (r2<lambda) vx<-Sxy else vx<-Sx 

  vec[k]<-vx 

  ### Using t distribution 

  t<-((r2*(n-2))/(1-r2))^1/2 

  lambdat<-qt(1-alpha/2,n-2) 

  if (t<lambdat) tvx<-Sxy else tvx<-Sx 

  vect[k]<-tvx 

   } 

 Exy<-mean(vec) 

 Varxy<-var(vec) 

 MSExy<-Varxy+(Exy-sigx)^2 

 Ex<-mean(vecSx) 

 Varx<-var(vecSx) 

 MSEx<-Varx+(Ex-sigx)^2 

 RE<-MSEx/MSExy 

 Etxy<-mean(vect) 

 Vartxy<-var(vect) 

 MSEtxy<-Vartxy+(Etxy-sigx)^2 
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 return(c(sigx,sigy,covxy,n,alpha,Exy,MSExy,MSEx,RE,MSEtxy)) 

} 

 

# Some variable definitions 

# sigx<-5; # sigy<-5; # covxy<-2.5; # alpha<-0.3; # n<-20 

# simula1<-simulation(n, alpha, sigx, sigy, covxy) 

# simulanames<-

c("sigx","sigy","covxy","n","alpha","Exy","MSExy","MSEx","RE","MSEtxy") 

# simulanames 

# simula1 

 

 ###### Simulations for different values of n and alpha ################## 

 sigx<-5.03 

 sigy<-5 

 covxy<-1 

 vn<-c(10,20,30,50,100)   ##Different values of n 

 valpha<-c(0.05,0.1,0.2,0.3,0.5)  ##Different values of alpha 

 Simula<-matrix(1,nrow=1,ncol=10)  ##Matrix to add the computations 

 for (j in 1:5) {     ##Number of different values of n  

  n<-vn[j] 

 for (k in 1:5) { 

  alpha<-valpha[k] 

  Simula1<-simulation(n, alpha, sigx, sigy, covxy) 

  Simula<-rbind(Simula,Simula1)  ##Add a matrix to a previous 

matrix, to keep the information 

 } 

 } 
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 simulanames<-

c("sigx","sigy","covxy","n","alpha","Exy","MSExy","MSEx","RE","MSEtxy") 

 simulanames 

 Simula 

 

############### Program ################################### 

 ########## Relative Efficiency Function ######################## 

 re<- function(n, alpha, a, rxy) { 

 rxy2<-rxy^2 

  ruv2<-(1+a^2-2*a)/(1+a^2+2*a-4*a*rxy2) 

 ruv<-sqrt(ruv2) 

 if (a>1) { 

   ruv<--ruv  

   d<--1} 

 else d<-1 

 lambda<-qbeta(1-(alpha),0.5,(0.5*n)-1) 

  A1<-((1-ruv2)^((2+n)/2))/(pi^(1/2)*gamma(n/2)*n) 

  cA1<-(2*(1-ruv2))/n 

  sv1<-0 

  sv2<-0 

  sv3<-0 

  for (k in 0:150) { 

  B0<-(n-1)/2 

  B1<-(k+1)/2 

  B2<-(k+2)/2 

  B3<-(k+3)/2 
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  v1<-

((2*ruv)^k*gamma((k+n+2)/2)*gamma((k+1)/2)/factorial(k))*(1-

pbeta(lambda,B3,B0))*((k+1)/2)*A1*cA1*(((-1)^k)+1) 

  v2<-

((2*ruv)^k*gamma((k+n+1)/2)*gamma((k+2)/2)/factorial(k))*(1-

pbeta(lambda,B2,B0))*((k+n+1)/2)*A1*cA1*(((-1)^k)+1) 

  v3<-

((2*ruv)^k*gamma((k+n+1)/2)*gamma((k+2)/2)/factorial(k))*(1-

pbeta(lambda,B2,B0))*A1*(((-1)^k)+1) 

  sv1<-sv1+v1 

  sv2<-sv2+v2 

  sv3<-sv3+v3 

   } 

 var0<-((n+2)/16)*(1+a^2+2*a+4*rxy2*a)+((n+2*ruv2)/16)*(1+a^2+2*a-

4*rxy2*a)-(n/2)*a 

 var1<-(n/8)*(1+a^2+2*a-4*rxy2*a)*sv1 

 var2<-(n/4)*d*(1+a)*(1+a^2+2*a-4*rxy2*a)^(1/2)*sv2 

 var3<-(n/2)*d*((1+a^2+2*a-4*rxy2*a)^(1/2))*sv3 

 RE1<-var0+var1+var2-var3 

 RE<-1/RE1 

 return(c(n,alpha,a,rxy,RE)) 

 } 

 #########Some variable definitions 

# n<-10 

# a<-2 

# rxy<-0.5 

# alpha<-0.3 

# re1<-re(n, alpha, a, rxy)    ## Run the function to get the RE 
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# re1names<-c("n","alpha","phi","rho","RE") 

# re1 

 

############### Program ################################### 

########### Computations of Efficiency ####################### 

 n<-20 

 alpha<-0.5 

 vphi<-c(seq(0.1,0.90,by=0.05),seq(0.95,1.05,by=0.01),seq(1.1,2.95,by=0.05)) 

 vrho<-c(seq(-0.9,0.9,by=0.05)) 

 RE<-matrix(1,nrow=1,ncol=5) 

 for (j in 1:66) { 

  a<-vphi[j] 

 for (k in 1:37) { 

  r<-vrho[k] 

  re1<-re(n, alpha, a, r) 

  RE<-rbind(RE,re1)  ##Add a matrix to a previous matrix, to keep 

the information 

 } 

 } 

 a<-66*37+1   #to drop the first raw 

 RE1<-RE[2:a,] 

 vphi 

 vrho 

 RE1 

 ###### Graphs for the Efficiency 

 require(grDevices) # for trans3d 

 RE2<-RE1[,5] 

 RE3<-matrix(RE2, 37, 66) 
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 op <- par(bg = "white") 

 persp(vrho, vphi, RE3, theta = 30, phi = 30, col = "lightblue", expand = 0.5, 

      ltheta = 120, shade = 0.75, ticktype = "detailed", 

      xlab = "rho", ylab = "phi", zlab = "RE" ) 

###### see the graph for a different perspective  

 persp(vrho, vphi, RE3, theta = 90, phi = 0, col = "lightblue", expand = 0.5, 

      ltheta = 120, shade = 0.75, ticktype = "detailed", 

      xlab = "rho", ylab = "phi", zlab = "RE" ) 

 #see the graph for a different perspective  

 persp(vrho, vphi, RE3, theta = 150, phi = 0, col = "lightblue", expand = 0.5, 

      ltheta = 120, shade = 0.75, ticktype = "detailed", 

      xlab = "rho", ylab = "phi", zlab = "RE" ) 
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Appendix B 

Relative Efficiency Graphs  
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       and n=6 
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      and n=10 
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